WorldWideScience

Sample records for methyl group-induced hydrogen

  1. Methyl group dynamics in paracetamol and acetanilide: probing the static properties of intermolecular hydrogen bonds formed by peptide groups

    Science.gov (United States)

    Johnson, M. R.; Prager, M.; Grimm, H.; Neumann, M. A.; Kearley, G. J.; Wilson, C. C.

    1999-06-01

    Measurements of tunnelling and librational excitations for the methyl group in paracetamol and tunnelling excitations for the methyl group in acetanilide are reported. In both cases, results are compared with molecular mechanics calculations, based on the measured low temperature crystal structures, which follow an established recipe. Agreement between calculated and measured methyl group observables is not as good as expected and this is attributed to the presence of comprehensive hydrogen bond networks formed by the peptide groups. Good agreement is obtained with a periodic quantum chemistry calculation which uses density functional methods, these calculations confirming the validity of the one-dimensional rotational model used and the crystal structures. A correction to the Coulomb contribution to the rotational potential in the established recipe using semi-emipircal quantum chemistry methods, which accommodates the modified charge distribution due to the hydrogen bonds, is investigated.

  2. Migratory Insertion of Hydrogen Isocyanide in the Pentacyano(methyl)cobaltate(III) Anion

    DEFF Research Database (Denmark)

    Kofod, Pauli; Harris, Pernille Hanne; Larsen, Sine

    2003-01-01

    The preparation of the pentacyano(iminiumacetyl)cobaltate(III) anion and its N-methyl and N,N-dimethyl derivatives is reported. The iminiumacetyl group is formed by migratory insertion of cis hydrogen isocyanide in the pentacyano(methyl)cobaltate(III) anion. The new compounds have been spectrosco......The preparation of the pentacyano(iminiumacetyl)cobaltate(III) anion and its N-methyl and N,N-dimethyl derivatives is reported. The iminiumacetyl group is formed by migratory insertion of cis hydrogen isocyanide in the pentacyano(methyl)cobaltate(III) anion. The new compounds have been...

  3. Possible Involvement of Hydrosulfide in B12-Dependent Methyl Group Transfer

    Directory of Open Access Journals (Sweden)

    John I. Toohey

    2017-04-01

    Full Text Available Evidence from several fields of investigation lead to the hypothesis that the sulfur atom is involved in vitamin B12-dependent methyl group transfer. To compile the evidence, it is necessary to briefly review the following fields: methylation, the new field of sulfane sulfur/hydrogen sulfide (S°/H2S, hydrosulfide derivatives of cobalamins, autoxidation of hydrosulfide radical, radical S-adenosylmethionine methyl transfer (RSMT, and methionine synthase (MS. Then, new reaction mechanisms for B12-dependent methyl group transfer are proposed; the mechanisms are facile and overcome difficulties that existed in previously-accepted mechanisms. Finally, the theory is applied to the effect of S°/H2S in nerve tissue involving the “hypomethylation theory” that was proposed 50 years ago to explain the neuropathology resulting from deficiency of vitamin B12 or folic acid. The conclusions are consistent with emerging evidence that sulfane sulfur/hydrogen sulfide may be beneficial in treating Alzheimer’s disease.

  4. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal NG-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    Science.gov (United States)

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N G -nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N G -nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N G -nitro-L-arginine-methyl ester, N G -nitro-L-arginine-methyl ester +melatonin, and N G -nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N G -nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N G -nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N G -nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N G -nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N G -nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway

  5. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    Directory of Open Access Journals (Sweden)

    Minjiang Chen

    2016-01-01

    Full Text Available Objective. High glucose- (HG- induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM or control (25 mM groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism.

  6. The autoradiolytic and the γ-induced demethylation of solid thymine-(methyl-14C)

    International Nuclear Information System (INIS)

    Merwitz, O.

    1980-01-01

    The autoradiolytic and the γ-induced demethylation of solid thymine were measured qualitatively and quantitatively for the first time with specially purified thymine-(methyl- 14 C). Analogous experiments with thymine-(methyl- 3 H) and radio-gaschromatographic analysis provided proof for the formation of molecular hydrogen and methane. Ethane was not detected. The results are discussed in connection with e.s.r.-spectroscopic studies. (author)

  7. Calorimetric investigations of hydrogen bonding in binary mixtures containing pyridine and its methyl-substituted derivatives. II. The dilute solutions of methanol and 2-methyl-2-propanol

    International Nuclear Information System (INIS)

    Marczak, Wojciech; Heintz, Andreas; Bucek, Monika

    2004-01-01

    Enthalpies of solution of methanol and 2-methyl-2-propanol (tert-butanol) in pyridine and its methyl derivatives were investigated in the range of mole fractions of alcohol x≤0.02 at temperature 298.15 K by a titration calorimeter. Dissolution of methanol is an exothermic process, with heat effects very close to those for water reported in part I of this study. The negative enthalpy of solution increases in the following order: pyridine < 3-methylpyridine < 4-methylpyridine < 2-methylpyridine < 2,6-dimethylpyridine < 2,4,6-trimethylpyridine. Positive enthalpies of solution of 2-methyl-2-propanol increase as follows: 2-methylpyridine < 2,4,6-trimethylpyridine < 4-methylpyridine < 2,6-dimethylpyridine < 3-methylpyridine < pyridine. The propensity of pyridine derivatives to hydrogen bonding is enhanced by the ortho effect. Methyl groups are probably too small to prevent the nitrogen atom in the pyridine ring from hydrogen bonding. However, spacious hydrocarbon group in 2-methyl-2-propanol molecule makes the bonding difficult for 2,6-dimethylpyridine and 2,4,6-trimethylpyridine, thus the number of O-H···N bonds is smaller than that in the solutions of methanol or water. The two latter seem to be very close to each other

  8. Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts

    International Nuclear Information System (INIS)

    Pan, Yun-Zu; Quade, Bradley; Brewer, Kyle D.; Szabo, Monika; Swarbrick, James D.; Graham, Bim; Rizo, Josep

    2016-01-01

    Neurotransmitter release depends critically on the neuronal SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, as well as on other proteins such as Munc18-1, Munc13-1 and synaptotagmin-1. Although three-dimensional structures are available for these components, it is still unclear how they are assembled between the synaptic vesicle and plasma membranes to trigger fast, Ca 2+ -dependent membrane fusion. Methyl TROSY NMR experiments provide a powerful tool to study complexes between these proteins, but assignment of the methyl groups of the SNARE complex is hindered by its limited solubility. Here we report the assignment of the isoleucine, leucine, methionine and valine methyl groups of the four SNARE motifs of syntaxin-1, SNAP-25 and synaptobrevin within the SNARE complex based solely on measurements of lanthanide-induced pseudocontact shifts. Our results illustrate the power of this approach to assign protein resonances without the need of triple resonance experiments and provide an invaluable tool for future structural studies of how the SNARE complex binds to other components of the release machinery.

  9. Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yun-Zu; Quade, Bradley; Brewer, Kyle D. [University of Texas Southwestern Medical Center, Department of Biophysics (United States); Szabo, Monika; Swarbrick, James D.; Graham, Bim [Monash Institute of Pharmaceutical Sciences, Monash University (Australia); Rizo, Josep, E-mail: Jose.Rizo-Rey@UTSouthwestern.edu [University of Texas Southwestern Medical Center, Department of Biophysics (United States)

    2016-12-15

    Neurotransmitter release depends critically on the neuronal SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, as well as on other proteins such as Munc18-1, Munc13-1 and synaptotagmin-1. Although three-dimensional structures are available for these components, it is still unclear how they are assembled between the synaptic vesicle and plasma membranes to trigger fast, Ca{sup 2+}-dependent membrane fusion. Methyl TROSY NMR experiments provide a powerful tool to study complexes between these proteins, but assignment of the methyl groups of the SNARE complex is hindered by its limited solubility. Here we report the assignment of the isoleucine, leucine, methionine and valine methyl groups of the four SNARE motifs of syntaxin-1, SNAP-25 and synaptobrevin within the SNARE complex based solely on measurements of lanthanide-induced pseudocontact shifts. Our results illustrate the power of this approach to assign protein resonances without the need of triple resonance experiments and provide an invaluable tool for future structural studies of how the SNARE complex binds to other components of the release machinery.

  10. Influence of intramolecular hydrogen bonds on the binding potential of methylated β-cyclodextrin derivatives

    Directory of Open Access Journals (Sweden)

    Gerhard Wenz

    2012-11-01

    Full Text Available Various heptasubstituted derivatives of β-cyclodextrin (β-CD bearing 1, 2 and 3 methyl substituents per glucose unit were synthesized by regioselective methods. Binding free energies and binding enthalpies of these hosts towards 4-tert-butylbenzoate and adamantane-1-carboxylate were determined by isothermal titration microcalorimetry (ITC. It was found that methyl substituents at the secondary positions of β-CD lead to a tremendous reduction of the binding potential, while methylation at the primary positions significantly improved binding. Stabilizing intramolecular hydrogen bonds between the glucose units were made responsible for the high binding potentials of those β-CD derivatives that possess secondary hydroxy groups.

  11. Crystal structure of 2-methyl-1H-imidazol-3-ium hydrogen oxalate dihydrate

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2016-08-01

    Full Text Available Single crystals of the title molecular salt, C4H7N2+·HC2O4−·2H2O, were isolated from the reaction of 2-methyl-1H-imidazole and oxalic acid in a 1:1 molar ratio in water. In the crystal, the cations and anions are positioned alternately along an infinite [010] ribbon and linked together through bifurcated N—H...(O,O hydrogen bonds. The water molecules of crystallization link the chains into (10-1 bilayers, with the methyl groups of the cations organized in an isotactic manner.

  12. Comprehensive physicochemical studies of a new hybrid material: 2-Amino-4-methyl-3-nitropyridinium hydrogen oxalate

    Science.gov (United States)

    Bryndal, I.; Kucharska, E.; Wandas, M.; Lorenc, J.; Hermanowicz, K.; Mączka, M.; Lis, T.; Marchewka, M.; Hanuza, J.

    2014-01-01

    A new organic-organic salt, 2-amino-4-methyl-3-nitropyridinium hydrogen oxalate (AMNPO), and its deuterium analogue have been synthesized and characterized by means of FT-IR, FT-Raman, DSC and single crystal X-ray studies. The DSC measurements and temperature dependence of the IR and Raman spectra in the range 4-295 K show that it undergoes a reversible phase transition at ∼240 K. At room temperature it crystallizes in noncentrosymmetric space group P21. The unit-cell is built of the 2-amino-4-methyl-3-nitropyridinium cations and oxalate monoanions which are connected via the Nsbnd H⋯O and Osbnd H⋯O hydrogen bonds. The geometrical and hydrogen bond parameters are similar for non-deuterated (at 120 and 293 K) and deuterated compounds (at 90 K). The phase transition is probably a consequence of order-disorder transition inside of hydrogen network. The 6-311G(2d,2p) basis set with B3LYP functional have been used to discuss the structure and vibrational spectra of the studied compound.

  13. Effects of partial hydrogenation, epoxidation, and hydroxylation on the fuel properties of fatty acid methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Wadumesthrige, Kapila; Salley, Steven O.; Ng, K.Y. Simon [Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202 (United States)

    2009-10-15

    The properties of biodiesel depend on the chemical structure of individual fatty acid methyl esters (FAME). In this work the chemical structure of fatty acid chains was modified by catalytic hydrogenation, epoxidation and hydroxylation under controlled conditions. Hydrolysis of ester functionality or oxidation of fatty acid chain was not observed during these reactions. The properties of hydrogenated FAME strongly depend on the hydrogenation time. The total saturated fatty acid (SFA) percentage increased from 29.3% to 76.2% after 2 h of hydrogenation. This hydrogenated FAME showed higher oxidation stability and higher cetane number but poor cold flow properties. Formation of trans FAME was observed during hydrogenation. Both hydroxylation and epoxidation resulted in a decrease of unsaturated fatty acid methyl ester (UFA) fraction. The percentages of total unsaturated FAME decreased 39% in the epoxidation reaction and 44% in the hydroxylation reaction. The addition of hydroxyl groups to the unsaturated regions of the fatty acid chain yields biodiesel with better cold flow properties, increased lubricity and slightly increased oxidative stability. However, epoxy FAME shows some interesting properties such as higher oxidation stability, higher cetane number and acceptable cold flow properties, which met the limits of ASTM D6751 biodiesel specifications. (author)

  14. TDDFT study on intramolecular hydrogen bond of photoexcited methyl salicylate.

    Science.gov (United States)

    Qu, Peng; Tian, Dongxu

    2014-01-01

    The equilibrium geometries, IR-spectra and transition mechanism of intramolecular hydrogen-bonded methyl salicylate in excited state were studied using DFT and TDDFT with 6-31++G (d, p) basis set. The length of hydrogen bond OH⋯OC is decreased from 1.73 Å in the ground state to 1.41 and 1.69 Å in the excited S1 and S3 states. The increase of bond length for HO and CO group also indicates that in excited state the hydrogen bond OH⋯OC is strengthened. IR spectra show HO and CO stretching bands are strongly redshifted by 1387 and 67 cm(-1) in the excited S1 and S3 states comparing to the ground state. The excitation energy and the absorption spectrum show the S3 state is the main excited state of the low-lying excited states. By analyzing the frontier molecular orbitals, the transition from the ground state to the excited S1 and S3 states was predicted to be the π→π∗ mode. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. 2-Methyl-1H-benzimidazol-3-ium hydrogen phthalate

    Directory of Open Access Journals (Sweden)

    YuanQi Yu

    2011-10-01

    Full Text Available The asymmetric unit of the title compound, C8H9N2+·C8H5O4−, contains two independent ion pairs. In each 2-methyl-1H-benzimidazolium ion, an intramolecular O—H...O bond forms an S(7 graph-set motif. In the crystal, the components are linked by N—H...O hydrogen bonds, forming chains along [210]. Further stabilization is provided by weak C—H...O hydrogen bonds.

  16. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation.

    Science.gov (United States)

    Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T; Roy, Soumya Singha; Brown, Richard C D; Pileio, Giuseppe; Levitt, Malcolm H

    2015-01-28

    Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T1. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in (13)CH3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.

  17. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation

    International Nuclear Information System (INIS)

    Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T.; Roy, Soumya Singha; Brown, Richard C. D.; Pileio, Giuseppe; Levitt, Malcolm H.

    2015-01-01

    Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T 1 . Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in 13 CH 3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states

  18. Structural and Kinetic Evidence for an Extended Hydrogen-Bonding Network in Catalysis of Methyl Group Transfer

    International Nuclear Information System (INIS)

    Doukov, T.; Hemmi, H.; Drennan, C.; Ragsdale, S.

    2007-01-01

    The methyltetrahydrofolate (CH 3 -H 4 folate) corrinoid-ironsulfur protein (CFeSP) methyltransferase (MeTr) catalyzes transfer of the methyl group of CH3-H4folate to cob(I)amide. This key step in anaerobic CO and CO 2 fixation is similar to the first half-reaction in the mechanisms of other cobalamin-dependent methyltransferases. Methyl transfer requires electrophilic activation of the methyl group of CH 3 -H 4 folate, which includes proton transfer to the N5 group of the pterin ring and poises the methyl group for reaction with the Co(I) nucleophile. The structure of the binary CH 3 -H 4 folate/MeTr complex (revealed here) lacks any obvious proton donor near the N5 group. Instead, an Asn residue and water molecules are found within H-bonding distance of N5. Structural and kinetic experiments described here are consistent with the involvement of an extended H-bonding network in proton transfer to N5 of the folate that includes an Asn (Asn-199 in MeTr), a conserved Asp (Asp-160), and a water molecule. This situation is reminiscent of purine nucleoside phosphorylase, which involves protonation of the purine N7 in the transition state and is accomplished by an extended H-bond network that includes water molecules, a Glu residue, and an Asn residue (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Shi, W., Fedorov, A., Lewandowicz, A., Cahill, S. M., Almo, S. C., and Schramm, V. L. (2002) Biochemistry 41, 14489-14498). In MeTr, the Asn residue swings from a distant position to within H-bonding distance of the N5 atom upon CH 3 -H 4 folate binding. An N199A variant exhibits only ∼20-fold weakened affinity for CH 3 -H 4 folate but a much more marked 20,000-40,000-fold effect on catalysis, suggesting that Asn-199 plays an important role in stabilizing a transition state or high energy intermediate for methyl transfer

  19. Photocatalytic methanol assisted production of hydrogen with simultaneous degradation of methyl orange

    NARCIS (Netherlands)

    Sobral Romao, J.I.; Salata, Rafal; Park, Sun-Young; Mul, Guido

    2016-01-01

    Platinized TiO2 prepared by photodeposition was evaluated for activity in the simultaneous conversion of methyl orange (MO), and methanol assisted formation of hydrogen. Low concentrations of MO were found ineffective for generation of hydrogen in measurable quantities upon illumination of Pt/TiO2

  20. On the transferability of atomic contributions to the optical rotatory power of hydrogen peroxide, methyl hydroperoxide and dimethyl peroxide

    DEFF Research Database (Denmark)

    Sánchez, Marina; Alkorta, Ibon; Elguero, José

    2014-01-01

    for the hydrogen, oxygen and carbon atoms as well as for the methyl group at the level of time-dependent density functional theory with the B3LYP exchange-correlation functional employing a large Gaussian basis set. We find that the atomic or group contributions are not transferable among these three molecules....

  1. Theoretical study of catalytic hydrogenation of oxirane and its methyl ...

    African Journals Online (AJOL)

    C3H6O) is its methyl derivative. Theoretical studies on catalytic hydrogenation of both compounds, in presence of aluminium chloride (AlCl3) catalyst, are carried out. The products of reactions are ethanol and propan-1-ol from oxirane and ...

  2. Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway.

    Science.gov (United States)

    Jin, Sheng; Teng, Xu; Xiao, Lin; Xue, Hongmei; Guo, Qi; Duan, Xiaocui; Chen, Yuhong; Wu, Yuming

    2017-12-01

    Reductions in hydrogen sulfide (H 2 S) production have been implicated in the pathogenesis of hypertension; however, no studies have examined the functional role of hydrogen sulfide in hypertensive heart disease. We hypothesized that the endogenous production of hydrogen sulfide would be reduced and exogenous hydrogen sulfide would ameliorate cardiac dysfunction in N ω -nitro- L-arginine methyl ester ( L-NAME)-induced hypertensive rats. Therefore, this study investigated the cardioprotective effects of hydrogen sulfide on L-NAME-induced hypertensive heart disease and explored potential mechanisms. The rats were randomly divided into five groups: Control, Control + sodium hydrosulfide (NaHS), L-NAME, L-NAME + NaHS, and L-NAME + NaHS + glibenclamide (Gli) groups. Systolic blood pressure was monitored each week. In Langendorff-isolated rat heart, cardiac function represented by ±LV dP/dt max and left ventricular developing pressure was recorded after five weeks of treatment. Hematoxylin and Eosin and Masson's trichrome staining and myocardium ultrastructure under transmission electron microscopy were used to evaluate cardiac remodeling. The plasma nitric oxide and hydrogen sulfide concentrations, as well as nitric oxide synthases and cystathionine-γ-lyase activity in left ventricle tissue were determined. The protein expression of p-Akt, Akt, p-eNOS, and eNOS in left ventricle tissue was analyzed using Western blot. After five weeks of L-NAME treatment, there was a time-dependent hypertension, cardiac remodeling, and dysfunction accompanied by a decrease in eNOS phosphorylation, nitric oxide synthase activity, and nitric oxide concentration. Meanwhile, cystathionine-γ-lyase activity and hydrogen sulfide concentration were also decreased. NaHS treatment significantly increased plasma hydrogen sulfide concentration and subsequently promoted the Akt/eNOS/NO pathway which inhibited the development of hypertension and attenuated cardiac remodeling and

  3. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants.

    Science.gov (United States)

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; Langie, Sabine A S; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode

    2017-01-01

    Maternal nutrition during pregnancy and infant nutrition in the early postnatal period (lactation) are critically involved in the development and health of the newborn infant. The Maternal Nutrition and Offspring's Epigenome (MANOE) study was set up to assess the effect of maternal methyl-group donor intake (choline, betaine, folate, methionine) on infant DNA methylation. Maternal intake of dietary methyl-group donors was assessed using a food-frequency questionnaire (FFQ). Before and during pregnancy, we evaluated maternal methyl-group donor intake through diet and supplementation (folic acid) in relation to gene-specific ( IGF2 DMR, DNMT1 , LEP , RXRA ) buccal epithelial cell DNA methylation in 6 months old infants ( n  = 114) via pyrosequencing. In the early postnatal period, we determined the effect of maternal choline intake during lactation (in mothers who breast-fed for at least 3 months) on gene-specific buccal DNA methylation ( n  = 65). Maternal dietary and supplemental intake of methyl-group donors (folate, betaine, folic acid), only in the periconception period, was associated with buccal cell DNA methylation in genes related to growth ( IGF2 DMR), metabolism ( RXRA ), and appetite control ( LEP ). A negative association was found between maternal folate and folic acid intake before pregnancy and infant LEP (slope = -1.233, 95% CI -2.342; -0.125, p  = 0.0298) and IGF2 DMR methylation (slope = -0.706, 95% CI -1.242; -0.107, p  = 0.0101), respectively. Positive associations were observed for maternal betaine (slope = 0.875, 95% CI 0.118; 1.633, p  = 0.0241) and folate (slope = 0.685, 95% CI 0.245; 1.125, p  = 0.0027) intake before pregnancy and RXRA methylation. Buccal DNMT1 methylation in the infant was negatively associated with maternal methyl-group donor intake in the first and second trimester of pregnancy and negatively in the third trimester. We found no clear association between maternal choline intake

  4. Methylation diet and methyl group genetics in risk for adenomatous polyp occurrence

    Directory of Open Access Journals (Sweden)

    Mark Lucock

    2015-06-01

    Conclusion: A methylation diet influences methyl group synthesis in the regulation of blood homocysteine level, and is modulated by genetic interactions. Methylation-related nutrients also interact with key genes to modify risk of AP, a precursor of colorectal cancer. Independent of diet, two methylation-related genes (A2756G-MS and A66G-MSR were directly associated with AP occurrence.

  5. Maternal Methyl-Group Donor Intake and Global DNA (HydroxyMethylation before and during Pregnancy

    Directory of Open Access Journals (Sweden)

    Sara Pauwels

    2016-08-01

    Full Text Available It is still unclear to which extent methyl-group intake during pregnancy can affect maternal global DNA (hydroxylmethylation. Pregnancy methylation profiling and its link with methyl-group intake in a healthy population could enhance our understanding of the development of pregnancy related disorders. One hundred forty-eight women were enrolled in the MANOE (MAternal Nutrition and Offspring’s Epigenome study. Thiry-four women were enrolled before pregnancy and 116 during the first trimester of pregnancy. Global DNA (hydroxymethylation in blood using LC-MS/MS and dietary methyl-group intake (methionine, folate, betaine, and choline using a food-frequency questionnaire were estimated pre-pregnancy, during each trimester, and at delivery. Global DNA (hydroxymethylation levels were highest pre-pregnancy and at weeks 18–22 of pregnancy. We observed a positive relation between folic acid and global DNA methylation (p = 0.04 and hydroxymethylation (p = 0.04. A high intake of methionine pre-pregnancy and in the first trimester showed lower (hydroxymethylation percentage in weeks 11–13 and weeks 18–22, respectively. Choline and betaine intake in the first weeks was negatively associated with hydroxymethylation. Women with a high intake of these three methyl groups in the second and third trimester showed higher hyrdoxymethylation/methylation levels in the third trimester. To conclude, a time trend in DNA (hydroxymethylation was found and women with higher methyl-group intake showed higher methylation in the third trimester, and not in earlier phases of pregnancy.

  6. Spectroscopic study of uracil, 1-methyluracil and 1-methyl-4-thiouracil: Hydrogen bond interactions in crystals and ab-initio molecular dynamics

    Science.gov (United States)

    Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito

    2018-05-01

    Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.

  7. tert-Butyl 2-methyl-2-(4-nitrobenzoylpropanoate

    Directory of Open Access Journals (Sweden)

    Chelsey M. Crosse

    2010-02-01

    Full Text Available The title compound, C15H19NO5, is bent with a dihedral angle of 61.8 (2° between the mean planes of the benzene ring and a group encompassing the ester functionality (O=C—O—C. The dihedral angle of 0.8 (2° between the mean planes of the nitro group and the benzene ring indicates near coplanarity. In the crystal, each molecule is linked to four adjacent molecules by weak C—H...O hydrogen-bonding interactions. Both benzene H atoms ortho to the ketone O atom form C—H...O hydrogen bonds with the keto O atoms of two neighboring molecules (of the keto and ester groups, respectively, and the two other interactions involve the H atoms from a methyl group of the dimethyl residue, displaying C—H...O interactions with the O atoms of the nitro groups. These four interactions for each molecule lead to the formation of two-dimensional sheets with a hydrophilic interior, held together by weak hydrogen-bonded interactions, and a hydrophobic exterior composed of protruding methyl groups which interstack with the methyl groups in adjacent sheets.

  8. Hydrogenation of o-cresol on platinum catalyst: Catalytic experiments and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaping [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States); Liu, Zhimin [School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States); Xue, Wenhua [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States); Crossley, Steven P.; Jentoft, Friederike C. [School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States); Wang, Sanwu, E-mail: sanwu-wang@utulsa.edu [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States)

    2017-01-30

    Highlights: • Hydrogenation of o-cresol over Pt results in formation of two products. • Dissociation of hydrogen from the −OH group involves a low activation energy. • Following hydrogenation of the aromatic ring forms 2-methyl-cyclohexanone. • Further hydrogenation produces the final product, 2-methyl-cyclohexanol. - Abstract: Catalytic experiments were performed for the hydrogenation of o-cresol in n-dodecane over a platinum catalyst. Batch reactions analyzed with an in-situ ATR IR probe suggest that the hydrogenation results in the formation of the final product, 2-methyl-cyclohexanol, with 2-methyl-cyclohexanone as the intermediate product. Ab initio density-functional theory was employed to investigate the atomic-scale mechanism of o-cresol hydrogenation on the Pt(111) surface. The formation of 2-methyl-cyclohexanone was found to involve two steps. The first step is a hydrogen abstraction, that is, the H atom in the hydroxyl group migrates to the Pt surface. The second step is hydrogenation, that is, the pre-existing H atoms on Pt react with the carbon atoms in the aromatic ring. On the other hand, 2-methyl-cyclohexanonol may be produced through two paths, with activation energies slightly greater than that for the formation of 2-methyl-cyclohexanone. One path involves direct hydrogenation of the aromatic ring. Another path involves three steps, with the partial hydrogenation of the ring as the first step, hydrogen abstraction of the −OH group as the second, and hydrogenation of remaining C atoms and the O atom the last.

  9. Miscibility and Hydrogen Bonding in Blends of Poly(4-vinylphenol/Poly(vinyl methyl ketone

    Directory of Open Access Journals (Sweden)

    Hana Bourara

    2014-10-01

    Full Text Available The miscibility and phase behavior of poly(4-vinylphenol (PVPh with poly(vinyl methyl ketone (PVMK was investigated by differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was shown that all blends of PVPh/PVMK are totally miscible. A DSC study showed the apparition of a single glass transition (Tg over their entire composition range. When the amount of PVPh exceeds 50% in blends, the obtained Tgs are found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are capable of forming interpolymer complexes. FTIR analysis revealed the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and carbonyl groups, which intensified when the amount of PVPh was increased in blends. Furthermore, the quantitative FTIR study carried out for PVPh/PVMK blends was also performed for the vinylphenol (VPh and vinyl methyl ketone (VMK functional groups. These results were also established by scanning electron microscopy study (SEM.

  10. Contribution of NAD 2D-NMR in liquid crystals to the determination of hydrogen isotope profile of methyl groups in miliacin

    Science.gov (United States)

    Berdagué, Philippe; Lesot, Philippe; Jacob, Jérémy; Terwilliger, Valery J.; Le Milbeau, Claude

    2016-01-01

    The hydrogen isotopic composition (δD or (D/H) value) of molecular biomarkers preserved in sedimentary archives is increasingly used to provide clues about the evolution of past climatic conditions. The rationale is that intact biomarkers retain isotopic information related to the climatic conditions that prevailed at the time of their synthesis. Some of these biomarkers may be degraded during diagenesis, however. The extent to which these degradations alter the original δD value of the source biomarker is presently debated and the capacity to resolve this question by determination of compound-specific δD values alone is limited. The ;bulk; or ;global; δD value of any molecule is in fact a composite of δD values at each site within this molecule (δDi or (D/H)i with i = number of hydrogen/deuterium atoms in the considered molecule). Determination of this site-specific δDi value in biomarkers could not only yield outstanding paleoenvironmental information but also help forecast the impacts of diagenesis and define essential steps in biosynthetic pathways. This task is analytically challenging. Here, we examined the capabilities of natural abundance deuterium 2D-NMR (NAD 2D-NMR) using homopolypeptide liquid crystals as an NMR solvent to: (i) analyze the NAD spectra of biomakers; (ii) determine the site-specific distribution of hydrogen in the nine methyl groups (δDMei with i = 23-31) of miliacin, a pentacyclic triterpene of the amyrin family and key biomarker for broomcorn millet in sedimentary archives. Relative (D/H)Mei values were established by anisotropic NAD 2D-NMR. Then absolute δDMei values were obtained by determining δDMei value of the methoxy group of miliacin using two independent approaches: isotropic NAD NMR (SNIF-NMR™) and GC-irMS. The resulting isotope profile for miliacin shows, for the first time, large variations in δDMei values that can directly be explained by biosynthetic processes. This approach has also the potential to permit

  11. Hydrogen-Induced Cracking of the Drip Shield

    International Nuclear Information System (INIS)

    F. Hua

    2004-01-01

    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP 2.1.03.04.OB, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944])

  12. Attenuation of cigarette smoke-induced airway mucus production by hydrogen-rich saline in rats.

    Directory of Open Access Journals (Sweden)

    Yunye Ning

    Full Text Available BACKGROUND: Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD and asthma. Cigarette smoking (CS is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. METHODS: Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. RESULTS: Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. CONCLUSION: Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD.

  13. Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation.

    Science.gov (United States)

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; A S Langie, Sabine; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode

    2017-01-02

    Maternal nutrition is critically involved in the development and health of the fetus. We evaluated maternal methyl-group donor intake through diet (methionine, betaine, choline, folate) and supplementation (folic acid) before and during pregnancy in relation to global DNA methylation and hydroxymethylation and gene specific (IGF2 DMR, DNMT1, LEP, RXRA) cord blood methylation. A total of 115 mother-infant pairs were enrolled in the MAternal Nutrition and Offspring's Epigenome (MANOE) study. The intake of methyl-group donors was assessed using a food-frequency questionnaire. LC-MS/MS and pyrosequencing were used to measure global and gene specific methylation, respectively. Dietary intake of methyl-groups before and during pregnancy was associated with changes in LEP, DNMT1, and RXRA cord blood methylation. Statistically significant higher cord blood LEP methylation was observed when mothers started folic acid supplementation more than 6 months before conception compared with 3-6 months before conception (34.6 ± 6.3% vs. 30.1 ± 3.6%, P = 0.011, LEP CpG1) or no folic acid used before conception (16.2 ± 4.4% vs. 13.9 ± 3%, P = 0.036 for LEP CpG3 and 24.5 ± 3.5% vs. 22.2 ± 3.5%, P = 0.045 for LEP mean CpG). Taking folic acid supplements during the entire pregnancy resulted in statistically significantly higher cord blood RXRA methylation as compared with stopping supplementation in the second trimester (12.3 ± 1.9% vs. 11.1 ± 2%, P = 0.008 for RXRA mean CpG). To conclude, long-term folic acid use before and during pregnancy was associated with higher LEP and RXRA cord blood methylation, respectively. To date, pregnant women are advised to take a folic acid supplement of 400 µg/day from 4 weeks before until 12 weeks of pregnancy. Our results suggest significant epigenetic modifications when taking a folic acid supplement beyond the current advice.

  14. HUG - the Hydrogen Utility Group

    International Nuclear Information System (INIS)

    Tinkler, M.

    2006-01-01

    The Hydrogen Utility Group (HUG) was formally established in October 2005 by a group of leading electric utilities with a common interest in sharing hydrogen experiences and lessons learned. HUG's Mission Statement is: 'To accelerate utility integration of promising hydrogen energy related business applications through the coordinated efforts and actions of its members in collaboration with key stakeholders, including government agencies and utility support organizations.' In February 2006, HUG members presented a briefing to the US Senate Hydrogen and Fuel Cell Caucus in Washington, DC, outlining the significant role that the power industry should play in an emerging hydrogen economy. This presentation provides an overview of that briefing, summarizing the HUG's ongoing interests and activities

  15. Porphyromonas gingivalis hydrogen sulfide enhances methyl mercaptan-induced pathogenicity in mouse abscess formation.

    Science.gov (United States)

    Nakamura, Suguru; Shioya, Koki; Hiraoka, B Yukihiro; Suzuki, Nao; Hoshino, Tomonori; Fujiwara, Taku; Yoshinari, Nobuo; Ansai, Toshihiro; Yoshida, Akihiro

    2018-04-01

    Porphyromonas gingivalis produces hydrogen sulfide (H2S) from l-cysteine. However, the role of H2S produced by P. gingivalis in periodontal inflammation is unclear. In this study, we identified the enzyme that catalyses H2S production from l-cysteine and analysed the role of H2S using a mouse abscess model. The enzyme identified was identical to methionine γ-lyase (PG0343), which produces methyl mercaptan (CH3SH) from l-methionine. Therefore, we analysed H2S and CH3SH production by P. gingivalis W83 and a PG0343-deletion mutant (ΔPG0343) with/without l-cysteine and/or l-methionine. The results indicated that CH3SH is produced constitutively irrespective of the presence of l-methionine, while H2S was greatly increased by both P. gingivalis W83 and ΔPG0343 in the presence of l-cysteine. In contrast, CH3SH production by ΔPG0343 was absent irrespective of the presence of l-methionine, and H2S production was eliminated in the absence of l-cysteine. Thus, CH3SH and H2S production involves different substrates, l-methionine or l-cysteine, respectively. Based on these characteristics, we analysed the roles of CH3SH and H2S in abscess formation in mice by P. gingivalis W83 and ΔPG0343. Abscess formation by P. gingivalis W83, but not ΔPG0343, differed significantly in the presence and absence of l-cysteine. In addition, the presence of l-methionine did not affect the size of abscesses generated by P. gingivalis W83 and ΔPG0343. Therefore, we conclude that H2S produced by P. gingivalis does not induce inflammation; however, H2S enhances inflammation caused by CH3SH. Thus, these results suggest the H2S produced by P. gingivalis plays a supportive role in inflammation caused by methionine γ-lyase.

  16. Inductive effect of methyl group in a series of methylated indoles: A ...

    Indian Academy of Sciences (India)

    Vol. 125, No. 4, July 2013, pp. 905–912. c Indian Academy of Sciences. Inductive effect of methyl group in a series of methylated indoles: A graph theoretical analysis in the light of density functional theory and correlation with experimental charge transfer transition energies. AMIT S TIWARYa,∗ and ASOK K MUKHERJEEb.

  17. Methyl group rotation and nuclear relaxation at low temperatures

    International Nuclear Information System (INIS)

    Zweers, A.E.

    1976-01-01

    This thesis deals with the proton spin-lattice relaxation of some methyl group compounds at liquid helium temperatures. In these molecular crystals, an energy difference between the ground and first rotational state of the methyl group occurs, the so-called tunnelling splitting, which is of the order of a few degrees Kelvin. This means that the high temperature approximation is inappropriate for the description of the occupation densities of the two lowest rotational levels. A description of the properties of the methyl group in connection with relaxation

  18. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  19. Hydrogen-Induced Plastic Deformation in ZnO

    Science.gov (United States)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  20. Photoinduced nuclear spin conversion of methyl groups of single molecules

    International Nuclear Information System (INIS)

    Sigl, A.

    2007-01-01

    A methyl group is an outstanding quantum system due to its special symmetry properties. The threefold rotation around one of its bond is isomorphic to the group of even permutations of the remaining protons, a property which imposes severe quantum restrictions on the system, for instance a strict correlation of rotational states with nuclear spin states. The resulting long lifetimes of the rotational tunneling states of the methyl group can be exploited for applying certain high resolution optical techniques, like hole burning or single molecule spectroscopy to optically switch the methyl group from one tunneling state to another therebye changing the nuclear spin of the protons. One goal of the thesis was to perform this switching in single methyl groups. To this end the methyl group was attached to a chromophoric system, in the present case terrylene, which is well suited for single molecule spectroscopy as well as for hole burning. Experiments were performed with the bare terrylene molecule in a hexadecane lattice which served as a reference system, with alphamethyl terrylene and betamethyl terrylene, both embedded in hexadecane, too. A single molecular probe is a highly sensitive detector for dynamic lattice instabilities. Already the bare terrylene probe showed a wealth of interesting local dynamic effects of the hexadecane lattice which could be well acounted for by the assumption of two nearly degenerate sites with rather different optical and thermal properties, all of which could be determined in a quantitative fashion. As to the methylated terrylene systems, the experiments verified that for betamethyl terrylene it is indeed possible to measure rotational tunneling events in single methyl groups. However, the spectral patterns obtained was much more complicated than expected pointing to the presence of three spectroscopically different methyl groups. In order to achieve a definite assignement, molecular mechanics simulations of the terrylene probes in the

  1. (E-2-Methyl-6-{[(5-methylpyridin-2-ylimino]methyl}phenol

    Directory of Open Access Journals (Sweden)

    Md. Azharul Arafath

    2017-01-01

    Full Text Available In the title compound, C14H14N2O, the dihedral angle between the aromatic rings is 5.54 (9°. The conformation is reinforced by an intramolecular O—H...N hydrogen bond, which closes an S(6 ring. The pyridine N atom and methyl group lie to opposite sides of the molecule. In the crystal, the molecules are linked into a zigzag chain propagating in [0-11] by weak C—H...O hydrogen bonds.

  2. The role of hydrogen bonds in the crystals of 2-amino-4-methyl-5-nitropyridinium trifluoroacetate monohydrate and 4-hydroxybenzenesulfonate - X-ray and spectroscopic studies.

    Science.gov (United States)

    Bryndal, I; Marchewka, M; Wandas, M; Sąsiadek, W; Lorenc, J; Lis, T; Dymińska, L; Kucharska, E; Hanuza, J

    2014-04-05

    Two new organic-organic salts, 2-amino-4-methyl-5-nitropyridinium trifluoroacetate monohydrate (AMNP-TFA), and 2-amino-4-methyl-5-nitropyridinium 4-hydroxybenzenesulfonate (AMNP-HBS), were obtained and characterized by means of FT-IR, FT-Raman and single crystal X-ray crystallography. In the former crystal, the cations, anions and water molecules are linked into layers by three types of hydrogen bonds, NPH⋯O, NAH⋯O and OH⋯O. These layers are connected by weaker CH⋯O hydrogen bonds. In the latter crystal, the cations and anions form one-dimensional structure through a number of hydrogen-bonding interactions involving the OH, NH(+) and NH2 groups as donors. In this case the NPH⋯O and NAH⋯O hydrogen bonds are formed. The combination of interactions between cations and anions results in the formation of columns. Additionally, there are π-π stacking interactions between the columns. The obtained X-ray structural data are related to the vibrational spectra of the studied crystals. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Rotational spectrum of 1,1-difluoroethane-argon: influence of the interaction with the Ar atom on the V 3 barrier to internal rotation of the methyl group

    Science.gov (United States)

    Velino, Biagio; Melandri, Sonia; Favero, Paolo G.; Dell'Erba, Adele; Caminati, Walther

    2000-01-01

    The free-jet millimeter-wave absorption spectrum of 1,1-difluoroethane-Ar is reported. Most of the measured lines are split due to internal rotation of the methyl group and the tunnelling motion of Ar connecting two equivalent potential energy minima. The Ar atom, close to the CHF 2 group, eclipses one of the methylic hydrogens in the symmetryless geometry of the complex, reducing in this way the barrier to the internal rotation of the methyl group with respect to isolated 1,1-difluoroethane. For high J levels the distance of Ar from the molecule increases, however, due to the centrifugal distortion, and the barrier increases towards the value for 1,1-difluoroethane.

