WorldWideScience

Sample records for methyl iodide adsorbed

  1. Methyl iodide tests on used adsorbents

    International Nuclear Information System (INIS)

    Kovach, J.L.

    1993-01-01

    This paper discusses the history of events leading to the current problems in radioiodine test conditions. These radioiodine tests are performed in the adsorbent media from both safety and non-safety related Nuclear Air Treatment Systems (NATS). The main problem addressed is that currently there are still numerous plant technical specifications for NATS which reference outdated test protocols for the surveillance testing of the radioactive methyl iodide performance of the adsorbents. Recommendations for correcting the test condition problems are presented. 7 refs

  2. Evaluation of optimal silver amount for the removal of methyl iodide on silver-impregnated adsorbents

    International Nuclear Information System (INIS)

    Park, G.I.; Cho, I.H.; Kim, J.H.; Oh, W.Z.

    2001-01-01

    The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver-impregnated zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver impregnation amount for the removal of methyl iodide at temperatures up to 300 deg. C. The degree of adsorption efficiency of methyl iodide on silver-impregnated adsorbent is strongly dependent on impregnation amount and process temperature. A quantitative comparison of adsorption efficiencies on three adsorbents in a fixed bed was investigated. The influence of temperature, methyl iodide concentration and silver impregnation amount on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It shows that the effective impregnation ratio was about 10wt%, based on the degree of silver utilization for the removal of methyl iodide. The practical applicability of silver-impregnated zeolite for the removal of radioiodine generated from the DUPIC process was consequently proposed. (author)

  3. A simplified test procedure for determining the effectiveness of adsorbents for the removal of methyl iodide

    International Nuclear Information System (INIS)

    Underhill, D.W.

    1993-01-01

    ASTM Test Procedure D3803 measures the ability of nuclear-grade carbon to remove methyl iodide from a stream of humidified air. This test, unlike all the other procedures developed by ASTM Committee D28, has evolved to become extremely complex. The intricacy of this test as well as the great difficulty in obtaining inter-laboratory agreement, creates doubt as tot the actual meaning of the results. Here a far simpler test system is described in which thermodynamic principles are used to maintain a constant, reproducible test procedure. This paper describes a system implementing these elements, its cost to build, and the factors affecting its accuracy. 11 refs., 1 fig

  4. Adsorption of methyl iodide on charcoal

    International Nuclear Information System (INIS)

    Hidajat, K.; Aracil, J.; Kenney, C.N.

    1990-01-01

    The adsorption of non-radioactive methyl iodide has been measured experimentally over a range of conditions of concentration, and temperature on an activated charcoal. This is of interest since methyl iodide is formed from iodine fission products in gas cooled nuclear reactors. A mathematical model has also been developed which describes the rate of adsorption, under isothermal and linear adsorption isotherm conditions in a recycle adsorber. This model takes into account the resistance to adsorption caused by the surface adsorption, as well as the external and internal mass transfer resistances. The solution to the model for the recycle adsorber was obtained using a semidiscretisation method to reduce the partial differential equations to a system of stiff ordinary differential equations, and the resulting differential equations solved by a standard numerical technique. (author)

  5. Methyl Iodide Decomposition at BWR Conditions

    International Nuclear Information System (INIS)

    Pop, Mike; Bell, Merl

    2012-09-01

    Based on favourable results from short-term testing of methanol addition to an operating BWR plant, AREVA has performed numerous studies in support of necessary Engineering and Plant Safety Evaluations prior to extended injection of methanol. The current paper presents data from a study intended to provide further understanding of the decomposition of methyl iodide as it affects the assessment of methyl iodide formation with the application of methanol at BWR Plants. This paper describes the results of the decomposition testing under UV-C light at laboratory conditions and its effect on the subject methyl iodide production evaluation. The study as to the formation and decomposition of methyl iodide as it is effected by methanol addition is one phase of a larger AREVA effort to provide a generic plant Safety Evaluation prior to long-term methanol injection to an operating BWR. Other testing phases have investigated the compatibility of methanol with fuel construction materials, plant structural materials, plant consumable materials (i.e. elastomers and coatings), and ion exchange resins. Methyl iodide is known to be very unstable, typically preserved with copper metal or other stabilizing materials when produced and stored. It is even more unstable when exposed to light, heat, radiation, and water. Additionally, it is known that methyl iodide will decompose radiolytically, and that this effect may be simulated using ultra-violet radiation (UV-C) [2]. In the tests described in this paper, the use of a UV-C light source provides activation energy for the formation of methyl iodide. Thus is similar to the effect expected from Cherenkov radiation present in a reactor core after shutdown. Based on the testing described in this paper, it is concluded that injection of methanol at concentrations below 2.5 ppm in BWR applications to mitigate IGSCC of internals is inconsequential to the accident conditions postulated in the FSAR as they are related to methyl iodide formation

  6. Kinetic Isotope Effects in the Reduction of Methyl Iodide

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    a Grignard reagent to methyl iodide, and for reduction of methyl iodide with tributyltin hydride or with gaseous hydrogen iodide. Very small KIE's were found for electron transfer to methyl iodide from magnesium in ether or from sodium in ammonia. The reason may be that these reactions are transport...

  7. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  8. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    International Nuclear Information System (INIS)

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-01-01

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO 3 and increased NO 2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO 2 , very low H 2 O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I 2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  9. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, C.M.; Gonzalez, J.F.; Roman, S.

    2011-01-01

    Activated carbons were prepared by different series of carbon dioxide and steam activation from walnut shells for their optimal use as radioactive methyl iodide adsorbents in Nuclear Plants. The knowledge of the most favourable textural characteristics of the activated carbons was possible by the previous study of the commercial activated carbon currently used for this purpose. In order to increase their methyl iodide affinity, the effect of triethylenediamine impregnation was studied at 5 and 10 wt.%. The results obtained indicated that in both cases the adsorption efficiency is markedly improved by the addition of impregnant, which allows the adsorbate uptake to occur not only by physical adsorption, via non-specific interactions (as in non-impregnated carbons) but also by the specific interaction of triethylenediamine with radioactive methyl iodide. Methyl iodide retention efficiencies up to 98.1% were achieved. (author)

  10. Method to remove methyl iodide131 gas

    International Nuclear Information System (INIS)

    Deitz, V.R.; Blachly, C.H.

    1977-01-01

    A two-stage impregnation process for charcoal is presented which is to be used for radioactive iodine or methyl iodide removal from the waste gas of a nuclear reactor. In the first stage, the coal is treated at pH 10 with an aqueous mixture of a salt of iodic acid (hypoiodite, iodate, or periodate) with iodine or iodide. In the second stage, impregnation with a tertiary amine occurs. The concentrations are chosen so that the charcoal will take up between 0.5 and 4% by weight of iodine. (UWI) [de

  11. Evaluation of quaternary ammonium halides for removal of methyl iodide from flowing air streams

    International Nuclear Information System (INIS)

    Freeman, W.P.; Mohacsi, T.G.; Kovach, J.L.

    1985-01-01

    The quaternary ammonium halides of several tertiary amines were used as impregnants on activated carbon and were tested for methyl iodide penetration in accordance with test Method A, ASTM D3803, 1979, ''Standard Test Methods for Radio-iodine Testing of Nuclear Grade Gas Phase Adsorbents''. The results suggest that the primary removal mechanism for methyl iodide-131 is isotopic exchange with the quaternary ammonium halide. For example, a 5 wt% impregnation of each of the tetramethyl, tetraethyl, tetrapropyl and tetrabutyl ammonium iodides on activated carbon yielded percent penetrations of 0.47, 0.53, 0.78, and 0.08 respectively when tested according to Method A of ASTM D3803. A sample impregnated with 5% tetramethyl ammonium hydroxide gave a methyl iodide penetration of 64.87%, thus supporting the isotopic exchange mechanism for removal. It has been a generally held belief that the success of tertiary amines as impregnants for radioiodine removal is a result of their ability to complex with the methyl iodide. The results of the work indicates that the superiority of the tertiary amines similar to triethylene diamine and quinuclidine, when compared to their straight chain analogs, is a result of their ease in reacting with methyl iodide-127 to form the quaternary ammonium iodide followed by isotopic exchange

  12. Parametric study on removal efficiency of impregnated activated charcoal and silver zeolite for radioactive methyl iodide

    International Nuclear Information System (INIS)

    Shiomi, H.; Yuasa, Y.; Tani, A.; Ohki, M.; Nakagawa, T.

    1983-01-01

    The removal efficiency of impregnated activated charcoal and silver zeolite for radioactive methyl iodide is influenced by various parameters such as temperature, relative humidity, face velocity and packing density. This study is to evaluate the dependency of the removal efficiency on each parameter and these combined parameters, quantitatively. Four types of adsorbents, BC-727, AgX, CHC-50 and SS 208C 5KI 3 , were tested. From experimental data and mass transfer theory, an experimental equation for evaluating the removal efficiency of adsorbents was derived under a series of experiments for radioactive methyl iodine-131. It was concluded that the removal efficiency calculated from the experimental equation agreed well with the experimental value. Effects of experimental specific parameters, such as Pre-flow time, methyl iodide injection time and After-flow time, on the removal efficiency of adsorbent are also described

  13. Electron stimulated reactions of methyl iodide coadsorbed with amorphous solid water

    International Nuclear Information System (INIS)

    Perry, C. C.; Faradzhev, N. S.; Madey, T. E.; Fairbrother, D. H.

    2007-01-01

    The electron stimulated reactions of methyl iodide (MeI) adsorbed on and suspended within amorphous solid water (ice) were studied using a combination of postirradiation temperature programmed desorption and reflection absorption infrared spectroscopy. For MeI adsorbed on top of amorphous solid water (ice), electron beam irradiation is responsible for both structural and chemical transformations within the overlayer. Electron stimulated reactions of MeI result principally in the formation of methyl radicals and solvated iodide anions. The cross section for electron stimulated decomposition of MeI is comparable to the gas phase value and is only weakly dependent upon the local environment. For both adsorbed MeI and suspended MeI, reactions of methyl radicals within MeI clusters lead to the formation of ethane, ethyl iodide, and diiodomethane. In contrast, reactions between the products of methyl iodide and water dissociation are responsible for the formation of methanol and carbon dioxide. Methane, formed as a result of reactions between methyl radicals and either parent MeI molecules or hydrogen atoms, is also observed. The product distribution is found to depend on the film's initial chemical composition as well as the electron fluence. Results from this study highlight the similarities in the carbon-containing products formed when monohalomethanes coadsorbed with amorphous solid water are irradiated by either electrons or photons

  14. Accelerated degradation of methyl iodide by agrochemicals.

    Science.gov (United States)

    Zheng, Wei; Papiernik, Sharon K; Guo, Mingxin; Yates, Scott R

    2003-01-29

    The fumigant methyl iodide (MeI, iodomethane) is considered a promising alternative to methyl bromide (MeBr) for soil-borne pest control in high-cash-value crops. However, the high vapor pressure of MeI results in emissions of a significant proportion of the applied mass into the ambient air, and this may lead to pollution of the environment. Integrating the application of certain agrochemicals with soil fumigation provides a novel approach to reduce excessive fumigant emissions. This study investigated the potential for several agrochemicals that are commonly used in farming operations, including fertilizers and nitrification inhibitors, to transform MeI in aqueous solution. The pseudo-first-order hydrolysis half-life (t(1/2)) of MeI was approximately 108 d, while the transformation of MeI in aqueous solutions containing selected agrochemicals was more rapid, with t(1/2) agrochemicals on the rate of MeI degradation in soil was also determined. Adsorption to soil apparently reduced the availability of some nitrification inhibitors in the soil aqueous phase and lowered the degradation rate in soil. In contrast, addition of the nitrification inhibitors thiourea and allylthiourea to soil significantly accelerated the degradation of MeI, possibly due to soil surface catalysis. The t(1/2) of MeI was 300 h).

  15. Factors affecting the retention of methyl iodide by iodide-impregnated carbon

    International Nuclear Information System (INIS)

    Hyder, M.L.; Malstrom, R.A.

    1991-01-01

    This paper comprises two sets of studies of methyl iodide retention by iodide-impregnated carbon. In the first of these, the retention of the methyl iodide on the carbon surface and its subsequent evolution were observed directly by a technique of combustion and phosphorescence. In the second, the methyl iodide retention in a standard test was compared with surface area measurements and the concentration of unreacted iodine. A correlation among these parameters was identified and characterized. Carbon quality was varied through the selection of used material with differing service histories. Air from the Savannah River Site reactor buildings is vented through carbon beds for control of radioiodine before release to the atmosphere. The carbon used is North American Carbon Co. type GX-176 coconut shell carbon impregnated with 1% triethylenedimaine (TEDA) and 2% potassium iodide by weight. Replacement intervals for the carbon have been as long as thirty months. Analysis of samples withdrawn at much shorter times has shown that the TEDA is lost after a few months, and the performance of the carbon for methyl iodide retention is dependent on the iodide impregnant. Efficient methyl iodide retention is not a requirement for carbon in this service; however, methyl iodide retention as measured by the ASTM Test D3803 (method B) has been found to correlate well with other desirable properties of the carbon such as radiation stability. The studies undertaken here were intended to shed light on the changes taking place in this carbon during long-term service and to provide a basis for simpler measurements of carbon quality

  16. Study of radiation formation of methyl-iodide Part 2

    International Nuclear Information System (INIS)

    Bartonicek, B.; Schweiner, Z.; Bednar, J.; Hladky, E.

    1975-01-01

    Purified methane, ethylene, iodine, methyl iodide, ethyl iodide and hydrogen iodide were irradiated and/or pyrolyzed in Pyrex ampoules by 60 Co-γ-radiation at temperatures between 150 and 450 deg C. The results on radiolysis and pyrolysis were as follows: 1., The most thermally stable product is hydrogen iodide in which already at 450 deg C essen-tially all originally present iodine appears. 2., The radiolytic formation of methyl iodide and hydrogen iodide is positively influenced by the rise in temperature, This and the absolute values of yields indicate a chain mechanism of radiolytic (and pyrolytic) decomposition of the mixture. 3., The ratio of equilibrium concentrations [HI]/[CH 3 I] increases with increasing temperature of pyrolysis showing that HI is the end product of the thermal chain reaction. Methyl iodide is likely to contribute (by its thermal decomposition) to the initiation and propagation of this chain reaction. 4., The negligible temperature dependence of G(H 2 ) and the absence of molecular hydrogen among the products of pyrolytic decomposition of methane-iodine mixtures shows, that (up to 450 deg C) H atoms do not play any role in the thermal chain decomposition of these mixtures. (K.A.)

  17. Kinetic modeling of the purging of activated carbon after short term methyl iodide loading

    International Nuclear Information System (INIS)

    Friedrich, V.; Lux, I.

    1991-01-01

    A bimolecular reaction model containing the physico-chemical parameters of the adsorption and desorption was developed earlier to describe the kinetics of methyl iodide retention by activated carbon adsorber. Both theoretical model and experimental investigations postulated constant upstream methyl iodide concentration till the maximum break-through. The work reported here includes the extension of the theoretical model to the general case when the concentration of the challenging gas may change in time. The effect of short term loading followed by purging with air, and an impulse-like increase in upstream gas concentration has been simulated. The case of short term loading and subsequent purging has been experimentally studied to validate the model. The investigations were carried out on non-impregnated activated carbon. A 4 cm deep carbon bed had been challenged by methyl iodide for 30, 90, 120 and 180 min and then purged with air, downstream methyl iodide concentration had been measured continuously. The main characteristics of the observed downstream concentration curves (time and slope of break-through, time and amplitude of maximum values) showed acceptable agreement with those predicted by the model

  18. Research on solubility characteristics of gaseous methyl iodide

    International Nuclear Information System (INIS)

    Zhou Yanmin; Sun Zhongning; Gu Haifeng; Wang Junlong

    2014-01-01

    With the deionized water as the absorbent, the solubility characteristics of the gaseous methyl iodide were studied under different temperature and pressure conditions, using a dynamic measuring method. The results show that within the range of experiment parameters, namely temperature is below 80℃ and pressure is lower than 0.3 MPa, the physical dissolution process of gaseous methyl iodide in water obeys Henry's law. The solubility coefficient under different temperature and pressure conditions was calculated based on the measurement results. Further research indicates that at atmospheric pressure, the solubility coefficient of methyl iodide in water decreases exponentially with the increase of temperature. While the pressure changes from 0.1 MPa to 0.3 MPa with equal interval, the solubility coefficient also increases linearly. The variation of the solubility coefficient with temperature under different pressure conditions all decreases exponentially. An equation is given to calculate the solubility coefficient of methyl iodide under different pressure and temperature conditions. (authors)

  19. Performance test of silver ion-exchanged zeolite for the removal of gaseous radioactive methyl iodide at high temperature condition

    International Nuclear Information System (INIS)

    Byung-Seon Choi; Geun-Il Park; Jung-Won Lee; Ho-Yeon Yang; Seung-Kon Ryu

    2003-01-01

    Performance tests of silver ion-exchanged zeolite (AgX) adsorbent for the control of radioiodine gas generated from a high-temperature process were carried out using both non-radioactive and a radioactive methyl iodide tracers. From the identification of SEM-EDAX analysis, an experimental result of silver ion-exchanged ratio containing 10∼30 wt% of Ag was fit to that calculated by the weight increment, and it was confirmed that the silver was uniformly distributed inside the pores of the adsorbent. Demonstration test of AgX-10 adsorbent using radioactive methyl iodide tracer was performed. The removal efficiency of radioiodine with AgX-10 in the temperature ranges of 150 to 300 deg C was in the ranges of 99.9% to 99.99%, except for 300 deg C. The influence of the long-term weathering and the poisoning with NO 2 gas (200 ppm) on adsorption capacity of AgX-10 was also analyzed. The removal efficiency of radioactive methyl iodide by AgX-10 weathered for 14 weeks was 99.95%. Long-term poisoning test showed that the adsorption efficiency of methyl iodide started to decrease after 10 weeks, and the removal efficiency of radioiodine by AgX-10, poisoned for 16 weeks, was 99% (DF=100). (author)

  20. Photochemical versus biological production of methyl iodide during Meteor 55

    Science.gov (United States)

    Richter, U.; Wallace, D.

    2003-04-01

    The flux of methyl iodide from sea to air represents the largest flux of iodine from the ocean to the atmosphere. Surface water concentrations and hence fluxes are particularly high in tropical regions. This flux may be responsible for the enrichment of iodine in the marine aerosol and may contribute to important processes in the marine boundary layer, including particle formation. Methyl iodide is commonly referred to as a biogenic gas, with both macroalgae and phytoplankton identified as important sources. On the other hand experimental and field data have shown the importance of photochemical production that is not necessarily associated directly with biological activity. During the Meteor cruise 55 along 11°N in the tropical Atlantic Ocean, a series of experiments were conducted to examine the biological vs. photochemical production of methyl iodide. A total of eight separate experiments were conducted. Production of CH3I in quartz glass flasks during 24 hour incubations (dark and natural sunlight) was measured under three experimental treatments: untreated seawater, filtered seawater (0.1 um pore size filter to exclude most phytoplankton and bacteria), and seawater that was poisoned with mercuric chloride. There were two clear findings from these experiments: (1) methyl iodide production was significantly higher in all the incubations that were exposed to the light than in the dark incubations; (2) there was no significant difference between CH3I production under the three experimental treatments. These results argue very strongly for the primary importance of photochemical production of CH3I as opposed to biogenic production at least for the tropical open ocean surface waters. Further experiments are required to investigate the reactants involved, their sources, the wavelength and depth dependence of production, etc. as well as (possibly related) sink processes.

  1. FY-2016 Methyl Iodide Higher NOx Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2016 under the Department of Energy (DOE) Fuel Cycle Technology (FCT) Program Offgas Sigma Team to further research and advance the technical maturity of solid sorbents for capturing iodine-129 in off-gas streams during used nuclear fuel reprocessing. Adsorption testing with higher levels of NO (approximately 3,300 ppm) and NO2 (up to about 10,000 ppm) indicate that high efficiency iodine capture by silver aerogel remains possible. Maximum iodine decontamination factors (DFs, or the ratio of iodine flowrate in the sorbent bed inlet gas compared to the iodine flowrate in the outlet gas) exceeded 3,000 until bed breakthrough rapidly decreased the DF levels to as low as about 2, when the adsorption capability was near depletion. After breakthrough, nearly all of the uncaptured iodine that remains in the bed outlet gas stream is no longer in the form of the original methyl iodide. The methyl iodide molecules are cleaved in the sorbent bed, even after iodine adsorption is no longer efficient, so that uncaptured iodine is in the form of iodine species soluble in caustic scrubber solutions, and detected and reported here as diatomic I2. The mass transfer zone depths were estimated at 8 inches, somewhat deeper than the 2-5 inch range estimated for both silver aerogels and silver zeolites in prior deep-bed tests, which had lower NOx levels. The maximum iodine adsorption capacity and silver utilization for these higher NOx tests, at about 5-15% of the original sorbent mass, and about 12-35% of the total silver, respectively, were lower than for trends from prior silver aerogel and silver zeolite tests with lower NOx levels. Additional deep-bed testing and analyses are recommended to expand the database for organic iodide adsorption and increase the technical maturity if iodine adsorption processes.

  2. Syntheses with isotopically labelled carbon. Methyl iodide, formaldehyde and cyanide

    International Nuclear Information System (INIS)

    Finn, R.D.; Boothe, T.E.; Vora, M.M.; Hildner, J.C.; Emran, A.M.; Kothari, P.J.

    1984-01-01

    Many of the uniquely labelled synthetic precursors currently employed in the design of sophisticated radiolabelled compounds have their origins in the field of hot atom chemistry. Particularly, the development during the past few years of automated, on-line synthetic procedures which combine the nuclear reaction, hot atom and classical chemistry, and rapid purification methods has allowed the incorporation of useful radionuclides into suitable compounds of chemical and biochemical interest. The application of isotopically labelled methyl iodide, formaldehyde, and cyanide anion as synthetic intermediates in research involving human physiology and nuclear medicine, as well as their contributions to other scientific methodology, is reviewed. (author)

  3. Solvent effect on the rate and equilibrium of reaction between 10-phenylphenoxarsine and methyl iodide

    International Nuclear Information System (INIS)

    Gavrilov, V.I.; Gumerov, N.S.; Rakhmatullin, R.R.

    1990-01-01

    Effect of solvent nature on nucleophilic capacity of three-coordinated arsenic and the equilibrium state of 10-phenylphenoxarsine (PA) reaction with methyl iodide are studied. Kinetic investigations are carried out by the conductometry at 24,35,45 deg C. It is established that quaternization of PA with methyl iodide when substituting a solvent (ketone for alcohol) increases 3-14 times with simultaneous growth of the activation energy value. When transforming from aprotic solvents to protic ones PA interaction equilibrium with methyl iodide shifts to the side of arsonic salt formation

  4. Performance of non-coconut base adsorbers in removal of iodine and organic iodides

    International Nuclear Information System (INIS)

    Rivers, R.D.; Pasha, M.; Fowler, E.E.; Goldsmith, J.M.

    1975-01-01

    Systems for the removal of radioactive iodine and organic iodides have used impregnated coconut shell activated carbons almost exclusively. Coconut shell carbons have some disadvantages: their geographical origin determines their trace chemical content; pore structures and impregnant effectiveness are highly dependent on activation and impregnation techniques. The authors report laboratory performance of a group of iodine-organic iodide adsorbers using bases other than coconut shell carbon. These have been evaluated in conformity with USAEC Regulatory Guide 1.52 and RDT M16 1T. Performance with regard to 131 I 2 and CH 3 131 I penetration and high-temperature elution have equaled or exceeded both the requirements of Guide 1.52 and results on typical coconut-shell carbons. Some performance outside Guide 1.52 ranges is included. Experimental problems in simulated LOCA testing are discussed. (U.S.)

  5. The 11C-radioisotopic study of methanol conversion on V-MCM-41; the influence of methyl iodide on the transformation

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Szelecsenyi, F.; Kovacs, Z.; Solmaz, A.; Balci, S.; Dogu, T.

    2007-01-01

    Complete text of publication follows. The MCM-41 mesoporous material has Lewis and even Bronsted acid sites to produce dimethyl ether with some hydrocarbons, while over metal modified MCM-41 mostly formaldehyde and dimethoxy methane (i.e. methylal) or methyl formate are produced. In present experiments V incorporated basically mild acid sites of MCM-41 was prepared by low temperature direct synthesis. The V-MCM-41 has enough main active Lewis sites (by V-) to form formaldehyde and also light Bronsted acid sites to let the adsorbed formaldehyde eliminate and afterwards, with methanol, to form dimethoxy methane in nonoxidative environment. This V-MCM-41 has been tested by ethanol conversion in non-oxidative environments too and diethoxy methane as main product was detected. In present work the methanol conversion, as well as the methanol co-reaction with methyl iodide are studied from the same V-MCM-41 sample using 11 C-technique. The 11 C-labelled radioactive methanol has been already applied for determination of methanol conversion rates on Cu-modified MCM-41. The V-MCM-41 was prepared by direct hydrothermal synthesis method. The adsorption rate of 11 C-methanol and, after the reaction, the desorption rate of the remaining 11 C-derivatives on catalyst were continuously detected by gamma detectors. The derivatives were analyzed by radio-gas chromatography (gas chromatograph with FID coupled on-line with a radioactivity detector). Both dimethyl ether and hydrocarbon formation are also in slight degrees according to weak Lewis and Bronsted acidities. Since the conversion was carried out without added oxygen gas, only the frame oxygen can take part into catalysis. In presence of non-radioactive methyl iodide, the radioactive methanol is converted to radioactive methyl iodide on V-MCM-41. The radio-GC analysis confirmed that the iodide induced change of the reaction performance was reversible i.e. the radioactive methyl iodide was regenerated to non-radioactive methyl

  6. One column method to prepare 11C-labelled methyl iodide

    International Nuclear Information System (INIS)

    Kovacs, Z.; Priboczki, E.

    1999-01-01

    A new method in which the [ 11 C]methyl iodide is prepared on one alumina column is presented. A high specific surface alumina column, previously impregnated with lithium aluminium hydride solution, was used for direct trapping from the target gas and reduction into radiocomplex. The complex was then reacted on this column with HI to form [ 11 C]methyl iodide. The use of one alumina column, instead of a freezing trap, reaction vessel and separate unit for iodination, simplifies the apparatus, shortens the synthesis time and is well suitable for automation. (K.A.)

  7. Study of adsorption properties of impregnated charcoal for airborne iodine and methyl iodide

    International Nuclear Information System (INIS)

    Qi-dong, L.; Sui-yuang, H.

    1985-01-01

    The adsorption characteristics of airborne radioiodine and methyl iodide on impregnated charcoal were investigated. The activated charcoal tested was made from home-made oil-palm shells, and KI and TEDA were used as impregnants. A new technique was used to plot the dynamic partial adsorption isotherm at challenge concentrations (concentration range of iodine: 1-20 ppm v/v). Some adsorption properties of the impregnated charcoal were estimated with the dynamic partial adsorption isotherm. The dependences of the adsorption capacity and penetration behavior for airborne iodine and methyl iodide on the ambient conditions (temperature, relative humidity, and superficial velocity) were studied

  8. 76 FR 16770 - Petition To Suspend and Cancel All Registrations for the Soil Fumigant Iodomethane (Methyl Iodide...

    Science.gov (United States)

    2011-03-25

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0541; FRL-8841-7] Petition To Suspend and Cancel... Earthjustice requesting that all uses of iodomethane (methyl iodide) be suspended and cancelled. The Agency is... uses of iodomethane (methyl iodide) be suspended and cancelled. The Agency is posting this petition for...

  9. Continuous monitoring of methyl iodide purity and content in the gas feeding the trapping pilot plant

    International Nuclear Information System (INIS)

    Charrier, G.

    1988-01-01

    An analysis method is developed for inspection of solid traps for gaseous iodine. Methyl iodide injected in the traps is determined by gas chromatography. Contents of 50 ppm in volume are measured. Labelling with iodine 123 allows a better sensitivity, 4 refs, 5 figs, 6 tables [fr

  10. Regioselective conversion of primary alcohols into iodides in unprotected methyl furanosides and pyranosides

    DEFF Research Database (Denmark)

    Skaanderup, Philip Robert; Poulsen, Carina Storm; Hyldtoft, Lene

    2002-01-01

    Two methods are described for the regioselective displacement of the primary hydroxy group in methyl glycosides with iodide. The first method is a modification of a literature procedure employing triphenylphosphine and iodine, where purification has been carried out on a reverse phase column in o...

  11. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J.; Ekberg, C. (Chalmers Univ. of Technology, Goeteborg (Sweden)); Kaerkelae, T.; Auvinen, A. (VTT, Espoo (Finland)); Glaenneskog, H. (Vattenfall Power Consultant, Goeteborg (Sweden))

    2011-05-15

    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment, was started. During year 2008 (NROI-1) the radiolytic oxidation of elemental iodine was investigated and during 2009 (NROI-2), the radiolytic oxidation of organic iodine was studied. This project (NROI-3) is a continuation of the investigation of the oxidation of organic iodine. The project has been divided into two parts. 1. The aims of the first part were to investigate the effect of ozone and UV-radiation, in dry and humid conditions, on methyl iodide. 2. The second project was about gamma radiation (approx20 kGy/h) and methyl iodide in dry and humid conditions. 1. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UV-radiation intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. The particle formation was instant and extensive when methyl iodide was exposed to ozone and/or radiation at all temperatures. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-200 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine oxides (I{sub xO{sub y}). However, the correct speciation of the formed particles was difficult to obtain because the particles melted and fused together under the electron beam. 2. The results from this sub-project are more inconsistent and hard to interpret. The particle formation was significant lesser than corresponding experiments when ozone/UV-radiation was used instead of gamma radiation. The transport of gaseous methyl iodide through the facility was

  12. Gamma-ray radiolysis of methyl iodide in air, in presence of water vapor

    International Nuclear Information System (INIS)

    Aubert, F.

    2002-03-01

    This work aims at modelling the processes involved in gamma-radiolysis of methyl iodide diluted in air in presence of steam. It is to determine quantitative and qualitative information, to quantify the importance of the organic iodides destruction in case of a nuclear reactor accident. The main data for radiochemistry and iodine compounds (I x O y and INO x ) formation were reviewed and analysed. Literature data about air products radiolysis reactivity towards I 2 and CH 3 I were used to develop a mechanistic model for methyl iodide destruction in the gas phase under gamma irradiation. An ab initio study was realised for a better understanding of atomic nitrogen ( 4 S and 2 D) reactivity towards CH 3 I. The model was tested on the available experimental data and constitute a way to investigate the main processus involved in methyl iodide destruction. For the low CH 3 I concentrations, about 10 -7 - 10 -8 mol.dm -3 , N and e - are mainly responsible for the destruction. I 2 O 4 (highest iodine oxide in the model) and IONO 2 are the main resulting iodinated' compounds. (author)

  13. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  14. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    International Nuclear Information System (INIS)

    Palmer, C J

    2010-01-01

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  15. Trapping radiodine, in the form of methyl iodide, on nuclear carbon

    Energy Technology Data Exchange (ETDEWEB)

    Nacapricha, D. [Mahidol Univ., Bangkok (Thailand); Taylor, C. [John Moores Univ., Liverpool (United Kingdom)

    1996-12-31

    Studies have been performed on potassium-iodide-impregnated charcoals of the type used in the nuclear industry for trapping radioiodine released during nuclear fission. The effects of various parameters on the trapping efficiency of methyl iodide have been investigated. A variation in particle size within a bulk charcoal caused poor precision in K value measurements because of differences in surface area, pore volume, and bed density, leading to differences in the deposition of the impregnant. Precision is improved by sieving the charcoal to a narrower size because smaller particles have a higher porosity. This finding is supported by surface area and pore measurements. Two methods of impregnation are compared by measuring K values and the deposition of potassium iodide. Charcoal impregnated by rotary evaporation exhibits both higher K values and higher potassium iodide contents than sprayed charcoal. Two designs of spraying drum are compared: a drum with helical vanes allows more efficient deposition and more uniform distribution of impregnant than a drum with axial vanes. A decrease in the K value with increasing humidity correlates with the available surface area. A similar correlation exists between water content and available pore volume. Aging of potassium-iodide-impregnated charcoal, caused by the formation of oxygen complexes on the surface, is associated with significant falls in K value. K values of charcoals also can be restored to at least their original values by heat treatment in the absence of air. 12 refs., 6 figs., 1 tab.

  16. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J.; Glaenneskog, H.; Ekberg, C. (Chalmers Univ. of Technology (Sweden)); Kaerkelae, T.; Auvinen, A. (VTT Technical Research Centre of Finland (Finland))

    2010-05-15

    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. The behaviour of iodine during a severe accident has been studied in several experimental programs, ranging from the large-scale PHEBUS FP tests and intermediate-scale ThAI tests to numerous separate effect studies. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment was started. During 2009, oxidation of iodine, especially organic iodine, was studied within the NROI project. The chemistry of organic iodine in the gas phase is still one of the greatest remaining uncertainties concerning iodine behaviour during a severe accident. During the first year of the NROI project the oxidation of elemental iodine, I2, with ozone and UV-light was investigated. In this study organic iodide, in this case methyl iodide, was investigated in similar conditions as in the NROI-1 project. The experimental facility applied in this study is based on the sampling system built at VTT for the ISTP project CHIP conducted by IRSN. The experimental facility and the measuring technology are sophisticated and unique in the area of nuclear research as well as in the field of aerosol science. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UVC intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. Instant and extensive particle formation occurred when methyl iodide was transported through a UVC radiation field and/or when ozone was present. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-150 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine

  17. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    International Nuclear Information System (INIS)

    Holm, J.; Glaenneskog, H.; Ekberg, C.; Kaerkelae, T.; Auvinen, A.

    2010-05-01

    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. The behaviour of iodine during a severe accident has been studied in several experimental programs, ranging from the large-scale PHEBUS FP tests and intermediate-scale ThAI tests to numerous separate effect studies. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment was started. During 2009, oxidation of iodine, especially organic iodine, was studied within the NROI project. The chemistry of organic iodine in the gas phase is still one of the greatest remaining uncertainties concerning iodine behaviour during a severe accident. During the first year of the NROI project the oxidation of elemental iodine, I2, with ozone and UV-light was investigated. In this study organic iodide, in this case methyl iodide, was investigated in similar conditions as in the NROI-1 project. The experimental facility applied in this study is based on the sampling system built at VTT for the ISTP project CHIP conducted by IRSN. The experimental facility and the measuring technology are sophisticated and unique in the area of nuclear research as well as in the field of aerosol science. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UVC intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. Instant and extensive particle formation occurred when methyl iodide was transported through a UVC radiation field and/or when ozone was present. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-150 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine

  18. Solvation effect on decomposition rate of 10-methyl-10-phenylphenoxarsonium iodide in some alcohols and ketones

    International Nuclear Information System (INIS)

    Gavrilov, V.I.; Gumerov, N.S.; Rakhmatullin, R.R.

    1989-01-01

    By the method of conductometry decomposition kinetics of 10-methyl-10phenylphenoxarsonium iodide in methanol, ethanol, 2-propanol, 1-butanol, 1-pentanol and methyl ethyl ketone at initial concentration of the salt 0.00024-0.003 mol/l, is studied. It is shown that at the temperatures up to 80-95 deg C practically no decomposition of arsonium salt in methanol and ethanol is observed. With an increase in the length of alcohol alkyl radical the decomposition rate increases. The values of activation enrgy both for alcohols and ketone are approximately the same. At the same time, decomposition rate in alcohol proved much slower than in ketone, which is related to iodide-ion solvation in protic solvents

  19. Solvation effect on decomposition rate of 10-methyl-10-phenylphenoxarsonium iodide in some alcohols and ketones

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V I; Gumerov, N S; Rakhmatullin, R R [Kazanskij Khimiko-Tekhnologicheskij Inst., Kazan (USSR)

    1989-03-01

    By the method of conductometry decomposition kinetics of 10-methyl-10phenylphenoxarsonium iodide in methanol, ethanol, 2-propanol, 1-butanol, 1-pentanol and methyl ethyl ketone at initial concentration of the salt 0.00024-0.003 mol/l, is studied. It is shown that at the temperatures up to 80-95 deg C practically no decomposition of arsonium salt in methanol and ethanol is observed. With an increase in the length of alcohol alkyl radical the decomposition rate increases. The values of activation enrgy both for alcohols and ketone are approximately the same. At the same time, decomposition rate in alcohol proved much slower than in ketone, which is related to iodide-ion solvation in protic solvents.

  20. Studies on the Mechanisms of Methyl Iodide Adsorption and Iodine Retention on Silver-Mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Silver-containing mordenite (MOR) is a longstanding benchmark for radioiodine capture, reacting with molecular iodine (I2) to form AgI. However the mechanisms for organoiodine capture are not well understood. Here we investigate the capture of methyl iodide from complex mixed gas streams by combining chemical analysis of the effluent gas stream with in depth characterization of the recovered sorbent.

  1. Methyl iodide retention on charcoal sorbents at parts-per-million concentrations

    International Nuclear Information System (INIS)

    Wood, G.O.; Vogt, G.J.; Kasunic, C.A.

    1978-01-01

    Breakthrough curves for charcoal beds challenged by air containing parts-per-million methyl iodide ( 127 I) vapor concentrations were obtained and analyzed. A goal of this research is to determine if sorbent tests at relatively high vapor concentrations give data that can be extrapolated many orders of magnitude to the region of interest for radioiodine retention and removal. Another objective is to identify and characterize parameters that are critical to the performance of a charcoal bed in a respirator cartridge application. Towards these ends, a sorbent test system was built that allows experimental variations of the parameters of challenge vapor concentration, volumetric flow rate, bed depth, bed diameter, and relative humidity. Methyl iodide breakthrough was measured at a limit of 0.002 ppM using a gas chromatograph equipped with a linearized electron capture detector. Several models that have been proposed to describe breakthrough curves were tested against experimental data. A variety of charcoals used or proposed for use in radioiodine air filtration systems have been tested against 25.7 ppM methyl iodide to obtain these parameters and protection (decomtamination) factors. Effects of challenge concentration, relative humidity, and bed diameter were also investigated. Significant challenge concentration dependence was measured (more efficiency at lower concentration) for two types of charcoals. Increased relative humidity greatly decreased breakthrough times for a given protection factor. Increased bed diameter greatly increased breakthrough times for a given protection factor. Implications of these effects for a test method are discussed

  2. Continuous realtime radioiodine monitor employing on-line methyl iodide conversion

    International Nuclear Information System (INIS)

    Fernandez, S.J.; Motes, B.G.

    1980-01-01

    An integrated 14 C, 129 I, and 85 Kr monitor was proposed by Fernandez, et al. that separates 129 I from 85 Kr by selective permeation across thin silicone rubber membranes. Subsequent studies of the permeation of CH 3 I and I 2 through silicone rubber membranes demonstrated that I 2 transport across the membranes is too slow to be useful in a realtime monitor. Transport of methyl iodide, however, is rapid and gives a separation factor of greater than 100 from 85 Kr

  3. On the some reactions of mixed ethers of phosphorus acid with acrylonitrile and methyl iodide

    International Nuclear Information System (INIS)

    Gusev, Yu.K.; Chistokletov, V.N.; Petrov, A.A.

    1977-01-01

    The bimolecular mechanism has been confirmed of the redgrouping stage of Arbuzov's classical reactions for phosphites containing primary and secondary radicals in reactions of acrylonitrile and methyl iodide with some mixed ethers of phosphoric acid. It is suggested that dealcylation of the intermediate products formed on interaction of olefins activated by electron-acceptor groups with phosphites containing primary radicals occurs according to the Ssub(N)2-mechanism, secondary radicals, according to the mixed Ssub(N)2 and Ssub(N)1-mechanism,and radicals capable of forming stable carbonium ions, according to the Ssub(N)1-mechanism

  4. Detection of experimentally produced acute pulmonary arterial occlusion by methyl iodide-131 inhalation imaging

    International Nuclear Information System (INIS)

    Grossman, Z.D.; McAfee, J.G.; Subramanian, G.

    1981-01-01

    Methyl iodide-131 (CH 3 I-131) is described as an agent for detection of acute experimentally produced pulmonary arterial occlusion in dogs. When gaseous CH 3 I-131 is inhaled, radioactivity passes instantaneously from the alveoli to the lung capillary bed. Where pulmonary blood flow exists, activity is washed out into the systemic circulation, but in areas of blood stasis, a transient pulmonary hot spot remains. CH 3 I-131 is easily produced and inexpensive, but administration is awkward and strict radiation safety precautions are mandatory

  5. Effects of Aromatic Ammoniums on Methyl Ammonium Lead Iodide Hybrid Perovskite Materials

    Directory of Open Access Journals (Sweden)

    Jianli Yang

    2017-01-01

    Full Text Available The introduction of bulky ammoniums into methyl ammonium lead iodide hybrid perovskites (MAPbI3 has emerged as a promising strategy to improve the properties of these materials. In the present work, we studied the effects of several aromatic ammoniums onto the structural, electronic, and optical properties of MAPbI3. Although powder XRD data suggest that the bulky cations are not involved in the bulk phase of the MAPbI3, a surprisingly large effect of the bulky cations onto the photoluminescence properties was observed.

  6. Non-radioactive determination of the penetration of methyl iodide through impregnated charcoals during dosing and purging

    International Nuclear Information System (INIS)

    Romans, J.B.; Deitz, V.R.

    1979-01-01

    A laboratory procedure is described using methyl iodide-127 which had the same linear flow of air (12.2 m/min) and contact time (0.25 sec.) as the RDT M16 Test Procedure. Only one-fourth of the charcoal was used (in a bed 2.54 cm diameter and 5.08 cm high) and the required dose of methyl iodide-127 was reduced from 5.25 to 1.31 mg. The inlet concentrations were determined with a gas chromatograph and the effluent concentrations with a modified microcoulombmeter. Two calibration procedures were used: (1) known vapor pressure of iodine crystals, and (2) quantitative pyrolysis of the methyl iodide-127 delivered from certified permeation tubes. Five charcoals and three impregnations were used in this study. Typical behaviors are given in 90% RH air with the charcoals either prehumidified for 16 hours at 90% RH or without the prehumidification. The breakthrough curves, concentration versus time, rose very slowly for the first 120 minutes and then more rapidly for an additional time. The lack of a dependence on the magnitude of the dose is compatible with a catalytic trapping mechanism. In the case of KI/sub x/ impregnations, there was excess emission of iodine during purging over that introduced as methyl iodide-127 which must have originated in the reservoir of iodine contained in the impregnation

  7. Atomic iodine production in a gas flow by decomposing methyl iodide in a dc glow discharge

    International Nuclear Information System (INIS)

    Mikheyev, P A; Shepelenko, A A; Voronov, A I; Kupryaev, Nikolai V

    2002-01-01

    The production of atomic iodine for an oxygen - iodine laser is studied by decomposing methyl iodide in a dc glow discharge in a vortex gas flow. The concentration of iodine atoms in discharge products was measured from the atomic iodine absorption of the radiation of a single-frequency tunable diode laser at a wavelength of 1.315 μm. Atomic iodine concentrations sufficient for the operation of an oxygen - iodine laser were obtained. The concentration of atomic iodine amounted to 3.6 x 10 15 cm -3 for a pressure of the carrying argon gas of 15 Torr. The discharge stabilisation by a vortex gas flow allowed the glow discharge to be sustained in a strongly electronegative halogen-containing gas mixture for pressures up to 20 Torr. (active media)

  8. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface

    Energy Technology Data Exchange (ETDEWEB)

    Przepioski, Joshua [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-28

    This work correlates resonant peaks from first principles calculation on ammonia (NH3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH3NH3PbI3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.

  9. A Convenient and Efficient Method for Demethylation of Aryl Methyl Ethers with Magnesium Iodide in Ionic Liquid

    International Nuclear Information System (INIS)

    Lee, Kwan Soo; Kim, Kee D.

    2010-01-01

    We have developed a new and efficient method for the demethylation of various types of aryl methyl ethers using readily available, stable, and easily handled magnesium iodide in [BMIM]BF 4 ionic liquid. Owing to its simplicity and mild reaction conditions the protocol reported herein may serve as a useful alternative to the existing methods for the deprotection of aryl methyl ethers to the corresponding phenolic derivatives. Demethylation of aryl methyl ethers to the corresponding phenols are very important reactions in organic synthesis. A number of methods have been reported for the cleavage of highly stable aryl methyl ethers utilizing strong acids or bases such as aluminum chloride, boron tribromide, cerium chloride, alkaline thiolate, methyl magnesium iodide, and L-Selectride. However, all of these methods invariably suffered from one or more drawbacks such as harsh reaction conditions, long reaction times, difficulty of manipulation, use of exotic reagents, and low reaction yields. Furthermore, in the most of known methods for demethylation of aryl methyl ethers, use of large excess amounts of demethylating agents have been generally required. Thus, it is highly desirable to develop an improved convenient and efficient procedure for demethylation reactions of aryl methyl ethers

  10. A Convenient and Efficient Method for Demethylation of Aryl Methyl Ethers with Magnesium Iodide in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwan Soo [KAIST, Daejeon (Korea, Republic of); Kim, Kee D. [Sangji University, Wonju (Korea, Republic of)

    2010-12-15

    We have developed a new and efficient method for the demethylation of various types of aryl methyl ethers using readily available, stable, and easily handled magnesium iodide in [BMIM]BF{sub 4} ionic liquid. Owing to its simplicity and mild reaction conditions the protocol reported herein may serve as a useful alternative to the existing methods for the deprotection of aryl methyl ethers to the corresponding phenolic derivatives. Demethylation of aryl methyl ethers to the corresponding phenols are very important reactions in organic synthesis. A number of methods have been reported for the cleavage of highly stable aryl methyl ethers utilizing strong acids or bases such as aluminum chloride, boron tribromide, cerium chloride, alkaline thiolate, methyl magnesium iodide, and L-Selectride. However, all of these methods invariably suffered from one or more drawbacks such as harsh reaction conditions, long reaction times, difficulty of manipulation, use of exotic reagents, and low reaction yields. Furthermore, in the most of known methods for demethylation of aryl methyl ethers, use of large excess amounts of demethylating agents have been generally required. Thus, it is highly desirable to develop an improved convenient and efficient procedure for demethylation reactions of aryl methyl ethers.

  11. Solvent effect on the rate and equilibrium of reaction between 10-phenylphenoxarsine and methyl iodide. Vliyanie rastvoritelya na skorost' i ravnovesie reaktsii 10-fenilfenoksarsina s iodistym metilom

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V I; Gumerov, N S; Rakhmatullin, R R [Kazanskij Khimiko-Tekhnologicheskij Inst., Kazan (USSR)

    1990-02-01

    Effect of solvent nature on nucleophilic capacity of three-coordinated arsenic and the equilibrium state of 10-phenylphenoxarsine (PA) reaction with methyl iodide are studied. Kinetic investigations are carried out by the conductometry at 24,35,45 deg C. It is established that quaternization of PA with methyl iodide when substituting a solvent (ketone for alcohol) increases 3-14 times with simultaneous growth of the activation energy value. When transforming from aprotic solvents to protic ones PA interaction equilibrium with methyl iodide shifts to the side of arsonic salt formation.

  12. The mass transfer dynamics of gaseous methyl-iodide adsorption by silver-exchanged sodium mordenite

    International Nuclear Information System (INIS)

    Jubin, R.T.

    1994-12-01

    The adsorption of methyl iodide onto hydrogen-reduced silver-exchange mordenite was studied. The removal of organic iodides from off-gas streams is an important step in controlling the release of radioactive iodine to the environment during the treatment of radioactive wastes or the processing of some irradiated materials. Nine well accepted mass transfer models were evaluated for their ability to adequately explain the observed CH 3 I uptake behavior onto the Ag-Z. Linear and multidimensional regression techniques were utilized in the estimation of the diffusion constants and other model parameters which then permitted the selection of an appropriate mass transfer model. To date, only bulk loading data exist for the adsorption of CH 3 I onto Ag-Z. Hence this is believed to be the first study to quantify the controlling mass transfer mechanisms of this process. It can be concluded from the analysis of the experimental data obtained by the single-pellet type experiments and for the process conditions used in this study that the overall mass transfer rate associated with the adsorption of CH 3 I onto Ag-Z is affected by both micropore and macropore diffusion. The macropore diffusion rate was significantly faster than the micropore diffusion, resulting in a two-step adsorption behavior which was adequately modeled by a bimodal pore distribution model. The micropore diffusivity was determined to be on the order of 2 x 10 -14 cm 2 /s. The system was also shown to be isothermal under all conditions of this study. Two other conclusions were also obtained. First, the gas film resistance to mass transfer for the 1/16 and 1/8-in.-diam Ag-Z pellets can be ignored under the conditions used in this study. Finally, it was shown that by decreasing the water vapor content of the feed gas, the chemical reaction rate appeared to become the initial rate-limiting factor for the mass transfer. 75 refs

  13. Diffusional analysis of the adsorption of methyl iodide on silver exchanged mordenite

    International Nuclear Information System (INIS)

    Jubin, R.T.; Counce, R.M.

    1997-01-01

    The removal of organic iodides from off-gas streams is an important step in controlling the release of radioactive iodine to the environment during the treatment of radioactive wastes or the processing of some irradiated materials. Nine-well accepted mass transfer models were evaluated for their ability to adequately explain the observed CH 3 I uptake behavior onto the Ag degrees Z. Linear and multidimensional regression techniques were used to estimate the diffusion constants and other model parameters, which then permitted the selection of an appropriate mass transfer model. Although a number of studies have been conducted to evaluate the loading of both elemental and methyl iodide on silver-exchanged mordenite, these studies focused primarily on the macro scale (deep bed) while evaluating the material under a broad range of process conditions and contaminants for total bed loading at the time of breakthrough. A few studies evaluated equilibrium or maximum loading. Thus, to date, only bulk loading data exist for the adsorption of CH 3 I onto Ag degrees Z. Hence this is believed to be the first study to quantify the controlling mass transfer mechanisms of this process, It can be concluded from the analysis of the experimental data obtained by the open-quotes single-pelletclose quotes type experiments and for the process conditions used in this study that the overall mass transfer rate associated with the adsorption of CH 3 I onto Ag degrees Z is affected by both micropore and macropore diffusion. The macropore diffusion rate was significantly faster than the micropore diffusion, resulting in a two-step adsorption behavior which was adequately modeled by a bimodal pore distribution model. The micropore diffusivity was determined to be on the order of 2 x 10 -14 cm 2 /s. The system was also shown to be isothermal under all conditions of this study. 21 refs., 6 figs., 8 tabs

  14. Diffusional analysis of the adsorption of methyl iodide on silver exchanged mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T. [Oak Ridge National Lab., TN (United States); Counce, R.M. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-08-01

    The removal of organic iodides from off-gas streams is an important step in controlling the release of radioactive iodine to the environment during the treatment of radioactive wastes or the processing of some irradiated materials. Nine-well accepted mass transfer models were evaluated for their ability to adequately explain the observed CH{sub 3}I uptake behavior onto the Ag{degrees}Z. Linear and multidimensional regression techniques were used to estimate the diffusion constants and other model parameters, which then permitted the selection of an appropriate mass transfer model. Although a number of studies have been conducted to evaluate the loading of both elemental and methyl iodide on silver-exchanged mordenite, these studies focused primarily on the macro scale (deep bed) while evaluating the material under a broad range of process conditions and contaminants for total bed loading at the time of breakthrough. A few studies evaluated equilibrium or maximum loading. Thus, to date, only bulk loading data exist for the adsorption of CH{sub 3}I onto Ag{degrees}Z. Hence this is believed to be the first study to quantify the controlling mass transfer mechanisms of this process, It can be concluded from the analysis of the experimental data obtained by the {open_quotes}single-pellet{close_quotes} type experiments and for the process conditions used in this study that the overall mass transfer rate associated with the adsorption of CH{sub 3}I onto Ag{degrees}Z is affected by both micropore and macropore diffusion. The macropore diffusion rate was significantly faster than the micropore diffusion, resulting in a two-step adsorption behavior which was adequately modeled by a bimodal pore distribution model. The micropore diffusivity was determined to be on the order of 2 x 10{sup -14} cm{sup 2}/s. The system was also shown to be isothermal under all conditions of this study. 21 refs., 6 figs., 8 tabs.