  4. (Di­methyl­phosphor­yl)methanaminium hydrogen oxalate–oxalic acid (2/1)

    OpenAIRE

    Bialek, Sebastian; Clemens, Rebecca; Reiss, Guido J.

    2014-01-01

    The reaction of (di­methyl­phosphor­yl)methanamine (dpma) with oxalic acid in ethanol yielded the title solvated salt, C3H11NOP+·C2HO4 −·0.5C2H2O4. Its asymmetric unit consists of one dpmaH+ cation, one hydrogen oxalate anion and a half-mol­ecule of oxalic acid located around a twofold rotation axis. The H atom of the hydrogen oxalate anion is statistically disordered over two positions that are trans to each other. The hydrogen oxalate monoanion is not planar (bend angle ∼16°) whereas the ox...

  5. Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl-methyl nuclear overhauser enhancement spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, Vincenzo; Fawzi, Nicolas L.; Clore, G. Marius, E-mail: mariusc@mail.nih.gov [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)

    2011-11-15

    Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to {approx}1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic relaxation enhancement (PRE), induced by nitroxide spin-labels incorporated at only a few surface-exposed engineered cysteines, provides fast, straightforward and robust access to methyl group resonance assignments, including stereoassignments for the methyl groups of leucine and valine. Neither prior assignments, including backbone assignments, for the protein, nor experiments that transfer magnetization between methyl groups and the protein backbone, are required. PRE-derived assignments are refined by 4D methyl-methyl nuclear Overhauser enhancement data, eliminating ambiguities and errors that may arise due to the high sensitivity of PREs to the potential presence of sparsely-populated transient states.

  6. Crystal structure of di­methyl­ammonium hydrogen oxalate hemi(oxalic acid)

    Science.gov (United States)

    Diallo, Waly; Gueye, Ndongo; Crochet, Aurélien; Plasseraud, Laurent; Cattey, Hélène

    2015-01-01

    Single crystals of the title salt, Me2NH2 +·HC2O4 −·0.5H2C2O4, were isolated as a side product from the reaction involving Me2NH, H2C2O4 and Sn(n-Bu)3Cl in a 1:2 ratio in methanol or by the reaction of the (Me2NH2)2C2O4 salt and Sn(CH3)3Cl in a 2:1 ratio in ethanol. The asymmetric unit comprises a di­methyl­ammonium cation (Me2NH2 +), an hydrogenoxalate anion (HC2O4 −), and half a mol­ecule of oxalic acid (H2C2O4) situated about an inversion center. From a supra­molecular point of view, the three components inter­act together via hydrogen bonding. The Me2NH2 + cations and the HC2O4 − anions are in close proximity through bifurcated N—H⋯(O,O) hydrogen bonds, while the HC2O4 − anions are organized into infinite chains via O—H⋯O hydrogen bonds, propagating along the a-axis direction. In addition, the oxalic acid (H2C2O4) mol­ecules play the role of connectors between these chains. Both the carbonyl and hydroxyl groups of each diacid are involved in four inter­molecular inter­actions with two Me2NH2 + and two HC2O4 − ions of four distinct polymeric chains, via two N—H⋯O and two O—H⋯O hydrogen bonds, respectively. The resulting mol­ecular assembly can be viewed as a two-dimensional bilayer-like arrangement lying parallel to (010), and reinforced by a C—H⋯O hydrogen bond. PMID:25995858

  7. Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production.

    Science.gov (United States)

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Yasui, Masaki; Yoneda, Masahiro; Shimazaki, Yoshihiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2012-01-01

    Both hydrogen sulfide (H2S) and methyl mercaptan (CH(3)SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH(3)SH/H(2)S ratios (high H(2)S but low CH(3)SH concentrations, n 5 14; high CH(3)SH but low H2S concentrations, n 5 16) and 13 subjects without malodor, using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis with the UniFrac distance metric revealed a distinct bacterial community structure in each malodor group. The H2S group showed higher proportions of the genera Neisseria, Fusobacterium, Porphyromonas and SR1 than the other two groups, whereas the CH(3)SH group had higher proportions of the genera Prevotella, Veillonella,Atopobium, Megasphaera, and Selenomonas. Our results suggested that distinct bacterial populations in the oral microbiota are involved in production of high levels of H2S and CH3SH in the oral cavity.

  8. Effect of pressure on the solution structure and hydrogen bond properties of aqueous N-methylacetamide

    International Nuclear Information System (INIS)

    Sarma, Rahul; Paul, Sandip

    2012-01-01

    Highlights: ► NMA molecules are associated mostly through their hydrophobic methyl groups. ► High pressure reduces association propensity causing dispersion of these moieties. ► Orientational polarization of vicinal water molecules near O and H atoms of NMA. ► NMA prefers to be a H-bond acceptor rather than a donor in interaction with water. ► Energy of these hydrogen bonds reduces slightly at high pressure. -- Abstract: Effects of high pressure on hydrophobic and hydrogen bonding interactions are investigated by employing molecular dynamics (MD) simulations of aqueous N-methylacetamide (NMA) solutions. Such systems are of interest mainly because high pressure causes protein denaturation and NMA is a computationally effective model to understand the atomic-level picture of pressure-induced structural transitions of protein. Simulations are performed for five different pressure values ranging from 1 atm to 8000 atm. We find that NMA molecules are associated mostly through their hydrophobic methyl groups and high pressure reduces this association propensity, causing dispersion of these moieties. At high pressure, structural void decreases and the packing efficiency of water molecules around NMA molecules increases. Hydrogen bond properties calculations show favorable NMA–NMA hydrogen bonds as compared to those of NMA–water hydrogen bonds and preference of NMA to be a hydrogen bond acceptor rather than a donor in interaction with water.

  9. Hydrogen-Atom Attack on Methyl Viologen in Aqueous Solution Studied by Pulse Radiolysis

    DEFF Research Database (Denmark)

    Solar, S.; Solar, W.; Getoff, N.

    1984-01-01

    Using hydrogen at high pressures of up to 150 bar (0.12 mol dm–3 H2) as an OH scavenger in aqueous MV2+ solutions (pH 1) it is possible to differentiate between two kinds of transient formed simultaneously by H-atom attack on methyl viologen. One of them is assigned to an H adduct on the N atom, ...

  10. Molecular mechanisms underlying the protective effects of hydrogen-saturated saline on noise-induced hearing loss.

    Science.gov (United States)

    Chen, Liwei; Han, Mingkun; Lu, Yan; Chen, Daishi; Sun, Xuejun; Yang, Shiming; Sun, Wei; Yu, Ning; Zhai, Suoqiang

    2017-10-01

    This study aimed to explore the molecular mechanism of the protective effects of hydrogen-saturated saline on NIHL. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections 3 d before and 1 h before noise exposure. ABR were tested to examine cochlear physiology changes. The changes of 8-hydroxy-desoxyguanosine (8-HOdG), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and high mobility group box-1 protein (HMGB1) in the cochlea were also examined. The results showed that pre-treatment with hydrogen-saturated saline could significantly attenuate noise-induced hearing loss. The concentration of 8-HOdG was also significantly decreased in the hydrogen-saturated saline group compared with the normal saline group. After noise exposure, the concentrations of IL-1, IL-6, TNF-α, and ICAM-1 in the cochlea of guinea pigs in the hydrogen-saturated saline group were dramatically reduced compared to those in the normal saline group. The concentrations of HMGB-1 and IL-10 in the hydrogen-saturated saline group were significantly higher than in those in the normal saline group immediately and at 7 d after noise exposure. This study revealed for the first time the protective effects of hydrogen-saturated saline on noise-induced hearing loss (NIHL) are related to both the anti-oxidative activity and anti-inflammatory activity.

  11. Stereoselective semi-hydrogenation and deuteration of a diacetylenic precursor of leukotriene B4 methyl ester

    International Nuclear Information System (INIS)

    Pontikis, R.; Le Merrer, Y.; Depezay, J.-C.; Petillot, Y.; Rousseau, B.; Beaucourt, J.P.

    1990-01-01

    [6,7,14,15- 2 H4]-Leukotriene B4 methyl ester was prepared by reduction with deuterium gas of a suitable precursor (deuterium incorporation > 90%). Several catalytic semi-hydrogenations were affected in order to determine the best conditions for the labeling step. (author)

  12. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  13. Can hydrogen bonds improve the hole-mobility in amorphous organic semiconductors? Experimental and theoretical insights

    KAUST Repository

    Mimaite, Viktorija; Grazulevicius, Juozas Vidas; Laurinaviciute, Rasa; Volyniuk, Dmytro; Jankauskas, Vygintas; Sini, Gjergji

    2015-01-01

    © The Royal Society of Chemistry 2015. Five hole-transporting triphenylamine derivatives containing methoxy and methyl groups are synthesized and investigated. The hole-mobility increases in the presence of methyl and methoxy substituents, exceeding 10-2 cm2 V-1 s-1 in the case of methyl groups. Quantum mechanical calculations on these compounds indicate very different dipole moments and intermolecular interaction strengths, with intriguing correlations with the trend in hole-mobility. Temperature dependent hole-mobility measurements indicate disorder dominated hole transport. The values of the energetic disorder parameter (σ) decrease upon methyl and methoxy substitutions despite the increase in dipole moments. This trend is discussed as a function of the interaction energy between adjacent molecules, the dipole moment, the molecular polarizability, and the conformational degree of freedom. Our results indicate that the global decrease of σ upon methyl and methoxy substitutions is dominated by the larger decrease in the geometrical randomness component of the energetic disorder. A direct correlation is established between the decrease in geometrical randomness and the increase in intermolecular interaction energies, mainly stemming from the additional C-H⋯π, O, N hydrogen bonds induced by methyl and methoxy groups.

  14. How does methylation suppress the electron-induced decomposition of 1-methyl-nitroimidazoles?

    Science.gov (United States)

    Kossoski, F.; Varella, M. T. do N.

    2017-10-01

    The efficient decomposition of nitroimidazoles (NIs) by low energy electrons is believed to underlie their radiosensitizing properties. Recent dissociative electron attachment (DEA) measurements showed that methylation at the N1 site unexpectedly suppresses the electron-induced reactions in 4(5)-NI. We report theoretical results that provide a clear interpretation of that astounding finding. Around 1.5 eV, DEA reactions into several fragments are initiated by a π* resonance, not considered in previous studies. The autoionization lifetime of this anion state, which limits the predissociation dynamics, is considerably shorter in the methylated species, thereby suppressing the DEA signals. On the other hand, the lifetime of the π* resonance located around 3 eV is less affected by methylation, which explains why DEA is still observed at these energies. Our results demonstrate how even a simple methylation can significantly modify the probabilities for DEA reactions, which may be significant for NI-based cancer therapy.

  15. Effects of Hydrogen-Rich Saline on Hepatectomy-Induced Postoperative Cognitive Dysfunction in Old Mice.

    Science.gov (United States)

    Tian, Yue; Guo, Shanbin; Zhang, Yan; Xu, Ying; Zhao, Ping; Zhao, Xiaochun

    2017-05-01

    This study aims to investigate the protective effects and underlying mechanisms of hydrogen-rich saline on the cognitive functions of elder mice with partial hepatectomy-induced postoperative cognitive dysfunction (POCD). Ninety-six old male Kunming mice were randomly divided into 4 groups (n = 24 each): control group (group C), hydrogen-rich saline group (group H), POCD group (group P), and POCD + hydrogen-rich saline group (group PH). Cognitive function was subsequently assessed using Morris water-maze (MWM) test. TNF-α and IL-1β levels were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, along with NF-κB activity determined by ELISA. The morphology of hippocampal tissues were further observed by HE staining. Learning and memory abilities of mice were significantly impaired at day 10 and day 14 post-surgery, as partial hepatectomy significantly prolonged the escape latency, decreased time at the original platform quadrant and frequency of crossing in group P when compared to group C (p hydrogen-rich saline (group PH) partially rescued spatial memory and learning as it shortened escape latency and increased time and crossing frequency of original platform compared to group P (p hydrogen-rich saline. Hydrogen-rich saline can alleviate POCD via inhibiting NF-κB activity in the hippocampus and reducing inflammatory response.

  16. Radiation-induced glycoside bond breaking in cellulose methyl ethers

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Boltromeyuk, V.V.; Kovalenko, N.I.; Shadyro, O.I.

    1988-01-01

    Radiation-induced destruction of cellulose methyl ethers of different degree of esterification in aqueous solutions with and without acceptors: (N 2 O, O 2 , H 2 O + , Co(2), Cu(2)) is investigated. It is established that OH radicals make main contribution into radiolytic transformations of cellulose ethers in aqueous solutions. Reactions of radicals with free valency on carbon atoms containing secondary nonsubstituted hydroxyl groups lead also to glycoside bond breaking besides the reaction of β-fragmentation and hydrolysis of radicals with an unpaired electron localized near C 1 , C 4 , C 5 aroms

  17. (Di­methyl­phosphor­yl)methanaminium hydrogen oxalate–oxalic acid (2/1)

    Science.gov (United States)

    Bialek, Sebastian; Clemens, Rebecca; Reiss, Guido J.

    2014-01-01

    The reaction of (di­methyl­phosphor­yl)methanamine (dpma) with oxalic acid in ethanol yielded the title solvated salt, C3H11NOP+·C2HO4 −·0.5C2H2O4. Its asymmetric unit consists of one dpmaH+ cation, one hydrogen oxalate anion and a half-mol­ecule of oxalic acid located around a twofold rotation axis. The H atom of the hydrogen oxalate anion is statistically disordered over two positions that are trans to each other. The hydrogen oxalate monoanion is not planar (bend angle ∼16°) whereas the oxalic acid molecule shows a significantly smaller bend angle (∼7°). In the crystal, the components are connected by strong O—H⋯O and much weaker N—H⋯O hydrogen bonds, leading to the formation of layers extending parallel to (001). The structure was refined from a racemically twinned crystal with twin components in an approximate 1:1 ratio. PMID:24765013

  18. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    Science.gov (United States)

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Hydrogen Induced Cracking of Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    G. De

    2003-02-24

    One potential failure mechanism for titanium and its alloys under repository conditions is via the absorption of atomic hydrogen in the metal crystal lattice. The resulting decreased ductility and fracture toughness may lead to brittle mechanical fracture called hydrogen-induced cracking (HIC) or hydrogen embrittlement. For the current design of the engineered barrier without backfill, HIC may be a problem since the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this scientific analysis and modeling activity is to evaluate whether the drip shield will fail by HIC or not under repository conditions within 10,000 years of emplacement. This Analysis and Model Report (AMR) addresses features, events, and processes related to hydrogen induced cracking of the drip shield. REV 00 of this AMR served as a feed to ''Waste Package Degradation Process Model Report'' and was developed in accordance with the activity section ''Hydrogen Induced Cracking of Drip Shield'' of the development plan entitled ''Analysis and Model Reports to Support Waste Package PMR'' (CRWMS M&O 1999a). This AMR, prepared according to ''Technical Work Plan for: Waste Package Materials Data Analyses and Modeling'' (BSC 2002), is to feed the License Application.

  20. Stereoselective semi-hydrogenation and deuteration of a diacetylenic precursor of leukotriene B sub 4 methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Pontikis, R.; Le Merrer, Y.; Depezay, J.-C. (U.D.C. CNRS-INSERM (URA 400), 75, Paris (France). Lab. de Chimie et Biochimie Pharamacologiques et Toxicologiques); Petillot, Y.; Rousseau, B.; Beaucourt, J.P. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service des Molecules Marquees)

    1990-10-01

    (6,7,14,15-{sup 2}H4)-Leukotriene B4 methyl ester was prepared by reduction with deuterium gas of a suitable precursor (deuterium incorporation > 90%). Several catalytic semi-hydrogenations were affected in order to determine the best conditions for the labeling step. (author).

  1. Methyl group turnover on methyl-accepting chemotaxis proteins during chemotaxis by Bacillus subtilis

    International Nuclear Information System (INIS)

    Thoelke, M.S.; Casper, J.M.; Ordal, G.W.

    1990-01-01

    The addition of attractant to Bacillus subtilis briefly exposed to radioactive methionine causes an increase of labeling of the methyl-accepting chemotaxis proteins. The addition of attractant to cells radiolabeled for longer times shows no change in the extent of methylation. Therefore, the increase in labeling for the briefly labeled cells is due to an increased turnover of methyl groups caused by attractant. All amino acids gave enhanced turnover. This turnover lasted for a prolonged time, probably spanning the period of smooth swimming caused by the attractant addition. Repellent did not affect the turnover when added alone or simultaneously with attractant. Thus, for amino acid attractants, the turnover is probably the excitatory signal, which is seen to extend long into or throughout the adaptation period, not just at the start of it

  2. Plasma membrane H(+)-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Zhu, Changhua; Yang, Na; Ma, Xiaoling; Li, Guijun; Qian, Meng; Ng, Denny; Xia, Kai; Gan, Lijun

    2015-06-01

    Our results show that methyl jasmonate induces plasma membrane H (+) -ATPase activity and subsequently influences the apoplastic pH of trichoblasts to maintain a cell wall pH environment appropriate for root hair development. Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. Plant hormones are critical regulators of root hair development. In this study, we investigated the regulatory role of the plasma membrane (PM) H(+)-ATPase in methyl jasmonate (MeJA)-induced root hair formation. We found that MeJA had a pronounced effect on the promotion of root hair formation in lettuce seedlings, but that this effect was blocked by the PM H(+)-ATPase inhibitor vanadate. Furthermore, MeJA treatment increased PM H(+)-ATPase activity in parallel with H(+) efflux from the root tips of lettuce seedlings and rhizosphere acidification. Our results also showed that MeJA-induced root hair formation was accompanied by hydrogen peroxide accumulation. The apoplastic acidification acted in concert with reactive oxygen species to modulate root hair formation. Our results suggest that the effect of MeJA on root hair formation is mediated by modulation of PM H(+)-ATPase activity.

  3. Light-induced defect creation in hydrogenated polymorphous silicon

    International Nuclear Information System (INIS)

    Morigaki, K.; Takeda, K.; Hikita, H.; Roca i Cabarrocas, P.

    2005-01-01

    Light-induced defect creation in hydrogenated polymorphous silicon (pm-Si:H) is investigated from electron spin resonance measurements and is compared with that in hydrogenated amorphous silicon (a-Si:H). Light-induced defect creation occurs at room temperature similarly for both types of films prepared at 250 deg. C. Thermal annealing of light-induced defects is also investigated as a function of temperature. Different behaviours of annealing characteristics for pm-Si:H from those for a-Si:H are observed and discussed. In particular, we observed a decrease of the light-induced defect creation efficiency with repeated light-soaking-annealing cycles and discuss it with respect to the hydrogen bonding in pm-Si:H films

  4. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    Full Text Available BACKGROUND: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N addition, and warming+nitrogen (N addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP, methylation-sensitive amplified polymorphism (MSAP and retrotransposon based sequence-specific amplification polymorphism (SSAP techniques. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid

  5. Cytosine Methylation Alteration in Natural Populations of Leymus chinensis Induced by Multiple Abiotic Stresses

    Science.gov (United States)

    Yu, Yingjie; Yang, Xuejiao; Wang, Huaying; Shi, Fengxue; Liu, Ying; Liu, Jushan; Li, Linfeng; Wang, Deli; Liu, Bao

    2013-01-01

    Background Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Methodology/Principal Findings Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Conclusions/Significance Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by

  6. Acibenzolar-S-methyl induces lettuce resistance against ...

    African Journals Online (AJOL)

    ... contributing to the enhancement of plant resistance. The effect was comparable with copper treatment. As a marker of resistance, PR protein activity chitinase showed remarkable increase, depending on decreasing bacterial growth in planta. Key words: Acibenzolar-S-methyl, induced resistance, Xanthomonas campestris ...

  7. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Laureys, A., E-mail: Aurelie.Laureys@UGent.be [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Depover, T. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Petrov, R. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Verbeken, K. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium)

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  8. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    International Nuclear Information System (INIS)

    Laureys, A.; Depover, T.; Petrov, R.; Verbeken, K.

    2016-01-01

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  9. Synthesis of DL-adrenaline (methyl C{sup 14}) (1961); Synthese de la DL-adrenaline (methyle {sup 14}C) (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, L; Audinot, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The sodium derivative of 5-3-4 dibenzyl oxyphenyl 2-oxazolidinone reacted with methyl iodide {sup 14}C, in stoichiometric quantity, gives rise to the corresponding N-methyl {sup 14}C derivative. The oxazolidinone ring is opened by concentrated hydrochloric acid and the benzyl groups removed by catalytic hydrogenolysis. Adrenaline methyl {sup 14}C is then purified on Dowex 50 X-12 exchange resin. Overall-yield is 45 per cent based upon methyl iodide {sup 14}C. (author) [French] Le derive sode de la (dibenzyloxy-3-4-phenyl)-5 oxazolidinone-2 traite par l'iodure de methyle {sup 14}C, en proportion stoechiometrique, fournit le derive N-methyle {sup 14}C correspondant. Apres ouverture du cycle oxazolidinone par HCL concentre et debenzylation par hydrogenation catalytique, on purifie l'adrenaline (methyle {sup 14}C) par chromatographie sur resine echangeuse Dowex 50 X-12. Le rendement est de 45 pour cent par rapport a l'iodure de methyle {sup 14}C. (auteurs)

  10. Synthesis of DL-adrenaline (methyl C{sup 14}) (1961); Synthese de la DL-adrenaline (methyle {sup 14}C) (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, L.; Audinot, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The sodium derivative of 5-3-4 dibenzyl oxyphenyl 2-oxazolidinone reacted with methyl iodide {sup 14}C, in stoichiometric quantity, gives rise to the corresponding N-methyl {sup 14}C derivative. The oxazolidinone ring is opened by concentrated hydrochloric acid and the benzyl groups removed by catalytic hydrogenolysis. Adrenaline methyl {sup 14}C is then purified on Dowex 50 X-12 exchange resin. Overall-yield is 45 per cent based upon methyl iodide {sup 14}C. (author) [French] Le derive sode de la (dibenzyloxy-3-4-phenyl)-5 oxazolidinone-2 traite par l'iodure de methyle {sup 14}C, en proportion stoechiometrique, fournit le derive N-methyle {sup 14}C correspondant. Apres ouverture du cycle oxazolidinone par HCL concentre et debenzylation par hydrogenation catalytique, on purifie l'adrenaline (methyle {sup 14}C) par chromatographie sur resine echangeuse Dowex 50 X-12. Le rendement est de 45 pour cent par rapport a l'iodure de methyle {sup 14}C. (auteurs)

  11. X-ray investigations of sulfur-containing fungicides. IV. 4'-[[Benzoyl(4-chlorophenylhydrazono)methyl]sulfonyl]acetanilide and 4'-[[benzoyl(4-methoxyphenylhydrazono)methyl]sulfonyl]acetanilide.

    Science.gov (United States)

    Wolf, W M

    2001-09-01

    The conformations of the two approximately isomorphous structures 4'-[[benzoyl(4-chlorophenylhydrazono)methyl]sulfonyl]acetanilide, C(22)H(18)ClN(3)O(4)S, and 4'-[[benzoyl(4-methoxyphenylhydrazono)methyl]sulfonyl]acetanilide, C(23)H(21)N(3)O(5)S, are stabilized by resonance-assisted intramolecular hydrogen bonds linking the hydrazone moieties and sulfonyl groups. The stronger bond is observed in the former compound. The difference in electronic properties between the Cl atom and the methoxy group is too small to significantly alter the non-bonding interactions of the sulfonyl and beta-carbonyl groups.

  12. Hydrogen-induced electrical and optical switching in Pd capped Pr ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. In this study, modification in the properties of hydrogen-induced switchable mirror based on Pr nanoparticle layers is reported. The reversible changes in hydrogen-induced electrical and optical properties of Pd capped Pr nanoparticle layers have been studied as a function of hydrogenation time and compared.

  13. Stereoselective Hydrogenation and Ozonolysis of Iridoids. Conversion into Carbocyclic Nucleoside Analogues

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Stermitz, Frank R.

    1999-01-01

    Stereoselective hydrogenation of the iridoids geniposide (9) and aucubin (19) was achieved by using the 1-methyl-1-methoxyethyl ether (MIP) as protecting group for the allylic alcohol, as it enhanced the stereoselectivity and prevented undesired hydrogenolysis. Ozonolysis of the hydrogenation...

  14. Temperature effect on the photoinduced reduction of methyl viologen with several sensitizers and the evolution of hydrogen from water

    Energy Technology Data Exchange (ETDEWEB)

    Nenadovic, M.T.; Micic, O.I.; Rajh, T.; Savic, D.

    1983-01-01

    Irradiation by visible light of an aqueous solution containing a photosensitizer, methyl viologen (MV/sup 2 +/) and ethylenediaminetetraacetic acid leads to the formation of the reduced form of methyl viologen (MV/sup +/). The quantum yield for the formation of MV/sup +/ depends strongly on the time during which the formation is observed owing to the reaction of MV/sup +/ with oxidative products and its reduction to MV/sup 0/. Proflavin, acridine yellow and ruthenium(II)tris(2,2-bipyridyl) were used as photosensitizers and showed the same ability to promote hydrogen evolution. When CdS was used as a sensitizer a factor of 10 less hydrogen was obtained than when the dyes were used. The redox catalysts platinum, Pt-TiO/sub 2/-RuO/sub 2/ and Pt-CdS in colloidal systems showed approximately the same activity towards the reduction of water. The reduction of MV/sup 2 +/ and the evolution of hydrogen were enhanced at higher temperatures (70/sup 0/C). The optimum conditions for water reduction on redox catalysts in colloidal system under continuous illumination are analysed.

  15. Hydrodehalogenation of alkyl iodides with base-mediated hydrogenation and catalytic transfer hydrogenation: application to the asymmetric synthesis of N-protected α-methylamines.

    Science.gov (United States)

    Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S

    2014-09-05

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.

  16. DNA Methylation program in normal and alcohol-induced thinning cortex.

    Science.gov (United States)

    Öztürk, Nail Can; Resendiz, Marisol; Öztürk, Hakan; Zhou, Feng C

    2017-05-01

    While cerebral underdevelopment is a hallmark of fetal alcohol spectrum disorders (FASD), the mechanism(s) guiding the broad cortical neurodevelopmental deficits are not clear. DNA methylation is known to regulate early development and tissue specification through gene regulation. Here, we examined DNA methylation in the onset of alcohol-induced cortical thinning in a mouse model of FASD. C57BL/6 (B6) mice were administered a 4% alcohol (v/v) liquid diet from embryonic (E) days 7-16, and their embryos were harvested at E17, along with isocaloric liquid diet and lab chow controls. Cortical neuroanatomy, neural phenotypes, and epigenetic markers of methylation were assessed using immunohistochemistry, Western blot, and methyl-DNA assays. We report that cortical thickness, neuroepithelial proliferation, and neuronal migration and maturity were found to be deterred by alcohol at E17. Simultaneously, DNA methylation, including 5-methylcytosine (5mC) and 5-hydroxcylmethylcytosine (5hmC), which progresses as an intrinsic program guiding normal embryonic cortical development, was severely affected by in utero alcohol exposure. The intricate relationship between cortical thinning and this DNA methylation program disruption is detailed and illustrated. DNA methylation, dynamic across the multiple cortical layers during the late embryonic stage, is highly disrupted by fetal alcohol exposure; this disruption occurs in tandem with characteristic developmental abnormalities, ranging from structural to molecular. Finally, our findings point to a significant question for future exploration: whether epigenetics guides neurodevelopment or whether developmental conditions dictate epigenetic dynamics in the context of alcohol-induced cortical teratogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Heritable alteration of DNA methylation induced by whole-chromosome aneuploidy in wheat.

    Science.gov (United States)

    Gao, Lihong; Diarso, Moussa; Zhang, Ai; Zhang, Huakun; Dong, Yuzhu; Liu, Lixia; Lv, Zhenling; Liu, Bao

    2016-01-01

    Aneuploidy causes changes in gene expression and phenotypes in all organisms studied. A previous study in the model plant Arabidopsis thaliana showed that aneuploidy-generated phenotypic changes can be inherited to euploid progenies and implicated an epigenetic underpinning of the heritable variations. Based on an analysis by amplified fragment length polymorphism and methylation-sensitive amplified fragment length polymorphism markers, we found that although genetic changes at the nucleotide sequence level were negligible, extensive changes in cytosine DNA methylation patterns occurred in all studied homeologous group 1 whole-chromosome aneuploid lines of common wheat (Triticum aestivum), with monosomic 1A showing the greatest amount of methylation changes. The changed methylation patterns were inherited by euploid progenies derived from the aneuploid parents. The aneuploidy-induced DNA methylation alterations and their heritability were verified at selected loci by bisulfite sequencing. Our data have provided empirical evidence supporting earlier suggestions that heritability of aneuploidy-generated, but aneuploidy-independent, phenotypic variations may have an epigenetic basis. That at least one type of aneuploidy - monosomic 1A - was able to cause significant epigenetic divergence of the aneuploid plants and their euploid progenies also lends support to recent suggestions that aneuploidy may have played an important and protracted role in polyploid genome evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. 2,4-Diamino-6-methyl-1,3,5-triazin-1-ium hydrogen oxalate

    Directory of Open Access Journals (Sweden)

    Bohari M. Yamin

    2012-05-01

    Full Text Available The title compound, C4H8N5+·C2HO4−, was obtained from the reaction of oxalic acid and 2,4-diamino-6-methyl-1,3,5-triazine. The protonated triazine ring is essentially planar with a maximum deviation of 0.035 (1 Å, but the hydrogen oxalate anion is less planar, with a maximum deviation of 0.131 (1 Å for both carbonyl O atoms. In the crystal, the ions are linked by intermolecular N—H...O, N—H...N, O—H...O and C—H...O hydrogen bonds, forming a three-dimensional network. Weak π–π [centroid–centroid distance = 3.763 Å] and C—O...π interactions [O...centroid = 3.5300 (16 Å, C—O...centroid = 132.19 (10°] are also present.

  19. Phase transition scheme of isolated hydrogen-bonded material h-MeHPLN studied by neutron and X-ray diffraction

    International Nuclear Information System (INIS)

    Kiyanagi, Ryoji; Kimura, Hiroyuki; Watanabe, Masashi; Noda, Yukio; Kojima, Akiko; Mochida, Tomoyuki; Sugawara, Tadashi

    2005-01-01

    The antiferroelectric material with an isolated hydrogen-bond, h-MeHPLN (5-methyl-9-hydroxyphenalenon), was structurally investigated by X-ray and neutron diffraction experiments in the low-temperature phase (T c =42K). The formation of a superlattice of 2 x b was found below T c , and the space group was identified to be P2 1 /c transformed from C2 c . Accordingly, the number of crystallographically independent molecules became two. The electron density distribution and the nuclear density distribution revealed some significant features below T c . One of the independent molecules exhibits an ordering of the hydrogen atom in the hydrogen-bond region, a conformational ordering of the methyl group and a molecular rotation around the a-axis. Moreover, a static electronic dipole moment is found in the hydrogen-bond region in this molecule. In contrast, the other molecule shows a disordered hydrogen atom, disordered conformation of the methyl group, no molecular rotation and a disordered electronic dipole moment. These features can be described simply in terms of a modulation wave of an order parameter. (author)

  20. Effects of Post-Treatment Hydrogen Gas Inhalation on Uveitis Induced by Endotoxin in Rats.

    Science.gov (United States)

    Yan, Weiming; Chen, Tao; Long, Pan; Zhang, Zhe; Liu, Qian; Wang, Xiaocheng; An, Jing; Zhang, Zuoming

    2018-06-07

    BACKGROUND Molecular hydrogen (H2) has been widely reported to have benefiicial effects in diverse animal models and human disease through reduction of oxidative stress and inflammation. The aim of this study was to investigate whether hydrogen gas could ameliorate endotoxin-induced uveitis (EIU) in rats. MATERIAL AND METHODS Male Sprague-Dawley rats were divided into a normal group, a model group, a nitrogen-oxygen (N-O) group, and a hydrogen-oxygen (H-O) group. EIU was induced in rats of the latter 3 groups by injection of lipopolysaccharide (LPS). After that, rats in the N-O group inhaled a gas mixture of 67% N2 and 33% O2, while those in the H-O group inhaled a gas mixture of 67% H2 and 33% O2. All rats were graded according to the signs of uveitis after electroretinography (ERG) examination. Protein concentration in the aqueous humor (AqH) was measured. Furthermore, hematoxylin-eosin staining and immunostaining of anti-ionized calcium-binding adapter molecule 1 (Iba1) in the iris and ciliary body (ICB) were carried out. RESULTS No statistically significant differences existed in the graded score of uveitis and the b-wave peak time in the Dark-adapted 3.0 ERG among the model, N-O, and H-O groups (P>0.05), while rats of the H-O group showed a lower concentration of AqH protein than that of the model or N-O group (P0.05), while the activation of microglia cells in the H-O group was somewhat reduced (Ptreatment hydrogen gas inhalation did not ameliorate the clinical signs, or reduce the infiltrating cells of EIU. However, it inhibited the elevation of protein in the AqH and reduced the microglia activation.

  1. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  2. Electron beam induced fluorescence measurements of the degree of hydrogen dissociation in hydrogen plasmas

    NARCIS (Netherlands)

    Smit, C.; Brussaard, G.J.H.; de Beer, E.C.M.; Schram, D.C.; Sanden, van de M.C.M.

    2004-01-01

    The degree of dissociation of hydrogen in a hydrogen plasma has been measured using electron beam induced fluorescence. A 20 kV, 1 mA electron beam excites both the ground state H atom and H2 molecule into atomic hydrogen in an excited state. From the resulting fluorescence the degree of

  3. Genome-wide screen of DNA methylation changes induced by low dose X-ray radiation in mice.

    Directory of Open Access Journals (Sweden)

    Jingzi Wang

    Full Text Available Epigenetic mechanisms play a key role in non-targeted effects of radiation. The purpose of this study was to investigate global hypomethylation and promoter hypermethylation of particular genes induced by low dose radiation (LDR. Thirty male BALB/c mice were divided into 3 groups: control, acutely exposed (0.5 Gy X-rays, and chronic exposure for 10 days (0.05Gy/d×10d. High-performance liquid chromatography (HPLC and MeDIP-quantitative polymerase chain reaction (qPCR were used to study methylation profiles. DNMT1 and MBD2 expression was determined by qPCR and western blot assays. Methylation and expression of Rad23b and Ddit3 were determined by bisulfate sequencing primers (BSP and qPCR, respectively. The results show that LDR induced genomic hypomethylation in blood 2 h postirraditaion, but was not retained at 1-month. DNMT1 and MBD2 were downregulated in a tissue-specific manner but did not persist. Specific hypermethylation was observed for 811 regions in the group receiving chronic exposure, which covered almost all key biological processes as indicated by GO and KEGG pathway analysis. Eight hypermethylated genes (Rad23b, Tdg, Ccnd1, Ddit3, Llgl1, Rasl11a, Tbx2, Scl6a15 were verified by MeDIP-qPCR. Among them, Rad23b and Ddit3 gene displayed tissue-specific methylation and downregulation, which persisted for 1-month postirradiation. Thus, LDR induced global hypomethylation and tissue-specific promoter hypermethylation of particular genes. Promoter hypermethylation, rather than global hypomethylation, was relatively stable. Dysregulation of methylation might be correlated with down-regulation of DNMT1 and MBD2, but much better understanding the molecular mechanisms involved in this process will require further study.

  4. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig.

    Science.gov (United States)

    Wei, Lihua; Ge, Li; Qin, Shucun; Shi, Yunzhi; Du, Changqing; Du, Hui; Liu, Liwei; Yu, Yang; Sun, Xuejun

    2012-01-01

    Molecular hydrogen (H(2)) is an efficient antioxidant that can selectively reduce hydroxyl radicals and inhibit oxidative stress-induced injuries. We investigated the protective effects and mechanism of hydrogen-rich saline in a glutamate-induced retinal injury model. Retinal excitotoxicity was induced in healthy guinea pigs by injecting glutamate into the vitreous cavity. After 30 min, hydrogen-rich saline was injected into the vitreous cavity, the peritoneal cavity or both. Seven days later, the retinal stress response was evaluated by examining the stress biomarkers, inducible nitric-oxide synthase (iNOS) and glucose-regulated protein 78 (GRP78). The impaired glutamate uptake was assessed by the expression of the excitatory amino acid transporter 1(EAAT-1). The retinal histopathological changes were investigated, focusing on the thicknesses of the entire retina and its inner layer, the number of cells in the retinal ganglion cell layer (GCL) and the ultrastructure of the retinal ganglion cells (RGCs) and glial cells. Compared with the glutamate-induced injury group, the hydrogen-rich saline treatment reduced the loss of cells in the GCL and thinning of the retina and attenuated cellular morphological damage. These improvements were greatest in animals that received H(2) injections into both the vitreous and the peritoneal cavities. The hydrogen-rich saline also inhibited the expression of glial fibrillary acidic protein (GFAP) in Müller cells, CD11b in microglia, and iNOS and GRP78 in glial cells. Moreover, the hydrogen-rich saline increased the expression of EAAT-1. In conclusion, the administration of hydrogen-rich saline through the intravitreal or/and intraperitoneal routes could reduce the retinal excitotoxic injury and promote retinal recovery. This result likely occurs by inhibiting the activation of glial cells, decreasing the production of the iNOS and GRP78 and promoting glutamate clearance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. A simple biosynthetic method for stereospecific resonance assignment of prochiral methyl groups in proteins

    International Nuclear Information System (INIS)

    Plevin, Michael J.; Hamelin, Olivier; Boisbouvier, Jérôme; Gans, Pierre

    2011-01-01

    A new method for stereospecific assignment of prochiral methyl groups in proteins is presented in which protein samples are produced using U-[ 13 C]glucose and subsaturating amounts of 2-[ 13 C]methyl-acetolactate. The resulting non-uniform labeling pattern allows proR and proS methyl groups to be easily distinguished by their different phases in a constant-time two-dimensional 1 H- 13 C correlation spectra. Protein samples are conveniently prepared using the same media composition as the main uniformly-labeled sample and contain higher levels of isotope-enrichment than fractional labeling approaches. This new strategy thus represents an economically-attractive, robust alternative for obtaining isotopically-encoded stereospecific NMR assignments of prochiral methyl groups.

  6. SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants.

    Science.gov (United States)

    Tripathi, Diwaker; Jiang, Yu-Lin; Kumar, Dhirendra

    2010-08-04

    Tobacco SABP2, a 29kDa protein catalyzes the conversion of methyl salicylic acid (MeSA) into salicylic acid (SA) to induce SAR. Pretreatment of plants with acibenzolar-S-methyl (ASM), a functional analog of salicylic acid induces systemic acquired resistance (SAR). Data presented in this paper suggest that SABP2 catalyzes the conversion of ASM into acibenzolar to induce SAR. Transgenic SABP2-silenced tobacco plants when treated with ASM, fail to express PR-1 proteins and do not induce robust SAR expression. When treated with acibenzolar, full SAR is induced in SABP2-silenced plants. These results show that functional SABP2 is required for ASM-mediated induction of resistance. Copyright (c) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Nuclear magnetic relaxation of methyl group in liquids

    International Nuclear Information System (INIS)

    Blicharska, B.

    1986-01-01

    The theoretical description of the relaxation process of methyl group in liquids and some results of the measurements of relaxation function and relaxation times for cryoprotective solutions are presented. Starting from the application of the operator formalism the general equation for spin operators e.g. components of the nuclear spin and magnetization is founded. Next, the spin Hamiltonian is presented as contraction of the symmetry adapted spherical tensors as well as the correlation functions and spectral densities. On the basis of extended and modified Woessner model of motion the correlation functions and spectral densities are calculated for methyl group in liquids. Using these functions the relaxation matrix elements, the spin-spin and spin-lattice relaxation times can be expressed. The prediction of the theory agrees with author's previous experiments on cryoprotective solutions. The observed dependence on temperature, frequency and isotopic dilution in methanol-water, methanol-dimethyl sulfoxide (DMSO) and DMSO-water solutions is in a satisfactory agreement with theoretical equations. 34 refs. (author)

  8. Metabolism of S-adenosylmethionine in rat hepatocytes: transfer of methyl group from S-adenosylmethionine by methyltransferase reactions

    International Nuclear Information System (INIS)

    Tsukada, K.; Abe, T.; Kuwahata, T.; Mitsui, K.

    1985-01-01

    Treatment of rats with a methionine diet leads not only to a marked increase of S-adenosylmethionine synthetase in liver, but also to the increase of glycine, guanidoacetate and betaine-homocysteine methyltransferases. The activity of tRNA methyltransferase decreased with the increased amounts of methionine in the diets. However, the activities of phospholipids and S-adenosylmethionine-homocysteine methyltransferases did not show any significant change. When hepatocarcinogenesis induced by 2-fluorenylacetamide progresses, the activities of glycine and guanidoacetate methyltransferases in rat liver decreased, and could not be detected in tumorous areas 8 months after treatment. The levels of S-adenosylmethionine in the liver also decreased to levels of one-fifth of control animals at 8 months. The uptake and metabolism of [methyl- 3 H]-methionine and -S-adenosylmethionine have been investigated by in vivo and isolated hepatocytes. The uptake of methionine and transfer of methyl group to phospholipid in the cells by methionine were remarkably higher than those by S-adenosylmethionine. These results indicate that phospholipids in hepatocytes accept methyl group from S-adenosylmethionine immediately, when it is synthesized from methionine, before mixing its pool in the cells. 39 references, 1 figure, 2 tables

  9. 2-[3-Furyl(hydroxy)methyl]-2,3-dimethylcyclohexanone.

    Science.gov (United States)

    García, Esther; Mendoza, Virgilio; Guzmán, José Agustín; Maldonado Graniel, Luis Angel; Hernández-Ortega, Simón

    2002-06-01

    Contribution No. 1750 of the Instituto de Quimica, UNAM, Mexico. In the molecule of the title compound, C(13)H(18)O(3), there is a syn relationship between the two vicinal methyl groups. The six-membered ring adopts a chair conformation, with one equatorial and two axial groups, and the furyl group is almost parallel to the ketone group. Intermolecular hydrogen bonds [O[bond]H...O[double bond]C 2.814 (3) A] form chains along [100].

  10. Hyperoxygenated hydrogen-rich solution suppresses shock- and resuscitation-induced liver injury.

    Science.gov (United States)

    Dang, Yangjie; Liu, Ting; Mei, Xiaopeng; Meng, Xiangzhong; Gou, Xingchun; Deng, Bin; Xu, Hao; Xu, Lixian

    2017-12-01

    It is not known whether simultaneous delivery of hydrogen and oxygen can reduce injury caused by hemorrhagic shock and resuscitation (HSR). This study investigated the therapeutic potential of hyperoxygenated hydrogen-rich solution (HHOS), a combined hydrogen/oxygen carrier, in a rat model of HSR-induced liver injury. Rats (n = 60) were randomly divided into 5 groups (n = 6 per group at each time point). One group underwent sham operation, and the others were subjected to severe hemorrhagic shock and then treated with lactated Ringer's solution (LRS), hydrogen-rich solution, hyperoxygenated solution, or HHOS. At 2 and 6 h after resuscitation, blood samples (n = 6) were collected from the femoral artery and serum concentrations of alanine aminotransferase and aspartate aminotransferase (AST) were measured. Rats were then sacrificed, and histopathological changes in the liver were evaluated by quantifying the percentage of apoptotic cells by caspase-3 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick-end labeling. Inflammation was assessed by assessing malondialdehyde content and tumor necrosis factor-α, and interleukin (IL)-6 expression. Compared to lactated Ringer's solution, hydrogen-rich solution, or hyperoxygenated solution groups, serum AST and alanine aminotransferase levels and IL-6, tumor necrosis factor-α, and malondialdehyde expression in liver tissue were decreased by HHOS treatment. The number of caspase-3- and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells was decreased (P < 0.05) by HHOS treatment, 2 and 6 h after resuscitation. HHOS has protective effects against liver injury in a rat model of HSR. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  12. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    Science.gov (United States)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  13. 3,4-O-Isopropylidene-2-C-methyl-d-galactonolactone

    Directory of Open Access Journals (Sweden)

    N. Dai

    2010-02-01

    Full Text Available X-ray crystallography unequivocally confirmed the stereochemistry of the 2-C-methyl group in the title molecule, C10H16O6, in which the 1,5-lactone ring exists in a boat conformation. The use of d-galactose in the synthesis determined the absolute stereochemistry. The crystal exists as O—H...O hydrogen-bonded layers in the ab plane, with each molecule acting as a donor and acceptor for two hydrogen bonds.

  14. Methyl CpG–binding proteins induce large-scale chromatin reorganization during terminal differentiation

    Science.gov (United States)

    Brero, Alessandro; Easwaran, Hariharan P.; Nowak, Danny; Grunewald, Ingrid; Cremer, Thomas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2005-01-01

    Pericentric heterochromatin plays an important role in epigenetic gene regulation. We show that pericentric heterochromatin aggregates during myogenic differentiation. This clustering leads to the formation of large chromocenters and correlates with increased levels of the methyl CpG–binding protein MeCP2 and pericentric DNA methylation. Ectopic expression of fluorescently tagged MeCP2 mimicked this effect, causing a dose-dependent clustering of chromocenters in the absence of differentiation. MeCP2-induced rearrangement of heterochromatin occurred throughout interphase, did not depend on the H3K9 histone methylation pathway, and required the methyl CpG–binding domain (MBD) only. Similar to MeCP2, another methyl CpG–binding protein, MBD2, also increased during myogenic differentiation and could induce clustering of pericentric regions, arguing for functional redundancy. This MeCP2- and MBD2-mediated chromatin reorganization may thus represent a molecular link between nuclear genome topology and the epigenetic maintenance of cellular differentiation. PMID:15939760

  15. On hydrogen-induced plastic flow localization during void growth and coalescence

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.C.; Sofronis, P. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Dodds, R.H. Jr. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2007-11-15

    Hydrogen-enhanced localized plasticity (HELP) is recognized as a viable mechanism of hydrogen embrittlement. A possible way by which the HELP mechanism can bring about macroscopic material failure is through hydrogen-induced accelerated void growth and coalescence. Assuming a periodic array of spherical voids loaded axisymmetrically, we investigate the hydrogen effect on the occurrence of plastic flow localization upon void growth and its dependence on macroscopic stress triaxiality. Under a macroscopic stress triaxiality equal to 1 and prior to void coalescence, the finite element calculation results obtained with material data relevant to A533B steel indicate that a hydrogen-induced localized shear band forms at an angle of about 45 {sup circle} from the axis of symmetry. At triaxiality equal to 3, void coalescence takes place by accelerated hydrogen-induced localization of plasticity mainly in the ligament between the voids. Lastly, we discuss the numerical results within the context of experimental observations on void growth and coalescence in the presence of hydrogen. (author)

  16. Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate.

    Science.gov (United States)

    Kim, Sooyeon; Kim, Eunhye; Kim, Sungsoo; Kim, Woosik

    2005-12-01

    In this study we modified the surface of silica nanoparticles with methyl methacrylate by UV-induced graft polymerization. It is a surface-initiated polymerization reaction induced by ultraviolet irradiation. The resulting organic-inorganic nanocomposites were near-monodisperse and fabricated without homopolymerization of the monomer. Substantial increase in mean particle size was observed by SEM image analysis after UV-induced grafting of methyl methacrylate onto pure silica particles. FT-Raman spectroscopy and X-ray photoelectron spectroscopy studies of these materials revealed the successful grafting of methyl methacrylate onto the silica surface. The formation of a covalent bond between the grafted PMMA chains and silica surface was indicated by FT-Raman spectra. Thermogravimetric analysis of the PMMA-grafted silica particles indicated the polymer contents in good agreement with SEM photographs.

  17. Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl–methyl nuclear overhauser enhancement spectroscopy

    International Nuclear Information System (INIS)

    Venditti, Vincenzo; Fawzi, Nicolas L.; Clore, G. Marius

    2011-01-01

    Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to ∼1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic relaxation enhancement (PRE), induced by nitroxide spin-labels incorporated at only a few surface-exposed engineered cysteines, provides fast, straightforward and robust access to methyl group resonance assignments, including stereoassignments for the methyl groups of leucine and valine. Neither prior assignments, including backbone assignments, for the protein, nor experiments that transfer magnetization between methyl groups and the protein backbone, are required. PRE-derived assignments are refined by 4D methyl–methyl nuclear Overhauser enhancement data, eliminating ambiguities and errors that may arise due to the high sensitivity of PREs to the potential presence of sparsely-populated transient states.

  18. Formation of molecular complexes of salicylic acid, acetylsalicylic acid, and methyl salicylate in a mixture of supercritical carbon dioxide with a polar cosolvent

    Science.gov (United States)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.

    2015-08-01

    The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.

  19. 2-Acetyl-amino-1,3,4,6-tetra-O-(tri-methyl-silyl)-2-de-oxy-α-d-gluco-pyran-ose.

    Science.gov (United States)

    Cheng, Zhao-Dong; Cui, Yan-Li; Mao, Jian-Wei

    2013-06-01

    The title compound, C20H47NO6Si4, was synthesized by per-O-tri-methyl-silylation of N-acetyl-d-glucosa-mine using chloro-tri-methyl-silane in the presence of hexa-methyl-disiloxane. The tri-methyl-silyl group and acetamido group are located on the same side of the pyran ring, showing an α-configuration glycoside. One of the tri-methyl-silyl groups is disordered over two orientations, with site-occupancy factors of 0.625 (9) and 0.375 (9). In the crystal, N-H⋯O hydrogen bonds link the mol-ecules into supra-molecular chains along the a-axis direction.

  20. Effects of iloprost on bleomycin-induced pulmonary fibrosis in rats compared with methyl-prednisolone

    Directory of Open Access Journals (Sweden)

    Z.A. Aytemur

    2012-11-01

    Full Text Available Objective: Prostacyclin (PGI2 has been shown to inhibit the expression of pro-inflammatory and pro-fibrotic mediators in pulmonary fibrosis. In this study, we aimed to test the preventive effects of intraperitoneally administered iloprost, a stable PGI2 analog, on bleomycin-induced pulmonary fibrosis in rats and to compare the effects of iloprost with the effects of methyl-prednisolone, a traditional therapy. Methods: Rats were randomly allocated into four groups: 1. Saline alone (n = 6; 2. Bleomycin + placebo (n = 7; 3. Bleomycin + methyl-prednisolone (n = 7; 4. Bleomycin + iloprost (n = 7. Fibrotic changes in the lungs were demonstrated by analyzing the cellular composition of bronchoalveolar lavage fluid, histological evaluation and lung hydroxyproline content. Results: Fibrosis was made in the lungs of rats by bleomycin experimentally. Fibrosis scores in the methyl-prednisolone and the iloprost groups were significantly lower than in the placebo group (p < 0.05. Furthermore, the score of the iloprost group was significantly lower than the score of the methyl-prednisolone group. The hydroxyproline content was significantly less in the methyl-prednisolone and the iloprost groups (p < 0.05. In the placebo group, the neutrophil percentage in bronchoalveolar lavage was significantly higher than in the other groups, whereas the macrophage percentage in placebo group was significantly lower (p < 0.05. Conclusion: Iloprost has protective effect on the pulmonary fibrosis induced by bleomycin and it may be more effective in decreasing fibrotic changes than methyl-prednisolone. Resumo: Objetivo: A prostaciclina (PGI2 é conhecida por inibir a expressão de mediadores pró-inflamatórios e pró-fibróticos na fibrose pulmonar. Neste estudo, procurou-se testar os efeitos preventivos do iloprost administrado por via intraperitoneal, um análogo estável do PGI2, na fibrose

  1. Methylation-Specific PCR Unraveled

    Directory of Open Access Journals (Sweden)

    Sarah Derks

    2004-01-01

    Full Text Available Methylation‐specific PCR (MSP is a simple, quick and cost‐effective method to analyze the DNA methylation status of virtually any group of CpG sites within a CpG island. The technique comprises two parts: (1 sodium bisulfite conversion of unmethylated cytosine's to uracil under conditions whereby methylated cytosines remains unchanged and (2 detection of the bisulfite induced sequence differences by PCR using specific primer sets for both unmethylated and methylated DNA. This review discusses the critical parameters of MSP and presents an overview of the available MSP variants and the (clinical applications.

  2. Obesity-induced sperm DNA methylation changes at satellite repeats are reprogrammed in rat offspring

    Directory of Open Access Journals (Sweden)

    Neil A Youngson

    2016-01-01

    Full Text Available There is now strong evidence that the paternal contribution to offspring phenotype at fertilisation is more than just DNA. However, the identity and mechanisms of this nongenetic inheritance are poorly understood. One of the more important questions in this research area is: do changes in sperm DNA methylation have phenotypic consequences for offspring? We have previously reported that offspring of obese male rats have altered glucose metabolism compared with controls and that this effect was inherited through nongenetic means. Here, we describe investigations into sperm DNA methylation in a new cohort using the same protocol. Male rats on a high-fat diet were 30% heavier than control-fed males at the time of mating (16-19 weeks old, n = 14/14. A small (0.25% increase in total 5-methyl-2Ͳ-deoxycytidine was detected in obese rat spermatozoa by liquid chromatography tandem mass spectrometry. Examination of the repetitive fraction of the genome with methyl-CpG binding domain protein-enriched genome sequencing (MBD-Seq and pyrosequencing revealed that retrotransposon DNA methylation states in spermatozoa were not affected by obesity, but methylation at satellite repeats throughout the genome was increased. However, examination of muscle, liver, and spermatozoa from male 27-week-old offspring from obese and control fathers (both groups from n = 8 fathers revealed that normal DNA methylation levels were restored during offspring development. Furthermore, no changes were found in three genomic imprints in obese rat spermatozoa. Our findings have implications for transgenerational epigenetic reprogramming. They suggest that postfertilization mechanisms exist for normalising some environmentally-induced DNA methylation changes in sperm cells.

  3. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    Science.gov (United States)

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  4. Ultraviolet-induced birefringence in hydrogen-loaded optical fiber

    DEFF Research Database (Denmark)

    Canning, John; Deyerl, Hans-Jürgen; Sørensen, Henrik Rokkjær

    2005-01-01

    for the role of hydrogen and deuterium in the UV-induced process. Previous arguments for the origins are systematically ruled out by reviewing existing literature. We note that the birefringence is made up of at least two components with different thermal stabilities, one consistent simply with molecular...... hydrogen being present in the system. Overall the birefringence, by deduction, is associated with anisotropy in hydrogen reactions within the fiber. As a result they lead, through known mechanisms of dilation in glass, to anisotropic stress relaxation that can be annealed out, with or without hydrogen...

  5. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei, E-mail: xmma@bjut.edu.cn; Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-10-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo

  6. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    International Nuclear Information System (INIS)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei; Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-01-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD 50 ) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo and in

  7. 2-Bromo-2-methyl-N-p-tolylpropanamide

    Directory of Open Access Journals (Sweden)

    Rodolfo Moreno-Fuquen

    2011-06-01

    Full Text Available In the title molecule, C11H14BrNO, there is twist between the mean plane of the amide group and the benzene ring [C(=O—N—C...;C torsion angle = −31.2 (5°]. In the crystal, intermolecular N—H...O and weak C—H...O hydrogen bonds link molecules into chains along [100]. The methyl group H atoms are disordered over two sets of sites with equal occupancy.

  8. Methylation of ribonucleic acid by the carcinogens dimethyl sulphate, N-methyl-N-nitrosourea and N-methyl-N′-nitro-N-nitrosoguanidine. Comparisons of chemical analyses at the nucleoside and base levels

    Science.gov (United States)

    Lawley, P. D.; Shah, S. A.

    1972-01-01

    1. The following methods for hydrolysis of methyl-14C-labelled RNA, and for chromatographic isolation and determination of the products, were investigated: enzymic digestion to nucleosides at pH6 or 8; alkaline hydrolysis and conversion into nucleosides; hydrolysis by acid to pyrimidine nucleotides and purine bases, or completely to bases; chromatography on Dowex 50 (NH4+ form) at pH6 or 8.9, or on Dowex 50 (H+ form), or on Sephadex G-10. 2. The suitability of the various methods for determination of methylation products was assessed. The principal product, 7-methylguanosine, was unstable under the conditions used for determinations of nucleosides. 3- and 7-Methyladenine and 3- and 7-methylguanine are best determined as bases; 1-methyladenine and 3-methylcytosine can be isolated as either nucleosides or bases; O6-methylguanine is unstable under the acid hydrolysis conditions used and can be determined as the nucleoside; 3-methyluracil was detected, but may be derived from methylation of the ionized form of uracil. 3. Differences between the patterns of methylation of RNA and homopolyribonucleotides by the N-methyl-N-nitroso compounds and dimethyl sulphate were found: the nitroso compounds were able to methylate O-6 of guanine, were relatively more reactive at N-7 of adenine and probably at N-3 of guanine, but less reactive at N-1 of adenine, N-3 of cytosine and probably at N-3 of uridine. They probably reacted more with the ribose–phosphate chain, but no products from this were identified. 4. The possible influences of these differences on biological action of the methylating agents is discussed. Nitroso compounds may differ principally in their ability to induce miscoding in the Watson–Crick sense by reaction at O-6 of guanine. Both types of agent may induce miscoding to a lesser extent through methylation at N-3 of guanine; both can methylate N atoms, presumably preventing Watson–Crick hydrogen-bonding. N-Methyl-N-nitrosourea can degrade RNA, possibly

  9. 1-Methyl-1H-2,1-benzothiazin-4(3H-one 2,2-dioxide

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Arshad

    2008-03-01

    Full Text Available In the crystal structure of the title compound, C9H9NO3S, there is distorted tetrahedral geometry around the S atom. The sulfonyl group is almost normal to the benzene ring, while the carbonyl O atom and methyl C atom are on opposite sides of this ring. The heterocyclic ring adopts a half-boat conformation with the S atom out of the plane. The molecules are dimerized by hydrogen bonding involving the benzene ring and the sulfonyl group. These dimers are linked to each other in the same way. There is an intramolecular hydrogen bond between a methyl C—H group and a sulfonyl O atom, and a π–π interaction between the aromatic rings of two dimers at a centroid-to-centroid distance of 3.6373 (13 Å.

  10. Bis(2-methyl-4-nitroanilinium tetrachloridomercurate(II

    Directory of Open Access Journals (Sweden)

    Andreas Lemmerer

    2008-12-01

    Full Text Available The title compound, (C7H9N2O22[HgCl4], self-assembles into cationic organic bilayers containing the 2-methyl-4-nitroanilinium cations, sandwiched between anionic inorganic layers built up by the distorted tetrahedral [HgCl4]2− groups. The organic sheets are interlinked through weak C—H...O hydrogen bonds, while they interact with the anionic part via strong charge-assisted N+—H...Cl—Hg hydrogen bonds. The [HgCl4]2− anions are bisected by a mirror plane passing through the metal and two of the chloride ions.

  11. Influence of sample geometry and microstructure on the hydrogen induced cracking characteristics under uniaxial load

    Energy Technology Data Exchange (ETDEWEB)

    Laureys, A., E-mail: aurelie.laureys@ugent.be [Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Tech Lane Ghent Science Park - Campus A, Technologie park 903, B-9052 Gent (Belgium); Depover, T., E-mail: tom.depover@ugent.be [Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Tech Lane Ghent Science Park - Campus A, Technologie park 903, B-9052 Gent (Belgium); Petrov, R., E-mail: roumen.petrov@ugent.be [Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Tech Lane Ghent Science Park - Campus A, Technologie park 903, B-9052 Gent (Belgium); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Verbeken, K., E-mail: kim.verbeken@ugent.be [Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Tech Lane Ghent Science Park - Campus A, Technologie park 903, B-9052 Gent (Belgium)

    2017-04-06

    The present work evaluates hydrogen induced cracking in a TRIP (transformation induced plasticity) assisted steel and pure iron. The goal of this work is to understand the effect of the macroscopic stress distribution in the material on the hydrogen induced cracking phenomenon. Additionally, the effect of a complex multiphase microstructure on the characteristics of hydrogen induced cracking was investigated by comparing results for TRIP-assisted steel and pure iron as reference material. Tensile tests on notched and unnotched samples combined with in-situ electrochemical hydrogen charging were conducted. Tests were performed until the tensile strength was reached and until fracture. The resulting hydrogen induced cracks were studied by optical microscopy and scanning electron microscopy (SEM). Hydrogen induced cracks showed a typical S-shape and crack propagation was mainly transgranular, independently of the presence of a notch or the material's microstructure. This was also the case for the V-shaped secondary crack network and resulting stepped crack morphology characteristic for hydrogen induced damage. These observations indicate that the stress state surrounding the crack tip has a very large impact on the hydrogen induced cracking characteristics. The use of a notch or the presence of a different microstructure did not influence the overall hydrogen induced cracking features, but did change the kinetics of the hydrogen induced cracking process.

  12. Influence of sample geometry and microstructure on the hydrogen induced cracking characteristics under uniaxial load

    International Nuclear Information System (INIS)

    Laureys, A.; Depover, T.; Petrov, R.; Verbeken, K.

    2017-01-01

    The present work evaluates hydrogen induced cracking in a TRIP (transformation induced plasticity) assisted steel and pure iron. The goal of this work is to understand the effect of the macroscopic stress distribution in the material on the hydrogen induced cracking phenomenon. Additionally, the effect of a complex multiphase microstructure on the characteristics of hydrogen induced cracking was investigated by comparing results for TRIP-assisted steel and pure iron as reference material. Tensile tests on notched and unnotched samples combined with in-situ electrochemical hydrogen charging were conducted. Tests were performed until the tensile strength was reached and until fracture. The resulting hydrogen induced cracks were studied by optical microscopy and scanning electron microscopy (SEM). Hydrogen induced cracks showed a typical S-shape and crack propagation was mainly transgranular, independently of the presence of a notch or the material's microstructure. This was also the case for the V-shaped secondary crack network and resulting stepped crack morphology characteristic for hydrogen induced damage. These observations indicate that the stress state surrounding the crack tip has a very large impact on the hydrogen induced cracking characteristics. The use of a notch or the presence of a different microstructure did not influence the overall hydrogen induced cracking features, but did change the kinetics of the hydrogen induced cracking process.

  13. Overexpression of Human-Derived DNMT3A Induced Intergenerational Inheritance of Active DNA Methylation Changes in Rat Sperm

    Directory of Open Access Journals (Sweden)

    Xiaoguo Zheng

    2017-12-01

    Full Text Available DNA methylation is the major focus of studies on paternal epigenetic inheritance in mammals, but most previous studies about inheritable DNA methylation changes are passively induced by environmental factors. However, it is unclear whether the active changes mediated by variations in DNA methyltransferase activity are heritable. Here, we established human-derived DNMT3A (hDNMT3A transgenic rats to study the effect of hDNMT3A overexpression on the DNA methylation pattern of rat sperm and to investigate whether this actively altered DNA methylation status is inheritable. Our results revealed that hDNMT3A was overexpressed in the testis of transgenic rats and induced genome-wide alterations in the DNA methylation pattern of rat sperm. Among 5438 reliable loci identified with 64 primer-pair combinations using a methylation-sensitive amplification polymorphism method, 28.01% showed altered amplified band types. Among these amplicons altered loci, 68.42% showed an altered DNA methylation status in the offspring of transgenic rats compared with wild-type rats. Further analysis based on loci which had identical DNA methylation status in all three biological replicates revealed that overexpression of hDNMT3A in paternal testis induced hypermethylation in sperm of both genotype-negative and genotype-positive offspring. Among the differentially methylated loci, 34.26% occurred in both positive and negative offspring of transgenic rats, indicating intergenerational inheritance of active DNA methylation changes in the absence of hDNM3A transmission. Furthermore, 75.07% of the inheritable loci were hyper-methylated while the remaining were hypomethylated. Distribution analysis revealed that the DNA methylation variations mainly occurred in introns and intergenic regions. Functional analysis revealed that genes related to differentially methylated loci were involved in a wide range of functions. Finally, this study demonstrated that active DNA methylation

  14. Hydrogen induced plastic damage in pressure vessel steel of 2.25Cr-1Mo

    International Nuclear Information System (INIS)

    Han, G.W.; Song, Y.J.

    1995-01-01

    2.25Cr-1Mo steel is generally employed as a hydrogenation reaction vessel material used at elevated temperature and in a hydrogen containing environment. During service of the reaction vessel, a large number of hydrogen atoms would enter its wall. When the reaction vessel is shutdown and the temperature reduces to about ambient temperature, the hydrogen atoms remaining in the wall would induce plastic damage in the steel. The mechanism of hydrogen induced plastic damage is different for various materials with different microstructures. Investigations have demonstrated that the hydrogen induced plastic damage in carbide annealed carbon steels is caused by hydrogen accelerating the initiating and growing of microvoids from the carbide particles. However, SEM examination on the fracture surface of hydrogen charged tensile specimen of 2.25Cr-1Mo steel show that a large number of fisheyes appear on the fracture surface. This indicates that hydrogen induced plastic damage in 2.25Cr-1Mo steel is related to the occurrence of fisheye cracks during plastic deformation. By means of micro-fracture mechanics to analyze fisheye crack occurrence from the first generation microvoid, the mechanism of hydrogen induced plastic damage in the pressure vessel steel is investigated

  15. DNA methylation dynamics in human induced pluripotent stem cells over time.

    Directory of Open Access Journals (Sweden)

    Koichiro Nishino

    2011-05-01

    Full Text Available Epigenetic reprogramming is a critical event in the generation of induced pluripotent stem cells (iPSCs. Here, we determined the DNA methylation profiles of 22 human iPSC lines derived from five different cell types (human endometrium, placental artery endothelium, amnion, fetal lung fibroblast, and menstrual blood cell and five human embryonic stem cell (ESC lines, and we followed the aberrant methylation sites in iPSCs for up to 42 weeks. The iPSCs exhibited distinct epigenetic differences from ESCs, which were caused by aberrant methylation at early passages. Multiple appearances and then disappearances of random aberrant methylation were detected throughout iPSC reprogramming. Continuous passaging of the iPSCs diminished the differences between iPSCs and ESCs, implying that iPSCs lose the characteristics inherited from the parent cells and adapt to very closely resemble ESCs over time. Human iPSCs were gradually reprogrammed through the "convergence" of aberrant hyper-methylation events that continuously appeared in a de novo manner. This iPS reprogramming consisted of stochastic de novo methylation and selection/fixation of methylation in an environment suitable for ESCs. Taken together, random methylation and convergence are driving forces for long-term reprogramming of iPSCs to ESCs.

  16. Hydrogen Gas Inhalation Attenuates Seawater Instillation-Induced Acute Lung Injury via the Nrf2 Pathway in Rabbits.

    Science.gov (United States)

    Diao, Mengyuan; Zhang, Sheng; Wu, Lifeng; Huan, Le; Huang, Fenglou; Cui, Yunliang; Lin, Zhaofen

    2016-12-01

    Seawater instillation-induced acute lung injury involves oxidative stress and apoptosis. Although hydrogen gas inhalation is reportedly protective in multiple types of lung injury, the effect of hydrogen gas inhalation on seawater instillation-induced acute lung injury remains unknown. This study investigated the effect of hydrogen gas on seawater instillation-induced acute lung injury and explored the mechanisms involved. Rabbits were randomly assigned to control, hydrogen (2 % hydrogen gas inhalation), seawater (3 mL/kg seawater instillation), and seawater + hydrogen (3 mL/kg seawater instillation + 2 % hydrogen gas inhalation) groups. Arterial partial oxygen pressure and lung wet/dry weight ratio were detected. Protein content in bronchoalveolar lavage fluid (BALF) and serum as well as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were determined. Hematoxylin-eosin staining was used to monitor changes in lung specimens, and malondialdehyde (MDA) content and myeloperoxidase (MPO) activity were assayed. In addition, NF-E2-related factor (Nrf) 2 and heme oxygenase (HO)-1 mRNA and protein expression were measured, and apoptosis was assessed by measuring caspase-3 expression and using terminal deoxy-nucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. Hydrogen gas inhalation markedly improved lung endothelial permeability and decreased both MDA content and MPO activity in lung tissue; these changes were associated with decreases in TNF-α, IL-1β, and IL-6 in BALF. Hydrogen gas also alleviated histopathological changes and cell apoptosis. Moreover, Nrf2 and HO-1 expressions were significantly activated and caspase-3 expression was inhibited. These results demonstrate that hydrogen gas inhalation attenuates seawater instillation-induced acute lung injury in rabbits and that the protective effects observed may be related to the activation of the Nrf2 pathway.

  17. 8-Methoxypsoralen-nucleic acid photoreaction. Effect of methyl substitution on pyrone vs. furan photoaddition

    International Nuclear Information System (INIS)

    Kanne, D.; Rapoport, H.; Hearst, J.E.

    1984-01-01

    We have synthesized a series of 8-[3H]methoxypsoralens in which methyl and hydrogen are systematically varied at the 4- and 5'-positions. Analysis of the products resulting from the photoaddition of these four psoralens with the nucleic acid poly(dA-dT) reveals that the product distribution depends on the presence or absence of a 4-methyl substituent. Compounds with the 4-methyl group show an overwhelming preference (approximately 98%) for addition to the furan double bond, while compounds without the 4-methyl show a substantial amount (approximately 18%) of addition to the pyrone double bond

  18. Extrasynaptic N-methyl-D-aspartate (NMDA) receptor stimulation induces cytoplasmic translocation of the CDKL5 kinase and its proteasomal degradation.

    Science.gov (United States)

    Rusconi, Laura; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2011-10-21

    Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-D-aspartate receptors and suggest regulation of CDKL5 by cell death pathways.

  19. Extrasynaptic N-Methyl-d-aspartate (NMDA) Receptor Stimulation Induces Cytoplasmic Translocation of the CDKL5 Kinase and Its Proteasomal Degradation*

    Science.gov (United States)

    Rusconi, Laura; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2011-01-01

    Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-d-aspartate receptors and suggest regulation of CDKL5 by cell death pathways. PMID:21832092

  20. Protective Effects of Hydrogen-Rich Saline Against Lipopolysaccharide-Induced Alveolar Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis.

    Science.gov (United States)

    Dong, Wen-Wen; Zhang, Yun-Qian; Zhu, Xiao-Yan; Mao, Yan-Fei; Sun, Xue-Jun; Liu, Yu-Jian; Jiang, Lai

    2017-05-19

    BACKGROUND Fibrotic change is one of the important reasons for the poor prognosis of patients with acute respiratory distress syndrome (ARDS). The present study investigated the effects of hydrogen-rich saline, a selective hydroxyl radical scavenger, on lipopolysaccharide (LPS)-induced pulmonary fibrosis. MATERIAL AND METHODS Male ICR mice were divided randomly into 5 groups: Control, LPS-treated plus vehicle treatment, and LPS-treated plus hydrogen-rich saline (2.5, 5, or 10 ml/kg) treatment. Twenty-eight days later, fibrosis was assessed by determination of collagen deposition, hydroxyproline, and type I collagen levels. Development of epithelial-to-mesenchymal transition (EMT) was identified by examining protein expressions of E-cadherin and α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, catalase (CAT), and superoxide dismutase (SOD) activity were determined. RESULTS Mice exhibited increases in collagen deposition, hydroxyproline, type I collagen contents, and TGF-β1 production in lung tissues after LPS treatment. LPS-induced lung fibrosis was associated with increased expression of α-SMA, as well as decreased expression of E-cadherin. In addition, LPS treatment increased MDA levels but decreased T-AOC, CAT, and SOD activities in lung tissues, indicating that LPS induced pulmonary oxidative stress. Hydrogen-rich saline treatment at doses of 2.5, 5, or 10 ml/kg significantly attenuated LPS-induced pulmonary fibrosis. LPS-induced loss of E-cadherin in lung tissues was largely reversed, whereas the acquisition of α-SMA was dramatically decreased by hydrogen-rich saline treatment. In addition, hydrogen-rich saline treatment significantly attenuated LPS-induced oxidative stress. CONCLUSIONS Hydrogen-rich saline may protect against LPS-induced EMT and pulmonary fibrosis through suppressing oxidative stress.

  1. Effect of hydrogen coverage on hydrogenation of o-cresol on Pt(111)

    Science.gov (United States)

    Li, Yaping; Liu, Zhimin; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu

    2018-06-01

    The conversion of phenolics over metal catalysts is an important process for upgrading biofuels. With density functional calculations, hydrogenation of o-cresol on the hydrogen-covered Pt(111) surface was investigated. The results show that the coverage of hydrogen plays a significant role in the reaction rate while it does not affect the reaction selectivity. The reaction barriers of the hydrogenation process leading to the formation of both 2-methyl-cyclohexanone (the intermediate product) and 2-methyl-cyclohexanol (the final product) at high H coverages (∼1 ML) are found to be smaller by 0.14-0.69 eV than those at lower H coverages (∼1/25 ML). After both hydrogen and cresol are adsorbed on Pt(111) from their initial gas phase state, the reaction energy of each hydrogenation step on the surface is also dependent on the hydrogen coverage. On the H-covered Pt(111) surface, most steps of hydrogenation involve exothermic reactions when the hydrogen coverage is high while they are endothermic reactions at low hydrogen coverages. The differences in reaction rate and reaction energy between high and low H coverages can be understood with the coverage-dependent bonding strength and configurations.

  2. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  3. Protective effects of folic acid on DNA damage and DNA methylation levels induced by N-methyl- N'-nitro- N-nitrosoguanidine in Kazakh esophageal epithelial cells.

    Science.gov (United States)

    Chen, Y; Feng, H; Chen, D; Abuduwaili, K; Li, X; Zhang, H

    2018-01-01

    The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N'-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.

  4. DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study).

    Science.gov (United States)

    Kwiatkowska, Marta; Reszka, Edyta; Woźniak, Katarzyna; Jabłońska, Ewa; Michałowicz, Jaromir; Bukowska, Bożena

    2017-07-01

    Glyphosate is a very important herbicide that is widely used in the agriculture, and thus the exposure of humans to this substance and its metabolites has been noted. The purpose of this study was to assess DNA damage (determination of single and double strand-breaks by the comet assay) as well as to evaluate DNA methylation (global DNA methylation and methylation of p16 (CDKN2A) and p53 (TP53) promoter regions) in human peripheral blood mononuclear cells (PBMCs) exposed to glyphosate. PBMCs were incubated with the compound studied at concentrations ranging from 0.1 to 10 mM for 24 h. The study has shown that glyphosate induced DNA lesions, which were effectively repaired. However, PBMCs were unable to repair completely DNA damage induced by glyphosate. We also observed a decrease in global DNA methylation level at 0.25 mM of glyphosate. Glyphosate at 0.25 mM and 0.5 mM increased p53 promoter methylation, while it did not induce statistically significant changes in methylation of p16 promoter. To sum up, we have shown for the first time that glyphosate (at high concentrations from 0.5 to 10 mM) may induce DNA damage in leucocytes such as PBMCs and cause DNA methylation in human cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Oxidation of Peptides by Methyl(trifluoromethyl)dioxirane: the Protecting Group Matters

    Science.gov (United States)

    Rella, Maria Rosaria; Williard, Paul G.

    2011-01-01

    Representative Boc protected and acetyl protected peptide methyl esters bearing alkyl side chains undergo effective oxidation using methyl(trifluoromethyl)dioxirane (1b) under mild conditions. We observe a protecting group dependency in the chemoselectivity displayed by the dioxirane 1b. N-hydroxylation occurs in the case of the Boc protected peptides, side chain hydroxylation takes place in the case of acetyl protected peptides. Both are attractive transformations since they yield derivatized peptides that serve as valuable synthons. PMID:17221970

  6. The pipeline fracture behavior and pressure assessment under HIC (Hydrogen induced cracking) environment

    Energy Technology Data Exchange (ETDEWEB)

    Shaohua, Dong [China National Petroleum Corporation (CNPC), Beijing (China); Lianwei, Wang [University of Science and Technology Beijing (USTB), Beijing (China)

    2009-07-01

    As Hydrogen's transmit and diffuse, after gestating for a while, the density of hydrogen around crack tip of pipeline will get to the critical density, and the pipeline material will descend, make critical stress factor, the reason of pipeline Hydrogen Induced Cracking is Hydrogen's transmit and diffuse. The stress factor of Hydrogen Induced Cracking under surroundings-condition of stress is the key that estimate material's rupture behavior. The paper study the relationship among hydrogen concentrate, crack tip stress, stain field, hydrogen diffusion and inner pressure for crack tip process zone, then determined the length of HIC (hydrogen induced cracking) process zone. Based on the theory of propagation which reason micro-crack making core, dislocation model is produced for fracture criteria of HIC, the influence between material and environments under the HIC is analyzed, step by step pipeline maximum load pressure and threshold of J-integrity ( J{sub ISCC} ) is calculated, which is very significant for pipeline safety operation. (author)

  7. Curcumin Attenuates Lipopolysaccharide-Induced Hepatic Lipid Metabolism Disorder by Modification of m6 A RNA Methylation in Piglets.

    Science.gov (United States)

    Lu, Na; Li, Xingmei; Yu, Jiayao; Li, Yi; Wang, Chao; Zhang, Lili; Wang, Tian; Zhong, Xiang

    2018-01-01

    N 6 -methyladenosine (m 6 A) regulates gene expression and affects cellular metabolism. In this study, we checked whether the regulation of lipid metabolism by curcumin is associated with m 6 A RNA methylation. We investigated the effects of dietary curcumin supplementation on lipopolysaccharide (LPS)-induced liver injury and lipid metabolism disorder, and on m 6 A RNA methylation in weaned piglets. A total of 24 Duroc × Large White × Landrace piglets were randomly assigned to control, LPS, and CurL (LPS challenge and 200 mg/kg dietary curcumin) groups (n = 8/group). The results showed that curcumin reduced the increase in relative liver weight as well as the concentrations of aspartate aminotransferase and lactate dehydrogenase induced by LPS injection in the plasma and liver of weaning piglets (p < 0.05). The amounts of total cholesterol and triacylglycerols were decreased by curcumin compared to that by the LPS injection (p < 0.05). Additionally, curcumin reduced the expression of Bcl-2 and Bax mRNA, whereas it increased the p53 mRNA level in the liver (p < 0.05). Curcumin inhibited the enhancement of SREBP-1c and SCD-1 mRNA levels induced by LPS in the liver. Notably, dietary curcumin affected the expression of METTL3, METTL14, ALKBH5, FTO, and YTHDF2 mRNA, and increased the abundance of m 6 A in the liver of piglets. In conclusion, the protective effect of curcumin in LPS-induced liver injury and hepatic lipid metabolism disruption might be due to the increase in m 6 A RNA methylation. Our study provides mechanistic insights into the effect of curcumin in protecting against hepatic injury during inflammation and metabolic diseases. © 2018 AOCS.