  15. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

    Directory of Open Access Journals (Sweden)

    F. Ziska

    2013-09-01

    Full Text Available Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3, dibromomethane (CH2Br2 and methyl iodide (CH3I. The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere database (https://halocat.geomar.de/. Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1°×1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol Br yr−1 for CH3I (robust fit/ordinary least squares regression techniques. Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the

  16. Metal Adsorbent Prepared from Poly(Methyl Acrylate)-Grafted Cassava Starch via Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suwanmala, P; Hemvichian, K; Srinuttrakul, W [Nuclear Research and Development Group, Thailand Institute of Nuclear Technology, Bangkok (Thailand)

    2012-09-15

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, %Dg = 191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum conditions: in a mixture solution of 20% HA (w/v) and methanol solution (methanol:H{sub 2}O = 5:1) 300 mL, pH 13, reaction time 2 h, and 20 g of grafted copolymer. The adsorbent was characterized by FTIR, TGA, and DSC. The presence of electron donating groups in adsorbent containing hydroxamic acid groups gives the ability to form polycomplexes with metal ions. The ability of the adsorbent to adsorb various metals was investigated in order to evaluate the possibility of its use in metal adsorption. The adsorbent exhibited a remarkable % adsorption for Cd{sup 2+}, Al{sup 3+}, UO{sub 2} {sup 2+}, V{sup 5+} and Pb{sup 2+} at pH 3, 4, 5, 4, and 3, respectively. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15, and 1.6 mmol/g adsorbent for Cd{sup 2+}, Al{sup 3+}, UO{sub 2} {sup 2+}, V{sup 5+} and Pb{sup 2+}, respectively, in the batch mode adsorption. (author)

  17. Methanogenesis from acetate by Methanosarcina barkeri: Catalysis of acetate formation from methyl iodide, CO/sub 2/, and H/sub 2/ by the enzyme system involved

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, K; Eikmanns, B; Frimmer, U; Thauer, R K

    1987-04-01

    Cell suspensions of Methanosarcina barkeri grown on acetate catalyze the formation of methane and CO/sub 2/ from acetate as well as an isotopic exchange between the carboxyl group of acetate and CO/sub 2/. Here we report that these cells also mediate the synthesis of acetate from methyl iodide, CO/sub 2/, and reducing equivalents (H/sub 2/ or CO), the methyl group of acetate being derived from methyl iodide and the carboxyl group from CO/sub 2/. Methyl chloride and methyltosylate but not methanol can substitute for methyl iodide in this reaction. Acetate formation from methyl iodide, CO/sub 2/, and reducing equivalents is coupled with the phosphorylation of ADP. Evidence is presented that methyl iodide is incorporated into the methyl group of acetate via a methyl corrinoid intermediate (deduced from inhibition experiments with propyl iodide) and that CO/sub 2/ is assimilated into the carboxyl group via a C/sub 1/ intermediate which does not exchange with free formate or free CO. The effects of protonophores, of the proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and of arsenate on acetate formation are interpreted to indicate that the reduction of CO/sub 2/ to the oxidation level of the carboxyl group of acetate requires the presence of an electrochemical proton potential and that acetyl-CoA or acetyl-phosphate rather than free acetate is the immediate product of the condensation reaction. These results are dicsussed with respect to the mechanism of methanogenesis from acetate.

  18. Study of radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. VIII. Polymerization of styrene and methyl methacrylate adsorbed on aerosil

    International Nuclear Information System (INIS)

    Fukano, K.; Kageyama, E.

    1976-01-01

    Aerosol is silica having a purity which is very high compared with that of silica gel and having, unlike silica gel, no micropores. To investigate the effects of impurities and micropores on the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on silica gel, the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on Aerosil was carried out. The results of both the styrene--Aerosil 300 system and the methyl methacrylate--Aerosil 300 system were similar to those of the styrene-silica gel and methyl methacrylate-silica gel systems, respectively. This suggests that in the radiation-induced polymerization of both styrene--silica gel and methyl methacrylate--silica gel systems the impurities and the presence of micropores have almost no effect on the reaction mechanism. The effect of aluminum as an impurity was investigated on the styrene--Aerosil MOX 170 system. It was found that aluminum accelerated the cationic polymerization

  19. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    Directory of Open Access Journals (Sweden)

    Laishun Shi

    2012-01-01

    Full Text Available In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction.

  20. Optical absorption and photoconductivity in iodine-excess ionic liquids: the case of 1-alkyl-3-methyl imidazolium iodides.

    Science.gov (United States)

    Aono, Masami; Miyazaki, Hisashi; Takekiyo, Takahiro; Tsuzuki, Seiji; Abe, Hiroshi

    2018-02-21

    We investigated the optical absorption and photoconductivity of iodine-excess ionic liquids (ILs) based on 1-alkyl-3-methyl imidazolium iodide ([C n mim][I]; n = 3, 4, and 6). The iodide concentration m was 2 ≦ m ≦ 8, which was determined by the molar fraction [C n mim] +  : [I m ] - = 1 : m. By adding iodine, an absorption edge shifted from 282 nm in the UV region to around 600 nm in the visible-light region. The optical bandgaps E o decreased gradually from 2.3 eV to 1.9 eV with increasing m from 2 to 8. The alkyl-side chain lengths of the cations have little effect on the E o . This experimental result was confirmed by ab initio molecular orbital calculations. The effects were reflected in the photoconductivity of the ILs, as expected. [C 4 mim][I m ] exhibited greater photo-induced electron generation compared with [C 3 mim][I m ] and [C 6 mim][I m ]. The photoconductivity in both [C 3 mim][I m ] and [C 6 mim][I m ] increased slightly with increasing m. The trend of photoconductivity in [C 4 mim][I m ] exhibited an N-shaped form. The highest photoconductivity 1.6 was observed in [C 4 mim][I 8 ].

  1. Cluster-assistant generation of multiply charged atomic ions in nanosecond laser ionization of seeded methyl iodide beam

    International Nuclear Information System (INIS)

    Luo Xiaolin; Niu Dongmei; Kong Xianglei; Wen Lihua; Liang Feng; Pei Kemei; Wang Bin; Li Haiyang

    2005-01-01

    The photoionization of methyl iodide beam seeded in argon and helium is studied by time-of-flight mass spectrometry using a 25 ns, 532 nm Nd-YAG laser with intensities in the range of 2 x 10 10 -2 x 10 11 W/cm 2 . Multiply charged ions of I q+ (q = 2-3) and C 2+ with tens of eV kinetic energies have been observed when laser interacts with the middle part of the pulsed molecular beam, whose peak profiles are independent on the laser polarization directions. Strong evidences show that these ions are coming from the Coulomb explosion of multiply charged CH 3 I clusters, and laser induced inverse bremsstrahlung absorption of caged electrons plays a key role in the formation of multiply charged ions

  2. Application of Mn/MCM-41 as an adsorbent to remove methyl blue from aqueous solution.

    Science.gov (United States)

    Shao, Yimin; Wang, Xi; Kang, Yuan; Shu, Yuehong; Sun, Qiangqiang; Li, Laisheng

    2014-09-01

    In this study, the application of Mn loaded MCM-41 (Mn/MCM-41) was reported as a novel adsorbent for methyl blue (MB) from aqueous solution. The mesoporous structure of Mn/MCM-41 was confirmed by XRD technique. Surface area, pore size and wall thickness were calculated from BET equation and BJH method using nitrogen sorption technique. FT-IR studies showed that Mn were loaded on the hexagonal mesoporous structures of MCM-41. It is found that the MCM-41 structure retained after loading of Mn but its surface area and pore diameter decreased due to pore blockage. Adsorption of MB from aqueous solution was investigated by Mn/MCM-41 with changing Mn content, adsorbent dosage, initial MB concentration, contact time, pH and the temperature. Under the chosen condition (25°C, 0.02 g adsorbent dosage, 6.32 pH, 50 mg L(-1) MB, 1 wt.% Mn), a high MB adsorption capacity (45.38 mg g(-1)) was achieved by Mn/MCM-41 process at 120 min, 8.6 times higher than MCM-41. The electrostatic interaction was considered to be the main mechanism for the dye adsorption. The experimental data fitted well to Freundlich and Dubinin-Radushkevich isotherms. The adsorption of MB on Mn/MCM-41 followed pseudo-second-order kinetics. Thermodynamic parameters suggested that the adsorption process is endothermic and spontaneous. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Methyl iodide trapping efficiency of aged charcoal samples from Bruce-A emergency filtered air discharge systems

    International Nuclear Information System (INIS)

    Wren, J.C.; Moore, C.J.; Rasmussenn, M.T.; Weaver, K.R.

    1999-01-01

    Charcoal filters are installed in the emergency filtered air discharge system (EFADS) of multiunit stations to control the release of airborne radioiodine in the event of a reactor accident. These filters use highly activated charcoal impregnated with triethylenediamine (TEDA). The TEDA-impregnated charcoal is highly efficient in removing radioiodine from flowing airstreams. The iodine-removal efficiency of the charcoal is presumed to deteriorate slowly with age, but current knowledge of this effect is insufficient to predict with confidence the performance of aged charcoal following an accident. Experiments were performed to determine the methyl iodide removal efficiency of aged charcoal samples taken from the EFADS of Ontario Hydro's Bruce-A nuclear generating station. The charcoal had been in service for ∼4 yr. The adsorption rate constant and capacity were measured under post-loss-of-coolant accident conditions to determine the efficiency of the aged charcoal. The adsorption rate constants of the aged charcoal samples were observed to be extremely high, yielding a decontamination factor (DF) for a 20-cm-deep bed of the aged charcoal >1 X 10 15 . The results show that essentially no CH 3 I would escape from a 20-cm-deep bed of the aged charcoal and that the requirement for a DF of 1000 for organic iodides in the EFADS filters would be exceeded by a tremendous margin. With such high DFs, the release of iodine from a 20-cm-deep bed would be virtually impossible to detect. The adsorption capacities observed for the aged charcoal samples approach the theoretical chemisorption capacity of 5 wt% TEDA charcoal, indicating that aging in the EFADS for 4 yr has had a negligible impact on the adsorption capacity. The results indicate that the short- and long-term performances of the aged charcoal in the EFADS of Bruce-A following an accident would still far exceed performance requirements. (author)

  4. Study of desorption of methyl iodide from activated carbon impregnated by TEDA

    International Nuclear Information System (INIS)

    Yue Longqing; Luo Deli; Yue Ziyu

    2013-01-01

    The capability of iodine retention is an important parameter of solid sorbent, iodine could be desorbed from activated carbon once the parameter doesn't meet requirement. This work discussed the effects of nitrogen flow rate, dipping in water, temperature and K + on the iodine retention. The results show, the quantities of iodine released increase to 3.15 times when nitrogen flow rates increase from 0.1 m 3 /h to 1.5 m 3 /h; methyl iodine molecules are desorbed after half of an hour's dipping in water with no notable change observed thereafter to the desorption capacity at l.5 h, 2 h, 3 h, 4 h respectively; there was no release of iodine below 80 ℃; K + play a positive role for retention of iodine species; and that the quantities of methyl iodine released with 0.06 g KCl account for 56% of that without KCl. (authors)

  5. Micro-syntheses for the use of carbon 13 or carbon 14. Micro-preparations of methyl alcohol, methyl iodide, and sodium acetate labeled in the methyl group

    International Nuclear Information System (INIS)

    Baret, C.; Pichat, L.

    1951-11-01

    Apparatus and technique are described in detail for (1) reduction of CO 2 to CH 3 OH with LiAlH 4 , (2) conversion of the methanol to CH 3 I by HI, (3) formation of the Mg Grignard reagent, and (4) addition of inactive CO 2 to form CH 3 COOH. All these operations have been carried out on 0.005 moles. Methyl-labeled Na acetate has been prepared in 67% yield based on the Ba 14 CO 3 used as starting material. (author) [fr

  6. Study on radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. II. Radiation-induced polymerization of methyl methacrylate adsorbed on several inorganic substances

    International Nuclear Information System (INIS)

    Fukano, K.; Kageyama, E.

    1975-01-01

    The radiation-induced polymerization of methyl methacrylate (MMA) adsorbed on such inorganic substances as silica gel, white carbon, silicic acid anhydride, zeolite, and activated alumina was carried out to compare with the case of styrene. The rate of radiation-induced polymerization adsorbed on inorganic substances was high compared with that of radiation-induced bulk state polymerization, as was the case with styrene. Inorganic substrates which contain aluminum as a component element are more likely to be grafted than those which consist of SiO 2 alone, as with styrene. The molecular weight distribution of unextractable polymer and extractable polymer differs, depending on the type of inorganic substance. Experiments by a preirradiation method were carried out in case of silica gel, white carbon, and silicic acid anhydride. GPC spectra of the polymer obtained were different from those of polymer formed by the simultaneous irradiation method. It appears that all the unextractable polymer is grafted to the inorganic surface with chemical bond

  7. Detailed intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules with C(3v) symmetry: chloroform, bromoform, and methyl-iodide.

    Science.gov (United States)

    Pothoczki, Szilvia; Temleitner, László; Pusztai, László

    2011-01-28

    Analyses of the intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules of the CXY(3)-type are described. The process is composed of the determination of several different distance-dependent orientational correlation functions, including ones that are introduced here. As a result, a complete structure classification could be provided for CXY(3) molecular liquids, namely for liquid chloroform, bromoform, and methyl-iodide. In the present work, the calculations have been conducted on particle configurations resulting from reverse Monte Carlo computer modeling: these particle arrangements have the advantage that they are fully consistent with structure factors from neutron and x-ray diffraction measurements. It has been established that as the separation between neighboring molecules increases, the dominant mutual orientations change from face-to-face to edge-to-edge, via the edge-to-face arrangements. Depending on the actual liquid, these geometrical elements (edges and faces of the distorted tetrahedra) were found to contain different atoms. From the set of liquids studied here, the structure of methyl-iodide was found to be easiest to describe on the basis of pure steric effects (molecular shape, size, and density) and the structure of liquid chloroform seems to be the furthest away from the corresponding "flexible fused hard spheres" like reference system.

  8. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    Science.gov (United States)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  9. Synthesis of poly(aminopropyl/methyl)silsesquioxane particles as effective Cu(II) and Pb(II) adsorbents.

    Science.gov (United States)

    Lu, Xin; Yin, Qiangfeng; Xin, Zhong; Li, Yang; Han, Ting

    2011-11-30

    Poly(aminopropyl/methyl)silsesquioxane (PAMSQ) particles have been synthesized by a one-step hydrolytic co-condensation process using 3-aminopropyltriethoxysilane (APTES) and methyltrimethoxysilane (MTMS) as precursors in the presence of base catalyst in aqueous medium. The amino functionalities of the particles could be controlled by adjusting the organosilanes feed ratio. The compositions of the amino-functionalized polysilsesquioxanes were confirmed by FT-IR spectroscopy, solid-state (29)Si NMR spectroscopy, and elemental analysis. The strong adsorbability of Cu(II) and Pb(II) ions onto PAMSQ particles was systematically examined. The effect of adsorption time, initial metal ions concentration and pH of solutions was studied to optimize the metal ions adsorbability of PAMSQ particles. The kinetic studies indicated that the adsorption process well fits the pseudo-second-order kinetics. Adsorption phenomena appeared to follow Langmuir isotherm. The PAMSQ particles demonstrate the highest Cu(II) and Pb(II) adsorption capacity of 2.29 mmol/g and 1.31 mmol/g at an initial metal ions concentration of 20mM, respectively. The PAMSQ particles demonstrate a promising application in the removal of Cu(II) and Pb(II) ions from aqueous solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Cluster-assisted multiple ionization of methyl iodide by a nanosecond laser: Influence of laser intensity on the kinetic energy and peak profile of multicharged ions

    International Nuclear Information System (INIS)

    Wen Lihua; Li Haiyang; Luo Xiaolin; Niu Dongmei; Xiao Xue; Wang Bin; Liang Feng; Hou Keyong; Shao Shiyong

    2006-01-01

    The dependences of kinetic energies and peak profiles of multicharged ions of I q+ (q = 2-3) and C 2+ on the laser intensity have been studied in detail by time-of-flight mass spectrometry, those multicharged ions are produced by irradiation of methyl iodide cluster beam with a nanosecond 532 nm Nd-YAG laser. Our experiments show that the kinetic energies released of multicharged ions increase linearly with the laser intensity in the range of 3 x 10 9 -2 x 10 11 W/cm 2 . The peaks of multicharged ions are split to forward ions and backward ions, and the ratio of the backward ions to forward ions decreases exponentially with laser intensity. The decreasing of backward ions is probably due to Coulomb scattering by the heavier I + ions when they turn around through the laser focus point. The linear dependence of kinetic energy of multicharged ions on laser intensity is interpreted by the ionization mechanism, in which the laser induced inverse bremsstrahlung heating of electron is the rate-limiting step

  11. Growth and characterization of an organic single crystal: 2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide

    Science.gov (United States)

    Senthil, K.; Kalainathan, S.; Ruban Kumar, A.

    Optically transparent crystal of the organic salt DEASI (2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide) has been synthesized by using knoevenagel condensation reaction method. The synthesized material has been purified by successfully recrystallization process. Single crystals of DEASI have been grown by slow evaporation technique at room temperature. The solubility of the title material has been determined at different temperature in acetonitrile/methanol mixture. The cell parameters and crystallinity of the title crystal were determined by single crystal XRD. The powder diffraction was carried out to study the reflection plane of the grown crystal and diffraction peaks were indexed. The presence of different functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) analysis. 1H NMR spectrum was recorded to confirm the presence of hydrogen nuclei in the synthesized material. The optical property of the title crystal was studied by UV-Vis-NIR spectroscopic analysis. The melting point and thermal property of DEASI were studied using TGA/DSC technique. The Vicker’s hardness (Hv) was carried out to know the category. The dielectric constant and dielectric loss of the compound decreases with an increase in frequencies. Chemical etching studies showed that the DEASI grows in the two dimensional growth mechanisms. The Kurtz-Perry powder second harmonic generation (SHG) test has done for title crystal.

  12. Growth and characterization of an organic single crystal: 2-[2-(4-diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide.

    Science.gov (United States)

    Senthil, K; Kalainathan, S; Ruban Kumar, A

    2014-05-05

    Optically transparent crystal of the organic salt DEASI (2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide) has been synthesized by using knoevenagel condensation reaction method. The synthesized material has been purified by successfully recrystallization process. Single crystals of DEASI have been grown by slow evaporation technique at room temperature. The solubility of the title material has been determined at different temperature in acetonitrile/methanol mixture. The cell parameters and crystallinity of the title crystal were determined by single crystal XRD. The powder diffraction was carried out to study the reflection plane of the grown crystal and diffraction peaks were indexed. The presence of different functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) analysis. (1)H NMR spectrum was recorded to confirm the presence of hydrogen nuclei in the synthesized material. The optical property of the title crystal was studied by UV-Vis-NIR spectroscopic analysis. The melting point and thermal property of DEASI were studied using TGA/DSC technique. The Vicker's hardness (Hv) was carried out to know the category. The dielectric constant and dielectric loss of the compound decreases with an increase in frequencies. Chemical etching studies showed that the DEASI grows in the two dimensional growth mechanisms. The Kurtz-Perry powder second harmonic generation (SHG) test has done for title crystal. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Potassium Iodide

    Science.gov (United States)

    ... certain other liquids including low-fat white or chocolate milk, flat soda, orange juice, raspberry syrup, or ... Potassium iodide may cause side effects. Tell your doctor if any of these symptoms are severe or do not go away: swollen glands metallic taste in the ...

  14. Delineation of G-Quadruplex Alkylation Sites Mediated by 3,6-Bis(1-methyl-4-vinylpyridinium iodide)carbazole-Aniline Mustard Conjugates.

    Science.gov (United States)

    Chen, Chien-Han; Hu, Tsung-Hao; Huang, Tzu-Chiao; Chen, Ying-Lan; Chen, Yet-Ran; Cheng, Chien-Chung; Chen, Chao-Tsen

    2015-11-23

    A new G-quadruplex (G-4)-directing alkylating agent BMVC-C3M was designed and synthesized to integrate 3,6-bis(1-methyl-4-vinylpyridinium iodide)carbazole (BMVC) with aniline mustard. Various telomeric G-4 structures (hybrid-2 type and antiparallel) and an oncogene promoter, c-MYC (parallel), were constructed to react with BMVC-C3M, yielding 35 % alkylation yield toward G-4 DNA over other DNA categories (alkylation adducts by electrospray ionization mass spectroscopy (ESI-MS) revealed the stepwise DNA alkylation mechanism of aniline mustard for the first time. Furthermore, the monoalkylation sites and intrastrand cross-linking sites were determined and found to be dependent on G-4 topology based on the results of footprinting analysis in combination with mass spectroscopic techniques and in silico modeling. The results indicated that BMVC-C3M preferentially alkylated at A15 (H26), G12 (H24), and G2 (c-MYC), respectively, as monoalkylated adducts and formed A15-C3M-A21 (H26), G12-C3M-G4 (H24), and G2-C3M-G4/G17 (c-MYC), respectively, as cross-linked dialkylated adducts. Collectively, the stability and site-selective cross-linking capacity of BMVC-C3M provides a credible tool for the structural and functional characterization of G-4 DNAs in biological systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrosorption of tetraalkylammonium ions on silver iodide

    NARCIS (Netherlands)

    Keizer, de A.

    1981-01-01

    The object of the present investigations was to study the ef fect of the adsorption of charged organic ions on electrically charged, solid-liquid interfaces. To that end, symmetrical quater nary ammonium ions were adsorbed on a silver iodide-electrolyte interface at various

  16. (E-1-Methyl-4-[2-(2-naphthylvinyl]pyridinium iodideThis paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

    Directory of Open Access Journals (Sweden)

    Hoong Kun Fun

    2009-06-01

    Full Text Available In the title compound, C18H16N+·I−, the cation is disordered over two orientations related by a 180° rotation about its long axis with occupancies of 0.554 (7 and 0.446 (7. Both disorder components exist in an E configuration. The dihedral angle between the pyridinium ring and the naphthalene ring system is 4.7 (6° in the major disorder component and 1.6 (8° in the minor component. In the crystal structure, centrosymmetrically related cations are stacked along the a axis, with significant π–π interactions between the pyridinium ring and the naphthalene ring system [centroid-centroid distance = 3.442 (9 Å]. The iodide ions are located between adjacent columns of cations. The cations are linked to the iodide ions by C—H...I interactions. Weak C—H...π interactions involving the methyl group are also observed.

  17. Preconcentration, Separation and Determination of lead(II) with Methyl Thymol Blue Adsorbed on Activated Carbon Using Flame Atomic Absorption Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A.; Ghaderi, Ali R. [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2008-02-15

    An on-line system for preconcentration and separation of lead(II) is presented. The method is based on the complex formation of Pb(II) with adsorbed Methyl thymol blue on activated carbon. The conditions of preparing the solid phase reagent and of quantitative recovery of Pb(II) from diluted solutions, such as acidity of aqueous phase, solid phase capacity, and flow variables were studied as well as effect of potential interfering ions. After preconcentration step, the metal ions are eluted automatically by 5 ml of 0.5 M HNO{sub 3} solution and the lead ions content was determined by flame atomic absorption spectrometry. Under the optimum conditions, the lead ions in aqueous samples were separated and preconcentrated about 1000-fold by the column. The detection limit was 0.001 μg mL{sup -1}. Lead has been determined in river and tap water samples, with recovery of 98 to 102%.

  18. 8a-Methyl-5,6,8,8a,9,10-hexahydro-10,12a-epoxyisoindolo[1,2-a]isoquinolinium iodide

    Directory of Open Access Journals (Sweden)

    Flavien A. A. Toze

    2010-06-01

    Full Text Available The title compound, C17H18NO+·I−, is an adduct resulting from an intramolecular Diels–Alder reaction of methallyl chloride with 3,4-dihydro-1-furylisoquinoline. The cation comprises a fused pentacyclic system containing three five-membered rings (dihydropyrrole, dihydrofuran and tetrahydrofuran and two six-membered rings (tetrahydropyridine and benzene. The five-membered rings have the usual envelope conformations, and the central six-membered tetrahydropyridine ring adopts the unsymmetrical half-boat conformation. In the crystal, cations and iodide anions are bound by weak intermolecular hydrogen-bonding interactions into a three-dimensional framework.

  19. 4-[4-(4-Fluorophenyl-2-methyl-5-oxo-2,5-dihydroisoxazol-3-yl]-1-methylpyridinium iodide–4-[3-(4-fluorophenyl-2-methyl-5-oxo-2,5-dihydroisoxazol-4-yl]-1-methylpyridinium iodide (0.6/0.4

    Directory of Open Access Journals (Sweden)

    Simona Margutti

    2008-01-01

    Full Text Available The crystal structure of the title compound, C16H16FN2O2+·I−, was determined as part of a study of the biological activity of isoxazolone derivatives as p38 mitogen-activated protein kinase (MAPK inhibitors. The X-ray crystal structure of 4-[4-(4-fluorophenyl-2-methyl-5-oxo-2,5-dihydroisoxazol-3-yl]-1-methylpyridinium iodide showed the presence of the regioisomer 4-[3-(4-fluorophenyl-2-methyl-5-oxo-2,5-dihydroisoxazol-4-yl]-1-methylpyridinium iodide. The synthesis of the former compound was achieved by reacting 4-(4-fluorophenyl-3-(4-pyridylisoxazol-5(2H-one after treatment with Et3N in dimethylformamide, with iodomethane. The unexpected formation of the regioisomer could be explained by a rearrangement occurring via aziridine of the isoxazolone compound. The regioisomers have site occupancies of 0.632 (4/0.368 (4. The two six members rings make a dihedral angle of 66.8 (2°.

  20. Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions.

    Science.gov (United States)

    Wang, Ying; Liu, Xu; Wang, Hongfang; Xia, Guangmei; Huang, Wei; Song, Rui

    2014-02-15

    In the current study, microporous spongy chitosan monoliths doped with small amount of graphene oxide (CSGO monoliths) with high porosity (96-98%), extraordinary high water absorption (more than 2000%) and low density (0.0436-0.0607 g cm(-3)) were prepared by the freeze-drying method and used as adsorbents for anionic dyes methyl orange (MO) and Cu(2+) ions. The adsorption behavior of the CSGO monoliths and influencing factors such as pH value, graphene oxide (GO) content, concentration of pollutants as well as adsorption kinetics were studied. Specifically, the saturated adsorption capacity for MO is 567.07 mg g(-1), the highest comparing with other publication results, and it is 53.69 mg g(-1) for Cu(2+) ions. Since they are biodegradable, non-toxic, efficient, low-cost and easy to prepare, we believe that these microporous spongy CSGO monoliths will be the promising candidates for water purification. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Functionalized metal organic frameworks for effective capture of radioactive organic iodides

    KAUST Repository

    Li, Baiyan

    2017-06-27

    Highly efficient capture of radioactive organic iodides (ROIs) from off-gas mixtures remains a substantial challenge for nuclear waste treatment. Current materials utilized for ROI sequestration suffer from low capacity, high cost (e.g. use of noble metals), and poor recyclability. Recently, we have developed a new strategy to tackle this challenge by functionalizing MOF materials with tertiary amines to create molecular traps for the effective capture and removal of ROIs (e.g. radioactive methyl iodide) from nuclear wastes. To further enhance the uptake capacity and performance of CH3I capture by ROI molecular traps, herein, we carry out a systematic study to investigate the effect of different amine molecules on ROI capture. The results demonstrate a record-high CH3I saturation uptake capacity of 80% for MIL-101-Cr-DMEDA at 150 °C, which is 5.3 times that of Ag0@MOR (15 wt%), a leading adsorbent material for capturing ROIs during nuclear fuel reprocessing. Furthermore, the CH3I decontamination factors (DFs) for MIL-101-Cr-DMEDA are as high as 5000 under simulated reprocessing conditions, largely exceeding that of facility regulatory requirements (DF = 3000). In addition, MIL-101-Cr-DMEDA can be recycled without loss of capacity, illustrating yet another advantage compared to known industrial adsorbents, which are typically of a

  2. Prevention of organic iodide formation in BWR's

    International Nuclear Information System (INIS)

    Karjunen, T.; Laitinen, T.; Piippo, J.; Sirkiae, P.

    1996-01-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR's as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs

  3. Development of Silver-exchanged Adsorbents for the Removal of Fission Iodine from Alkaline Dissolution

    International Nuclear Information System (INIS)

    Kim, Taewoon; Lee, Seung-Kon; Lee, Suseung; Lee, Jun Sig

    2015-01-01

    Most of the iodine exists in the caustic dissolution as iodide form. KAERI is developing LEU-based fission 99 Mo production process which is connected to the new research reactor, which is being constructed in Kijang, Busan, Korea. In KAERI process, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. In KAERI process, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. Synthesis of silver-doped alumina is conducted in two ways. One is using the ascorbic acid as a reducing agent. However, this method is impossible to control

  4. Micro-syntheses for the use of carbon 13 or carbon 14. Micro-preparations of methyl alcohol, methyl iodide, and sodium acetate labeled in the methyl group; Microsyntheses pour l'emploi de carbone 13 ou de carbone 14. Micropreparations d'alcool methylique, d'iodure de methyle et d'acetate de sodium marque sur le groupement methyle

    Energy Technology Data Exchange (ETDEWEB)

    Baret, C; Pichat, L

    1951-11-01

    Apparatus and technique are described in detail for (1) reduction of CO{sub 2} to CH{sub 3}OH with LiAlH{sub 4}, (2) conversion of the methanol to CH{sub 3}I by HI, (3) formation of the Mg Grignard reagent, and (4) addition of inactive CO{sub 2} to form CH{sub 3}COOH. All these operations have been carried out on 0.005 moles. Methyl-labeled Na acetate has been prepared in 67% yield based on the Ba{sup 14}CO{sub 3} used as starting material. (author) [French] Description detaillee d'une technique deja connue pour la reduction du gaz carbonique en alcool methylique par LiAlH{sub 4}. Conversion du methanol en iodure de methyle. Ce dernier transforme en reactif de Grigard, et carbonate, fournit de l'acide acetique. Toutes ces operations on ete effectuees sur 5 x 10{sup -3} moles. La methode a ete appliquee a la synthese d'acetate de sodium marque par le groupement methyle par {sup 14}C avec un rendement global de 67% base sur le carbonate de baryum radioactif mis en oeuvre. (auteurs)

  5. dl-Alaninium iodide

    Directory of Open Access Journals (Sweden)

    Kevin Lamberts

    2012-06-01

    Full Text Available The crystal structure of dl-alanine hydroiodide (1-carboxyethanaminium iodide, C3H8NO2+·I−, is that of an organic salt consisting of N-protonated cations and iodide anions. The compound features homochiral helices of N—H...O hydrogen-bonded cations in the [010] direction; neighbouring chains are related by crystallographic inversion centers and hence show opposite chirality. The iodide counter-anions act as hydrogen-bond acceptors towards H atoms of the ammonium and carboxy groups, and cross-link the chains along [100]. Thus, an overall two-dimensional network is formed in the ab plane. No short contacts occur between iodide anions.

  6. Femtosecond time-resolved photodissociation dynamics of methyl halide molecules on ultrathin gold films

    Directory of Open Access Journals (Sweden)

    Mihai E. Vaida

    2011-09-01

    Full Text Available The photodissociation of small organic molecules, namely methyl iodide, methyl bromide, and methyl chloride, adsorbed on a metal surface was investigated in real time by means of femtosecond-laser pump–probe mass spectrometry. A weakly interacting gold surface was employed as substrate because the intact adsorption of the methyl halide molecules was desired prior to photoexcitation. The gold surface was prepared as an ultrathin film on Mo(100. The molecular adsorption behavior was characterized by coverage dependent temperature programmed desorption spectroscopy. Submonolayer preparations were irradiated with UV light of 266 nm wavelength and the subsequently emerging methyl fragments were probed by photoionization and mass spectrometric detection. A strong dependence of the excitation mechanism and the light-induced dynamics on the type of molecule was observed. Possible photoexcitation mechanisms included direct photoexcitation to the dissociative A-band of the methyl halide molecules as well as the attachment of surface-emitted electrons with transient negative ion formation and subsequent molecular fragmentation. Both reaction pathways were energetically possible in the case of methyl iodide, yet, no methyl fragments were observed. As a likely explanation, the rapid quenching of the excited states prior to fragmentation is proposed. This quenching mechanism could be prevented by modification of the gold surface through pre-adsorption of iodine atoms. In contrast, the A-band of methyl bromide was not energetically directly accessible through 266 nm excitation. Nevertheless, the one-photon-induced dissociation was observed in the case of methyl bromide. This was interpreted as being due to a considerable energetic down-shift of the electronic A-band states of methyl bromide by about 1.5 eV through interaction with the gold substrate. Finally, for methyl chloride no photofragmentation could be detected at all.

  7. Fe3O4@ionic liquid@methyl orange nanoparticles as a novel nano-adsorbent for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples.

    Science.gov (United States)

    Liu, Xiaofei; Lu, Xin; Huang, Yong; Liu, Chengwei; Zhao, Shulin

    2014-02-01

    A novel nano-adsorbent, Fe3O4@ionic liquid@methyl orange nanoparticles (Fe3O4@IL@MO NPs), was prepared for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Fe3O4@IL@MO NPs were synthesized by self-assembly of the ionic liquid 1-octadecyl-3-methylimidazolium bromide (C18mimBr) and methyl orange (MO) onto the surface of Fe3O4 silica magnetic nanoparticles, as confirmed by infrared spectroscopy, ultraviolet-visible spectroscopy and superconducting quantum interface device magnetometer. The extraction performance of Fe3O4@IL@MO NPs as a nano-adsorbent was evaluated by using five PAHs, fluorene (FLu), anthracene (AnT), pyrene (Pyr), benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP) as model analytes. Under the optimum conditions, detection limits in the range of 0.1-2 ng/L were obtained by high performance liquid chromatography-fluorescence detection (HPLC-FLD). This method has been successfully applied for the determination of PAHs in environmental water samples by using the MSPE-HPLC-FLD. The recoveries for the five PAHs tested in spiked real water samples were in the range of 80.4-104.0% with relative standard deviations ranging from 2.3 to 4.9%. © 2013 Published by Elsevier B.V.

  8. Photoelectron diffraction studies of small adsorbates on single crystal surfaces

    International Nuclear Information System (INIS)

    Pascal, Mathieu

    2002-01-01

    The structural determination of small molecules adsorbed on single crystal surfaces has been investigated using scanned energy mode photoelectron diffraction (PhD). The experimental PhD data were compared to theoretical models using a simulation program based on multiple scattering calculations. Three adsorption systems have been examined on Ag(110), Cu(110) and Cu(111) crystals. The structure of the (2x1)-O adsorption phase on Ag(110) revealed that the O atoms occupied the long bridge site and are almost co-planar with the top layer of Ag atoms. The best agreement between multiple scattering theory and experiment has been obtained for a missing-row (or equivalently an 'added- row') reconstruction. Alternative buckled-row and unreconstructed surface models can be excluded. The adsorption of the benzoate species on Cu(110) has been found to occur via the carboxylate group. The molecules occupy short bridge sites with the O atoms being slightly displaced from atop sites and are aligned along the close-packed azimuth. The tilt of the molecule with respect to the surface and the degree to which the surface is relaxed have also been investigated. The adsorption of methyl on Cu(111) was studied using either azomethane or methyl iodide to prepare the surface layers. At saturation coverage the preferred adsorption site is the fcc threefold hollow site, whereas at half saturation coverage ∼ 30 % of the methyl species occupy the hop threefold hollow sites. Best agreement between theory and experiment corresponded to a methyl group adsorbed with C 3v symmetry. The height of the C above the surface in a pure methyl layer was 1.66 ± 0.02 A, but was reduced to 1.62 ± 0.02 A in the presence of co-adsorbed iodine, suggesting that iodine increases the strength of adsorption. Iodine was also found to occupy the fee threefold hollow sites with a Cu-l bondlength of 2.61 ± 0.02 A. (author)

  9. Behavior of radioactive organic iodide in an atmosphere of High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Saeki, Masakatsu; Nakashima, Mikio; Sagawa, Chiaki; Masaki, Nobuyuki; Hirabayashi, Takakuni; Aratono, Yasuyuki

    1990-06-01

    Formation and decomposition behavior of radioactive organic iodide have been studied in an atmosphere of High Temperature Gas-cooled Reactor (High Temperature Engineering Test Reactor, HTTR). Na 125 I was chosen for radioactive iodine source instead of CsI diffusing from coated fuel particles. Na 125 I adsorbed on graphite was heated in pure He and He containing O 2 or H 2 O atmosphere. The results obtained are as follows. It was proved that organic iodide was formed with organic radicals released from graphite even in He atmosphere. Thus, the interchange rate of inorganic iodide with organic iodide was remarkably decreased with prolonged preheat-treatment period at 1000degC. Organic iodide formed was easily decomposed by its recirculation into hot reaction tube kept at 900degC. When organic iodide was passed through powdered graphite bed, more than 70% was decomposed at 90degC. Oxygen and water vapour intermixed in He suppressed the interchange rate of inorganic iodide with organic iodide. These results suggest that organic iodide rarely exists in the pressure vessel under normal operating condition of HTTR, and, under hypothetical accident condition of HTTR, organic iodide fraction never exceeds the value used for a safety assessment of light water reactor. (author)

  10. Synthesis and Characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride – Mesoporous Silica Composite as Adsorbent for Dehydration in Industrial Processes

    OpenAIRE

    Liévano,Javier F. Plata; Díaz,Luz A. Carreno

    2016-01-01

    Ionic liquid – mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix...

  11. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps.

    Science.gov (United States)

    Li, Baiyan; Dong, Xinglong; Wang, Hao; Ma, Dingxuan; Tan, Kui; Jensen, Stephanie; Deibert, Benjamin J; Butler, Joseph; Cure, Jeremy; Shi, Zhan; Thonhauser, Timo; Chabal, Yves J; Han, Yu; Li, Jing

    2017-09-07

    Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH 3 I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag 0 @MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

  12. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps

    KAUST Repository

    Li, Baiyan

    2017-09-01

    Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH3I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag0@MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

  13. Synthesis and characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride - mesoporous silica composite as adsorbent for dehydration in industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Lievano, Javier F. Plata; Diaz, Luz A. Carreno, E-mail: lcarreno@uis.edu.co [Universidad Industrial de Santander (Colombia)

    2016-07-15

    Ionic liquid - mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix. Evaluations have shown that the material kept the IL dehydration property. (author)

  14. Synthesis and characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride - mesoporous silica composite as adsorbent for dehydration in industrial processes

    International Nuclear Information System (INIS)

    Lievano, Javier F. Plata; Diaz, Luz A. Carreno

    2016-01-01

    Ionic liquid - mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix. Evaluations have shown that the material kept the IL dehydration property. (author)

  15. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T; Piippo, J; Sirkiae, P [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  16. Influences of impurities on iodine removal efficiency of silver alumina adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Fukasawa, Tetsuo; Funabashi, Kiyomi [Hitachi, Ltd., Ibaraki (Japan); Kondo, Yoshikazu [Hitachi, Ltd., Ibaraki (Japan)

    1997-08-01

    Silver impregnated alumina adsorbent (AgA), which was developed for iodine removal from off-gas of nuclear power and reprocessing plants has been tested laying emphasis on investigation of the influences gaseous impurities have on adsorbent chemical stability and iodine removal efficiency. The influences of the major impurities such as nitrogen oxides and water vapor were checked on the chemical state of impregnated silver compound (AgNO{sub 3}) and decontamination factor (DF) value. At 150{degrees}C, a forced air flow with 1.5% nitrogen oxide (NO/NO{sub 2}=1/1) reduced silver nitrate to metallic silver, whereas pure air and air with 1.5% NO{sub 2} had no effect on the chemical state of silver. Metallic silver showed a lower DF value for methyl iodide in pure air (without impurities) than silver nitrate and the lower DF of metallic silver was improved when impurities were added. At 40{degrees}C, a forced air flow with 1.5% nitrogen dioxide (NO{sub 2}) increased the AgA weight by about 20%, which was caused by the adsorption of nitric acid solution on the AgA surface. AgA with l0wt% silver showed higher weight increase than that with 24wt% silver which had lower porosity. Adsorption of acid solution lowered the DF value, which would be due to the hindrance of contact between methyl iodide and silver. The influences of other gaseous impurities were also investigated and AgA showed superior characteristics at high temperatures. 14 refs., 11 figs.

  17. Processes of adsorption/desorption of iodides and cadmium cations onto/from Ag(111

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIĆ

    2011-02-01

    Full Text Available In this work, the adsorption/desorption processes of iodides and cadmium cations in the presence of iodides onto/from Ag(111 were investigated. It was shown that both processes were complex, characterized by several peaks on the cyclic voltammograms (CVs. By PeakFit analysis of the recorded CVs and subsequent fitting of the obtained peaks by the Frumkin adsorption isotherm, the interaction parameter (f and the Gibbs energy of adsorption (DGads for each adsorbed phase were determined. In the case of iodide adsorption, four peaks were characterized by negative values of f, indicating attractive lateral interaction between the adsorbed anions, while two of them possessed value of f < –4, indicating phase transition processes. The adsorption/desorption processes of cadmium cations (underpotential deposition – UPD of cadmium in the presence of iodide anions was characterized by two main peaks, each of them being composed of two or three peaks with negative values of f. By the analysis of charge vs. potential dependences obtained either from the CVs or current transients on potentiostatic pulses, it was concluded that adsorbed iodides did not undergo desorption during the process of Cd UPD, but became replaced by Cd ad-atoms and remained adsorbed on top of a Cd layer and/or in between Cd the ad-atoms.

  18. Method of removing alkyl iodides or mixtures of iodine and alkyl iodides from a gas phase and an aqueous solution phase by utilizing ion exchange resins

    International Nuclear Information System (INIS)

    Shimizu, Hiroshi; Mizuuchi, Noboru; Yokoyama, Fumio.

    1967-01-01

    Alkyl iodides and mixtures of iodine and alkyl iodides are removed from a gas phase and an aquous solution phase by using solely an anion exchange resin containing a tertiary amine or together with an anion exchange resin containing quarternary ammonium compound. The resin containing the quarternary ammonium compound is employed mainly to remove iodine, and the resin containing the tertiary amine serves mainly to remove alkyl iodides. The method can be applied to collecting a majority of the methyl iodide as well as the radioactive iodine produced in the atmosphere of a reactor in case of a fuel accident. In embodiments, it is desirable to maintain the sufficient moisture content of the anion exchange resins at a sufficient moisture level so as not to reduce the migration speed of the iodine and alkyl iodides. The iodine and alkyl iodide can be produced with high efficiency and stability independently of the relative humidity of the gas phase. In examples, a solution which consists of 20.5 mg/l of iodine and 42.2mg/l of methyl iodide flew through a column of Amberite IRA-93 alone or blended with IRA-900 at a speed of 15 /hr. respectively. The resins were able to treat 400 times their equivalent in water. (Iwakiri, K.)

  19. Potassium iodide stockpiling

    International Nuclear Information System (INIS)

    Krimm, R.W.

    1983-01-01

    After examination by the Federal Emergency Management Agency (FEMA) and other federal agencies of federal policy on the use and distribution of potassium iodide (KI) as a thyroid-blocking agent for use in off-site preparedness around commercial nuclear powerplants, FEMA believes the present shelf life of KI is too short, that the minimum ordering quantities are an obstacle to efficient procurement, and that the packaging format offered by the drug industry does not meet the wishes of state and local government officials. FEMA has asked assistance from the Food and Drug Administration in making it possible for those states wishing to satisfy appropriate requirements to do so at the minimum cost to the public. Given an appropriate packaging and drug form, there appears to be no reason for the federal government to have further involvement in the stockpiling of KI

  20. Behaviour of organic iodides under pwr accident conditions

    International Nuclear Information System (INIS)

    Alm, M.

    1982-01-01

    Laboratory experiments were performed to study the behaviour of radioactive methyl iodide under PWR loss-of-coolant conditions. The pressure relief equipment consisted of an autoclave for simulating the primary circuit and of an expansion vessel for simulating the conditions after a rupture in the reactor coolant system. After pressure relief, the composition of the CH 3 sup(127/131)I-containing steam-air mixture within the expansion vessel was analysed at 80 0 C over a period of 42 days. On the basis of the values measured and of data taken from the literature, both qualitative and quantitative assessments have been made as to the behaviour of radioactive methyl iodide in the event of loss-of-coolant accidents. (author)

  1. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2017-01-01

    Full Text Available Methyl tert-butyl ether (MTBE has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC. A polypyrrole (PPy-modified GAC composite (PPy/GAC was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR and Brunauer-Emmett-Teller (BET surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation, the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration <20 μg/L. Pseudomonas aeruginosa and Acinetobacter pittii may be the predominant bacteria responsible for MTBE degradation in these biofilm reactors.

  2. Mercuric iodide sensor technology

    International Nuclear Information System (INIS)

    James, R.B.; Anderson, R.J.; Schlesinger, T.E.

    1996-09-01

    This report describes the improvement in the performance and the manufacturing yield of mercuric iodide detectors achieved by identifying the dominant impurities, carrier traps, and processing steps limiting device performance. Theoretical studies of electron and hole transport in this material set fundamental limits on detector performance and provided a standard against which to compare experimental results. Spectroscopy techniques including low temperature photoluminescence and thermally stimulated current spectroscopy were applied to characterize the deep level traps in this material. Traps and defects that can be introduced into the detector during growth, from the contact, and during the various steps in detector fabrication were identified. Trap energy levels and their relative abundances were determined. Variations in material quality and detector performance at the micron scale were investigated to understand the distribution in electric field in large volume detectors suitable for gamma-ray spectroscopy. Surface aging and contact degradation was studied extensively by techniques including atomic force microscopy, transmission electron microscopy, and variable angle spectroscopic ellipsometry. Preferred handling and processing procedures for maximizing detector performance and yield were established. The manufacturing yield of high resolution gamma-ray detectors was improved from a few percent to more than 30%

  3. Iodide transport and breast cancer.

    Science.gov (United States)

    Poole, Vikki L; McCabe, Christopher J

    2015-10-01

    Breast cancer is the second most common cancer worldwide and the leading cause of cancer death in women, with incidence rates that continue to rise. The heterogeneity of the disease makes breast cancer exceptionally difficult to treat, particularly for those patients with triple-negative disease. To address the therapeutic complexity of these tumours, new strategies for diagnosis and treatment are urgently required. The ability of lactating and malignant breast cells to uptake and transport iodide has led to the hypothesis that radioiodide therapy could be a potentially viable treatment for many breast cancer patients. Understanding how iodide is transported, and the factors regulating the expression and function of the proteins responsible for iodide transport, is critical for translating this hypothesis into reality. This review covers the three known iodide transporters - the sodium iodide symporter, pendrin and the sodium-coupled monocarboxylate transporter - and their role in iodide transport in breast cells, along with efforts to manipulate them to increase the potential for radioiodide therapy as a treatment for breast cancer. © 2015 Society for Endocrinology.

  4. A captive solvent method for rapid N-[11C]methylation of secondary amides: application to the benzodiazepine, 4'-chlorodiazepam (RO5-4864)

    International Nuclear Information System (INIS)

    Watkins, G.L.; Jewett, D.M.; Mulholland, G.K.; Kilbourn, M.R.; Toorongian, S.A.

    1988-01-01

    [ 11 C]4'-Chlorodiazepam (RO5-4864), for PET studies of peripheral benzodiazepine receptors, was synthesized by alkylation of 1-desmethyl-4'-chlorodiazepam, in a small volume of acetone adsorbed on acrylic yarn, with [ 11 C]methyl iodide in the injection loop of a liquid chromatograph. The reaction mixture was introduced directly onto a small, disposable alumina chromatographic column. Elution with pentane: ethanol gave a product of high chemical and radiochemical purity. A simple heating and cooling device for the injection loop is described. (author)

  5. Development of Silver-exchanged Adsorbents for the Removal of Fission Iodine from Alkaline Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Lee, Seung Kon; Lee, Su Seung; Lee, Jun Sig [KAERI, Daejeon (Korea, Republic of); Kim, Sang Wook [Dongguk University, Gyeongju (Korea, Republic of)

    2016-05-15

    {sup 99} Mo is extracted from the filtrate solution through column-based multistep separation and purification process. In the process, removal of radio-impurities from the solution is essential to acquire high-quality fission {sup 99} Mo. Iodine is the main impurity having about 15% of total radioactivity among the whole fission products. Most of the iodine exists in the caustic dissolution as iodide form. In this study, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. Compound is dried again. After heating ascorbic acid solution, solution is added to dried compound. Heat the mixture. After removing supernatant, the mixture is washed with hot distilled water and then cool distilled water in the order named. Finally, the mixture is heated and then recovering by using the sieve. In this study, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. Silver-doped DAW-70 alumina by using silver mirror reaction is less impurities and simpler than method using ascorbic acid.

  6. Adsorber fires

    International Nuclear Information System (INIS)

    Holmes, W.

    1987-01-01

    The following conclusions are offered with respect to activated charcoal filter systems in nuclear power plants: (1) The use of activated charcoal in nuclear facilities presents a potential for deep-seated fires. (2) The defense-in-depth approach to nuclear fire safety requires that if an ignition should occur, fires must be detected quickly and subsequently suppressed. (3) Deep-seated fires in charcoal beds are difficult to extinguish. (4) Automatic water sprays can be used to extinguish fires rapidly and reliably when properly introduced into the burning medium. The second part of the conclusions offered are more like challenges: (1) The problem associated with inadvertent actuations of fire protection systems is not a major one, and it can be reduced further by proper design review, installation, testing, and maintenance. Eliminating automatic fire extinguishing systems for the protection of charcoal adsorbers is not justified. (2) Removal of automatic fire protection systems due to fear of inadvertent fire protection system operation is a case of treating the effect rather than the cause. On the other hand, properly maintaining automatic fire protection systems will preserve the risk of fire loss at acceptable levels while at the same time reducing the risk of damage presented by inadvertent operation of fire protection systems

  7. Radiolytic formation of organic iodides from organic compounds released from ripolin paint

    International Nuclear Information System (INIS)

    Attia, S.; Evans, G.J.

    2002-01-01

    The impact of a serious nuclear reactor accident is governed to a large extent by the possible release of airborne organic iodides to the environment. This research examines the identification and behavior of organic iodides formed in the containment due to the release of organic compounds from Ripolin paint, into the aqueous phase, following a nuclear reactor accident. A bench scale apparatus installed in the irradiation chamber of a Gammacell was used to analyze the formation of organic iodides. Iodo-organics, transferred to the gas phase above irradiated aqueous samples, were analyzed using a Thermal Desorption method coupled with gas chromatography and mass spectrometry. Detailed studies of the identity of the organic compounds released and the organic iodides formed were conducted. The effects of parameters such as irradiation dose were also examined. All the organic iodides formed, under radiolytic conditions, were identified as iodo-alkanes. The organic compounds that were released from the Ripolin paint, such as methyl isobutyl ketone, were found to decompose, by a series of reactions, to produce the organic iodides. The precursor organic compounds and the organic iodides formed were observed to consist of the same alkyl group. These results indicate that organic compounds released from surface paints directly influence the formation of radiolytic organic iodide. (author)

  8. Linearity and Reversibility of Iodide Adsorption on Sediments from Hanford, Washington Under Water Saturated Conditions

    International Nuclear Information System (INIS)

    Um, Wooyong; Serne, R. Jeffrey; Krupka, Kenneth M.