  8. Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers.

    Science.gov (United States)

    Huang, Shuai; Pang, Linlin; Chen, Yuxuan; Zhou, Liming; Fang, Shaoming; Yu, Haifeng

    2018-03-01

    Microphase-separated structures of block copolymers (BCs) with a size of sub-10 nm are usually obtained by hydrogen-bond-induced self-assembly of BCs through doping with small molecules as functional additives. Here, fabrication of hierarchically self-assembled sub-10 nm structures upon microphase separation of amphiphilic liquid-crystalline BCs (LCBCs) at the existence of hydrogen bonds but without any dopants is reported. The newly introduced urethane groups in the side chain of the hydrophobic block of LCBCs interact with the ether groups of the hydrophilic poly(ethylene oxide) (PEO) block, leading to imperfect crystallization of the PEO blocks. Both crystalline and amorphous domains coexist in the separated PEO phase, enabling a lamellar structure to appear inside the PEO nanocylinders. This provides an elegant method to fabricate controllable sub-10 nm microstructures in well-defined polymer systems without the introduction of any dopants. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Methyl Sartortuoate Inhibits Colon Cancer Cell Growth by Inducing Apoptosis and G2/M-Phase Arrest.

    Science.gov (United States)

    Lan, Qiusheng; Li, Shoufeng; Lai, Wei; Xu, Heyang; Zhang, Yang; Zeng, Yujie; Lan, Wenjian; Chu, Zhonghua

    2015-08-17

    The potential anti-neoplastic activity of terpenoids is of continued interest. In this study, we investigate whether methyl sartortuoate, a terpenoid isolated from soft coral, induced cell cycle arrest and apoptosis in a human colon cancer cell line. Culture studies found that methyl sartortuoate inhibited colon cancer cell (LoVo and RKO) growth and caused apoptotic death in a concentration- and time-dependent manner, by activation of caspase-8, caspase-9, caspase-3, p53 and Bax, and inactivation of B-cell lymphoma 2 (Bcl-2) apoptosis regulating proteins. Methyl sartortuoate treatment led to reduced expression of cdc2 and up-regulated p21 and p53, suggesting that Methyl sartortuoate induced G2-M arrest through modulation of p53/p21/cdc2 pathways. Methyl sartortuoate also up-regulated phospho-JNK and phospho-p38 expression levels. This resulted in cell cycle arrest at the G2-M phase and apoptosis in LoVo and RKO cells. Treatment with the JNK inhibitor SP600125 and the p38 MAPK inhibitor SB203580 prevented methyl sartortuoate-induced apoptosis in LoVo cells. Moreover, methyl sartortuoate also prevented neoplasm growth in NOD-SCID nude mice inoculated with LoVo cells. Taken together, these findings suggest that methyl sartortuoate is capable of leading to activation of caspase-8, -9, -3, increasing p53 and Bax/Bcl-2 ratio apoptosis through MAPK-dependent apoptosis and results in G2-M phase arrest in LoVo and RKO cells. Thus, methyl sartortuoate may be a promising anticancer candidate.

  10. A DFT investigation on group 8B transition metal-doped silicon carbide nanotubes for hydrogen storage application

    Science.gov (United States)

    Tabtimsai, Chanukorn; Ruangpornvisuti, Vithaya; Tontapha, Sarawut; Wanno, Banchob

    2018-05-01

    The binding of group 8B transition metal (TMs) on silicon carbide nanotubes (SiCNT) hydrogenated edges and the adsorption of hydrogen molecule on the pristine and TM-doped SiCNTs were investigated using the density functional theory method. The B3LYP/LanL2DZ method was employed in all calculations for the considered structural, adsorption, and electronic properties. The Os atom doping on the SiCNT is found to be the strongest binding. The hydrogen molecule displays a weak interaction with pristine SiCNT, whereas it has a strong interaction with TM-doped SiCNTs in which the Os-doped SiCNT shows the strongest interaction with the hydrogen molecule. The improvement in the adsorption abilities of hydrogen molecule onto TM-doped SiCNTs is due to the protruding structure and the induced charge transfer between TM-doped SiCNT and hydrogen molecule. These observations point out that TM-doped SiCNTs are highly sensitive toward hydrogen molecule. Moreover, the adsorptions of 2-5 hydrogen molecules on TM-doped SiCNT were also investigated. The maximum storage number of hydrogen molecules adsorbed on the first layer of TM-doped SiCNTs is 3 hydrogen molecules. Therefore, TM-doped SiCNTs are suitable to be sensing and storage materials for hydrogen gas.

  11. Methyl 4-[N-(5-bromopyrimidin-2-ylcarbamoyl]benzoate

    Directory of Open Access Journals (Sweden)

    Hui-Ling Hu

    2012-08-01

    Full Text Available In the title compound, C13H10BrN3O3, the pyrimidine and benzene rings are twisted with an interplanar angle of 58.4 (1°. The secondary amide group adopts a cis conformation with an H—N—C—O torsion angle of 14.8 (1°. In the crystal, molecules are connected into inversion dimers via pairs of N—H...N hydrogen bonds, generating an R22(8 motif. The dimers are further connected through a C—Br...O interaction [3.136 (1 Å and 169.31 (1°] into a chain along [110]. Weak C—H...N hydrogen bonds between the methyl benzoate groups and pyrimidine rings are also observed in the crystal structure.

  12. HYDROGEN INDUCED CRACKING IN MICROALLOYED STEELS

    Directory of Open Access Journals (Sweden)

    Duberney Hincapie-Ladino

    2015-03-01

    Full Text Available The need for microalloyed steels resistant to harsh environments in oil and gas fields, such as pre-salt which contain considerable amounts of hydrogen sulfide (H2 S and carbon dioxide (CO2 , requires that all sectors involved in petroleum industry know the factors that influence the processes of corrosion and failures by hydrogen in pipelines and components fabricated with microalloyed steels. This text was prepared from a collection of selected publications and research done at the Electrochemical Processes Laboratory of Metallurgical and Materials Engineering Department, Polytechnic School, São Paulo University. This document does not intend to be a complete or exhaustive review of the literature, but rather to address the main scientific and technological factors associated with failures by hydrogen in the presence of wet hydrogen sulfide (H2 S, particularly, when related to the Hydrogen Induced Cracking (HIC phenomenon. This complex phenomenon that involves several successive stages, HIC phenomena were discussed in terms of environmental and metallurgical variables. The HIC starts with the process of corrosion of steel, therefore must be considered the corrosive media (H2 S presence effect. Moreover, it is necessary to know the interactions of compounds present in the electrolyte with the metal surface, and how they affect the hydrogen adsorption and absorption into steel. The following stages are hydrogen diffusion, trapping and metal cracking, directly related to the chemical composition and the microstructure, factors that depend strongly on the manufacture of steel. The purpose of this paper is to provide the scientific information about the failures caused by hydrogen and challenge for the Oil and Gas Pipeline Industry.

  13. Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate

    DEFF Research Database (Denmark)

    Kaiser, Gitte Schalck; Germann, Susanne Manuela; Westergaard, Tine

    2011-01-01

    (CPT) and the alkylating agent methyl methanesulfonate (MMS) is blocked by sodium phenylbutyrate (PBA) in the budding yeast Saccharomyces cerevisiae. In particular, PBA suppresses CPT- and MMS-induced genetic recombination as well as DNA double-strand break repair during mating-type interconversion...

  14. Kinetic of martensitic transformations induced by hydrogen in the austenite

    International Nuclear Information System (INIS)

    Oliveira, Sergio P. de; Saavedra, A.; Miranda, P.E.V. de

    1986-01-01

    The X-ray diffractometry technique was used, with an automatic data acquisition system to determine the kinetics of hydrogen induced martensitic phase transformations in an AISI 304 austenitic stainless steel type, used in nuclear power plants. Hydrogenation was performed cathodically in a 1N sulfuric acid solution, containing 100 mg/l of arsenic trioxide, at 50 0 C, during 2 hours and with a current density of 200 A/m 2 . It was found that the microstructure of the steel plays a role on the generation of hydrogen induced martensitic phases and surface micro cracks. Both kinetics were slower on a pre-cold rolled steel. (Author) [pt

  15. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    Science.gov (United States)

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Cadmium inhibits repair of UV-, methyl methanesulfonate- and N-methyl-N-nitrosourea-induced DNA damage in Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Fatur, Tanja; Lah, Tamara T.; Filipic, Metka

    2003-01-01

    The co-genotoxic effects of cadmium are well recognized and it is assumed that most of these effects are due to the inhibition of DNA repair. We used the comet assay to analyze the effect of low, non-toxic concentrations of CdCl 2 on DNA damage and repair-induced in Chinese hamster ovary (CHO) cells by UV-radiation, by methyl methanesulfonate (MMS) and by N-methyl-N-nitrosourea (MNU). The UV-induced DNA lesions revealed by the comet assay are single-strand breaks which are the intermediates formed during nucleotide excision repair (NER). In cells exposed to UV-irradiation alone the formation of DNA strand breaks was rapid, followed by a fast rejoining phase during the first 60 min after irradiation. In UV-irradiated cells pre-exposed to CdCl 2 , the formation of DNA strand breaks was significantly slower, indicating that cadmium inhibited DNA damage recognition and/or excision. Methyl methanesulfonate and N-methyl-N-nitrosourea directly alkylate nitrogen and oxygen atoms of DNA bases. The lesions revealed by the comet assay are mainly breaks at apurinic/apyrimidinic (AP) sites and breaks formed as intermediates during base excision repair (BER). In MMS treated cells the initial level of DNA strand breaks did not change during the first hour of recovery; thereafter repair was detected. In cells pre-exposed to CdCl 2 the MMS-induced DNA strand breaks accumulated during the first 2 h of recovery, indicating that AP sites and/or DNA strand breaks were formed but that further steps of BER were blocked. In MNU treated cells the maximal level of DNA strand breaks was detected immediately after the treatment and the breaks were repaired rapidly. In CdCl 2 pre-treated cells the formation of MNU-induced DNA single-strand breaks was not affected, while the repair was slower, indicating inhibition of polymerization and/or the ligation step of BER. Cadmium thus affects the repair of UV-, MMS- and MNU-induced DNA damage, providing further evidence, that inhibition of DNA repair

  17. Effect of coexistent hydrogen isotopes on tracer diffusion of tritium in alpha phase of group-V metal-hydrogen systems

    International Nuclear Information System (INIS)

    Sakamoto, Kan; Hashizume, Kenichi; Sugisaki, Masayasu

    2009-01-01

    Tracer diffusion coefficients of tritium in the alpha phase of group-V metal-hydrogen systems, α-MH(D)xTy (M=V and Ta; x>>y), were measured in order to clarify the effects of coexistent hydrogen isotopes on the tritium diffusion behavior. The hydrogen concentration dependence of such behavior and the effects of the coexistent hydrogen isotopes (protium and deuterium) were determined. The results obtained in the present (for V and Ta) and previous (for Nb) studies revealed that tritium diffusion was definitely dependent on hydrogen concentration but was not so sensitive to the kind of coexistent hydrogen isotopes. By summarizing those data, it was found that the hydrogen concentration dependence of the tracer diffusion coefficient of tritium in the alpha phase of group-V metals could be roughly expressed by a single empirical curve. (author)

  18. Molecular mechanisms underlying Grateloupia imbricata (Rhodophyta) carposporogenesis induced by methyl jasmonate.

    Science.gov (United States)

    Garcia-Jimenez, Pilar; Montero-Fernández, Montserrat; Robaina, Rafael R

    2017-12-01

    When applied in vitro, methyl jasmonate is sensed by the red seaweed Grateloupia imbricate, substantially and visually affecting its carposporogenesis. However, although there is some understanding of the morphological changes induced by methyl jasmonate in vitro, little is known about the genes that are involved in red seaweed carposporogenesis and how their protein products act. For the work reported herein, the expression of genes in red seaweed that encode enzymes involved in the synthesis of methyl jasmonate (jasmonic acid carboxyl methyl transferase and a putative methyl transferase) was monitored. Additionally the genes involved in oxidation (cytochrome P450 and WD40), jasmonate synthesis, signal transduction, and regulation of reactive oxygen species (MYB), and reproduction (ornithine decarboxylase) were monitored. To determine when or if the aforementioned genes were expressed during cystocarp development, fertilized and fertile thalli were exposed to methyl jasmonate and gene expression was measured after 24 and 48 h. The results showed that methyl jasmonate promoted differential gene expression in fertilized thalli by 24 h and upregulated expression of the ornithine decarboxylase gene only by 48 h in fertile thalli (0.75 ± 003 copies · μL -1 at 24 h vs. 1.11 ± 0.04 copies · μL -1 at 48 h). We conclude that Ornithine decarboxylase expression involves methyl jasmonate signaling as well as development and maturation of cystocarps. © 2017 Phycological Society of America.

  19. Light induced electrical and macroscopic changes in hydrogenated polymorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Roca i Cabarrocas P.

    2012-07-01

    Full Text Available We report on light-induced electrical and macroscopic changes in hydrogenated polymorphous silicon (pm-Si:H PIN solar cells. To explain the particular light-soaking behavior of such cells – namely an increase of the open circuit voltage (Voc and a rapid drop of the short circuit current density (Jsc – we correlate these effects to changes in hydrogen incorporation and structural properties in the layers of the cells. Numerous techniques such as current-voltage characteristics, infrared spectroscopy, hydrogen exodiffusion, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and spectroscopic ellipsometry are used to study the light-induced changes from microscopic to macroscopic scales (up to tens of microns. Such comprehensive use of complementary techniques lead us to suggest that light-soaking produces the diffusion of molecular hydrogen, hydrogen accumulation at p-layer/substrate interface and localized delamination of the interface. Based on these results we propose that light-induced degradation of PIN solar cells has to be addressed from not only as a material issue, but also a device point of view. In particular we bring experimental evidence that localized delamination at the interface between the p-layer and SnO2 substrate by light-induced hydrogen motion causes the rapid drop of Jsc.

  20. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Guillaume; Crublet, Elodie [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France); Hamelin, Olivier [CNRS (France); Gans, Pierre; Boisbouvier, Jérôme, E-mail: jerome.boisbouvier@ibs.fr [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France)

    2013-09-28

    The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D{sub 2}O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d{sub 10}. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.

  1. Optimization of Hydrogen Peroxide Detection for a Methyl Mercaptan Biosensor

    Directory of Open Access Journals (Sweden)

    Shi-Gang Sun

    2013-04-01

    Full Text Available Several kinds of modified carbon screen printed electrodes (CSPEs for amperometric detection of hydrogen peroxide (H2O2 are presented in order to propose a methyl mercaptan (MM biosensor. Unmodified, carbon nanotubes (CNTs, cobalt phthalocyanine (CoPC, Prussian blue (PB, and Os-wired HRP modified CSPE sensors were fabricated and tested to detect H2O2, applying a potential of +0.6 V, +0.6 V, +0.4 V, −0.2 V and −0.1 V (versus Ag/AgCl, respectively. The limits of detection of these electrodes for H2O2 were 3.1 μM, 1.3 μM, 71 nM, 1.3 μM, 13.7 nM, respectively. The results demonstrated that the Os-wired HRP modified CSPEs gives the lowest limit of detection (LOD for H2O2 at a working potential as low as −0.1 V. Os-wired HRP is the optimum choice for establishment of a MM biosensor and gives a detection limit of 0.5 μM.

  2. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    International Nuclear Information System (INIS)

    Ouyang, Y.J.; Yu, G.; Ou, A.L.; Hu, L.; Xu, W.J.

    2011-01-01

    Highlights: → Designed an amperometric hydrogen sensor with double electrolytes. → Explained the principle of determining hydrogen permeation rate. → Verified good stability, reproducibility and correctness of the developed sensor. → Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm -3 KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  3. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Department of Chemistry and Chemical Engineering, Huaihua College, Huaihua 418008 (China); Yu, G., E-mail: yuganghnu@163.co [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ou, A.L.; Hu, L.; Xu, W.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2011-06-15

    Highlights: {yields} Designed an amperometric hydrogen sensor with double electrolytes. {yields} Explained the principle of determining hydrogen permeation rate. {yields} Verified good stability, reproducibility and correctness of the developed sensor. {yields} Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm{sup -3} KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  4. IR-UV double resonance spectroscopic investigation of phenylacetylene-alcohol complexes. Alkyl group induced hydrogen bond switching.

    Science.gov (United States)

    Singh, Prashant Chandra; Patwari, G Naresh

    2008-06-12

    The electronic transitions of phenylacetylene complexes with water and trifluoroethanol are shifted to the blue, while the corresponding transitions for methanol and ethanol complexes are shifted to the red relative to the phenylacetylene monomer. Fluorescence dip infrared (FDIR) spectra in the O-H stretching region indicate that, in all the cases, phenylacetylene is acting as a hydrogen bond acceptor to the alcohols. The FDIR spectrum in the acetylenic C-H stretching region shows Fermi resonance bands for the bare phenylacetylene, which act as a sensitive tool to probe the intermolecular structures. The FDIR spectra reveal that water and trifluoroethanol interact with the pi electron density of the acetylene C-C triple bond, while methanol and ethanol interact with the pi electron density of the benzene ring. It can be inferred that the hydrogen bonding acceptor site on phenylacetylene switches from the acetylene pi to the benzene pi with lowering in the partial charge on the hydrogen atom of the OH group. The most significant finding is that the intermolecular structures of water and methanol complexes are notably distinct, which, to the best of our knowledge, this is first such observation in the case of complexes of substituted benzenes.

  5. Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Pandey, Garima; Yadav, Chandra Bhan; Sahu, Pranav Pankaj; Muthamilarasan, Mehanathan; Prasad, Manoj

    2017-05-01

    Genome-wide methylation analysis of foxtail millet cultivars contrastingly differing in salinity tolerance revealed DNA demethylation events occurring in tolerant cultivar under salinity stress, eventually modulating the expression of stress-responsive genes. Reduced productivity and significant yield loss are the adverse effects of environmental conditions on physiological and biochemical pathways in crop plants. In this context, understanding the epigenetic machinery underlying the tolerance traits in a naturally stress tolerant crop is imperative. Foxtail millet (Setaria italica) is known for its better tolerance to abiotic stresses compared to other cereal crops. In the present study, methylation-sensitive amplified polymorphism (MSAP) technique was used to quantify the salt-induced methylation changes in two foxtail millet cultivars contrastingly differing in their tolerance levels to salt stress. The study highlighted that the DNA methylation level was significantly reduced in tolerant cultivar compared to sensitive cultivar. A total of 86 polymorphic MSAP fragments were identified, sequenced and functionally annotated. These fragments showed sequence similarity to several genes including ABC transporter, WRKY transcription factor, serine threonine-protein phosphatase, disease resistance, oxidoreductases, cell wall-related enzymes and retrotransposon and transposase like proteins, suggesting salt stress-induced methylation in these genes. Among these, four genes were chosen for expression profiling which showed differential expression pattern between both cultivars of foxtail millet. Altogether, the study infers that salinity stress induces genome-wide DNA demethylation, which in turn, modulates expression of corresponding genes.

  6. Blockade of N-methyl-D-aspartate induced convulsions by 1-aminocyclopropanecarboxylates

    International Nuclear Information System (INIS)

    Skolnick, P.; Marvizon, J.C.G.; Jackson, B.W.; Monn, J.A.; Rice, K.C.; Lewin, A.H.

    1989-01-01

    1-Aminocyclopropanecarboxylic acid is a potent and selective ligand for the glycine modulatory site on the N-methyl-D-aspartate receptor complex. This compound blocks the convulsions and deaths produced by N-methyl-D-aspartate in a dose dependent fashion. In contrast, 1-aminocyclopropanecarboxylic acid does not protect mice against convulsions induced by pentylenetetrazole, strychnine, bicuculline, or maximal electroshock, and does not impair motor performance on either a rotarod or horizontal wire at doses of up to 2 g/kg. The methyl- and ethyl- esters of 1-aminocyclopropanecarboxylic acid are 5- and 2.3-fold more potent, respectively, than the parent compound in blocking the convulsant and lethal effects of N-methyl-D-aspartate. However, these esters are several orders of magnitude less potent than 1-aminocyclopropanecarboxylic acid as inhibitors of strychnine-insensitive [ 3 H]glycine binding, indicating that conversion to the parent compound may be required to elicit an anticonvulsant action

  7. Synthesis of [methyl-[sup 14]C]-N-methylputrescine

    Energy Technology Data Exchange (ETDEWEB)

    Secor, H.V.; Izac, R.R.; Hassam, S.B.; Frisch, A.F. (Philip Morris Research Center, Richmond, VA (United States))

    1994-05-01

    [Methyl-[sup 14]C]-N-methylputrescine was prepared from [[sup 14]C]methylamine hydrochloride in five steps. Reaction of benzaldehyde and [[sup 14]C]methylamine (10 mCi) followed by catalytic hydrogenation yielded [methyl-[sup 14]C]-N-methylbenzylamine. The key step in this process is the alkylation of [methyl-[sup 14]C]-N-methylbenzylamine in aqueous medium with 4-bromobutyronitrile. The radiochemical purity of the final product after two successive catalytic hydrogenations was in excess of 97%. The radiochemical yields in two successive runs were 26 and 38%, based on starting [[sup 14]C]methylamine, with specific activities of 22 and 23 mCi/mmol, respectively. This sequence provides a convenient and efficient regioselective radiosynthesis of [methyl-[sup 14]C]-N-methylputrescine. (author).

  8. Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells

    KAUST Repository

    Takahashi, Yuta

    2017-05-05

    CpG islands (CGIs) are primarily promoter-associated genomic regions and are mostly unmethylated within highly methylated mammalian genomes. The mechanisms by which CGIs are protected from de novo methylation remain elusive. Here we show that insertion of CpG-free DNA into targeted CGIs induces de novo methylation of the entire CGI in human pluripotent stem cells (PSCs). The methylation status is stably maintained even after CpG-free DNA removal, extensive passaging, and differentiation. By targeting the DNA mismatch repair gene MLH1 CGI, we could generate a PSC model of a cancer-related epimutation. Furthermore, we successfully corrected aberrant imprinting in induced PSCs derived from an Angelman syndrome patient. Our results provide insights into how CpG-free DNA induces de novo CGI methylation and broaden the application of targeted epigenome editing for a better understanding of human development and disease.

  9. Evidence for methyl group transfer between the methyl-accepting chemotaxis proteins in Bacillus subtilis

    International Nuclear Information System (INIS)

    Bedale, W.A.; Nettleton, D.O.; Sopata, C.S.; Thoelke, M.S.; Ordal, G.W.

    1988-01-01

    The authors present evidence for methyl (as methyl or methoxy) transfer from the methyl-accepting chemotaxis proteins H1 and possibly H3 of Bacillus subtilis to the methyl-accepting chemotaxis protein H2. This methyl transfer, which has been observed in vitro was strongly stimulated by the chemoattractant aspartate and thus may plan an important role in the sensory processing system of this organism. Although radiolabeling of H1 and H3 began at once after the addition of [ 3 H] methionine, radiolabeling of H2 showed a lag. Furthermore, the addition of excess nonradioactive methionine caused immediate exponential delabeling of H1 and H3 while labeling of H2 continued to increase. Methylation of H2 required the chemotactic methyltransferase, probably to first methylate H1 and H3. Aspartate caused increased labeling of H2 and strongly decreased labeling of H1 and H3 after the addition of nonradioactive methionine. Without the addition of nonradioactive methionine, aspartate caused demethylation of H1 and to a lesser extent H3, with an approximately equal increase of methylation of H2

  10. Methyl and p-Bromobenzyl Esters of Hydrogenated Kaurenoic Acid for Controlling Anthracnose in Common Bean Plants.

    Science.gov (United States)

    Mota, Suellen F; Oliveira, Denilson F; Heleno, Vladimir C G; Soares, Ana Carolina F; Midiwo, Jacob O; Souza, Elaine A

    2017-03-01

    Kaurenoic acid derivatives were prepared and submitted to in vitro assays with the fungus Colletotrichum lindemuthianum, which causes anthracnose disease in the common bean. The most active substances were found to be methyl and p-bromobenzylesters, 7 and 9, respectively, of the hydrogenated kaurenoic acid, which presented a minimum inhibitory concentration (MIC) of 0.097 and 0.131 mM, respectively, while the commercial fungicide methyl thiophanate (MT) presented a MIC of 0.143 mM. Substances 7 (1.401 mM) and 9 (1.886 mM) reduced the severity of anthracnose in common bean to values statistically comparable to MT (2.044 mM). According to an in silico study, both compounds 7 and 9 are inhibitors of the ketosteroid isomerase (KSI) enzyme produced by other organisms, the amino acid sequence of which could be detected in fungal genomes. These substances appeared to act against C. lindemuthianum by inhibiting its KSI. Therefore, substances 7 and 9 are promising for the development of new fungicides.

  11. Modeling of hydrogen induced cold cracking in a ferritic steel

    International Nuclear Information System (INIS)

    Chen, Qianqiang

    2015-01-01

    This thesis is aimed at studying the hydrogen induced cold cracking (HICC) in the heated affected zone (HAZ) of weldments and at proposing a criterion to predict this phenomenon. HICC is attributable to three factors: i) a susceptible microstructure; ii) hydrogen concentration; and iii) a critical stress. To this end, first tensile tests on smooth specimens charged with hydrogen were performed to investigate hydrogen embrittlement of martensite. According to these results, a ductile-brittle damage model is proposed in order to establish a HICC criterion. In order to validate this criterion, we performed the modified Tekken tests. The Tekken test was chosen because one can control the welding parameters in order to induce cold cracking. The modified Tekken tests have then been modeled using a fully coupled thermo-metallo-mechanical-diffusion model using the finite element method. This model allows to compute martensite's portion, residual stress level and hydrogen concentration in the HAZ. By applying the HICC criterion to these tests, cold cracking phenomenon has been correctly predicted. (author)

  12. Methyl 4′,5-dichloro-2-hydroxy-4,6-dimethylbiphenyl-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Muhammad Adeel

    2012-04-01

    Full Text Available In the title compound, C16H14Cl2O3, the dihedral angle between the mean planes of the two benzene rings is 55.30 (5°. The methyl ester group lies within the ring plane due to an intramolecular O—H...O hydrogen bond [maximum deviation from the C8O2 mean plane is 0.0383 (13 Å]. In the crystal, molecules are held together by rather weak C—H...O hydrogen bonds.

  13. Reaction pathways of the dissociation of methylal: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H -M; Beaud, P; Gerber, T; Mischler, B; Radi, P P; Tzannis, A -P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Schemata for modelling combustion processes do not yet include reaction rates for oxygenated fuels like methylal (DMM) which is considered as an additive or replacement for diesel due to its low sooting propensity. Density functional theory (DFT) studies of the possible reaction pathways for different dissociation steps of methylal are presented. Cleavage of a hydrogen bond to the methoxy group or the central carbon atom were simulated at the BLYP/6-311++G{sup **} level of theory. The results are compared to the experiment when dissociating and/or ionising DMM with femtosecond pulses. (author) 1 fig., 1 tab., 1 ref.

  14. Analysis of DNA Methylation of Gracilariopsis lemaneiformis Under Temperature Stress Using the Methylation Sensitive Amplification Polymorphism (MSAP) Technique

    Science.gov (United States)

    Peng, Chong; Sui, Zhenghong; Zhou, Wei; Hu, Yiyi; Mi, Ping; Jiang, Minjie; Li, Xiaodong; Ruan, Xudong

    2018-06-01

    Gracilariopsis lemaneiformis is an economically important agarophyte, which contains high quality gel and shows a high growth rate. Wild population of G. lemaneiformis displayed resident divergence, though with a low genetic diversity as was revealed by amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) analyses. In addition, different strains of G. lemaneiformis are diverse in morphology. The highly inconsistence between genetic background and physiological characteristics recommends strongly to the regulation at epigenetic level. In this study, the DNA methylation change in G. lemaneiformis among different generation branches and under different temperature stresses was assessed using methylation sensitive amplified polymorphism (MSAP) technique. It was shown that DNA methylation level among different generation branches was diverse. The full and total methylated DNA level was the lowest in the second generation branch and the highest in the third generation. The total methylation level was 61.11%, 60.88% and 64.12% at 15°C, 22°C and 26°C, respectively. Compared with the control group (22°C), the fully methylated and totally methylated ratios were increased in both experiment groups (15°C and 26°C). All of the cytosine methylation/demethylation transform (CMDT) was further analyzed. High temperature treatment could induce more CMDT than low temperature treatment did.

  15. Anti-oxidant and anti-inflammatory effects of hydrogen-rich water alleviate ethanol-induced fatty liver in mice.

    Science.gov (United States)

    Lin, Ching-Pin; Chuang, Wen-Chen; Lu, Fung-Jou; Chen, Chih-Yen

    2017-07-21

    To investigate the effects of hydrogen-rich water (HRW) treatment on prevention of ethanol (EtOH)-induced early fatty liver in mice. In vitro reduction of hydrogen peroxide by HRW was determined with a chemiluminescence system. Female mice were randomly divided into five groups: control, EtOH, EtOH + silymarin, EtOH + HRW and EtOH + silymarin + HRW. Each group was fed a Lieber-DeCarli liquid diet containing EtOH or isocaloric maltose dextrin (control diet). Silymarin was used as a positive control to compare HRW efficacy against chronic EtOH-induced hepatotoxicity. HRW was freshly prepared and given at a dosage of 1.2 mL/mouse trice daily. Blood and liver tissue were collected after chronic-binge liquid-diet feeding for 12 wk. The in vitro study showed that HRW directly scavenged hydrogen peroxide. The in vivo study showed that HRW increased expression of acyl ghrelin, which was correlated with food intake. HRW treatment significantly reduced EtOH-induced increases in serum alanine aminotransferase, aspartate aminotransferase, triglycerol and total cholesterol levels, hepatic lipid accumulation and inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6. HRW attenuated malondialdehyde level, restored glutathione depletion and increased superoxide dismutase, glutathione peroxidase and catalase activities in the liver. Moreover, HRW reduced TNF-α and IL-6 levels but increased IL-10 and IL-22 levels. HRW protects against chronic EtOH-induced liver injury, possibly by inducing acyl ghrelin to suppress the pro-inflammatory cytokines TNF-α and IL-6 and induce IL-10 and IL-22, thus activating antioxidant enzymes against oxidative stress.

  16. Rotational Spectrum of the Methyl Salicylate-Water Complex: the Missing Conformer and the Tunneling Motions

    Science.gov (United States)

    Ghosh, Supriya; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2015-06-01

    Methyl salicylate is a naturally occurring organic ester produced by wintergreen and other plants. It is also found in many over-the-counter remedies, such as muscle ache creams. The rotational spectrum of the methyl salicylate monomer was reported previously, where the most stable, dominant conformer was identified. The methyl salicylate-water complex was first studied using fluorescence-detected infrared spectroscopy; only one monohydrate conformer was found in that work. In the present study, we employed both broadband chirped and cavity based Fourier transform microwave spectroscopy to examine the competition between intra- and intermolecular hydrogen-bonding interactions and possible large amplitude motions associated with the methyl group and the water subunit. In contrast to the previous infrared study, two monohydrate conformers were identified, with carbonyl O or hydroxyl O as the hydrogen bond acceptors. Detailed analyses of the observed hyperfine structures will be presented, as well as our efforts to extend the study to larger methyl salicylate hydration clusters. S. Melandri, B. M. Giuliano, A. Maris, L. B. Favero, P. Ottaviani, B. Velino, W. Caminati, J. Phys. Chem. A. 2007, 111, 9076. A. Mitsuzuka, A. Fujii, T. Ebata, N. Mikami, J. Phys. Chem. A 1998, 102, 9779.

  17. Hydrogen Induced Crack and Phase Transformation in Hydrogen Pressured Tensile Test of 316L Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Un Bong; Nam, Sung Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Choe, Byung Hak; Shim, Jong Hun [Gangneung-Wonju National University, Gangneung (Korea, Republic of); Kim, Young Uk [Hanyang University, Ansan (Korea, Republic of); Kim, Young Suk; Kim, Sung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hong, Keyyong [Korea Research Institute of Ship and Ocean Engineering, Deajeon (Korea, Republic of)

    2015-02-15

    The aim of this investigation is to prove the mechanism of hydrogen induced crack (HIC) of 316L stainless steels in hydrogen pressured tensile test. Microstructures like twin, planar slip, and abnormal phase transformation around the HIC were analyzed by transmission electron microscopy. Deformation twin accompanied by planar slip could be related to the main cause of HIC in the hydrogen pressured tensile condition, because intragranular HICs were mainly observed along the boundaries of twins and planar slip lines. An abnormal forbidden diffraction was also accompanied by HIC in the hydrogen attacked area. Examination of the HIC mechanism in austenitic stainless steel can be applied to the fitness of use for alloys with the possibility of various susceptible cracks in a hydrogen and stress atmosphere.

  18. Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide

    Directory of Open Access Journals (Sweden)

    Zhongjian Cheng

    2018-06-01

    Full Text Available Insufficient hydrogen sulfide (H2S has been implicated in Type 2 diabetic mellitus (T2DM and hyperhomocysteinemia (HHcy-related cardiovascular complications. We investigated the role of H2S in T2DM and HHcy-induced endothelial dysfunction in small mesenteric artery (SMA of db/db mice fed a high methionine (HM diet. HM diet (8 weeks induced HHcy in both T2DM db/db mice and non-diabetic db/+ mice (total plasma Hcy: 48.4 and 31.3 µM, respectively, and aggravated the impaired endothelium-derived hyperpolarization factor (EDHF-induced endothelium-dependent relaxation to acetylcholine (ACh, determined by the presence of eNOS inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME and prostacyclin (PGI2 inhibitor indomethacin (INDO, in SMA from db/db mice but not that from db/+ mice. A non-selective Ca2+-active potassium channel (KCa opener NS309 rescued T2DM/HHcy-impaired EDHF-mediated vascular relaxation to ACh. EDHF-induced relaxation to ACh was inhibited by a non-selective KCa blocker TEA and intermediate-conductance KCa blocker (IKCa Tram-34, but not by small-conductance KCa (SKCa blocker Apamin. HHcy potentiated the reduction of free sulfide, H2S and cystathionine γ-lyase protein, which converts L-cysteine to H2S, in SMA of db/db mice. Importantly, a stable H2S donor DATS diminished the enhanced O2- production in SMAs and lung endothelial cells of T2DM/HHcy mice. Antioxidant PEG-SOD and DATS improved T2DM/HHcy impaired relaxation to ACh. Moreover, HHcy increased hyperglycemia-induced IKCa tyrosine nitration in human micro-vascular endothelial cells. EDHF-induced vascular relaxation to L-cysteine was not altered, whereas such relaxation to NaHS was potentiated by HHcy in SMA of db/db mice which was abolished by ATP-sensitive potassium channel blocker Glycolamide but not by KCa blockers. Conclusions: Intermediate HHcy potentiated H2S reduction via CSE-downregulation in microvasculature of T2DM mice. H2S is justified as an EDHF. Insufficient H2S

  19. Hydrogen Solubility in Heavy Undefined Petroleum Fractions Using Group Contributions Methods

    Directory of Open Access Journals (Sweden)

    Aguilar-Cisneros Humberto

    2017-01-01

    Full Text Available Hydrogen solubility in heavy undefined petroleum fractions is estimated by taking as starting point a method of characterization based on functional groups [ Carreón-Calderón et al. (2012 Ind. Eng. Chem. Res. 51, 14188-14198 ]. Such method provides properties entering into equations of states and molecular pseudostructures formed by non-integer numbers of functional groups. Using Vapor-Liquid Equilibria (VLE data from binary mixtures of known compounds, interaction parameters between hydrogen and the calculated functional groups were estimated. Besides, the incorporation of the hydrogen-carbon ratio of the undefined petroleum fractions into the method allows the corresponding hydrogen solubility to be properly estimated. This procedure was tested with seven undefined petroleum fractions from 27 to 6 API over wide ranges of pressure and temperature (323.15 to 623.15 K. The results seem to be in good agreement with experimental data (overall Relative Average Deviation, RAD < 15%.

  20. Fatty acid and sterol contents during tulip leaf senescence induced by methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It has been shown previously that methyl jasmonate (JA-Me applied in lanolin paste on the bottom surface of intact tulip leaves causes a rapid and intense its senescence. The aim of this work was to study the effect of JA-Me on free and bound fatty acid and sterol contents during tulip leaf senescence. The main free and bound fatty acids of tulip leaf, in decreasing order of their abundance, were linolenic, linoleic, palmitic, oleic, stearic and myristic acids. Only the content of free linolenic acid decreased after treatment with JA-Me during visible stage of senescence. ß-Sitosterol (highest concentration, campesterol, stigmasterol and cholesterol were identified in tulip leaf. Methyl jasmonate evidently increased the level of ß-sitosterol, campesterol and stigmasterol during induced senescence. It is suggested that the increase in sterol concentrations under the influence of methyl jasmonate induced changes in membrane fluidity and permeability, which may be responsible for senescence.

  1. Hydrogen Permeation in Cold-Rolled High-Mn Twinning-Induced Plasticity Steels

    Science.gov (United States)

    Han, Do Kyeong; Hwang, A. In; Byeon, Woo Jun; Noh, Seung Jeong; Suh, Dong-Woo

    2017-11-01

    Hydrogen permeation is investigated in cold-rolled Fe-0.6C-18Mn-(1.5Al) alloys. The hydrogen mobility is lower in cold-rolled alloys compared with annealed alloys. Al-containing alloy shows less deceleration of hydrogen mobility compared with the Al-free alloy. This is attributed to the reduced formation of mechanical twins and dislocations. Mechanical twins trap hydrogen strongly but are vulnerable to crack initiation; suppression of these is thought to be a major favorable influence of Al on hydrogen-induced mechanical degradation.

  2. Role Of Shark Cartilage In Reducing Changes In Gene Expression Of Some Enzymes Induced By N-Nitroso-N-Methyl Urea In Prostate Of Irradiated Rats

    International Nuclear Information System (INIS)

    ELMAGHRABY, T.; YACOUB, S.; IBRAHIM, N.K.

    2009-01-01

    There is overwhelming evidence to indicate that free radicals cause oxidative damage to lipids, proteins and nucleic acids and are involved in the pathogenesis of several diseases. Therefore, antioxidants, which can neutralize free radicals, may be of central importance in the prevention of these diseases. Recent studies demonstrated the role of shark cartilage in protecting cells against reactive oxygen species induced DNA damage and mutagenesis. Reactive oxygen species and other free radicals are known to be the mediators of phenotypic and genotypic changes that lead from mutation to neoplasia. There are some primary antioxidants such as glutathione peroxidase (GSHPx), glutathione-S-transferase (GST-π) and super oxide dismutase (SOD), which protects against cellular and molecular damage caused by the reactive oxygen metabolites (ROMs).In this study, the effect of shark cartilage against the N-nitroso-N-methyl urea + testosterone and/or gamma radiation-induced mutagens and carcinogens in rat prostate were investigated.The data showed significant decrease in gene expression of manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GSHPx1) , enzyme activities of total superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) and non-significant increase in glutathione-S-transferase (GST-π) in N-nitroso-N-methyl urea + testosterone, N-nitroso-N-methyl urea + testosterone + gamma radiation groups as compared to control group.The results revealed that shark cartilage administration afford a significant protective effect against N-nitroso-N-methyl urea + testosterone and/or gamma radiation- induced oxidative injury.

  3. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  4. Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells.

    Science.gov (United States)

    Swathy, Babu; Banerjee, Moinak

    2017-01-01

    Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in neurotransmission

  5. Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Babu Swathy

    Full Text Available Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects.SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study.Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in

  6. New insights into the dual fluorescence of methyl salicylate: effects of intermolecular hydrogen bonding and solvation.

    Science.gov (United States)

    Zhou, Panwang; Hoffmann, Mark R; Han, Keli; He, Guozhong

    2015-02-12

    In this paper, we propose a new and complete mechanism for dual fluorescence of methyl salicylate (MS) under different conditions using a combined experimental (i.e., steady-state absorption and emission spectra and time-resolved fluorescence spectra) and theoretical (i.e., time-dependent density function theory) study. First, our theoretical study indicates that the barrier height for excited state intramolecular proton transfer (ESIPT) reaction of ketoB depends on the solvent polarity. In nonpolar solvents, the ESIPT reaction of ketoB is barrierless; the barrier height will increase with increasing solvent polarity. Second, we found that, in alcoholic solvents, intermolecular hydrogen bonding plays a more important role. The ketoB form of MS can form two hydrogen bonds with alcoholic solvents; one will facilitate ESIPT and produce the emission band in the blue region; the other one precludes ESIPT and produces the emission band in the near-UV region. Our proposed new mechanism can well explain previous results as well as our new experimental results.

  7. Chronic lead exposure decreases the vascular reactivity of rat aortas: the role of hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Karolini Zuqui Nunes

    Full Text Available We investigated whether exposure to small concentrations of lead alters blood pressure and vascular reactivity. Male Wistar rats were sorted randomly into the following two groups: control (Ct and treatment with 100 ppm of lead (Pb, which was added to drinking water, for 30 days. Systolic blood pressure (BP was measured weekly. Following treatment, aortic ring vascular reactivity was assessed. Tissue samples were properly stored for further biochemical investigation. The lead concentration in the blood reached approximately 8 μg/dL. Treatment increased blood pressure and decreased the contractile responses of the aortic rings to phenylephrine (1 nM-100 mM. Following N-nitro-L arginine methyl ester (L-NAME administration, contractile responses increased in both groups but did not differ significantly between them. Lead effects on Rmax were decreased compared to control subjects following superoxide dismutase (SOD administration. Catalase, diethyldithiocarbamic acid (DETCA, and apocynin increased the vasoconstrictor response induced by phenylephrine in the aortas of lead-treated rats but did not increase the vasoconstrictor response in the aortas of untreated rats. Tetraethylammonium (TEA potentiated the vasoconstrictor response induced by phenylephrine in aortic segments in both groups, but these effects were greater in lead-treated rats. The co-incubation of TEA and catalase abolished the vasodilatory effect noted in the lead group. The present study is the first to demonstrate that blood lead concentrations well below the values established by international legislation increased blood pressure and decreased phenylephrine-induced vascular reactivity. The latter effect was associated with oxidative stress, specifically oxidative stress induced via increases in hydrogen peroxide levels and the subsequent effects of hydrogen peroxide on potassium channels.

  8. Reduction of Line Edge Roughness of Polystyrene-block-Poly(methyl methacrylate) Copolymer Nanopatterns By Introducing Hydrogen Bonding at the Junction Point of Two Block Chains.

    Science.gov (United States)

    Lee, Kyu Seong; Lee, Jaeyong; Kwak, Jongheon; Moon, Hong Chul; Kim, Jin Kon

    2017-09-20

    To apply well-defined block copolymer nanopatterns to next-generation lithography or high-density storage devices, small line edge roughness (LER) of nanopatterns should be realized. Although polystyrene-block-poly(methyl methacrylate) copolymer (PS-b-PMMA) has been widely used to fabricate nanopatterns because of easy perpendicular orientation of the block copolymer nanodomains and effective removal of PMMA block by dry etching, the fabricated nanopatterns show poorer line edge roughness (LER) due to relatively small Flory-Huggins interaction parameter (χ) between PS and PMMA chains. Here, we synthesized PS-b-PMMA with urea (U) and N-(4-aminomethyl-benzyl)-4-hydroxymethyl-benzamide (BA) moieties at junction of PS and PMMA chains (PS-U-BA-PMMA) to improve the LER. The U-BA moieties serves as favorable interaction (hydrogen bonding) sites. The LER of PS line patterns obtained from PS-U-BA-PMMA was reduced ∼25% compared with that obtained from neat PS-b-PMMA without BA and U moieties. This is attributed to narrower interfacial width induced by hydrogen bonding between two blocks, which is confirmed by small-angle X-ray scattering. This result implies that the introduction of hydrogen bonding into block copolymer interfaces offers an opportunity to fabricate well-defined nanopatterns with improved LER by block copolymer self-assembly, which could be a promising alternative to next-generation extreme ultraviolet lithography.

  9. Inhibitory effects of methyl-3,5-di-O-caffeoyl-epi-quinate on RANKL-induced osteoclast differentiation.

    Science.gov (United States)

    Kim, Tae Hoon; Ihn, Hye Jung; Kim, Kiryeong; Cho, Hye-Sung; Shin, Hong-In; Bae, Yong Chul; Park, Eui Kyun

    2018-04-09

    In this study, we have shown that methyl-3,5-di-O-caffeoyl-epi-quinate, a naturally occurring compound isolated from Ainsliaea acerifolia, inhibits receptor activator of nuclear factor-κB ligand (RANKL)-induced formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and the expression of osteoclast marker genes. Methyl-3,5-di-O-caffeoyl-epi-quinate also inhibited RANKL-induced activation of p38, Akt and extracellular signal-regulated kinase (ERK) as well as the expression of nuclear factor of activated T-cell (NFATc1), the key regulator of osteoclast differentiation. Negative regulators for osteoclast differentiation was upregulated by methyl-3,5-di-O-caffeoyl-epi-quinate. Collectively, our results suggested that methyl-3,5-di-O-caffeoyl-epi-quinate suppresses osteoclast differentiation via downregulation of RANK signaling pathways and NFATc1. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effects of microstructures on hydrogen induced cracking of electrochemically hydrogenated double notched tensile sample of 4340 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sk, Mobbassar Hassan, E-mail: Skmobba@qu.edu.qa [Center for Advanced Materials, Qatar University, Doha (Qatar); Overfelt, Ruel A. [Materials Research and Education Center, Materials Engineer, Auburn University, Auburn, AL (United States); Abdullah, Aboubakr M. [Center for Advanced Materials, Qatar University, Doha (Qatar)

    2016-04-06

    Quantitative fractographic characteristics of 4340 steel is demonstrated for a grain size range of 10−100 µm and hardness range of 41–52 HRC. Double-notched tensile samples were electrochemically charged in-situ with hydrogen in 0.5 m H{sub 2}SO{sub 4}+5 mg/l As{sub 2}O{sub 3} solution for 0–40 min charging time. Hydrogen induced fracture initiations were analyzed by novel metallographic investigation of the “unbroken” notch while the overall fractographic behaviors were examined by the scanning electron microscopic imaging of the fracture surfaces of the actually broken notch. Effect of hydrogen was predominantly manifested as intergranular fracture for the harder samples and quasi-cleavage fracture for the softer counterparts. 10–40 µm samples showed the maximum intensity of the hydrogen induced fracture features (intergranular and/or quasi-cleavage) close to the notch which gradually reduced with increasing distance from the notch. The largest grained samples (100 µm) however showed brittle behavior even in absence of hydrogen with similar intensity of percent fracture features at all distance from the notch, while presence of hydrogen intensified the overall percent brittle fractures with their intensities being highest close to the notch. Finally, the brittle fracture characteristics of the hydrogen embrittled samples were shown to be distinguishably different from that of the liquid nitrogen treated samples of same grain sizes and hardnesses.

  11. Use of nuclear magnetic resonance of hydrogen in the characterization of saturated hydrocarbonic chains

    International Nuclear Information System (INIS)

    Costa Neto, A.; Soares, V.L.P.; Costa Neto, C.

    1979-01-01

    Alkanes and cycloalkanes are characterized by a methyl-methylene-methine groups proportion, the percentual absorption in prefixed regions and the pattern of the spectrum of nuclear magnetic resonance of hydrogen. The GPI is calculated from the contribution of the areas corresponding to prefixed regions of the hydrogen magnetic resonance spectra (60 Mc). These regions are (for the saturated hydrocarbons): 0,5-1,05ppm (X), 1,05ppm (Y) and 1,50-2,00ppm (Z). The validity of the index was verified for the homologous series of linear hydrocarbons and methyl-, dimethyl-, ethyl-, cyclopentyl- and cyclohexyl-branched hydrocarbons. Its application to shale oil chemistry (xistoquimica) is discussed. (author) [pt

  12. Dibutylammonium bis(hydrogen methylphosphonato-κOtriphenylstannate(IV

    Directory of Open Access Journals (Sweden)

    Tidiane Diop

    2012-10-01

    Full Text Available The asymmetric unit of the title organotin salt, (C8H20N[Sn(C6H53(CH4O3P2], contains two dibutylammonium cations and two stannate(IV anions consisting each of two monodentately bonding methyl hydrogenphosphate groups attached to an Sn(C6H5 unit. The overall coordination environment of the two SnIV atoms is trigonal–bipyramidal defined by three phenyl C atoms in equatorial positions and two methyl hydrogenphosphate O atoms at the apical sites. In the crystal, the stannate(IV anions are linked to each other via pairs of short O—H...O hydrogen bonds, leading to an infinite chain extending parallel to the b-axis direction. Neighbouring chains are linked by N—H...O hydrogen bonds involving the butylammonium cations, giving a two-dimensional structure parallel to the ab plane. The crystal under investigation was found to be twinned by reticular merohedry with twin fractions of 0.5342 (7:0.4658 (7.

  13. Kinetic Isotope Effects in the Reduction of Methyl Iodide

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    a Grignard reagent to methyl iodide, and for reduction of methyl iodide with tributyltin hydride or with gaseous hydrogen iodide. Very small KIE's were found for electron transfer to methyl iodide from magnesium in ether or from sodium in ammonia. The reason may be that these reactions are transport...

  14. Activity of cell wall degrading glycanases in methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It was found previously that methyl jasmonate (JA-Me induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was shown that JA-Me markedly increased the total activities of cellulase, polygalacturonase, pectinase and xylanase in petioles, but did not affect activities of these enzymes in the blades and apical part of shoots of K. blossfeldiana. These results suggest that methyl jasmonate promotes the degradation of cell wall polysaccharides in the abscission zone and in this way induces leaf abscission in Kalanchoe blossfeldiana.

  15. Base Flip in DNA Studied by Molecular Dynamics Simulationsof Differently-Oxidized Forms of Methyl-Cytosine

    Directory of Open Access Journals (Sweden)

    Mahdi Bagherpoor Helabad

    2014-07-01

    Full Text Available Distortions in the DNA sequence, such as damage or mispairs, are specifically recognized and processed by DNA repair enzymes. Many repair proteins and, in particular, glycosylases flip the target base out of the DNA helix into the enzyme’s active site. Our molecular dynamics simulations of DNA with intact and damaged (oxidized methyl-cytosine show that the probability of being flipped is similar for damaged and intact methyl-cytosine. However, the accessibility of the different 5-methyl groups allows direct discrimination of the oxidized forms. Hydrogen-bonded patterns that vary between methyl-cytosine forms carrying a carbonyl oxygen atom are likely to be detected by the repair enzymes and may thus help target site recognition.

  16. Bruton's tyrosine kinase is essential for hydrogen peroxide-induced calcium signaling.

    Science.gov (United States)

    Qin, S; Chock, P B

    2001-07-10

    Using Btk-deficient DT40 cells and the transfectants expressing wild-type Btk or Btk mutants in either kinase (Arg(525) to Gln), Src homology 2 (SH2, Arg(307) to Ala), or pleckstrin homology (PH, Arg(28) to Cys) domains, we investigated the roles and structure-function relationships of Btk in hydrogen peroxide-induced calcium mobilization. Our genetic evidence showed that Btk deficiency resulted in a significant reduction in hydrogen peroxide-induced calcium response. This impaired calcium signaling is correlated with the complete elimination of IP3 production and the significantly reduced tyrosine phosphorylation of PLCgamma2 in Btk-deficient DT40 cells. All of these defects were fully restored by the expression of wild-type Btk in Btk-deficient DT40 cells. The data from the point mutation study revealed that a defect at any one of the three functional domains would prevent a full recovery of Btk-mediated hydrogen peroxide-induced intracellular calcium mobilization. However, mutation at either the SH2 or PH domain did not affect the hydrogen peroxide-induced activation of Btk. Mutation at the SH2 domain abrogates both IP3 generation and calcium release, while the mutant with the nonfunctional PH domain can partially activate PLCgamma2 and catalyze IP3 production but fails to produce significant calcium mobilization. Thus, these observations suggest that Btk-dependent tyrosine phosphorylation of PLCgamma2 is required but not sufficient for hydrogen peroxide-induced calcium mobilization. Furthermore, hydrogen peroxide stimulates a Syk-, but not Btk-, dependent tyrosine phosphorylation of B cell linker protein BLNK. The overall results, together with those reported earlier [Qin et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 7118], are consistent with the notion that functional SH2 and PH domains are required for Btk to form a complex with PLCgamma2 through BLNK in order to position the Btk, PLCgamma2, and phosphatidylinositol 4,5-bisphosphate in close proximity for

  17. Double role of the hydroxy group of phosphoryl in palladium(II)-catalyzed ortho-olefination: a combined experimental and theoretical investigation.

    Science.gov (United States)

    Liu, Liu; Yuan, Hang; Fu, Tingting; Wang, Tao; Gao, Xiang; Zeng, Zhiping; Zhu, Jun; Zhao, Yufen

    2014-01-03

    Density functional theory calculations have been carried out on Pd-catalyzed phosphoryl-directed ortho-olefination to probe the origin of the significant reactivity difference between methyl hydrogen benzylphosphonates and dimethyl benzylphosphonates. The overall catalytic cycle is found to include four basic steps: C-H bond activation, transmetalation, reductive elimination, and recycling of catalyst, each of which is constituted from different steps. Our calculations reveal that the hydroxy group of phosphoryl plays a crucial role almost in all steps, which can not only stabilize the intermediates and transition states by intramolecular hydrogen bonds but also act as a proton donor so that the η(1)-CH3COO(-) ligand could be protonated to form a neutral acetic acid for easy removal. These findings explain why only the methyl hydrogen benzylphosphonates and methyl hydrogen phenylphosphates were found to be suitable reaction partners. Our mechanistic findings are further supported by theoretical prediction of Pd-catalyzed ortho-olefination using methyl hydrogen phenylphosphonate, which is verified by experimental observations that the desired product was formed in a moderate yield.

  18. Methyl 2-(4a,8-Dimethyl-7-oxodecahydronaphthalen-2-ylacrylate

    Directory of Open Access Journals (Sweden)

    Mohamed Tebbaa

    2012-08-01

    Full Text Available The title compound, C16H24O3, was isolated from the aerial part of Inula Viscosa (L Aiton [or Dittrichia Viscosa (L Greuter]. The molecule contains two fused (trans six-membered rings which both exibit a chair conformation. In the crystal, molecules are linked into chains along [100] by weak C—H...O hydrogen bonds involving the methyl and carbonyl groups.

  19. Mechanism of vacancy formation induced by hydrogen in tungsten

    Directory of Open Access Journals (Sweden)

    Yi-Nan Liu

    2013-12-01

    Full Text Available We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.

  20. Which hydrogen atom of toluene protonates PAH molecules in (+)-mode APPI MS analysis?

    Science.gov (United States)

    Ahmed, Arif; Ghosh, Manik Kumer; Choi, Myung Chul; Choi, Cheol Ho; Kim, Sunghwan

    2013-03-01

    A previous study (Ahmed, A. et al., Anal. Chem. 84, 1146-1151( 2012) reported that toluene used as a solvent was the proton source for polyaromatic hydrocarbon compounds (PAHs) that were subjected to (+)-mode atmospheric-pressure photoionization. In the current study, the exact position of the hydrogen atom in the toluene molecule (either a methyl hydrogen or an aromatic ring hydrogen) involved in the formation of protonated PAH ions was investigated. Experimental analyses of benzene and anisole demonstrated that although the aromatic hydrogen atom of toluene did not contribute to the formation of protonated anthracene, it did contribute to the formation of protonated acridine. Thermochemical data and quantum mechanical calculations showed that the protonation of anthracene by an aromatic ring hydrogen atom of toluene is endothermic, while protonation by a methyl hydrogen atom is exothermic. However, protonation of acridine by either an aromatic ring hydrogen or a methyl hydrogen atom of toluene is exothermic. The different behavior of acridine and anthracene was attributed to differences in gas-phase basicity. It was concluded that both types of hydrogen in toluene can be used for protonation of PAH compounds, but a methyl hydrogen atom is preferred, especially for non-basic compounds.

  1. On the nature of hydrogen bonding between the phosphatidylcholine head group and water and dimethylsulfoxide

    Science.gov (United States)

    Dabkowska, Aleksandra P.; Lawrence, M. Jayne; McLain, Sylvia E.; Lorenz, Christian D.

    2013-01-01

    Molecular dynamics simulations are used to provide a detailed investigation of the hydrogen bond networks around the phosphatidylcholine (PC) head group in 1,2-dipropionyl-sn-glycero-3-phosphocholine in pure water, 10 mol.% and 30 mol.% dimethylsulfoxide (DMSO)-water solutions. Specifically, it is observed that DMSO replaces those water molecules that are within the first solvation shell of the choline, phosphate and ester groups of the PC head group, but are not hydrogen-bonded to the group. The effect of the presence of DMSO on the hydrogen bond network around the PC head groups of the lipid changes with the concentration of DMSO. In comparison to the hydrogen bond network observed in the pure water system, the number of hydrogen-bonded chains of solvent molecules increases slightly for the 10 mol.% DMSO system, while, in the 30 mol.% DMSO system, the number of hydrogen-bonded chains of solvent molecules decreases.

  2. The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel

    Science.gov (United States)

    Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.

    2017-08-01

    Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.

  3. 2-Acetyl­amino-1,3,4,6-tetra-O-(tri­methyl­silyl)-2-de­oxy-α-d-gluco­pyran­ose

    Science.gov (United States)

    Cheng, Zhao-Dong; Cui, Yan-Li; Mao, Jian-Wei

    2013-01-01

    The title compound, C20H47NO6Si4, was synthesized by per-O-tri­methyl­silylation of N-acetyl-d-glucosa­mine using chloro­tri­methyl­silane in the presence of hexa­methyl­disiloxane. The tri­methyl­silyl group and acetamido group are located on the same side of the pyran ring, showing an α-configuration glycoside. One of the tri­methyl­silyl groups is disordered over two orientations, with site-occupancy factors of 0.625 (9) and 0.375 (9). In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains along the a-axis direction. PMID:23795087

  4. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Koturbash, Igor, E-mail: ikoturbash@uams.edu [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Miousse, Isabelle R. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Sridharan, Vijayalakshmi [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Nzabarushimana, Etienne; Skinner, Charles M. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melnyk, Stepan B.; Pavliv, Oleksandra [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Hauer-Jensen, Martin [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205 (United States); Nelson, Gregory A. [Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA 92354 (United States); Boerma, Marjan [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2016-05-15

    Highlights: • Radiation-induced dynamic changes in cardiac DNA methylation were detected. • Early LINE-1 hypomethylation was followed by hypermethylation at a later time-point. • Radiation affected one-carbon metabolism in the heart tissue. • Irradiation resulted in accumulation of satellite DNA mRNA transcripts. - Abstract: DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation—proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ({sup 56}Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or {sup 56}Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with {sup 56}Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and

  5. Methylation of inorganic arsenic in different mammalian species and population groups.

    Science.gov (United States)

    Vahter, M

    1999-01-01

    Thousands of people in different parts of the world are exposed to arsenic via drinking water or contaminated soil or food. The high general toxic of arsenic has been known for centuries, and research during the last decades has shown that arsenic is a potent human carcinogen. However, most experimental cancer studies have failed to demonstrate carcinogenicity in experimental animals, indicating marked variation in sensitivity towards arsenic toxicity between species. It has also been suggested that there is a variation in susceptibility among human individuals. One reason for such variability in toxic response may be variation in metabolism. Inorganic arsenic is methylated in humans as well as animals and micro-organisms, but there are considerable differences between species and individuals. In many, but not all, mammalian species, inorganic arsenic is methylated to methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are more rapidly excreted in urine than is the inorganic arsenic, especially the trivalent form (AsIII, arsenite) which is highly reactive with tissue components. Absorbed arsenate (AsV) is reduced to trivalent arsenic (AsIII) before the methyl groups are attached. It has been estimated that as much as 50-70% of absorbed AsV is rapidly reduced to AsIII, a reaction which seems to be common for most species. In most experimental animal species, DMA is the main metabolite excreted in urine. Compared to human subjects, very little MMA is produced. However, the rate of methylation varies considerably between species, and several species, e.g. the marmoset monkey and the chimpanzee have been shown not to methylate inorganic arsenic at all. In addition, the marmoset monkey accumulates arsenic in the liver. The rat, on the other hand, has an efficient methylation of arsenic but the formed DMA is to a large extent accumulated in the red blood cells. As a result, the rat shows a low rate of excretion of arsenic. In both human subjects and rodents

  6. Dynamics and disorder of methyl group in the different phases of 2,6-dimethyl pyrazine, 4-methyl pyridine and 4-methyl pyridine N-oxide; Dynamique et desordre du groupe methyle dans les differentes phases de la 2,6-dimethyl pyrazine, 4-methyl pyridine et 4-methyl pyridine N-oxyde

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser Morris, E

    1997-12-22

    The thermal and mechanical properties of organic compounds are well known to be strongly correlated with the orientational freedom of its molecules or its molecular groups such as NH{sub 3}, CH{sub 3}, CH{sub 4}... For this reason, the study of the rotational behaviour of methyl groups in the solid state as a function of temperature is of great interest. With decreasing temperature, the rotations change from classical hoping to processes where quantum mechanical rotations become important. By quantum mechanical rotations, we mean the low-temperature counterpart, for with tunneling is the dominant mode of motion. However, the interpretation of tunnelling lines is critical when it is not straightforward to relate them to specific vibrational modes and particularly so when the molecule contains crystallographically inequivalent groups. The aim of this work is to interpret such spectra (obtained from inelastic neutron scattering) from structural data. The lack of structural knowledge at low temperatures, makes therefore a limited interpretation of the spectra obtained from polycrystalline samples. In a first step it is essential to solve crystalline structure of compounds by single crystal X-rays and neutron diffraction. Indeed X-ray diffraction is necessary to locate the skeleton (C, N, O and localised H atoms). Moreover neutron diffraction is the unique tool to precise the position of H atoms of methyl groups. The exam of the nuclear density of these protons the Fourier maps allows us to evaluate the crystal potential experienced by this rotor. Inelastic neutron scattering allows on single crystals allows the complete characterizations of quantum excitations (author) 75 refs.

  7. EXPERIMENTAL INVESTIGATIONS ON THE EFFECT OF HYDROGEN INDUCTION ON PERFORMANCE AND EMISSION BEHAVIOUR OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH PALM OIL METHYL ESTER AND ITS BLEND WITH DIESEL

    Directory of Open Access Journals (Sweden)

    BOOPATHI D.

    2017-07-01

    Full Text Available Internal combustion engines are an integral part of our daily lives, especially in the agricultural and transportation sector. With depleting fossil fuel and increasing environmental pollution, the researchers are foraying into alternate sources for fuelling the internal combustion engine. Vegetable oils derived from plant seeds is one such solution, but using them in unmodified diesel engine leads to reduced thermal efficiency and increased smoke emissions. Hydrogen if induced in small quantities in the air intake manifold can enhance the engine performance running on biodiesel. In this work, experiments were performed to evaluate the engine performance when hydrogen was inducted in small quantities and blends of esterified palm oil and diesel was injected as pilot fuel in the conventional manner. Tests were performed on a single cylinder, 4 - stroke, water cooled, direct injection diesel engine running at constant speed of 1500 rpm under variable load conditions and varying hydrogen flow. At full load for 75D25POME (a blend of 75% diesel and 25% palm oil methyl ester by volume, the results indicated an increase in brake thermal efficiency from 29.75% with zero hydrogen flow to a maximum of 30.17% at 5lpm hydrogen flow rate. HC emission reduced from 34 to 31.5 ppm, by volume at maximum load. Whereas, CO emission reduced from 0.09 to 0.045 % by volume at maximum load. Due to higher combustion rates with hydrogen induction, NOx emission increased from 756 to 926 ppm, at maximum load.

  8. Theoretical investigation of the hydrogen shift reactions in peroxy radicals derived from the atmospheric decomposition of 3-methyl-3-buten-1-ol (MBO331)

    DEFF Research Database (Denmark)

    Knap, Hasse Christian; Jørgensen, Solvejg; Kjærgaard, Henrik Grum

    2015-01-01

    The hydroxy peroxy radical derived from the oxidation of 3-methyl-3-buten-1-ol (MBO331), can undergo four different hydrogen shift (H-shift) reactions. We have compared optimized geometries, barrier heights and reaction rate constants obtained with five different DFT functionals (BLYP, B3LYP, BHand...

  9. Computational and Empirical Trans-hydrogen Bond Deuterium Isotope Shifts Suggest that N1-N3 A:U Hydrogen Bonds of RNA are Shorter than those of A:T Hydrogen Bonds of DNA

    International Nuclear Information System (INIS)

    Kim, Yong-Ick; Manalo, Marlon N.; Perez, Lisa M.; LiWang, Andy

    2006-01-01

    Density functional theory calculations of isolated Watson-Crick A:U and A:T base pairs predict that adenine 13 C2 trans-hydrogen bond deuterium isotope shifts due to isotopic substitution at the pyrimidine H3, 2h Δ 13 C2, are sensitive to the hydrogen-bond distance between the N1 of adenine and the N3 of uracil or thymine, which supports the notion that 2h Δ 13 C2 is sensitive to hydrogen-bond strength. Calculated 2h Δ 13 C2 values at a given N1-N3 distance are the same for isolated A:U and A:T base pairs. Replacing uridine residues in RNA with 5-methyl uridine and substituting deoxythymidines in DNA with deoxyuridines do not statistically shift empirical 2h Δ 13 C2 values. Thus, we show experimentally and computationally that the C7 methyl group of thymine has no measurable affect on 2h Δ 13 C2 values. Furthermore, 2h Δ 13 C2 values of modified and unmodified RNA are more negative than those of modified and unmodified DNA, which supports our hypothesis that RNA hydrogen bonds are stronger than those of DNA. It is also shown here that 2h Δ 13 C2 is context dependent and that this dependence is similar for RNA and DNA

  10. Relationship between hydrogen-induced phase transformations and pitting nucleation sites in duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liqiu; Yang, Binjie; Qin, Sixiao [University of Science and Technology Beijing (China). Corrosion and Protection Center

    2016-02-15

    This paper demonstrates the hydrogen-induced phase transformation and the associated pitting nucleation sites of 2507 duplex stainless steel using scanning Kelvin probe force microscopy and magnetic force microscopy. The low potential sites in Volta potential images, which are considered as the pitting nucleation sites, are strongly dependent on the hydrogen-induced phase transformation. They firstly initiate on the magnetic martensite laths in the austenite phase or at the ferrite/austenite boundaries, and then appear near the needle-shaped microtwins in the ferrite phase, because of the difference in physicochemical properties of hydrogen-induced phase transformation microstructures.

  11. Hydrogen-induced amorphization of SmFe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, M.; Handstein, A.; Gebel, B.; Gutfleisch, O.; Mueller, K.-H.; Schultz, L. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe

    2000-07-01

    The hydrogen absorption behavior of SmFe{sub 3} (PuNi{sub 3}-type structure) was observed in the range from 0.05 to 4 MPa by differential scanning calorimetry. The structural changes were observed by X-ray diffraction measurements. For pressures below 0.8 MPa two exothermic reactions were found which are attributed (i) to the interstitial absorption and (ii) to the disproportionation into SmH{sub 2} and {alpha}-Fe. For higher hydrogen pressures, the second exothermic peak occured at significantly lower temperatures and splitted into two peaks. The first one was identified as the exothermic signal of the hydrogen-induced amorphization of the SmFe{sub 3} hydride. The second peak is caused by the precipitation of SmH{sub 2} and {alpha}-Fe from the amorphous material. (orig.)

  12. Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures

    Science.gov (United States)

    Galanter, Joshua M; Gignoux, Christopher R; Oh, Sam S; Torgerson, Dara; Pino-Yanes, Maria; Thakur, Neeta; Eng, Celeste; Hu, Donglei; Huntsman, Scott; Farber, Harold J; Avila, Pedro C; Brigino-Buenaventura, Emerita; LeNoir, Michael A; Meade, Kelly; Serebrisky, Denise; Rodríguez-Cintrón, William; Kumar, Rajesh; Rodríguez-Santana, Jose R; Seibold, Max A; Borrell, Luisa N; Burchard, Esteban G; Zaitlen, Noah

    2017-01-01

    Populations are often divided categorically into distinct racial/ethnic groups based on social rather than biological constructs. Genetic ancestry has been suggested as an alternative to this categorization. Herein, we typed over 450,000 CpG sites in whole blood of 573 individuals of diverse Hispanic origin who also had high-density genotype data. We found that both self-identified ethnicity and genetically determined ancestry were each significantly associated with methylation levels at 916 and 194 CpGs, respectively, and that shared genomic ancestry accounted for a median of 75.7% (IQR 45.8% to 92%) of the variance in methylation associated with ethnicity. There was a significant enrichment (p=4.2×10-64) of ethnicity-associated sites amongst loci previously associated environmental exposures, particularly maternal smoking during pregnancy. We conclude that differential methylation between ethnic groups is partially explained by the shared genetic ancestry but that environmental factors not captured by ancestry significantly contribute to variation in methylation. DOI: http://dx.doi.org/10.7554/eLife.20532.001 PMID:28044981

  13. Hydrogen bonding analysis of hydroxyl groups in glucose aqueous solutions by a molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Chen, Cong; Li, Wei Zhong; Song, Yong Chen; Weng, Lin Dong; Zhang, Ning

    2012-01-01

    Molecular dynamics simulations have been performed to investigate hydrogen bonding characteristics of hydroxyl groups in glucose aqueous solutions with different concentrations. The hydrogen bonding abilities and strength of different O and H atom types have been calculated and compared. The acceptor/donor efficiencies have been predicted and it has been found that: (1) O2-HO2 and O3-HO3 are more efficient intramolecular hydrogen bonding acceptors than donors; (2) O1-HO1, O4-HO4 and O6-HO6 are more efficient intramolecular hydrogen bonding donors than acceptors; (5) O1-HO1 and O6-HO6 are more efficient intermolecular hydrogen bonding acceptors than donors while hydroxyl groups O2-HO2 and O4-HO4 are more efficient intermolecular hydrogen bonding donors than acceptors. The hydrogen bonding abilities of hydroxyl groups revealed that: (1) the hydrogen bonding ability of OH2-H w is larger than that of hydroxyl groups in glucose; (2) among the hydroxyl groups in glucose, the hydrogen bonding ability of O6-HO6 is the largest and the hydrogen bonding ability of O4-HO4 is the smallest; (3) the intermolecular hydrogen bonding ability of O6-HO6 is the largest; (4) the order for intramolecular hydrogen bonding abilities (from large to small) is O2-HO2, O1-HO1, O3-HO3, O6-HO6 and O4-HO4

  14. Effects of hydrogen-rich saline on endotoxin-induced uveitis

    Directory of Open Access Journals (Sweden)

    Wei-ming Yan

    2017-01-01

    Full Text Available The therapeutic effects of hydrogen-rich saline (HRS have been reported for a wide range of diseases mainly via selectively reducing the amount of reactive oxygen species. Oxidative stress plays an important role in the pathogenesis of uveitis and endotoxin-induced uveitis (EIU. In this study, we investigated whether HRS can mitigate EIU in rats. Sprague-Dawley rats were randomly divided into Norm group, Model group, HRS group, dexamethasone (DEX group, and rats in the latter three groups were injected with equal amount of lipopolysaccharide (LPS to induce EIU of different severities (by 1 mg/kg of LPS, or 1/8 mg/kg of LPS. Rats in HRS group were injected with HRS intraperitoneally at three different modes to purse an ameliorating effect of EIU (10 mL/kg of HRS immediately after injection of 1 mg/kg of LPS, 20 mL/kg of HRS once a day for 1 week before injection of 1 mg/kg of LPS and at 0, 0.5, 1, 2, 6, 8, 12 hours after LPS administration, or 20 mL/kg of HRS once a day for 1 week before injection of 1/8 mg/kg of LPS, and at 0, 0.5, 1, 2, 6, 8, 12, 24 hours and once a day for 3 weeks after LPS administration. Rats of DEX group were injected with 1 mL/kg of DEX solution intraperitoneally immediately after LPS administration. Rats in Norm and Model groups did not receive any treatment. All rats were examined under slit lamp microscope and graded according to the clinical signs of uveitis. Electroretinogram, quantitative analysis of protein in aqueous humor (AqH and histological examination of iris and ciliary body were also carried out. Our results showed that HRS did not obviously ameliorate the signs of uveitis under slit lamp examination and the inflammatory cells infiltration around iris and cilliary body of EIU induced by 1 mg/kg or 1/8 mg/kg of LPS (P > 0.05, while DEX significantly reduced the inflammation reflected by the above two indicators (P 0.05, while DEX had an obvious therapeutic effect (P < 0.05. However, HRS exerted an inhibition

  15. Study of radiation formation of methyl-iodide Part 2

    International Nuclear Information System (INIS)

    Bartonicek, B.; Schweiner, Z.; Bednar, J.; Hladky, E.

    1975-01-01

    Purified methane, ethylene, iodine, methyl iodide, ethyl iodide and hydrogen iodide were irradiated and/or pyrolyzed in Pyrex ampoules by 60 Co-γ-radiation at temperatures between 150 and 450 deg C. The results on radiolysis and pyrolysis were as follows: 1., The most thermally stable product is hydrogen iodide in which already at 450 deg C essen-tially all originally present iodine appears. 2., The radiolytic formation of methyl iodide and hydrogen iodide is positively influenced by the rise in temperature, This and the absolute values of yields indicate a chain mechanism of radiolytic (and pyrolytic) decomposition of the mixture. 3., The ratio of equilibrium concentrations [HI]/[CH 3 I] increases with increasing temperature of pyrolysis showing that HI is the end product of the thermal chain reaction. Methyl iodide is likely to contribute (by its thermal decomposition) to the initiation and propagation of this chain reaction. 4., The negligible temperature dependence of G(H 2 ) and the absence of molecular hydrogen among the products of pyrolytic decomposition of methane-iodine mixtures shows, that (up to 450 deg C) H atoms do not play any role in the thermal chain decomposition of these mixtures. (K.A.)

  16. First interactions between hydrogen and stress-induced reverse transformation of Ni-Ti superelastic alloy

    Science.gov (United States)

    Yokoyama, Ken'ichi; Hashimoto, Tatsuki; Sakai, Jun'ichi

    2017-11-01

    The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni-Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.

  17. Methyl 3′,4′,5′-trimethoxybiphenyl-4-carboxylate

    Directory of Open Access Journals (Sweden)

    Sami Nummelin

    2013-03-01

    Full Text Available In the title compound, C17H18O5, the dihedral angle between the benzene rings is 31.23 (16°. In the crystal, the molecules are packed in an antiparallel fashion in layers along the a axis. In each layer, very weak C—H...O hydrogen bonds occur between the methoxy and methyl ester groups. Weak C—H...π interactions between the 4′- and 5′-methoxy groups and neighbouring benzene rings [methoxy-C–ring centroid distances = 4.075 and 3.486 Å, respectively] connect the layers.

  18. Preventive effect of Oenothera rosea on N-methyl-N-nitrosourea-(NMU) induced gastric cancer in rats.

    Science.gov (United States)

    Almora-Pinedo, Yuan; Arroyo-Acevedo, Jorge; Herrera-Calderon, Oscar; Chumpitaz-Cerrate, Víctor; Hañari-Quispe, Renán; Tinco-Jayo, Aldo; Franco-Quino, Cesar; Figueroa-Salvador, Linder

    2017-01-01

    Currently, gastric cancer (GC) is considered a public health problem worldwide. Using medicinal plants for the prevention of chronic diseases such as cancer constitutes new alternatives in traditional medicine. Oenothera rosea (OR) could be an option, but it needs to be evaluated. The main objective of this study was to evaluate the protective effect of OR extract on N-methyl-N-nitrosourea (NMU)-induced GC in rats. In total, 80 male Holtzman rats were randomized into five groups. Group A received the saline solution (5mL/kg), group B received NMU 500 μg/kg (cancer inductor) by oral administration for 16 weeks, and groups C, D, and E were treated with OR extract (100, 200, and 300 mg/kg, respectively) and NMU in order to evaluate the preventive effect on cancer induced by NMU for 16 weeks. Blood and histological samples of stomachs were collected to determine histopathological, biochemical, and hematological parameters between different experimental groups. Groups C, D, and E presented less histopathological changes such as anaplastic and hyperplastic cells, compared with group B. Hematological and biochemical parameters were recorded, and superoxide dismutase, malondialdehyde, and nitric oxide levels were statistically less than those of NMU group ( P <0.05, P <0.01, and P <0.01). Considering the histopathological signs and the antioxidant activity in vivo as well as hematological and biochemical parameters of ethanolic extract of OR, we concluded that its administration in rats has a protective effect on GC, which is induced experimentally. This species could be studied in clinical trials for patients with GC in the future.

  19. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism.

    Science.gov (United States)

    Tan, Ming-pu

    2010-01-01

    Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  20. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Suvi Papula

    2017-06-01

    Full Text Available Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility.

  1. Quantum mechanical alternative to Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids

    KAUST Repository

    Bernatowicz, Piotr

    2015-10-01

    Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups has recently been given a consistently quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate, i.e., coherence-damping processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in condensed phase can retain quantum character over much broad temperature range than is commonly thought.

  2. Micro-reactor for heterogeneous catalysis. Application: hydrogen production from methyl-cyclohexane; Microreacteur pour la catalyse heterogene. Application: production d'hydrogene a partir du methylcyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Roumanie, M.; Pijolat, C. [Ecole des Mines de Saint Etienne, Centre SPIN (DMICC/LPMG/URA/CNRS-D2021), 42 - Saint Etienne (France); Meille, V.; Bellefon, C. de [Centre National de la Recherche Scientifique (CNRS/CPE), Lab. de Genie des Procedes Catalytiques, 69 - Villeurbanne (France); Pouteau, P.; Delattre, C. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France)

    2004-07-01

    First developed by the pharmaceutical industry to find new drugs (combinatorial analysis), the lab on chip is also extremely interesting for the catalysis field. This major interest comes from the miniaturize size and the high surface on volume ratio which lead to improve mass and heat transfer but also the safety in regards of industrial application. The use of micro-technology and the miniaturization of various systems such as micro-fuel cell is also a current field of activity. So for the future research the production of hydrogen is a point to develop in order to supply a micro-fuel cell. The aim of this work is to study and to realize an autonomous catalytic micro-reactor for hydrogen production from methyl-cyclohexane. For this reaction of dehydrogenation, the common catalyst is platinum supported on alumina. Consequently, the general objectives of this work are: 1)to develop a micro-reactor with its heaters, sensors...2)to deposit catalysts in the micro-reactor 3)to study the catalytic conversion of this system.