    2004-01-01

    A series of adsorption and desorption experiments were completed to determine the linearity of iodide adsorption, as a function of concentration, and its reversibility onto sediment for geochemical conditions germane to the proposed disposal of low-level radioactive waste by the U.S. Department of Energy's Immobilized Low Activity Waste (ILAW) program at the Hanford Site in southeastern Washington. Iodine-129 is predicted to be one of the top three long-term risk drivers based on past performance assessment conducted for the eventual disposal of the low-level portion of radioactive wastes currently stored in underground storage tanks at Hanford, because iodide exhibits little adsorption affinity to mineral surfaces resulting in high mobility in the subsurface environment. Adsorption experiments, conducted with Hanford formation sediments and groundwater spiked with dissolved 125I (as an analog tracer for 129I), indicated that iodide adsorption was very low at pH 7.5 and could be represented by a linear isotherm up to a total concentration of 100 mg/L dissolved iodide. The linearity of iodide adsorption up to concentrations of 100 mg/L validates the use of the linear Kd construct in transport models to predict the fate and transport of 129I in subsurface systems at Hanford. The results of desorption experiments indicated that up to 60% of adsorbed iodide was readily desorbed after 14 days by the same groundwater solution. Iodide adsorption was considered to be partially reversible or weakly binding on the sediments. Even though small amount of initial iodide is retarded by adsorption reactions at mineral-water interfaces, the weak adsorption affinity results in release of iodide when iodide free pore waters and ground waters contact the contaminated sediments in the vadose zone and aquifer systems

  9. The efficiency of Whatman Type ACG/B filter papers for methyl iodine retention in air

    International Nuclear Information System (INIS)

    Davis, R.E.; Williams, J.M.E.

    1965-11-01

    Experiments are described in which charcoal impregnated glass fibre filter papers Type ACG/B were exposed to methyl iodide vapour and the penetration determined for iodide loadings ranging from 2 x 10 - 7 to 2x10 - 1 μg/cm 2 of filter area. Air was subsequently passed through the filters, and at intervals the amount of methyl iodide remaining on them was determined. Penetrations during loading varied from 30% to 80%, but after 10 minutes elution all filters retained less than 5% of the methyl iodide originally present. (author)

  10. Liberation of methyl acrylate from metallalactone complexes via M-O ring opening (M = Ni, Pd) with methylation agents

    KAUST Repository

    Lee, S. Y Tina; Ghani, Amylia Abdul; D'Elia, Valerio; Cokoja, Mirza; Herrmann, Wolfgang A.; Basset, Jean-Marie; Kü hn, Fritz

    2013-01-01

    Ring opening of various nickela- and palladalactones induced by the cleavage of the M-O bond by methyl trifluoromethanesulfonate (MeOTf) and methyl iodide (MeI) is examined. Experimental evidence supports the mechanism of ring opening by the alkylating agent followed by β-H elimination leading to methyl acrylate and a metal-hydride species. MeOTf shows by far higher efficiency in the lactone ring opening than any other methylating agent including the previously reported methyl iodide. © 2013 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  11. Auger recombination in sodium iodide

    Science.gov (United States)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  12. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The evolution of hydrogen and iodine by the decomposition of ammonium iodide and hydrogen iodide

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Nakane, Masanori; Ishii, Eiichi; Uehara, Itsuki; Miyake, Yoshizo

    1977-01-01

    As a fundamental study on thermochemical production of hydrogen from water, the evolution of hydrogen and iodine from ammonium iodide and hydrogen iodide was investigated. Hydrogen was evolved by the reaction of nickel with ammonium iodide or with hydrogen iodide, and the resulting nickel(II) iodide was decomposed thermally at 600 -- 700 0 C to form nickel. First, the iodination of powdered nickel with ammonium iodide was studied by heating their powder mixture. The maximum yield of hydrogen was obtained at a temperature near 430 0 C. The iodination of powdered nickel with gaseous ammonium iodide or with dry hydrogen iodide gas was also investigated. In this case, coating of nickel particles with a layer of resulting nickel(II) iodide prevented further conversion of nickel and lowered the reaction rate. Such a retardation effect was appreciably lessened by use of carrier. When nickel was supported on such a carrier as ''isolite'', the nickel was converted into nickel(II) iodide easily. In a reaction temperature from 400 to 500 0 C, the rate of reaction between nickel and hydrogen iodide increased slightly with the elevation of the reaction temperature. In the case of ammonium iodide, the reaction rate was higher than that for hydrogen iodide and decreased apparently with the elevation of the reaction temperature, because ammonium iodide decomposed to ammonia and hydrogen iodide. Tests using a fixed bed reactor charged with 8 -- 10 mesh ''isolite''-nickel (30 wt%) were also carried out. The maximum yield of hydrogen was about 80% for ammonium iodide at 430 0 C of reaction temperature and 60% for hydrogen iodide at 500 0 C. (auth.)

  14. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-01-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI (aq) ) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  15. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.

    Science.gov (United States)

    Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan

    2016-01-14

    Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater.

  16. Modeling adsorption: Investigating adsorbate and adsorbent properties

    Science.gov (United States)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  17. 21 CFR 172.375 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be...

  18. Interaction of simple indium iodides with silver- and aluminium iodides

    International Nuclear Information System (INIS)

    Denisov, Yu.N.; Halova, N.S.; Fedorov, P.I.

    1976-01-01

    Fusibility diagrams of the systems InI-AlI 3 , InI-AgI, InI 2 -AgI, and InI 2 -AlI 3 have been studied. In the system InI-AlI 3 a compound InAlI 4 has been detected having a melting point 194 deg C and two lamination regions. In the system InI-AgI two compounds In 2 AgI 3 and InAgI 2 are formed which melt incongruently at 272 deg and 220 deg C, respectively. The formation of the compounds has been confirmed by X-ray phase analysis. Specific electroconductivity of a number of alloys of the system InI-AlI 3 has been studied. The systems of eutectic type formed by diiodide of indium with iodides of silver and aluminium have been studied by thermal and X-ray analysis and by measuring electroconductivity

  19. Coulomb explosion of methyl iodide clusters using giga watt laser ...

    Indian Academy of Sciences (India)

    Administrator

    ... using giga watt laser pulses in the visible region: Effect of wavelength, polarisation and .... is governed by the product of ponderomotive energy and the total effec- .... gesting isotropic disintegration of multiply charged. CH3I cluster. It must be ...

  20. Selective gettering of hydrogen in high pressure metal iodide lamps

    International Nuclear Information System (INIS)

    Kuus, G.

    1976-01-01

    One of the main problems in the manufacture of high pressure gas discharge lamps is the elimination of gaseous impurities from their arc tubes. Long degassing processes of all the lamp components are necessary in order to produce lamps with a low ignition voltage and good maintenance of the radiation properties. The investigation described deals with a selective getter place in the arc tube which can replace the long degassing process. The getter consists of a piece of yttrium encapsulated in thin tantalum foil. By this way it is possible to use the gettering action of tantalum and yttrium without having reaction between the metal iodide of the arc tube and yttrium. Yttrium is used because this metal can adsorb a large quantity of hydrogen even at a temperature of 1000 0 C. Hydrogen forms the main gaseous impurity in the high pressure metal iodide lamp. For this reason the adsorption properties like adsorption rate and capacity of the tantalum--yttrium getter for hydrogen are examined, and the results obtained from lamp experiments are given

  1. Surface free energy analysis of adsorbents used for radioiodine adsorption

    International Nuclear Information System (INIS)

    González-García, C.M.; Román, S.; González, J.F.; Sabio, E.; Ledesma, B.

    2013-01-01

    In this work, the surface free energy of biomass-based activated carbons, both fresh and impregnated with triethylenediamine, has been evaluated. The contribution of Lifshitz van der Waals components was determined by the model proposed by van Oss et al. The results obtained allowed predicting the most probable configurations of the impregnant onto the carbon surface and its influence on the subsequent adsorption of radioactive methyl iodide.

  2. Dynamic iodide trapping by tumor cells expressing the thyroidal sodium iodide symporter

    International Nuclear Information System (INIS)

    Dingli, David; Bergert, Elizabeth R.; Bajzer, Zeljko; O'Connor, Michael K.; Russell, Stephen J.; Morris, John C.

    2004-01-01

    The thyroidal sodium iodide symporter (NIS) in combination with various radioactive isotopes has shown promise as a therapeutic gene in various tumor models. Therapy depends on adequate retention of the isotope in the tumor. We hypothesized that in the absence of iodide organification, isotope trapping is a dynamic process either due to slow efflux or re-uptake of the isotope by cells expressing NIS. Iodide efflux is slower in ARH-77 and K-562 cells expressing NIS compared to a thyroid cell line. Isotope retention half times varied linearly with the number of cells expressing NIS. With sufficient NIS expression, iodide efflux is a zero-order process. Efflux kinetics in the presence or absence of perchlorate also supports the hypothesis that iodide re-uptake occurs and contributes to the retention of the isotope in tumor cells. Iodide organification was insignificant. In vivo studies in tumors composed of mixed cell populations confirmed these observations

  3. The influence of sodium salts (iodide, chloride and sulfate) on the formation efficiency of sulfamerazine nanocrystals.

    Science.gov (United States)

    Lou, Hao; Liu, Min; Qu, Wen; Johnson, James; Brunson, Ed; Almoazen, Hassan

    2014-08-01

    The purpose of this study is to evaluate the influence of sodium iodide, sodium chloride and sodium sulfate on the formation efficiency of sulfamerazine nanocrystals by wet ball milling. Sulfamerazine was milled using zirconium oxide beads in a solution containing polyvinylpyrrolidone (PVP) and a sodium salt (iodide, chloride or sulfate). Particle size distributions were evaluated by light diffraction before and after milling. High-performance liquid chromatography was utilized to determine the amount of PVP adsorbed onto sulfamerazine surface. Lyophilized nanocrystals were further characterized by differential scanning calorimetry and dissolution testing. Sulfate ion had more profound effect on reducing particle size via milling than iodide or chloride. We linked our findings to Hofmeister ion series, which indicates that sulfate ions tends to break the water structure, increases the surface tension and lowers the solubility of hydrocarbons in water. We hypothesized that the addition of sulfate ions dehydrated the PVP molecules and enhanced its adsorption onto the sulfamerazine particle surfaces. Consequently, the adsorbed PVP helped to stabilize of the nanosuspension. The nanocrystals that were obtained from the lyophilized milled suspensions exhibited a notable increase in dissolution rate. The addition of sodium sulfate enhanced the formation efficiency of sulfamerazine nanocrystals.

  4. Organic iodide capture using a zeolite dry filtration

    International Nuclear Information System (INIS)

    Park, Sanggil; Sung, Joonyoung; Kim, Gi-ppeum; Lee, Jaeyoung

    2017-01-01

    An organic iodide, especially, methyl iodide (CH 3 I) would generated non-negligibly from a severe accident in a nuclear power plant. This CH 3 I will be dangerous for human when it was inhaled, it is highly toxic and causes a serious nerve disorder. Even it is a major contributor to a thyroid cancer. In order to prevent its environmental release, it is required to decontaminate using a filtration system. For the removal of CH 3 I from the release gases, wet-type is not ideal due to a high re-volatile characteristics of CH 3 I. It may become volatile after dissolving in a pool and forms CH 3 I again at the surface of water pool. Therefore, a dry-filtration should be installed to remove the CH 3 I. In this study, we preliminary investigate the characteristics of zeolite filtration methods for the removal of CH 3 I. We used both silver ion exchanged ZSM-5-zeolite (Ag+-ZSM-5) to study the effect of silver ion for the removal of iodine from CH 3 I. In summary, the CH 3 I capture tests using a silver ion exchanged zeolite was conducted in the coupled TGAGC test set-up. The mass change of the sample and concentration of CH 3 I were measured. The samples were investigated by the SEM/EDS to see its surface characteristics.

  5. In Vitro Bioavailability Study of an Antiviral Compound Enisamium Iodide

    OpenAIRE

    Eleonore Haltner-Ukomadu; Svitlana Gureyeva; Oleksii Burmaka; Andriy Goy; Lutz Mueller; Grygorii Kostyuk; Victor Margitich

    2018-01-01

    An investigation into the biopharmaceutics classification and a study of the in vitro bioavailability (permeability and solubility) of the antiviral compound enisamium iodide (4-(benzylcarbamoyl)-1-methylpyridinium iodide) were carried out. The solubility of enisamium iodide was determined in four different buffers. Apparent intestinal permeability (Papp) of enisamium iodide was assessed using human colon carcinoma (Caco-2) cells at three concentrations. The solubility of enisamium iodide in ...

  6. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  7. A portable multi-syringe flow system for spectrofluorimetric determination of iodide in seawater.

    Science.gov (United States)

    Frizzarin, Rejane M; Aguado, Enrique; Portugal, Lindomar A; Moreno, Daniel; Estela, José M; Rocha, Fábio R P; Cerdà, Victor

    2015-11-01

    A miniaturized analyzer encompassing a poly(methyl methacrylate) chip with integrated spectrofluorimetric detection and solutions propelling by a multi-syringe module is proposed. Iodide was determined through its catalytic effect on the reaction between Ce(IV) and As(III). Matrix isopotential synchronous fluorescence was explored to set the excitation and emission wavelengths. A two-level full factorial design allowed to evaluate the significance of variables (Ce(IV), As(III) and H2SO4 concentrations) and their interaction effects in the experimental domain. A Doehlert Matrix was applied to identify the critical values. The optimized procedure showed a linear response from 1 to 100 μg L(-1) (S=53.7+2.61C, in which S is the net fluorescence and C is iodide concentration in μg L(-1)). Detection limit, coefficient of variation (n=6) and sampling rate were estimated at 0.3 μg L(-1), 0.8% and 20 h(-1), respectively. Recoveries within 90-117% were estimated for iodide spiked to seawater samples. The proposed procedure stands out because of the portability, robustness, and simplicity for in-field analysis of iodide in seawater. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Transporting method for adsorbing tower and the adsorbing tower

    International Nuclear Information System (INIS)

    Shimokawa, Nobuhiro.

    1996-01-01

    A cylindrical plastic bag is disposed to the upper surface of an adsorbing tower so as to surround a suspending piece. One opening of the bag is sealed, and other opening is secured in a sealed state to a bag holding portion disposed to glove box at a gate for the adsorbing tower box. The adsorbing tower is transported into the glove box, and after the completion of the operation of the adsorbing tower, the adsorbing tower is taken out in a state that the bag is restricted and sealed at a portion below the adsorbing tower. The bag may be made of a vinyl plastic, the bag holding portion may be a short-cylindrical protrusion, and may have an O-ring groove at the outer surface. Even if the adsorbing tower is heavy, the adsorbing tower can be carried out easily in a state where it is sealed gas tightly. (N.H.)

  9. Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption.

    Science.gov (United States)

    Madani, S Hadi; Sedghi, Saeid; Biggs, Mark J; Pendleton, Phillip

    2015-12-21

    A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid-fluid heat, fluid-solid heat, and fluid-high-energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well-characterized polymer-based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit-pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non-specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non-specific interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis of N-methyl and N-11C-methyl spiperone by phase transfer catalysis in anhydrous solvent

    International Nuclear Information System (INIS)

    Omokawa, Hiroyoshi; Tanaka, Akira; Iio, Mayumi; Nishihara, Yoshiaki; Inoue, Osamu; Yamazaki, Toshio.

    1985-01-01

    Spiperone, a butyrophenone neuroleptic drug, has been used in binding studies of dopamine receptors. Langstrom et al. developed N- 11 C-methyl spiperone, and, in cooperate with Wagner et al., made it possible to visualize the distribution of dopamine receptors in the human brain in vivo. In this paper, we independently developed another synthetic method of N- 11 C-methyl spiperone using the phase transfer catalyst in an anhydrous solvent. Separation of the product is feasible only by passing the reactant solution through a Millipore filter and injecting it onto high pressure liquid chromatography (HPLC). The time required for the synthesis and purification of N- 11 C-methyl spiperone from 11 C-methyl iodide and spiperone was 20 min. Radiochemical yield exceeded 35 % against 11 C-methyl iodide without correcting decay of the radioactivity. (author)

  11. Efforts to Consolidate Chalcogels with Adsorbed Iodine

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun

    2013-08-28

    This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent

  12. Neutron scattering from adsorbed species

    International Nuclear Information System (INIS)

    Shuwang An

    1998-01-01

    Neutron reflection has been used to investigate the structure of layers of water-soluble diblock copolymers poly(2-(dimethylamino)ethyl methacrylate-block-methyl methacrylate (poly(DMAEMA-b-MMA)) (70 mol% DMAEMA, M n = 10k, 80 mol% DMAEMA, M n = 10k, and 70 mol% DMAEMA, M n = 20k) adsorbed at the air-liquid and solid-liquid interfaces. The surface tension behaviour of these copolymers at the air-liquid interface has also been investigated. The study of the structure of layers of poly(DMAEMA-b-MMA) adsorbed at the air-water interface forms the main part of the thesis. The surface structure, the effects of pH and ionic strength, and the effects of composition and molecular weight of the copolymers have been studied systematically. For the 70%-10k copolymer at pH 7.5, the adsorption isotherm shows that there is a surface phase transition. The concentration of copolymer at which the phase transition occurs is close to that at which micellar aggregation in the bulk solution also occurs. At low concentrations (below the CMC), the two blocks of the copolymer are approximately uniformly distributed in the direction normal to the interface and the layer is partially immersed in water. At high concentrations (above the CMC), the adsorbed layer has a cross-sectional structure resembling that expected for a micelle with the majority of the MMA blocks forming the core. The outer layers, comprising predominantly DMAEMA blocks, are not equivalent, being more highly extended on the aqueous side of the interface. The effects of pH and added electrolyte on the structure of layers of the 70%-10k copolymer show that the layered structure is promoted by any changes in the bulk solution that enhance the surface coverage but is inhibited by an increase in the fractional charge on the polyelectrolyte part of the copolymer. The effect of lowering the pH is to increase the positive charge on the weak polyelectrolyte block. Addition of electrolyte generally enhances the amount adsorbed and

  13. The state of physically adsorbed substances in microporous adsorbents

    International Nuclear Information System (INIS)

    Fomkin, A.A.

    1987-01-01

    Xe, Kr, Ar, CF 3 Cl, CH 4 adsorption in NaX microporous zeolite of 0.98 Na 2 OxAl 2 O 3 x2.36SiO 2 x0.02H 2 O is studied. Some properties of adsorbates (density, coefficients of expansion, enthalpy, heat capacity) are determined and discussed. The adsorbate in the microporous adsorbent is shown to be a particular state of a substance. Liniarity of adsorption isosteres and sharp changes during isosteric heat capacity of the adsorbate points to the fact that in microporous adsorbents phase transformations of the second type are possible

  14. Potassium iodide capsule treatment of feline sporotrichosis.

    Science.gov (United States)

    Reis, Erica G; Gremião, Isabella D F; Kitada, Amanda A B; Rocha, Raphael F D B; Castro, Verônica S P; Barros, Mônica B L; Menezes, Rodrigo C; Pereira, Sandro A; Schubach, Tânia M P

    2012-06-01

    Sporotrichosis is a mycosis caused by Sporothrix schenckii. The most affected animal is the cat; it has played an important role in the zoonotic transmission of this disease, especially in Rio de Janeiro, Brazil, since 1998. In order to evaluate the treatment of feline sporotrichosis with potassium iodide, an observational cohort was conducted in 48 cats with sporotrichosis at Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz. All cats received potassium iodide capsules, 2.5 mg/kg to 20 mg/kg q24h. The cure rate was 47.9%, treatment failure was 37.5%, treatment abandonment was 10.4% and death was 4.2%. Clinical adverse effects were observed in 52.1% of the cases. Thirteen cats had a mild increase in hepatic transaminase levels during the treatment, six of them presented clinical signs suggestive of hepatotoxicity. Compared to previous studies with itraconazole and iodide in saturated solution, potassium iodide capsules are an alternative for feline sporotrichosis treatment.

  15. Potentiometric determination of iodides in urine

    International Nuclear Information System (INIS)

    Gikolaev, B.A.; Primakova, L.N.; Rakhman'ko, E.M.

    1996-01-01

    Variants of potentiometric method: determination using a calibrations plot, the Gran method, and the double addition method are considered. The method of double additions of the test solution to the reference one is suggested as the most favorable method of determining iodides in urine under clinical laboratory conditions. Refs. 5, tabs. 2

  16. Inclusion complexation of tetrabutylammonium iodide by cyclodextrins

    Indian Academy of Sciences (India)

    Biswajit Datta

    Host-guest inclusion complex of an ionic solid (tetrabutyl ammonium iodide) with α- and β- cyclodextrin has been ... tions.2 CDs are cyclic oligomer of α-D-glucose having numerous of ... of locating at the interface of two phases (liquid–liquid.

  17. Developments in mercuric iodide gamma ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Beyerle, A G; Dolin, R C; Ortale, C [EG and G Energy Measurements, Inc., Goleta, CA (USA). Santa Barbara Operations

    1989-11-01

    A mercuric iodide (HgI{sub 2}) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented. (orig.).

  18. 21 CFR 184.1265 - Cuprous iodide.

    Science.gov (United States)

    2010-04-01

    ... the following specific limitations: Category of food Maximum treatment level in food Functional use... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  19. Iodide-trapping defect of the thyroid

    International Nuclear Information System (INIS)

    Pannall, P.R.; Steyn, A.F.; Van Reenen, O.

    1978-01-01

    We describe a grossly hypothyroid 50-year-old woman, mentally retarded since birth. On the basis of her history of recurrent goitre, absence of 131 I neck uptake and a low saliva/plasma 131 I ratio, congenital hypothyroidism due to a defect of the iodide-trapping mechanism was diagnosed. Other family members studied did not have the defect

  20. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.

    2002-01-01

    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...

  1. Vapor pressure of selected organic iodides

    Czech Academy of Sciences Publication Activity Database

    Fulem, M.; Růžička, K.; Morávek, P.; Pangrác, Jiří; Hulicius, Eduard; Kozyrkin, B.; Shatunov, V.

    2010-01-01

    Roč. 55, č. 11 (2010), 4780-4784 ISSN 0021-9568 R&D Projects: GA ČR GA203/08/0217 Institutional research plan: CEZ:AV0Z10100521 Keywords : vapor pressure * static method * organic iodides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.089, year : 2010

  2. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri......-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI) - all deposited onto fluorine doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrode in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  3. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    Science.gov (United States)

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  4. Efficacy of propidium iodide and FUN-1 stains for assessing viability in basidiospores of Rhizopogon roseolus.

    Science.gov (United States)

    Fernández-Miranda, Elena; Majada, Juan; Casares, Abelardo

    2017-01-01

    The use of spores in applications of ectomycorrhizal fungi requires information regarding spore viability and germination, especially in genera such as Rhizopogon with high rates of spore dormancy. The authors developed a protocol to assess spore viability of Rhizopogon roseolus using four vital stains to quantify spore viability and germination and to optimize storage procedures. They showed that propidium iodide is an excellent stain for quantifying nonviable spores. Observing red fluorescent intravacuolar structures following staining with 2-chloro-4-(2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene)-1-phenylquinolinium iodide (FUN-1) can help identify viable spores that are activated. At 6 mo and 1 y, the spores kept in a water suspension survived better than those left within intact, dry gasterocarps. Our work highlights the importance of temperature, nutrients, and vitamins for maturation and germination of spores of R. roseolus during 1 y of storage.

  5. Orientational epitaxy in adsorbed monolayers

    International Nuclear Information System (INIS)

    Novaco, A.D.; McTague, J.P.

    1977-01-01

    The ground state for adsorbed monolayers on crystalline substrates is shown to involve a definite relative orientation of the substrate and adsorbate crystal axes, even when the relative lattice parameters are incommensurate. The rotation angle which defines the structure of the monolayer-substrate system is determined by the competition between adsorbate-substrate and adsorbate-adsorbate energy terms, and is generally not a symmetry angle. Numerical predictions are presented for the rare gas-graphite systems, whose interaction potentials are rather well known. Recent LEED data for some of these systems appear to corroborate these predictions

  6. Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants

    International Nuclear Information System (INIS)

    Lu Liang; He Jing; Wei Min; Evans, D.G.; Duan Xue

    2005-01-01

    Layered double hydroxides (LDHs), are a class of synthetic anionic clays whose structure can be described as containing brucite-like layers in which some of the divalent cations have been replaced by trivalent ions giving positively-charged sheets. This charge is balanced by intercalation of anions in the hydrated interlayer regions. The general formula is EM 2+ 1-x M 3+ x (OH) 2 ] x+ (A n- ) x/n · mH 2 O, where M 2+ and M 3+ are metal cations for example Mg 2+ and Al 3+ , that occupy octahedral sites in the hydroxide layers, A n- is an exchangeable anion, and x is the ratio M 3+ /(M 2+ + M 3+ ) and the layer charge will depend on the M 2+ /M 3+ ratio. LDHs act as sorbents of anionic species through two types of reactions, namely, anion exchange and reconstruction, which further adds the possibility of recycling and reuse. The sorption of anions from aqueous solutions by structural reconstruction of a calcined LDH is based on a very interesting property of these materials, the so-called memory effect: Calcination of LDHs produces intermediate non-stoichiometric oxides (CLDH) which undergo rehydration in aqueous medium and give back the hydroxide structure with different anions in the interlayers. Radioactive iodide is widely used in biological experiments, medical treatments and in diagnosis. During fission of uranium several iodine species are produced. All the short lived isotopes of iodine, including 1311 (half life 8.04 days), decay and only 127 I (stable) and 129 I (half life 1.59 x 10 7 years) remain as a problem. 129 I is especially considered as one of the key radionuclides that dominate the long-term radiation in underground radioactive waste stores. Iodine is one of the nuclides causing most concern among radioactive anions. Different adsorbents such as zeolites, silica gel, anion exchange paper membrane, activated carbon and activated carbon fibers, have been investigated as potential materials for elimination of iodide from liquid wastes. In this work

  7. Mild synthesis of [N-methyl-{sup 11}C]-isovaleroyl-(L)-carnitine. The usefulness of a tritium approach

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, G.; Carnevaletti, F.; Margonelli, A.; Corsi, G. [Istituto di Chimica Nucleare - C.N.R., C.P. 10, Rome (Italy); Ragni, P. [Istituto di Chimica Nucleare -- C.N.R., C.P. 10 -- 00016 Monterotondo Stazione, Roma, (Italy); Fazio, F.; Todde, S. [Istituto di Neuroscienze e Bioimmagini - C.N.R., H.S. Raffaele, Milan (Italy); Tinti, O. [Sigma-Tau, Industrie Farmaceutiche Riunite S.p.A., Pomezia, Rome (Italy)

    1999-02-01

    The title carnitine derivative was labelled both with [{sup 11}C]methyl iodide and [{sup 3}H]methyl iodide. The former was synthesized in order to improve the knowledge of the acyl carnitines fate in humans. The latter was synthesized, at approximately the same concentration level as that of the former, in order to optimize its radiosynthesis, taking advantage from the long half-life of the tritium.

  8. Mild synthesis of [N-methyl-11C]-isovaleroyl-(L)-carnitine. The usefulness of a tritium approach

    International Nuclear Information System (INIS)

    Angelini, G.; Carnevaletti, F.; Margonelli, A.; Corsi, G.; Ragni, P.; Fazio, F.; Todde, S.; Tinti, O.

    1999-01-01

    The title carnitine derivative was labelled both with [ 11 C]methyl iodide and [ 3 H]methyl iodide. The former was synthesized in order to improve the knowledge of the acyl carnitines fate in humans. The latter was synthesized, at approximately the same concentration level as that of the former, in order to optimize its radiosynthesis, taking advantage from the long half-life of the tritium

  9. Iodide adsorption on the surface of chemically pretreated clinoptilolite

    International Nuclear Information System (INIS)

    Chmielewska-Horvatova, E.; Lesny, J.

    1995-01-01

    The possibility to use the monoionic Ag +- form (eventually Hg +- and Hg 2+ -forms) of clinoptilolite of domestic origin for radioactive iodide elimination from waters has been studied. The capacity of the monoforms of clinoptilolite towards iodide exceeds many times that of the capacity of clinoptilolite in natural form. Due to the low solubility product of AgI, Hg 2 I 2 and HgI 2 iodides generate precipitates on the zeolite surface. Rtg analyses of the silver form of clinoptilolite after sorption of iodide demonstrate the formation of new crystals on the zeolite surface. The influence of interfering anions on the adsorption capacity of silver clinoptilolite towards iodide was investigated, too. Kinetic curves of iodide desorption from the surface of silver and mercury clinoptilolite were compared. Simultaneously, adsorption isotherms for the systems aqueous iodide solution/Ag-, Hg-clinoptilolite were determined. (author) 6 refs.; 7 figs.; 4 tabs

  10. Mercury separation from concentrated potassium iodide/iodine leachate using Self-Assembled Mesoporous Mercaptan Support (SAMMS) technology

    International Nuclear Information System (INIS)

    Mattigod, S.V.; Feng, X.; Fryxell, G.E.

    1997-10-01

    A study was conducted to demonstrate the effectiveness of a novel adsorber, the Self-Assembled Mesoporous Mercaptan Support (SAMMS) material to remove mercury (Hg) from potassium iodide/iodine (KI/I 2 ) waste streams. This study included investigations of the SAMMS material''s binding kinetics, loading capacity, and selectivity for Hg adsorption from surrogate and actual KI/I 2 waste solutions. The kinetics data showed that binding of Hg by the adsorber material occurs very rapidly, with 82% to 95% adsorption occurring within the first 5 min. No significant differences in the rate of adsorption were noted between pH values of 5 and 9 and at Hg concentrations of ∼100 mg/1. Within the same range of pH values, an approximate four-fold increase in initial Hg concentration resulted in a two-fold increase in the rate of adsorption. In all cases studied, equilibrium adsorption occured within 4 h. The loading capacity experiments in KI/I 2 surrogate solutions indicated Hg adsorption densities between 26 to 270 mg/g. The loading density increased with increasing solid: solution ratio and decreasing iodide concentrations. Values of distribution coefficients (1.3x10 5 to >2.6x10 8 ml/g) indicated that material adsorbs Hg with very high specificity from KI/I 2 surrogate solutions. Reduction studies showed that compared to metallic iron (Fe), sodium dithionite can very rapidly reduce iodine as the triiodide species into the iodide form. Adsorption studies conducted with actual KI/I 2 leachates confirmed the highly specific Hg adsorption properties (K d >6x10 7 to>1x10 8 ml//g) of the adsorber material. Following treatment, the Hg concentrations in actual leachates were below instrumental detection limits (i.e., < 0.00005 mg/l), indicating that the KI solutions can be recycled

  11. Complex crystals formed in the aqueous solution of copper(I) iodide and sodium iodide

    International Nuclear Information System (INIS)

    Sugasaka, Kazuhiko; Fujii, Ayako

    1977-01-01

    Crystals of different crystal habits were separated from the copper(I) iodide and sodium iodide solution and the thermal changes of the composition of copper(I) iodide and sodium iodide complexes were studied by chemical analysis, thermal analysis and X-ray diffractometry. Granular and columnar crystals were determined to be copper(I) iodide and sodium iodide dihydrate by X-ray diffraction analysis, respectively. Needle crystal (A) which was separated from the solution at 25 0 C was assumed to be Na 2 CuI 3 .6H 2 O. (A) was stable in its appearance in the air, but the X-ray diffraction pattern of (A) changed. Needle crystal (B) which was recrystallized at 10 0 C from mother liquor after the separation of crystal (A) was assumed to be NaCuI 2 .4H 2 O. (B) was hygroscopic and decomposed to precipitate copper(I) iodide with moisture in the air. (A) and (B) were found to change by heating and or drying, respectively, as follows: Na 2 CuI 3 .6H 2 O → (-2H 2 O, 80 0 C) → 2NaI.2H 2 O + CuI → (-4H 2 O, 160 0 C) → 2NaI + CuI → (+1/2O 2 , 450 0 C) → 2NaI + CuO + 1/2I 2 , NaCuI 2 .4H 2 O → (-4H 2 O, Dried) → NaI + CuI. (auth.)

  12. Clinical value of sodium iodide symporter

    International Nuclear Information System (INIS)

    Li Qian

    2003-01-01

    The sodium iodide symptorter (NIS) is a membrane glycoprotein that mediates iodide uptake in the thyroid gland and several extrathyroidal tissues. In addition to thyroid tissues, the expression of NIS is found in stomach, prostate, placenta and so on. Radioiodine-concentrating activity in thyroid tissues has allowed the use of radioiodine as a diagnostic and therapeutic agent for patients with thyroid disorders. However, some extrathyroid tissues also take up radioiodine, contributing to unwanted side effects of radioiodine therapy. Now that the molecule of NIS has been cloned and characterized, it may be possible to develop novel strategies to differentially modulate NIS expression and activity, enhancing it in target tissues and impeding it in others. It is also important to explore the use of NIS as an imaging reporter gene to monitor the expression profile of the transgene in transgenic mouse animal models and in patients undergoing gene therapy clinical trials

  13. 1-Methyl-2-[(E-2,4,5-trimethoxystyryl]pyridinium iodideThis paper is dedicated to the late His Majesty King Chulalongkorn (King Rama V of Thailand for his numerous reforms to modernize the country on the occasion of Chulalongkorn Day (Piyamaharaj Day which fell on the 23rd October.

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2010-12-01

    Full Text Available In the title compound, C17H20NO3+·I−, the cation exists in the E configuration. The pyridinium and benzene rings are close to coplanar, with a dihedral angle of 7.43 (12° between them. The three methoxy groups of 2,4,5-trimethoxyphenyl are essentially coplanar with the benzene plane, with C—O—C—C torsion angles of 1.0 (3, −1.9 (3 and 3.6 (3°. A weak intramolecular C—H...O interaction generates an S(6 ring motif. In the crystal, the cations are stacked in columns in an antiparallel manner along the a axis through π–π interactions, with a centroid–centroid distance of 3.7714 (16 Å. The iodide anion is situated between the columns and linked to the cation by a weak C—H...I interaction.

  14. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  15. Positronium chemistry in porous adsorbents

    International Nuclear Information System (INIS)

    Foti, G.; Nagy, L.G.; Moravcsik, G.; Schay, G.

    1981-01-01

    Kinetic studies on the annihilation of orthopositronium in porous adsorbents have been performed using lifetime spectroscopy. The positron source applied was 22 Na with 0.2 MBq activity. The adsorbents investigated were silica gels of different particle size and pore structure. The appearance of the long-lived component in the lifetime spectra can be explained by the diffusion of the orthopositronium into the pores affected by the particle size and the pore size of the adsorbent, the coverage on it and the chemical nature of the adsorbate. The long-term aim of the work is to determine and to explain these effects. (author)

  16. Synthesis of N-[methyl-11C]hydromorphone by using multivariate strategies for optimization of radiochemical yields

    International Nuclear Information System (INIS)

    Rimland, Annika; Bergson, Goeran; Obenius, Ulf; Sjoeberg, Stefan; Langstroem, Bengt

    1987-01-01

    The synthesis of N-[methyl- 11 C]hydromorphone has been performed by using [ 11 C]methyl iodide and desmethyl hydromorphone in a mixture of dimethylsulphoxide and dimethylformamide as solvent. Optimization of the radiochemical yield by varying the reaction conditions was performed by using multivariate strategies. The labelled hydromorphone was obtained in 72% radiochemical yield in the alkylation reaction with [ 11 C]-methyl iodide, counted from the end of the [ 11 C]methyl iodide synthesis. N-[Methyl- 11 C]hydromorphone was obtained as a ready injectable pharmaceutical solution with a total synthesis time of 40 min and in a 10% total radiochemical yield, with a radiochemical purity > 99.5%, according to HPLC analysis. (author)

  17. Products of the reaction between methylene iodide and tertiary arsines

    International Nuclear Information System (INIS)

    Gigauri, R.D.; Arabuli, L.G.; Machaidze, Z.I.; Rusiya, M.Sh.

    2005-01-01

    Iodides of iodomethylenetrialkyl(aryl) arsonium were synthesized with high yields as a result of interaction between methylene iodide and tertiary arsines. Exchange reactions of the iodides prepared with lead(II) nitrate in water-alcohol solutions gave rise to formation of iodomethylenetrialkyl(aryl) arsonium nitrates. All the products prepared were characterized by data of elementary analysis, IR spectroscopy, conductometry and melting points measurements [ru

  18. Effect of nitrogen and oxygen on radiolysis of iodide solution

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, H; Endo, M [Hitachi Ltd., Power and Industrial System R+D Divisions, Ibaraki (Japan)

    1996-12-01

    The effect of nitrogen and oxygen on radiolysis of iodide solution was examined. Direct decomposition of nitrogen by {gamma}-radiation produced nitric acid to decrease a water pH. This resulted in the iodine formation in the radiolysis of iodide solution. Hydrogen peroxide was produced by the radiolysis of water containing oxygen. This worked a reducing agent to suppress the formation of iodine in the radiolysis of iodide solution. In the analytical model, fourteen iodine species were considered and reaction scheme consisted in 124 reactions. The analytical model could estimate the oxidation state of iodide ions. (author) 4 figs., 4 refs.

  19. In Vitro Bioavailability Study of an Antiviral Compound Enisamium Iodide

    Directory of Open Access Journals (Sweden)

    Eleonore Haltner-Ukomadu

    2018-01-01

    Full Text Available An investigation into the biopharmaceutics classification and a study of the in vitro bioavailability (permeability and solubility of the antiviral compound enisamium iodide (4-(benzylcarbamoyl-1-methylpyridinium iodide were carried out. The solubility of enisamium iodide was determined in four different buffers. Apparent intestinal permeability (Papp of enisamium iodide was assessed using human colon carcinoma (Caco-2 cells at three concentrations. The solubility of enisamium iodide in four buffer solutions from pH 1.2 to 7.5 is about 60 mg/mL at 25 °C, and ranges from 130 to 150 mg/mL at 37 °C, depending on the pH. Based on these results, enisamium iodide can be classified as highly soluble. Enisamium iodide demonstrated low permeability in Caco-2 experiments in all tested concentrations of 10–100 μM with permeability coefficients between 0.2 × 10−6 cm s−1 and 0.3 × 10−6 cm s−1. These results indicate that enisamium iodide belongs to class III of the Biopharmaceutics Classification System (BCS due to its high solubility and low permeability. The bioavailability of enisamium iodide needs to be confirmed in animal and human studies.

  20. Analysis for iodide in groundwater by x-ray fluorescence spectrometry after collection as silver iodide on activated charcoal

    International Nuclear Information System (INIS)

    Howe, P.T.

    1980-01-01

    The report describes the determination of microgram quantities of iodide in water by X-ray fluorescence spectrometry. The iodide is concentrated by precipitation as silver iodide on activated charcoal. If a 60-mL sample is available, a concentration of 0.12 mg/L can be detected. Precision (2σ) at the 1-mg/L level is +- 0.08 mg/L. (auth)

  1. Natural adsorbents of dyes from aqueous solution

    Science.gov (United States)

    Rahmani, Meryem; El Hajjaji, souad; Dahchour, Abdelmalek; El M'Rabet, Mohammadine

    2017-04-01

    Contamination of natural waters is a current environmental problem and lot of work has been done to find methods for its, prevention and remediation such as ionic exchange, adsorption on active carbon, filtration, electrolysis, biodegradation …etc. Adsorption is one of the most applied methods according to its effectiveness and easy management. Some adsorbents with good properties such as active alumina, zeolites, crop residues … etc, are suitable to substitute usual active carbon. This study aimed at the removal of dyes using oil shale as natural support, and its optimization by factorial experiment. Three factors were considered namly:pollutant concentration, pH and weight of the adsorbent. Tests have been performed with cationic and anionic dyes. Experimental results show that pseudo-first-order kinetic model provided the best fit to the experimental data for the adsorption by the oil shale. Langmuir, Freundlich and Temkin isotherm models were tested to fit experimental data, the adsorption equilibrium was well described by Freundlich isotherm for methylorange and Temkin for methyl blue. Analysis were completed by oil shale characterization educing XRD, IR, XRF techniques, and cationic exchange capacity.

  2. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.

    Science.gov (United States)

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong

    2016-02-02

    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere.

  3. A highly sensitive PVC membrane iodide electrode based on complexes of mercury(II) as neutral carrier.

    Science.gov (United States)

    Chai, Y-Q; Yuan, R; Xu, L; Xu, W-J; Dai, J-Y; Jiang, F

    2004-09-01

    A novel solvent polymeric membrane electrode based on bis(1,3,4-thiadiazole) complexes of Hg(II) is described which has excellent selectivity and sensitivity toward iodide ion. The electrode, containing 1,4-bis(5-methyl-1,3,4-thiadiazole-2-yl-thio)butanemercury(II) [Hg(II)BMTB(NO3)4], has a Nernstian potentiometric response from 2.0 x 10(-8) to 2.0 x 10(-2) mol L(-1) with a detection limit of 8.0 x 10(-9) mol L(-1) and a slope of -59.0+/-0.5 mV/decade in 0.01 mol L(-1) phosphate buffer solution (pH 3.0, 20 degrees C). The selectivity sequence observed is iodide>bromide>thiocyanate>nitrite>nitrate>chloride>perchlorate>acetate>sulfate. The selectivity behavior is discussed in terms of the UV-Vis spectrum, and the process of transfer of iodide across the membrane interface is investigated by use of the AC impedance technique. The electrode was successfully applied to the determination of iodide in Jialing River and Spring in Jinyun Mountains, with satisfactory results.

  4. Production of adsorbent from palm shell for radioactive iodine scrubbing process

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Ku Halim Ku Hamid; Muhd Noor Muhd Yunus; Mohamad Puad Abu; Abdul Halim Badaruddin; Mohammad Nizammudin Abd Aziz; Muhd Ridwan Abdul Rahim

    2010-01-01

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic of year 2004, Malaysia produced 40 million tones per year of biomass which 30 million tones of biomass originated from the oil palm industries. Therefore, the biomass waste such as palm kernel shell can be used to produce granular adsorbent for radioactive materials. For that reason, a newly system, called Rocking Kiln - Fluidized Bed (RK - FB) was developed to utilize large amount of the biomass to produce high value added product. Charcoal or chemically produced activated carbon could be produced by using the kiln. Washing process was introduced to remove particles, minerals and volatile matters from charcoal produced and then would create more surface area in the adsorbent by creating more active sites. In this research, the adsorbent produced was used to scrub iodine 131. In nuclear power reactor, iodine isotope 131 is produced during nuclear fission, and this elementary radioactive iodine may pollute exhaust air streams that could cause thyroid cancer. For removal of radioactive iodine, normally a potassium iodide - impregnated activated carbon (KI - AC) is used. Thus, a process will be developed to produce KI - AC and this product will be used to calculate the efficiency to remove the radioactive iodine 131.The results obtain show that adsorbent produced has a high potential to be used in radioactive adsorbing and likely more economics. This paper will elaborate further the experimental set-up of in Kiln - Fluidized Bed (RK - FB), adsorbent quality and radioactive scrubbing process. (author)

  5. Evaluating iodide recycling inhibition as a novel molecular initiating event for thyroid axis disruption

    Science.gov (United States)

    The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces available iodide for thyroid hormone synthesis, which leads to hormone insufficiency...

  6. Photoluminescence Enhancement in Formamidinium Lead Iodide Thin Films

    NARCIS (Netherlands)

    Fang, Hong-Hua; Wang, Feng; Adjokatse, Sampson; Zhao, Ni; Loi, Maria Antonietta

    2016-01-01

    Formamidinium lead iodide (FAPbI(3)) has a broader absorption spectrum and better thermal stability than the most famous methylammonium lead iodide, thus exhibiting great potential for photovoltaic applications. In this report, the light-induced photoluminescence (PL) evolution in FAPbI(3) thin

  7. The iodine/iodide redox couple at a platinum electrode

    NARCIS (Netherlands)

    Dane, L.M.; Janssen, L.J.J.; Hoogland, J.G.

    1968-01-01

    The I/iodide redox couple was studied on Pt in 0.5M H2SO4 by measuring the impedance as a function of frequency. From these measurements, the exchange c.d. j0 was derived according to Sluyters. The dependence of j0 on the reversible potential and the I and the iodide concns. was established. By

  8. Synthesis of two S-(methyl-3H)-labelled enkephalins and S-(methyl-14C) substance P

    International Nuclear Information System (INIS)

    Naegren, K.; Laangstroem, B.; Franzen, H.M.; Ragnarsson, U.

    1988-01-01

    The synthesis of 3 H-labelled Met-enkephalin and Tyr-D-Ala-Gly-Phe-Met-NH 2 (DALA) and 14 C-labelled Substance P (SP) from previously described, fully protected intermediates is reported. The labelled peptides were prepared by methylation with ( 3 H)- or ( 14 C)methyl iodide of the sulphide anions formed on deprotection of the corresponding S-benzyl-homocysteine precursors with sodium in liquid ammonia. After purification by LC, the labelled peptides were obtained in radiochemical yields in the range of 9 to 24% with a radiochemical purity higher than 97%. The specific radioactivities of the 3 H- and 14 C- labelled products, corresponding to the labelled methyl iodides used, were 80 mCi/μmol and 60 μCi/μmol, respectively. (author)

  9. Methods to prevent the source term of methyl lodide during a core melt accident

    Energy Technology Data Exchange (ETDEWEB)

    Karhu, A. [VTT Energy (Finland)

    1999-11-01

    The purpose of this literature review is to gather available information of the methods to prevent a source term of methyl iodide during a core melt accident. The most widely studied methods for nuclear power plants include the impregnated carbon filters and alkaline additives and sprays. It is indicated that some deficiencies of these methods may emerge. More reactive impregnants and additives could make a great improvement. As a new method in the field of nuclear applications, the potential of transition metals to decompose methyl iodide, is introduced in this review. This area would require an additional research, which could elucidate the remaining questions of the reactions. The ionization of the gaseous methyl iodide by corona-discharge reactors is also shortly described. (au)

  10. Black Sprayable Molecular Adsorber Coating

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this technology project is to develop, optimize, and flight qualify a black version of the molecular adsorber coating and a conductive version...

  11. Synthesis of 14C-labelled α-methyl tyrosine

    International Nuclear Information System (INIS)

    Rajagopal, S.; Venkatachalam, T.K.; Conway, T.; Diksic, M.

    1992-01-01

    A new route for the preparation of radioactively labelled α-methyl L-tyrosine is described. The labelling at the α position has been successfully achieved with 14 C-, 11 C- (very preliminary, unpublished), and 3 H-labelled methyl iodide. A detailed report on 14 C-labelling at the α position and the hydrolysis of 4-methoxy α-methyl phenylalanine is presented. The alkylation proceeds via the methylation of the carbanion of N-benzylidene 4-methoxy phenylalanine methyl ester 2. Hydrolysis of 4-O methyl tyrosine to tyrosine by HBr and HI were analysed and used in the optimization of the hydrolysis conditions of 4. Enantiomeric purity of the isolated L-isomer has been found to be 99% as judged by HPLC. Pseudo first-order rate constant for the hydrolysis of 14 C-labelled α-methyl 4-methoxy phenyl alanine methyl ester was determined. Preliminary findings of the 3 H- and 11 C-radiolabelled α-methyl tyrosine (methyl labelled) are also mentioned. For the first time it was shown that α-methyl D,L-tyrosine can be separated into enantiomerically pure α-methyl D- and L-tyrosine using a CHIRALPAK WH column. (author)

  12. Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution.

    Science.gov (United States)

    Mao, Ping; Liu, Ying; Liu, Xiaodong; Wang, Yuechan; Liang, Jie; Zhou, Qihang; Dai, Yuexuan; Jiao, Yan; Chen, Shouwen; Yang, Yi

    2017-08-01

    To further improve the capacity of Cu 2 O to absorb I - anions from solution, and to understand the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents, bimetallic AgCu was doped into Cu 2 O through a facile solvothermal route. Samples were characterized and employed to adsorb I - anions under different experimental conditions. The results show that the Cu content can be tuned by adding different volumes of Ag sols. After doping bimetallic AgCu, the adsorption capacity of the samples can be increased from 0.02 mmol g -1 to 0.52 mmol g -1 . Moreover, the optimal adsorption is reached within only 240 min. Meanwhile, the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents was verified, and the cooperative adsorption mechanism of the AgCu/Cu 2 O hybrid was proposed and verified. In addition, the AgCu/Cu 2 O hybrid showed excellent selectivity, e.g., its adsorption efficiencies are 85.1%, 81.9%, 85.9% and 85.7% in the presence of the Cl - , CO 3 2- , SO 4 2- and NO 3 - competitive anions, respectively. Furthermore, the AgCu/Cu 2 O hybrid can worked well in other harsh environments (e.g., acidic, alkaline and seawater environments). Therefore, this study is expected to promote the development of Cu 2 O into a highly efficient adsorbent for the removal of iodide from solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite

    KAUST Repository

    Hermes, Ilka M.

    2016-02-12

    Methylammonium lead iodide (MAPbI3) perovskite materials show an outstanding performance in photovoltaic devices. However, certain material properties, especially the possible ferroic behavior, remain unclear. We observed distinct nanoscale periodic domains in the piezoresponse of MAPbI3(Cl) grains. The structure and the orientation of these striped domains indicate ferroelasticity as their origin. By correlating vertical and lateral piezoresponse force microscopy experiments performed at different sample orientations with x-ray diffraction, the preferred domain orientation was suggested to be the a1-a2-phase. The observation of these ferroelastic fingerprints appears to strongly depend on the film texture and thus the preparation route. The formation of the ferroelastic twin domains could be induced by internal strain during the cubic-tetragonal phase transition.

  14. Efficiency of moso bamboo charcoal and activated carbon for adsorbing radioactive iodine

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Chuan-Chi; Huang, Ying-Pin; Wang, Wie-Chieh [ITRI South, Industrial Technology Research Institute, Tainan (China); Chao, Jun-Hsing; Wei, Yuan-Yao [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu (China)

    2011-02-15

    Preventing radioactive pollution is a troublesome problem but an urgent concern worldwide because radioactive substances cause serious health-related hazards to human being. The adsorption method has been used for many years to concentrate and remove radioactive pollutants; selecting an adequate adsorbent is the key to the success of an adsorption-based pollution abatement system. In Taiwan, all nuclear power plants use activated carbon as the adsorbent to treat radiation-contaminated air emission. The activated carbon is entirely imported; its price and manufacturing technology are entirely controlled by international companies. Taiwan is rich in bamboo, which is one of the raw materials for high-quality activated carbon. Thus, a less costly activated carbon with the same or even better adsorptive capability as the imported adsorbent can be made from bamboo. The objective of this research is to confirm the adsorptive characteristics and efficiency of the activated carbon made of Taiwan native bamboo for removing {sup 131}I gas from air in the laboratory. The study was conducted using new activated carbon module assembled for treating {sup 131}I-contaminated air. The laboratory results reveal that the {sup 131}I removal efficiency for a single-pass module is as high as 70%, and the overall efficiency is 100% for four single-pass modules operated in series. The bamboo charcoal and bamboo activated carbon have suitable functional groups for adsorbing {sup 131}I and they have greater adsorption capacities than commercial activated carbons. Main mechanism is for trapping of radioiodine on impregnated charcoal, as a result of surface oxidation. When volatile radioiodine is trapped by potassium iodide-impregnated bamboo charcoal, the iodo-compound is first adsorbed on the charcoal surface, and then migrates to iodide ion sites where isotope exchange occurs. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Synthesis of racemic, S(+)- and R(-)-N-[methyl- [sup 3]H]3,4-methylenedioxymethamphetamine

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kenji; Hirai, Katsumi; Goromaru, Tsuyoshi (Fukuyama Univ. (Japan). Faculty of Pharmacy and Pharmaceutical Sciences)

    1990-04-01

    The synthesis of 3,4-methylenedioxymethampetamine (MDMA), a serotonergic neurotoxin, labeled with tritium is described. Labeling was accomplished by N-alkylation of the free base of the corresponding desmethyl compound using [[sup 3]H]methyl iodide. The compound was purified by preparative HPLC. The radiochemical yield was about 60% based on [[sup 3]H]methyl iodide. The radiochemical purity was more than 95% from HPLC and TLC. Furthermore, S(+)- and R(-)-[[sup 3]H]MDMA were completely separated by analytical HPLC with chiral column. (author).