  3. Kinetics on NiZn Bimetallic Catalysts for Hydrogen Evolution via Selective Dehydrogenation of Methylcyclohexane to Toluene

    KAUST Repository

    Shaikh Ali, Anaam

    2017-01-18

    Liquid organic chemical hydrides are effective hydrogen storage media for easy and safe transport. The chemical couple of methylcyclohexane (MCH) and toluene (TOL) has been considered one of the feasible cycles for a hydrogen carrier, but the selective dehydrogenation of MCH to TOL has been reported using only Pt-based noble metal catalysts. This study reports MCH dehydrogenation to TOL using supported NiZn as a selective, non-noble-metal catalyst. A combined experimental and computational study was conducted to provide insight into the site requirements and reaction mechanism for MCH dehydrogenation to TOL, which were compared with those for cyclohexane (CH) dehydrogenation to benzene (BZ). The kinetic measurements carried out at 300-360°C showed an almost zero order with respect to MCH pressure in the high-pressure region (≥10 kPa) and nearly a positive half order with respective to H pressure (≤40 kPa). These kinetic data for the dehydrogenation reaction paradoxically indicate that hydrogenation of a strongly chemisorbed intermediate originating from TOL is the rate-determining step. Density functional theory (DFT) calculation confirms that the dehydrogenated TOL species at the aliphatic (methyl) position group (CHCH) were strongly adsorbed on the surface, which must be hydrogenated to desorb as TOL. This hydrogen-assisted desorption mechanism explains the essential role of excess H present in the feed in maintaining the activity of the metallic surface for hydrogenation. The rate of the CH to BZ reaction was less sensitive to H pressure than that of MCH to TOL, which can be explained by the absence of a methyl group in the structure, which in turn reduces the binding energy of the adsorbed species. DFT suggests that the improved TOL selectivity by adding Zn to Ni was due to Zn atoms preferentially occupying low-coordination sites on the surface (the corner and edge sites), which are likely the unselective sites responsible for the C-C dissociation of the

  4. Kinetics on NiZn Bimetallic Catalysts for Hydrogen Evolution via Selective Dehydrogenation of Methylcyclohexane to Toluene

    KAUST Repository

    Shaikh Ali, Anaam; Jedidi, Abdesslem; Anjum, Dalaver H.; Cavallo, Luigi; Takanabe, Kazuhiro

    2017-01-01

    Liquid organic chemical hydrides are effective hydrogen storage media for easy and safe transport. The chemical couple of methylcyclohexane (MCH) and toluene (TOL) has been considered one of the feasible cycles for a hydrogen carrier, but the selective dehydrogenation of MCH to TOL has been reported using only Pt-based noble metal catalysts. This study reports MCH dehydrogenation to TOL using supported NiZn as a selective, non-noble-metal catalyst. A combined experimental and computational study was conducted to provide insight into the site requirements and reaction mechanism for MCH dehydrogenation to TOL, which were compared with those for cyclohexane (CH) dehydrogenation to benzene (BZ). The kinetic measurements carried out at 300-360°C showed an almost zero order with respect to MCH pressure in the high-pressure region (≥10 kPa) and nearly a positive half order with respective to H pressure (≤40 kPa). These kinetic data for the dehydrogenation reaction paradoxically indicate that hydrogenation of a strongly chemisorbed intermediate originating from TOL is the rate-determining step. Density functional theory (DFT) calculation confirms that the dehydrogenated TOL species at the aliphatic (methyl) position group (CHCH) were strongly adsorbed on the surface, which must be hydrogenated to desorb as TOL. This hydrogen-assisted desorption mechanism explains the essential role of excess H present in the feed in maintaining the activity of the metallic surface for hydrogenation. The rate of the CH to BZ reaction was less sensitive to H pressure than that of MCH to TOL, which can be explained by the absence of a methyl group in the structure, which in turn reduces the binding energy of the adsorbed species. DFT suggests that the improved TOL selectivity by adding Zn to Ni was due to Zn atoms preferentially occupying low-coordination sites on the surface (the corner and edge sites), which are likely the unselective sites responsible for the C-C dissociation of the

  5. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum

    NARCIS (Netherlands)

    Snoeren, T.A.L.; Mumm, R.; Poelman, E.H.; Yang, Y.; Pichersky, E.; Dicke, M.

    2010-01-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced

  6. Hydrogen Peroxide Toxicity Induces Ras Signaling in Human Neuroblastoma SH-SY5Y Cultured Cells

    Directory of Open Access Journals (Sweden)

    Jirapa Chetsawang

    2010-01-01

    Full Text Available It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  7. Inelastic neutron scattering study of methyl groups rotation in some methylxanthines

    Science.gov (United States)

    Prager, M.; Pawlukojc, A.; Wischnewski, A.; Wuttke, J.

    2007-12-01

    The three isomeric dimethylxanthines and trimethylxanthine are studied by neutron spectroscopy up to energy transfers of 100meV at energy resolutions ranging from 0.7μeV to some meV. The loss of elastic intensity with increasing temperature can be modeled by quasielastic methyl rotation. The number of inequivalent methyl groups is in agreement with those of the room temperature crystal structures. Activation energies are obtained. In the case of theophylline, a doublet tunneling band is observed at 15.1 and 17.5μeV. In theobromine, a single tunneling band at 0.3μeV is found. Orientational disorder in caffeine leads to a 2.7μeV broad distribution of tunneling bands around the elastic line. At the same time, broad low energy phonon spectra characterize an orientational glassy state with weak methyl rotational potentials. Librational energies of the dimethylxanthines are clearly seen in the phonon densities of states. Rotational potentials can be derived which explain consistently all observables. While their symmetry in general is threefold, theophylline shows a close to sixfold potential reflecting a mirror symmetry.

  8. Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells

    KAUST Repository

    Takahashi, Yuta; Wu, Jun; Suzuki, Keiichiro; Martinez-Redondo, Paloma; Li, Mo; Liao, Hsin-Kai; Wu, Min-Zu; Herná ndez-Bení tez, Reyna; Hishida, Tomoaki; Shokhirev, Maxim Nikolaievich; Esteban, Concepcion Rodriguez; Sancho-Martinez, Ignacio; Belmonte, Juan Carlos Izpisua

    2017-01-01

    that insertion of CpG-free DNA into targeted CGIs induces de novo methylation of the entire CGI in human pluripotent stem cells (PSCs). The methylation status is stably maintained even after CpG-free DNA removal, extensive passaging, and differentiation

  9. Adverse effects induced by ecgonine methyl ester to the zebra mussel: A comparison with the benzoylecgonine

    International Nuclear Information System (INIS)

    Parolini, Marco; Binelli, Andrea

    2013-01-01

    Cocaine and its metabolites are the prevalent psychotropic substances in aquatic environment. However, to date the knowledge on their adverse effects to non-target organisms is inadequate. The aims of this study were to investigate sub-lethal effects induced by the ecgonine methyl ester (EME) to the freshwater bivalve Dreissena polymorpha and to compare its toxicity to that by benzoylecgonine (BE), the other main cocaine metabolite. EME sub-lethal effects were investigated by 14 days in-vivo exposures and a multi-biomarker approach. Slight variations in biomarker responses were found at 0.15 μg/L treatment. 0.5 μg/L EME treatment induced destabilization of lysosome membranes, an overall inactivation of defense enzymes, increases in lipid peroxidation, protein carbonylation and DNA fragmentation, but no variations in fixed genetic damage. The use of a biomarker response index (BRI) showed that at 0.5 μg/L both cocaine metabolites had the same toxicity to zebra mussels specimens. -- Highlights: •Sub-lethal effects induced by ecgonine methyl ester (EME) to D. polymorpha were investigated. •Realistic EME concentrations caused notable adverse effects in treated bivalves. •EME induced oxidative injuries to treated-mussel lipids, protein and DNA. •EME toxicity was comparable to the benzoylecgonine one. -- Environmentally relevant ecgonine methyl ester concentrations induced adverse effects to zebra mussels

  10. Effects of X-irradiation on N-methyl-N-nitrosourea-induced multi-organ carcinogenesis in rats

    International Nuclear Information System (INIS)

    Morishita, Yukiko; Tanaka, Takuji; Mori, Hideki; Sasaki, Shunsaku.

    1993-01-01

    The effects of X-irradiation on N-methyl-N-nitrosourea (MNU)-induced multi-organ carcinogenesis were examined in both sexes of ACI/N rats. At 6 weeks of age, rats in groups 1 (25 males, 25 females) and 3 (24 males, 23 females) received a single intraperitoneal injection of MNU (25 mg/kg body weight), while those in groups 2 (25 males, 26 females) and 4 (25 males, 25 females) were administered the carcinogen at a dose of 50 mg/kg body weight. At 10 weeks of age, group 3 and group 4 were X-irradiated at dose of 3 Gy. Group 5 (24 males, 24 females) received X-irradiation alone. Group 6 (21 males, 21 females) served as an untreated control. As a result, neoplasms developed mainly in the digestive tract, kidney, uterus, and hematopoietic organ in groups 1-5. The incidences of adenocarcinoma in small and large intestines of male rats of group 4 (50 mg/kg MNU and X-irradiation) (small intestine: 48%, large intestine: 32%) were significantly higher than those of group 2 (50 mg/kg MNU) (small intestine: 17%, p<0.05; large intestine: 8%, p<0.05), and also the frequency of adenocarcinoma in the large intestine of males of group 3 (25 mg/kg MNU and X-irradiation) (22%) was significantly greater than that of group 1 (25 mg/kg MNU) (0%, p<0.05). These results indicated that X-irradiation enhanced the development of intestinal neoplasms induced by MNU in male ACI/N rats. (author)

  11. Effects of X-irradiation on N-methyl-N-nitrosourea-induced multi-organ carcinogenesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Yukiko; Tanaka, Takuji; Mori, Hideki (Gifu Univ. (Japan). Faculty of Medicine); Sasaki, Shunsaku

    1993-01-01

    The effects of X-irradiation on N-methyl-N-nitrosourea (MNU)-induced multi-organ carcinogenesis were examined in both sexes of ACI/N rats. At 6 weeks of age, rats in groups 1 (25 males, 25 females) and 3 (24 males, 23 females) received a single intraperitoneal injection of MNU (25 mg/kg body weight), while those in groups 2 (25 males, 26 females) and 4 (25 males, 25 females) were administered the carcinogen at a dose of 50 mg/kg body weight. At 10 weeks of age, group 3 and group 4 were X-irradiated at dose of 3 Gy. Group 5 (24 males, 24 females) received X-irradiation alone. Group 6 (21 males, 21 females) served as an untreated control. As a result, neoplasms developed mainly in the digestive tract, kidney, uterus, and hematopoietic organ in groups 1-5. The incidences of adenocarcinoma in small and large intestines of male rats of group 4 (50 mg/kg MNU and X-irradiation) (small intestine: 48%, large intestine: 32%) were significantly higher than those of group 2 (50 mg/kg MNU) (small intestine: 17%, p<0.05; large intestine: 8%, p<0.05), and also the frequency of adenocarcinoma in the large intestine of males of group 3 (25 mg/kg MNU and X-irradiation) (22%) was significantly greater than that of group 1 (25 mg/kg MNU) (0%, p<0.05). These results indicated that X-irradiation enhanced the development of intestinal neoplasms induced by MNU in male ACI/N rats. (author).

  12. Hydrogen sulfide, a potential novel drug, attenuates concanavalin A-induced hepatitis

    Directory of Open Access Journals (Sweden)

    Cheng P

    2014-09-01

    Full Text Available Ping Cheng,* Kan Chen,* Yujing Xia, Weiqi Dai, Fan Wang, Miao Shen, Chengfen Wang, Jing Yang, Rong Zhu, Huawei Zhang, Jingjing Li, Yuanyuan Zheng, Junshan Wang, Yan Zhang, Jie Lu, Yingqun Zhou, Chuanyong GuoDepartment of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, People's Republic of China *These authors contributed equally to this work Background: Hydrogen sulfide (H2S is known to exert anti-inflammatory properties. Apoptosis and autophagy play important roles in concanavalin A (Con A-induced acute hepatitis. The purpose of this study was to explore both the effect and mechanism of H2S on Con A-induced acute hepatitis. Methods: BALB/c mice were randomized into sham group, Con A-injection group, and 14 µmol/kg of sodium hydrosulfide (NaHS, an H2S donor pretreatment group. Results: Aspartate aminotransferase, alanine aminotransferase, and pathological damage were significantly ameliorated by NaHS pretreatment. NaHS pretreatment significantly reduced the levels of interleukin-6 and tumor necrosis factor-α compared with those of the Con A group. The expression of Bcl-2, Bax, Beclin-1, and LC3-2, which play important roles in the apoptosis and autophagy pathways, were also clearly affected by NaHS. Furthermore, NaHS affected the p-mTOR and p-AKT. Conclusion: H2S attenuates Con A-induced acute hepatitis by inhibiting apoptosis and autophagy, in part, through activation of the PtdIns3K-AKT1 signaling pathway. Keywords: NaHS, apoptosis, PtdIns3K-AKT, autophagy

  13. Molecules and Models The molecular structures of main group element compounds

    CERN Document Server

    Haaland, Arne

    2008-01-01

    This book provides a systematic description of the molecular structures and bonding in simple compounds of the main group elements with particular emphasis on bond distances, bond energies and coordination geometries. The description includes the structures of hydrogen, halogen and methyl derivatives of the elements in each group, some of these molecules are ionic, some polar covalent. The survey of molecules whose structures conform to well-established trends is followed byrepresentative examples of molecules that do not conform. We also describe electron donor-acceptor and hydrogen bonded co

  14. Hydrogen induced surface effects on the mechanical properties of type 304 stainless steel

    International Nuclear Information System (INIS)

    Silva, T.C.V. da; Pascual, R.; Miranda, P.E.V. de.

    1983-01-01

    The possibilities of modifying the mechanical properties of type 304 stainless steel by cathodic hydrogen charging were studied. The situations analysed included hydrogen embrittlement itself in tensile tests of hydrogen containing samples and the effects of delayed cracks in fatigue tests of hydrogenated and outgassed samples. SEM and TEM observations were also performed. It was found that hydrogen induced surface delayed cracks appear in great quantity during outgassing (of the order of several millions in a square centimeter). Hydrogen embrittlement was responsible for drastic losses in ductility in tension, while surface cracks severely reduced fatigue life. (author) [pt

  15. MTHFR methylation moderates the impact of smoking on DNA methylation at AHRR for African American young adults.

    Science.gov (United States)

    Beach, Steven R H; Lei, Man Kit; Ong, Mei Ling; Brody, Gene H; Dogan, Meeshanthini V; Philibert, Robert A

    2017-09-01

    Smoking has been shown to have a large, reliable, and rapid effect on demethylation of AHRR, particularly at cg05575921, suggesting that methylation may be used as an index of cigarette consumption. Because the availability of methyl donors may also influence the degree of demethylation in response to smoking, factors that affect the activity of methylene tetrahydrofolate reductase (MTHFR), a key regulator of methyl group availability, may be of interest. In the current investigation, we examined the extent to which individual differences in methylation of MTHFR moderated the association between smoking and demethylation at cg05575921 as well as at other loci on AHRR associated with a main effect of smoking. Using a discovery sample (AIM, N = 293), and a confirmatory sample (SHAPE, N = 368) of young adult African Americans, degree of methylation of loci in the first exon of MTHFR was associated with amplification of the association between smoking and AHRR demethylation at cg05575921. However, genetic variation at a commonly studied MTHFR variant, C677T, did not influence cg05575921 methylation. The significant interaction between MTHFR methylation and the smoking-induced response at cg05575921 suggests a role for individual differences in methyl cycle regulation in understanding the effects of cigarette consumption on genome wide DNA methylation. © 2017 Wiley Periodicals, Inc.

  16. Study of radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. VIII. Polymerization of styrene and methyl methacrylate adsorbed on aerosil

    International Nuclear Information System (INIS)

    Fukano, K.; Kageyama, E.

    1976-01-01

    Aerosol is silica having a purity which is very high compared with that of silica gel and having, unlike silica gel, no micropores. To investigate the effects of impurities and micropores on the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on silica gel, the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on Aerosil was carried out. The results of both the styrene--Aerosil 300 system and the methyl methacrylate--Aerosil 300 system were similar to those of the styrene-silica gel and methyl methacrylate-silica gel systems, respectively. This suggests that in the radiation-induced polymerization of both styrene--silica gel and methyl methacrylate--silica gel systems the impurities and the presence of micropores have almost no effect on the reaction mechanism. The effect of aluminum as an impurity was investigated on the styrene--Aerosil MOX 170 system. It was found that aluminum accelerated the cationic polymerization

  17. New labeling methods via organometallic species: new synthesis of a chiral methyl group

    International Nuclear Information System (INIS)

    Faucher, Nicolas

    2000-01-01

    Chapter 1: New labeling methods via organometallic species. In the first part of this work, we have developed a new labeling strategy based on the hydrogenolysis of organolithium compounds with tritium gas or deuterium gas. This reaction is catalyzed with palladium on charcoal and leads to the labelled compounds with direct replacement of the proton by its isotopes ("2H or "3H) without further chemical modification of the target molecule. Using this strategy, tritium or deuterium atoms can be introduced in a region but also in a stereoselective fashion with more than 90% ee. The former result was obtained using (-)-sparteine during the lithiation step. Chapter II: New synthesis of a chiral methyl group. In the second part of this work, we have developed a new synthetic method to prepare chiral ditosyl-methylamine using 4,5-disubstituted oxazolidines. Dia-stereoselective substitution of the methoxy group of a 2-alkoxy-oxazolidine by a deuteride in the presence of a Lewis acid leads to the 2-deutero-oxazolidine in a highly stereoselective fashion (de = 100%). Still using a lewis acid, a tritiated hydride open the former 2-deutero-oxazolidine to afford chiral methyl group borne by the nitrogen. Further de-protection and re-protection steps lead to the ditosyl-methylamine with an ee of 65% (RIS= 83/17). Nowadays, this is the best known synthetic method, not only in terms of enantioselectivity but also in terms of chemical yield and number of radioactive steps. As NTs_2 is a fairly good leaving group, the ditosyl-methylamine offers the possibility of introducing chiral methyl group in many substrates using a S_N2 reaction with various nucleophiles. This last point leads to many potential applications in the field of biochemistry or for mechanical studies. (author) [fr

  18. Comparison of the carcinogenic effectiveness in mouse skin of methyl- and ethylnitrosourea, nitrosourethane and nitrosonitro-guanidine and the effect of deuterium labeling

    International Nuclear Information System (INIS)

    Lijinsky, W.

    1982-01-01

    The carcinogenic activities of a number of directly acting methylating and ethylating agents have been compared by mouse skin painting in acetone solution. Nitrosomethylurethane and nitrosoethylurethane failed to induce tumors after greater than 60 weeks treatment. Nitrosomethylurea was somewhat more effective than nitrosoethylurea, as measured by the longer latent period than nitrosoethylurea, as measured Nitrosomethylnitroguanidine, by the same measure, was a weaker carcinogen than nitrosoethylnitroguanidine at both dose levels used (0.02 M and 0.008 M); the latter compound was the most potent skin carcinogen of those examined. There was no significant difference in carcinogenic effectiveness when the alkyl group of the nitrosoureas or the nitronitrosoguanidines contained deuterium instead of hydrogen, which supports the concept that alkylation of cellular macromolecules by the intact alkyl group is responsible for carcinogenesis by these compounds

  19. Low-energy electron-induced dissociation in gas-phase nicotine, pyridine, and methyl-pyrrolidine

    Science.gov (United States)

    Ryszka, Michal; Alizadeh, Elahe; Li, Zhou; Ptasińska, Sylwia

    2017-09-01

    Dissociative electron attachment to nicotine, pyridine, and N-methyl-pyrrolidine was studied in the gas phase in order to assess their stability with respect to low-energy electron interactions. Anion yield curves for different products at electron energies ranging from zero to 15 eV were measured, and the molecular fragmentation pathways were proposed. Nicotine does not form a stable parent anion or a dehydrogenated anion, contrary to other biological systems. However, we have observed complex dissociation pathways involving fragmentation at the pyrrolidine side accompanied by isomerization mechanisms. Combining structure optimization and enthalpy calculations, performed with the Gaussian09 package, with the comparison with a deuterium-labeled N-methyl-d3-pyrrolidine allowed for the determination of the fragmentation pathways. In contrast to nicotine and N-methylpyrrolidine, the dominant pathway in dissociative electron attachment to pyridine is the loss of hydrogen, leading to the formation of an [M—H]- anion. The presented results provide important new information about the stability of nicotine and its constituent parts and contribute to a better understanding of the fragmentation mechanisms and their effects on the biological environment.

  20. Preparation of New Adsorbent Containing Hydroxamic Acid Groups by Electron Beam-Induced Grafting for Metal Ion Adsorption

    International Nuclear Information System (INIS)

    Suwanmala, Phiriyatorn; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2007-08-01

    Full text: A new adsorbent containing hydroxamic acid groups was synthesized by electron beam-induced graft copolymerization of methyl acrylate (MA) onto nonwoven fabric composed of polyethylene-coated polypropylene fiber. Conversion of ester groups of the grafted copolymer into the hydroxamic groups was performed by treatment with an alkaline solution of hydroxylamine (HA). Adsorbent containing hydroxamic acid groups can adsorb 99% of UO2 2+ , 98% of V5+, 97% of Pb2+ and 96% of Al3+ at pH, 5, 4, 6, and 4, respectively, after coming into contact with 100 ppb metal solution for 24 h

  1. Gamma irradiation does not induce detectable changes in DNA methylation directly following exposure of human cells.

    Directory of Open Access Journals (Sweden)

    Christoph Lahtz

    Full Text Available Environmental chemicals and radiation have often been implicated in producing alterations of the epigenome thus potentially contributing to cancer and other diseases. Ionizing radiation, released during accidents at nuclear power plants or after atomic bomb explosions, is a potentially serious health threat for the exposed human population. This type of high-energy radiation causes DNA damage including single- and double-strand breaks and induces chromosomal rearrangements and mutations, but it is not known if ionizing radiation directly induces changes in the epigenome of irradiated cells. We treated normal human fibroblasts and normal human bronchial epithelial cells with different doses of γ-radiation emitted from a cesium 137 ((137Cs radiation source. After a seven-day recovery period, we analyzed global DNA methylation patterns in the irradiated and control cells using the methylated-CpG island recovery assay (MIRA in combination with high-resolution microarrays. Bioinformatics analysis revealed only a small number of potential methylation changes with low fold-difference ratios in the irradiated cells. These minor methylation differences seen on the microarrays could not be verified by COBRA (combined bisulfite restriction analysis or bisulfite sequencing of selected target loci. Our study shows that acute γ-radiation treatment of two types of human cells had no appreciable direct effect on DNA cytosine methylation patterns in exposed cells.

  2. Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes

    International Nuclear Information System (INIS)

    Kaup, Sahana; Grandjean, Valerie; Mukherjee, Rajarshi; Kapoor, Aparna; Keyes, Edward; Seymour, Colin B.; Mothersill, Carmel E.; Schofield, Paul N.

    2006-01-01

    The mechanism by which radiation-induced genomic instability is initiated, propagated and effected is currently under intense scrutiny. We have investigated the potential role of altered genomic methylation patterns in the cellular response to irradiation and have found evidence for widespread dysregulation of CpG methylation persisting up to 20 population doublings post-irradiation. Similar effects are seen with cells treated with medium from irradiated cells (the 'bystander effect') rather than subjected to direct irradiation. Using an arbitrarily primed methylation sensitive PCR screening method we have demonstrated that irradiation causes reproducible alterations in the methylation profile of a human keratinocyte cell line, HPV-G, and have further characterised one of these sequences as being a member of a retrotransposon element derived sequence family on chromosome 7; MLT1A. Multiple changes were also detected in the screen, which indicate that although the response of cells is predominantly hypermethylation, specific hypomethylation occurs as well. Sequence specific changes are also reported in the methylation of the pericentromeric SAT2 satellite sequence. This is the first demonstration that irradiation results in the induction of heritable methylation changes in mammalian cells, and provides a link between the various non-radiological instigators of genomic instability, the perpetuation of the unstable state and several of its manifestations

  3. 4-Methyl-N-(2-methylbenzoylbenzenesulfonamide

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2010-06-01

    Full Text Available In the title compound, C15H15NO3S, the conformation of the N—H bond in the C—SO2—NH—C(O segment is anti to the C=O bond. Further, the conformation of the C=O bond is syn to the ortho-methyl group in the benzoyl ring. The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 87.1 (1° and that between the sulfonyl and the benzoyl benzene rings is 58.2 (1°. In the crystal structure, molecules are linked by pairs of N—H...O(S hydrogen bonds, forming inversion dimers.

  4. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    Science.gov (United States)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  5. Dynamics and disorder of methyl group in the different phases of 2,6-dimethyl pyrazine, 4-methyl pyridine and 4-methyl pyridine N-oxide

    International Nuclear Information System (INIS)

    Kaiser Morris, E.

    1997-01-01

    The thermal and mechanical properties of organic compounds are well known to be strongly correlated with the orientational freedom of its molecules or its molecular groups such as NH 3 , CH 3 , CH 4 ... For this reason, the study of the rotational behaviour of methyl groups in the solid state as a function of temperature is of great interest. With decreasing temperature, the rotations change from classical hoping to processes where quantum mechanical rotations become important. By quantum mechanical rotations, we mean the low-temperature counterpart, for with tunneling is the dominant mode of motion. However, the interpretation of tunnelling lines is critical when it is not straightforward to relate them to specific vibrational modes and particularly so when the molecule contains crystallographically inequivalent groups. The aim of this work is to interpret such spectra (obtained from inelastic neutron scattering) from structural data. The lack of structural knowledge at low temperatures, makes therefore a limited interpretation of the spectra obtained from polycrystalline samples. In a first step it is essential to solve crystalline structure of compounds by single crystal X-rays and neutron diffraction. Indeed X-ray diffraction is necessary to locate the skeleton (C, N, O and localised H atoms). Moreover neutron diffraction is the unique tool to precise the position of H atoms of methyl groups. The exam of the nuclear density of these protons the Fourier maps allows us to evaluate the crystal potential experienced by this rotor. Inelastic neutron scattering allows on single crystals allows the complete characterizations of quantum excitations (author)

  6. Methylation reactions, the redox balance and atherothrombosis: the search for a link with hydrogen sulfide.

    Science.gov (United States)

    Lupoli, Roberta; Di Minno, Alessandro; Spadarella, Gaia; Franchini, Massimo; Sorrentino, Raffaella; Cirino, Giuseppe; Di Minno, Giovanni

    2015-06-01

    It is now clear that homocysteine (Hcy) is irreversibly degraded to hydrogen sulfide (H(2)S), an endogenous gasotransmitter that causes in vivo platelet activation via upregulation of phospholipase A2 and downstream boost of the arachidonate cascade. This mechanism involves a transsulfuration pathway. Based on these new data, clinical and experimental models on the relationships between Hcy and folate pathways in vascular disease and information on the Hcy controversy have been reanalyzed in the present review. Most interventional trials focused on Hcy lowering by folate administration did not exclude patients routinely taking the arachidonate inhibitor aspirin. This may have influenced the results of some of these trials. It is also clear that nutritional intake of folate affects several enzymatic reactions of the methionine-Hcy cycle and associated one-carbon metabolism and, thereby, both methylation reactions and redox balance. Hence, it is conceivable that the abnormally high Hcy levels seen in pathologic states reflect a poorly elucidated perturbation of such reactions and of such balance. While it is unknown whether there is an interplay between H2S, methylation reactions, and redox balance, measuring the sole reduction of blood Hcy that follows folate administration may well be an oversimplified approach to a complex biologic perturbation. The need to investigate this complex framework is thoroughly discussed in this article. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Characterization of γ-radiation induced polymerization in ethyl methacrylate and methyl acrylate monomers solutions

    Science.gov (United States)

    Baccaro, Stefania; Casieri, Cinzia; Cemmi, Alessia; Chiarini, Marco; D'Aiuto, Virginia; Tortora, Mariagrazia

    2017-12-01

    The present work is focused on the γ-radiation induced polymerization of ethyl methacrylate (EMA) and methyl acrylate (MA) monomers mixture to obtain a co-polymer with specific features. The effect of the irradiation parameters (radiation absorbed dose, dose rate) and of the environmental atmosphere on the features of the final products was investigated. Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Nuclear Magnetic Resonance high-resolution analyses of hydrogen and carbon nuclei (1H and 13C NMR) were applied to follow the γ-induced modifications by monitoring the co-polymerization process and allowed the irradiation parameters optimization. Diffusion-Ordered NMR (DOSY-NMR) data were used to evaluate the co-polymers polydispersity and polymerization degree. Since the last parameter is strongly influenced by the γ radiation and environmental conditions, a comparison among samples prepared and irradiated in air and under nitrogen atmosphere was carried out. In presence of oxygen, higher radiation was required to obtain a full solid co-polymer since a partial amount of energy released to the samples was involved in competitive processes, i.e. oxygen-containing free radicals formation and primary radicals recombination. Irrespectively to the environmental atmosphere, more homogeneous samples in term of polymerization degree dispersion was achieved at lower dose rates. At radiation absorbed doses higher than those needed for the formation of the co-polymer, while in case of samples irradiated in air heavy depolymerization was verified, a sensible increase of the samples stability was attained if the irradiation was performed under nitrogen atmosphere.

  8. Comparison of fluoxetine and 1-methyl-L-tryptophan in treatment of depression-like illness in Bacillus Calmette-Guerin-induced inflammatory model of depression in mice.

    Science.gov (United States)

    Rana, Proteesh; Sharma, Amit K; Jain, Smita; Deshmukh, Pravin; Bhattacharya, S K; Banerjee, B D; Mediratta, Pramod K

    2016-11-01

    The inflammatory response system has been implicated in the pathophysiology of major depression. The pro-inflammatory cytokines like interferon-γ induce the enzyme indoleamine-2,3-dioxygenase (IDO) of the kynurenine pathway of tryptophan metabolism. The induction of IDO reduces the availability of tryptophan for serotonin synthesis. Furthermore, the metabolites of kynurenine pathway have neurotoxic property, which along with decreased serotonin may account for depression-like illness. The aim of this study was to compare the effects of treatment with fluoxetine and 1-methyl-L-tryptophan (1-MT) on Bacillus Calmette-Guerin (BCG)-induced inflammatory model of depression in mice. Behavioral tests included locomotor activity, forced swim test (FST) and tail suspension test (TST). Oxidative stress was assessed by examining the levels of thiobarbituric acid reactive species (TBARS) and non-protein thiols (NP-SH) in homogenized whole brain samples. Comet assays were performed to assess neurotoxicity. The results of this study demonstrate that BCG treatment resulted in an increase in duration of immobility in FST and TST as compared to the saline group. Further, it produced a significant increase in the brain TBARS levels and decrease in the brain NP-SH levels. The hippocampal tissue from BCG group had significantly more comet cells than the saline group. 1-MT and fluoxetine were able to reverse the BCG-induced depression-like behavior and the derangement in oxidative stress parameters. Fluoxetine and 1-MT also reversed the BCG-induced neurotoxicity in such mice. 1-Methyl-L-tryptophan exhibits antidepressant-like effect comparable to that of fluoxetine in treating BCG-induced depression-like behavior in mice.

  9. Metal and hydrogen catalysis in isotopic hydrogen exchange in some biologically important heterocyclic compounds

    International Nuclear Information System (INIS)

    Buncel, E.; Joly, H.A.; Jones, J.R.; Onyido, I.

    1989-01-01

    This study reports on the catalytic roles of metal and hydrogen ions in tritium exchange in some heterocyclic substrates which occur as residues in many biologically important molecules. We have found that detritiation of 1-methyl[2- 3 H]imidazole is inhibited by a number of metal ions. As well, inhibition of exchange rates was noted with Ag(I) and Cu(II) for [2- 3 H]thiazole and 1-methyl[8- 3 H]inosine, with Ag(I) for [2- 3 H]benzothiazole, and with Cu(II) for 1-methyl[8- 3 H]guanosine. A complete mechanistic description, which includes the various metal ion-coordinated species generated under the experimental conditions, is presented. The results demonstrate the reactivity order: protonated >> metal-coordinated >> neutral substrates. The differential catalytic effects of metal and hydrogen ions in these processes are discussed in terms of the extent of charge developed on the ligating heteroatom in the reaction intermediate. (author). 13 refs.; 1 fig

  10. Crystal structure of 3-methyl-2,6-bis(4-methyl-1,3-thiazol-5-ylpiperidin-4-one

    Directory of Open Access Journals (Sweden)

    A. Manimaran

    2014-09-01

    Full Text Available In the title compound, C14H17N3OS2, the central piperidinone ring adopts a chair conformation and the thiazole rings are inclined to its mean plane by 80.16 (12 and 67.15 (12°. The O atom and methyl group C atom deviate significantly from the mean plane of the central piperidinone ring, by 0.8138 (2 and 0.3175 (2 Å, respectively. The dihedral angle between the thiazole rings is 51.88 (13°. In the crystal, molecules are linked via C—H...O hydrogen bonds, forming zigzag C(10 chains running parallel to [001].

  11. Hydrogen induced crack growth in Grade-12 titanium

    International Nuclear Information System (INIS)

    Ahn, T.M.; Lee, K.S.

    1984-01-01

    Internal hydrogen induced crack growth rates were measured in Grade-12 titanium which is a candidate material for high-level nuclear waste containers. As-received and hydrogen charged samples (5 ppM to 330 ppM hydrogen) were used for slow crack growth measurements at constant loads using a Krak Gauge. The testing temperature ranged from room temperature to 148 0 C. The crack growth kinetics under low to moderate loads are linear, but this linear rate is interrupted by discrete fast crack jump segments with parabolic or cubic type kinetics. These fast jump segments are thought to be associated with the passage of the crack front through the alpha-beta interface phase or with the initial loading sequence. By measuring striation spacings on the fracture surface, most crack growth rates observed are found to be in stage II. The striations are considered to be associated with hydride fracture. The crack path is either transgranular in the alpha phase or interfacial in the alpha phase adjacent to the beta phase. For transgranular growth, crack growth rates are constant and slower than those for interfacial growth which is associated with fast crack growth through a high hydrogen concentration region. Most stage II crack growth rates depend slightly on the stress intensity suggesting the contribution of plastic tearing process to stage II kinetics. The activation energies for crack growth are much lower than the activation energy of hydrogen diffusion through the alpha phase, implying that hydrogen is transported along dislocations, grain boundaries or interfaces. When the temperature is increased, the crack velocity first reaches a maximum and then decreases at higher temperatures. These temperature effects come from lower hydrogen concentration trapped at dislocations or from slower hydride nucleation kinetics, both at higher temperatures

  12. Activity of cell wall degrading glycanases in methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    OpenAIRE

    Marian Saniewski; Ewa Gajewska; Henryk Urbanek

    2013-01-01

    It was found previously that methyl jasmonate (JA-Me) induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was shown that JA-Me markedly increased the total activities of cellulase, polygalacturonase, pectinase and xylanase in petioles, but did not affect activities of these enzymes in the blades and apical part of shoots of K. blossfeldiana. These results suggest that methyl jasmonate promotes the degradation of cell wall polysaccharides in the abscission zone and in thi...

  13. Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates

    KAUST Repository

    Vlček, Marián

    2015-07-01

    A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.

  14. Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates

    KAUST Repository

    Vlček, Mariá n; Luká č, František; Vlach, Martin; Prochá zka, Ivan; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid; Gemma, Ryota; Čí žek, Jakub

    2015-01-01

    A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.

  15. Trichloroethylene-Induced DNA Methylation Changes in Male F344 Rat Liver.

    Science.gov (United States)

    Jiang, Yan; Chen, Jiahong; Yue, Cong; Zhang, Hang; Chen, Tao

    2016-10-17

    Trichloroethylene (TCE), a common environmental contaminant, causes hepatocellular carcinoma in mice but not in rats. To understand the mechanisms of the species-specific hepatocarcinogenecity of TCE, we examined the methylation status of DNA in the liver of rats exposed to TCE at 0 or 1000 mg/kg b.w. for 5 days using MeDIP-chip, bisulfite sequencing, COBRA, and LC-MS/MS. The related mRNA expression levels were measured by qPCR. Although no global DNA methylation change was detected, 806 genes were hypermethylated and 186 genes were hypomethylated. The genes with hypermethylated DNA were enriched in endocytosis, MAPK, and cAMP signaling pathways. We further confirmed the hypermethylation of Uhrf2 DNA and the hypomethylation of Hadhb DNA, which were negatively correlated with their mRNA expression levels. The transcriptional levels of Jun, Ihh, and Tet2 were significantly downregulated, whereas Cdkn1a was overexpressed. No mRNA expression change was found for Mki67, Myc, Uhrf1, and Dnmt1. In conclusion, TCE-induced DNA methylation changes in rats appear to suppress instead of promote hepatocarcinogenesis, which might play a role in the species-specific hepatocarcinogenecity of TCE.

  16. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Koji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Munetsuna, Eiji [Department of Biochemistry, Fujita Health University School of Medicine, Toyoake (Japan); Yamada, Hiroya, E-mail: hyamada@fujita-hu.ac.jp [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan); Ando, Yoshitaka [Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake (Japan); Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Suzuki, Koji [Department of Public Health, Fujita Health University School of Health Sciences, Toyoake (Japan); Teradaira, Ryoji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Hashimoto, Shuji [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan)

    2015-12-04

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  17. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    International Nuclear Information System (INIS)

    Ohashi, Koji; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki; Suzuki, Koji; Teradaira, Ryoji; Hashimoto, Shuji

    2015-01-01

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  18. The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels.

    Science.gov (United States)

    Sun, Haiyan; Greathouse, Denise V; Andersen, Olaf S; Koeppe, Roger E

    2008-08-08

    To better understand the structural and functional roles of tryptophan at the membrane/water interface in membrane proteins, we examined the structural and functional consequences of Trp --> 1-methyl-tryptophan substitutions in membrane-spanning gramicidin A channels. Gramicidin A channels are miniproteins that are anchored to the interface by four Trps near the C terminus of each subunit in a membrane-spanning dimer. We masked the hydrogen bonding ability of individual or multiple Trps by 1-methylation of the indole ring and examined the structural and functional changes using circular dichroism spectroscopy, size exclusion chromatography, solid state (2)H NMR spectroscopy, and single channel analysis. N-Methylation causes distinct changes in the subunit conformational preference, channel-forming propensity, single channel conductance and lifetime, and average indole ring orientations within the membrane-spanning channels. The extent of the local ring dynamic wobble does not increase, and may decrease slightly, when the indole NH is replaced by the non-hydrogen-bonding and more bulky and hydrophobic N-CH(3) group. The changes in conformational preference, which are associated with a shift in the distribution of the aromatic residues across the bilayer, are similar to those observed previously with Trp --> Phe substitutions. We conclude that indole N-H hydrogen bonding is of major importance for the folding of gramicidin channels. The changes in ion permeability, however, are quite different for Trp --> Phe and Trp --> 1-methyl-tryptophan substitutions, indicating that the indole dipole moment and perhaps also ring size and are important for ion permeation through these channels.

  19. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy

    DEFF Research Database (Denmark)

    Rapin, W.; Bousquet, B.; Lasue, J.

    2017-01-01

    On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target...... to hydrogen, as other emission lines in the spectra are not affected. The increase of the signal could be related to an addition of hydrogen to the plasma due to interaction with the surrounding target surface, yet the exact physical process to explain such effect remains to be identified. More generally...