  16. Synthesis of racemic, S(+)- and R(-)-N-[methyl- 3H]3,4-methylenedioxymethamphetamine

    International Nuclear Information System (INIS)

    Hashimoto, Kenji; Hirai, Katsumi; Goromaru, Tsuyoshi

    1990-01-01

    The synthesis of 3,4-methylenedioxymethampetamine (MDMA), a serotonergic neurotoxin, labeled with tritium is described. Labeling was accomplished by N-alkylation of the free base of the corresponding desmethyl compound using [ 3 H]methyl iodide. The compound was purified by preparative HPLC. The radiochemical yield was about 60% based on [ 3 H]methyl iodide. The radiochemical purity was more than 95% from HPLC and TLC. Furthermore, S(+)- and R(-)-[ 3 H]MDMA were completely separated by analytical HPLC with chiral column. (author)

  17. Flavonoid rutin increases thyroid iodide uptake in rats.

    Directory of Open Access Journals (Sweden)

    Carlos Frederico Lima Gonçalves

    Full Text Available Thyroid iodide uptake through the sodium-iodide symporter (NIS is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO, the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH, and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function.

  18. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1980-01-01

    Radioactive krypton-85 is released to the atmosphere in the off-gas from nuclear reprocessing plants. Three main methods have been suggested for removal of krypton from off-gas streams: cryogenic distillation; fluorocarbon absorption; and adsorption on solid sorbents. Use of solid adsorbents is the least developed of these methods, but offers the potential advantages of enhanced safety and lower operating costs. An experimental laboratory program was developed that will be used to investigate systematically many solid adsorbents (such as zeolites, i.e., mordenites) for trapping krypton in air. The objective of this investigation is to find an adsorbent that is more economical than silver-exchanged mordenite. Various physical and chemical characteristics such as adsorption isotherms, decontamination factors, co-adsorption, regeneration, and the mechanism and kinetics of noble gas adsorption were used to characterize the adsorbents. In the experimental program, a gas chromatograph using a helium ionization detector was used to measure the krypton in air before and after the adsorbent bed. This method can determine directly decontamination factors greater than 100

  19. Electro regeneration of iodide loaded resin. Contributed Paper RD-18

    International Nuclear Information System (INIS)

    Kumar, Ratnesh; Kumar, T.; Sree Kumar, B.; Seshadri, K.S.; Paul, Biplob

    2014-01-01

    Spent resins generated in the nuclear reactor contain essentially cationic activities due to Cesium, Strontium, Cobalt, and anionic activities due to Iodide, Iodate etc with activity loading to the extent of 0.1 Cim -3 and a surface dose of the order of 5 R. It is necessary to convert the spent resin into innocuous, reusable forms. An attempt has been made to regenerate Iodide containing spent resin into OH - electrolytically by using the OH - produced at the cathode compartment of an electrolytic cell. Results show that the regeneration of the spent resin containing Iodide could be completely accomplished electrolytically more efficiently than by addition of alkali. (author)

  20. Refined global methyl halide budgets with respect to rapeseed (Brassica napus) by life-cycle measurements

    Science.gov (United States)

    Jiao, Y.; Acdan, J.; Xu, R.; Deventer, M. J.; Rhew, R. C.

    2017-12-01

    A precise quantification of global methyl halide budgets is needed to evaluate the ozone depletion potential of these compounds and to predict future changes of stratospheric ozone. However, the global budgets of methyl halides are not balanced between currently identified and quantified sources and sinks. Our study re-evaluated the methyl bromide budget from global cultivated rapeseed (Brassica napus) through life-cycle flux measurements both in the greenhouse and in the field, yielding a methyl bromide emission rate that scales globally to 1.0 - 1.2 Gg yr-1. While this indicates a globally significant source, it is much smaller than the previously widely cited value of 5 - 6 Gg yr-1(Mead et al., 2008), even taking into account the near tripling of annual global yield of rapeseed since the previous evaluation was conducted. Our study also evaluated the methyl chloride and methyl iodide emission levels from rapeseed, yielding emission rates that scale to 5.4 Gg yr-1 for methyl chloride and 1.8 Gg yr-1 of methyl iodide. The concentrations of the methyl donor SAM (S-adenosyl methionine) and the resultant product SAH (S-Adenosyl-L-homocysteine) were also analyzed to explore their role in biogenic methyl halide formation. Halide gradient incubations showed that the magnitude of methyl halide emissions from rapeseed is highly correlated to soil halide levels, thus raising the concern that the heterogeneity of soil halide contents geographically should be considered when extrapolating to global budget.

  1. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1982-01-01

    An experimental laboratory program was conducted to develop economical solid adsorbents for the retention of krypton from a dissolver off-gas stream. The study indicates that a solid adsorbent system is feasible and competitive with other developing systems which utilize fluorocarbon absorption nd cryogenic distillation. This technology may have potential applications not only in nuclear fuel reprocessing plants, but also in nuclear reactors and in environmental monitoring. Of the 13 prospective adsorbents evaluated with respect to adsorption capacity and cost, the commercially available hydrogen mordenite was the most cost-effective material at subambient temperatures (-40 0 to -80 0 C). Silver mordenite has a higher capacity for krypton retention, but is 50 times more expensive than hydrogen mordenite

  2. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  3. Browns Ferry charcoal adsorber incident

    International Nuclear Information System (INIS)

    Mays, G.T.

    1979-01-01

    The article reviews the temperature excursion in the charcoal adsorber beds of the Browns Ferry Unit 3 off-gas system that occurred on July 17, 1977. Significant temperature increases were experienced in the charcoal adsorber beds when charcoal fines were ignited by the ignition of a combustible mixture of hydrogen and oxygen in the off-gas system. The Browns Ferry off-gas system is described, and events leading up to and surrounding the incident are discussed. The follow-up investigation by Tennessee Valley Authority and General Electric Company personnel and their recommendations for system and operational modifications are summarized

  4. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1981-08-01

    Over a dozen prospective adsorbents for krypton were studied and evaluated with respect to adsorption capacity and cost for dissolver off-gas streams from nuclear reprocessing plants. Results show that, at subambient temperature (-40 0 to -80 0 C), the commercially available hydrogen mordenite has sufficient adsorptive capacity to be the most cost-effective material studied. Silver mordenite has a higher capacity for krypton retention, but is 50 times more expensive than hydrogen mordenite. The results indicate that a solid adsorbent system is feasible and competitive with other developing systems whih utilize fluorocarbon absorption and cryogenic distillation

  5. 21 CFR 520.763b - Dithiazanine iodide powder.

    Science.gov (United States)

    2010-04-01

    ... therapy for adult worms. (2) The drug is contraindicated in animals sensitive to dithiazanine iodide and...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763b Dithiazanine...

  6. Chloride, bromide and iodide scintillators with europium

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  7. Oxidation of iodide and iodine on birnessite (delta-MnO2) in the pH range 4-8.

    Science.gov (United States)

    Allard, Sébastien; von Gunten, Urs; Sahli, Elisabeth; Nicolau, Rudy; Gallard, Hervé

    2009-08-01

    The oxidation of iodide by synthetic birnessite (delta-MnO(2)) was studied in perchlorate media in the pH range 4-8. Iodine (I(2)) was detected as an oxidation product that was subsequently further oxidized to iodate (IO(3)(-)). The third order rate constants, second order on iodide and first order on manganese oxide, determined by extraction of iodine in benzene decreased with increasing pH (6.3-7.5) from 1790 to 3.1M(-2) s(-1). Both iodine and iodate were found to adsorb significantly on birnessite with an adsorption capacity of 12.7 microM/g for iodate at pH 5.7. The rate of iodine oxidation by birnessite decreased with increasing ionic strength, which resulted in a lower rate of iodate formation. The production of iodine in iodide-containing waters in contact with manganese oxides may result in the formation of undesired iodinated organic compounds (taste and odor, toxicity) in natural and technical systems. The probability of the formation of such compounds is highest in the pH range 5-7.5. For pH iodine is quickly oxidized to iodate, a non-toxic and stable sink for iodine. At pH >7.5, iodide is not oxidized to a significant extent.

  8. Flavonoids, Thyroid Iodide Uptake and Thyroid Cancer-A Review.

    Science.gov (United States)

    Gonçalves, Carlos F L; de Freitas, Mariana L; Ferreira, Andrea C F

    2017-06-12

    Thyroid cancer is the most common malignant tumor of the endocrine system and the incidence has been increasing in recent years. In a great part of the differentiated carcinomas, thyrocytes are capable of uptaking iodide. In these cases, the main therapeutic approach includes thyroidectomy followed by ablative therapy with radioiodine. However, in part of the patients, the capacity to concentrate iodide is lost due to down-regulation of the sodium-iodide symporter (NIS), the protein responsible for transporting iodide into the thyrocytes. Thus, therapy with radioiodide becomes ineffective, limiting therapeutic options and reducing the life expectancy of the patient. Excessive ingestion of some flavonoids has been associated with thyroid dysfunction and goiter. Nevertheless, studies have shown that some flavonoids can be beneficial for thyroid cancer, by reducing cell proliferation and increasing cell death, besides increasing NIS mRNA levels and iodide uptake. Recent data show that the flavonoids apingenin and rutin are capable of increasing NIS function and expression in vivo. Herein we review literature data regarding the effect of flavonoids on thyroid cancer, besides the effect of these compounds on the expression and function of the sodium-iodide symporter. We will also discuss the possibility of using flavonoids as adjuvants for therapy of thyroid cancer.

  9. Flavonoids, Thyroid Iodide Uptake and Thyroid Cancer—A Review

    Science.gov (United States)

    Gonçalves, Carlos F. L.; de Freitas, Mariana L.; Ferreira, Andrea C. F.

    2017-01-01

    Thyroid cancer is the most common malignant tumor of the endocrine system and the incidence has been increasing in recent years. In a great part of the differentiated carcinomas, thyrocytes are capable of uptaking iodide. In these cases, the main therapeutic approach includes thyroidectomy followed by ablative therapy with radioiodine. However, in part of the patients, the capacity to concentrate iodide is lost due to down-regulation of the sodium-iodide symporter (NIS), the protein responsible for transporting iodide into the thyrocytes. Thus, therapy with radioiodide becomes ineffective, limiting therapeutic options and reducing the life expectancy of the patient. Excessive ingestion of some flavonoids has been associated with thyroid dysfunction and goiter. Nevertheless, studies have shown that some flavonoids can be beneficial for thyroid cancer, by reducing cell proliferation and increasing cell death, besides increasing NIS mRNA levels and iodide uptake. Recent data show that the flavonoids apingenin and rutin are capable of increasing NIS function and expression in vivo. Herein we review literature data regarding the effect of flavonoids on thyroid cancer, besides the effect of these compounds on the expression and function of the sodium-iodide symporter. We will also discuss the possibility of using flavonoids as adjuvants for therapy of thyroid cancer. PMID:28604619

  10. Aqueous-gas phase partitioning and hydrolysis of organic iodides

    International Nuclear Information System (INIS)

    Glowa, G.A.; Wren, J.C.

    2003-01-01

    The volatility and decomposition of organic iodides in a reactor containment building are important parameters to consider when assessing the potential consequences of a nuclear reactor accident. However, there are few experimental data available for the volatilities (often reported as partition coefficients) or few rate constants regarding the decomposition (via hydrolysis) of organic iodides. The partition coefficients and hydrolysis rate constants of eight organic iodides, having a range of molecular structures, have been measured in the current studies. This data, and data accumulated in the literature, have been reviewed and discussed to provide guidelines for appropriate organization of organic iodides for the purpose of modelling iodine behaviour under postulated nuclear reactor accident conditions. After assessment of the partition coefficients and their temperature dependences of many classes of organic compounds, it was found that organic iodides could be divided into two categories based upon their volatility relative to molecular iodine. Similarly, hydrolysis rates and their temperature dependences are assigned to the two categories of organic iodides. (author)

  11. Ultrasound aided in situ transesterification of crude palm oil adsorbed on spent bleaching clay

    International Nuclear Information System (INIS)

    Boey, Peng-Lim; Ganesan, Shangeetha; Maniam, Gaanty Pragas; Ali, Dafaalla Mohamed Hag

    2011-01-01

    Research highlights: → Crude palm oil adsorbed on spent bleaching clay converted to biodiesel. → Ultrasound dislodges adsorbed oil from spent bleaching clay into reaction mixture. → Co-solvents promotes miscibility of the reactants. -- Abstract: Adsorbed crude palm oil on spent bleaching clay (SBC) was in situ transesterified to methyl esters (biodiesel) by the aid of ultrasound and organic co-solvents (petroleum ether (PE) or ethyl methyl ketone (EMK)). The SBC under study was found to contain 24.2-27.0% of crude oil with free fatty acids (FFA) of 3.01% and moisture content of 0.29%. The optimized reaction conditions were as follows: methanol to oil molar ratio of 150:1; catalyst (KOH), 20%; reaction temperature, 60 ± 2 o C; reaction time, 2 h. Using PE as a co-solvent, highest conversion of 75.2% was achieved while 60% was recorded with EMK.

  12. Electrochemical reaction rates in a dye-sensitised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, L.; West, K.; Winther-Jensen, B.

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide....../tri-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI)-all deposited onto fluorine-doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrodes in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  13. Synthesis and antimicrobial activity of guanylhydrazones. Synthesis of 2-(2-methylthio-2-aminovinyl)-1-methylpyridinium iodides and 2-(2-methylthio-2-aminovinyl)-1-methylquinolinium iodides as potential radioprotective and anticancer agents

    International Nuclear Information System (INIS)

    Almassian, B.

    1985-01-01

    The finding of appreciable antileukemic activity in a series of 2-(2-methylthio-2-amino)vinyl-1-methylquinolinium iodides (Foye et al., 1980, 1983) suggested that greater basicity, as compared with the corresponding dithioacetic acids, was contributing to the increase in activity. The addition of a greater degree of basicity in the design of anticancer possibilities in this series was considered worth investigation, particularly in view of the activity of a series of bis(quanylhydrazones) synthesized at Lederle Laboratories. Accordingly, a series of guanylhydrazones of 4-pyridine-,2-pyridine- and 4-quinolinecarboxyaldehydes was synthesized for anticancer as well as antibacterial screening. Also, substitution of additional basic functions in the 2-(2-methylthio-2-amino) vinyl-1-methylquinolinium and pyridinium iodide series has been made. Appreciable antimicrobial activities have been found with both 2-pyridine and 4-quinolinealdehyde guanylhydrazones, as well as with 2-(2-methylthio-2-amino)vinyl-1-methyl-pyridinium iodides. The overall approach to the synthesis of potential anticancer agents in this project is thus to observe the effect of increasing basicity of these compounds on DNA binding and anticancer activity

  14. Ferrocene Compounds. XXVI. C- and O-Ferrocenylalkylation of Methyl Salicylate

    OpenAIRE

    Kovač, Veronika; Rapić, Vladimir; Alagić, Jasmina; Barišić, Lidija

    1999-01-01

    Reaction of equimolar amounts of methyl salicylate, sodium and N,N,N-trimethylferrocylammonium iodide (1a) in ethanol gave 55% of ethyl 1-ferrocenylethyl ether (4). By refluxing a solution of 9 mmol sodium and 3 mmol of FcCHRNMe3I (1a, R = H; 1b, R = Me; 1c, R = Ph) in a large excess of methyl salicylate for 2-3 hours, the corresponding methyl 5-ferrocylsalicylates (5) (10-23%) and methyl-3-ferrocylsalicylates (6) (12-20%) were obtained. During conversion of salt 1b, besides of 5b and 6b, 20%...

  15. Synthesis and Characterization of Methylammonium Lead Iodide Perovskite and its Application in Planar Hetero-junction Devices

    Science.gov (United States)

    Upadhyaya, Aditi; Mohan Singh Negi, Chandra; Yadav, Anjali; Gupta, Saral K.; Singh Verma, Ajay

    2018-06-01

    The present paper reports on the synthesis and characterization of methylammonium lead iodide perovskite thin film and its applications in heterojunction devices. Perovskite thin films were deposited by a simple spin-coating method using a precursor solution including methyl ammonium iodide and lead iodide onto a glass substrate. The surface morphology study via field emission scanning electron microscopy of the perovskite thin film shows complete surface coverage on glass substrate with negligible pin-holes. UV–visible spectroscopy study revealed a broad absorption range and the exhibition of a band-gap of 1.6 eV. The dark current-voltage (I–V) characteristics of all the devices under study show rectifying behaviour similar to the Schottky diode. Various device parameters such as ideality factor and barrier height are extracted from the I–V curve. At low voltages the devices exhibit Ohmic behaviour, trap free space charge limited conduction governs the charge transport at an intermediate voltage range, while at much higher voltages the devices show trap controlled space charge limited conduction. Furthermore, impedance spectroscopy measurements enable us to extract the various internal parameters of the devices. Correlations between these parameters and I–V characteristics are discussed. The different capacitive process arising in the devices was discussed using the capacitance versus frequency curve.

  16. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  17. Formamidinium iodide: crystal structure and phase transitions

    Directory of Open Access Journals (Sweden)

    Andrey A. Petrov

    2017-04-01

    Full Text Available At a temperature of 100 K, CH5N2+·I− (I, crystallizes in the monoclinic space group P21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C—N bond lengths are 1.301 (7 and 1.309 (8 Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10 Å. The cation and anion of I form a tight ionic pair by a strong N—H...I hydrogen bond. In the crystal of I, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1] via strong N—H...I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour of I was studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction. Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid–solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition of I. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol−1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence of I as the monoclinic (100–346 K, orthorhombic (346–387 K and cubic (387–525 K polymorphic modifications.

  18. Iodine removal adsorbent histories, aging and regeneration

    International Nuclear Information System (INIS)

    Hunt, J.R.; Rankovic, L.; Lubbers, R.; Kovach, J.L.

    1976-01-01

    The experience of efficiency changes with life under various test conditions is described. The adsorbents were periodically removed from both standby and continuously operating systems and tested under various test methods for residual iodine adsorption efficiency. Adsorbent from several conventional ''sampler'' cartridges versus the bulk adsorbent was also tested showing deficiency in the use of cartridge type sampling. Currently required test conditions were found inadequate to follow the aging of the adsorbent because pre-equilibration of the sample acts as a regenerant and the sample is not tested in the ''as is'' condition. The most stringent test was found to be the ambient temperature, high humidity test to follow the aging of the adsorbent. Several methods were evaluated to regenerate used adsorbents; of these high temperature steaming and partial reimpregnation were found to produce adsorbents with near identical properties of freshly prepared adsorbents

  19. Transformation of Nickelalactones to Methyl Acrylate: On the Way to a Catalytic Conversion of Carbon Dioxide

    KAUST Repository

    Lee, S. Y. Tina

    2011-08-26

    Mu-nick: The methyl iodide-mediated ring opening of nickelalactones, which can be formed by oxidative coupling of carbon dioxide and ethylene at Ni 0 complexes, induces β-H elimination, producing methyl acrylate in yields of up to 56 %. This reaction is found to be very sensitive to the ligands coordinated to the central nickel atom. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Supercritical fluid regeneration of adsorbents

    Science.gov (United States)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  1. Synthesis of DL-adrenaline (methyl C{sup 14}) (1961); Synthese de la DL-adrenaline (methyle {sup 14}C) (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, L; Audinot, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The sodium derivative of 5-3-4 dibenzyl oxyphenyl 2-oxazolidinone reacted with methyl iodide {sup 14}C, in stoichiometric quantity, gives rise to the corresponding N-methyl {sup 14}C derivative. The oxazolidinone ring is opened by concentrated hydrochloric acid and the benzyl groups removed by catalytic hydrogenolysis. Adrenaline methyl {sup 14}C is then purified on Dowex 50 X-12 exchange resin. Overall-yield is 45 per cent based upon methyl iodide {sup 14}C. (author) [French] Le derive sode de la (dibenzyloxy-3-4-phenyl)-5 oxazolidinone-2 traite par l'iodure de methyle {sup 14}C, en proportion stoechiometrique, fournit le derive N-methyle {sup 14}C correspondant. Apres ouverture du cycle oxazolidinone par HCL concentre et debenzylation par hydrogenation catalytique, on purifie l'adrenaline (methyle {sup 14}C) par chromatographie sur resine echangeuse Dowex 50 X-12. Le rendement est de 45 pour cent par rapport a l'iodure de methyle {sup 14}C. (auteurs)

  2. Synthesis of DL-adrenaline (methyl C{sup 14}) (1961); Synthese de la DL-adrenaline (methyle {sup 14}C) (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, L.; Audinot, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The sodium derivative of 5-3-4 dibenzyl oxyphenyl 2-oxazolidinone reacted with methyl iodide {sup 14}C, in stoichiometric quantity, gives rise to the corresponding N-methyl {sup 14}C derivative. The oxazolidinone ring is opened by concentrated hydrochloric acid and the benzyl groups removed by catalytic hydrogenolysis. Adrenaline methyl {sup 14}C is then purified on Dowex 50 X-12 exchange resin. Overall-yield is 45 per cent based upon methyl iodide {sup 14}C. (author) [French] Le derive sode de la (dibenzyloxy-3-4-phenyl)-5 oxazolidinone-2 traite par l'iodure de methyle {sup 14}C, en proportion stoechiometrique, fournit le derive N-methyle {sup 14}C correspondant. Apres ouverture du cycle oxazolidinone par HCL concentre et debenzylation par hydrogenation catalytique, on purifie l'adrenaline (methyle {sup 14}C) par chromatographie sur resine echangeuse Dowex 50 X-12. Le rendement est de 45 pour cent par rapport a l'iodure de methyle {sup 14}C. (auteurs)

  3. Standard free energy of formation of iron iodide

    Science.gov (United States)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  4. Study on gold concentrate leaching by iodine-iodide

    Science.gov (United States)

    Wang, Hai-xia; Sun, Chun-bao; Li, Shao-ying; Fu, Ping-feng; Song, Yu-guo; Li, Liang; Xie, Wen-qing

    2013-04-01

    Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the same time, experiments on flotation gold concentrates were carried out and encouraging results were obtained. Through optimizing the technological conditions, the attained high gold leaching rate is more than 85%. The optimum process conditions at 25°C are shown as follows: the initial iodine concentration is 1.0%, the iodine-to-iodide mole ratio is 1:8, the solution pH value is 7, the liquid-to-solid mass ratio is 4:1, the leaching time is 4 h, the stirring intensity is 200 r/mim, and the hydrogen peroxide consumption is 1%.

  5. Preparation of New Adsorbent Containing Hydroxamic Acid Groups by Electron Beam-Induced Grafting for Metal Ion Adsorption

    International Nuclear Information System (INIS)

    Suwanmala, Phiriyatorn; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2007-08-01

    Full text: A new adsorbent containing hydroxamic acid groups was synthesized by electron beam-induced graft copolymerization of methyl acrylate (MA) onto nonwoven fabric composed of polyethylene-coated polypropylene fiber. Conversion of ester groups of the grafted copolymer into the hydroxamic groups was performed by treatment with an alkaline solution of hydroxylamine (HA). Adsorbent containing hydroxamic acid groups can adsorb 99% of UO2 2+ , 98% of V5+, 97% of Pb2+ and 96% of Al3+ at pH, 5, 4, 6, and 4, respectively, after coming into contact with 100 ppb metal solution for 24 h

  6. Experimental studies of caesium iodide aerosol condensation: theoretical interpretation

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Horton, K.D.; Buckle, E.R.

    1990-07-01

    Caesium iodide is predicted to be a significant source of fission product aerosols during the course of a severe accident in a pressurised water reactor (PWR). The nucleation and growth of caesium iodide aerosols have been studied using a plume chamber and the results compared with theoretical values calculated using the approach developed by Buckle for aerosol nucleation. The morphology of the particles was studied using scanning electron microscopy (SEM) and transmission optical microscopy (TOM), whilst the particle size distributions were determined from differential mobility (DMPS) and aerodynamic (APS) measurements. (author)

  7. Adsorption of lead from aqueous solutions by poly (methyl methacrylate)

    International Nuclear Information System (INIS)

    Din, M.; Hussain, R.

    1992-01-01

    The adsorption capability of commercially manufactured poly (methyl methacrylate) for lead in aqueous medium has been investigated. Percent adsorption and distribution coefficient values have been determined in relation to the shaking time, amount of adsorbent, pH effects and concentration of lead in the solution. The experimental results are compatible with Freundlich type of adsorption behavior. It is discernible from the experimental results that poly (methyl methacrylate) can be used for the removal of lead from slightly acidic aqueous solutions. (author)

  8. Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents

    Directory of Open Access Journals (Sweden)

    Guangyan Tian

    2018-01-01

    Full Text Available Activated clay minerals have been widely used in the edible oil refining industry for decolorization of crude oil by adsorption, and so far many methods have been used to improve their decolorization efficiency. Herein, we successfully prepared a series of carbon/attapulgite (C/APT composite adsorbents by a one-step in-situ carbonization process with natural starch (St as the carbon source. It has been revealed that the adsorbent had better decolorization efficiency for crude palm oil than acid-activated APT. However, more than a million tons of decolorized waste is produced every year in the oil-refining industry, which was often treated as solid waste and has not yet been reutilized effectively. In order to explore a viable method to recycle and reuse the decolorant, the waste decolorant was further prepared into new C/APT adsorbents for the removal of dyes from wastewater, and then the dyes adsorbed on the adsorbent were used as the carbon sources to produce new C/APT adsorbents by a cyclic carbonization process. The results showed that the adsorbents prepared from the decolorized waste could remove more than 99.5% of the methylene blue (MB, methyl violet (MV, and malachite green (MG dyes from the simulated wastewater with the dye concentration of 200 mg/L, and the C/APT–Re adsorbent consecutively regenerated five times using the adsorbed dyes as a carbon source still exhibit good adsorption efficiency for dyes. As a whole, this process opens a new avenue to develop efficient decolorants of palm oil and achieves recyclable utilization of decolored waste.

  9. Synthesis of two potential NK1-receptor ligands using [1-11C]ethyl iodide and [1-11C]propyl iodide and initial PET-imaging

    Directory of Open Access Journals (Sweden)

    Genchel Tove

    2007-07-01

    Full Text Available Abstract Background The previously validated NK1-receptor ligand [O-methyl-11C]GR205171 binds with a high affinity to the NK1-receptor and displays a slow dissociation from the receptor. Hence, it cannot be used in vivo for detecting concentration changes in substance P, the endogenous ligand for the NK1-receptor. A radioligand used for monitoring these changes has to enable displacement by the endogenous ligand and thus bind reversibly to the receptor. Small changes in the structure of a receptor ligand can lead to changes in binding characteristics and also in the ability to penetrate the blood-brain barrier. The aim of this study was to use carbon-11 labelled ethyl and propyl iodide with high specific radioactivity in the synthesis of two new and potentially reversible NK1-receptor ligands with chemical structures based on [O-methyl-11C]GR205171. Methods [1-11C]Ethyl and [1-11C]propyl iodide with specific radioactivities of 90 GBq/μmol and 270 GBq/μmol, respectively, were used in the synthesis of [O-methyl-11C]GR205171 analogues by alkylation of O-desmethyl GR205171. The brain uptake of the obtained (2S,3S-N-(1-(2- [1-11C]ethoxy-5-(3-(trifluoromethyl-4H-1,2,4-triazol-4-ylphenylethyl-2-phenylpiperidin-3-amine (I and (2S,3S-2-phenyl-N-(1-(2- [1-11C]propoxy-5-(3-(trifluoromethyl-4H-1,2,4-triazol-4-ylphenylethylpiperidin-3-amine (II was studied with PET in guinea pigs and rhesus monkeys and compared to the uptake of [O-methyl-11C]GR205171. Results All ligands had similar uptake distribution in the guinea pig brain. The PET-studies in rhesus monkeys showed that (II had no specific binding in striatum. Ligand (I had moderate specific binding compared to the [O-methyl-11C]GR205171. The ethyl analogue (I displayed reversible binding characteristics contrary to the slow dissociation rate shown by [O-methyl-11C]GR205171. Conclusion The propyl-analogue (II cannot be used for detecting changes in NK1-ligand levels, while further studies should be

  10. Electronic properties and Compton profiles of silver iodide

    Indian Academy of Sciences (India)

    We have carried out an extensive study of electronic properties of silver iodide in - and -phases. The theoretical Compton profiles, energy bands, density of states and anisotropies in momentum densities are computed using density functional theories. We have also employed full-potential linearized augmented ...

  11. Effects of Potassium Iodide on Low Avid Immunological Reactions ...

    African Journals Online (AJOL)

    In identical test conditions keeping appropriate control, the following ... Abstract. Background: Selective in‑vivo anti‑fungal action of potassium iodide (KI) is an enigma, but .... mechanism of action of the drug against selective infections. In fact, if ...

  12. Gravimetric determination of cadmium with o-phenanthroline and iodide

    International Nuclear Information System (INIS)

    Yoshida, Hitoshi; Mizuno, Kazunori; Taga, Mitsuhiko; Hikime, Seiichiro

    1976-01-01

    Cadmium forms insoluble mixed ligand complex with o-phenanthroline and iodide ions. By using the complex a new gravimetric method for the determination of cadmium was investigated. The recommended analytical procedure is as follows: Adjust pH value of a solution containing 5 to 45 mg cadmium to 4 with 3 M acetic acid-sodium acetate buffer solution. Add over threefold moles of potassium iodide to the solution and heat to just before boiling. To the solution add 0.1% ascorbic acid solution and then 0.1 M o-phenanthroline solution drop by drop in excess with stirring, and cool the mixture to room temperature. Filter the precipitates and wash first with 0.01% potassium iodide solution and then with water. Dry the precipitates at 110 0 C for two hours and weigh as Cd(o-phen) 2 I 2 (I). The gravimetric factor of the complex for cadmium is 0.1547. Chemical composition of the precipitate is variable when o-phenanthroline is added less than twofold moles to cadmium. Adding the o-phenanthroline solution 2.4-fold moles against cadmium, the ternary complex (I) precipitates quantitatively. Though a large excess of iodide ion in the solution contaminated the precipitate, the contamination was avoided when precipitation was carryed out at high temperature and in the presence of ascorbic acid. By the presented procedure 5 to 45 mg of cadmium are determined with a standard deviation of 0 C. (JPN)

  13. Kinetic method for determination of iodide ion ultramicroamounts

    International Nuclear Information System (INIS)

    Barkauskas, Yu.K.; Ramanauskas, Eh.I.

    1980-01-01

    A kinetic method for iodides ultramicroamount determination from their catalytic effect on oxidation of malachite green with chloramine B in the presence of acetone at pH 5.78+-0.3 is developed. The induction period of the reaction is determined from a change in the redox potential of the system. The induction period is proportional to the iodides concentration. Determination limit of iodides is equal to 4 μg iodide per 100 l of solution. More than 10 5 -multiple amounts of K + , Na + , NH 4+ , Ba 2 + , Al 3 + , Cu 2 + , Mg 2 + , SO 4 2 - , Cl - , MoO 4 2 - , NO 3- , ClO 3- , IO 3- , IO 4- , ClO 4- , BrO 3- ; 10 5 -10 3 -multiple amounts of Cr 3 + , Fe 3 + , Sn 2 + , S 2 - , MnO 4- , NO 2- etc. do not interfere with the determination, while 10-multiple amounts of SCN, 0.2-multiple quantities of Ag + , Hg 2 2 + do

  14. Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids

    NARCIS (Netherlands)

    Kamminga, Machteld E.; Fang, Honghua; Filip, Marina R.; Giustino, Feliciano; Baas, Jacobus; Blake, Graeme R.; Loi, Maria Antonietta; Palstra, Thomas T. M.

    2016-01-01

    We use a layered solution crystal growth technique to synthesize high-quality single crystals of phenylalkylammonium lead iodide organic/inorganic hybrid compounds. Single-crystal X-ray diffraction reveals low-dimensional structures consisting of inorganic sheets separated by bilayers of the organic

  15. Temperature Dependent Charge Carrier Dynamics in Formamidinium Lead Iodide Perovskite

    NARCIS (Netherlands)

    Gelvez Rueda, M.C.; Renaud, N.; Grozema, F.C.

    2017-01-01

    The fundamental opto-electronic properties of organic-inorganic hybrid perovskites are strongly affected by their structural parameters. These parameters are particularly critical in formamidinium lead iodide (FAPbI3), in which its large structural disorder leads to a non-perovskite

  16. Detection of apoptotic cells using propidium iodide staining

    NARCIS (Netherlands)

    Newbold, Andrea; Martin, Ben P.; Cullinane, Carleen; Bots, Michael

    2014-01-01

    Flow cytometry assays are often used to detect apoptotic cells in in vitro cultures. Depending on the experimental model, these assays can also be useful in evaluating apoptosis in vivo. In this protocol, we describe a propidium iodide (PI) flow cytometry assay to evaluate B-cell lymphomas that have

  17. Synthesis, Characterization, Tautomeric Structure and Solvatochromic Behavior of Novel 4-(5-Arylazo-2-Hydroxystyryl-1-Methylpyridinium Iodide as Potential Molecular Photoprobe

    Directory of Open Access Journals (Sweden)

    Farag Altalbawy

    2016-12-01

    Full Text Available A novel series of the title compound 4-(5-arylazo-2-hydroxystyryl-1-methylpyridinium iodide 6 has been synthesized via condensation reactions of the arylazosalicylaldehyde derivatives 4a–i with 1-methyl-picolinium iodide 5. The structures of the new arylazo compounds were characterized by 1H NMR, IR, mass spectroscopy, as well as spectral and elemental analyses. The electronic absorption spectra of arylazomerocyanine compounds 6 were measured in different buffer solutions and solvents. The pK′s and pK*′s in both the ground and excited states, respectively, were determined for the series and their correlations with the Hammett equation were examined. The results indicated that the title arylazomerocyanine dyes 6 exist in the azo form 6A in both ground and excited states. The substituent and solvent effects (solvatochromism of the title compound arylazomerocyanine dyes were determined using the Kamlet-Taft equation and subsequently discussed.

  18. Expression of sodium/iodide symporter transgene in neural stem cells

    International Nuclear Information System (INIS)

    Kim, Yun Hui; Lee, Dong Soo; Kang, Joo Hyun; Lee, Yong Jin; Chung, June Key; Lee, Myung Chul

    2004-01-01

    The ability to noninvasively track the migration of neural progenitor cells would have significant clinical and research implications. We generated stably transfected F3 human neural progenitor cells with human sodium/iodide symporter (hNIS) for noninvasively tracking F3. In this study, the expression patterns of hNIS gene in F3-NIS were examined according to the cultured time and the epigenetic modulation. F3 human neural stem cells had been obtained from Dr. Seung U. Kim (Ajou University, Suwon, Korea). hNIS and hygromycin resistance gene were linked with IRES (internal Ribosome Entry Site) under control of CMV promoter. This construct was transfected to F3 with Liposome. To investigate the restoration of hNIS gene expression in F3-NIS, cells were treated with demethylating agent (5-Azacytidine) and Histone deacetylase inhibitor (Trichostatin A: TSA). The expression of hNIS was measured by I-125 uptake assay and RT-PCR analysis. The iodide uptake of the F3-NIS was higher 12.86 times than F3 cell line. According to the cell passage number, hNIS expression in F3-NIS gradually diminished. After treatment of 5-Azacytidine and TSA with serial doses (up to 20μM, up to 62.5nM, respectively) for 24 hours, I-125 uptake and mRNA of hNIS in F3-NIS were increased. These results suggest that hNIS transfected F3 might undergo a change in its biological characters by cell passage. Therefore, the gene expression of exogenous gene transferred human stem cell might be affected to the epigenetic modulation such as promoter methylation and Histone deacetylation and to the cell culture conditions

  19. A novel fiber-based adsorbent technology

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.A. [Chemica Technologies, Inc., Bend, OR (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  20. Radio-iodide uptake by modified poly (glycidyl methacrylate) as anion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Sameh H. [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center; Atomic Energy Authority, Cairo (Egypt). Second Research Reactor; Elbarbary, Ahmed M. [Atomic Energy Authority, Cairo (Egypt). Radiation Research of Polymer Chemistry Dept.; Rashad, Ghada; Fasih, T.W. [Atomic Energy Authority, Cairo (Egypt). Hot Laboratories Center

    2017-03-01

    Poly(glycidyl methacrylate) (PGMA) microspheres were prepared by radiation induced polymerization of glycidyl methacrylate (GMA) monomer. The factors affecting the degree of polymerization and yield (%) of PGMA such as type of solvent, monomer concentration, and irradiation dose were investigated. It was found that the PGMA yield (%) increases with increasing monomer concentration up to 50% and absorbed dose of 5 kGy. The resulting PGMA containing the epoxy group was chemically modified by hydroxyl amine to act as anion-exchange resin for uptake of {sup 131}I{sup -} ions. The modified PGMA (MPGMA) was characterized by Fourier transform infrared (FT-IR) spectrophotometer, thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). I-131 is produced from the fission of U-235 with low-enrichment uranium (LEU) targets in the Egyptian Second Research Reactor (ETRR-2). Separation of iodide from the radioactive solution by batchwise and column techniques was employed to determine the adsorption capacity of the MPGMA. Quality control of {sup 131}I product solution and radiochemical purity was examined by using the ascending paper chromatography method. The uptake behavior of MPGMA towards {sup 131}I{sup -} ions were studied at different experimental conditions and achieved by X-ray fluorescence (XRF). The synthesized MPGMA showed good results as anion-exchange and an effective adsorbent for uptaking {sup 131}I{sup -} ions.

  1. Methyl Iodide Oxidative Addition to Rhodium(I) Complexes: a DFT ...

    African Journals Online (AJOL)

    NJD

    to the understanding of the role of the steric and electronic prop- erties of the different .... The pure Density Functional Theory (DFT) calculations were carried out using .... Since quantum computational methods are applied for the first time to ...

  2. Kinetic method for determination of iodide ion ultramicroamounts. Kineticheskij sposob opredeleniya ul'tramikrokolichestv iodid-ionov

    Energy Technology Data Exchange (ETDEWEB)

    Barkauskas, Yu K; Ramanauskas, Eh I

    1980-04-03

    A kinetic method for iodides ultramicroamount determination from their catalytic effect on oxidation of malachite green with chloramine B in the presence of acetone at pH 5.78+-0.3 is developed. The induction period of the reaction is determined from a change in the redox potential of the system. The induction period is proportional to the iodides concentration. Determination limit of iodides is equal to 4 ..mu..g iodide per 100 l of solution. More than 10/sup 5/-multiple amounts of K/sup +/, Na/sup +/, NH/sub 4//sup +/, Ba/sup 2 +/, Al/sup 3 +/, Cu/sup 2 +/, Mg/sup 2 +/, SO/sub 4//sup 2 -/, Cl/sup -/, MoO/sub 4//sup 2 -/, NO/sub 3//sup -/, ClO/sub 3//sup -/, IO/sub 3//sup -/, IO/sub 4//sup -/, ClO/sub 4//sup -/, BrO/sub 3//sup -/; 10/sup 5/-10/sup 3/-multiple amounts of Cr/sup 3 +/, Fe/sup 3 +/, Sn/sup 2 +/, S/sup 2 -/, MnO/sub 4//sup -/, NO/sub 2//sup -/ etc. do not interfere with the determination, while 10-multiple amounts of SCN, 0.2-multiple quantities of Ag/sup +/, Hg/sub 2//sup 2 +/ do.

  3. Filter-adsorber aging assessment

    Energy Technology Data Exchange (ETDEWEB)

    Winegardner, W.K. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-02-01

    An aging assessment of high-efficiency particulate (HEPA) air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission`s (USNRC) Nuclear Plant Aging Research (NPAR) Program. This evaluation of the general process in which characteristics of these two components gradually change with time or use included the compilation of information concerning failure experience, stressors, aging mechanisms and effects, and inspection, surveillance, and monitoring methods (ISMM). Stressors, the agents or stimuli that can produce aging degradation, include heat, radiation, volatile contaminants, and even normal concentrations of aerosol particles and gasses. In an experimental evaluation of degradation in terms of the tensile breaking strength of aged filter media specimens, over forty percent of the samples did not meet specifications for new material. Chemical and physical reactions can gradually embrittle sealants and gaskets as well as filter media. Mechanisms that can lead to impaired adsorber performance are associated with the loss of potentially available active sites as a result of the exposure of the carbon to airborne moisture or volatile organic compounds. Inspection, surveillance, and monitoring methods have been established to observe filter pressure drop buildup, check HEPA filters and adsorbers for bypass, and determine the retention effectiveness of aged carbon. These evaluations of installed filters do not reveal degradation in terms of reduced media strength but that under normal conditions aged media can continue to effectively retain particles. However, this degradation may be important when considering the likelihood of moisture, steam, and higher particle loadings during severe accidents and the fact it is probable that the filters have been in use for an extended period.

  4. Ecological applications of the irradiated adsorbents

    International Nuclear Information System (INIS)

    Tusseyev, T.

    2004-01-01

    Full text: In our previous works it was shown that after irradiation some adsorbents gain new interesting properties such as increasing (or decreasing) of their adsorption capacity, selectivity in relation to some gases, change of chemical bounds of gas molecules with adsorbent surface as well as other properties. We investigated a lot of adsorbents with semiconducting and dielectric properties. A high temperature superconductor was investigated also. Adsorbents were irradiated by ultraviolet (UV) and gamma - radiation, reactor (n.γ) - radiation, α-particles (E=40-50 MeV), protons ( E=30 MeV), and also He-3 ions (E-29-60 MeV). The following techniques were used: volumetric (manometrical), mass-spectrometer and IR spectroscopic methods, and also method of electronic - paramagnetic resonance (spin paramagnetic resonance) The obtained results allow to speak about creation of new adsorbents for gas purification (clearing) from harmful impurities, gas selection into components, an increasing of adsorbing surface. Thus one more advantage of the irradiated adsorbents is that they have 'memory effect', i.e. they can be used enough long time after irradiation. In laboratory conditions we built the small-sized adsorptive pump on the basis of the irradiated zeolites which are capable to work in autonomous conditions. It was found, that some of adsorbents after irradiation gain (or lose) selectivity in relation to definite gases. So, silica gel, which one in initial state does not adsorb hydrogen, after gamma irradiation it becomes active in relation to hydrogen. Some of rare earths oxides also show selectivity in relation to hydrogen and oxygen depending on a type of irradiation. Thus, it is possible to create different absorbents, depending on a solved problem, using a way or selection of adsorbents, either of radiation type and energy, as a result obtained adsorbents can be used for various ecological purposes

  5. Novel Pyridinium Surfactants with Unsaturated Alkyl Chains : Aggregation Behavior and Interactions with Methyl Orange in Aqueous Solution

    NARCIS (Netherlands)

    Kuiper, Johanna M.; Buwalda, Rixt T.; Hulst, Ron; Engberts, Jan B.F.N.

    2001-01-01

    This paper presents the synthesis and a study of the aggregation behavior of 4-undecyl-1-methyl- and 4-undecenyl-1-methylpyridinium iodide surfactants. The effect of the position of the double bond in the alkyl chain of the surfactant on the critical micelle concentration (cmc), degree of counterion

  6. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Chris [ORNL; Yatsandra, Oyola [ORNL; Mayes, Richard [ORNL; none,; Gill, Gary [PNNL; Li-Jung, Kuo [PNNL; Wood, Jordana [PNNL; Sadananda, Das [ORNL

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  7. Sodium iodide symporter: Its role in nuclear oncology

    International Nuclear Information System (INIS)

    Chung, June-Key

    2004-01-01

    Full text: Thyroid iodide uptake is basic to the clinical applications of radioiodine in diagnosis and therapy. Iodide uptake occurs across the membrane of thyroid follicular cells via an active transporter process mediated by the sodium/iodide symporter (NIS). The recent cloning of the gene encoding NIS enabled better characterization of the molecular mechanisms underlying the iodide transport, thus opening the way to clarify and expand its role in medicine. NIS contains 13 transmembrane segments, and its gene encodes a glycoprotein of 643 amino acids. Decreased NIS expression levels account for the reduced iodide uptake in thyroid carcinomas. We found that thyroid cancer patients with positive immunostaining for NIS responded to I-131 therapy better than did the patients with negative immunostaining. Thus, NIS gene can be used for radionuclide gene therapy. Targeted expression of functional NIS in cancer cells would enable these cells to concentrate iodide from plasma and would, therefore, offer the possibility of radioiodine therapy. We and others have shown that gene transfer of NIS into a variety of cell types confers increased radioiodine uptake up to several hundred-fold that of controls. There is great interest in exploring the possibility of NIS gene transfer to facilitate radioiodine therapy for non-thyroidal human cancers including hepatoma, prostate, breast, colon cancers as well as thyroid cancer. Recently, several approaches such as, targeted gene transfer, thyroid peroxidase gene co-transfection, retinoic acid treatment and Re-188 therapy instead of I-131, have been tried to improve this novel gene therapy. Imaging reporter gene is useful in non-invasively determining the location, duration and magnitude of transgene expression in living animal. Conventionally, HSV-tk and dopaminergic receptor (D2R) genes have been presented as possible imaging reporter genes. We proved that NIS could serve as an alternative imaging reporter gene. NIS has many

  8. Thermodynamics of gas adsorption on solid adsorbents

    International Nuclear Information System (INIS)

    Budrugeac, P.

    1979-01-01

    Starting with several hypotheses about the adsorbtion system and the adsorption phenomenon, a thermodynamic treatment of gas adsorption on solid adsorbants is presented. The relationships for determination from isotherms and calorimetric data of thermodynamic functions are derived. The problem of the phase changes in adsorbed layer is discussed. (author)

  9. Growth of mercuric iodide single crystals from dimethylsulfoxide

    International Nuclear Information System (INIS)

    Carlston, R.C.

    1976-01-01

    Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI 2 ) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI 2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc

  10. 1-(3-Iodopropyl-4-methylquinolin-1-ium Iodide

    Directory of Open Access Journals (Sweden)

    Todor Deligeorgiev

    2015-11-01

    Full Text Available A solvent-free “one-pot” synthetic approach to 1-(3-iodopropyl-4-methylquinolin-1-ium iodide is reported in the present work. The title compound is derived from N-alkylation of 4-methylquinoline with 1,3-diiodopropane proceeded at room temperature. The target quinolinium salt is obtained in a highly pure form. It’s structure was evaluated by 1H-NMR, 13C-NMR, and DEPT135 spectra.

  11. Effect of adsorbed/intercalated anionic dyes into the mechanical properties of PVA: layered zinc hydroxide nitrate nanocomposites.

    Science.gov (United States)

    Marangoni, Rafael; Mikowski, Alexandre; Wypych, Fernando

    2010-11-15

    Zinc hydroxide nitrate (ZHN) was adsorbed with anions of blue dyes (Chicago sky blue, CSB; Evans blue, EB; and Niagara blue, NB) and intercalated with anions of orange dyes (Orange G, OG; Orange II, OII; methyl orange, MO). Transparent, homogeneous and colored nanocomposite films were obtained by casting after dispersing the pigments (dye-intercalated/adsorbed into LHSs) into commercial poly(vinyl alcohol) (PVA). The films were characterized by XRD, UV-Vis spectroscopy, and mechanical testing. The mechanical properties of the PVA compounded with the dye-intercalated/adsorbed ZHN were evaluated, and reasonable increases in Young's modulus and ultimate tensile strength were observed, depending on the amount and choice of layered filler. These results demonstrate the possibility of using a new class of layered hydroxide salts intercalated and adsorbed with anionic dyes to prepare multifunctional polymer nanocomposite materials. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

    KAUST Repository

    Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E; Grä tzel, Michael; Park, Nam-Gyu

    2012-01-01

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

  13. P(MMA-EMA Random Copolymer Electrolytes Incorporating Sodium Iodide for Potential Application in a Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Nurul Akmaliah Dzulkurnain

    2015-02-01

    Full Text Available Polymer electrolytes based on 90 wt% of methyl methacrylate and 10 wt% of ethyl methacrylate (90MMA-co-10EMA incorporating different weight ratios of sodium iodide were prepared using the solution casting method. The complexation between salt and copolymer host has been investigated using Fourier transform infrared spectroscopy. The ionic conductivity and thermal stability of the electrolytes were measured using impedance spectroscopy and differential scanning calorimetry, respectively. Scanning electron microscopy was used to study the morphology of the polymer electrolytes. The ionic conductivity and glass transition temperature increased up to 20 wt% of sodium iodide (5.19 × 10−6 S·cm−1 and decreased with the further addition of salt concentration, because of the crosslinked effect. The morphology behavior of the highest conducting sample also showed smaller pores compared to the other concentration. The total ionic transference number proved that this system was mainly due to ions, and the electrochemical stability window was up to 2.5 V, which is suitable for a dye-sensitized solar cell application. This sample was then tested in a dye-sensitized solar cell and exhibited an efficiency of 0.62%.

  14. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

    KAUST Repository

    Kim, Hui-Seon

    2012-08-21

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

  15. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%

    Science.gov (United States)

    Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E.; Grätzel, Michael; Park, Nam-Gyu

    2012-01-01

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH3NH3)PbI3 as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI2 and deposited onto a submicron-thick mesoscopic TiO2 film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (JSC) exceeding 17 mA/cm2, an open circuit photovoltage (VOC) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH3NH3)PbI3 NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO2 film. The use of a solid hole conductor dramatically improved the device stability compared to (CH3NH3)PbI3 -sensitized liquid junction cells. PMID:22912919

  16. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  17. Synthesis and evaluation of iodide uptake inhibitors in thyroid gland

    International Nuclear Information System (INIS)

    Lacotte, Pierre

    2012-01-01

    This work was intended to discover small organic molecules acting as iodide uptake inhibitors in thyroid cells. These compounds can indeed be derivatized into biochemical probes for further characterization of proteins involved in iodide transport mechanisms. On the long term, these inhibitors also appear as attractive drug candidates for treatment of thyroid pathologies or radioprotection against iodine isotopes. A similar strategy was adopted for both of the two inhibitor families. First, we synthesized a chemical library of around 100 analogues; we measured their IC50 against iodide uptake in FRTL-5 cells to get structure-activity relationships. Absolute configuration of stereo-genic centers was also investigated, and a preferential stereochemistry was found to be responsible for activity. From this basis, around twenty 'second-generation' analogues were synthesized by combining fragments contributing to biological activity. Biological evaluation indicated that nine were very potent inhibitors, with IC50 ≤ 6 nM and satisfying physicochemical properties required for drug candidates. Finally, one photoactivatable biotinylated probe was developed in each family and used for photoaffinity labeling. Several specifically labeled proteins are still under identification and constitute new potential therapeutic targets. (author)

  18. The sodium iodide symporter: its implications for imaging and therapy

    International Nuclear Information System (INIS)

    Spitzweg, C.

    2007-01-01

    The sodium iodide symporter (NIS) is an intrinsic plasma membrane glycoprotein that mediates the active transport of iodide in the thyroid gland and a number of extrathyroidal tissues, in particular lactating mammary gland. In addition to its key function in thyroid physiology, NIS-mediated iodide accumulation allows diagnostic thyroid scintigraphy as well as therapeutic radioiodine application in benign and malignant thyroid disease. NIS therefore represents one of the oldest targets for molecular imaging and therapy. Based on the effective administration of radioiodine that has been used for over 60 years in the management of follicular cell-derived thyroid cancer, cloning and characterization of the NIS gene has paved the way for the development of a novel cytoreductive gene therapy strategy based on targeted NIS expression in thyroidal and nonthyroidal cancer cells followed by therapeutic application of 131 I or alternative radionuclides, including 188 Re and 211 At. In addition, the possibility of direct and non-invasive imaging of functional NIS expression by 123 I- and 99m Tc-scintigraphy or 124 I-PET-imaging allows the application of NIS as a novel reporter gene. In conclusion, the dual role of NIS as diagnostic and therapeutic gene and the detection of extra-thyroidal endogenous NIS expression in breast cancer open promising perspectives in nuclear medicine and molecular oncology for diagnostic and therapeutic application of NIS outside the thyroid gland. (orig.)

  19. Enhanced iodide sequestration by 3-biphenyl-5,6-dihydroimidazo 2,1-b thiazole in sodium/iodide sym-porter (NIS)-expressing cells

    International Nuclear Information System (INIS)

    Lecat-Guillet, N.; Ambroise, Y.

    2008-01-01

    The ability of the sodium/iodide sym-porter (NIS) to take up iodide has long provided the basis for cyto-reductive gene therapy and cancer treatment with radio-iodide. One of the major limitations of this approach is that radio-iodide retention in NIS-expressing cells is not sufficient for their destruction. We identified and characterized a small organic molecule capable of increasing iodide retention in HEK293 cells permanently transfected with human NIS cDNA (hNIS-HEK293) and in the rat thyroid-derived cell line FRTL-5. In the presence of 3-biphenyl-4'-yl-5,6-dihydroimidazo[2,1-b)thiazole (ISA1), the transmembrane iodide concentration gradient was increased up to 4.5-fold. Our experiments indicate that the imidazo-thiazole derivative acts either by inhibiting anion efflux mechanisms, or by promoting the relocation of iodide into subcellular compartments. This new compound is not only an attractive chemical tool to investigate the mechanisms of iodide flux at the cellular level, but also opens promising perspectives in the treatment of cancer after NIS gene transfer. (authors)

  20. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils.

    Science.gov (United States)

    Seki, Miharu; Oikawa, Jun-ichi; Taguchi, Taro; Ohnuki, Toshihiko; Muramatsu, Yasuyuki; Sakamoto, Kazunori; Amachi, Seigo

    2013-01-02

    Laccase oxidizes iodide to molecular iodine or hypoiodous acid, both of which are easily incorporated into natural soil organic matter. In this study, iodide sorption and laccase activity in 2 types of Japanese soil were determined under various experimental conditions to evaluate possible involvement of this enzyme in the sorption of iodide. Batch sorption experiment using radioactive iodide tracer ((125)I(-)) revealed that the sorption was significantly inhibited by autoclaving (121 °C, 40 min), heat treatment (80 and 100 °C, 10 min), γ-irradiation (30 kGy), N(2) gas flushing, and addition of reducing agents and general laccase inhibitors (KCN and NaN(3)). Interestingly, very similar tendency of inhibition was observed in soil laccase activity, which was determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as a substrate. The partition coefficient (K(d): mL g(-1)) for iodide and specific activity of laccase in soils (Unit g(-1)) showed significant positive correlation in both soil samples. Addition of a bacterial laccase with an iodide-oxidizing activity to the soils strongly enhanced the sorption of iodide. Furthermore, the enzyme addition partially restored iodide sorption capacity of the autoclaved soil samples. These results suggest that microbial laccase is involved in iodide sorption on soils through the oxidation of iodide.

  1. Electrochemistry of silver iodide the capacity of the double layer at the silver iodide-water interface

    NARCIS (Netherlands)

    Lyklema, J.; Overbeek, J.Th.G.

    1961-01-01

    A method is described for obtaining differential double layer capacities on silver iodide. Especially the influence of the nature and concentration of indifferent electrolytes was investigated, viz., the nitrates of Li·, K·, Rb·, NH4·, H·, Tl·, Mg··, Ba··, Co··, Cd··, Pb··, La···, Th····, the

  2. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures

    DEFF Research Database (Denmark)

    Schnadt, Joachim; Xu, Wei; Vang, Ronnie Thorbjørn

    2010-01-01

    a large tolerance to monatomic surface steps on the Ag(110) surface. The observed behaviour is explained in terms of strong intermolecular hydrogen bonding and a strong surface-mediated directionality, assisted by a sufficient degree of molecular backbone flexibility. In contrast, the same kind of step......-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent...... bonds to the surface, a situation which is also achieved on Ag(110) by annealing to 200 degrees C. These results show that the formation of particular self-assembled molecular nanostructures depends significantly on a subtle balance between the adsorbate-adsorbate and adsorbate-substrate interactions...

  3. Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs.

    Science.gov (United States)

    Rounds, Caleb M; Lubeck, Eric; Hepler, Peter K; Winship, Lawrence J

    2011-09-01

    We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca(2+) binding. We first show that Ca(2+) is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca(2+) in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca(2+)-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca(2+) gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca(2+) in tip growth.

  4. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    Energy Technology Data Exchange (ETDEWEB)

    Adamic, M.L., E-mail: Mary.Adamic@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83402 (United States); Lister, T.E.; Dufek, E.J.; Jenson, D.D.; Olson, J.E. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83402 (United States); Vockenhuber, C. [Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Watrous, M.G. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83402 (United States)

    2015-10-15

    This paper presents an evaluation of an alternate method for preparing environmental samples for {sup 129}I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Precipitated silver iodide samples are usually mixed with niobium or silver powder prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.

  5. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    International Nuclear Information System (INIS)

    Adamic, M.L.; Lister, T.E.; Dufek, E.J.; Jenson, D.D.; Olson, J.E.; Vockenhuber, C.; Watrous, M.G.

    2015-01-01

    This paper presents an evaluation of an alternate method for preparing environmental samples for "1"2"9I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Precipitated silver iodide samples are usually mixed with niobium or silver powder prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.

  6. Alkali metal adsorbate sputtering by molecular impact

    International Nuclear Information System (INIS)

    Moran, J.P.; Wachman, H.Y.; Trilling, L.

    1974-01-01

    An exploratory study of the sputtering by a krypton molecular beam of rubidium adsorbed at low coverage on a tungsten substrate has been described in a previous paper. An extension of this work is reported now

  7. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    Science.gov (United States)

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  8. Chitin Adsorbents for Toxic Metals: A Review

    Directory of Open Access Journals (Sweden)

    Ioannis Anastopoulos

    2017-01-01

    Full Text Available Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4-N-acetyl-d-glucosamine is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  9. Black Sprayable Molecular Adsorber Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this technology project is to develop, optimize, and flight qualify a black version of the molecular adsorber coating and a conductive version...

  10. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    Mario Enrique Santander Muñoz

    2015-01-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic poly-acrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  11. Properties and selection criteria for adsorbents

    International Nuclear Information System (INIS)

    Wirth, H.

    1976-01-01

    The paper gives a survey of the most important industrial adsorbents and of their suitability for different purposes. With special consideration of activated carbon, the properties and characteristic data are discussed which are used for assessing adsorbents. These, among other things, are as follows: specific surface area, pore size distribution, adsorption isotherms, hydrophobic properties, catalytic properties, chemical resistance, heat resistance, particle size and hardness. (orig.) [de

  12. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.; Hobley, Timothy John

    2006-01-01

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence...... separations are fast, gentle, scaleable, easily automated, can achieve separations that would be impossible or impractical to achieve by other techniques, and have demonstrated credibility in a wide range of disciplines, including minerals processing, wastewater treatment, molecular biology, cell sorting...

  13. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  14. Discovery of aryl-tri-fluoroborates as potent sodium/iodide sym-porter (NIS) inhibitors

    International Nuclear Information System (INIS)

    Lecat-Guillet, N.; Ambroise, Y.

    2008-01-01

    The structure-based design of sodium/iodide sym-porter (NIS) inhibitors identified new active compounds. The organo-tri-fluoroborate shown was found to inhibit iodide uptake with an IC50 value of 0.4 μM on rat-derived thyroid cells. The biological activity is rationalized by the presence of the BF3 - ion as a minimal binding motif for substrate recognition at the iodide binding site. (authors)

  15. Discovery of aryl-tri-fluoroborates as potent sodium/iodide sym-porter (NIS) inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lecat-Guillet, N.; Ambroise, Y. [CEA, DSV, Dept Bioorgan Chem and Isotop Labelling, Inst Biol and Technol, iBiTecS, F-91191 Gif Sur Yvette (France)

    2008-07-01

    The structure-based design of sodium/iodide sym-porter (NIS) inhibitors identified new active compounds. The organo-tri-fluoroborate shown was found to inhibit iodide uptake with an IC50 value of 0.4 {mu}M on rat-derived thyroid cells. The biological activity is rationalized by the presence of the BF3{sup -} ion as a minimal binding motif for substrate recognition at the iodide binding site. (authors)

  16. Autoradiolytic decomposition and reductant-free sodium sup 124 I- and sup 123 I-iodide

    Energy Technology Data Exchange (ETDEWEB)

    Sajjad, M.; Lambrecht, R.M.; Bakr, S.A. (King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Radionuclide and Cyclotron Operations)

    1990-01-01

    The presence of salts and metal cations in {sup 124}I- and {sup 123}I-sodium iodide solutions separated from {sup 124}Te targets promots autoradiolytic decomposition of iodide to several different iodine species dependent upon the chemical environment. The stabilization of the radioiodine as iodide by removal of trace salts and trace metal cations and in the absence of reducing agents is described. The high specific activity {sup 123}I- and {sup 124}I-iodide is suitable for labeling antibodies, proteins and radiopharmaceuticals. (orig.).

  17. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  18. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  19. Parametric studies of radiolytic oxidation of iodide solutions with and without paint: comparison with code calculations

    Energy Technology Data Exchange (ETDEWEB)

    Poletiko, C; Hueber, C [Inst. de Protection et de Surete Nucleaire, C.E. Cadarache, St. Paul-lez-Durance (France); Fabre, B [CISI, C.E. Cadarache, St. Paul-lez-Durance (France)

    1996-12-01

    In case of severe nuclear accident, radioactive material may be released into the environment. Among the fission products involved, are the very volatile iodine isotopes. However, the chemical forms are not well known due to the presence of different species in the containment with which iodine may rapidly react to form aerosols, molecular iodine, hydroiodic acid and iodo-organics. Tentative explanations of different mechanisms were performed through benchscale tests. A series of tests has been performed at AEA Harwell (GB) to study parameters such as pH, dose rate, concentration, gas flow rate, temperature in relation to molecular iodine production, under dynamic conditions. Another set of tests has been performed in AECL Whiteshell (CA) to study the behaviour of painted coupons, standing in gas phase or liquid phase or both, with iodine compounds under radiation. The purpose of our paper is to synthesize the data and compare the results to the IODE code calculation. Some parameters of the code were studied to fit the experimental result the best. A law, concerning the reverse reaction of iodide radiolytic oxidation, has been proposed versus: pH, concentrations and gas flow-rate. This law does not apply for dose rate variations. For the study of painted coupons, it has been pointed out that molecular iodine tends to be adsorbed or chemically absorbed on the surface in gas phase, but the mechanism should be more sophisticated in the aqueous phase. The iodo-organics present in liquid phase tend to be partly or totally destroyed by oxidation under radiation (depending upon the dose delivered). These points are discussed. (author) 18 figs., 3 tabs., 15 refs.

  20. Carbon-14 methylation of the 2-methylbutyryl side chain of mevinolin and its analogs

    International Nuclear Information System (INIS)

    Prakash, S.R.; Ellsworth, R.L.

    1988-01-01

    A one step procedure for the preparation of three labeled mevinolin analogs possessing the 2,2-dimethylbutyryloxy side chain is described. Three lactones were converted into potassium salts of their corresponding di or trihydroxy carboxylic acids from which anionic ester enolates were generated and alkylated with [ 14 ]methyl iodide. Workup and purification by reverse phase HPLC provided the three radiochemically pure mevinolin analogs. The labeled lactones were converted into ammonium salts of their corresponding di or trihydroxy acids. (author)

  1. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Science.gov (United States)

    Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.

    2015-06-01

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  2. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  3. Growth and fabrication of large size sodium iodide crystal scintillator

    International Nuclear Information System (INIS)

    Sabharwal, S.C.; Karandikar, S.C.; Mirza, T.; Ghosh, B.; Deshpande, R.Y.

    1979-01-01

    The growth of 80 - 135 mm dia. Sodium iodide crystals activated with thallium is described in the present report. The growth is effected in a glazed porcelain crucible in a protective ambient of dry nitrogen. The technical details of the equipment developed have been fully described. The results of measurements on the rate of growth of crystal and the optimization of different growth parameters are reported. The dependence of various factors upon the performance characteristics of the scintillator detectors made using these crystals is also discussed. The energy resolution obtained for a typical detector of dimensions 76 mm dia x 76 mm ht. is 10 percent. (auth.)

  4. 1-(Ferrocen-1-ylmethyl-3-methylimidazol-3-ium iodide

    Directory of Open Access Journals (Sweden)

    Vincent O. Nyamori

    2012-12-01

    Full Text Available The structure of the title compound, [Fe(C5H5(C10H12N2]I, consists of a 1-(ferrocen-1-ylmethyl-3-methylimidazolium cation which is counter-balanced by an iodide anion. The cyclopentadienyl (Cp rings of the ferrocene unit have a slightly staggered conformation skewed from an ideal eclipsed conformation by an angle of 3.5 (6°. The interplanar angle between the Cp and the imidazole ring is 67.94 (2°.

  5. Novel Fiber-Based Adsorbent Technology; FINAL

    International Nuclear Information System (INIS)

    Nixon, P.G.; Tsukamoto, T.; Brose, D.J.

    2001-01-01

    The overall of this Department of Energy (DOE) Phase II SBIR program was to develop a new class of highly robust fiber-based adsorbents for recovery of heavy metals from aqueous waste-streams. The fiber-based adsorbents,when commercialized,will be used for clean up metals in aqueous waste-streams emanating from DOE facilities,industry,mining,and groundwater-cleanup operations.The amount of toxic waste released by these streams is of great significance.The U.S.Environment Protection Agency (EPA) reports that in 1990 alone,4.8 billion pounds of toxic chemicals were released into the environment.Of this waste,the metals-containing waste was the second largest contributor,representing 569 million pounds. This report presents the results of the Phase II program,which successfully synthesized noval fiber-based adsorbents for the removal of Group 12 metals(i.e.mercury),Group 14 metals (lead),and Group 10 metals(platinum and palladium) from contaminated groundwater and industrial waste streams.These fiber-based adsorbents are ideally suited for the recovery of metal ions from aqueous waste streams presently not treatable due to the degrading nature of corrosive chemicals or radioactive components in the feed stream. The adsorbents developed in this program rely on chemically resistant and robust carbon fibers and fabrics as supports for metal-ion selective ligands.These adsorbents demonstrate loading capacities and selectivities for metal ions exceeding those of conventional ion-exchange resins.The adsorbents were also used to construct filter modules that demonstrate minimal fouling,minimal compaction,chemical and physical robustness,and regeneration of metal loading capacity without loss of performance

  6. Dissociation dynamics of methylal

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, P; Frey, H -M; Gerber, T; Mischler, B; Radi, P P; Tzannis, A -P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The dissociation of methylal is investigated using mass spectrometry, combined with a pyrolytic radical source and femtosecond pump probe experiments. Based on preliminary results two reaction paths of methylal dissociation are proposed and discussed. (author) 4 fig., 3 refs.

  7. Synthesis of [14α-methyl-3H]-24,25-dihydrolanosterol

    International Nuclear Information System (INIS)

    DeKeczer, S.; Kertesz, D.; Parnes, H.

    1993-01-01

    We describe the first synthesis of isomerically pure title compound (6) at high specific activity. This required the development of a convenient, regiospecific synthesis of the δ 8(9) -15-ketone and subsequent alkylation with methyl-[ 3 H 3 ]iodide. A key step in our procedure was the use of an electrochemical reduction of the intermediate [14α-methyl- 3 H]-15-oxo-dihydrolanosterol. This process was effected cleanly and in high yield to give (6), an important assay tool in the search for cholesterol lowering agents. This approach was found to be significantly superior to the Wolff-Kishner reduction of the corresponding 3-benzoate. (Author)

  8. Interruption with the Migration of Iodide by GR(CT)

    International Nuclear Information System (INIS)

    Min, J. H.; Lee, J. K.; Jeong, J. T.

    2012-01-01

    The purpose of this study is to understand the influence of green rust on the migration of iodide. GR(CT) would be major corrosion product of iron near the seawater or saline layer in underground. The GR(CT) may play an important role in the retardation of the iodide migration in a deep geological environment due to it's anionic exchange reaction. In underground radioactive waste repository, the corrosion of iron canisters would be proceed as follows; Fe(II) and/or Fe(III) dissolved from iron containers → Fe(II)(OH) 2 and/or Fe(III)(OH) 3 → Green rust → Lepidocrocite or Magnetite → Goetite etc. Generally, the green rust has known to exist in environments close to the Fe(Π)/Fe(ΠΙ) transition zone or between the oxidized layer and reduced layer in the underground. As anion exchanger and strong reducer, the green rusts can affect the migration of anions, reactions involving green rusts were poorly studied in relation to the safety assessment of radioactive waste repository

  9. Nuclear detonation, thyroid cancer and potassium iodide prophylaxis

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2011-01-01

    Full Text Available The recent nuclear disaster at Japan has raised global concerns about effects of radioactive leakage in the environment, associated hazards, and how they can be prevented. In this article, we have tried to explain about the guidelines laid down by World Health Organization for a potassium iodide prophylaxis following a nuclear disaster, and its mechanism of action in preventing thyroid cancer. Data was collected mainly from the studies carried out during the Chernobyl disaster of Russia in 1986 and the hazardous effects especially on the thyroid gland were studied. It was seen that radioactive iodine leakage from the nuclear plants mainly affected the thyroid gland, and especially children were at a higher risk at developing the cancers. Potassium Iodide prophylaxis can be administered in order to prevent an increase in the incidence of thyroid cancers in the population of an area affected by a nuclear disaster. However, one has to be cautious while giving it, as using it without indication has its own risks.

  10. Black molecular adsorber coatings for spaceflight applications

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  11. Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate

    International Nuclear Information System (INIS)

    Sahraoui, Lakhdar; Khimeche, Kamel; Dahmani, Abdallah; Mokbel, Ilham; Jose, Jacques

    2016-01-01

    Highlight: • Vapor-liquid equilibria, Enthalpy of Vaporization, saturated Fatty Acid Methyl Ester. - Abstract: Vapor pressures of six saturated Fatty Acid Methyl Esters (FAMEs), methyl hexanoate (or methyl caproate), methyl octanoate (or methyl caprylate), Methyl decanoate (or methyl caprate), methyl dodecanoate (or methyl laurate), methyl tetradecanoate (or methyl myristate), and methyl hexadecanoate (or methyl palmitate) were measured from 1 Pa to 100 kPa and at temperature range between 262 and 453 K using a static apparatus. The experimental data (P-T) were compared with the available literature data.

  12. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Motojima, K.; Kawamura, F.

    1984-01-01

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  13. Method for modifying trigger level for adsorber regeneration

    Science.gov (United States)

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  14. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  15. Development of w/o microemulsion for transdermal delivery of iodide ions.

    Science.gov (United States)

    Lou, Hao; Qiu, Ni; Crill, Catherine; Helms, Richard; Almoazen, Hassan

    2013-03-01

    The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P valuemicroemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.

  16. Structural templating in a nonplanar phthalocyanine using single crystal copper iodide

    OpenAIRE

    Rochford, L. A. (Luke A.); Ramadan, Alexandra J.; Keeble, Dean S.; Ryan, Mary P.; Heutz, Sandrine; Jones, T. S. (Tim S.)

    2015-01-01

    Solution-grown copper iodide crystals are used as substrates for the templated growth of the nonplanar vanadyl phthalocyanine using organic molecular beam deposition. Structural characterization reveals a single molecular orientation produced by the (111) Miller plane of the copper iodide crystals. These fundamental measurements show the importance of morphology and structure in templating interactions for organic electronics applications.

  17. A model for additive transport in metal halide lamps containing mercury and dysprosium tri-iodide

    NARCIS (Netherlands)

    Beks, M.L.; Haverlag, M.; Mullen, van der J.J.A.M.

    2008-01-01

    The distribution of additives in a metal halide lamp is examined through numerical modelling. A model for a lamp containing sodium iodide additives has been modified to study a discharge containing dysprosium tri-iodide salts. To study the complex chemistry the method of Gibbs minimization is used

  18. Extraction method for the determination of inorganic iodides in Rose Bengal labelled with 131I

    International Nuclear Information System (INIS)

    Lengyel, J.; Krtil, J.; Vecernik, J.

    1982-01-01

    An extraction method for the determination of inorganic iodides in Rose Bengal preparations labelled with 131 I is described. The method is based on the quantitative extraction of Rose Bengal into chloroform from acidic medium while the inorganic iodides remain in the aqueous phase. The method is simple, rapid, and reproducible. (author)

  19. Oxygen-hydrogen fuel cell with an iodine-iodide cathode - A concept

    Science.gov (United States)

    Javet, P.

    1970-01-01

    Fuel cell uses a porous cathode through which is fed a solution of iodine in aqueous iodide solution, the anode is a hydrogen electrode. No activation polarization appears on the cathode because of the high exchange-current density of the iodine-iodide electrode.

  20. Iodine K-edge EXAFS analysis of iodide ion-cyclodextrin inclusion complexes in aqueous solution

    International Nuclear Information System (INIS)

    Kaneko, T; Ueda, M; Nagamatsu, S; Konishi, T; Fujikawa, T; Mizumaki, M

    2009-01-01

    We study the structure of inclusion complexes of α-, β-, γ-cyclodextrin with mono-iodide ion in aqueous solution by means of iodine K-edge EXAFS spectroscopy. The analysis is based on the assumption that two kinds of iodide ions exist in KI-cyclodextrin aqueous solution i.e. hydrated mono-iodide ions and one-one mono-iodide-cyclodextrin inclusion complexes. In KI-α-cyclodextrin system, iodine K-edge EXAFS analyse show that the average coordination number of the oxygen atoms in water molecules in the first hydration shell decreases as the fraction of included ions increases. This result suggests that dehydration process accompanies the formation of the inclusion complex. This is not found in the case of β-cyclodextrin, indicating that in this case the iodide ions are included together with the whole first hydration shell.

  1. Determination of nanogram amounts of iodide by electrochemical isotope dilution analysis

    International Nuclear Information System (INIS)

    Gabrielsson, A.-B.; Beronius, P.

    1976-01-01

    A known quantity of iodide in ethanol as solvent was labelled with 131 I-and subsequently diluted with a predetermined amount of inactive iodide. Specific activities before and after the isotope dilution were established by anodically depositing small fractions of the halide in each sample on rotating silver micro electrodes and determining the activities of the electrodeposits. The lowest concentration of iodide used in any analysis was 1.10 -5 M. Further deposition studies revealed that iodide can be deposited with 1 100% current efficiency on the rotating silver micro electrode for concentration down to 2.4.10 -6 M. Electrodeposition studies for still lower concentrations have not yet been undertaken. These results suggest that amounts of iodide ion down to about 10 ng, and possibly still smaller quantitites, might be determined with the method developed. Amounts from 42 ng to 1 μg can be determined with an error of 2.5%. (T.G.)

  2. Colorimetric sensing of iodide based on triazole-acetamide functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    Lee, I-Lin; Sung, Yi-Ming; Wu, Shu-Pao; Wu, Chien-Hou

    2014-01-01

    We have modified gold nanoparticles (AuNPs) with triazole acetamide to obtain a material for the sensitive and selective colorimetric determination of iodide. The functionalized AuNPs were prepared by a reductive single chemical step using a Cu(I)-catalyzed click reaction. The presence of iodide ions induces the aggregation of these AuNPs and results in a color change from wine-red to purple. The iodide-induced aggregation can be detected visually with bare eyes, but also by photometry. The detection limit is as low as 15 nM. The method displays excellent selectivity for iodide over other anions due to the selective interaction with the amido groups of the triazole. The method was applied to the determination of iodide in spiked lake waters. (author)

  3. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    . Elastic neutron diffraction measurements, determining the two-dimensional structural ordering of the adsorbed films, have been performed on layers of N2, Ar, H2, D2, O2, Kr, and He. Measurements on layers of larger molecules such as CD4 and ND3 have also been reported. Inelastic neutron scattering...... measurements, studying the dynamics of the adsorbed films are only possible in a few especially favourable cases such as 36Ar and D2 films, where the coherent phonon scattering cross-sections are very large. In other cases incoherent scattering from hydrogen can give information about e.g. the mobility...

  4. Optimization and evaluation of multi-bed adsorbent tube method in collection of volatile organic compounds

    Science.gov (United States)

    Ho, Steven Sai Hang; Wang, Liqin; Chow, Judith C.; Watson, John G.; Xue, Yonggang; Huang, Yu; Qu, Linli; Li, Bowei; Dai, Wenting; Li, Lijuan; Cao, Junji

    2018-04-01

    The feasibility of using adsorbent tubes to collect volatile organic compounds (VOCs) has been demonstrated since the 1990's and standardized as Compendium Method TO-17 by the U.S. Environmental Protection Agency (U.S EPA). This paper investigates sampling and analytical variables on concentrations of 57 ozone (O3) precursors (C2-C12 aliphatic and aromatic VOCs) specified for the Photochemical Assessment Monitoring Station (PAMS). Laboratory and field tests examined multi-bed adsorbent tubes containing a sorbate combination of Tenax TA, Carbograph 1 TD, and Carboxen 1003. Analyte stabilities were influenced by both collection tube temperature and ambient O3 concentrations. Analytes degraded during storage, while blank levels were elevated by passive adsorption. Adsorbent tube storage under cold temperatures (- 10 °C) in a preservation container filled with solid silica gel and anhydrous calcium sulfate (CaSO4) ensured sample integrity. A high efficiency (> 99%) O3 scrubber (i.e., copper coil tube filled with saturated potassium iodide [KI]) removed O3 (i.e., air stream with a sampling capacity of 30 h. Water vapor scrubbers interfered with VOC measurements. The optimal thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) desorption time of 8 min was found at 330 °C. Good linearity (R2 > 0.995) was achieved for individual analyte calibrations (with the exception of acetylene) for mixing ratios of 0.08-1.96 ppbv. The method detection limits (MDLs) were below 0.055 ppbv for a 3 L sample volume. Replicate analyses showed relative standard deviations (RSDs) of < 10%, with the majority of the analytes within < 5%.

  5. Thermodynamic characteristics of the adsorption of organic molecules on modified MCM-41 adsorbents

    Science.gov (United States)

    Gus'kov, V. Yu.; Sukhareva, D. A.; Salikhova, G. R.; Karpov, S. I.; Kudasheva, F. Kh.; Roessner, F.; Borodina, E. V.

    2017-07-01

    The adsorption of a number of organic molecules on samples of MCM-41 adsorbent modified with dichloromethylphenylsilane and subsequently treated with sulfuric acid (MDCS) and N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride (MNM) is studied. Specific retention volumes equal to the Henry constant are determined by means of inverse gas chromatography at infinite dilution. The thermodynamic characteristics of adsorption, the dispersive and specific components of the Helmholtz energy of adsorption, and the increment of the methyl group to the heat of adsorption are calculated. It is shown that the grafting of aminosilane and phenylsilane groups enhances the forces of dispersion and reduces specific interactions. A greater drop in polarity is observed for MDCS than for MNM, due to the stronger polarity of amoinosilane; the enthalpy factor makes the main contribution to the adsorption of organic compounds on the investigated adsorbents. It is found that the MNM sample is capable of the irreversible adsorption of alcohols.

  6. Linking loss of sodium-iodide symporter expression to DNA damage

    International Nuclear Information System (INIS)

    Lyckesvärd, Madeleine Nordén; Kapoor, Nirmal; Ingeson-Carlsson, Camilla; Carlsson, Therese; Karlsson, Jan-Olof; Postgård, Per; Himmelman, Jakob; Forssell-Aronsson, Eva; Hammarsten, Ola; Nilsson, Mikael

    2016-01-01

    Radiotherapy of thyroid cancer with I-131 is abrogated by inherent loss of radioiodine uptake due to loss of sodium iodide symporter (NIS) expression in poorly differentiated tumor cells. It is also known that ionizing radiation per se down-regulates NIS (the stunning effect), but the mechanism is unknown. Here we investigated whether loss of NIS-mediated iodide transport may be elicited by DNA damage. Calicheamicin, a fungal toxin that specifically cleaves double-stranded DNA, induced a full scale DNA damage response mediated by the ataxia-telangiectasia mutated (ATM) kinase in quiescent normal thyrocytes. At sublethal concentrations (<1 nM) calicheamicin blocked NIS mRNA expression and transepithelial iodide transport as stimulated by thyrotropin; loss of function occurred at a much faster rate than after I-131 irradiation. KU-55933, a selective ATM kinase inhibitor, partly rescued NIS expression and iodide transport in DNA-damaged cells. Prolonged ATM inhibition in healthy cells also repressed NIS-mediated iodide transport. ATM-dependent loss of iodide transport was counteracted by IGF-1. Together, these findings indicate that NIS, the major iodide transporter of the thyroid gland, is susceptible to DNA damage involving ATM-mediated mechanisms. This uncovers novel means of poor radioiodine uptake in thyroid cells subjected to extrinsic or intrinsic genotoxic stress. - Highlights: • DNA damage inhibits polarized iodide transport in normal thyroid cells. • Down-regulation of NIS expression is mediated by activation of the ATM kinase. • Long-term ATM inhibition also represses NIS-mediated iodide transport. • IGF-1 rescues NIS expression and iodide transport in DNA-damaged cells.

  7. Linking loss of sodium-iodide symporter expression to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Lyckesvärd, Madeleine Nordén [Sahlgrenska Cancer Center, University of Gothenburg, Göteborg (Sweden); Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg (Sweden); Kapoor, Nirmal [Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg (Sweden); Ingeson-Carlsson, Camilla; Carlsson, Therese [Sahlgrenska Cancer Center, University of Gothenburg, Göteborg (Sweden); Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg (Sweden); Karlsson, Jan-Olof [Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg (Sweden); Postgård, Per; Himmelman, Jakob; Forssell-Aronsson, Eva [Department of Radiation Physics, University of Gothenburg, Göteborg (Sweden); Hammarsten, Ola [Department of Clinical Chemistry, University of Gothenburg, Göteborg (Sweden); Nilsson, Mikael, E-mail: mikael.nilsson@gu.se [Sahlgrenska Cancer Center, University of Gothenburg, Göteborg (Sweden); Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg (Sweden)

    2016-05-15

    Radiotherapy of thyroid cancer with I-131 is abrogated by inherent loss of radioiodine uptake due to loss of sodium iodide symporter (NIS) expression in poorly differentiated tumor cells. It is also known that ionizing radiation per se down-regulates NIS (the stunning effect), but the mechanism is unknown. Here we investigated whether loss of NIS-mediated iodide transport may be elicited by DNA damage. Calicheamicin, a fungal toxin that specifically cleaves double-stranded DNA, induced a full scale DNA damage response mediated by the ataxia-telangiectasia mutated (ATM) kinase in quiescent normal thyrocytes. At sublethal concentrations (<1 nM) calicheamicin blocked NIS mRNA expression and transepithelial iodide transport as stimulated by thyrotropin; loss of function occurred at a much faster rate than after I-131 irradiation. KU-55933, a selective ATM kinase inhibitor, partly rescued NIS expression and iodide transport in DNA-damaged cells. Prolonged ATM inhibition in healthy cells also repressed NIS-mediated iodide transport. ATM-dependent loss of iodide transport was counteracted by IGF-1. Together, these findings indicate that NIS, the major iodide transporter of the thyroid gland, is susceptible to DNA damage involving ATM-mediated mechanisms. This uncovers novel means of poor radioiodine uptake in thyroid cells subjected to extrinsic or intrinsic genotoxic stress. - Highlights: • DNA damage inhibits polarized iodide transport in normal thyroid cells. • Down-regulation of NIS expression is mediated by activation of the ATM kinase. • Long-term ATM inhibition also represses NIS-mediated iodide transport. • IGF-1 rescues NIS expression and iodide transport in DNA-damaged cells.

  8. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  9. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha

    2014-09-01

    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  10. Horizontal Ampoule Growth and Characterization of Mercuric Iodide at Controlled Gas Pressures for X-Ray and Gamma Ray Spectrometers

    International Nuclear Information System (INIS)

    Douglas, S.; McGregor Elsa; Ariesanti Bridget Corcoran

    2004-01-01

    The project developed a new method for producing high quality mercuric iodide crystals of x-ray and gamma spectrometers. Included are characterization of mercuric iodide crystal properties as a function of growth environment and fabrication and demonstration of room-temperature-operated high-resolution mercuric iodide spectrometers

  11. Iodide Ion Pairing with Highly Charged Ruthenium Polypyridyl Cations in CH3CN.

    Science.gov (United States)

    Swords, Wesley B; Li, Guocan; Meyer, Gerald J

    2015-05-04

    A series of three highly charged cationic ruthenium(II) polypyridyl complexes of the general formula [Ru(deeb)3-x(tmam)x](PF6)2x+2, where deeb is 4,4'-diethyl ester-2,2'-bipyridine and tmam is 4,4'-bis[(trimethylamino)methyl]-2,2'-bipyridine, were synthesized and characterized and are referred to as 1, 2, or 3 based on the number of tmam ligands. Crystals suitable for X-ray crystallography were obtained for the homoleptic complex 3, which was found to possess D3 symmetry over the entire ruthenium complex. The complexes displayed visible absorption spectra typical of metal-to-ligand charge-transfer (MLCT) transitions. In acetonitrile, quasi-reversible waves were assigned to Ru(III/II) electron transfer, with formal reduction potentials that shifted negative as the number of tmam ligands was increased. Room temperature photoluminescence was observed in acetonitrile with quantum yields of ϕ ∼ 0.1 and lifetimes of τ ∼ 2 μs. The spectroscopic and electrochemical data were most consistent with excited-state localization on the deeb ligand for 1 and 2 and on the tmam ligand for 3. The addition of tetrabutylammonium iodide to the complexes dissolved in a CH3CN solution led to changes in the UV-vis absorption spectra consistent with ion pairing. A Benesi-Hildebrand-type analysis of these data revealed equilibrium constants that increased with the cationic charge 1 10(8) s(-1). The possible relevance of this work to solar energy conversion and dye-sensitized solar cells is discussed.

  12. Polarographic determination of indium and thallium iodides in phosphor tablets

    International Nuclear Information System (INIS)

    Babich, G.A.; Dzhurka, G.F.; Kozhushko, G.M.; Kravtsova, K.F.; Magda, V.I.

    1984-01-01

    The technique of polarographic determination of indium and thallium iodides in phosphor tablets without preliminary separation of elements was developed. Mercury-dropping electrode was used as an indicator, and saturated calomel electrode was used as an auxiliary electrode. A recording of reduction currents was performed in the potential interval from -0.25 up to 1.15 V at potential sweep speed of 200 mV/min. Optimum conditions of sample acidic decomposition and polarography were presented. A solution of ethylene diamine (0.5 M), of ammonia (0.25 M) and of potassium chloride (0.05 M) served as a background electrolyte. The suggested technique allows one to determine component contents in tablets with a satisfactory accuracy. A period of one tablet analysis constitutes 1.5 h

  13. Mercuric iodide crystals obtained by solvent evaporation using ethanol

    International Nuclear Information System (INIS)

    Ugucioni, J.C.; Ghilardi Netto, T.; Mulato, M.

    2010-01-01

    Millimeter-sized mercuric iodide crystals were fabricated by the solvent evaporation technique using pure ethanol as a solvent. Three different conditions for solution evaporation were tested: (i) in the dark at room temperature; (ii) in the presence of light at room temperature and (iii) in an oven at 40 deg. C. Morphology, structure, optical and electrical properties were investigated using several techniques. Crystals fabricated in the dark show better properties and stability than others, possibly because the larger the energy of the system, the larger the number of induced growth defects. The crystals fabricated in the dark have adequate structure for higher resistivity and activation energy close to half the optical band-gap, as desired. With proper encapsulation these crystals might be good candidates for the development of ionizing radiation sensors.

  14. Direct photometric determination of fluorides in potassium chloride and iodide

    International Nuclear Information System (INIS)

    Dedkova, V.P.; Savvin, S.B.

    1985-01-01

    An attempt is made to apply the technique of determining fluorides with xylenol orange and sulfochlorophenol S as being the most sensitive in the analysis of of fiber optics. It is known that an increase of the sensitivity of the determination can be achieved on increasing the sample size of the substance to be analyzed, and the length of the absorbing layer. However, a high salt background may have a strong influence on the course of the reaction, and a supplementary of this effect is mad. Potassium chloride and iodide were selected as model compounds. A direct photometric procedure is proposed for determining fluorides in the samples, with a determination limit of 5 x 10 -6 %. Such a low determination limit is achieved by increasing the sample weight to 3 g, by increasing the length of the absorbing layer in the cell to 50 mm, and by using a highly sensitive reaction for determining fluorides with zirconium and xylenol orange

  15. Electrical and photomechanical effects of plastic deformation of mercuric iodide

    International Nuclear Information System (INIS)

    Marschall, J.; Milstein, F.; Gerrish, V.

    1991-01-01

    The effects of bulk plastic deformation of mercuric iodide (HgI 2 ), upon some of the electronic properties relevant to the performance of HgI 2 as a radiation detector were examined experimentally. Hole lifetimes, as well as hole and electron mobilities, were measured at various stages of sample deformation. Hole lifetimes were found to decrease by a factor of 2 under strains of several percent; carrier mobilities varied within experimental error, except during creep loading where electron and hole mobilities decreased by about 65 % and 25 %, respectively. Additionally, dark current measurements were made on specimens with varying degrees of accumulated plastic damage caused by c plane shear. Dark current values did not strongly reflect the extent of bulk plastic damage in deformed specimens. 16 refs., 4 figs., 1 tab

  16. Photoemission spectroscopy of surfaces and adsorbates

    International Nuclear Information System (INIS)

    Chiang, T.C.; Kaindl, G.; Himpsel, F.J.; Eastman, D.E.

    1982-01-01

    Core level photoelectron spectroscopy is providing new information concerning the electronic properties of adsorbates and surfaces. Several examples will be discussed, including studies of adsorbed rare gas submonolayers and multilayers as well as clean metal surfaces. For rare gas multilayers adsorbed on metal surfaces, the photoelectrons and Auger electrons exhibit well-resolved increases in kinetic energy with decreasing distance between the excited atom and the substrate, allowing a direct labeling of the layers. These energy shifts are mainly due to the substrate screening effects, and can be described well by an image-charge model. For a Kr/Xe bilayer system prepared by first coating a Pd substrate with a monolayer of Kr and then overcoating with a layer of Xe, a thermally activated layer inversion process is observed when the temperature is raised, with Xe coming in direct contact with the substrate. For rare gas submonolayers adsorbed on the Al(111) surface, coverage-dependent core level shift and work function measurements provide information about the adatom spatial distributions, polarizabilities, and dipole moments for the ground and excited states. We have also studied the 2p core level shifts for a clean Al(001) surface relative to the bulk. The shifts have a large contribution from the initial-state effects

  17. Heterogeneous membranes filled with hypercrosslinked microparticle adsorbent

    Czech Academy of Sciences Publication Activity Database

    Hradil, Jiří; Krystl, V.; Hrabánek, P.; Bernauer, B.; Kočiřík, Milan

    2005-01-01

    Roč. 65, 1-2 (2005), s. 57-68 ISSN 1381-5148 R&D Projects: GA ČR GA104/03/0680 Institutional research plan: CEZ:AV0Z40500505 Keywords : heterogeneous membranes * hypercrosslinked adsorbent * microparticle s Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.565, year: 2005

  18. Rapid sonochemical preparation of shape-selective lead iodide

    International Nuclear Information System (INIS)

    Huang, Baojun; He, Qin; Fa, Wenjun; Li, Pinjiang; Zhang, Yange; Zheng, Zhi

    2012-01-01

    Graphical abstract: SEM morphologies of various PbI2 products obtained with the iodine concentration of 6.7 g/L and irradiation time of 1 minute at the reaction temperatures of 35 °C (a), 25 °C (b), and 15 °C (c). Highlights: ► PbI 2 with various morphologies were rapidly formed at room temperature. ► We could well control the morphologies of PbI 2 by changing reaction conditions. ► The PbI 2 films could better resist rolling in a liquid media. -- Abstract: Lead iodide (PbI 2 ) films/crystals with various nano/micro morphologies (e.g., Nanoflake, block and microrod) were rapidly synthesized by taking advantage of a simple sonochemical method. The PbI 2 crystals with uniform nanoflake structures could be fabricated directly on lead foils with the irradiation time as short as 36 s via interfacial reaction between lead foils and elemental iodine in ethanol at ambient temperature. It was found experimentally that the morphologies of the resulting thin films/crystals could be well controlled by the adjustment of several parameters including irradiation time, reaction solvents, iodine concentration, ultrasonic power, and reaction temperature. Most importantly, the resultant PbI 2 films are stable enough to resist rolling under the drastic ultrasound irradiation in a liquid media. This method is believed to be the fastest way for in situ fabrication of morphology-controlled semiconductor films on various metal substrates for subsequent applications related to the other metal iodide or metal sulfide semiconductor films.

  19. Absolute photoionization cross-section of the methyl radical.

    Science.gov (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  20. The adsorber loop concept for the contact between seawater and adsorber granulate

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    The present paper deals with the so-called ''adsorber loop concept'' in which the adsorber granulate is carried along with the seawater to be processed in a loop-like configuration and is separated again from the depleted water before this is leaving the adsorption unit. This concept enables high seawater velocities thus reducing the required bed area. Theoretical considerations are presented together with experimental results from field tests. (orig.) [de

  1. Parametric Study on the Organic Iodide Behavior during a Severe Accident

    International Nuclear Information System (INIS)

    Ryu, Myung Hyun; Kim, Han Chul; Kim, Do Sam

    2011-01-01

    Iodine is a major contributor to the potential health risk for the public following a severe accident from a nuclear power plant. Most of metal-iodides, the major form of iodine that enters the containment, can be readily dissolved in the sump water and result in iodide ions. These will be oxidized to form volatile I 2 through a large number of reactions such as radiolysis and hydrolysis. The organic radicals, made from organics such as paint in the sump water, react with iodine to produce organic iodides. Volatile iodine moves from the sump water to the atmosphere mainly by diffusion and natural convection, and react with surfaces and air radiolysis products (ARPs). Painted surfaces act as a sink for I 2 and as a source for organic iodides through adsorption and desorption. ARPs react with I 2 to form iodine oxides, which leads to the decrease of I 2 and organic iodides. Among the large number of iodine species, organic iodides have been extensively studied recently due to their volatility and very low retention. Qualified tools for modeling these phenomena have been developed and validated by several experiments such as EPICUR, PARIS and OECD-BIP. While mechanistic codes model a large number of reactions and species, semiempirical codes such as IODE or IMOD treat major ones. KINS developed a simple iodine model, RAIM (Radio-active iodine chemistry model), based on the IMOD methodology in order to deal with organic iodides conveniently, coupling with an integrated severe-accident analysis code. There are a number of mechanisms that affect the behavior of organic iodides. In this study, effects of pH of the aqueous phase, temperature, radiation dose rate, surface area of organic paints, initial iodine loads that are known to be important to organic iodide formation were studied analytically with RAIM, and also theoretically

  2. Parametric Study on the Organic Iodide Behavior during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Myung Hyun; Kim, Han Chul; Kim, Do Sam [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2011-10-15

    Iodine is a major contributor to the potential health risk for the public following a severe accident from a nuclear power plant. Most of metal-iodides, the major form of iodine that enters the containment, can be readily dissolved in the sump water and result in iodide ions. These will be oxidized to form volatile I{sub 2} through a large number of reactions such as radiolysis and hydrolysis. The organic radicals, made from organics such as paint in the sump water, react with iodine to produce organic iodides. Volatile iodine moves from the sump water to the atmosphere mainly by diffusion and natural convection, and react with surfaces and air radiolysis products (ARPs). Painted surfaces act as a sink for I{sub 2} and as a source for organic iodides through adsorption and desorption. ARPs react with I{sub 2} to form iodine oxides, which leads to the decrease of I{sub 2} and organic iodides. Among the large number of iodine species, organic iodides have been extensively studied recently due to their volatility and very low retention. Qualified tools for modeling these phenomena have been developed and validated by several experiments such as EPICUR, PARIS and OECD-BIP. While mechanistic codes model a large number of reactions and species, semiempirical codes such as IODE or IMOD treat major ones. KINS developed a simple iodine model, RAIM (Radio-active iodine chemistry model), based on the IMOD methodology in order to deal with organic iodides conveniently, coupling with an integrated severe-accident analysis code. There are a number of mechanisms that affect the behavior of organic iodides. In this study, effects of pH of the aqueous phase, temperature, radiation dose rate, surface area of organic paints, initial iodine loads that are known to be important to organic iodide formation were studied analytically with RAIM, and also theoretically

  3. Thyroid iodide compartments and their implication in the rat thyroid iodine organification

    International Nuclear Information System (INIS)

    Bastiani, P.; Simon, C.

    1982-01-01

    To estimate the relative participation of transported and intrathyroidally generated iodide (internal iodide) in the iodination of newly synthesized and preexisting thyroglobulin (Tg) in the rat thyroid, the specific radioactivities (SRAs) of thyroid iodide, Tg, lysosomal iodine, and plasma hormones were followed for 92 h after radioactive iodide injection in intact or hypophysectomized rats. In control rats, the SRA of Tg and lysosomal iodine reached a maximum at 12 h. However, the SRA of lysosomal iodide was always smaller than that of Tg. In contrast, the SRA of hormonal iodide attained a maximum at 48 h. Thus, newly labeled iodine is endocytosed and mixed inside the lysosomes with older previously iodinated molecules; hormone secretion is mainly due to old labeled iodine (i.e. iodine with a high SRA from 48-96 h). These results are consistent with the presence of least two Tg compartments, with different turnover rates and hormone contents. On the other hand, in hypophysectomized rats, the SRA of Tg, lysosomes, and hormones showed only one maximum, at 24 h. Furthermore, the SRAs of Tg and lysosomes were similar at each time interval. It is inferred that in such rats, the old labeled iodine compartment is strongly reduced, and that inside the lysosomes, newly labeled iodine is predominant. Since in hypophysectomized rats, the recycling of iodide is abolished, it is concluded that in normal rats: 1) transported iodide is organified mainly by direct iodination of newly synthesized Tg, independently of TSH, and 2) internal iodide is organified mainly by delayed iodination of preexisting Tg, this process being TSH dependent

  4. Electronic spectral properties of surfaces and adsorbates and atom-adsorbate van der Waals interactions

    International Nuclear Information System (INIS)

    Lovric, D.; Gumhalter, B.

    1988-01-01

    The relevance of van der Waals interactions in the scattering of neutral atoms from adsorbates has been recently confirmed by highly sensitive molecular-beam techniques. The theoretical descriptions of the collision dynamics which followed the experimental studies have necessitated very careful qualitative and quantitative examinations and evaluations of the properties of atom-adsorbate van der Waals interactions for specific systems. In this work we present a microscopic calculation of the strengths and reference-plane positions for van der Waals potentials relevant for scattering of He atoms from CO adsorbed on various metallic substrates. In order to take into account the specificities of the polarization properties of real metals (noble and transition metals) and of chemisorbed CO, we first calculate the spectra of the electronic excitations characteristic of the respective electronic subsystems by using various data sources available and combine them with the existing theoretical models. The reliability of the calculated spectra is then verified in each particular case by universal sum rules which may be established for the electronic excitations of surfaces and adsorbates. The substrate and adsorbate polarization properties which derive from these calculations serve as input data for the evaluation of the strengths and reference-plane positions of van der Waals potentials whose computed values are tabulated for a number of real chemisorption systems. The implications of the obtained results are discussed in regard to the atom-adsorbate scattering cross sections pertinent to molecular-beam scattering experiments

  5. The method of determination of micro quantities of labeled iodide in carrier free Na125 solution

    International Nuclear Information System (INIS)

    Kholbaev, A.Kh.; Shilin, E.A.

    1996-01-01

    The method of determination of microquantities of labelled iodide in Na 125 carrier-free solution was elaborated. This method permits to increase the sensitivity and radiation protection of the determination of labeled iodide. It includes oxidation of iodide by iodate in diluted sulphuric acid with molar concentration 0,03-0,04 mole/l. The extraction of I 2 is made by toluene. The coloured solution is made and optical density is measured at λ=640 nm at the 10 mm optical path .(A.A.D.)

  6. Fixed-bed column adsorption of methyl blue using carbon derived ...

    African Journals Online (AJOL)

    Axle Wood Carbon (AWC) was used to study the removal of Methyl Blue (MB) from its aqueous solution in a fixed-bed column adsorption system. The adsorbent (AWC) was characterized using SEM and pHPZC. SEM revealed the surface morphology and from the pHPZC determination, it was found that at pH of 8.21 the ...

  7. Whole-genome methylation caller designed for methyl- DNA ...

    African Journals Online (AJOL)

    etchie

    2013-02-20

    Feb 20, 2013 ... Our method uses a single-CpG-resolution, whole-genome methylation ... Key words: Methyl-DNA immunoprecipitation, next-generation sequencing, ...... methylation is prevalent in embryonic stem cells andmaybe mediated.

  8. Adsorbents for radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Ichinose, Shigeo; Kiribayashi, Takehiko.

    1986-01-01

    Purpose: To enable to settle radioactive solvents such as tributyl phosphate (TBP) and n-dodecane as they are without using hydrophobicizing agent such as quaternary ammonium salts. Constitution: The adsorbents are prepared by replacing interlaminer ions of swelling-type synthetic mica with alkaline earth metals or metal ions. For instance, synthetic micas introduced with Zr 4+ or Ca 2+ between the layers provide quite different functions from those of starting materials due to the properties of ions introduced between the layers. That is, they provide an intense affinity to organic phosphates such as TBP and transform into material showing a property of adsorbing and absorbing them. Particularly, the fixing nature to the phosphor content constituting TBP is significantly increased. (Horiuchi, T.)

  9. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  10. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  11. Green Adsorbents for Wastewaters: A Critical Review

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-01-01

    Full Text Available One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i dyes; (ii heavy metals; (iii phenols; (iv pesticides and (v pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i agricultural sources and by-products (fruits, vegetables, foods; (ii agricultural residues and wastes; (iii low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources. These “green adsorbents” are expected to be inferior (regarding their adsorption capacity to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc., but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful topics such as: (i adsorption capacity; (ii kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes and (iii critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry with economic analysis and perspectives of the use of green adsorbents.