  20. Hydrogen protects against hyperoxia-induced apoptosis in type II alveolar epithelial cells via activation of PI3K/Akt/Foxo3a signaling pathway.

    Science.gov (United States)

    Wu, Dan; Liang, Mulin; Dang, Hongxing; Fang, Fang; Xu, Feng; Liu, Chengjun

    2018-01-08

    Oxidative stress is regarded as a key regulator in the pathogenesis of prolonged hyperoxia-induced lung injury, which causes injury to alveolar epithelial cells and eventually leads to development of bronchopulmonary dysplasia (BPD). Many studies have shown that hydrogen has a protective effect in a variety of cells. However, the mechanisms by which hydrogen rescues cells from damage due to oxidative stress in BPD remains to be fully elucidated. This study sought to evaluate the effects of hydrogen on hyperoxia-induced lung injury and to investigate the underlying mechanism. Primary type II alveolar epithelial cells (AECIIs) were divided into four groups: control (21% oxygen), hyperoxia (95% oxygen), hyperoxia + hydrogen, and hyperoxia + hydrogen + LY294002 (a PI3K/Akt inhibitor). Proliferation and apoptosis of AECIIs were assessed using MTS assay and flow cytometry (FCM), respectively. Gene and protein expression were detected by quantitative polymerase chain reaction (q-PCR) and western blot analysis. Stimulation with hyperoxia decreased the expression of P-Akt, P- FoxO3a, cyclinD1 and Bcl-2. Hyperoxic conditions increased levels of Bim, Bax, and Foxo3a, which induced proliferation restriction and apoptosis of AECIIs. These effects of hyperoxia were reversed with hydrogen pretreatment. Furthermore, the protective effects of hydrogen were abrogated by PI3K/Akt inhibitor LY294002. The results indicate that hydrogen protects AECIIs from hyperoxia-induced apoptosis by inhibiting apoptosis factors and promoting the expression of anti-apoptosis factors. These effects were associated with activation of the PI3K/Akt/FoxO3a pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet

    2017-09-01

    In this paper the effect of hydrogen implantation in silicon on nanoindentation-induced phase transformation is investigated. Hydrogen ions were implanted in silicon through 300 nm thick oxide with double energy implantation (75 and 40 keV). For both energies implantation dose was 4 × 1016 cm-2. Some samples were thermally annealed at 400 °C. The micro-Raman spectroscopy was applied on nanoindentation imprints and the obtained results were related to the pop out/elbow appearances in nanoindentatioin unloading-displacement curves. The Raman spectroscopy revealed a suppression of Si-XII and Si-III phases and formation of a-Si in the indents of hydrogen implanted Si. The high-resolution x-ray diffraction measurements were taken to support the analysis of silicon phase formation during nanoindentation. Implantation induced strain, high hydrogen concentration, and platelets generation were found to be the factors that control suppression of c-Si phases Si-XII and Si-III, as well as a-Si phase enhancement during nanoindentation. [Figure not available: see fulltext.

  2. Pressure-induced localisation of the hydrogen-bond network in KOH-VI

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Andreas, E-mail: a.hermann@ed.ac.uk; Nelmes, Richard J.; Loveday, John S. [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Guthrie, Malcolm [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); European Spallation Source AB, P.O. Box 176, SE-22100 Lund (Sweden)

    2015-12-28

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH){sub 4} units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  3. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages.

    Science.gov (United States)

    Rangel-Salazar, Rubén; Wickström-Lindholm, Marie; Aguilar-Salinas, Carlos A; Alvarado-Caudillo, Yolanda; Døssing, Kristina B V; Esteller, Manel; Labourier, Emmanuel; Lund, Gertrud; Nielsen, Finn C; Rodríguez-Ríos, Dalia; Solís-Martínez, Martha O; Wrobel, Katarzyna; Wrobel, Kazimierz; Zaina, Silvio

    2011-11-25

    We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.

  4. Fatty acid and sterol contents during methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It was found previously that methyl jasmonate (JA-Me induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was showed that JA-Me did not affect or only slightly affected the content of free and bound fatty acids in petioles and blades. ß-Sitosterol, campesterol and ß-amyrin were identified in petioles and blades of K. blossfeldiana; JA-Me decreased the content of campesterol in petioles and increased the content of ß-sitosterol in blades. In blades of plants treated with JA-Me disappearance of olean-12-one was indicated but appearance of 2H-cyclopropa[a]-naphthalen-2-one,l, la, 4, 5, 6, 7, 7a, 7b-octahydro-l, 1, 7, 7a-tetramethyl (aristolone was documented. The significance of these findings in leaf abscission induced by methyl jasmonate in K. blossfeldiana is discussed.

  5. Hydrogen-induced room-temperature plasticity in TC4 and TC21 alloys

    DEFF Research Database (Denmark)

    Yuan, Baoguo; Jin, Yongyue; Hong, Chuanshi

    2017-01-01

    In order to reveal the effect of hydrogen on the room-temperature plasticity of the titanium alloys TC4 and TC21, compression tests have been carried out at room temperature. Results show that an appropriate amount of hydrogen can improve the room-temperature plasticity of both the TC4 and TC21...... alloys. The ultimate compression strain of the TC4 alloy containing a hydrogen concentration of 0.5 wt.% increases by 39% compared to the untreated material. For the TC21 alloy the ultimate compression strain is increased by 33% at a hydrogen concentration of 0.6 wt.%. The main reason for the improvement...... of hydrogen-induced room-temperature plasticity of the TC4 and TC21 alloys is discussed....

  6. Radiation-induced terpolymerization of methyl α,β,β-trifluoroacrylate with tetrafluoroethylene and α-olefin

    International Nuclear Information System (INIS)

    Matsuda, O.; Watanabe, T.; Tabata, Y.; Machi, S.

    1980-01-01

    Radiation-induced terpolymerizations of methyl α,β,β-trifluoroacrylate (MTFA) with tetrafluoroethylene (TFE) and α-olefins, such as ethylene, propylene, and isobutylene, were carried out in bulk at 25 0 C for the purpose of controlling the content of ester group in the MTFA-α-olefin alternating copolymers. These monomers polymerized to form alternating terpolymers which contained 50 mole % α-olefin in a wide range of monomer composition. The content of MTFA, namely, the ester group in polymer, can be varied without destruction of the alternating structures between fluoroolefins (MTFA, TFE) and α-olefin by changing the MTFA/TFE ratio in the monomer mixture. The relative reactivities of MTFA and TFE in the terpolymerization were discussed according to kinetic treatments by free propagating and complex mechanisms. The relation between the MTFA/TFE ratio in the monomer mixture and that in terpolymer was explained favorably by the complex mechanism. It was also concluded that the relative reactivity of MTFA is larger than that of TFE in the terpolymerizations

  7. Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer

    Science.gov (United States)

    Hirata, Akiko; Fukasawa, Masanaga; Nagahata, Kazunori; Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Tatsumi, Tetsuya

    2018-06-01

    The rate of etching of tin-doped indium oxide (ITO) and the effects of a hydrogen-induced modified layer on cyclic, multistep thin-layer etching were investigated. It was found that ITO cyclic etching is possible by precisely controlling the hydrogen-induced modified layer. Highly selective etching of ITO/SiO2 was also investigated, and it was suggested that cyclic etching by selective surface adsorption of Si can precisely control the etch rates of ITO and SiO2, resulting in an almost infinite selectivity for ITO over SiO2 and in improved profile controllability.

  8. Hydrogen-rich Water Exerting a Protective Effect on Ovarian Reserve Function in a Mouse Model of Immune Premature Ovarian Failure Induced by Zona Pellucida 3

    Science.gov (United States)

    He, Xin; Wang, Shu-Yu; Yin, Cheng-Hong; Wang, Tong; Jia, Chan-Wei; Ma, Yan-Min

    2016-01-01

    Background: Premature ovarian failure (POF) is a disease that affects female fertility but has few effective treatments. Ovarian reserve function plays an important role in female fertility. Recent studies have reported that hydrogen can protect male fertility. Therefore, we explored the potential protective effect of hydrogen-rich water on ovarian reserve function through a mouse immune POF model. Methods: To set up immune POF model, fifty female BALB/c mice were randomly divided into four groups: Control (mice consumed normal water, n = 10), hydrogen (mice consumed hydrogen-rich water, n = 10), model (mice were immunized with zona pellucida glycoprotein 3 [ZP3] and consumed normal water, n = 15), and model-hydrogen (mice were immunized with ZP3 and consumed hydrogen-rich water, n = 15) groups. After 5 weeks, mice were sacrificed. Serum anti-Müllerian hormone (AMH) levels, granulosa cell (GC) apoptotic index (AI), B-cell leukemia/lymphoma 2 (Bcl-2), and BCL2-associated X protein (Bax) expression were examined. Analyses were performed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA) software. Results: Immune POF model, model group exhibited markedly reduced serum AMH levels compared with those of the control group (5.41 ± 0.91 ng/ml vs. 16.23 ± 1.97 ng/ml, P = 0.033) and the hydrogen group (19.65 ± 7.82 ng/ml, P = 0.006). The model-hydrogen group displayed significantly higher AMH concentrations compared with that of the model group (15.03 ± 2.75 ng/ml vs. 5.41 ± 0.91 ng/ml, P = 0.021). The GC AI was significantly higher in the model group (21.30 ± 1.74%) than those in the control (7.06 ± 0.27%), hydrogen (5.17 ± 0.41%), and model-hydrogen groups (11.24 ± 0.58%) (all P hydrogen group compared with that of the hydrogen group (11.24 ± 0.58% vs. 5.17 ± 0.41%, P = 0.021). Compared with those of the model group, ovarian tissue Bcl-2 levels increased (2.18 ± 0.30 vs. 3.01 ± 0.33, P = 0.045) and the Bax/Bcl-2 ratio decreased in the model-hydrogen group

  9. Hydrogen Sulfide Ameliorates Homocysteine-Induced Alzheimer's Disease-Like Pathology, Blood-Brain Barrier Disruption, and Synaptic Disorder.

    Science.gov (United States)

    Kamat, Pradip K; Kyles, Philip; Kalani, Anuradha; Tyagi, Neetu

    2016-05-01

    Elevated plasma total homocysteine (Hcy) level is associated with an increased risk of Alzheimer's disease (AD). During transsulfuration pathways, Hcy is metabolized into hydrogen sulfide (H2S), which is a synaptic modulator, as well as a neuro-protective agent. However, the role of hydrogen sulfide, as well as N-methyl-D-aspartate receptor (NMDAR) activation, in hyperhomocysteinemia (HHcy) induced blood-brain barrier (BBB) disruption and synaptic dysfunction, leading to AD pathology is not clear. Therefore, we hypothesized that the inhibition of neuronal NMDA-R by H2S and MK801 mitigate the Hcy-induced BBB disruption and synapse dysfunction, in part by decreasing neuronal matrix degradation. Hcy intracerebral (IC) treatment significantly impaired cerebral blood flow (CBF), and cerebral circulation and memory function. Hcy treatment also decreases the expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) in the brain along with increased expression of NMDA-R (NR1) and synaptosomal Ca(2+) indicating excitotoxicity. Additionally, we found that Hcy treatment increased protein and mRNA expression of intracellular adhesion molecule 1 (ICAM-1), matrix metalloproteinase (MMP)-2, and MMP-9 and also increased MMP-2 and MMP-9 activity in the brain. The increased expression of ICAM-1, glial fibrillary acidic protein (GFAP), and the decreased expression of vascular endothelial (VE)-cadherin and claudin-5 indicates BBB disruption and vascular inflammation. Moreover, we also found decreased expression of microtubule-associated protein 2 (MAP-2), postsynaptic density protein 95 (PSD-95), synapse-associated protein 97 (SAP-97), synaptosomal-associated protein 25 (SNAP-25), synaptophysin, and brain-derived neurotrophic factor (BDNF) showing synapse dysfunction in the hippocampus. Furthermore, NaHS and MK801 treatment ameliorates BBB disruption, CBF, and synapse functions in the mice brain. These results demonstrate a neuro-protective effect of H2S over Hcy-induced

  10. Induced resistance to hydrogen peroxide, UV and gamma radiation in bacillus species

    International Nuclear Information System (INIS)

    Bashandy, A.S.

    2005-01-01

    The catalase activity produced in four bacillus spp.(bacillus cereus, B. laterosporus, B. pumilus and B. subtilis (Escherichia coli was used for comparison) was measured and the sensitivity of these bacteria to hydrogen peroxide was tested. Bacillus spp. had higher resistance to hydrogen peroxide than E. coil. cultures of bacillus spp . When pretreated with sublethal level of hydrogen peroxide, became relatively resistant to the lethal effects of hydrogen than untreated control cultures. These pretreated cells were also resistant to lethality mediated by UV light and gamma radiation. The obtained results suggest that bacillus spp. Possess inducible defense mechanism (s) against the deleterious effects of oxidants and /or ionizing radiation

  11. A quantum mechanical alternative to the Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids.

    Science.gov (United States)

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-11-21

    The theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups have recently been given a consistent quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate (i.e., coherence-damping) processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in the condensed phase can retain quantum character over much broader temperature range than is commonly thought.

  12. Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties.

    Science.gov (United States)

    Massoth, F E; Politzer, P; Concha, M C; Murray, J S; Jakowski, J; Simons, Jack

    2006-07-27

    The hydrodeoxygenation of methyl-substituted phenols was carried out in a flow microreactor at 300 degrees C and 2.85 MPa hydrogen pressure over a sulfided CoMo/Al(2)O(3) catalyst. The primary reaction products were methyl-substituted benzene, cyclohexene, cyclohexane, and H(2)O. Analysis of the results suggests that two independent reaction paths are operative, one leading to aromatics and the other to partially or completely hydrogenated cyclohexanes. The reaction data were analyzed using Langmuir-Hinshelwood kinetics to extract the values of the reactant-to-catalyst adsorption constant and of the rate constants characterizing the two reaction paths. The adsorption constant was found to be the same for both reactions, suggesting that a single catalytic site center is operative in both reactions. Ab initio electronic structure calculations were used to evaluate the electrostatic potentials and valence orbital ionization potentials for all of the substituted phenol reactants. Correlations were observed between (a) the adsorption constant and the two reaction rate constants measured for various methyl-substitutions and (b) certain moments of the electrostatic potentials and certain orbitals' ionization potentials of the isolated phenol molecules. On the basis of these correlations to intrinsic reactant-molecule properties, a reaction mechanism is proposed for each pathway, and it is suggested that the dependencies of adsorption and reaction rates upon methyl-group substitution are a result of the substituents' effects on the electrostatic potential and orbitals rather than geometric (steric) effects.

  13. Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells.

    Science.gov (United States)

    Lee, Hak Joo; Lee, Doug Yoon; Mariappan, Meenalakshmi M; Feliers, Denis; Ghosh-Choudhury, Goutam; Abboud, Hanna E; Gorin, Yves; Kasinath, Balakuntalam S

    2017-04-07

    High-glucose increases NADPH oxidase 4 (NOX4) expression, reactive oxygen species generation, and matrix protein synthesis by inhibiting AMP-activated protein kinase (AMPK) in renal cells. Because hydrogen sulfide (H 2 S) inhibits high glucose-induced matrix protein increase by activating AMPK in renal cells, we examined whether H 2 S inhibits high glucose-induced expression of NOX4 and matrix protein and whether H 2 S and NO pathways are integrated. High glucose increased NOX4 expression and activity at 24 h in renal proximal tubular epithelial cells, which was inhibited by sodium hydrosulfide (NaHS), a source of H 2 S. High glucose decreased AMPK phosphorylation and activity, which was restored by NaHS. Compound C, an AMPK inhibitor, prevented NaHS inhibition of high glucose-induced NOX4 expression. NaHS inhibition of high glucose-induced NOX4 expression was abrogated by N (ω)-nitro-l-arginine methyl ester, an inhibitor of NOS. NaHS unexpectedly augmented the expression of inducible NOS (iNOS) but not endothelial NOS. iNOS siRNA and 1400W, a selective iNOS inhibitor, abolished the ameliorative effects of NaHS on high glucose-induced NOX4 expression, reactive oxygen species generation, and, matrix laminin expression. Thus, H 2 S recruits iNOS to generate NO to inhibit high glucose-induced NOX4 expression, oxidative stress, and matrix protein accumulation in renal epithelial cells; the two gasotransmitters H 2 S and NO and their interaction may serve as therapeutic targets in diabetic kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Trichloroethylene (TCE, widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.

  15. Formation dynamics of UV and EUV induced hydrogen plasma

    NARCIS (Netherlands)

    Dolgov, A.A.; Lee, Christopher James; Yakushev, O.; Lopaev, D.V.; Abrikosov, A.; Krivtsun, V.M.; Zotovich, A.; Bijkerk, F.

    2014-01-01

    The comparative study of the dynamics of ultraviolet (UV) and extreme ultraviolet (EUV) induced hydrogen plasma was performed. It was shown that for low H2 pressures and bias voltages, the dynamics of the two plasmas are significantly different. In the case of UV radiation, the plasma above the

  16. Hydrogen production by several cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dhruv; Kumar, H.D. (Banaras Hindu Univ., Varanasi (India). Dept. of Botany)

    1992-11-01

    Twenty species belonging to eleven genera of nitrogen-fixing and non-nitrogen-fixing cyanobacteria were screened for production of hydrogen. Only one species each of Nostoc and Anabaena showed light-and nitrogenase-dependent aerobic hydrogen production. The highest rate of aerobic hydrogen production was recorded in Anabaena sp. strain CA. When incubated anaerobically under 99% Ar + 1% CO[sub 2], all the tested strains produced hydrogen. Nickel supplementation completely abolished hydrogen production both under aerobic and anaerobic conditions, except in Anabaena sp. strain CA, where only the rate of production was decreased. Species of Plectonema, Oscillatoria and Spirulina showed methyl viologen-dependent (hydrogenase-dependent) hydrogen production. Other physiological activities were also studied with a view to selecting a suitable organism for large-scale production of hydrogen. (author)

  17. Effects of pilocarpine and kainate-induced seizures on N-methyl-d-aspartate receptor gene expression in the rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Przewlocka, B.; Labuz, D.; Machelska, H.; Przewlocki, R.; Turchan, J.; Lason, W. [Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow (Poland)

    1997-04-14

    The effects of pilocarpine- and kainate-induced seizures on N-methyl-d-aspartate receptor subunit-1 messenger RNA and [{sup 3}H]dizocilpine maleate binding were studied in the rat hippocampal formation. Pilocarpine- but not kainate-induced seizures decreased N-methyl-d-aspartate receptor subunit-1 messenger RNA level in dentate gyrus at 24 and 72 h after drug injection. Both convulsants decreased the messenger RNA level in CA1 pyramidal cells at 24 and 72 h, the effects of kainate being more profound. Kainate also decreased the N-methyl-d-aspartate receptor subunit-1 messenger RNA level in CA3 region after 24 and 72 h, whereas pilocarpine decreased the messenger RNA level at 72 h only. At 3 h after kainate, but not pilocarpine, an increased binding of [{sup 3}H]dizocilpine maleate in several apical dendritic fields of pyramidal cells was found. Pilocarpine reduced the [{sup 3}H]dizocilpine maleate binding in stratum lucidum only at 3 and 24 h after the drug injection. Pilocarpine but not kainate induced prolonged decrease in N-methyl-d-aspartate receptor subunit-1 gene expression in dentate gyrus. However, at the latest time measured, kainate had the stronger effect in decreasing both messenger RNA N-methyl-d-aspartate receptor subunit-1 and [{sup 3}H]dizocilpine maleate binding in CA1 and CA3 hippocampal pyramidal cells. The latter changes corresponded, however, to neuronal loss and may reflect higher neurotoxic potency of kainate.These data point to some differences in hippocampal N-methyl-d-aspartate receptor regulation in pilocarpine and kainate models of limbic seizures. Moreover, our results suggest that the N-methyl-d-aspartate receptor subunit-1 messenger RNA level is more susceptible to limbic seizures than is [{sup 3}H]dizocilpine maleate binding in the rat hippocampal formation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Effects of pilocarpine and kainate-induced seizures on N-methyl-d-aspartate receptor gene expression in the rat hippocampus

    International Nuclear Information System (INIS)

    Przewlocka, B.; Labuz, D.; Machelska, H.; Przewlocki, R.; Turchan, J.; Lason, W.

    1997-01-01

    The effects of pilocarpine- and kainate-induced seizures on N-methyl-d-aspartate receptor subunit-1 messenger RNA and [ 3 H]dizocilpine maleate binding were studied in the rat hippocampal formation. Pilocarpine- but not kainate-induced seizures decreased N-methyl-d-aspartate receptor subunit-1 messenger RNA level in dentate gyrus at 24 and 72 h after drug injection. Both convulsants decreased the messenger RNA level in CA1 pyramidal cells at 24 and 72 h, the effects of kainate being more profound. Kainate also decreased the N-methyl-d-aspartate receptor subunit-1 messenger RNA level in CA3 region after 24 and 72 h, whereas pilocarpine decreased the messenger RNA level at 72 h only. At 3 h after kainate, but not pilocarpine, an increased binding of [ 3 H]dizocilpine maleate in several apical dendritic fields of pyramidal cells was found. Pilocarpine reduced the [ 3 H]dizocilpine maleate binding in stratum lucidum only at 3 and 24 h after the drug injection. Pilocarpine but not kainate induced prolonged decrease in N-methyl-d-aspartate receptor subunit-1 gene expression in dentate gyrus. However, at the latest time measured, kainate had the stronger effect in decreasing both messenger RNA N-methyl-d-aspartate receptor subunit-1 and [ 3 H]dizocilpine maleate binding in CA1 and CA3 hippocampal pyramidal cells. The latter changes corresponded, however, to neuronal loss and may reflect higher neurotoxic potency of kainate.These data point to some differences in hippocampal N-methyl-d-aspartate receptor regulation in pilocarpine and kainate models of limbic seizures. Moreover, our results suggest that the N-methyl-d-aspartate receptor subunit-1 messenger RNA level is more susceptible to limbic seizures than is [ 3 H]dizocilpine maleate binding in the rat hippocampal formation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Identification of Differentially Methylated Sites with Weak Methylation Effects

    Directory of Open Access Journals (Sweden)

    Hong Tran

    2018-02-01

    Full Text Available Deoxyribonucleic acid (DNA methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ twins who have different pain sensitivities—both datasets have weak methylation effects of <1%—show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same

  20. Hydrogen-rich saline ameliorates the severity of L-arginine-induced acute pancreatitis in rats

    International Nuclear Information System (INIS)

    Chen, Han; Sun, Yan Ping; Li, Yang; Liu, Wen Wu; Xiang, Hong Gang; Fan, Lie Ying; Sun, Qiang; Xu, Xin Yun; Cai, Jian Mei; Ruan, Can Ping; Su, Ning; Yan, Rong Lin; Sun, Xue Jun; Wang, Qiang

    2010-01-01

    Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the L-arginine (L-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of L-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each L-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreas were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-κB) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of L-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-κB activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-κB activation and to promote acinar cell proliferation.

  1. Calculation of restricted rotational states in the methyl group

    CERN Document Server

    Ozaki, Y

    2002-01-01

    A methyl group attached to a molecule in the solid phase has a certain amount of hindrance in its rotational motion. The rotational potential can usually be expressed by the 3rd-order and the 6th-order terms of periodic functions. In the intermediate region with respect to the field strength and also the degree of mixing of two components, much variety appears in the structure of the rotational energy levels. The energy values correspond to the various molecular surroundings. The matrix elements are also derived, which yield the intensity of inelastic neutron scattering spectra. One example of calculated intensities is given. (orig.)

  2. Phonon interactions with methyl radicals in single crystals

    Directory of Open Access Journals (Sweden)

    James W. Wells

    2017-04-01

    Full Text Available The high temperature ESR spectra’s anomalous appearance at very low temperatures for the methyl radical created in single crystals is explained by magnetic dipole interactions with neighboring protons. These protons acting via phonon vibrations induce resonant oscillations with the methyl group to establish a very temperature sensitive ‘‘relaxation’’ mode that allows the higher energy ‘‘E’’ state electrons with spin 12 to ‘‘decay’’ into ‘‘A’’ spin 12 states. Because of the amplitude amplification with temperature, the ‘‘E’’ state population is depleted and the ‘‘A’’ state population augmented to produce the high temperature ESR spectrum. This phenomenon is found to be valid for all but the very highest barriers to methyl group tunneling. In support, a time dependent spin population study shows this temperature evolution in the state populations under this perturbation.

  3. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages

    Directory of Open Access Journals (Sweden)

    Rangel-Salazar Rubén

    2011-11-01

    Full Text Available Abstract Background We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20 hypermethylation in THP-1 macrophages. Here, we: 1 ask what gene expression changes accompany these epigenetic responses; 2 test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Results Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1 surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2 independent of the Dicer/micro-RNA pathway. Conclusions Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.

  4. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    Directory of Open Access Journals (Sweden)

    Ruslana Vasylkovska

    2015-01-01

    Full Text Available Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast.

  5. Polymethylated [Fe(η6-arene)2]2+ dications: methyl-group rearrangements and application of the EINS mechanism.

    Science.gov (United States)

    Štíbr, Bohumil; Bakardjiev, Mario; Hájková, Zuzana; Holub, Josef; Padělková, Zdenka; Růžička, Aleš; Kennedy, John D

    2011-06-14

    Reactions between the methylated arenes ArMe(n) [where ArMe(n) = C(6)Me(n)H((6-n)), and n = 1-6] and FeCl(2) in heptane at 90 °C in the presence of anhydrous AlCl(3) give, for the arenes with n = 1-5, extensive isomerisations and disproportionations involving the methyl groups on the arene rings, and the formation of mixtures of [Fe(ArMe(n))(2)](2+) dications that defy separation into pure species. GC-MS studies of AlCl(3)/mesitylene and AlCl(3)/durene reactions in the absence of FeCl(2) (90 °C, 2 h) allow quantitative assessments of the rearrangements, and the EINS mechanism (electrophile-induced nucleophilic substitution) is applied to rationalise the phenomena. By contrast, ArMe(n) / FeCl(2) /AlCl(3) reactions in heptane for 24-36 h at room-temperature proceed with no rearrangements, allowing the synthesis of the complete series of pure [Fe(ArMen)](2+) cations in yields of 48-71%. The pure compounds are characterised by (1)H NMR spectroscopy and electrospray-ionization mass-spectrometry (ESI-MS), and the structures of [Fe(m-xylene)(2)][PF(6)](2) and [Fe(durene)(2)][PF(6)](2) are established by single-crystal X-ray diffraction analyses.

  6. One-pot process combining transesterification and selective hydrogenation for biodiesel production from starting material of high degree of unsaturation.

    Science.gov (United States)

    Yang, Ru; Su, Mengxing; Li, Min; Zhang, Jianchun; Hao, Xinmin; Zhang, Hua

    2010-08-01

    A one-pot process combining transesterification and selective hydrogenation was established to produce biodiesel from hemp (Cannabis sativa L.) seed oil which is eliminated as a potential feedstock by a specification of iodine value (IV; 120 g I(2)/100g maximum) contained in EN 14214. A series of alkaline earth metal oxides and alkaline earth metal supported copper oxide were prepared and tested as catalysts. SrO supported 10 wt.% CuO showed the superior catalytic activity for transesterification with a biodiesel yield of 96% and hydrogenation with a reduced iodine value of 113 and also exhibited a promising selectivity for eliminating methyl linolenate and increasing methyl oleate without rising methyl stearate in the selective hydrogenation. The fuel properties of the selective hydrogenated methyl esters are within biodiesel specifications. Furthermore, cetane numbers and iodine values were well correlated with the compositions of the hydrogenated methyl esters according to degrees of unsaturation. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Mechanism of radiation-induced degradation of poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki; Oyama, Ken-ichi; Yoshida, Hiroshi

    1995-01-01

    ESR and gel permeation chromatographic measurements of poly(methyl methacrylate) γ-irradiated between 77 K and 300 K have been carried out to elucidate the mechanism of radiation-induced degradation of the polymer. It is revealed that the scission of the main chain is not taken place immediately after the absorption of radiation energy but is induced by the intramolecular radical conversion of the side-chain -COOCH 2 radical to the tertiary -CH 2 -C(CH 3 )- radical followed by the main-chain β-scission of the latter radical. The degradation is not taken place below 190 K, because the side-chain radical starts to convert only above 190 K. The residual monomer in the polymer reacts with the side-chain radical below 190 K to generate the stable propagating-type radical, so that the degradation is suppressed even after warming the polymer to the ambient temperature. (author)

  8. Lactulose mediates suppression of dextran sodium sulfate-induced colon inflammation by increasing hydrogen production.

    Science.gov (United States)

    Chen, Xiao; Zhai, Xiao; Shi, Jiazi; Liu, Wen Wu; Tao, Hengyi; Sun, Xuejun; Kang, Zhimin

    2013-06-01

    Molecular hydrogen (H2) is a potent antioxidant and able to protect organs from oxidative stress injuries. Orally administered lactulose, a potent H2 inducer, is digested by colon microflora and significantly increases H2 production, indicating its potential anti-inflammatory action. To evaluate the anti-inflammatory effects of lactulose on dextran sodium sulfate (DSS)-induced colitis in mice. Mice were randomly assigned into seven groups, receiving regular distilled water, H2-rich saline (peritoneal injection), DSS, oral lactulose (0.1, 0.15, 0.2 ml/10 g, respectively), and lactulose (0.2 ml/10 g) + oral antibiotics. The mouse model of human ulcerative colitis was established by supplying mice with water containing DSS. The H2 breath test was used to determine the exhaled H2 concentration. Body weight, colitis score, colon length, pathological features and tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), maleic dialdehyde (MDA) and marrow peroxidase (MPO) levels in colon lesions were evaluated. After 7 days, DSS-induced loss of body weight, increase of colitis score, shortening of colon length, pathological changes and elevated levels of TNF-α, IL-1β, MDA, and MPO in colon lesions, were significantly suppressed by oral lactulose administration and intraperitoneally injected H2-rich saline. Ingestion of antibiotics significantly compromised the anti-inflammatory effects of lactulose. The H2 breath test showed that lactulose administration significantly induced hydrogen production and that antibiotics administration could inhibit H2 production. Lactulose can prevent the development of DSS-induced colitis and alleviate oxidative stress in the colon, as measured by MDA and MPO, probably by increasing endogenous H2 production.

  9. The kinetic and mechanical aspects of hydrogen-induced failure in metals. Ph.D. Thesis, 1971

    Science.gov (United States)

    Nelson, H. G.

    1972-01-01

    Premature hydrogen-induced failure observed to occur in many metal systems involves three stages of fracture: (1) crack initiation, (2) stable slow crack growth, and (3) unstable rapid crack growth. The presence of hydrogen at some critical location on the metal surface or within the metal lattice was shown to influence one or both of the first two stages of brittle fracture but has a negligible effect on the unstable rapid crack growth stage. The relative influence of the applied parameters of time, temperature, etc., on the propensity of a metal to exhibit hydrogen induced premature failure was investigated.

  10. Effects of Dietary Xanthophylls, Canthaxanthin and Astaxanthin on N-Methyl-N-nitrosourea-induced Rat Mammary Carcinogenesis.

    Science.gov (United States)

    Yuri, Takashi; Yoshizawa, Katsuhiko; Emoto, Yuko; Kinoshita, Yuichi; Yuki, Michiko; Tsubura, Airo

    Natural xanthophylls, canthaxanthin and astaxanthin are known to exhibit anticancer activity. However, the dietary effects of canthaxanthin and astaxanthin on N-methyl-N-nitrosourea (MNU)-induced mammary cancer remain controversial, and their mechanisms of action have not been clearly identified. Three-week-old female Sprague-Dawley rats were fed a xanthophyll-free (basal diet) diet or experimental diets containing canthaxanthin or astaxanthin (0.04% and 0.4%) for 5 weeks (until 8 weeks of age), after which all rats were provided the basal diet (n=15 each). Rats were administered MNU at 6 weeks of age, and the incidence of mammary tumors at 20 weeks of age was compared. The expression of adiponectin in mammary adipose tissues taken at 7 weeks of age was also compared. Compared to the basal diet group, the 0.4% (but not the 0.04%) astaxanthin diet significantly reduced the incidence of palpable mammary carcinoma (92% vs. 42%; p<0.05), while the low and high canthaxanthin diets produced no significant inhibition. Adiponectin immunoblotting showed significantly higher expression in the 0.4% astaxanthin diet group, while the other groups were similar to the basal diet group. High concentrations of astaxanthin suppress MNU-induced mammary carcinoma. Changes in adiponectin may be involved in the mechanism of action. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles

    DEFF Research Database (Denmark)

    Ibrahim, Mahmoud; Poreddy, Raju; Philippot, Karine

    2016-01-01

    Polyvinylpyrrolidone-stabilized Rh nanoparticles (RhNPs/PVP) of ca. 2.2 nm in size were prepared by the hydrogenation of the organometallic complex [Rh(η3-C3H5)3] in the presence of PVP and evaluated as a catalyst in the hydrogenation of a series of arene substrates as well as levulinic acid...... for the hydrogenation of levulinic acid and methyl levulinate in water leading to quantitative formation of the fuel additive γ-valerolactone under moderate reaction conditions compared to previously reported catalytic systems....... and methyl levulinate. The catalyst showed excellent activity and selectivity towards aromatic ring hydrogenation compared to other reported transition metal-based catalysts under mild reaction conditions (room temperature and 1 bar H2). Furthermore, it was shown to be a highly promising catalyst...

  12. MALDI-TOF MS coupled with collision-induced dissociation (CID) measurements of poly(methyl methacrylate)

    NARCIS (Netherlands)

    Baumgaertel, A.; Becer, C.R.; Gottschaldt, M.; Schubert, U.S.

    2008-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was chosen for an in-detail analysis of poly(methyl methacrylate) (PMMA) in order to determine the possible fragmentation mechanism with the help of collision-induced dissociation (CID). All experiments were

  13. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.

    Science.gov (United States)

    Vila Verde, Ana; Bolhuis, Peter G; Campen, R Kramer

    2012-08-09

    We use classical atomistic molecular dynamics simulations of two water models (SPC/E and TIP4P/2005) to investigate the orientation and reorientation dynamics of two subpopulations of OH groups belonging to water molecules at the air/water interface at 300 K: those OH groups that donate a hydrogen bond (called "bonded") and those that do not (called "free"). Free interfacial OH groups reorient in two distinct regimes: a fast regime from 0 to 1 ps and a slow regime thereafter. Qualitatively similar behavior was reported by others for free OH groups near extended hydrophobic surfaces. In contrast, the net reorientation of bonded OH groups occurs at a rate similar to that of bulk water. This similarity in reorientation rate results from compensation of two effects: decreasing frequency of hydrogen-bond breaking/formation (i.e., hydrogen-bond exchange) and faster rotation of intact hydrogen bonds. Both changes result from the decrease in density at the air/water interface relative to the bulk. Interestingly, because of the presence of capillary waves, the slowdown of hydrogen-bond exchange is significantly smaller than that reported for water near extended hydrophobic surfaces, but it is almost identical to that reported for water near small hydrophobic solutes. In this sense water at the air/water interface has characteristics of water of hydration of both small and extended hydrophobic solutes.

  14. NMR at earth's magnetic field using para-hydrogen induced polarization

    NARCIS (Netherlands)

    Hamans, B.C.; Andreychenko, A.; Heerschap, A.; Wijmenga, S.S.; Tessari, M.

    2011-01-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal

  15. Photoinduced nuclear spin conversion of methyl groups of single molecules; Photoinduzierte Kernspinkonversion von Methylgruppen an einzelnen Molekuelen. Lochbrenn- und Einzelmolekuelspektroskopie an Terrylen und Methylderivaten

    Energy Technology Data Exchange (ETDEWEB)

    Sigl, A.

    2007-12-28

    A methyl group is an outstanding quantum system due to its special symmetry properties. The threefold rotation around one of its bond is isomorphic to the group of even permutations of the remaining protons, a property which imposes severe quantum restrictions on the system, for instance a strict correlation of rotational states with nuclear spin states. The resulting long lifetimes of the rotational tunneling states of the methyl group can be exploited for applying certain high resolution optical techniques, like hole burning or single molecule spectroscopy to optically switch the methyl group from one tunneling state to another therebye changing the nuclear spin of the protons. One goal of the thesis was to perform this switching in single methyl groups. To this end the methyl group was attached to a chromophoric system, in the present case terrylene, which is well suited for single molecule spectroscopy as well as for hole burning. Experiments were performed with the bare terrylene molecule in a hexadecane lattice which served as a reference system, with alphamethyl terrylene and betamethyl terrylene, both embedded in hexadecane, too. A single molecular probe is a highly sensitive detector for dynamic lattice instabilities. Already the bare terrylene probe showed a wealth of interesting local dynamic effects of the hexadecane lattice which could be well acounted for by the assumption of two nearly degenerate sites with rather different optical and thermal properties, all of which could be determined in a quantitative fashion. As to the methylated terrylene systems, the experiments verified that for betamethyl terrylene it is indeed possible to measure rotational tunneling events in single methyl groups. However, the spectral patterns obtained was much more complicated than expected pointing to the presence of three spectroscopically different methyl groups. In order to achieve a definite assignement, molecular mechanics simulations of the terrylene probes in the

  16. Kinetics of exchange between zero-, one-, and two-hydrogen-bonded states of methyl and ethyl acetate in methanol.

    Science.gov (United States)

    Chuntonov, Lev; Pazos, Ileana M; Ma, Jianqiang; Gai, Feng

    2015-03-26

    It has recently been shown that the ester carbonyl stretching vibration can be used as a sensitive probe of local electrostatic field in molecular systems. To further characterize this vibrational probe and extend its potential applications, we studied the kinetics of chemical exchange between differently hydrogen-bonded (H-bonded) ester carbonyl groups of methyl acetate (MA) and ethyl acetate (EA) in methanol. We found that, while both MA and EA can form zero, one, or two H-bonds with the solvent, the population of the 2hb state in MA is significantly smaller than that in EA. Using a combination of linear and nonlinear infrared measurements and numerical simulations, we further determined the rate constants for the exchange between these differently H-bonded states. We found that for MA the chemical exchange reaction between the two dominant states (i.e., 0hb and 1hb states) has a relaxation rate constant of 0.14 ps(-1), whereas for EA the three-state chemical exchange reaction occurs in a predominantly sequential manner with the following relaxation rate constants: 0.11 ps(-1) for exchange between 0hb and 1hb states and 0.12 ps(-1) for exchange between 1hb and 2hb states.

  17. Invariance Lie algebra and group of the non relativistic hydrogen atom

    International Nuclear Information System (INIS)

    Decoster, Alain

    1970-01-01

    The first part of this work contains a general survey of the use of Lie groups and algebras in quantum mechanics, followed by an extensive description of tbe invariance algebra and invariance group of the non-relativistic hydrogen atom; the realization of this group discovered by FOCK is specially examined. The second part is a two-hundred items bibliography on invariance groups and algebras of classical and quantum-mechanical simple systems. (author) [fr

  18. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pan

    Full Text Available Transforming growth factor-beta (TGF-β, a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGF-β induces collagen type I alpha 1 (COL1A1 expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF-β1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF-β1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF-β1 for 48 h. TGF-β1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF-β1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF-β1-induced COL1A1 gene expression.

  19. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy

    DEFF Research Database (Denmark)

    Rapin, W.; Bousquet, B.; Lasue, J.