  12. Generating Atomistic Slab Surfaces with Adsorbates

    Science.gov (United States)

    2017-12-01

    slabs of various thickness and with various vacuum spacing need be calculated. This can occur in serial or simultaneously . If performed in serial, the...the user. Although the optimization of the slab thickness and vacuum padding can be done simultaneously , it is more computationally conservative to...monolayer is a slab (True if slab), the type of mesh desired (adsorbates.py was written for “Gamma”), how detailed the mesh should be (in units of inverse

  13. Green Adsorbents for Wastewaters: A Critical Review

    Science.gov (United States)

    Kyzas, George Z.; Kostoglou, Margaritis

    2014-01-01

    One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i) dyes; (ii) heavy metals; (iii) phenols; (iv) pesticides and (v) pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i) agricultural sources and by-products (fruits, vegetables, foods); (ii) agricultural residues and wastes; (iii) low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources). These “green adsorbents” are expected to be inferior (regarding their adsorption capacity) to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc.), but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful) topics such as: (i) adsorption capacity; (ii) kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes) and (iii) critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry) with economic analysis and perspectives of the use of green adsorbents. PMID:28788460

  14. Adsorbate Diffusion on Transition Metal Nanoparticles

    Science.gov (United States)

    2015-01-01

    correlation is a Bronsted-Evans-Polanyi ( BEP )- type of correlation, similar to other BEP correlations established earlier for surface-catalyzed bond- breaking...bond-making reactions.6-9 The universal BEP -type correlation is independent of the nature of the adsorbed species and that of the metal surface. For...a certain class of surface-catalyzed reactions, the existence of a BEP -type correlation reflects a similarity between the geometry of the transition

  15. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon; Koyama, Shigeru; Srinivasan, Kandadai

    2009-01-01

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations

  16. Cooperative effect of adsorbed cations on electron transport and recombination behavior in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kou, Dongxing; Liu, Weiqing; Hu, Linhua; Dai, Songyuan

    2013-01-01

    Highlights: • Disclose the mechanism of cooperative effects of adsorbed cations in DSCs. • Characterize the influence of adsorption of Im + s on photoinduced electron density. • The effect of Li + is orderly enhanced in DSCs with increasing alkyl chain length. • The DSCs efficiencies are relatively depended on the trade-off between J sc and FF. -- Abstract: Lithium ion (Li + ) and imidazolium cations (Im + s) had been reported to have competitive effects on the photoinduced electrons in TiO 2 -electrolyte systems. Herein, a further investigation about their cooperative effect in dye-sensitized solar cells (DSCs) using organic liquid electrolyte is developed by altering alkyl chain length. Imidazolium iodides (Im + I − s) with different alkyl chain length (3, 6, and 12) were synthesized and used as iodide sources. The adsorption amount of Im + s onto TiO 2 , band edge shifts, trap states distribution, electron recombination/transport processes and ion transport within the electrolyte for DSCs were detected. It is found that the multilayered adsorption of Im + s can induce a lower photoinduced electron density. In-depth characterizations indicate that this negative effect can be reduced as the adsorption amount decreased with increasing alkyl chain length and the effect of Li + is consequently strengthened in varying degrees. The decisive role of Li + in cation-controlled interfacial charge injection process finally contributes an ordinal increase of short-circuit photocurrent density J sc for DSCs with increasing alkyl chain length because of the increasing charge injection efficiency η inj . Additionally, a large power dissipation in ions transport process is induced by the long alkyl chain of Im + s. Overall, the cell efficiencies are relatively dependent of the trade-off between J sc and FF, which is essentially related to the cooperative effect of adsorbed cations

  17. Reinvestigation of the synthesis and evaluation of [N-methyl-11C]vorozole, a radiotracer targeting cytochrome P450 aromatase

    International Nuclear Information System (INIS)

    Kim, Sung Won; Biegon, Anat; Katsamanis, Zachary E.; Ehrlich, Carolin W.; Hooker, Jacob M.; Shea, Colleen; Muench, Lisa; Xu Youwen; King, Payton; Carter, Pauline; Alexoff, David L.; Fowler, Joanna S.

    2009-01-01

    Introduction: We reinvestigated the synthesis of [N-methyl- 11 C]vorozole, a radiotracer for aromatase, and discovered the presence of an N-methyl isomer which was not removed in the original purification method. Herein we report the preparation and positron emission tomography (PET) studies of pure [N-methyl- 11 C]vorozole. Methods: Norvorozole was alkylated with [ 11 C]methyl iodide as previously described and also with unlabeled methyl iodide. A high-performance liquid chromatography (HPLC) method was developed to separate the regioisomers. Nuclear magnetic resonance (NMR) spectroscopy ( 13 C and 2D-nuclear Overhauser effect spectroscopy NMR) was used to identify and assign structures to the N-methylated products. Pure [N-methyl- 11 C]vorozole and the contaminating isomer were compared by PET imaging in the baboon. Results: Methylation of norvorozole resulted in a mixture of isomers (1:1:1 ratio) based on new HPLC analysis using a pentafluorophenylpropyl bonded silica column, in which vorozole coeluted one of its isomers under the original HPLC conditions. Baseline separation of the three labeled isomers was achieved. The N-3 isomer was the contaminant of vorozole, thus correcting the original assignment of isomers. PET studies of pure [N-methyl- 11 C]vorozole with and without the contaminating N-3 isomer revealed that only [N-methyl- 11 C]vorozole binds to aromatase. [N-methyl- 11 C]Vorozole accumulated in all brain regions with highest accumulation in the aromatase-rich amygdala and preoptic area. Accumulation was blocked with vorozole and letrozole consistent with reports of some level of aromatase in many brain regions. Conclusions: The discovery of a contaminating labeled isomer and the development of a method for isolating pure [N-methyl- 11 C]vorozole combine to provide a new scientific tool for PET studies of the biology of aromatase and for drug research and development.

  18. Reinvestigation of the synthesis and evaluation of [N-methyl-{sup 11}C]vorozole, a radiotracer targeting cytochrome P450 aromatase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Won [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: swkim@bnl.gov; Biegon, Anat; Katsamanis, Zachary E. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ehrlich, Carolin W. [Johannes-Gutenberg Universitaet Mainz, Institut fuer Organische Chemie, Duesbergweg 10-14, Mainz (Germany); Hooker, Jacob M.; Shea, Colleen [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Muench, Lisa [National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD (United States); Xu Youwen; King, Payton; Carter, Pauline; Alexoff, David L. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Fowler, Joanna S. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Department of Psychiatry, Mount Sinai School of Medicine, New York, NY (United States); Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY (United States)

    2009-04-15

    Introduction: We reinvestigated the synthesis of [N-methyl-{sup 11}C]vorozole, a radiotracer for aromatase, and discovered the presence of an N-methyl isomer which was not removed in the original purification method. Herein we report the preparation and positron emission tomography (PET) studies of pure [N-methyl-{sup 11}C]vorozole. Methods: Norvorozole was alkylated with [{sup 11}C]methyl iodide as previously described and also with unlabeled methyl iodide. A high-performance liquid chromatography (HPLC) method was developed to separate the regioisomers. Nuclear magnetic resonance (NMR) spectroscopy ({sup 13}C and 2D-nuclear Overhauser effect spectroscopy NMR) was used to identify and assign structures to the N-methylated products. Pure [N-methyl-{sup 11}C]vorozole and the contaminating isomer were compared by PET imaging in the baboon. Results: Methylation of norvorozole resulted in a mixture of isomers (1:1:1 ratio) based on new HPLC analysis using a pentafluorophenylpropyl bonded silica column, in which vorozole coeluted one of its isomers under the original HPLC conditions. Baseline separation of the three labeled isomers was achieved. The N-3 isomer was the contaminant of vorozole, thus correcting the original assignment of isomers. PET studies of pure [N-methyl-{sup 11}C]vorozole with and without the contaminating N-3 isomer revealed that only [N-methyl-{sup 11}C]vorozole binds to aromatase. [N-methyl-{sup 11}C]Vorozole accumulated in all brain regions with highest accumulation in the aromatase-rich amygdala and preoptic area. Accumulation was blocked with vorozole and letrozole consistent with reports of some level of aromatase in many brain regions. Conclusions: The discovery of a contaminating labeled isomer and the development of a method for isolating pure [N-methyl-{sup 11}C]vorozole combine to provide a new scientific tool for PET studies of the biology of aromatase and for drug research and development.

  19. Biological adsorbent for water decontamination from uranium

    Energy Technology Data Exchange (ETDEWEB)

    Jilek, R [Vyzkumny Ustav Veterinarniho Lekarstvi, Brno-Medlanky (Czechoslovakia); Fuska, J; Nemec, P [Slovenska Vysoka Skola Technicka, Bratislava (Czechoslovakia). Chemickotechnologicka Fakulta

    1978-01-01

    A study was made into the capacity of native and heat-denaturated mycelium to adsorb uranium salts from solutions and into the effect of uranium on the growth of the microorganism biomass. The presence of uranium did not inhibit the growth of Penicillium and Aspergillus strains used at a concentration of up to 5x10/sup -4/ M/dm/sup 3/. Uranium added to a nutrient medium produced complexes with phosphorus ions which were adsorbed on the surface of growing hyphae, thus the removal of the mycelium also removed uranium. The results of the experiments with denaturated mycelium of the same strains suggested that uranium was also bound to the biomass with chemical bonds so that mycelium acted as a ''multifunction ion exchanger'' from which adsorbed uranium can be removed step by step by elution. A sorbent of a three-dimensional structure could be prepared from a dried native mycelium using reinforcing resins, which prevented leakage of the biomass. Uranium sorption by biosorbents is a function of the concentration of the cation sorbed and of the pH of the solution.

  20. Biological adsorbent for water decontamination from uranium

    International Nuclear Information System (INIS)

    Jilek, R.; Fuska, J.; Nemec, P.

    1978-01-01

    A study was made into the capacity of native and heat-denaturated mycelium to adsorb uranium salts from solutions and into the effect of uranium on the growth of the microorganism biomass. The presence of uranium did not inhibit the growth of Penicillium and Aspergillus strains used at a concentration of up to 5x10 -4 M/dm 3 . Uranium added to a nutrient medium produced complexes with phosphorus ions which were adsorbed on the surface of growing hyphae, thus the removal of the mycelium also removed uranium. The results of the experiments with denaturated mycelium of the same strains suggested that uranium was also bound to the biomass with chemical bonds so that mycelium acted as a ''multifunction ion exchanger'' from which adsorbed uranium can be removed step by step by elution. A sorbent of a three-dimensional structure could be prepared from a dried native mycelium using reinforcing resins, which prevented leakage of the biomass. Uranium sorption by biosorbents is a function of the concentration of the cation sorbed and of the pH of the solution. (author)

  1. Characterisation of lignite as an industrial adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ying Qi; Andrew F.A. Hoadley; Alan L. Chaffee; Gil Garnier [Monash University, Clayton, Vic. (Australia). Department of Chemical Engineering

    2011-04-15

    An alternative use of the abundant and inexpensive lignite (also known as brown coal) as an industrial adsorbent has been characterised. The adsorptive properties of two Victorian lignite without any pre-treatment were investigated using the cationic methylene blue dye as a model compound in aqueous solutions. Two commercial activated carbon products were also studied for comparison. The adsorption equilibrium of the four adsorbents was better described by the Langmuir isotherm model than the Freundlich model. The adsorption capacities of the two untreated lignite adsorbents, Loy Yang and Yallourn, calculated using Langmuir isotherms were 286 and 370 mg/g, respectively, higher than a coconut shell-based activated carbon (167 mg/g), but lower than a coal-based activated carbon (435 mg/g). Surface area results suggested that larger micropores and mesopores were important for achieving good methylene blue adsorption by the activated carbons. However, FTIR and cation exchange capacity analyses revealed that, for the lignite, chemical interactions between lignite surface functional groups and methylene blue molecules occurred, thereby augmenting its adsorption capacity. 63 refs., 3 figs., 7 tabs.

  2. Methylation pathways in schizophrenia

    International Nuclear Information System (INIS)

    Sargent, T.W. III.

    1982-01-01

    Research on the biochemical causes of human psychosis concentrates on investigating whether schizophremia is linked to abnormalities in the metabolism of methyl carbon groups in the body. The metabolism of C-14 labeled methyl groups in methionine is studied in animals, normal subjects and patient volunteers

  3. Feasibility Study for the Reduction of Perchlorate, Iodide, and Other Aqueous Anions

    National Research Council Canada - National Science Library

    Clewell, Rebecca A; Tsui, David T; Mattie, David R

    1999-01-01

    Cyclic Voltammetry (CV) was used as a technique to determine the feasibility of the use of a coulometric detector in the determination of perchlorate, iodide, and various other anions commonly found in drinking water...

  4. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps

    KAUST Repository

    Li, Baiyan; Dong, Xinglong; Wang, Hao; Ma, Dingxuan; Tan, Kui; Jensen, Stephanie; Deibert, Benjamin J.; Butler, Joseph; Cure, Jeremy; Shi, Zhan; Thonhauser, Timo; Chabal, Yves J.; Han, Yu; Li, Jing

    2017-01-01

    capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li

  5. The iodide sym-porter (NIS): new perspectives in nuclear oncology

    International Nuclear Information System (INIS)

    Pourcher, Th.; Lindenthal, S.; Basquin, C.; Ferhat, O.; Marsault, R.; Carrier, P.; Koulibaly, M.; Bussiere, F.; Darcourt, J.

    2005-01-01

    The sodium iodide sym-porter (NIS) is the plasma membrane protein that mediates uptake of iodide in the thyroid and other organs such as the stomach and the salivary gland. The cloning of its cDNA allows the targeting of NIS expression into any cell using gene therapy. This enables iodide uptake and thus NIS can be used as reporter imaging for live animals. More intriguingly, this new technique has potential using radio-iodide therapy to selectively destroy tumour cells. These two approaches employ common techniques in nuclear medicine. Many experiments on cultured cells and on animals have been carried out; they established clearly the advantages of this genetically targeted radiotherapy. Recent studies employing this therapy on multiple myeloma cell lines implanted in mice or on hepato-carcinoma-bearing rats, resulted in important tumour remission. However, additional studies on NIS regulation and the use of alternative radioisotopes transported by NIS are required to further develop this promising approach. (author)

  6. Functionalized metal organic frameworks for effective capture of radioactive organic iodides

    KAUST Repository

    Li, Baiyan; Dong, Xinglong; Wang, Hao; Ma, Dingxuan; Tan, Kui; Shi, Zhan; Chabal, Yves J.; Han, Yu; Li, Jing

    2017-01-01

    Highly efficient capture of radioactive organic iodides (ROIs) from off-gas mixtures remains a substantial challenge for nuclear waste treatment. Current materials utilized for ROI sequestration suffer from low capacity, high cost (e.g. use of noble

  7. Leaching of iodine from composites based on epoxy resin and lead iodide

    International Nuclear Information System (INIS)

    Kalinin, N.N.; Elizarova, A.N.

    1988-01-01

    The scope for using solid composites obtained by incorporating dry powdery lead iodide and its aqueous suspension into epoxy resin for prolonged immobilization of iodine-129 under monitorable storage conditions has been assessed by a study of leaching of iodine

  8. Production of high quality sodium iodide preparations labelled with carrier free iodine-125

    International Nuclear Information System (INIS)

    Abdukayumov, M.N.; Chistyakov, P.G.; Shilin, E.A.

    2001-01-01

    Work is related to the problem of high-quality Sodium Iodide preparation production and to the choice of the peptids iodination methods with the purpose of control test developing to determine the Biological activity of the above mentioned preparation

  9. Kinetics of [123I]iodide uptake and discharge by perchlorate in studies of inhibition of iodide binding by antithyroid drugs

    International Nuclear Information System (INIS)

    McCruden, D.C.; Connell, J.M.C.; Alexander, W.D.; Hilditch, T.E.

    1985-01-01

    Thyroidal binding of iodide was studied by kinetic analysis of [ 123 ]iodide uptake and its discharge by perchlorate in 80 hyperthyroid subjects receiving antithyroid drug therapy. Five dosage regimens ranging from 5 mg carbimazole twice daily to 15 mg methimazole twice daily were studied. Binding inhibition was estimated at 5-7 h after drug as an index of the mean effect of the 12 hourly regimen. In all cases, except one in the lowest dose group, binding was found to be markedly reduced with mean binding rates ranging from 0.002 to 0.020 min -1 (normal > 0.15 min -1 ). The net clearance of iodide in the lowest dose group was reduced to a mean value near the upper limit of the euthyroid range, whereas in the highest dose group it lay at the lower limit of the euthyroid range. These results were reflected in the serum thyroid hormone response. There was a reducing incidence of inadequate control of hyperthyroidism and an increasing incidence of hypothyroidism with increasing thiourylene dose. The exit rate constant of free iodide for the various doses showed values from 0.048 to 0.055 min -1 . Correpsonding mean values for the discharge rate constant after perchlorate were 0.087 to 0.105 min -1 . This suggests that perchlorate increases the rate of iodide release from the thyroid gland. Studies at a later interval after drug (12-14 h) showed no change in discharge rate constant. This leads to the conclusion that perchlorate may further inhibit iodide binding in subjects receiving antithyroid drug therapy. (author)

  10. Method for ion exchange purification of sodium iodide solution from heavy metals and potassium microimpurities

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Kachur, N.Ya.; Kostromina, O.N.; Ogorodnikova, A.A.; Khajnakov, S.A.

    1990-01-01

    A method of deep ion exchange purification of sodium iodide solution from heavy metals (iron, nickel, copper, lead) and potassium microimpurities is developed. The method includes multiple sorption of microimpurities on titanium phosphate with their subsequent desorption by sorbent processing with a solution with a solution of 3-6 N nitric acid, first, and then with a neutral solution of 2 % sodium thiosulfate. The given method permits to increase the purification degree of sodium iodide solution by 25-30 %. 2 tabs

  11. Radiolysis of cesium iodide solutions at 35 and 85 deg C

    International Nuclear Information System (INIS)

    Lucas, M.

    1981-09-01

    An aqueous solution of cesium iodide was irradiated by the gamma rays from a cobalt 60 source with a dose rate of 0.4 Mrad/hr. At 35 deg C the iodide I - is oxidized in molecular iodine I 2 but at 85 deg C the iodate IO 3 - is obtained. The aim of this work is the study of aerosols behaviour released in accidental situation of a PWR in presence of steam [fr

  12. Permeation of iodide from iodine-enriched yeast through porcine intestine.

    Science.gov (United States)

    Ryszka, Florian; Dolińska, Barbara; Zieliński, Michał; Chyra, Dagmara; Dobrzański, Zbigniew

    2013-01-01

    Iodine deficiency is a common phenomenon, threatening the whole global human population. Recommended daily intake of iodine is 150 μg for adults and 250 μg for pregnant and breastfeeding women. About 50% of human population can be at risk of moderate iodine deficiency. Due to this fact, increased iodine supplementation is recommended, through intake of iodized mineral water and salt iodization. The aim of this study was to investigate permeation and absorption of iodide from iodine bioplex (experimental group) in comparison with potassium iodide (controls). Permeation and absorption processes were investigated in vitro using a porcine intestine. The experimental model was based on a standard Franz diffusion cell (FD-Cell). The iodine bioplex was produced using Saccharomyces cerevisiae yeast and whey powder: iodine content - 388 μg/g, total protein - 28.5%, total fat - 0.9%., glutamic acid - 41.2%, asparaginic acid - 29.4%, lysine - 24.8%; purchased from: F.Z.N.P. Biochefa, Sosnowiec, Poland. Potassium iodide was used as controls, at 388 μg iodine concentration, which was the same as in iodine-enriched yeast bioplex. A statistically significant increase in iodide permeation was observed for iodine-enriched yeast bioplex in comparison with controls - potassium iodide. After 5h the total amount of permeated iodide from iodine-enriched yeast bioplex was 85%, which is ~ 2-fold higher than controls - 37%. Iodide absorption was by contrast statistically significantly higher in controls - 7.3%, in comparison with 4.5% in experimental group with iodine-enriched yeast bioplex. Presented results show that iodide permeation process dominates over absorption in case of iodine-enriched yeast bioplex.

  13. Predistribution of potassium iodide--the Tennessee experience

    International Nuclear Information System (INIS)

    Fowinkle, E.W.; Sell, S.H.; Wolle, R.H.

    1983-01-01

    Tennessee public health officials made a decision to predistribute potassium iodide tablets (KI) to householders in the vicinity of a nuclear power plant. The tablets would be stored until needed in the event of a radiation emergency. The officials believed that it was important to have the option available as a means of protecting nearby residents. KI, ingested before or soon after exposure to radioactive iodine, can act as a thyroid blocker to protect the gland from accepting further iodine and, therefore, the radiation. A pilot project was undertaken to deliver, door to door, a package that contained KI tablets in sufficient quantity to supply a starter dose to each member of households within a 5-mile radius of the Sequoyah nuclear power plant near Chattanooga. The package consisted of a vial of 14 130-mg tablets and a package insert from the manufacturer enclosed in a larger vial with a childproof cap. Home visitors who delivered the vials were professionals from the local public health departments, especially trained to answer questions about the project. About 66 percent of 5,591 homes accepted the medication. Extensive coverage of the project by information media was helpful in explaining local emergency plans as well as the KI distribution to the public

  14. Silver iodide sodalite for "1"2"9I immobilisation

    International Nuclear Information System (INIS)

    Vance, E.R.; Gregg, D.J.; Grant, C.; Stopic, A.; Maddrell, E.R.

    2016-01-01

    Silver iodide sodalite was initially synthesised as a fine-grained major phase in a nominally stoichiometric composition following hot isostatic pressing at 850 °C with 100 MPa and its composition, Ag_4Al_3Si_3O_1_2I, was approximately verified by scanning electron microscopy. An alternative preparative method yielded a more dense and stoichiometric AgI sodalite on sintering and HIPing. As found for AgI, the I is released from AgI sodalite much more readily in reducing water than in ordinary water. Thus in normal PCT-B tests, the I release was <0.3 g/L in water, but it was ∼70 g/L under highly reducing conditions. This is an important point with regard to can material if HIPing is used for consolidation. - Highlights: • Dense AgI sodalite has been produced by hot isostatic pressing. • The stoichiometry of AgI sodalite has been confirmed by scanning electron microscopy. • Good I immobilisation in AgI sodalite exposed to water containing Cu or Ni metal powders was determined. • AgI sodalite exposed to water containing Fe powders decomposed and released significant quantities of iodine.

  15. In situ nucleophilic substitutional growth of methylammonium lead iodide polycrystals.

    Energy Technology Data Exchange (ETDEWEB)

    Acik, Muge [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Alam, Todd M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Organic Materials Science; Guo, Fangmin [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Ren, Yang [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Lee, Byeongdu [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Rosenberg, Richard A. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Mitchell, JF [Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Kinaci, Alper [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Chan, Maria [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Darling, Seth B. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Univ. of Chicago, IL (United States). Inst. for Molecular Engineering

    2017-01-01

    Methylammonium lead iodide (MAPbIx) perovskites are organic-inorganic semiconductors that serve as the light-harvesting component of the photovoltaics, and are desirable with their long diffusion length yielding power conversion efficiencies of ≥22%. Conventional techniques grow perovskites by spin coating precursors on an oxide or a polymer substrate followed by annealing, however, use of high boiling point solvents and high temperatures hinder device stability and performance. Through a one-step, acid-catalyzed nucleophilic-substitutional crystal growth in polar protic solvents, we show evidence for the substrate- and annealing- free production of MAPbIx polycrystals that are metallic-lead-free with negligibly small amount of PbI2 precipitation (<10%). On the basis of this chemical composition, we have devised an in situ growth of highly air (upto ~1.5 months) and thermally-stable (≤300°C), tetragonal-phased, variable-sized polycrystals (~100 nm-10 μm) amendable for large-area deposition, and ultimately, large-scale manufacturing. This method is encouraging for stable optoelectronic devices, and leads to energy-efficient and low-cost processing.

  16. Slow hot carrier cooling in cesium lead iodide perovskites

    Science.gov (United States)

    Shen, Qing; Ripolles, Teresa S.; Even, Jacky; Ogomi, Yuhei; Nishinaka, Koji; Izuishi, Takuya; Nakazawa, Naoki; Zhang, Yaohong; Ding, Chao; Liu, Feng; Toyoda, Taro; Yoshino, Kenji; Minemoto, Takashi; Katayama, Kenji; Hayase, Shuzi

    2017-10-01

    Lead halide perovskites are attracting a great deal of interest for optoelectronic applications such as solar cells, LEDs, and lasers because of their unique properties. In solar cells, heat dissipation by hot carriers results in a major energy loss channel responsible for the Shockley-Queisser efficiency limit. Hot carrier solar cells offer the possibility to overcome this limit and achieve energy conversion efficiency as high as 66% by extracting hot carriers. Therefore, fundamental studies on hot carrier relaxation dynamics in lead halide perovskites are important. Here, we elucidated the hot carrier cooling dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy. We observe that the hot carrier cooling rate in CsPbI3 decreases as the fluence of the pump light increases and the cooling is as slow as a few 10 ps when the photoexcited carrier density is 7 × 1018 cm-3, which is attributed to phonon bottleneck for high photoexcited carrier densities. Our findings suggest that CsPbI3 has a potential for hot carrier solar cell applications.

  17. Kinetics of the thermal decomposition of nickel iodide

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Shimizu, Saburo; Onuki, Kaoru; Ikezoe, Yasumasa; Sato, Shoichi

    1984-01-01

    Thermal decomposition kinetics of NiI 2 under constant I 2 partial pressure was studied by thermogravimetry. The reaction is considered as a reaction step of the thermochemical hydrogen production process in the Ni-I-S system. At temperatures from 775K to 869K and under I 2 pressures from 0 to 960Pa, the decomposition started at the NiI 2 pellet surface and the reactant-product interface moved interior at a constant rate until the decomposed fraction, α, reached 0.6. The overall reaction rate at a constant temperature can be expressed as the difference of the constant decomposition (forward) rate, which is proportional to the equilibrium dissociation pressure of NiI 2 , and the iodide formation (backward) rate, which is proportional to the I 2 pressure. The apparent activation energy of the decomposition was 147 kJ.mol -1 , which is very close to the heat of reaction, 152 kJ.mol -1 calculated from the equilibrium dissociation pressure. The electron microscopic observations, revealed that the reaction product obtained by decomposing NiI 2 under pure He atomosphere was composed of relatively well grown cubic Ni crystals. Whereas, the decomposed product obtained under I 2 -He mixture was composed of larger but disordered crystals. (author)

  18. Persistent photovoltage in methylammonium lead iodide perovskite solar cells

    Directory of Open Access Journals (Sweden)

    A. Baumann

    2014-08-01

    Full Text Available We herein perform open circuit voltage decay (OCVD measurements on methylammonium lead iodide (CH3NH3PbI3 perovskite solar cells to increase the understanding of the charge carrier recombination dynamics in this emerging technology. Optically pulsed OCVD measurements are conducted on CH3NH3PbI3 solar cells and compared to results from another type of thin-film photovoltaics, namely, the two reference polymer–fullerene bulk heterojunction solar cell devices based on P3HT:PC60BM and PTB7:PC70BM blends. We observe two very different time domains of the voltage transient in the perovskite solar cell with a first drop on a short time scale that is similar to the decay in the studied organic solar cells. However, 65%–70% of the maximum photovoltage persists on much longer timescales in the perovskite solar cell than in the organic devices. In addition, we find that the recombination dynamics in all time regimes are dependent on the starting illumination intensity, which is also not observed in the organic devices. We then discuss the potential origins of these unique behaviors.

  19. Radiation damage resistance in mercuric iodide X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Dolin, R C; Devore, T M; Markakis, J M [EG and G Energy Measurements, Inc., Goleta, CA (USA); Iwanczyk, J S; Dorri, N [Xsirius, Inc., Marina del Rey, CA (USA); Trombka, J [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1990-12-20

    Mercuric iodide (HgI{sub 2}) radiation detectors show great potential as ambient-temperature solid-state detectors for X-rays, gamma rays and visible light, with parameters that are competitive with existing technologies. In a previous experiment, HgI{sub 2} detectors irradiated with 10 MeV protons/cm{sup 2} exhibited no damage. The 10 MeV protons represent only the low range of the spectrum of energies that are important. An experiment has been conducted at the Saturne accelerator facility at Saclay, France, to determine the susceptibility of these detectors to radiation damage by high-energy (1.5 GeV) protons. The detectors were irradiated to a fluence of 10{sup 8} protons/cm{sup 2}. This fluence is equivalent to the cosmic radiation expected in a one-year period in space. The resolution of the detectors was measured as a function of the integral dose. No degradation in the response of any of the detectors or spectrometers was seen. It is clear from this data that HgI{sub 2} has extremely high radiation-damage resistance, exceeding that of most other semiconductor materials used for radiation detectors. Based on the results shown to date, HgI{sub 2} detectors are suitable for applications in which they may be exposed to high integral dose levels. (orig.).

  20. Chloride, bromide and iodide scintillators with europium doping

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2014-08-26

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  1. The adsorber loop concept for the contact between seawater and adsorber granulate

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    For the production of 1 kg uranium from seawater about 10 9 kg seawater - depending on the extraction efficiency - have to be processed in a production plant. Such high seawater flows have to be put through adsorber beds the area of which depends on the flow velocity of the water in the bed. For a typical polyamidoxim (PAO) adsorber granulate with a grain size distribution of 0.3 to 1.2 mm the velocity in a fluidized bed is limited to about 1 cm/s in order to prevent carry out of the adsorber material. The consequences of this rather low bed velocity are large and expensive bed areas for technical production plants. The present paper deals with the so-called ''adsorber loop concept'' in which the adsorber granulate is carried along with the seawater to be processed in a loop-like configuration and is separated again from the water before this is leaving the adsorption unit. This concept enables considerably higher seawater velocities thus reducing the bed area. Theoretical considerations are presented together with experimental results from field tests. (author)

  2. A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.

    Science.gov (United States)

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-02-04

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.

  3. A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2013-02-01

    Full Text Available In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M and excellent sensitivity of –62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.

  4. Studies of selected transuranium and lanthanide tri-iodides under pressure using absorption spectrophotometry

    International Nuclear Information System (INIS)

    Haire, R.G.; Young, J.P.; Peterson, J.R.; Tennessee Univ., Knoxville; Benedict, U.

    1987-01-01

    The anhydrous tri-iodides of plutonium, americium and curium under pressure have been investigated using absorption spectrophotometry. These initial studies on plutonium and curium tri-iodides together with the published data for americium tri-iodide show that the rhombohedral form of these compounds (BiI 3 -type structure) can be converted to the orthorhombic form (PuBr 3 -type structure) by applying pressure at room temperature. Absorption spectrophotometry can often differentiate between two crystallographic forms of a material and has been used in the present high-pressure studies to monitor the effects of pressure on the tri-iodides. A complication in these studies of the tri-iodides is a significant shift of their absorption edges with pressure from the near UV to the visible spectral region. With curium tri-iodide this shift causes interference with the major f-f absorption peaks and precludes identification by absorption spectrophotometry of the high pressure phase of CmI 3 . (orig.)

  5. Mechanistic aspects of ingested chlorine dioxide on thyroid function: impact of oxidants on iodide metabolism

    International Nuclear Information System (INIS)

    Bercz, J.P.; Jones, L.L.; Harrington, R.M.; Bawa, R.; Condie, L.

    1986-01-01

    Toxicological studies dealing with recent findings of health effects of drinking water disinfectants are reviewed. Experiments with monkeys and rodents indicate that the biological activity of ingested disinfectants is expressed via their chemical interaction with the mucosal epithelia, secretory products, and nutritional contents of the alimentary tract. Evidence exists that a principal partner of this redox interaction is the iodide of nutritional origin that is ubiquitous in the gastrointestinal tract. Thus the observation that subchronic exposure to chlorine dioxide (ClO 2 ) in drinking water decreases serum thyroxine levels in mammalian species can be best explained with changes produced in the chemical form of the bioavailable iodide. Ongoing and previously reported mechanistic studies indicate that oxidizing agents such as chlorine-based disinfectants oxidize the basal iodide content of the gastrointestinal tract. The resulting reactive iodine species readily attaches to organic matter by covalent bonding. Evidence suggests that the extent to which such iodinated organics are formed is proportional to the magnitude of the electromotive force and stoichiometry of the redox couple between iodide and the disinfectant. Because the extent of thyroid uptake of the bioavailable iodide does not decrease during ClO 2 ingestion, it seems that ClO 2 does not cause iodide deficiency of sufficient magnitude to account for the decease in hormonogenesis. Absorption of one or more of iodinated molecules, e.g., nutrient, hormones, or cellular constituents of the alimentary tract having thyromimetic or thyroid inhibitory properties, is a better hypothesis for the effects seen

  6. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  7. Lead iodide X-ray and gamma-ray spectrometers for room and high temperature operation

    International Nuclear Information System (INIS)

    Hermon, H.; James, R.B.; Lund, J.

    1998-01-01

    In this study the authors report on the results of the investigation of lead iodide material properties. The effectiveness of a zone refining purification method on the material purity is determined by ICP-MS and ICP-OES and correlated to the electrical and physical material properties. They show that this zone refining method is very efficient in removing impurities from lead iodide, and they also determine the segregation coefficient for some of these impurities. Triple axis X-ray diffraction (TAD) analysis has been used to determine the crystalline perfection of the lead iodide after applying various cutting, etching and fabrication methods. The soft lead iodide crystal was found to be damaged when cleaved by a razor blade, but by using a diamond wheel saw, followed by etching, the crystallinity of the material was much improved, as observed by TAD. Low temperature photoluminescence also indicates an improvement in the material properties of the purified lead iodide. Electrical properties of lead iodide such as carrier mobility, were calculated based on carrier-phonon scattering. The results for the electrical properties were in good agreement with the experimental data

  8. Methyl-Analyzer--whole genome DNA methylation profiling.

    Science.gov (United States)

    Xin, Yurong; Ge, Yongchao; Haghighi, Fatemeh G

    2011-08-15

    Methyl-Analyzer is a python package that analyzes genome-wide DNA methylation data produced by the Methyl-MAPS (methylation mapping analysis by paired-end sequencing) method. Methyl-MAPS is an enzymatic-based method that uses both methylation-sensitive and -dependent enzymes covering >80% of CpG dinucleotides within mammalian genomes. It combines enzymatic-based approaches with high-throughput next-generation sequencing technology to provide whole genome DNA methylation profiles. Methyl-Analyzer processes and integrates sequencing reads from methylated and unmethylated compartments and estimates CpG methylation probabilities at single base resolution. Methyl-Analyzer is available at http://github.com/epigenomics/methylmaps. Sample dataset is available for download at http://epigenomicspub.columbia.edu/methylanalyzer_data.html. fgh3@columbia.edu Supplementary data are available at Bioinformatics online.

  9. Removal of adsorbent particles od copper ions by Jet flotation

    International Nuclear Information System (INIS)

    Santander, M.; Tapia, P.; Pavez, O.; Valderrama, L.; Guzman, D.

    2009-01-01

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m - 3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  10. Hydrogen iodide processing section in a thermochemical water-splitting iodine-sulfur process using a multistage hydrogen iodide decomposer

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sakaba, Nariaki; Imai, Yoshiyuki; Kubo, Shinji; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Kato, Ryoma

    2009-01-01

    A multistage hydrogen iodide (HI) decomposer (repetition of HI decomposition reaction and removal of product iodine by a HIx solution) in a thermochemical water-splitting iodine-sulfur process for hydrogen production using high-temperature heat from the high-temperature gas-cooled reactor was numerically evaluated, especially in terms of the flow rate of undecomposed HI and product iodine at the outlet of the decomposer, in order to reduce the total heat transfer area of heat exchangers for the recycle of undecomposed HI and to eliminate components for the separation. A suitable configuration of the multistage HI decomposer was countercurrent rather than concurrent, and the HIx solution from an electro-electro dialysis at a low temperature was a favorable feed condition for the multistage HI decomposer. The flow rate of undecomposed HI and product iodine at the outlet of the multistage HI decomposer was significantly lower than that of the conventional HI decomposer, because the conversion was increased, and HI and iodine were removed by the HIx solution. Based on this result, an alternative HI processing section using the multistage HI decomposer and eliminating some recuperators, coolers, and components for the separation was proposed and evaluated. The total heat transfer area of heat exchangers in the proposed HI processing section could be reduced to less than about 1/2 that in the conventional HI processing section. (author)

  11. Water to atmosphere fluxes of 131I in relation with alkyl-iodide compounds from the Seine Estuary (France)

    International Nuclear Information System (INIS)

    Connan, Olivier; Tessier, Emmanuel; Maro, Denis; Amouroux, David; Hebert, Didier; Rozet, Marianne; Voiseux, Claire; Solier, Luc

    2008-01-01

    This study presents an original work on measurements of stable and radioactive iodinated species in the Seine estuary (France), with estimates fluxes of volatile gaseous species from water to the atmosphere. Various iodinated compounds were identified in water and air in particular 131 I in water, what is unusual. Concentrations and behaviour of iodinated elements in the Seine estuary seem similar to what has been observed in other European estuaries. MeI (Methyl Iodide) and Total Volatile Iodine (TVI) fluxes from water to air vary between 392 and 13949 pmol m -2 d -1 and between 1279 and 16484 pmol m -2 d -1 , respectively. Water to air flux of TVI for the Seine river was estimated in the range 4-46 kg y -1 . Measurements of 131 I in water varying between 0.4 and 11.9 Bq m -3 . Fluxes of 131 I from water to atmosphere are in the range 2.4 x 10 5 -1.3 x 10 7 Bq y -1 , close to an annual discharge of 131 I by a nuclear reactor

  12. Iodide behaviour in hard clay rocks under controlled physico-chemical conditions at different concentrations

    International Nuclear Information System (INIS)

    Frasca, B.; Savoye, S.; Wittebroodt, C.; Leupin, O.X.; Descostes, M.; Grenut, B.; Meier, P.; Michelot, J.L.

    2010-01-01

    Document available in extended abstract form only. With a half-life of 1.6 10 7 years, its high mobility and its potential to accumulate in the biosphere, iodine-129 is considered, from safety assessment calculations for radioactive waste repositories, to be one of the main radiological dose contributors. Based on the findings of previous studies, iodide, especially at low concentrations, seems to be migrating at a slower rate in clay rock than Cl-36. The cause of this retardation regarding the diffusion of iodide versus chloride is not yet understood but several hypotheses are point towards sorption on natural organic matter (NOM), pyrite or redox reactions. Oxidation of iodide would form IO 3 - which is known to have a higher sorption affinity on several soils and sediment samples than iodide. The present project aims at exploring the effect on the iodide behaviour of two parameters: (i) the initial concentration of iodide and (ii) the amount of NOM contained in the argillite samples. Such an investigation is carried out on Tournemire argillite by means of both batch and through-diffusion experiments. The main challenge is to exclude as much as possible the occurrence of any experimental artefact that could induce iodide uptake (oxygen contamination, dissolution/precipitation of carbonate phases). Regarding redox conditions and rock equilibrium, all the experiments were carried out under physico-chemical conditions as close as possible to those prevailing in field. Using a glove box with an atmosphere of N 2 /CO 2 (respectively 99.6% and 0.4%), we preserved the experiments from oxygen and maintained the calculated in-situ carbonate equilibrium. At first, four through-diffusion experiments with the non-sorbing tracers HTO and Cl-36 were performed to allow the diffusive parameters of each sample to be defined. Afterwards, iodide was injected in the diffusion cells at four different concentrations (10 -6 M to 10 -3 M). Thus, the comparison of the incoming fluxes of

  13. A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple.

    Science.gov (United States)

    Wang, Jen-Yuan; Nien, Po-Chin; Chen, Chien-Hsiao; Chen, Lin-Chi; Ho, Kuo-Chuan

    2012-07-01

    A glucose bio-battery prototype independent of oxygen is proposed based on a glucose dehydrogenase (GDH) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. At the bioanode, a NADH electrocatalyst, poly(methylene blue) (PMB), which can be easily grown on the electrode (screen-printed carbon paste electrode, SPCE) by electrodeposition, is harnessed and engineered. We find that carboxylated multi-walled carbon nanotubes (MWCNTs) are capable of significantly increasing the deposition amount of PMB and thus enhancing the PMB's electrocatalysis of NADH oxidation and the glucose bio-battery's performance. The choice of the iodide/tri-iodide redox couple eliminates the dependence of oxygen for this bio-battery, thus enabling the bio-battery with a constant current-output feature similar to that of the solar cells. The present glucose bio-battery prototype can attain a maximum power density of 2.4 μW/cm(2) at 25 °C. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. THERAPY OF GRAVES’ DISEASE WITH SODIUM IODIDE-131

    Directory of Open Access Journals (Sweden)

    I Wayan Hartadi Noor

    2013-11-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Graves’ disease is the most common form of thyrotoxicosis, with a peak incidence in the 20-40 year of age group. Females are involved about five times more commonly than male. The easiest sign to recognize patients with Graves’ disease is the present of Graves’ ophthalmopathy. The diagnosis of Graves’ disease may sometimes base only on a physical examination and a medical history. Diffuse thyroid enlargement and sign of thyrotoxicosis, mainly ophthalmopathy and to lesser extent dermopathy, usually adequate for diagnosis. TSH test combined with FT4 test is usually the first laboratory test performs in these patients. The patients suffered Graves’ disease can be treated with antithyroid drug therapy or undergo subtotal Thyroidectomy. Another therapy is by using sodium iodide-131, where this therapy has advantages including easy administration, effectiveness, low expense, and absence of pain. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  15. Development of adsorbents for recovery of uranium from seawater

    International Nuclear Information System (INIS)

    Egawa, Hiroaki; Furusaki, Shintaro.

    1987-01-01

    The largest subject for putting the extraction of uranium from seawater in practical use is the development of high performance adsorbents for uranium. In this paper, the way of thinking about the development of adsorbents for extracting uranium from seawater and the recent reports on this subject are described. Next, the research on the adsorbing capacity and adsorbing rate of the adsorbents developed so far is summarized, and the way of thinking about the evaluation of adsorbent performance which is the base of the design of a system for extracting uranium from seawater is explained, taking amidoxime type adsorbent as the example. For Japan where energy resources are scant, the uranium contained in seawater, which is estimated to be about 4.2 billion t, is the most luring important element. Uranium is contained in seawater is very low concentration of 3 ppb, and exists as anion complex salt. In 1960s, the Harwell Atomic Energy Research Establishment in UK found out that titanium oxide hydrate is the most promising as the adsorbent. Also a number of organic absorbents have been developed. In order to bring adsorbents in contact with seawater, pumping, ocean current and wave force are utilized. Adsorbents are in spherical, fiber and film forms, and held as fixed beds and fluidized beds. (Kako, I.) 48 refs

  16. Carbamazepine (Tegretol) inhibits in vivo iodide uptake and hormone synthesis in rat thyroid glands

    International Nuclear Information System (INIS)

    Villa, S.M.; Alexander, N.M.

    1987-01-01

    Decreased serum concentrations of T3 and T4 occur in patients treated with the anticonvulsant drug carbamazepine (CBZ), but with rare exception, these patients remain euthyroid. The mechanism that accounts for diminished hormone levels is unknown, and our objective was to study the direct effect of CBZ on iodide uptake and hormone synthesis in thyroid glands of CBZ-treated and pair-fed control rats. Chronic ingestion (per os) of CBZ in male rats reduced the four hour thyroid 131I-iodide uptake by approximately 60%. This inhibition occurred after the animals had received sufficient CBZ to attain plasma CBZ concentrations of 0.8 microgram/ml. Continued treatment with CBZ ranging from 560 to 800 mg/kg/day for 14 days did not result in further inhibition of iodide uptake even though the plasma CBZ concentrations had increased 6-20 fold. No inhibition of iodide uptake was apparent when the animals initially received CBZ ranging from 40 to 152 mg/kg body weight for 22 days when there were no detectable levels of plasma CBZ. Overall growth rates of CBZ-treated rats were slightly (6-10%) less than the pair-fed control animals. Plasma T4 concentrations were reduced by 18% (p less than 0.05) in the CBZ-fed animals, while T3 concentrations were diminished by 53% (p less than 0.01). CBZ appeared to alter thyroidal iodide transport because the thyroid:plasma iodide ratios were decreased by 26% in the drug-treated rats. The distribution of radioiodine in thyroidal iodoamino acids was essentially the same in both groups of rats but the absolute quantities of radioiodine were more than 2.5 times greater in the control rats. CBZ failed to inhibit peroxidase-catalyzed iodide and guaiacol oxidation in vitro

  17. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon; Koyama, Shigeru; Srinivasan, Kandadai

    2009-01-01

    evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH

  18. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    Science.gov (United States)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  19. The method of determination of micro quantities of labelled iodide in Na125 I carrier free solution

    International Nuclear Information System (INIS)

    Kholbaev, A.Kh.; Shilin, E.A.

    1996-01-01

    The analytical method was elaborated with the purpose to increase detection limit and radiation safety of labelled iodide determination. The method includes oxidation of iodide by iodate in diluted sulphur acid solution with molar concentration 0,03-0,04/moles/litre at molar ratio of iodide to iodate I - :IO - 3 1:12,5. The extraction of I 2 produced is done by toluene. (author)

  20. New type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. III. Recycle use of adsorbent

    International Nuclear Information System (INIS)

    Omichi, H.; Katakai, A.; Sugo, T.; Okamoto, J.

    1986-01-01

    An amidoxime-group adsorbent for recovering uranium from seawater was made by radiation-induced graft polymerization of acrylonitrile onto polymeric fiber, followed by amidoximation. Uranium adsorption of the adsorbent contacted with seawater in a column increased with the increase in flow rate, then leveled off. The relationship between uranium adsorption in a batch process and the ratio of the amount of seawater to that of adsorbent was found to be effective in evaluating adsorbent contacted with any amount of seawater. The conditioning of the adsorbent with an alkaline solution at higher temperature (∼80 0 C) after the acid desorption recovered the adsorption ability to the original level. This made it possible to apply the adsorbent to recycle use. On the other hand, the adsorbent conditioned at room temperature or that without conditioning lost adsorption ability during recycle use. The increase in water uptake was observed as one of the physical changes produced during recycle use of the alkaline-conditioned adsorbent, while the decrease in water uptake was observed with the unconditioned adsorbent. The IR spectra of the adsorbent showed a probability of reactions of amidoxime groups with acid and alkaline solutions, which can explain the change in uranium adsorption during the adsorption-desorption cycle

  1. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    International Nuclear Information System (INIS)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W.P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-01-01

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  2. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  3. 11C-labelling of the analgesic Tramadol and its major metabolites by selective O- and N-methylation

    International Nuclear Information System (INIS)

    Gail, R.; Coenen, H.H.; Hamacher, K.; Stoecklin, G.

    1992-01-01

    For in vivo pharmacokinetic studies with PET, the analgesic Tramadol(1-(3-methoxyphenyl)-2-dimethylaminomethyl-cyclohexan-1-ol) and its major O- and N-desmethylated metabolites M1 and M2 were labelled with carbon-11. Starting with the corresponding desmethyl precursors, [O-methyl- 11 C]Tramadol and racemic[N-methyl- 11 C]Tramadol were prepared by methylation with n.c.a. [ 11 C]methyl iodide in DMSO with radiochemical yields of 85 and 90%, respectively. Specific n.c.a. N-methylation of bis-desmethyl-Tramadol (M5) was achieved with 90% radiochemical yield. However, a selective O-methylation of M5 was not possible even with an excess of NaOH, and only 70% of [O-methyl- 11 C]M2 was obtained. Quaternization of Tramadol or M1 was >15 times slower than O-methylation, and was only observed in the presence of added CH 3 I carrier. (author)

  4. Vis-Near-Infrared Photodetectors Based on Methyl Ammonium Lead Iodide Thin Films by Pulsed Laser Deposition

    Science.gov (United States)

    Patel, Nagabhushan; Dias, Sandra; Krupanidhi, S. B.

    2018-04-01

    Organic-inorganic hybrid perovskite materials are considered as promising candidates for emerging thin-film photodetectors. In this work, we discuss the application of the CH3NH3PbI3 thin films by pulsed laser deposition for photodetection applications. With this method, we obtained good perovskite film coverage on fluorine-doped tin oxide-coated substrates and observed wel- developed grains. The films showed no sign of degradation over several months of testing. We investigated the surface morphology and surface roughness of the films by field emission scanning electron microscopy and atomic force microscopy. The optical response of the films was studied using ultraviolet-visible and photoluminescence spectroscopy. We carried out a study on the solar and infrared photodetection of CH3NH3PbI3 thin films. The values of the responsivity, sensitivity, external quantum efficiency and specific detectivity under 1 sun illumination and 0.7 V bias were 105.4 A/W, 1.9, 2.38 × 104% and 1.5 × 1012 Jones, respectively.

  5. Study on the Electrochemical Behavior of Iodide at Platinum Electrode in Potassium Chlorate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sang Hyuk; Yeon, Jei Won; Song, Kyu Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Radioactive iodine-131, is one of the most hazardous fission products which could be released from fuels of nuclear reactors during the severe accident of nuclear power plants. Due to its high radioactivity, high fission yield (2.8%) and hazardous biological effects, the behavior of iodine has been taken interests in many research groups. Iodine is known to be released from the fuels as a cesium iodide form, CsI. And, as nuclear fuels are mostly placed in the water pool, it is easily dissolved in the water after released from the fuels. In water, iodide anion could be oxidized into molecular iodine. As the molecular iodine is a volatile species and the oxidizing rate is affected by many environmental facts such as pH, radiolysis products and temperature, the oxidation reaction of the iodide ion has been considered as an important chemical reaction related to the severe accident of nuclear power plants In present work, the electrochemical behavior of iodide anion was observed by using cyclic voltammetric technique in potassium chlorate solutions. We observed two different oxidation waves in the oxidation potential region. From the comparison with the previous reported results, one is regarded as the oxidation of iodide into molecular iodine. The other is evaluated to be the formation of high-valent iodine-containing compounds

  6. Estradiol decreases iodide uptake by rat thyroid follicular FRTL-5 cells

    Directory of Open Access Journals (Sweden)

    Furlanetto T.W.

    2001-01-01

    Full Text Available Estradiol has well-known indirect effects on the thyroid. A direct effect of estradiol on thyroid follicular cells, increasing cell growth and reducing the expression of the sodium-iodide symporter gene, has been recently reported. The aim of the present investigation was to study the effect of estradiol on iodide uptake by thyroid follicular cells, using FRTL-5 cells as a model. Estradiol decreased basal iodide uptake by FRTL-5 cells from control levels of 2.490 ± 0.370 to 2.085 ± 0.364 pmol I-/µg DNA at 1 ng/ml (P<0.02, to 1.970 ± 0.302 pmol I-/µg DNA at 10 ng/ml (P<0.003, and to 2.038 ± 0.389 pmol I-/µg DNA at 100 ng/ml (P<0.02. In addition, 4 ng/ml estradiol decreased iodide uptake induced by 0.02 mIU/ml thyrotropin from 8.678 ± 0.408 to 7.312 ± 0.506 pmol I-/µg DNA (P<0.02. A decrease in iodide uptake by thyroid cells caused by estradiol has not been described previously and may have a role in goiter pathogenesis.

  7. Monitoring of fluoride and iodide levels in drinking water using ion selective electrodes

    International Nuclear Information System (INIS)

    Ahmed, R.; Viqar-Un-Nisa; Hussain, M.; Tanwir, R.; Qureshi, S.A.

    2004-01-01

    Fluoride and iodide, the most important constituents of drinking water are essential as well as toxic depending on their levels. For their analysis in water mostly ion-selective electrodes, spectrophotometry, titrimetry and coulometry etc; have been used and literature has been briefly reviewed. Ion-selective electrodes offer an efficient method for the measurement of the two halides and were mostly used during this work. Fabrication of these electrodes is briefly described. Comparison of results obtained by ion selective electrode and coulometry is given. Recoveries of the added fluoride ions from the samples were good. A large number of water samples from Rawalpindi-Islamabad area were analyzed for fluoride and iodide. Levels of fluoride and iodide from two main water reservoirs of Rawalpindi and Islamabad are reported before and after treatment. Both surface and ground water samples were analyzed and results are compared and discussed. Some samples from northern areas were also analyzed for iodide and fluoride and compared. Intake of fluoride and iodide from water of different areas is also compared. Water samples, which caused bone deformation in certain areas in Punjab due to excess fluoride, were also analyzed for fluoride and results are presented. (author)

  8. Alpha-lipoic acid induces sodium iodide symporter expression in TPC-1 thyroid cancer cell line

    International Nuclear Information System (INIS)

    Choi, Hyun-Jeung; Kim, Tae Yong; Ruiz-Llorente, Sergio; Jeon, Min Ji; Han, Ji Min; Kim, Won Gu; Shong, Young Kee; Kim, Won Bae

    2012-01-01

    Introduction: Patients with metastatic thyroid cancers that do not uptake iodine need effective therapeutic option. Differentiation-inducing agents have been tried to restore functional expression of sodium iodide symporter (NIS) without success. Our objective was to assess the effect of alpha-lipoic acid (ALA), known as potential antioxidant, on expression of sodium iodide symporter in thyroid cancer cells. Methods: Human thyroid cancer-derived cell lines, TPC-1, were treated with ALA, and changes in NIS mRNA and protein expression were measured. ALA's effect on NIS gene promoter was evaluated, and functional NIS expression was assessed by iodide uptake assay. Results: Treatment with ALA increased NIS mRNA expression up to ten folds of control dose-dependently after 24 h of exposure. ALA increased NIS promoter activity, and increased iodide uptake by 1.6 fold. ALA induced expression of NIS protein, but had no significant effect on the plasma membrane trafficking. ALA increased phosphorylation of CREB and nuclear translocation of pCREB, and co-treatment of ALA and trichostatin A increased iodide uptake by three folds in TPC-1 cells. Conclusions: ALA is a potential agent to increase NIS transcription in TPC-1. It could be used as an adjunctive agent to increase efficacy of radioiodine therapy if combined with a strategy to increase NIS protein trafficking to cell membrane.

  9. An investigation of sodium iodide solubility in sodium-stainless steel systems

    International Nuclear Information System (INIS)

    Sagawa, Norihiko; Tashiro, Suguru

    1996-01-01

    Sodium iodide and major constituents of stainless steel in sodium are determined by using the steel capsules to obtain a better understanding on contribution of the constituents to the apparent iodide solubility in sodium. The capsule loaded with 20 g sodium and 0.1 - 0.3 g powder of sodium iodide is heated at its upper part in a furnace and cooled at its bottom on brass plates to establish a large temperature gradient along the capsule tube. After a given period of equilibration, the iodide and constituents are fixed in solidified sodium by quick quenching of the capsules. Sodium samples are taken from the sectioned capsule tube and submitted to sodium dissolution by vaporized water for determination of the iodine and to vacuum distillation for determination of the metal elements. Iron and nickel concentrations are observed to be lower in the samples at higher iodine concentrations. Chromium and manganese concentrations are seen to be insensitive to the iodine concentrations. The observations can be interpreted by a model that sodium oxide combines with metal iodide in sodium to form a complex compound and with consideration that the compound will fall and deposit onto the bottom of the capsule by thermal diffusion. (author)

  10. The value of iodide as a parameter in the chemical characterisation of groundwaters

    Science.gov (United States)

    Lloyd, J. W.; Howard, K. W. F.; Pacey, N. R.; Tellam, J. H.

    1982-06-01

    Brackish and saline groundwaters can severely constrain the use of fresh groundwaters. Their chemical characterisation is important in understanding the hydraulic conditions controlling their presence in an aquifer. Major ions are frequently of limited value but minor ions can be used. Iodide in groundwater is particularly significant in many environments due to the presence of soluble iodine in aquifer matrix materials. Iodide is found in groundwaters in parts of the English Chalk aquifer in concentrations higher than are present in modern seawater. Its presence is considered as a indication of groundwater residence and is of use in the characterisation of fresh as well as saline waters. Under certain circumstances modern seawater intrusion into aquifers along English estuaries produces groundwaters which are easily identified due to iodide enrichment from estuarine muds. In other environments iodide concentrations are of value in distinguishing between groundwaters in limestones and shaly gypsiferous rocks as shown by a study in Qatar, while in an alluvial aquifer study in Peru iodide has been used to identify groundwaters entering the aquifer from adjacent granodiorites.

  11. Stable iodide doping induced by photonic curing for carbon nanotube transparent conductive films

    Science.gov (United States)

    Wachi, Atsushi; Nishikawa, Hiroyuki; Zhou, Ying; Azumi, Reiko

    2018-06-01

    Doping has become crucial for achieving stable and high-performance conductive transparent carbon nanotube (CNT) films. In this study, we systematically investigate the doping effects of a few materials including alkali metal iodides, nonmetal iodide, and metals. We demonstrate that photonic curing can enhance the doping effects, and correspondingly improve the conductivity of CNT films, and that such iodides have better doping effects than metals. In particular, doping with a nonmetal compound (NH4I) shows the largest potential to improve the conductivity of CNT films. Typically, doping with metal iodides reduces the sheet resistance (R S) of CNT films with 70–80% optical transmittances at λ = 550 nm from 600–2400 to 250–440 Ω/square, whereas doping with NH4I reduces R S to 57 and 84 Ω/square at 74 and 84% optical transmittances, respectively. Interestingly, such a doped CNT film exhibits only a slight increase in sheet resistance under an extreme environment of high temperature (85 °C) and high relative humidity (85%) for 350 h. The results suggest that photonic-curing-induced iodide doping is a promising approach to producing high-performance conductive transparent CNT films.

  12. Functional activity of human sodium/iodide symporter in tumor cell lines

    International Nuclear Information System (INIS)

    Petrich, T.; Knapp, W.H.; Poetter, E.

    2003-01-01

    Aim: The sodium/iodide symporter (NIS) actively transports iodide into thyrocytes. Thus, NIS represents a key protein for diagnosis and radioiodine therapy of differentiated thyroid cancer. Additionally, in the future the NIS gene may be used for cancer gene therapy of non-thyroid-derived malignancies. In this study we evaluated the functionality of NIS with respect to iodide uptake in a panel of tumor cell lines and compared this to gene transfer efficiency. Methods: A human NIS-containing expression vector and reporter-gene vectors encoding and beta;-Galactosidase- or EGFP were used for transient transfection of 13 tumor cell lines. Following transfection measurements of NIS-mediated radioiodide uptake using Na 125 I and of transfection efficiency were performed. The latter included β;-Galactosidase activity measurements using a commercial kit and observation by fluorescence microscopy for EGFP expression. Results: In contrast to respective parental cells, most NIS-transfected cell lines displayed high, perchlorate-sensitive radioiodide uptake. Differences in radioiodide uptake between cell lines apparently corresponded to transfection efficiencies, as judged from reporter-gene assays. Conclusion: With respect to iodide uptake we provide evidence that NIS is functional in different cellular context. As iodide uptake capacity appears to be well correlated to gene transfer efficiency, cell type-specific actions on NIS (e. g. post-translational modification such as glycosylation) are not inhibitory to NIS function. Our data support the promising role of NIS in cancer gene therapy strategies. (orig.)

  13. Creation of the technical adsorbent from local raw materials

    International Nuclear Information System (INIS)

    Isobaev, M.D.; Davlatnazarova, M.D.; Abdullaev, T.H.

    2016-01-01

    The results showed the possibility of obtaining effective adsorbents of walnut shell and the sunflower for environmental purposes, in particular for the purification of polluted waters from heavy metals. It has been shown, that 1 g of walnut shell adsorbent can adsorb on its surface ions of lead in amount of 47% by weight. The dependence of the adsorption activity of the semi-coke received from walnut shell from particle size and concentration of the solution. (author)

  14. Growth and characterisation of lead iodide single crystals

    International Nuclear Information System (INIS)

    Tonn, Justus

    2012-01-01

    The work in hand deals with the growth and characterisation of lead iodide (PbI 2 ) single crystals. PbI 2 is regarded as a promising candidate for low-noise X- and gamma ray detection at room temperature. Its benefits if compared to conventional materials like HgI 2 , CdTe, Si, or GaAs lie in a band gap energy of 2.32 eV, an excellent ability to absorb radiation, and a high electrical resistivity. For an application of PbI 2 as detector material the growth and characterisation of crystals with high chemical and structural quality is extremely challenging. In light of this, the effectiveness of zone purification of the PbI 2 used for crystal growth was confirmed by spectroscopic analysis. Furthermore, technological aspects during processing of purified PbI 2 were investigated. With the help of thermal analysis, a correlation was found between the degree of exposing the source material to oxygen from the air and the structural quality of the resulting crystals. A hydrogen treatment was applied to PbI 2 as an effective method for the removal of oxidic pollutions, which resulted in a significant reduction of structural defects like polytypic growth and stress-induced cracking. The growth of PbI 2 single crystals was, among others, carried out by the Bridgman-Stockbarger method. In this context, much effort was put on the investigation of influences resulting from the design and preparation of ampoules. For the first time, crystal growth of PbI 2 was also carried out by the Czochralski method. If compared to the Bridgman-Stockbarger method, the Czochralski technique allowed a significantly faster growth of nearly crack-free crystals with a reproducible predetermination of crystallographic orientation. By an optimised sample preparation of PbI 2 , surface orientations perpendicular to the usually cleaved (0001) plane were realised. It is now possible to determine the material properties along directions which were so far not accessible. Thus, for example, the ratio of

  15. WGS-Adsorbent Reaction Studies at Laboratory Scale

    International Nuclear Information System (INIS)

    Marano, M.; Torreiro, Y.

    2014-01-01

    This document reports the most significant results obtained during the experimental work performed under task WGS adsorbent experimental studies within CAPHIGAS project (National Research Plan 2008-2011, ref: ENE2009-08002). The behavior of the binary adsorbent-catalyst system which will be used in the hybrid system is described in this document. Main results reported here were used during the design and development of the hybrid system adsorbent catalyst- membrane proposed in the CAPHIGAS project. The influence of main operating parameters and the optimized volume ratio adsorbent-catalyst are also presented in this report. (Author)

  16. Neutralization of Rubidium Adsorbate Electric Fields by Electron Attachment

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, J. A. [Univ. of Oklahoma, Norman, OK (United States); Kim, E. [Univ. of Nevada, Las Vegas, NV (United States); Rittenhouse, S. T. [Western Washington Univ., Bellingham, WA (United States); US Naval Academy, Annapolis, MD (United States); Weck, Philippe F [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sadeghpour, H. R. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Shaffer, J. P. [Univ. of Oklahoma, Norman, OK (United States)

    2015-10-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric elds resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the Rb induces a negative electron affnity (NEA) on the quartz surface. The NEA surface allows for low energy electrons to bind to the surface and cancel the electric eld from the Rb adsorbates. Our results have implications for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface.

  17. Lipid oxidation. Part 2. Oxidation products of olive oil methyl esters.

    Science.gov (United States)

    Pokorný, J; Tài, P; Parízková, H; Smidrkalová, E; El-Tarras, M F; Janícek, G

    1976-01-01

    Olive oil was converted into methyl esters which were autoxidized at 60 degrees C. The composition of oxidized products was determined by the comparison of infrared spectra and NMR spectra of the original and acetylated samples, the sample reduced with potassium iodide and the acetylated reduced sample. Oxidized products were separated by preparative thin layer chromatography on silica gel and characterized by selective detection and by infrared spectrometry of the fractions. The oxidation products consisted of hydroperoxido butyl oleate, substituted hydroperoxides, mono- and disubstituted monomeric derivatives and a small amount of oligomers.

  18. A convenient synthesis of deuterated leukotriene A sub 4 methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Bestmann, H.J.; Roeder, T. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Organische Chemie); Meese, C.O. (Fischer-Bosch-Inst. fuer Klinische Pharmakologie, Stuttgart (Germany, F.R.))

    1989-11-01

    2,2,3,3-({sup 2}H{sub 4})-1-Iodopentane was prepared in four steps from propargyl alcohol and used in the C-alkylation of the THP-protected 3-butyne-1-ol. Subsequent protective group removal, semi-deuteration of the acetylenic alcohol and further transformation by known methods afforded the labelled key reagent 3,4,6,6,7,7-({sup 2}H{sub 6})-(Z)-(3-nonen-1-yl)triphenylphosphonium iodide. Wittig olefination of epoxy dienal with the ylide generated from the latter completed the convenient synthesis of hexadeuterated leukotriene A{sub 4} methyl ester. (author).

  19. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  20. Ion exchange/adsorbent pilot plant

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A decontamination of greater than 99% of the actinides and fission products contained in radioactive waste water can be obtained using ion exchange resins. A system for achieving this result is described in this paper. This ion exchange pilot-plant design is the culmination of five years of study of the decontamination of radioactive waste streams by ion exchange resins and other adsorbents at Mound. In order to maintain maximum flexibility of treatments, this pilot-plant design is a conceptual design with specific flows, resins, and column specifications, but with many optional features and no rigid equipment specifications. This flexibility allows the system to be amenable to almost any radioactive waste stream. Very specific designs can be constructed from this conceptual design for the treatment of any specific waste stream. Operating and capital costs are also discussed. 1 figure, 5 tables

  1. Canyon solvent cleaning with solid adsorbents

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributyl phosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, product decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown that carbonate washing, although removing residual solvent activity, does not remove binding ligands that hold fission products in the solvent. Treatment of solvent with a solid adsorbent removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  2. Arsenic Remediation by Synthetic and Natural Adsorbents

    Directory of Open Access Journals (Sweden)

    Muhammad Saqaf Jagirani

    2017-06-01

    Full Text Available The contagion of toxic metals in water is a serious environmental and health concern and threatening problem worldwide. Particularly arsenic contamination in ground water has became great dilemma in the earlier decades. With advent in research for arsenic remediation, standard of drinking water is improving and now reduced to few parts per million (ppm level of arsenic in drinking water sources. However, due to continuous enhancement in environmental pollution, remediation techniques are still needed to achieve the drinking water quality standard. Development of novel and economically feasible removal techniques or materials for selective separation of this toxic specie has been the main focus of research. Several arsenic removal techniques, including membrane separation, coagulation, precipitation, anion exchange have been developed. The aim of this article is to review briefly arsenic chemistry and previous and current available technologies that have been reported various low-cost adsorbents for arsenic removal.

  3. The condensation of water on adsorbed viruses.

    Science.gov (United States)

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to condensation/evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  4. Applications of core level spectroscopy to adsorbates

    International Nuclear Information System (INIS)

    Nilsson, Anders

    2002-01-01

    In the following review different applications of core-level spectroscopy to atomic and molecular adsorbates will be shown. Core-holes are created through core-level ionization and X-ray absorption processes and the core-hole decays by radiant and non-radiant processes. This forms the basis for X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, Auger electron spectroscopy and X-ray emission spectroscopy. We will demonstrate how we can use the different methods to obtain information about the chemical state, local geometric structure, nature of chemical bonding and dynamics in electron transfer processes. The adsorption of N 2 and CO on Ni(100) will be used as prototype systems for chemisorption while N 2 on graphite and Ar on Pt for physisorption

  5. In vitro hydroxyapatite adsorbed salivary proteins

    International Nuclear Information System (INIS)

    Vitorino, Rui; Lobo, Maria Joao C.; Duarte, Jose; Ferrer-Correia, Antonio J.; Tomer, Kenneth B.; Dubin, Joshua R.; Domingues, Pedro M.; Amado, Francisco M.L.

    2004-01-01

    In spite of the present knowledge about saliva components and their respective functions, the mechanism(s) of pellicle and dental plaque formation have hitherto remained obscure. This has prompted recent efforts on in vitro studies using hydroxyapatite (HA) as an enamel model. In the present study salivary proteins adsorbed to HA were extracted with TFA and EDTA and resolved by 2D electrophoresis over a pH range between 3 and 10, digested, and then analysed by MALDI-TOF/TOF mass spectrometry and tandem mass spectrometry. Nineteen different proteins were identified using automated MS and MS/MS data acquisition. Among them, cystatins, amylase, carbonic anhydrase, and calgranulin B, were identified

  6. Chemodynamics of Methyl Parathion and Ethyl Parathion: Adsorption Models for Sustainable Agriculture

    Science.gov (United States)

    Rafique, Uzaira; Balkhair, Khaled S.; Ashraf, Muhammad Aqeel

    2014-01-01

    The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude) than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue. PMID:24689059

  7. Chemodynamics of Methyl Parathion and Ethyl Parathion: Adsorption Models for Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Noshabah Tabassum

    2014-01-01

    Full Text Available The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue.

  8. Biodegradation of bacterial polysaccharides adsorbed on montmorillonite

    International Nuclear Information System (INIS)

    Guckert, A.; Tok, H.H.; Jacquin, F.

    1977-01-01

    In this research, by means of a model, a study was made of the biodegradation of microbial organic compounds adsorbed on clays, with a parallel experiment on Fontainebleau sand serving as the control. During incubation the three classes of organic matter ( 14 C-labelled glucose, 14 C-labelled polysaccharides and 14 C-labelled microbial cells) mineralize more actively in the presence of sand than in the presence of clay, since the latter provides protection against biodegradation. Mineralization of the adsorbed organic compounds, however, is marked by clear-cut differences after three weeks - glucose (55%)>polysaccharides (43%)>microbial organisms (7.3%). After incubation, chemical extraction of the organo-mineral complexes by alkaline solvents shows only water-soluble and alkali-soluble products in the case of sand; conversely, in that of montmorillonite the bulk of the 14 C was found in the non-extractable fraction or humin (18.1% of the initial 14 C for glucose, 27.3% for the polysaccharides, and 67.6% for the microbial organisms). A second incubation carried out after a phase in which there was drying and remoistening of the organo-mineral complexes, brings to light the important part played by climatic alternations during the biodegradation process. A new mineralization phase is observed, affecting more the bacterial organisms (14.1%) than the polysaccharides (6.3%), with the glucose-base complexes occupying an intermediate position (11.2%). The chemical fractioning of the organo-mineral complexes following re-incubation shows the stability of 14 C in humin very clearly, especially in the case of polysaccharides, where the mineralization phase relates primarily to the products extractable with alkalis. (author)

  9. Effect of iodide on glucose oxidation and 32P incorporation into phospholipids stimulated by different agents in dog thyroid slices

    International Nuclear Information System (INIS)

    Tseng, F.Y.; Rani, C.S.; Field, J.B.

    1989-01-01

    Since iodide (I-) inhibits TSH stimulation of cAMP formation, which mediates most of the effects of the hormone, it has been assumed that this accounts for the inhibitory action of iodide on the thyroid. However, TSH stimulation of 32P incorporation into phospholipids and stimulation of thyroid metabolism by other agonists, such as carbachol, phorbol esters, and ionophore A23187, is not cAMP mediated. The present studies examined the effect of iodide on stimulation of glucose oxidation and 32P incorporation into phospholipids by TSH and other agonists to determine if the inhibition of cAMP formation was responsible for the action of iodide. Preincubation of dog thyroid slices for 1 h with iodide (10(-4) M) inhibited TSH-, (Bu)2cAMP-, carbachol-, methylene blue-, 12-O-tetradecanoyl phorbol-13-acetate-, ionophore A23187-, prostaglandin E1-, and cholera toxin-stimulated glucose oxidation. I- also inhibited the stimulation by TSH, 12-O-tetradecanoyl phorbol-13-acetate, carbachol, and ionophore A23187 of 32P incorporation into phospholipids. The inhibition was similar whether iodide was added 2 h before or simultaneously with the agonist. I- itself sometimes stimulated basal glucose oxidation, but had no effect on basal 32P incorporation into phospholipids. The effects of iodide on basal and agonist-stimulated thyroid metabolism were blocked by methimazole (10(-3) M). When dog thyroid slices were preloaded with 32PO4 or [1-14C]glucose, the iodide inhibition of agonist stimulation disappeared, suggesting that the effect of iodide involves the transport process. In conclusion, I- inhibited stimulation of glucose oxidation and 32P incorporation into phospholipids by all agonists, indicating that the effect is independent of the cAMP system and that iodide autoregulation does not only involve this system. Oxidation and organification of iodide are necessary for the inhibition

  10. New Microporous Polymer Electrolyte Based on Polysiloxane Grafted with Imidazolium Iodide Moieties for DSSC

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2011-01-01

    Full Text Available Two types of polysiloxane grafted with different ratio of imidazolium iodide moieties (IL-SiO2 have been synthesized to develop a micro-porous polymer electrolyte for quasi-solid-state dye-sensitized solar cells. The samples were characterized by 1HNMR, FT-IR spectrum, XRD, TEM and SEM, respectively. Moreover, the ionic conductivity of the electrolytes was measured by electrochemical workstation. Nanostructured polysiloxane containing imidazolium iodide showed excellent compatibility with organic solvent and polymer matrix for its ionic liquid characteristics. Increasing the proportion of imidazolium iodide moieties in polysiloxane improved the electrochemical behavior of the gel polymer electrolyte. A dye-sensitized solar cell with gel polymer electrolyte yielded an open-circuit voltage of 0.70 V, short-circuit current of 11.19 mA cm−2, and the conversion efficiency of 3.61% at 1 sun illumination.

  11. The distribution of radioiodine administrated to pregnant mice and the effect of non radioactive iodide

    International Nuclear Information System (INIS)

    Okui, Toyo; Kobayashi, Satoshi

    1987-01-01

    Radioiodine, 131 I, which has a high fission yield in the nuclear reactor, is easily taken into the human body, accumilating in the thyroid gland, when released to the environment. 131 I was administrated orally to pregnant mice, and its transportation to the tissues, particularly the fetus, was examined closely. And further, the non-radioactive iodide, i.e., KI, was administrated to see its radiation protection effect. The transportation of 131 I to the fetus is the second highest, following the thyroid gland in the mother mouse. This transportation to the fetus becomes the higher, the larger the gestation period at which the 131 I administration is made. The administration of the non-radioactive iodide has large radiation protection effect in the thyroid gland of the mother mouse and of the fetus. But, depending on its concentration, the non-radioactive iodide may conversely increase overall exposure of the fetus. (Mori, K.)

  12. Simultaneous detection of iodine and iodide on boron doped diamond electrodes.

    Science.gov (United States)

    Fierro, Stéphane; Comninellis, Christos; Einaga, Yasuaki

    2013-01-15

    Individual and simultaneous electrochemical detection of iodide and iodine has been performed via cyclic voltammetry on boron doped diamond (BDD) electrodes in a 1M NaClO(4) (pH 8) solution, representative of typical environmental water conditions. It is feasible to compute accurate calibration curve for both compounds using cyclic voltammetry measurements by determining the peak current intensities as a function of the concentration. A lower detection limit of about 20 μM was obtained for iodide and 10 μM for iodine. Based on the comparison between the peak current intensities reported during the oxidation of KI, it is probable that iodide (I(-)) is first oxidized in a single step to yield iodine (I(2)). The latter is further oxidized to obtain IO(3)(-). This technique, however, did not allow for a reasonably accurate detection of iodate (IO(3)(-)) on a BDD electrode. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced...... and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  14. Identification of Differentially Methylated Sites with Weak Methylation Effects

    Directory of Open Access Journals (Sweden)

    Hong Tran

    2018-02-01

    Full Text Available Deoxyribonucleic acid (DNA methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ twins who have different pain sensitivities—both datasets have weak methylation effects of <1%—show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same

  15. Potentiometric sensing of iodide using polymeric membranes of microwave stabilized β-AgI

    International Nuclear Information System (INIS)

    James, Dhanya; Rao, T. Prasada

    2012-01-01

    Highlights: ► Stable β-phase was obtained by post MW irradiation of AgI precipitate. ► Constructed ISEby dispersing stable β-AgI crystals in polyvinyl chloride. ► Designed iodide ISE exhibited wide linear range and fast response. ► Highly selective with selectivity factors less than 10 −6 . ► Successfully applied to natural waters, table salt and human urine samples. - Abstract: A polymer based heterogeneous ion selective electrode (ISE) membrane was fabricated for the potentiometric sensing of iodide. The sensing element used for the preparation of the ISE membrane was microwave stabilized β-AgI. Because microwave energy was found to be beneficial for causing hysteresis at the phase transition temperature of AgI, an attempt has been made to prepare stable and conductive β-AgI crystals by post microwave irradiation under high pressure. A conventionally precipitated AgI based ISE was also fabricated for comparative studies. The β-AgI based ISE could respond to a wide range of iodide concentrations (1 × 10 −8 to 1 M) within 60 s with a detection limit of 10 nM. The ISE gave stable response to iodide ions in a pH range of 2.0–8.0 and was highly selective in the presence of various interfering ions. The performance of the proposed iodide ISE in the analysis of natural and seawater samples was encouraging, and the determination of iodide in table salt and human urine samples was explained using the developed sensor.

  16. Efficient photoreductive decomposition of N-nitrosodimethylamine by UV/iodide process

    International Nuclear Information System (INIS)

    Sun, Zhuyu; Zhang, Chaojie; Zhao, Xiaoyun; Chen, Jing; Zhou, Qi

    2017-01-01

    Highlights: • N-nitrosodimethylamine (NDMA) was effectively decomposed by UV/iodide process. • NDMA was completely converted to nontoxic end products by UV/iodide process. • The photoreductive process was mainly attributed to the attack of hydrated electrons on the photoexcited NDMA. • The elimination of toxic intermediates was greatly enhanced as pH increased, but its effect on NDMA removal was negligible. - Abstract: N-nitrosodimethylamine (NDMA) has aroused extensive concern as a disinfection byproduct due to its high toxicity and elevated concentration levels in water sources. This study investigates the photoreductive decomposition of NDMA by UV/iodide process. The results showed that this process is an effective strategy for the treatment of NDMA with 99.2% NDMA removed within 10 min. The depletion of NDMA by UV/iodide process obeyed pseudo-first-order kinetics with a rate constant (k_1) of 0.60 ± 0.03 min"−"1. Hydrated electrons (e_a_q"−) generated by the UV irradiation of iodide were proven to play a critical role. Dimethylamine (DMA) and nitrite (NO_2"−) were formed as the main intermediate products, which completely converted to formate (HCOO"−), ammonium (NH_4"+) and nitrogen (N_2). Therefore, not only the high efficiencies in NDMA destruction, but the elimination of toxic intermediates make UV/iodide process advantageous. A photoreduction mechanism was proposed: NDMA initially absorbed photons to a photoexcited state, and underwent a cleavage of N−NO bond under the attack of e_a_q"−. The solution pH had little impact on NDMA removal. However, alkaline conditions were more favorable for the elimination of DMA and NO_2"−, thus effectively reducing the secondary pollution.

  17. Efficient photoreductive decomposition of N-nitrosodimethylamine by UV/iodide process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhuyu; Zhang, Chaojie, E-mail: myrazh@tongji.edu.cn; Zhao, Xiaoyun; Chen, Jing; Zhou, Qi

    2017-05-05

    Highlights: • N-nitrosodimethylamine (NDMA) was effectively decomposed by UV/iodide process. • NDMA was completely converted to nontoxic end products by UV/iodide process. • The photoreductive process was mainly attributed to the attack of hydrated electrons on the photoexcited NDMA. • The elimination of toxic intermediates was greatly enhanced as pH increased, but its effect on NDMA removal was negligible. - Abstract: N-nitrosodimethylamine (NDMA) has aroused extensive concern as a disinfection byproduct due to its high toxicity and elevated concentration levels in water sources. This study investigates the photoreductive decomposition of NDMA by UV/iodide process. The results showed that this process is an effective strategy for the treatment of NDMA with 99.2% NDMA removed within 10 min. The depletion of NDMA by UV/iodide process obeyed pseudo-first-order kinetics with a rate constant (k{sub 1}) of 0.60 ± 0.03 min{sup −1}. Hydrated electrons (e{sub aq}{sup −}) generated by the UV irradiation of iodide were proven to play a critical role. Dimethylamine (DMA) and nitrite (NO{sub 2}{sup −}) were formed as the main intermediate products, which completely converted to formate (HCOO{sup −}), ammonium (NH{sub 4}{sup +}) and nitrogen (N{sub 2}). Therefore, not only the high efficiencies in NDMA destruction, but the elimination of toxic intermediates make UV/iodide process advantageous. A photoreduction mechanism was proposed: NDMA initially absorbed photons to a photoexcited state, and underwent a cleavage of N−NO bond under the attack of e{sub aq}{sup −}. The solution pH had little impact on NDMA removal. However, alkaline conditions were more favorable for the elimination of DMA and NO{sub 2}{sup −}, thus effectively reducing the secondary pollution.

  18. Multicompartmental model for iodide, thyroxine, and triiodothyronine metabolism in normal and spontaneously hyperthyroid cats

    Energy Technology Data Exchange (ETDEWEB)

    Hays, M.T.; Broome, M.R.; Turrel, J.M.

    1988-06-01

    A comprehensive multicompartmental kinetic model was developed to account for the distribution and metabolism of simultaneously injected radioactive iodide (iodide*), T3 (T3*), and T4 (T4*) in six normal and seven spontaneously hyperthyroid cats. Data from plasma samples (analyzed by HPLC), urine, feces, and thyroid accumulation were incorporated into the model. The submodels for iodide*, T3*, and T4* all included both a fast and a slow exchange compartment connecting with the plasma compartment. The best-fit iodide* model also included a delay compartment, presumed to be pooling of gastrosalivary secretions. This delay was 62% longer in the hyperthyroid cats than in the euthyroid cats. Unexpectedly, all of the exchange parameters for both T4 and T3 were significantly slowed in hyperthyroidism, possibly because the hyperthyroid cats were older. None of the plasma equivalent volumes of the exchange compartments of iodide*, T3*, or T4* was significantly different in the hyperthyroid cats, although the plasma equivalent volume of the fast T4 exchange compartments were reduced. Secretion of recycled T4* from the thyroid into the plasma T4* compartment was essential to model fit, but its quantity could not be uniquely identified in the absence of multiple thyroid data points. Thyroid secretion of T3* was not detectable. Comparing the fast and slow compartments, there was a shift of T4* deiodination into the fast exchange compartment in hyperthyroidism. Total body mean residence times (MRTs) of iodide* and T3* were not affected by hyperthyroidism, but mean T4* MRT was decreased 23%. Total fractional T4 to T3 conversion was unchanged in hyperthyroidism, although the amount of T3 produced by this route was increased nearly 5-fold because of higher concentrations of donor stable T4.

  19. Multicompartmental model for iodide, thyroxine, and triiodothyronine metabolism in normal and spontaneously hyperthyroid cats

    International Nuclear Information System (INIS)

    Hays, M.T.; Broome, M.R.; Turrel, J.M.

    1988-01-01

    A comprehensive multicompartmental kinetic model was developed to account for the distribution and metabolism of simultaneously injected radioactive iodide (iodide*), T3 (T3*), and T4 (T4*) in six normal and seven spontaneously hyperthyroid cats. Data from plasma samples (analyzed by HPLC), urine, feces, and thyroid accumulation were incorporated into the model. The submodels for iodide*, T3*, and T4* all included both a fast and a slow exchange compartment connecting with the plasma compartment. The best-fit iodide* model also included a delay compartment, presumed to be pooling of gastrosalivary secretions. This delay was 62% longer in the hyperthyroid cats than in the euthyroid cats. Unexpectedly, all of the exchange parameters for both T4 and T3 were significantly slowed in hyperthyroidism, possibly because the hyperthyroid cats were older. None of the plasma equivalent volumes of the exchange compartments of iodide*, T3*, or T4* was significantly different in the hyperthyroid cats, although the plasma equivalent volume of the fast T4 exchange compartments were reduced. Secretion of recycled T4* from the thyroid into the plasma T4* compartment was essential to model fit, but its quantity could not be uniquely identified in the absence of multiple thyroid data points. Thyroid secretion of T3* was not detectable. Comparing the fast and slow compartments, there was a shift of T4* deiodination into the fast exchange compartment in hyperthyroidism. Total body mean residence times (MRTs) of iodide* and T3* were not affected by hyperthyroidism, but mean T4* MRT was decreased 23%. Total fractional T4 to T3 conversion was unchanged in hyperthyroidism, although the amount of T3 produced by this route was increased nearly 5-fold because of higher concentrations of donor stable T4

  20. DNA methylation in obesity

    Directory of Open Access Journals (Sweden)

    Małgorzata Pokrywka

    2014-11-01

    Full Text Available The number of overweight and obese people is increasing at an alarming rate, especially in the developed and developing countries. Obesity is a major risk factor for diabetes, cardiovascular disease, and cancer, and in consequence for premature death. The development of obesity results from the interplay of both genetic and environmental factors, which include sedentary life style and abnormal eating habits. In the past few years a number of events accompanying obesity, affecting expression of genes which are not directly connected with the DNA base sequence (e.g. epigenetic changes, have been described. Epigenetic processes include DNA methylation, histone modifications such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, as well as non-coding micro-RNA (miRNA synthesis. In this review, the known changes in the profile of DNA methylation as a factor affecting obesity and its complications are described.

  1. Theoretical and experimental investigations on the behaviour of iodine during severe accidents: organic iodide, iodine/silver reaction, iodine/iron reaction. Pt. 4: organic iodide. Final report

    International Nuclear Information System (INIS)

    Hellmann, S.; Greger, G.U.; Funke, F.; Bleier, A.; Zeeh, W.

    1995-11-01

    Analysis of the consequences of severe accidents in nuclear power plants requires knowledge of the behaviour of radionuclides relevant from the radiological viewpoint. The role played by radioiodine is particularly important. In the current modelling of iodine behaviour the heterogeneous formation of organic iodide is not adequately taken into consideration owing to a lack of data or insufficient accuracy of data. This project is intended to eliminate some gaps in critical areas. This final report, part 4, describes the tests carried out in the two relevant areas - heterogeneous formation of organic coatings in the gas phase (containment atmosphere) - heterogeneous formation of organic iodide at organic coatings in aqueous phase (containment sump). Moreover, modelling suggestions how to include the resulting knowledge in the iodine accident behaviour code IMPAIR are given. (orig.) [de

  2. Uptake of Iodide From Water in Atlantic Halibut Larvae (Hippoglossus Hippoglossus L.)

    DEFF Research Database (Denmark)

    Moren, Mari; Sloth, Jens Jørgen; Hamre, Kristin

    2008-01-01

    The natural diet of marine fish larvae, copepods, contain 60-350 mg I kg(-1), while live feed used in commercial hatcheries have iodine concentrations in the range of 1 mg kg(-1). Seawater is also considered to be an important source of iodine for marine fish. The question asked in this study is ......M. The uptake was partly blocked by perchlorate (ClO3-) which is a known inhibitor of the sodium iodide symporter. This indicates that the Atlantic halibut larvae accumulate iodide through both specific and non-specific uptake pathways....

  3. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-14

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  4. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  5. Studying the iodine leaching from the compositions based on epoxide resin and lead iodide

    International Nuclear Information System (INIS)

    Kalinin, N.N.; Elizarova, A.N.

    1988-01-01

    When studying iodine leaching, the possibility to use solid compositions, produced by incorporation of dry powdered lead iodide and its aqueous suspension into epoxide resin for long-term immobilization of iodine-129 under conditions of monitored storage, is evaluated. Analysis of the results obtained has shown that leaching rate in the first 4 days has the maximum value and constitutes (4.2 - 2700.0) x 10 -6 cm/day. Then the process of leaching is determined by diffusion mechanism. For samples, prepared by wet lead iodide incorporation the rate of leaching is higher than that of the corresponding samples prepared by dry compound incorporation

  6. Tris(1,2-dimethoxyethane-κ2O,O′iodidocalcium iodide

    Directory of Open Access Journals (Sweden)

    Siou-Wei Ou

    2012-02-01

    Full Text Available In the title complex, [CaI(C4H10O23]I, the CaII atom is seven-coordinated by six O atoms from three 1,2-dimethoxyethane (DME ligands and one iodide anion in a distorted pentagonal–bipyramidal geometry. The I atom and one of the O atoms from a DME ligand lie in the axial positions while the other O atoms lie in the basal plane. The other iodide anion is outside the complex cation.

  7. 3.2. Antibacterial activity of ethynyl-piperidol polymers and their three-iodides

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The antibacterial activity of ethynyl-piperidol polymers and their three-iodides was studied. The antibacterial films based on iodine with copolymer N-vinyl pyrrolidone, methylmethacrylate and butyl acrylate were obtained. It was found that samples containing 9-10% of iodine in copolymer have the antiseptic properties. The antibacterial properties of three-iodides grafted nitrogen containing polymers with cellulose fibrous materials were considered. The membrane-active properties of homo- and copolymers of ethynyl piperidol derivatives were considered as well.

  8. Method for removing radioactive iodine and radioactive organic iodides from effluent gases

    International Nuclear Information System (INIS)

    1975-01-01

    A method and composition for removing radioactive and organic iodides from an 131 I-containing off-gas stream is provided. The composition for removal by adsorption is a ceramic material with a surface area of from about 5 m 2 /g to about 250 m 2 /g impregnated with a metallic salt. The method for removing the iodine or iodide is accomplished by passing the off-gas stream over the ceramic material impregnated with the metallic salt. It finds special application in air filters for nuclear power plants

  9. Sorption of microamount of colloidal silver iodide on hydrated iron(III) oxide

    International Nuclear Information System (INIS)

    Kepak, F.; Nova, J.

    1975-01-01

    Sorption of a microamount of colloidal silver iodide labelled with 131 I on hydrated iron/III/ oxide suspension was studied. The sorption dependence upon pH, sorbent amount, and inert electrolyte concentration has revealed that sorption of silver iodide reaches no more than 63%. The sorption lasted one hour during which the maximum value was reached. Desorption time was one hour, as well. Except for measuring the sorption dependence on pH, the sorption pH was 7.0, temperature 24+-2 0 C. (F.G.)

  10. Vapor phase carbonylation of dimethyl ether and methyl acetate with supported transition metal catalysts

    International Nuclear Information System (INIS)

    Shikada, T.; Fujimoto, K.; Tominaga, H.O.

    1986-01-01

    The synthesis of acetic acid (AcOH) from methanol (MeOH) and carbon monoxide has been performed industrially in the liquid phase using a rhodium complex catalyst and an iodide promoter. The selectivity to AcOH is more than 99% under mild conditions (175 0 C, 28 atm). The homogeneous rhodium catalyst has been also effective for the synthesis of acetic anhydride (Ac 2 O) by carbonylation of dimethyl ether (DME) or methyl acetate (AcOMe). However, rhodium is one of the most expensive metals and its proved reserves are quite limited. It is highly desired, therefore, to develop a new catalyst as a substitute for rhodium. The authors have already reported that nickel supported on active carbon exhibits an excellent activity for the vapor phase carbonylation of MeOh in the presence of iodide promoter and under moderately pressurized conditions. In addition, corrosive attack on reactors by iodide compounds is expected to be negligible in the vapor phase system. In the present work, vapor phase carbonylation of DME and AcOMe on nickel-active carbon (Ni/A.C.) and molybdenum-active carbon (Mo/A.C.) catalysts was studied

  11. Studying Equilibrium in the Chemical Reaction between Ferric and Iodide Ions in Solution Using a Simple and Inexpensive Approach

    Science.gov (United States)

    Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna

    2016-01-01

    A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…

  12. A nuclear standard high-efficiency adsorber for iodine

    International Nuclear Information System (INIS)

    Wang Jianmin; Qian Yinge

    1988-08-01

    The structure of a nuclear standard high-efficiency adsorber, adsorbent and its performance are introduced. The performance and structure were compared with the same kind product of other firms. The results show that the leakage rate is less than 0.005%

  13. Comparative evaluation of selected starches as adsorbent for Thin ...

    African Journals Online (AJOL)

    The most commonly used is silica gel which is an inorganic adsorbent. Organic substances like cellulose, polyethylene are also used. All these are imported into Nigeria and are unhealthy for economic policies. Most commonly used adsorbent may not be easy to produce locally, but starch, which is a very common product, ...

  14. Synthesis and properties of porous zeolite aluminosilicate adsorbents

    International Nuclear Information System (INIS)

    Shilina, A.S.; Milinchuk, V.K.; Burukhin, S.B.; Gordienko, A.B.

    2015-01-01

    Environmentally safe non-energy-intensive methods of the synthesis have been developed and the properties of solid inorganic nanostructured zeolite-like adsorbents of a broad spectrum have been studied. The sorption capacities of the adsorbents with respect to various components of water pollution have been determined [ru

  15. Development of ultrafiltration and inorganic adsorbents: January--March 1977

    International Nuclear Information System (INIS)

    Koenst, J.W. Jr.

    1977-01-01

    Ultrafiltration media with and without the assistance of bone char filters were evaluated to determine their effectiveness in removing radionuclides from contaminated solutions. Precipitants, resin, adsorbents, and inorganic adsorbents were studied to determine their effectiveness in decontaminating solutions. A study of the effects of radiation on ultrafiltration media was initiated. An ultrafiltration media pilot plant was ordered and is being installed

  16. Friction and diffusion dynamics of adsorbates at surfaces

    NARCIS (Netherlands)

    Fusco, C.

    2005-01-01

    A theoretical study of the motion of adsorbates (e. g. atoms, molecules or clusters) on solid surfaces is presented, with a focus on surface diffusion and atomic-scale friction. These two phenomena are inextricably linked, because when an atomic or molecular adsorbate diffuses, or is pulled, it

  17. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Borneman, Z.; Wessling, M.

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an

  18. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of

  19. The automated radiosynthesis and purification of the opioid receptor antagonist, [6-O-methyl-11C]diprenorphine on the GE TRACERlab FXFE radiochemistry module.

    Science.gov (United States)

    Fairclough, Michael; Prenant, Christian; Brown, Gavin; McMahon, Adam; Lowe, Jonathan; Jones, Anthony

    2014-05-15

    [6-O-Methyl-(11)C]diprenorphine ([(11)C]diprenorphine) is a positron emission tomography ligand used to probe the endogenous opioid system in vivo. Diprenorphine acts as an antagonist at all of the opioid receptor subtypes, that is, μ (mu), κ (kappa) and δ (delta). The radiosynthesis of [(11)C]diprenorphine using [(11)C]methyl iodide produced via the 'wet' method on a home-built automated radiosynthesis set-up has been described previously. Here, we describe a modified synthetic method to [(11)C]diprenorphine performed using [(11)C]methyl iodide produced via the gas phase method on a GE TRACERlab FXFE radiochemistry module. Also described is the use of [(11)C]methyl triflate as the carbon-11 methylating agent for the [(11)C]diprenorphine syntheses. [(11)C]Diprenorphine was produced to good manufacturing practice standards for use in a clinical setting. In comparison to previously reported [(11)C]diprenorphine radiosyntheisis, the method described herein gives a higher specific activity product which is advantageous for receptor occupancy studies. The radiochemical purity of [(11)C]diprenorphine is similar to what has been reported previously, although the radiochemical yield produced in the method described herein is reduced, an issue that is inherent in the gas phase radiosynthesis of [(11)C]methyl iodide. The yields of [(11)C]diprenorphine are nonetheless sufficient for clinical research applications. Other advantages of the method described herein are an improvement to both reproducibility and reliability of the production as well as simplification of the purification and formulation steps. We suggest that our automated radiochemistry route to [(11)C]diprenorphine should be the method of choice for routine [(11)C]diprenorphine productions for positron emission tomography studies, and the production process could easily be transferred to other radiochemistry modules such as the TRACERlab FX C pro. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Early effects of external gamma irradiation on iodide metabolism in rat thyroid

    International Nuclear Information System (INIS)

    Niatsetskaya, Z.; Nadolnik, L.

    2006-01-01

    Full text of publication follows: The exposure of the thyroid gland to therapeutic doses of external gamma irradiation is frequently associated with thyroid dysfunction. Although late irradiation effects are well documented, little is still known about the early functional alterations in the thyroid subjected to radiation therapy. The aim of this study was to examine the early effect of single external gamma irradiation on iodide metabolism in the thyroid. The Wistar female rats were irradiated using a 60 Co installation with a constant capacity of 0.64 Gy/min. The doses used were 0.25, 0.5, 1, 2, 5 Gy. The animals were sacrificed after 24 hours following the irradiation. T he thyroid organ culture was cultivated during 24 h and than was irradiated with a single dose of 5 Gy. The thyroid tissue was assayed for thyro-peroxidase activity and concentrations of total, free and protein -binding iodide. It was shown that the 0.25 Gy irradiation depressed thyroid iodide uptake, which was manifested in decreasing total iodide by 25%. The same tendency was observed after the 0.5 Gy irradiation. In the 1, 2, 5 Gy groups, the concentrations of total and free iodide increased by 26 -34% and 50-68%, accordingly. The level of protein-binding iodide in these groups was within the control values. However, protein-binding/total iodide and protein binding/ free iodide ratios decreased by 17 -41%, suggesting inhibition of thyroglobulin iodination. Thyro-peroxidase (T.P.O.) plays a key role in thyroid hormone synthesis by catalyzing both the iodination of thyroglobulin and the coupling some of the iodo-tyrosyl residues. After 24 hours on irradiation, a 31.5-54% dose-dependent inhibition of T.P.O. activity was shown in the 1, 2 and 5 Gy groups. The irradiation of the rat thyroid organ culture with a single dose of 5 Gy also led to significant inhibition of T.P.O. by 56.91% after 2 hours. We compared the enzyme kinetics of thyro-peroxidase from thyroid microsomal fraction control and

  1. Ionogenic adsorbents based on local raw materials for radiation protection

    International Nuclear Information System (INIS)

    Isobaev, M.D.; Davlatnazarova, M.; Turdialiev, M.Z.; Abdullayev, T.H.; Pulatov, E.H.

    2012-01-01

    The successful management of uranium wastes and creating the conditions for effective rehabilitation activities require special adsorbents capable of holding on the surface complexes, including radioactive elements. Currently tested and have shown promising synthetic adsorbents based pitted apricot fruits and other fruit plants. This report presents data for the establishment of ionic type available adsorbents based on Tajikistan coal. As the base for the creation of this type of adsorbent were taken the coal of the 'Ziddi' deposits. As follows from our data on the chemical composition, the studied coals contain more than 20% of the ash. According to the available literature theses ashes contains various minerals compositions that can form the adsorbent's active surface. Thus, the model for this type of activated carbon can serve as a mixture of zeolite, ion exchange resins and activated carbon itself.

  2. Processing method and device for iodine adsorbing material

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiga, Reiko.

    1997-01-01

    An iodine adsorbing material adsorbing silver compounds is reacted with a reducing gas, so that the silver compounds are converted to metal silver and stored. Then, the silver compounds are not melted or recrystallized even under a highly humid condition, accordingly, peeling of the adsorbed materials from a carrier can be prevented, and the iodine adsorbing material can be stored stably. Since the device is disposed in an off gas line for discharging off gases from a nuclear power facility, the iodine adsorbing material formed by depositing silver halides to the carrier is contained, and a reducing or oxidizing gas is supplied to the vessel as required, and silver halides can be converted to metal silver or the metal silver can be returned to silver halide. (T.M.)

  3. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  4. Noble gas separation with the use of inorganic adsorbents

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.; Christian, J.D.; Paplawsky, W.J.

    1979-01-01

    A noble gas separation process is proposed for application to airborne nuclear fuel reprocessing plant effluents. The process involves the use of inorganic adsorbents for the removal of contaminant gases and noble gas separation through selective adsorption. Water and carbon dioxide are removed with selected zeolites that do not appreciably adsorb the noble gases. Xenon is essentially quantitatively removed with a specially developed adsorbent using conventional adsorption-desorption techniques. Oxygen is removed to low ppM levels by the use of a rapid cycle adsorption technique on a special adsorbent leaving a krypton-nitrogen mixture. Krypton is separated from nitrogen with a special adsorbent operated at about -80 0 C. Because the separation process does not require high pressures and oxygen is readily removed to sufficiently limit ozone formation to insignificant levels, appreciable capital and operating cost savings with this process are possible compared with other proposed processes. In addition, the proposed process is safer to operate

  5. Flow boundary conditions for chain-end adsorbing polymer blends.

    Science.gov (United States)

    Zhou, Xin; Andrienko, Denis; Delle Site, Luigi; Kremer, Kurt

    2005-09-08

    Using the phenol-terminated polycarbonate blend as an example, we demonstrate that the hydrodynamic boundary conditions for a flow of an adsorbing polymer melt are extremely sensitive to the structure of the epitaxial layer. Under shear, the adsorbed parts (chain ends) of the polymer melt move along the equipotential lines of the surface potential whereas the adsorbed additives serve as the surface defects. In response to the increase of the number of the adsorbed additives the surface layer becomes thinner and solidifies. This results in a gradual transition from the slip to the no-slip boundary condition for the melt flow, with a nonmonotonic dependence of the slip length on the surface concentration of the adsorbed ends.

  6. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.

    2007-01-01

    their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D......The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along...... temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When...

  7. Methylated β-Cyclodextrins

    DEFF Research Database (Denmark)

    Schönbeck, Jens Christian Sidney; Westh, Peter; Madsen, Jens Christian

    2011-01-01

    The complexation of 6 bile salts with various methylated β-cyclodextrins was studied to elucidate how the degree and pattern of substitution affects the binding. The structures of the CDs were determined by mass spectrometry and NMR techniques, and the structures of the inclusion complexes were...

  8. Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration.

    Science.gov (United States)

    Linard, Erica N; Apul, Onur G; Karanfil, Tanju; van den Hurk, Peter; Klaine, Stephen J

    2017-08-15

    Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.

  9. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T. [ORNL; Saito, Tomonori [ORNL; Brown, Suree [ORNL; Gill, Gary [PNNL; Kuo, Li-Jung [PNNL; Wood, Jordana [PNNL

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  10. Selective labelling of apolipoproteins A-I and C-I at methionine residues by (TH) methyl exchange

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, W.S.; Harding, D.R.K.; Barling, P.M.; Sparrow, J.T.

    1985-01-01

    Apolipoproteins C-I and A-I were radioactively labelled with tritium by (TH)-methyl exchange. The methionine residues were first methylated with (TH)-methyl iodide at pH4 and the reaction products were purified by gel filtration and cation exchange chromatography. The products were then demethylated with 2-mercaptoethanol (6 M) at pH 8.6 to regenerate the apolipoproteins in an unmodified but tritiated form. The specific radioactivity for apolipoprotein C-I and A-I was 3.5 x 10W and 1.5 x 10X dpm/pmol respectively. The properties of (TH)-apolipoprotein C-I were examined by reversed phase HPLC and by incorporation into very low density lipoproteins (VLDL).

  11. Bifunctional lanthanum phosphate substrates as novel adsorbents and biocatalyst supports for perchlorate removal

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Sasidharan [Materials Science and Technology Division (India); Prajeesh, Gangadharan Puthiya Veetil; Anupama, Vijaya Nadaraja [Process Engineering and Environmental Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019 (India); Krishnakumar, Bhaskaran [Process Engineering and Environmental Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019 (India); Academy of Scientific and Industrial Research (AcSIR) (India); Hareesh, Padinhattayil [Materials Science and Technology Division (India); Nair, Balagopal N. [R and D Centre, Noritake Co. Ltd., Aichi (Japan); Warrier, Krishna Gopakumar [Materials Science and Technology Division (India); Academy of Scientific and Industrial Research (AcSIR) (India); Hareesh, Unnikrishnan Nair Saraswathy, E-mail: hareesh@niist.res.in [Materials Science and Technology Division (India); Academy of Scientific and Industrial Research (AcSIR) (India)

    2014-06-30

    Graphical abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign thermal gelation process, performed the role of dual functional sorbent facilitating perchlorate adsorption and bioremediation through the growth of perchlorate reducing microbial colonies. - Highlights: • Lanthanum phosphate monoliths as efficient perchlorate adsorbents. • And also as substrates for biofilm (perchlorate reducing bacteria) growth. • Environmentally benign thermal gelation process for substrate fabrication. • 98% adsorption efficiency for perchlorate concentrations up to 100 μg/L. • The regenerated monoliths show nearly 100% reusability. - Abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign colloidal forming process employing methyl cellulose, are reported here as excellent adsorbents of perchlorate with >98% efficiency and with 100% reusability. Additionally, the effectiveness of such substrates as biocatalyst supports that facilitate biofilm formation of perchlorate reducing microbes (Serratia marcescens NIIST 5) is also demonstrated for the first time. The adsorption of perchlorate ions is attributed to the pore structure of lanthanum phosphate substrate and the microbial attachment is primarily ascribed to its intrinsic hydrophobic property. Lanthanum phosphate thus emerges as a dual functional material that possesses an integrated adsorption/bioremediation property for the effective removal of ClO{sub 4}{sup −} which is an increasingly important environmental contaminant.

  12. Surface-enhanced raman spectroscopy of quinomethionate adsorbed on silver colloids

    International Nuclear Information System (INIS)

    Kim, Mak Soon; Kang, Jae Soo; Park, Si Bum; Lee, Mu Sang

    2003-01-01

    We have studied the surface-enhanced Raman spectroscopy (SERS) spectrum of quinomethionate (6-methyl-1,3-dithiolo(4,5-b)quinoxalin-2-one), which is an insecticide or fungicide used on vegetables and wheat. We observed no signals in the ordinary Raman spectra of solid-state quinomethionate, but when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids prepared by the Creighton et al. method. The influence of pH and the aggregation inductors (Cl - , Br - , I - , F - ) on the adsorption mechanism was investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions: The one N atom or two N atoms are chemisorbed on an Ag surface. An important contribution of the chemical mechanism was inferred when the one N atom was perpendicularly adsorbed on a surface. It is possible that quinomethionate can be detected to about 10 -5 M

  13. Kinetic studies of the retention of radioactive gases by activated carbon adsorbers

    International Nuclear Information System (INIS)

    Friedrich, V.

    1989-01-01

    A bimolecular reaction model containing the physico-chemical parameters of the adsorption process has been developed to describe the kinetics of a continuously operating adsorption column. An analytical solution of the model was found for low inlet gas concentrations and a cascade-type numerical method was used for calculations at higher inlet concentrations. When calculating accumulation and break-through curves using the cascade method the results show a strong concentration dependence at higher inlet concentrations but with decreasing concentration the curves asymptotically tend to the curve calculated by the analytical solution which is not concentration-dependent. Adsorption and desorption rate constants (K F and K B ) and active site concentration (A o ) were determined by fitting theoretical curves on experimentally measured break-through curves. The values of K F , K B , and A o were 3x10 3 cm 3 mol -1 s -1 , 2.5x10 -4 s -1 and 2.3x10 -3 mol cm -3 , respectively, for the system composed of methyl-iodine vapor as adsorbate and granuled activated carbon as adsorbent. Adsorption isotherms measured under dynamic conditions and at various temperatures were of Langmuir-type. From the temperature-dependence of the kinetic parameters the activation energy was calculated by the help of the Arrhenius-equation and the process was found exotherm with an activation energy of 67 KJ mol -1 (16 kcal mol -1 )

  14. Bifunctional lanthanum phosphate substrates as novel adsorbents and biocatalyst supports for perchlorate removal

    International Nuclear Information System (INIS)

    Sankar, Sasidharan; Prajeesh, Gangadharan Puthiya Veetil; Anupama, Vijaya Nadaraja; Krishnakumar, Bhaskaran; Hareesh, Padinhattayil; Nair, Balagopal N.; Warrier, Krishna Gopakumar; Hareesh, Unnikrishnan Nair Saraswathy

    2014-01-01

    Graphical abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign thermal gelation process, performed the role of dual functional sorbent facilitating perchlorate adsorption and bioremediation through the growth of perchlorate reducing microbial colonies. - Highlights: • Lanthanum phosphate monoliths as efficient perchlorate adsorbents. • And also as substrates for biofilm (perchlorate reducing bacteria) growth. • Environmentally benign thermal gelation process for substrate fabrication. • 98% adsorption efficiency for perchlorate concentrations up to 100 μg/L. • The regenerated monoliths show nearly 100% reusability. - Abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign colloidal forming process employing methyl cellulose, are reported here as excellent adsorbents of perchlorate with >98% efficiency and with 100% reusability. Additionally, the effectiveness of such substrates as biocatalyst supports that facilitate biofilm formation of perchlorate reducing microbes (Serratia marcescens NIIST 5) is also demonstrated for the first time. The adsorption of perchlorate ions is attributed to the pore structure of lanthanum phosphate substrate and the microbial attachment is primarily ascribed to its intrinsic hydrophobic property. Lanthanum phosphate thus emerges as a dual functional material that possesses an integrated adsorption/bioremediation property for the effective removal of ClO 4 − which is an increasingly important environmental contaminant

  15. Surface characterization of Ag/Titania adsorbents

    International Nuclear Information System (INIS)

    Samokhvalov, Alexander; Nair, Sachin; Duin, Evert C.; Tatarchuk, Bruce J.

    2010-01-01

    The Ag/Titania adsorbent for selective removal of the desulfurization-refractive polycyclic aromatic sulfur heterocycles (PASHs) from liquid hydrocarbon fuels was prepared, its total and the Ag specific surface area were determined and the surface reaction sites in the sorbent that may be active in the adsorptive selective desulfurization were characterized by several spectroscopic and surface science techniques. The sorbent contains Ag, Ti, O and spurious C on its surface, as by the XPS measurements. Silver is present as an oxide, as judged by the XPS Auger parameter (AP). The complementary electron spin resonance (ESR) spectroscopy confirms that the majority of Ag is present in the diamagnetic Ag 1+ form, with the minor concentration (∼0.1% of total Ag) present as Ag 2+ . The findings by XPS and ESR are confirmed by the XRD, UV-vis spectroscopy and thermodynamic considerations. The supported Ag is highly dispersed on the surface of the titania support, with the particle size of ∼30-60 A depending on Ag content, with an Ag specific surface area of ∼7-14 m 2 /g, vs. the total surface area of ∼114-58 m 2 /g.

  16. Protein methylation in pea chloroplasts

    International Nuclear Information System (INIS)

    Niemi, K.J.; Adler, J.; Selman, B.R.

    1990-01-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with [ 3 H-methyl]-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile [ 3 H]methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the [ 3 H]methyl group

  17. Methylation of food commodities during fumigation with methyl bromide

    International Nuclear Information System (INIS)

    Starratt, A.N.; Bond, E.J.

    1990-01-01

    Sites of methylation in several commodities (wheat, oatmeal, peanuts, almonds, apples, oranges, maize, alfalfa and potatoes) during fumigation with 14 C-methyl bromide were studied. Differences were observed in levels of the major volatiles: methanol, dimethyl sulphide and methyl mercaptan, products of O- and S-methylation, resulting from treatment of the fumigated materials with 1N sodium hydroxide. In studies of maize and wheat, histidine was the amino acid which underwent the highest level of N-methylation. (author). 24 refs, 3 tabs

  18. Radioiodine source term and its potential impact on the use of potassium iodide

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1982-01-01

    Information is presented concerning chemical forms of fission product iodine in the primary circuit; chemical forms of fission product iodine in the containment building; summary of iodine chemistry in light water reactor accidents; and impact of the radiodine source term on the potassium iodide issue

  19. Distribution of bromine in mixed iodide-bromide organolead perovskites and its impact on photovoltaic performance

    NARCIS (Netherlands)

    Zhou, Yang; Wang, Feng; Fang, Hong-Hua; Loi, Maria Antonietta; Xie, Fang-Yan; Zhao, Ni; Wong, Ching-Ping

    2016-01-01

    Mixed iodide-bromide (I-Br) organolead perovskites are of great interest for both single junction and tandem solar cells since the optical bandgap of the materials can be tuned by varying the bromine to iodine ratio. Yet, it remains unclear how bromine incorporation modifies the properties of the

  20. Expedient Method for Samarium(II) Iodide Preparation Utilizing a Flow Approach

    Czech Academy of Sciences Publication Activity Database

    Voltrová, Svatava; Šrogl, Jiří

    2013-01-01

    Roč. 24, č. 3 (2013), s. 394-396 ISSN 0936-5214 R&D Projects: GA MŠk LH12013 Institutional support: RVO:61388963 Keywords : flow * samarium * iodide * reduction Subject RIV: CC - Organic Chemistry Impact factor: 2.463, year: 2013

  1. The sodium iodide symporter (NIS) and potential regulators in normal, benign and malignant human breast tissue.

    LENUS (Irish Health Repository)

    Ryan, James

    2011-01-01

    The presence, relevance and regulation of the Sodium Iodide Symporter (NIS) in human mammary tissue remains poorly understood. This study aimed to quantify relative expression of NIS and putative regulators in human breast tissue, with relationships observed further investigated in vitro.

  2. Silver iodide reduction in aqueous solution: application to iodine enhanced separation during spent nuclear fuels reprocessing

    International Nuclear Information System (INIS)

    Badie, Jerome

    2002-01-01

    Silver iodide is a key-compound in nuclear chemistry either in accidental conditions or during the reprocessing of spent nuclear fuel. In that case, the major part of iodine is released in molecular form into the gaseous phase at the time of dissolution in nitric acid. In French reprocessing plants, iodine is trapped in the dissolver off-gas treatment unit by two successive steps: the first consists in absorption by scrubbing with a caustic soda solution and in the second, residual iodine is removed from the gaseous stream before the stack by chemisorption on mineral porous traps made up of beds of amorphous silica or alumina porous balls impregnated with silver nitrate. Reactions of iodine species with the impregnant are assumed to lead to silver iodide and silver iodate. Enhanced separation policy would make necessary to recover iodine from the filters by silver iodide dissolution during a reducing treatment. After a brief silver-iodine chemical bibliographic review, the possible reagents listed in the literature were studied. The choice has been made to use ascorbic acid and hydroxylamine. An experimental work on silver iodide reduction by this two compounds allowed us to determinate reaction products, stoichiometry and kinetics parameters. Finally, the process has been initiated on stable iodine loaded filters samples. (author) [fr

  3. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications

    NARCIS (Netherlands)

    Fang, Hong-Hua; Wang, Feng; Adjokatse, Sampson; Zhao, Ni; Even, Jacky; Loi, Maria Antonietta

    Formamidinium lead iodide (FAPbI(3)) is a newly developed hybrid perovskite that potentially can be used in high-efficiency solution-processed solar cells. Here, the temperature-dependent dynamic optical properties of three types of FAPbI(3) perovskite films (fabricated using three different

  4. Iodide-induced thyrotoxicosis in a thyroidectomized patient with metastatic thyroid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinari, M.; Tokuyama, T.; Okamura, K.; Sato, K.; Kusuda, K.; Fujishima, M.

    1988-04-15

    An unusual case of iodide-induced thyrotoxicosis is documented in this article. The patient was a 64-year-old euthyroid man with acromegaly. He also had multiple follicular and papillary thyroid carcinomas with a metastatic lesion in the lumbar vertebrae. After a total thyroidectomy, he became slightly hypothyroid, and the lumbar lesion began to incorporate /sup 131/I by scintigraphy. When an iodine-containing contrast medium happened to be injected, a transient increase of serum thyroid hormone level was observed. After complete thyroid ablation with 83 mCi of /sup 131/I, the oral administration of 100 mg of potassium iodide for 7 days induced a prominent increase of serum thyroid hormone level. These findings indicated that the metastatic thyroid carcinoma could produce excess thyroid hormone insofar as a sufficient amount of iodide was given. Although this is the first report of such a case, iodide-induced thyrotoxicosis may not be rare in patients with thyroid carcinomas because the Wolff-Chaikoff effect is thought to be lost, and the organic iodinating activity and lysosomal protease activity are well-preserved.

  5. The Role of Connectivity on Electronic Properties of Lead Iodide Perovskite-Derived Compounds

    NARCIS (Netherlands)

    Kamminga, Machteld E; De Wijs, Gilles; Havenith, Remco W A; Blake, Graeme R; Palstra, Thomas T M

    2017-01-01

    We use a layered solution crystal growth method to synthesize high-quality single crystals of two different benzylammonium lead iodide perovskite-like organic/inorganic hybrids. The well-known (C6H5CH2NH3)(2)PbI4 phase is obtained in the form of bright orange platelets, with a structure comprised of

  6. Monochloramine determination using NN diethyl-p-phenylene-diamine. Influence of iodide traces

    International Nuclear Information System (INIS)

    Fiquet, J.M.

    1980-09-01

    When determining ''D.P.D.'' free oxidizers, the monochloramine interfers in particular for iodide levels analogous to those likely to be found in sea water. This is not so for iodate. The zero time extrapolation of the change in colour curve is one method that enables the method to be made more selective [fr

  7. Solution enthalpy of potassium iodide in furfural and its mixtures with dimethylsulfoxide

    International Nuclear Information System (INIS)

    Vlasenko, K.K.; Belov, A.A.; Vorob'ev, A.F.

    1986-01-01

    Solution enthalpy of potassium iodide in furfural-dimethylsulfoxide mixtures at 298.15 K and furfural concentration 17.3-100% are determined experimentally. K + and I - ion solvate shell composition, which in the general case doesn't correspond to the mixed solvent composition, is calculated

  8. Iodide Residues in Milk Vary between Iodine-Based Teat Disinfectants

    NARCIS (Netherlands)

    French, Elizabeth A; Mukai, Motoko; Zurakowski, Michael; Rauch, Bradley; Gioia, Gloria; Hillebrandt, Joseph R; Henderson, Mark; Schukken, Ynte H; Hemling, Thomas C

    Majority of iodine found in dairy milk comes from the diet and teat disinfection products used during milking process. The objective of this study was to evaluate the effects of 4 iodine-based teat dips on milk iodide concentrations varying in iodine level (0.25% vs. 0.5%, w/w), normal low viscosity

  9. Relaxation of the silver/silver iodide electrode in aqueous solution

    NARCIS (Netherlands)

    Peverelli, K.J.

    1979-01-01

    The aim of this study is to detect and characterize relaxation processes on silver/silver iodide electrodes in aqueous electrolyte solution. The information obtained is to be used for an estimation of the consequences of similar processes on colloidal AgI

  10. Iodide-induced thyrotoxicosis in a thyroidectomized patient with metastatic thyroid carcinoma

    International Nuclear Information System (INIS)

    Yoshinari, M.; Tokuyama, T.; Okamura, K.; Sato, K.; Kusuda, K.; Fujishima, M.

    1988-01-01

    An unusual case of iodide-induced thyrotoxicosis is documented in this article. The patient was a 64-year-old euthyroid man with acromegaly. He also had multiple follicular and papillary thyroid carcinomas with a metastatic lesion in the lumbar vertebrae. After a total thyroidectomy, he became slightly hypothyroid, and the lumbar lesion began to incorporate 131 I by scintigraphy. When an iodine-containing contrast medium happened to be injected, a transient increase of serum thyroid hormone level was observed. After complete thyroid ablation with 83 mCi of 131 I, the oral administration of 100 mg of potassium iodide for 7 days induced a prominent increase of serum thyroid hormone level. These findings indicated that the metastatic thyroid carcinoma could produce excess thyroid hormone insofar as a sufficient amount of iodide was given. Although this is the first report of such a case, iodide-induced thyrotoxicosis may not be rare in patients with thyroid carcinomas because the Wolff-Chaikoff effect is thought to be lost, and the organic iodinating activity and lysosomal protease activity are well-preserved

  11. Sensitive determination of iodide in the presence of large quantities of chloride

    International Nuclear Information System (INIS)

    Hainberger, L.; Lenzi, E.

    1982-01-01

    A determination of iodide with catalytic oxidation of p-phenetidine is described. A dye is formed with a maximum of absorption at 490 nm. The law of Lambert-Beer is obeyed between 0.6 and 2.2 ppm. Some of the interferents are examined. (Author)

  12. Extension of HPM Pulse Duration by Cesium Iodide Cathodes in Crossed Field Devices

    National Research Council Canada - National Science Library

    Benford, James

    1998-01-01

    .... The introduction of cathodes made from Cesium Iodide-coated (CsI) carbon fiber has shown plasma speeds reduced by factors of a few from uncoated carbon fiber, but previous work was at low diode fields of a few 10's of kV/cm...

  13. Iodide and iodate sodalites for the long-term storage of iodine-129

    International Nuclear Information System (INIS)

    Strachan, D.M.; Babad, H.

    1979-01-01

    There exist several proposals for the storage of 129 I. None of these propose the use of a mineral with demonstrated geologic stability. The work described in this paper has identified the minerals iodide and iodate sodalites [Na 8 (AlSiO 4 ) 6 I 2 /(IO 3 ) 2 ] as good candidates for the long-term storage of 129 I. 4 tables

  14. Electrokinetic properties and conductance relaxation of polystyrene and silver iodide plugs

    NARCIS (Netherlands)

    Hoven, van den J.J.

    1984-01-01

    This thesis describes an experimental study on the electrokinetic and electrical properties of concentrated polystyrene and silver iodide dispersions. The purpose of the study is to obtain information on the structure of the electrical double layer at the solid-liquid interface. Special

  15. Photocatalytic Degradation of Methyl Orange over Metalloporphyrins Supported on TiO2 Degussa P25

    Directory of Open Access Journals (Sweden)

    Xing-Jiao Huang

    2012-01-01

    Full Text Available The photocatalytic activity of meso-tetraphenylporphyrins with different metal centers (Fe, Co, Mn and Cu adsorbed on TiO2 (Degussa P25 surface has been investigated by carrying out the photodegradation of methyl orange (MO under visible and ultraviolet light irradiation. The photocatalysts were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, diffuse reflectance UV (DRS-UV-vis and infrared spectra. Copper porphyrin-sensitized TiO2 photocatalyst (CuP-TiO2 showed excellent activity for the photodegradation of MO whether under visible or ultraviolet light irradiation. Natural Bond Orbital (NBO charges analysis showed that methyl orange ion is adsorbed easier by CuP-TiO2 catalyst due to the increase of induced interactions.

  16. 13C NMR and XPS characterization of anion adsorbent with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse

    Science.gov (United States)

    Cao, Wei; Wang, Zhenqian; Zeng, Qingling; Shen, Chunhua

    2016-12-01

    Despite amino groups modified crop straw has been intensively studied as new and low-cost adsorbent for removal of anionic species from water, there is still a lack of clear characterization for amino groups, especially quaternary ammonium groups in the surface of crop straw. In this study, we used 13C NMR and XPS technologies to characterize adsorbents with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse. 13C NMR spectra clearly showed the presence of quaternary ammonium groups in lignocelluloses structure of modified crop straw. The increase of nitrogen observed in XPS survey spectra also indicated the existence of quaternary ammonium group in the surface of the adsorbents. The curve fitting of high-resolution XPS N1s and C1s spectra were conducted to probe the composition of nitrogen and carbon contained groups, respectively. The results showed the proportion of quaternary ammonium group significantly increased in the prepared adsorbent's surface that was dominated by methyl/methylene, hydroxyl, quaternary ammonium, ether and carbonyl groups. This study proved that 13C NMR and XPS could be successfully utilized for characterization of quaternary ammonium modified crop straw adsorbents.

  17. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  18. Performance of iodide vapour absorption in the venturi scrubber working in self-priming mode

    International Nuclear Information System (INIS)

    Zhou, Yanmin; Sun, Zhongning; Gu, Haifeng; Miao, Zhuang

    2016-01-01

    Highlights: • The absorption performance for iodide vapour was studied under different conditions. • A mathematical model was developed to describe the iodide absorption process. • The venturi scrubber can ensure absorption efficiiency and reduce pressure loss. - Abstract: The self-priming venturi scrubber is the key component of filtered containment venting systems for the removal of radioactive products during severe accidents in nuclear power plants. This paper is focused on the absorption performance of iodide vapour in the venturi scrubber, based on experiment and mathematical calculation. The results indicate that the absorption efficiency is closely related to solution flow rate, gas flow rate and temperature, but is not sensitive to iodide inlet concentration. When solution flow rate is low, the absorption efficiency increases rapidly with increasing the solution flow rate, and when the solution is excessive, the absorption efficiency remains around 99% stably; the influence of gas flow rate on absorption efficiency is mainly reflected in the variation of gas and liquid contacting time; when the solution flow rate is low, the increase of gas flow rate will led to an obvious decrease in absorption efficiency; temperature is not important when gas flow rate in constant but becomes effective for improving the absorption efficiency when gas velocity is constant. The proposed mathematical model can predict the iodide absorption process well in the range of experimental conditions. Especially, in the condition of lower gas flow rate and higher solution flow rate, the prediction accuracy is more satisfactory; however the accuracy of prediction will decrease at higher gas flow rates and lower solution flow rates because of neglecting the transverse exchange between gas and liquid phase.

  19. Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria.

    Science.gov (United States)

    Zhao, Dan; Lim, Choon-Ping; Miyanaga, Kazuhiko; Tanji, Yasunori

    2013-03-01

    Microbial activities in brine, seawater, or estuarine mud are involved in iodine cycle. To investigate the effects of the microbiologically induced iodine on other bacteria in the environment, a total of 13 bacteria that potentially participated in the iodide-oxidizing process were isolated from water or biofilm at a location containing 131 μg ml(-1) iodide. Three distinct strains were further identified as Roseovarius spp. based on 16 S rRNA gene sequences after being distinguished by restriction fragment length polymorphism analysis. Morphological characteristics of these three Roseovarius spp. varied considerably across and within strains. Iodine production increased with Roseovarius spp. growth when cultured in Marine Broth with 200 μg ml(-1) iodide (I(-)). When 10(6) CFU/ml Escherichia coli, Pseudomonas aeruginosa, and Bacillus pumilus were exposed to various concentrations of molecular iodine (I(2)), the minimum inhibitory concentrations (MICs) were 0.5, 1.0, and 1.0 μg ml(-1), respectively. However, fivefold increases in the MICs for Roseovarius spp. were obtained. In co-cultured Roseovarius sp. IOB-7 and E. coli in Marine Broth containing iodide (I(-)), the molecular iodine concentration was estimated to be 0.76 μg ml(-1) after 24 h and less than 50 % of E. coli was viable compared to that co-cultured without iodide. The growth inhibition of E. coli was also observed in co-cultures with the two other Roseovarius spp. strains when the molecular iodine concentration was assumed to be 0.52 μg ml(-1).

  20. A theoretical study of adsorbate-adsorbate interactions on Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    the barrier for dissociation, whereas S will increase it. The interaction with alkali atoms is mainly of an electrostatic nature. The poisoning by S is due to two kinds of repulsive interactions: a Pauli repulsion and a reduced covalent bond strength between the adsorbate and the surface d-electrons. In order...... to investigate these different interactions in more detail, we look at three different species (N atoms, and terminally bonded N(2) and CO) and use them as probes to study their interaction with two modifier atoms (Na and S). The two modifier atoms have very different properties, which allows us to decouple...

  1. Scanning tunneling spectroscopy of Co adsorbates on superconducting Pb nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Regis; Caminale, Michael; Oka, Hirofumi; Stepniak, Agnieszka; Leon Vanegas, Augusto A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2015-07-01

    Superconductivity in low-dimensional structures has become an active research area. In order to understand the superconducting pairing, long-standing work has been devoted to the pair breaking effect, where magnetic impurities break Cooper pair singlets. We performed scanning tunneling spectroscopy at low temperature on Co adsorbates on superconducting Pb nanoislands. On the Co adsorbates, we observe spectral features in the superconductor's energy gap, which we attribute to magnetic impurity induced bound states, a hallmark of the pair breaking effect. We discuss the response of the superconducting islands to the presence of Co adsorbates.

  2. Synergistic Effect of Azadirachta Indica Extract and Iodide Ions on the Corrosion Inhibition of Aluminium in Acid Media

    Energy Technology Data Exchange (ETDEWEB)

    Arab, S. T.; Al- Turkustani, A. M.; Al- Dhahiri, R. H. [King Abd El- Aziz University, Jeddah (Saudi Arabia)

    2008-06-15

    The synergistic action caused by iodide ions on the corrosion inhibition of aluminium (Al) in 0.5 M HCl in the presence of Azadirachta Indica (AZI) plant extract has been investigated using potintiodynamic polarization and impedance techniques. It is found that AZI extract inhibits the corrosion of aluminium in 0.5 M HCl. The inhibition efficiency increases with the increase in AZI extract concentration, until 24% v/v of AZI extract, then Inh.% is decreased with father increase in AZI extract concentration. The adsorption of this extract in the studied concentration is found to obey Frewendlish adsorption isotherm. The addition of iodide ions enhances the inhibition efficiency to a considerable extent. The increase in Inh.% values in presence of fixed concentration of iodide ions indicates that AZI extract forms an insoluble complex at lower AZI extract concentrations by undergoing a joint adsorption. But at higher concentrations of AZI extract, competitive adsorption is found between iodide ions and the formed complex leading to less Inh.%. The Inh.% decreased in presence of iodide ions with AZI extract than in presence of AZI extract alone at all studied iodide concentrations. The synergism parameter S {sub θ} is defined and calculated from surface coverage values. This parameter in the case of AZI extract is found to be more than unity, indicating that the enhanced inhibition efficiency caused by the addition of iodide ions.

  3. Determination of iodide, iodate and organo-iodine in waters with a new total organic iodine measurement approach.

    Science.gov (United States)

    Gong, Tingting; Zhang, Xiangru

    2013-11-01

    The dissolved iodine species that dominate aquatic systems are iodide, iodate and organo-iodine. These species may undergo transformation to one another and thus affect the formation of iodinated disinfection byproducts during disinfection of drinking waters or wastewater effluents. In this study, a fast, sensitive and accurate method for determining these iodine species in waters was developed by derivatizing iodide and iodate to organic iodine and measuring organic iodine with a total organic iodine (TOI) measurement approach. Within this method, organo-iodine was determined directly by TOI measurement; iodide was oxidized by monochloramine to hypoiodous acid and then hypoiodous acid reacted with phenol to form organic iodine, which was determined by TOI measurement; iodate was reduced by ascorbic acid to iodide and then determined as iodide. The quantitation limit of organo-iodine or sum of organo-iodine and iodide or sum of organo-iodine, iodide and iodate was 5 μg/L as I for a 40 mL water sample (or 2.5 μg/L as I for an 80 mL water sample, or 1.25 μg/L as I for a 160 mL water sample). This method was successfully applied to the determination of iodide, iodate and organo-iodine in a variety of water samples, including tap water, seawater, urine and wastewater. The recoveries of iodide, iodate and organo-iodine were 91-109%, 90-108% and 91-108%, respectively. The concentrations and distributions of iodine species in different water samples were obtained and compared. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Dynamics of CO 2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design

    KAUST Repository

    Bollini, Praveen

    2012-11-21

    Packed bed breakthrough experiments are reported for commercial zeolite 13X and 3-aminopropyl-functionalized SBA-15 silica materials with three different amine loadings. Mass and heat transfer dynamics for all four materials are modeled successfully. Amine adsorbents with open pores are found to exhibit faster mass diffusion rates compared to zeolite 13X. When amine loading is increased by coupling aminopropyl groups, premature breakthrough combined with a long tail is observed. Contrary to conventional physisorbants, finite heat losses to the column wall do not explain the long breakthrough tail. A rate model that accounts for heterogeneity in diffusion was found to accurately capture the breakthrough shape of the high loading material. Batch uptake measurements support the hypothesis that slow diffusion through the polymer phase is what hampers adsorption kinetics in the high amine loading adsorbent. The results emphasize the importance of designing materials that are not overloaded with amine sites, as excessive amine loadings can lead to depressed adsorption kinetics and premature column breakthrough. © 2012 American Chemical Society.

  5. Epidemiology of thyroid disorders and valuation of effects of iodide administration in the Sejny community (Poland) after Chernobyl accident

    International Nuclear Information System (INIS)

    Zimnicki, P.

    1993-01-01

    The epidemiology of thyroid disorders was studied and the effect of potassium iodide administration was evaluated in citizens of Sejny (Poland) community four years after Chernobyl accident. The endemic goiter was observed in this area. The elevated levels of anti-human thyroid membrane antibodies and anti-human thereoglobuline antibody were found in 5.5% of children that had undergone iodide administration after Chernobyl accident. It may result from iodide administration or from endemic goiter. (author). 127 refs, 9 figs, 16 tabs

  6. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  7. Enhanced vanillin production from ferulic acid using adsorbent resin.

    Science.gov (United States)

    Hua, Dongliang; Ma, Cuiqing; Song, Lifu; Lin, Shan; Zhang, Zhaobin; Deng, Zixin; Xu, Ping

    2007-03-01

    High vanillin productivity was achieved in the batch biotransformation of ferulic acid by Streptomyces sp. strain V-1. Due to the toxicity of vanillin and the product inhibition, fed-batch biotransformation with high concentration of ferulic acid was unsuccessful. To solve this problem and improve the vanillin yield, a biotransformation strategy using adsorbent resin was investigated. Several macroporous adsorbent resins were chosen to adsorb vanillin in situ during the bioconversion. Resin DM11 was found to be the best, which adsorbed the most vanillin and the least ferulic acid. When 8% resin DM11 (wet w/v) was added to the biotransformation system, 45 g l(-1) ferulic acid could be added continually and 19.2 g l(-1) vanillin was obtained within 55 h, which was the highest vanillin yield by bioconversion until now. This yield was remarkable for exceeding the crystallization concentration of vanillin and therefore had far-reaching consequence in its downstream processing.

  8. Production of Flocculants, Adsorbents, and Dispersants from Lignin.

    Science.gov (United States)

    Chen, Jiachuan; Eraghi Kazzaz, Armin; AlipoorMazandarani, Niloofar; Hosseinpour Feizi, Zahra; Fatehi, Pedram

    2018-04-10

    Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.

  9. Order-disorder transitions in adsorbed systems on magnetic surfaces

    International Nuclear Information System (INIS)

    Aguilera-Granja, F.; Moran-Lopez, J.L.; Instituto Politecnico Nacional, Mexico City. Centro de Investigacion y de Estudios Avanzados); Falicov, L.M.

    1984-01-01

    It is investigated the effect of adsorbed atoms on the magnetic properties of ferromagnets. The Ising model is employed considering nearest neigbours with antiferromagnetic coupling between atoms. (M.W.O.) [pt

  10. Production of Flocculants, Adsorbents, and Dispersants from Lignin

    Directory of Open Access Journals (Sweden)

    Jiachuan Chen

    2018-04-01

    Full Text Available Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.

  11. Comparative analysis of the efficiencies of two low cost adsorbents ...

    African Journals Online (AJOL)

    ISHIOMA

    tanning, metallurgical operation and manufacturing have led to the release ... pulmonary fibrosis and inhibit many enzymatic functions. (Liphadzi ... sector is a low cost adsorbent for heavy metal but has ... as its economic value is less. The aim ...

  12. Low Pressure Adsorbent for Recovery & Storage Vented Hydrogen, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance fullerene-based adsorbent is proposed for recovery and storage hydrogen and separating helium via pressure-swing-adsorption (PSA) process....

  13. Selectivity of β-Sitosterol Imprinted Polymers as Adsorbent

    Science.gov (United States)

    Fauziah, St.; Hariani Soekamto, Nunuk; Taba, Paulina; Bachri Amran, Muh

    2018-03-01

    Molecularly Imprinted Polymers (MIPs) are smart materials that have been used as adsorbents in separation processes of compounds because they have a memorial effect to a certain compound. In this research, MIP synthesized was used as adsorbent for β-sitosterol. The objective of the research was to know the selectivity of MIP in adsorbing β-sitosterol. The concentrations of β-sitosterol after adsorption and desorption were analyzed by a UV-Vis spectrophotometer and the selectivity test was analyzed by HPLC. Result showed that the MIP had high adsorption ability ( qe ). The recovery of β-sitosterol from MIP for the adsorption-desorption process was 68.48%. The MIP was very selective to β-sitosterol compared to cholesterol because it can adsorb β-sitosterol as many as 100%, whereas the adsorption of cholesterol was only 30.27 %.

  14. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  15. Characterization of novel adsorbents for radiostrontium reduction in foods

    International Nuclear Information System (INIS)

    Puziy, A.M.; Bengtsson, G.B.; Hansen, H.S.

    1999-01-01

    Distribution coefficients, pH dependence, isotherms, kinetics and breakthrough curves of Sr binding have been measured on several types of adsorbents (carbons modified with titanium silicate, crystalline titanium silicate, mixed titanium-manganese oxide, and synthetic zeolites A4 and P) from different water solutions. It is concluded that acid-base properties of the adsorbent is very important for Sr binding. Titanium silicate based adsorbents had reduced chemical stability in an artificial food fluid below pH 2, the mixed titanium manganese oxide below pH 6, zeolite A4 below pH 5 and zeolite P below pH 7. Consideration is given to the feasibility of the adsorbents for food decontamination. (author)

  16. Adsorption of β-galactosidase on silica and aluminosilicate adsorbents

    Science.gov (United States)

    Atyaksheva, L. F.; Dobryakova, I. V.; Pilipenko, O. S.

    2015-03-01

    It is shown that adsorption of β-galactosidase of Aspergillus oryzae fungi on mesoporous and biporous silica and aluminosilicate adsorbents and the rate of the process grow along with the diameter of the pores of the adsorbent. It is found that the shape of the adsorption isotherms changes as well, depending on the texture of the adsorbent: the Michaelis constant rises from 0.3 mM for the enzyme in solution to 0.4-0.5 mM for the enzyme on a surface in the hydrolysis of o-nitrophenyl-β-D-galactopyranoside. It is concluded that β-galactosidase displays its maximum activity on the surface of biporous adsorbents.

  17. Adsorption of uranium on adsorbents produced from used tires

    International Nuclear Information System (INIS)

    Mahramanlioglu, M.

    2003-01-01

    Potential use of adsorbents produced from used tires for the removal of uranium from aqueous solutions is investigated. Two different adsorbents were used including char and activated carbon produced from used tires. The surface area was larger on activated carbon. Adsorption experiments were carried out as a function of time, adsorbent concentration, pH and initial concentration of uranium. The adsorption kinetics was found to follow the Lagergren equation. The rate constants of intraparticle diffusion and mass transfer coefficients were calculated. It was shown that the equilibrium data could be fitted by the Langmuir and Freundlich equations. The adsorption of uranium in the presence of different cations were also studied and the results were correlated with the ionic potential of the cations. It was demonstrated that the activated carbon produced from used tires can be considered as an adsorbent that has a commercial potential for uranium removal. (author)

  18. Methylation in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Regina M. Santella

    2007-02-01

    Full Text Available

    The development of HCC is a complex, multistep, multistage process. The molecular pathogenesis of HCC appears to involve multiple genetic aberrations in the molecular control of hepatocyte proliferation, differentiation and death and the maintenance of genomic integrity. This process is influenced by the cumulative activation and inactivation of oncogenes, tumor suppressor genes and other genes. p53, a tumor suppressor gene, is the most frequently mutated gene in human cancers. There is also a striking sequence specific binding and induction of mutations by AFB1 at codon 249 of p53 in HCC.

    Epigenetic alterations are also involved in cancer development and progression. Methylation of promoter CpG islands is associated with inhibition of transcriptional initiation and permanent silencing of downstream genes.

    It is now known that most important tumor suppressor genes are inactivated, not only by mutations and deletions but also by promoter methylation. Several studies indicated that p16, p15, RASSF1A, MGMT, and GSTP1 promoter hypermethylation are prevalent in HCC. In addition, geographic variation in the methylation status of tumor DNA indicates that environmental factors may influence the frequent and concordant degree of hypermethylation in multiple genes in HCC and that epigeneticenvironmental interactions may be involved in hepatocarcinogenesis. We have found significant relationships between promoter methylation and AFB1-DNA adducts confirming the impact of environmental exposures on gene methylation.

    DNA isolated from serum or plasma of cancer patients frequently contains the same genetic and

  19. Role of adsorbates on current fluctuations in DC field emission

    International Nuclear Information System (INIS)

    Luong, M.; Bonin, B.; Long, H.; Safa, H.

    1996-01-01

    Field emission experiments in DC regime usually show important current fluctuations for a fixed electric field. These fluctuations are attributed to adsorbed layers (molecules or atoms), liable to affect the work function, height and shape of the potential barrier binding the electron in the metal. The role of these adsorbed species is investigated by showing that the field emission from a well desorbed sample is stable and reproducible and by comparing the emission from the same sample before and after desorption. (author)

  20. Simulations of the Static Friction Due to Adsorbed Molecules

    OpenAIRE

    He, Gang; Robbins, Mark O.

    2001-01-01

    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potenti...

  1. Vanadium (4) complexing in phase of adsorbent with benzimidazole groups

    Energy Technology Data Exchange (ETDEWEB)

    Shvoeva, O P; Kuchava, G P; Evtikova, G A; Belyaeva, V K; Myasoedova, G V; Marov, I N [AN SSSR, Moscow (USSR). Inst. Geokhimii i Analiticheskoj Khimii

    1989-04-01

    Equilibrium and kinetic characteristics of V{sup 4+} sorption by POLYORGS XI-H adsorbent with benzimidazole groups (BIm) are investigated. Using ESR method it is stated that (VO{sup 2+}):(BIm)1:2 complex, where VO{sup 2+} is combined with nitrogen atoms of two imidazole groups, is formed in adsorbent phase. The highest distribution factor of 4.7x10{sup 3} is attained at pH6.

  2. Residence time determination for adsorbent beds of different configurations

    Energy Technology Data Exchange (ETDEWEB)

    Otermat, J.E.; Wikoff, W.O.; Kovach, J.L.

    1995-02-01

    The residence time calculations of ASME AG-1 Code, Section FC, currently specify a screen surface area method, that is technically incorrect. Test data has been obtained on Type II adsorber trays of different configurations to establish residence time in the adsorber trays. These data indicate that the air volume/carbon volume ratio or the average screen area are more appropriate for the calculation of the residence time calculation than the currently used, smallest screen area basis.

  3. Vanadium (4) complexing in phase of adsorbent with benzimidazole groups

    International Nuclear Information System (INIS)

    Shvoeva, O.P.; Kuchava, G.P.; Evtikova, G.A.; Belyaeva, V.K.; Myasoedova, G.V.; Marov, I.N.

    1989-01-01

    Equilibrium and kinetic characteristics of V 4+ sorption by POLYORGS XI-H adsorbent with benzimidazole groups (BIm) are investigated. Using ESR method it is stated that [VO 2+ ]:[BIm]1:2 complex, where VO 2+ is combined with nitrogen atoms of two imidazole groups, is formed in adsorbent phase. The highest distribution factor of 4.7x10 3 is attained at pH6

  4. Irradiation Degradation of Adsorbents for Minor Actinides Recovery

    International Nuclear Information System (INIS)

    Watanabe, S.; Sano, Y.; Kofuji, H.; Takeuchi, M.; Koizumi, T.

    2015-01-01

    Extraction chromatography is one of the promising technologies for minor actinides (MA: Am and Cm) recovery from high-level liquid waste. The degradation behaviour of the organic species in the adsorbents under radiation exposure is important to discuss the safety and durability of the adsorbent in the extraction chromatography process. In this study, gamma-ray irradiation experiments on TODGA/SiO 2 -P adsorbent were carried out to investigate the degradation products from radiolysis of the adsorbent. The degraded organic species eluted from the adsorbent and those remaining inside the adsorbent were thoroughly identified by GC/MS, FT-IR and NMR analyses. The species suspected as hydrolysis products of TODGA were mainly detected from the analyses. Since some radicals such as.H or.OH are generated by the gamma-ray irradiation on water molecules, it was discussed that the radicals products from radiolysis of HNO 3 solution are related to the degradation reaction of the extractants. (authors)

  5. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  6. Cell for studying electron-adsorbed gas interactions; Cellule d'etudes des interactions electron-gaz adsorbe

    Energy Technology Data Exchange (ETDEWEB)

    Golowacz, H; Degras, D A [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, Deptartement de Physique des Plasmas et de la Fusion Controlee, Service de Physique Appliquee, Service de Physique des Interractions Electroniques, Section d' Etude des Interactions Gaz-Solides

    1967-07-01

    The geometry and the technology of a cell used for investigations on electron-adsorbed gas interactions are described. The resonance frequencies of the surface ions which are created by the electron impact on the adsorbed gas are predicted by simplified calculations. The experimental data relative to carbon monoxide and neon are in good agreement with these predictions. (authors) [French] Les caracteristiques geometriques et technologiques generales d'une cellule d'etude des interactions entre un faisceau d'electrons et un gaz adsorbe sont donnees. Un calcul simplifie permet de prevoir les frequences de resonance des ions de surface crees par l'impact des electrons sur le gaz adsorbe. Les donnees experimentales sur l'oxyde de carbone et le neon confirment les previsions du calcul. (auteurs)

  7. DNA methylation and memory formation.

    Science.gov (United States)

    Day, Jeremy J; Sweatt, J David

    2010-11-01

    Memory formation and storage require long-lasting changes in memory-related neuronal circuits. Recent evidence indicates that DNA methylation may serve as a contributing mechanism in memory formation and storage. These emerging findings suggest a role for an epigenetic mechanism in learning and long-term memory maintenance and raise apparent conundrums and questions. For example, it is unclear how DNA methylation might be reversed during the formation of a memory, how changes in DNA methylation alter neuronal function to promote memory formation, and how DNA methylation patterns differ between neuronal structures to enable both consolidation and storage of memories. Here we evaluate the existing evidence supporting a role for DNA methylation in memory, discuss how DNA methylation may affect genetic and neuronal function to contribute to behavior, propose several future directions for the emerging subfield of neuroepigenetics, and begin to address some of the broader implications of this work.

  8. Fast iodide-SAD phasing for high-throughput membrane protein structure determination.

    Science.gov (United States)

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A; Gordeliy, Valentin; Popov, Alexander

    2017-05-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide-single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins-the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein-coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques.

  9. Abstraction of iodine from aromatic iodides by alkyl radicals: steric and electronic effects.

    Science.gov (United States)

    Dolenc, Darko; Plesnicar, Bozo

    2006-10-13

    Abstraction of the iodine atom from aryl iodides by alkyl radicals takes place in some cases very efficiently despite the unfavorable difference in bond dissociation energies of C-I bonds in alkyl and aryl iodides. The abstraction is most efficient in iodobenzenes, ortho-substituted with bulky groups. The ease of abstraction can be explained by the release of steric strain during the elimination of the iodine atom. The rate of abstraction correlates fairly well with the strain energy, calculated by density functional theory (DFT) and Hartree-Fock (HF) methods as a difference in the total energy of ortho and para isomers. However, besides the steric bulk, the presence of some other functional groups in an ortho substituent also influences the rate. The stabilization of the transition state, resembling a 9-I-2 iodanyl radical, by electron-withdrawing groups seems to explain a positive sign of the Hammett rho value in the radical abstraction of halogen atoms.

  10. Lymphocutaneous Sporotrichosis Treated with Potassium Iodide with Development of Subclinical Hypothyroidism: Wolff-Chaikoff Effect?

    Science.gov (United States)

    Arora, Pooja; Raihan, M; Kubba, Asha; Gautam, Ram K

    2017-01-01

    Sporotrichosis is a subcutaneous mycotic infection caused by Sporothrix schenckii that is acquired by traumatic implantation. The diagnosis is established by demonstration of fungal elements on histopathology and culture. Potassium iodide, azole antifungals, and terbinafine are the treatment options available. In this article, we report a 60-year-old female with lymphocutaneous sporotrichosis that responded well to potassium iodide. However, subclinical hypothyroidism (Wolff-Chaikoff effect) was encountered as a side effect of therapy which was managed with thyroxine replacement. Knowledge about the Wolff-Chaikoff effect (WCE) is important for the dermatologist and reinforces the need for screening and monitoring of thyroid stimulating hormone (TSH) in patients where long duration therapy is being planned.

  11. Small-molecule inhibitors of sodium iodide sym-porter function

    International Nuclear Information System (INIS)

    Lecat-Guillet, N.; Merer, G.; Lopez, R.; Rousseau, B.; Ambroise, Y.; Pourcher, T.

    2008-01-01

    The Na + /l - sym-porter (NIS) mediates iodide uptake into thyroid follicular cells. Although NIS has been cloned and thoroughly studied at the molecular level, the biochemical processes involved in post-translational regulation of NIS are still unknown. The purpose of this study was to identify and characterize inhibitors of NIS function. These small organic molecules represent a starting point in the identification of pharmacological tools for the characterization of NIS trafficking and activation mechanisms. screening of a collection of 17020 drug-like compounds revealed new chemical inhibitors with potencies down to 40 nM. Fluorescence measurement of membrane potential indicates that these inhibitors do not act by disrupting the sodium gradient. They allow immediate and total iodide discharge from preloaded cells in accord with a specific modification of NIS activity, probably through distinct mechanisms. (authors)

  12. Small-molecule inhibitors of sodium iodide sym-porter function

    Energy Technology Data Exchange (ETDEWEB)

    Lecat-Guillet, N.; Merer, G.; Lopez, R.; Rousseau, B.; Ambroise, Y. [CEA, DSV, Dept Bioorgan Chem et Isotop Labelling, Inst Biol et Biotechnol iBiTecS, F-91191 Gif Sur Yvette (France); Pourcher, T. [Univ Nice Sophia Antipolis, Dept Biochem et Nucl Toxicol, F-06107 Nice (France)

    2008-07-01

    The Na{sup +}/l{sup -} sym-porter (NIS) mediates iodide uptake into thyroid follicular cells. Although NIS has been cloned and thoroughly studied at the molecular level, the biochemical processes involved in post-translational regulation of NIS are still unknown. The purpose of this study was to identify and characterize inhibitors of NIS function. These small organic molecules represent a starting point in the identification of pharmacological tools for the characterization of NIS trafficking and activation mechanisms. screening of a collection of 17020 drug-like compounds revealed new chemical inhibitors with potencies down to 40 nM. Fluorescence measurement of membrane potential indicates that these inhibitors do not act by disrupting the sodium gradient. They allow immediate and total iodide discharge from preloaded cells in accord with a specific modification of NIS activity, probably through distinct mechanisms. (authors)

  13. Gap energy studied by optical transmittance in lead iodide monocrystals grown by Bridgman's Method

    Directory of Open Access Journals (Sweden)

    Veissid N.

    1999-01-01

    Full Text Available The bandgap energy as a function of temperature has been determined for lead iodide. The monocrystal was obtained in a vacuum sealed quartz ampoule inside a vertical furnace by Bridgman's method. The optical transmittance measurement enables to evaluate the values of Eg. By a fitting procedure of Eg as a function of temperature is possible to extract the parameters that govern its behavior. The variation of Eg with temperature was determined as: Eg(T = Eg(0 - aT2/(a + T, with: Eg(0 = (2.435 ± 0.008 eV, a = (8.7 ± 1.3 x 10-4 eV/K and a = (192 ± 90 K. The bandgap energy of lead iodide at room temperature was found to be 2.277 ± 0.007 eV.

  14. Measurements of rates of some reactions related to radiolytic effect on aqueous iodide solution

    International Nuclear Information System (INIS)

    Shiraishi, H.; Okuda, H.; Ishigure, K.

    1986-01-01

    A number of reactions takes place concurrently when aqueous iodide solution is subjected to radiation field. In order to help analyze this complicated radiation effect measurements of rate constants were undertaken for several important reactions. One of these concerns reduction of hypoiodous acid by hydrogen peroxide. For this reaction catalytic effect was found to be significant, and old rate data was revised. Measurements on reactions involving radicals were carried out by use of pulse radiolysis technique, which also include reexamination of results by previous workers. The reactions studied are (1) oxidation of iodide ion by hydroxyl radical (2) recombination reactions of atomic iodine and diiodide ion and (3) reduction of atomic and molecular iodine either by superoxide ion or by hydroperoxyl radical

  15. Study on the adsorption performance of composite adsorbent of CaCl2 and expanded graphite with ammonia as adsorbate

    International Nuclear Information System (INIS)

    Li, S.L.; Wu, J.Y.; Xia, Z.Z.; Wang, R.Z.

    2009-01-01

    A novel constant volume test unit was built to study the adsorption performance of a new type composite adsorbent. This test unit can measure the adsorption isosteres of the working pairs. The adsorption isosteres are the curves of the adsorption pressure variation with the adsorption temperatures at constant adsorption quantities. Compared to the former test results of isothermals and isobars, the isosteres are better for the calculation of the adsorption heat, desorption heat and the selection the adsorption working pairs. Three experimental results were obtained: the first result was that the expanded graphite powders were superior to the expandable graphite powders to facilitate the transportation of working fluid in the composite adsorbent. The second one was that the composite adsorbent treated by solution is more homogeneous than the simple mixed composite adsorbent and the treated composite adsorbent has a better mass transfer performance. The last one was that the adsorption isosteres was the same one not only in the heating process but also in the cooling process and this performance was not relevant to the homogeneity of the composite adsorbent

  16. DEVELOPMENT OF A SCREENING APPROACH TO DETECT THYROID DISRUPTING CHEMICALS THAT INHIBIT THE HUMAN SODIUM IODIDE SYMPORTER (NIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data pertaining to a NIS-expressing cell line, hNIS-HEK293T-EPA, and its screening capabilities for determining inhibitors of NIS-mediated iodide uptake. This...

  17. Cooperative effect of silver in copper-catalyzed trifluoromethylation of aryl iodides using Me3SiCF3

    KAUST Repository

    Weng, Zhiqiang

    2011-06-13

    An effective model of cooperative effect of silver for the coppercatalyzed trifluoromethylation of activated and unactivated aryl iodides to trifluoromethylated arenes using Me3SiCF3 was achieved with a broad substrate scope. © 2011 American Chemical Society.

  18. Removal of Methyl Red from Aqueous Solution by Adsorption on Treated Banana Pseudo stem Fibers Using Response Surface Method (RSM)

    International Nuclear Information System (INIS)

    Zaida Rahayu Yet; Mohd Zulkhairi Abdul Rahim

    2014-01-01

    The effect of adsorbent dose, pH and contact times on the removal of Methyl Red (MR) from aqueous solution by using agriculture waste (NaOH treated banana pseudo stem fibers) were studied. The influence of these parameters on the removal of Methyl Red was examined by using a response surface method (RSM). The experiment was conducted by combining three parameters: adsorbent dose (500-1500 mg/L), pH (2-8) dan contact time (5-75 minutes ). The Box-Behnken Design (BBD) in Response Surface Methodology (RSM) by Design Expert Version 8.0.4 (Stat Ease, USA) was used for designing the experiments. Results showed that the optimum conditions for removal of Methyl Red from an aqueous solution (100 mg/L) were as follows: adsorbent dose (1417.70 mg/L), pH (2.08) and contact time (42.94 minutes) with the value of a coefficient of determination, R2 is 98.98 %. Meanwhile, the second-order polynomial equation indicates that pH and contact times mostly affect the removal of Methyl Red. (author)

  19. Crystal growth and applications of mercuric iodide. Report S-242-TP

    International Nuclear Information System (INIS)

    Schieber, M.; Roth, M.; Schnepple, W.F.

    1983-01-01

    A brief summary is given of a paper which discusses the crystal growth of mercuric iodide, a high-Z wide bandgap semiconductor suitable as a low noise, room temperature x-ray and gamma-ray detector. The paper summarized also reviews the state-of-the-art of the synthesis and purification of the starting material, mechanical properties and dislocation structure of HgI 2 , and recent success in the development of thick HgI 2 spectrometers

  20. Preparation of an ultra-fine, slightly dispersed silver iodide aerosol

    International Nuclear Information System (INIS)

    Poc, Marie-Martine

    1973-01-01

    A silver iodide aerosol was prepared under clean conditions. The method was to react iodine vapor with a silver aerosol in an inert dry atmosphere and in darkness. Great care was taken to avoid contamination from atmosphere air. The ice nucleating properties of the ultrafine AgI aerosol obtained were studied in a cloud mixing chamber: the aerosol was found to be strangely inactive. (author) [fr