    2017-01-01

    On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target...... roughness. Here, we present a series of laboratory experiments that reproduce the effect observed on Mars and explore possible causes. We show that the hydrogen peak intensity increases significantly with increasing exposure of the target surface to the LIBS plasma, and that these variations are specific......, this effect should be taken into account for the quantification of hydrogen in any LIBS applications where the roughness of the target is significant....

  20. Methyl jasmonate attenuated lipopolysaccharide-induced depressive-like behaviour in mice.

    Science.gov (United States)

    Adebesin, Adaeze; Adeoluwa, Olusegun A; Eduviere, Anthony T; Umukoro, Solomon

    2017-11-01

    Depression is a recurrent neuropsychiatric disorder that affects millions of individuals worldwide and impact negatively on the patients' social functions and quality of life. Studies have shown that i.p injection of lipopolysaccharide (LPS) induces depressive-like behavior in rodents via induction of oxidative stress and neuroinflammation. Methyl jasmonate (MJ), an isolated compound from jasmine plant has gained reputation in aromatherapy for treatment of depression, nervousness and memory deficits. This study was designed to evaluate the effects of MJ on LPS-induced depressive-like behavior in mice. Mice were given MJ (5-20 mg/kg), imipramine (10 mg/kg) or vehicle (10 mL/kg) intraperitoneally for 7 consecutive days. On day 7, treatment was carried out 30 min prior to i.p injection of LPS (830 μg/kg). Twenty four hours after LPS administration, tail suspension, forced swim and sucrose preference tests were carried out. Thereafter, serum corticosterone levels were determined using ELISA. The levels of malondialdehyde (MDA), glutathione (GSH) and tumor necrosis factor-alpha (TNF-α) were determined in brain tissue homogenates. LPS significantly increased immobility time in the tail suspension and forced swim tests when compared with vehicle (p < 0.05), which indicates depressive-like syndromes. However, the increased immobility time was significantly reduced by MJ (5-20 mg/kg) when compared with LPS-treated group. LPS administration also altered the levels of MDA, GSH, corticosterone and TNF alpha in mice, which was significantly reversed by MJ. These findings suggest that attenuation of LPS-induced depressive-like behavior by MJ may be related to suppression of oxidative stress and release of TNF alpha. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Blockade of Glutamate N-methyl-D-aspartate Receptors into the Prelimbic of Prefrontal Cortex Decreases Morphine-induced Conditioned Place Preference in Rat

    Directory of Open Access Journals (Sweden)

    Samad Javadi

    2017-12-01

    Full Text Available BACKGROUND: The prelimbic area (PL of the prefrontal cortex is susceptible to abnormal developmental stimuli that raises the risk of addiction. Glutamate receptors play a key role in opiate reinforcement and reward functions in this area. Therefore, we examined the effect of the DL-2-amino-5-phosphonopentanoic acid (AP5, as N-methyl-D-aspartate (NMDA receptor antagonist into the PL on the phases of conditioned place preference (CPP induced by morphine. METHODS: Male Wistar rats were divided into 12 groups (3 surgical groups for each dose of morphine in any phase of CPP and anaesthetized with chloral hydrate. Cannula was implanted into the PL and the AP5 was injected into this area and morphine-induced CPP was investigated. Data were processed with the commercially available SPSS 22 software using one-way ANOVA and Tukey's test. p<0.05 were considered statistically significant. RESULTS: Our findings indicated, morphine in doses of 2.5 to 10 mg/kg induced CPP. Microinjection of various doses of the AP5 into the PL before the administration of the effective dose of morphine significantly reduced place preference in the acquisition and the expression phases of the CPP test compared to the sham group (p<0.001. In another set of our experiments was seen that, different doses of the AP5 with the ineffective dose of morphine only reduced the expression phase of the CPP (p<0.001 while, produced neither preference nor aversion effect on the acquisition phase (p=0.147. CONCLUSION: It seems that the glutamate NMDA receptors in the PL through memory formation and morphine-related reward signals play a critical role in addiction process during morphine-induced CPP. KEYWORDS: N-methyl-aspartate, morphine, glutamate receptor, prefrontal cortex, reward

  2. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  3. High levels of glucose induce "metabolic memory" in cardiomyocyte via epigenetic histone H3 lysine 9 methylation.

    Science.gov (United States)

    Yu, Xi-Yong; Geng, Yong-Jian; Liang, Jia-Liang; Zhang, Saidan; Lei, He-Ping; Zhong, Shi-Long; Lin, Qiu-Xiong; Shan, Zhi-Xin; Lin, Shu-Guang; Li, Yangxin

    2012-09-01

    Diabetic patients continue to develop inflammation and cardiovascular complication even after achieving glycemic control, suggesting a "metabolic memory". Metabolic memory is a major challenge in the treatment of diabetic complication, and the mechanisms underlying metabolic memory are not clear. Recent studies suggest a link between chromatin histone methylation and metabolic memory. In this study, we tested whether histone 3 lysine-9 tri-methylation (H3K9me3), a key epigenetic chromatin marker, was involved in high glucose (HG)-induced inflammation and metabolic memory. Incubating cardiomyocyte cells in HG resulted in increased levels of inflammatory cytokine IL-6 mRNA when compared with myocytes incubated in normal culture media, whereas mannitol (osmotic control) has no effect. Chromatin immunoprecipitation (ChIP) assays showed that H3K9me3 levels were significantly decreased at the promoters of IL-6. Immunoblotting demonstrated that protein levels of the H3K9me3 methyltransferase, Suv39h1, were also reduced after HG treatment. HG-induced apoptosis, mitochondrial dysfunction and cytochrome-c release were reversible. However, the effects of HG on the expression of IL-6 and the levels of H3K9me3 were irreversible after the removal of HG from the culture. These results suggest that HG-induced sustained inflammatory phenotype and epigenetic histone modification, rather than HG-induced mitochondrial dysfunction and apoptosis, are main mechanisms responsible for metabolic memory. In conclusion, our data demonstrate that HG increases expression of inflammatory cytokine and decreases the levels of histone-3 methylation at the cytokine promoter, and suggest that modulating histone 3 methylation and inflammatory cytokine expression may be a useful strategy to prevent metabolic memory and cardiomyopathy in diabetic patients.

  4. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Ou, Xiufang; Zhang, Yunhong; Xu, Chunming; Lin, Xiuyun; Zang, Qi; Zhuang, Tingting; Jiang, Lili; von Wettstein, Diter; Liu, Bao

    2012-01-01

    DNA methylation is sensitive and responsive to stressful environmental conditions. Nonetheless, the extent to which condition-induced somatic methylation modifications can impose transgenerational effects remains to be fully understood. Even less is known about the biological relevance of the induced epigenetic changes for potentially altered well-being of the organismal progenies regarding adaptation to the specific condition their progenitors experienced. We analyzed DNA methylation pattern by gel-blotting at genomic loci representing transposable elements and protein-coding genes in leaf-tissue of heavy metal-treated rice (Oryza sativa) plants (S0), and its three successive organismal generations. We assessed expression of putative genes involved in establishing and/or maintaining DNA methylation patterns by reverse transcription (RT)-PCR. We measured growth of the stressed plants and their unstressed progenies vs. the control plants. We found (1) relative to control, DNA methylation patterns were modified in leaf-tissue of the immediately treated plants, and the modifications were exclusively confined to CHG hypomethylation; (2) the CHG-demethylated states were heritable via both maternal and paternal germline, albeit often accompanying further hypomethylation; (3) altered expression of genes encoding for DNA methyltransferases, DNA glycosylase and SWI/SNF chromatin remodeling factor (DDM1) were induced by the stress; (4) progenies of the stressed plants exhibited enhanced tolerance to the same stress their progenitor experienced, and this transgenerational inheritance of the effect of condition accompanying heritability of modified methylation patterns. Our findings suggest that stressful environmental condition can produce transgenerational epigenetic modifications. Progenies of stressed plants may develop enhanced adaptability to the condition, and this acquired trait is inheritable and accord with transmission of the epigenetic modifications. We suggest

  5. Spectroscopic investigation of the vibrational quasi-continuum arising from internal rotation of a methyl group

    Energy Technology Data Exchange (ETDEWEB)

    Hougen, J.T. [NIST, Gaithersburg, MD (United States)

    1993-12-01

    The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.

  6. The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures

    International Nuclear Information System (INIS)

    Kumar, R.K.; Tamm, H.

    1984-01-01

    The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures has been studied in a 2.3-m diameter sphere over a hydrogen concentration range of 4 to 42% (by volume). Two fans were used to produce the turbulence, which was measured at various lacations by hot-wire anemometry. For low hydrogen concentrations (< 7%), turbulence increases the rate and extent of combustion; for large turbulence intensities the extent of combustion approaches 100%, and combustion times are reduced by factors of 8 to 10 from those observed under quiescent conditions. At high hydrogen concentrations, the effect of turbulence on combustion time is less pronounced than at low hydrogen concentrations. Flame-generated turbulence has a significant effect on the combustion rate. (orig.)

  7. Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice.

    Directory of Open Access Journals (Sweden)

    Stefan Spulber

    Full Text Available Molecular hydrogen has been shown to have neuroprotective effects in mouse models of acute neurodegeneration. The effect was suggested to be mediated by its free-radical scavenger properties. However, it has been shown recently that molecular hydrogen alters gene expression and protein phosphorylation. The aim of this study was to test whether chronic ad libitum consumption of molecular hydrogen-enriched electrochemically reduced water (H-ERW improves the outcome of lipopolysaccharide (LPS-induced neuroinflammation. Seven days after the initiation of H-ERW treatment, C57Bl/6 mice received a single injection of LPS (0.33 mg/kg i.p. or an equivalent volume of vehicle. The LPS-induced sickness behaviour was assessed 2 h after the injection, and recovery was assessed by monitoring the spontaneous locomotor activity in the homecage for 72 h after the administration of LPS. The mice were killed in the acute or recovery phase, and the expression of pro- and antiinflammatory cytokines in the hippocampus was assessed by real-time PCR. We found that molecular hydrogen reduces the LPS-induced sickness behaviour and promotes recovery. These effects are associated with a shift towards anti-inflammatory gene expression profile at baseline (downregulation of TNF- α and upregulation of IL-10. In addition, molecular hydrogen increases the amplitude, but shortens the duration and promotes the extinction of neuroinflammation. Consistently, molecular hydrogen modulates the activation and gene expression in a similar fashion in immortalized murine microglia (BV-2 cell line, suggesting that the effects observed in vivo may involve the modulation of microglial activation. Taken together, our data point to the regulation of cytokine expression being an additional critical mechanism underlying the beneficial effects of molecular hydrogen.

  8. Hydrogen peroxide induced loss of heterozygosity correlates with replicative lifespan and mitotic asymmetry in Saccharomyces cerevisiae

    Science.gov (United States)

    Jackson, Erin D.; Parker, Meighan C.; Gupta, Nilin; Rodrigues, Jenny

    2016-01-01

    Cellular aging in Saccharomyces cerevisiae can lead to genomic instability and impaired mitotic asymmetry. To investigate the role of oxidative stress in cellular aging, we examined the effect of exogenous hydrogen peroxide on genomic instability and mitotic asymmetry in a collection of yeast strains with diverse backgrounds. We treated yeast cells with hydrogen peroxide and monitored the changes of viability and the frequencies of loss of heterozygosity (LOH) in response to hydrogen peroxide doses. The mid-transition points of viability and LOH were quantified using sigmoid mathematical functions. We found that the increase of hydrogen peroxide dependent genomic instability often occurs before a drop in viability. We previously observed that elevation of genomic instability generally lags behind the drop in viability during chronological aging. Hence, onset of genomic instability induced by exogenous hydrogen peroxide treatment is opposite to that induced by endogenous oxidative stress during chronological aging, with regards to the midpoint of viability. This contrast argues that the effect of endogenous oxidative stress on genome integrity is well suppressed up to the dying-off phase during chronological aging. We found that the leadoff of exogenous hydrogen peroxide induced genomic instability to viability significantly correlated with replicative lifespan (RLS), indicating that yeast cells’ ability to counter oxidative stress contributes to their replicative longevity. Surprisingly, this leadoff is positively correlated with an inverse measure of endogenous mitotic asymmetry, indicating a trade-off between mitotic asymmetry and cell’s ability to fend off hydrogen peroxide induced oxidative stress. Overall, our results demonstrate strong associations of oxidative stress to genomic instability and mitotic asymmetry at the population level of budding yeast. PMID:27833823

  9. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis

    Science.gov (United States)

    Sorokin, Dimitry Y.; Makarova, Kira S.; Abbas, Ben; Ferrer, Manuel; Golyshin, Peter N.; Galinski, Erwin A.; Ciordia, Sergio; Mena, María Carmen; Merkel, Alexander Y.; Wolf, Yuri I.; van Loosdrecht, Mark C.M.; Koonin, Eugene V.

    2017-01-01

    Methanogenic archaea are major players in the global carbon cycle and in the biotechnology of anaerobic digestion. The phylum Euryarchaeota includes diverse groups of methanogens that are interspersed with non-methanogenic lineages. So far methanogens inhabiting hypersaline environments have been identified only within the order Methanosarcinales. We report the discovery of a deep phylogenetic lineage of extremophilic methanogens in hypersaline lakes, and present analysis of two nearly complete genomes from this group. Within the phylum Euryarchaeota, these isolates form a separate, class-level lineage “Methanonatronarchaeia” that is most closely related to the class Halobacteria. Similar to the Halobacteria, “Methanonatronarchaeia” are extremely halophilic and do not accumulate organic osmoprotectants. The high intracellular concentration of potassium implies that “Methanonatronarchaeia” employ the “salt-in” osmoprotection strategy. These methanogens are heterotrophic methyl-reducers that utilize C1-methylated compounds as electron acceptors and formate or hydrogen as electron donors. The genomes contain an incomplete and apparently inactivated set of genes encoding the upper branch of methyl group oxidation to CO2 as well as membrane-bound heterosulfide reductase and cytochromes. These features differentiates “Methanonatronarchaeia” from all known methyl-reducing methanogens. The discovery of extremely halophilic, methyl-reducing methanogens related to haloarchaea provides insights into the origin of methanogenesis and shows that the strategies employed by methanogens to thrive in salt-saturating conditions are not limited to the classical methylotrophic pathway. PMID:28555626

  10. Acibenzolar-S-methyl induces lettuce resistance against ...

    African Journals Online (AJOL)

    Jane

    2011-08-24

    Aug 24, 2011 ... Acibenzolar-S-methyl (Benzo [1,2,3] thiadiazole-7-carbothioic acid-S-methyl ester, ASM; Bion 50 WG) was found to ... compounds are frequently used, they have hazardous effect on ... resistance (SAR) is characterized by a reduction in the number of ... cellular defence responses such as synthesis of patho-.

  11. Dehydrogenation mechanism of LiBH{sub 4} by Poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianmei [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Yan, Yurong [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); Ouyang, Liuzhang, E-mail: meouyang@scut.edu.cn [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Key Laboratory for Fuel Cell Technology in Guangdong Province, South China University of Technology, Guangzhou 510641 (China); Wang, Hui [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Zhu, Min, E-mail: memzhu@scut.edu.cn [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China)

    2015-10-05

    Highlights: • LiBH{sub 4} is amorphous after modified with PMMA. • Dehydrogenation temperature of LiBH{sub 4} decreases by 120 °C after modifying with PMMA. • The LiBH{sub 4}@PMMA composite releases 10 wt.% hydrogen at 360 °C within 1 h. • C=O group of PMMA weakens the B−H bonds to lower dehydrogenation temperature. - Abstract: We investigated the dehydrogenation properties and mechanism of Poly(methyl methacrylate) (PMMA) confined LiBH{sub 4}. Thermal stability of LiBH{sub 4} was reduced by PMMA, with a decrease in dehydrogenation temperature by 120 °C. At 360 °C, the composite showed fast dehydrogenation kinetics with 10 wt.% of hydrogen released within 1 h. The improved dehydrogenation performance was mainly attributed to the reaction between LiBH{sub 4} and PMMA forming Li{sub 3}BO{sub 3} as a final product. Furthermore, the presence of electrostatic interaction between B atom of LiBH{sub 4} and O atom in the carbonyl group of PMMA may weaken the B−H bonding of [BH{sub 4}]{sup −} and lower the hydrogen desorption temperature.

  12. The Role of DNA Methylation Changes in Radiation-Induced Transgenerational Genomic Instability and Bystander Effects in cranial irradiated Mice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Gao, Yinglong; Zhang, Baodong

    Heavy-ion radiation could lead to genome instability in the germline, and therefore to transgenerational genome and epigenome instability in offspring of exposed males. The exact mechanisms of radiation-induced genome instability in directly exposed and in bystander organ remain obscure, yet accumulating evidence points to the role of DNA methylation changes in genome instability development. The potential of localized body-part exposures to affect the germline and thus induce genome and epigenome changes in the progeny has not been studied. To investigate whether or not the paternal cranial irradiation can exert deleterious changes in the protected germline and the offsprings, we studied the alteration of DNA methylation in the shielded testes tissue. Here we report that the localized paternal cranial irradiation results in a significant altered DNA methylation in sperm cells and leads to a profound epigenetic dysregulation in the unexposed progeny conceived 3 months after paternal exposure. The possible molecular mechanisms and biological consequences of the observed changes are discussed. Keywords: Heavy-ion radiation; Transgenerational effect; Genomic Instability Bystander Effects; DNA methylation.

  13. Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate.

    Science.gov (United States)

    Kaiser, Gitte S; Germann, Susanne M; Westergaard, Tine; Lisby, Michael

    2011-08-01

    Homologous recombination is accompanied by extensive changes to chromatin organization at the site of DNA damage. Some of these changes are mediated through acetylation/deacetylation of histones. Here, we show that recombinational repair of DNA damage induced by the anti-cancer drug camptothecin (CPT) and the alkylating agent methyl methanesulfonate (MMS) is blocked by sodium phenylbutyrate (PBA) in the budding yeast Saccharomyces cerevisiae. In particular, PBA suppresses CPT- and MMS-induced genetic recombination as well as DNA double-strand break repair during mating-type interconversion. Treatment with PBA is accompanied by a dramatic reduction in histone H4 lysine 8 acetylation. Live cell imaging of homologous recombination proteins indicates that repair of CPT-induced DNA damage is redirected to a non-recombinogenic pathway in the presence of PBA without loss in cell viability. In contrast, the suppression of MMS-induced recombination by PBA is accompanied by a dramatic loss in cell viability. Taken together, our results demonstrate that PBA inhibits DNA damage-induced homologous recombination likely by mediating changes in chromatin acetylation. Moreover, the combination of PBA with genotoxic agents can lead to different cell fates depending on the type of DNA damage inflicted. 2011 Elsevier B.V. All rights reserved.

  14. Layer-by-layer immobilized catalase on electrospun nanofibrous mats protects against oxidative stress induced by hydrogen peroxide.

    Science.gov (United States)

    Huang, Rong; Deng, Hongbing; Cai, Tongjian; Zhan, Yingfei; Wang, Xiankai; Chen, Xuanxuan; Ji, Ailing; Lil, Xueyong

    2014-07-01

    Catalase, a kind of redox enzyme and generally recognized as an efficient agent for protecting cells against hydrogen peroxide (H2O2)-induced cytotoxicity. The immobilization of catalase was accomplished by depositing the positively charged chitosan and the negatively charged catalase on electrospun cellulose nanofibrous mats through electrospining and layer-by-layer (LBL) techniques. The morphology obtained from Field emission scanning electron microscopy (FE-SEM) indicated that more orderly arranged three-dimension (3D) structure and roughness formed with increasing the number of coating bilayers. Besides, the enzyme-immobilized nanofibrous mats were found with high enzyme loading and activity, moreover, X-ray photoelectron spectroscopy (XPS) results further demonstrated the successful immobilization of chitosan and catalase on cellulose nanofibers support. Furthermore, we evaluated the cytotoxicity induced by hydrogen peroxide in the Human umbilical vascular endothelial cells with or without pretreatment of nanofibrous mats by MTT assay, LDH activity and Flow cytometric evaluation, and confirmed the pronounced hydrogen peroxide-induced toxicity, but pretreatment of immobilized catalase reduced the cytotoxicity and protected cells against hydrogen peroxide-induced cytotoxic effects which were further demonstrated by scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM) images. The data pointed toward a role of catalase-immobilized nanofibrous mats in protecting cells against hydrogen peroxide-induced cellular damage and their potential application in biomedical field.

  15. Surface modifications induced by hydrogen in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Evangelista, G.E.; Miranda, P.E.V. de

    1983-01-01

    Hydrogen induced surface modifications of type AISI 304 SS were studied by charging the samples in a 1N a 1N H 2 SO 4 electrolyte at room temperature. Current densities were varied from 500 to 4000 A/m 2 and charging times from 2 to 50 hours. Charged specimens were analysed using optical and electron scanning microscopy. Vickers microhardness tests with small load was also performed. Metallographic etching metodologies were developed (in black and white and colored photographies) which permited identification of all phases present. It was shown that delayed cracks appear somewhat curved on austenite and perfectly strainght on martensite, following the intersections of a phase platlets. These are the regions where α' martensite is located. The habit plane of these cracks might belong to (100) sub(γ) or (221) sub(γ) plane families. A new phenomenon termed hydrogen induced softening was observed on type AISI 304 SS at elevated current densities and/or charging times. (Author) [pt

  16. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    International Nuclear Information System (INIS)

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-01-01

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: ► Nicotine-induced StAR inhibition in two human adrenal cell models. ► Nicotine-induced single CpG site methylation in StAR promoter. ► Persistent StAR inhibition and single CpG methylation after nicotine termination. ► Single CpG methylation located at Pax6 binding motif regulates St

  17. Methylation of the estrogen receptor CpG island distinguishes spontaneous and plutonium-induced tumors from nitrosamine-induced lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Belinsky, S.A.; Baylin, S.B.; Issa, J.J. [Johns Hopkins Univ., Baltimore, MD (United States)

    1995-12-01

    CpG islands located in the promoter region of genes constitute one mechanism for regulating transcription. These islands are normally free of methylation, regardless of the expression state of the gene. Hypermethylation of CpG islands, the addition of a methyl group to the internal cytosine within CpG dinucleotides, can cause silencing of a gene. Hypermethylation has been detected as an early event at specific chromosome loci during the development of colon cancer and represents one mechanism used by neoplatic cells to inactivate tumor suppressor genes. Recent studies have demonstrated this mechanism in inactivation of the VHL tumor suppressor gene in 19% of sporadic renal tumors and the p16 {sup INK4a} tumor suppressor gene in 30% of non-small cell lung cancers. A recent report indicates that the estrogen receptor gene could also be inactivated through methylation. In addition, estrogen receptor CpG island methylation arises as a direct function of age in normal colonic mucosa and is present in virtually all colonic tumors. In cultured colon cancer cells, methylation-associated loss of expression of the estrogen receptor gene results in deregulated growth, suggesting a role for the estrogen receptor in colon cancer development. These results provide further evidence that gene silencing through methylation could be a predominant epigenetic mechanism underlying the development of many different types of cancer. The purpose of the current investigation was to determine whether estrogen receptor CpG island methylation is involved in the development of lung cancer. The frequency for methylation of the estrogen receptor CpG island in rodent lung tumors is summarized.

  18. An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines

    KAUST Repository

    Traidia, Abderrazak; Alfano, Marco; Lubineau, Gilles; Duval, Sé bastien; Sherik, Abdelmounam M.

    2012-01-01

    This paper presents a comprehensive finite element model for the numerical simulation of Hydrogen Induced Cracking (HIC) in steel pipelines exposed to sulphurous compounds, such as hydrogen sulphide (H2S). The model is able to mimic the pressure

  19. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  20. Computer assisted tomography for the non-destructive evaluation of hydrogen-induced cracking in steel

    International Nuclear Information System (INIS)

    Tapping, R.L.; Sawicka, B.D.

    1986-06-01

    Computer assisted tomography (CAT) was used to assess hydrogen-induced cracking in steel exposed to an H 2 S-saturated ('sour') environment. In this case the environment was the NACE TM-02-84 test for susceptibility to hydrogen-induced cracking. The feasibility of using CAT in this application was shown in a previous paper. This study extends the application of CAT to a quantitative assessment of the cracking. Optimal parameters for CAT imaging in such an application are determined and the advantages of using CAT in comparison to traditional inspection methods are discussed

  1. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Tiziana Angrisano

    Full Text Available Bacterial lipopolysaccharide (LPS induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3, methylation (H3K4, H3K9, H3K27 and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene.

  2. Rotation of methyl side groups in polymers: A Fourier transform approach to quasielastic neutron scattering. 1: Homopolymers

    International Nuclear Information System (INIS)

    Arrighi, V.; Higgins, J.S.; Howells, W.S.

    1995-01-01

    The rotational motion of the ester methyl group in poly(methyl methacrylate) (PMMA) was investigated using quasielastic neutron scattering (QENS). A comparison between the authors results and the QENS data reported in the literature for PMMA-d 5 indicates that the amount of quasielastic broadening is highly dependent upon the energy resolution of the spectrometer. This anomalous behavior is here attributed to the method of analysis, namely, the use of a single rotational frequency. Such a procedure leads to a non-Arrhenius temperature dependence, to a temperature-dependent elastic incoherent structure factor, and to values of rotational frequency which are resolution dependent. They propose an alternative approach to the analysis of the QENS data which accounts for the existence of a distribution of rotational frequencies. The frequency data are Fourier transformed to the time domain, and the intermediate scattering function is fitted using a stretched exponential or Kohlraush-Williams-Watts function. The excellent overlap between data from different spectrometers leaves no doubt on the adequacy of their procedure. Measurements of the ether methyl group rotation in poly(vinyl methyl ether) (PVME) are also reported. The PVME data confirm that the behavior observed for PMMA-d 5 is likely to be a common feature to all polymeric systems

  3. Chemoselective Methylation of Phenolic Hydroxyl Group Prevents Quinone Methide Formation and Repolymerization During Lignin Depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; Isern, Nancy G.; Cort, John R.; Simmons, Blake A.; Singh, Seema

    2017-03-30

    Chemoselective blocking of the phenolic hydroxyl (Ar-OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar-OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. This approach could be directed toward alteration of natural lignification processes to produce biomass more amenable to chemical depolymerization.

  4. Reorientation of the Methyl Group in MAs(III) is the Rate-Limiting Step in the ArsM As(III) S-Adenosylmethionine Methyltransferase Reaction.

    Science.gov (United States)

    Packianathan, Charles; Li, Jiaojiao; Kandavelu, Palani; Sankaran, Banumathi; Rosen, Barry P

    2018-03-01

    The most common biotransformation of trivalent inorganic arsenic (As(III)) is methylation to mono-, di-, and trimethylated species. Methylation is catalyzed by As(III) S -adenosylmethionine (SAM) methyltransferase (termed ArsM in microbes and AS3MT in animals). Methylarsenite (MAs(III)) is both the product of the first methylation step and the substrate of the second methylation step. When the rate of the overall methylation reaction was determined with As(III) as the substrate, the first methylation step was rapid, whereas the second methylation step was slow. In contrast, when MAs(III) was used as the substrate, the rate of methylation was as fast as the first methylation step when As(III) was used as the substrate. These results indicate that there is a slow conformational change between the first and second methylation steps. The structure of CmArsM from the thermophilic alga Cyanidioschyzon merolae sp. 5508 was determined with bound MAs(III) at 2.27 Å resolution. The methyl group is facing the solvent, as would be expected when MAs(III) is bound as the substrate rather than facing the SAM-binding site, as would be expected for MAs(III) as a product. We propose that the rate-limiting step in arsenic methylation is slow reorientation of the methyl group from the SAM-binding site to the solvent, which is linked to the conformation of the side chain of a conserved residue Tyr70.

  5. Removal of methyl violet dye by adsorption onto N-benzyltriazole derivatized dextran

    DEFF Research Database (Denmark)

    Cho, Eunae; Tahir, Muhammad Nazir; Kim, Hwanhee

    2015-01-01

    In this work, N-benzyltriazole derivatized dextran was evaluated for its potential as a novel carbohydrate-based adsorbent for the removal of methyl violet dye from water. The modified dextran was synthesized by a click reaction of pentynyl dextran and benzyl azide, and the structure...... was characterized by nuclear magnetic resonance spectroscopy, elemental analysis, and scanning electron microscopy. Dextran was substituted with a triazole-linked benzyl group. For decolorization of the dye effluent, adsorption is a very effective treatment; here, the driving force is based on hydrogen bonding, pi...... stacking, and electrostatic interaction between the methyl violet dye and the N-benzyltriazole derivatized dextran. Batch experiments were carried out to investigate the required contact time and the effects of pH, initial dye concentrations, and temperature. The experimental data were analyzed...

  6. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance.

    Directory of Open Access Journals (Sweden)

    Xiaoguo Zheng

    Full Text Available Adverse environmental conditions have large impacts on plant growth and crop production. One of the crucial mechanisms that plants use in variable and stressful natural environments is gene expression modulation through epigenetic modification. In this study, two rice varieties with different drought resistance levels were cultivated under drought stress from tilling stage to seed filling stage for six successive generations. The variations in DNA methylation of the original generation (G0 and the sixth generation (G6 of these two varieties in normal condition (CK and under drought stress (DT at seedling stage were assessed by using Methylation Sensitive Amplification Polymorphism (MSAP method. The results revealed that drought stress had a cumulative effect on the DNA methylation pattern of both varieties, but these two varieties had different responses to drought stress in DNA methylation. The DNA methylation levels of II-32B (sensitive and Huhan-3 (resistant were around 39% and 32%, respectively. Genome-wide DNA methylation variations among generations or treatments accounted for around 13.1% of total MSAP loci in II-32B, but was only approximately 1.3% in Huhan-3. In II-32B, 27.6% of total differentially methylated loci (DML were directly induced by drought stress and 3.2% of total DML stably transmitted their changed DNA methylation status to the next generation. In Huhan-3, the numbers were 48.8% and 29.8%, respectively. Therefore, entrainment had greater effect on Huhan-3 than on II-32B. Sequence analysis revealed that the DML were widely distributed on all 12 rice chromosomes and that it mainly occurred on the gene's promoter and exon region. Some genes with DML respond to environmental stresses. The inheritance of epigenetic variations induced by drought stress may provide a new way to develop drought resistant rice varieties.

  7. Methyl group balance in brain and liver: role of choline on increased S-adenosyl methionine (SAM) demand by chronic arsenic exposure.

    Science.gov (United States)

    Ríos, Rosalva; Santoyo, Martha E; Cruz, Daniela; Delgado, Juan Manuel; Zarazúa, Sergio; Jiménez-Capdeville, María E

    2012-11-30

    Arsenic toxicity has been related to its interference with one carbon metabolism, where a high demand of S-adenosylmethionine (SAM) for arsenic methylation as well as a failure of its regeneration would compromise the availability of methyl groups for diverse cellular functions. Since exposed animals show disturbances of methylated products such as methylated arginines, myelin and axon membranes, this work investigates whether alterations of SAM, choline and phosphatidylcholine (PC) in the brain of arsenic exposed rats are associated with myelin alterations and myelin basic protein (MBP) immunoreactivity. Also these metabolites, morphologic and biochemical markers of methyl group alterations were analyzed in the liver, the main site of arsenic methylation. In adult, life-long arsenic exposed rats through drinking water (3 ppm), no changes of SAM, choline and PC concentrations where found in the brain, but SAM and PC were severely decreased in liver accompanied by a significant increase of choline. These results suggest that choline plays an important role as methyl donor in arsenic exposure, which could underlie hepatic affections observed when arsenic exposure is combined with other environmental factors. Also, important myelin and nerve fiber alterations, accompanied by a 75% decrease of MBP immunoreactivity were not associated with a SAM deficit in the brain. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Teaching - methodical and research center of hydrogen power engineering and platinum group metals in the former Soviet Union countries

    International Nuclear Information System (INIS)

    Evdokimov, A.A; Sigov, A.S; Shinkarenko, V.V.

    2005-01-01

    Full text: Teaching - Methodical and Research Center (TMRC) 'Sokolinaja Gora' is founded in order to provide methodical-information and scientific support of institutes of higher education in the field of hydrogen power engineering and platinum group metals in Russia and in the countries of the Former Soviet union. It is independent association of creative communities of scientist of higher educational specialists. The main directions of the Center activity are: 1. Teaching-methodological support and development of teaching in the field of hydrogen power engineering and platinum group metals in Russia in the countries of the Former Soviet Union. Themes of teaching includes the basic of safe using of hydrogen technologies and devices, ecological, economic and law aspects of new hydrogen power engineering, transition to which in 21 century is one of the central problems of mankind survival; 2. Organizing of joint researches by independent creative communities of scientists in the field of hydrogen power engineering and platinum group metal; 3. Independent scientific examination, which is made by Advisory Committee of High Technologies consisting of representatives of the countries of Former Soviet Union, which are standing participants of an Annual International Symposia 'Hydrogen Power Engineering and Platinum Group Metals in the Former Soviet Union Countries'. Structure of the Center: 1. Center of strategic development in the field of high technologies; 2. Scientific Research Institute of Hydrogen Power Engineering and Platinum Group Metals; 3. Teaching-Methodical Association in specialization 'Hydrogen Power Engineering and economics' and hydrogen wide spread training; 4. Media Center 'Hydrogen Power Engineering and Platinum Group Metals', 5. Organizational Center; 6. Administrative Center. The Center will be established step-by-step in 2005-2010 on the basis of the following programs: Teaching-methodological program. On the basis of this program it is planned to

  9. Gum in apricot (Prunus armeniaca L. shoots induced by methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It has been well known that some fungal pathogens (Monilia laxa, M. fructigena, Cytospora cincta, larvae of Grapholita molesta and plant hormone - ethylene, induce gummosis in apricot shoots. Methyl jasmonate (JA-Me was also found to induce gummosis in apricot shoots as well as biotic and abiotic factors mentioned above. In order to know the mode of action of JA-Me on gum induction and/or formation, chemical composition of polysaccharides (after hydrolysis in gums of apricot shoots induced by JA-Me compared with those by ethephon and their mixture, and naturally occurring ones was studied, resulted in the succesful identification of monosaccharides, and the similarity of a composition consisting of xylose, arabinose and galactose at molar ratio 1:10:14, respectively. These results suggest that beside different inducers of gum in apricot the mechanism of polysaccharides biosynthesis of gums is the same or similar. The physiological role for JA-Me on gum induction and/or formation in apricot shoots, and other species are also discussed.

  10. Cocrystals of 6-methyl-2-thiouracil: presence of the acceptor-donor-acceptor/donor-acceptor-donor synthon.

    Science.gov (United States)

    Hützler, Wilhelm Maximilian; Egert, Ernst

    2015-03-01

    The results of seven cocrystallization experiments of the antithyroid drug 6-methyl-2-thiouracil (MTU), C(5)H(6)N(2)OS, with 2,4-diaminopyrimidine, 2,4,6-triaminopyrimidine and 6-amino-3H-isocytosine (viz. 2,6-diamino-3H-pyrimidin-4-one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen-bonding site, while the three coformers show complementary DAD hydrogen-bonding sites and therefore should be capable of forming an ADA/DAD N-H...O/N-H...N/N-H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6-methyl-2-thiouracil-2,4-diaminopyrimidine-1-methylpyrrolidin-2-one (1/1/2), C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(5)H(9)NO, (I), 6-methyl-2-thiouracil-2,4-diaminopyrimidine (1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4), (II), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylacetamide (2/1/2), 2C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(4)H(9)NO, (III), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylformamide (2/1/2), C(5)H(6)N(2)OS·0.5C(4)H(6)N(4)·C(3)H(7)NO, (IV), 2,4,6-triaminopyrimidinium 6-methyl-2-thiouracilate-6-methyl-2-thiouracil-N,N-dimethylformamide (1/1/2), C(4)H(8)N(5)(+)·C(5)H(5)N(2)OS(-)·C(5)H(6)N(2)OS·2C(3)H(7)NO, (V), 6-methyl-2-thiouracil-6-amino-3H-isocytosine-N,N-dimethylformamide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(3)H(7)NO, (VI), and 6-methyl-2-thiouracil-6-amino-3H-isocytosine-dimethyl sulfoxide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(2)H(6)OS, (VII). Whereas in cocrystal (I) an R(2)(2)(8) interaction similar to the Watson-Crick adenine/uracil base pair is formed and a two-dimensional hydrogen-bonding network is observed, the cocrystals (II)-(VII) contain the triply hydrogen-bonded ADA/DAD N-H...O/N-H...N/N-H...S synthon and show a one-dimensional hydrogen-bonding network. Although 2,4-diaminopyrimidine possesses only one DAD hydrogen-bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).

  11. Effects on gastric mucosa induced by dental bleaching--an experimental study with 6% hydrogen peroxide in rats.

    Science.gov (United States)

    Paula, Anabela Baptista; Dias, Maria Isabel; Ferreira, Manuel Marques; Carrilho, Teresa; Marto, Carlos Miguel; Casalta, João; Cabrita, António Silvério; Carrilho, Eunice

    2015-10-01

    The value of aesthetic dentistry has precipitated several developments in the investigation of dental materials related to this field. The free marketing of these products is a problem and it is subject to various interpretations regarding its legality. There are several techniques for tooth whitening, the most used one being the external bleaching. It is the later version of such technique that poses the greatest danger of ingesting the product. The present study analysed the systemic effect of these products when they are swallowed. This experimental study aimed to observe the effects of a tooth whitening product, whose active agent is 6% hydrogen peroxide, on the gastric mucosa of healthy and non-tumour gastric pathology animals. Fifty Wistar-Han rats were used and then distributed into 5 groups, one for control and four test groups in which the bleaching product was administered in animals with and without non-tumour gastric pathology (induced by the administration of 1 sample of 50% ethanol and 5% of drinking water during 6 days) at different times of study by gavage. There was a decrease in body weight in animals of groups handled during the study period, which was most pronounced in IV and VA groups. Changes in spleen weight relative to body weight revealed no statistically significant changes. An analysis of the frequency was performed on the results of macroscopic observation of the gastric mucosa. The gastric mucosa revealed lesions in all manipulated groups, being more frequent in groups III and IV. It appears that there is a synergism when using hydrogen peroxide and 50% ethanol in the same group. Therefore, it seems that there are some signs of toxicity 3 to 4 days after administration of 6% hydrogen peroxide. The prescription of these therapies must be controlled by the clinician and the risks must be minimized.

  12. Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies

    International Nuclear Information System (INIS)

    Hatano, M.; Fujinami, M.; Arai, K.; Fujii, H.; Nagumo, M.

    2014-01-01

    Hydrogen embrittlement of austenitic stainless steels has been examined with respect to deformation microstructures and lattice defects created during plastic deformation. Two types of austenitic stainless steels, SUS 304 and SUS 316L, uniformly hydrogen-precharged to 30 mass ppm in a high-pressure hydrogen environment, are subjected to tensile straining at room temperature. A substantial reduction of tensile ductility appears in hydrogen-charged SUS 304 and the onset of fracture is likely due to plastic instability. Fractographic features show involvement of plasticity throughout the crack path, implying the degradation of the austenitic phase. Electron backscatter diffraction analyses revealed prominent strain localization enhanced by hydrogen in SUS 304. Deformation microstructures of hydrogen-charged SUS 304 were characterized by the formation of high densities of fine stacking faults and ε-martensite, while tangled dislocations prevailed in SUS 316L. Positron lifetime measurements have revealed for the first time hydrogen-enhanced creation of strain-induced vacancies rather than dislocations in the austenitic phase and more clustering of vacancies in SUS 304 than in SUS 316L. Embrittlement and its mechanism are ascribed to the decrease in stacking fault energies resulting in strain localization and hydrogen-enhanced creation of strain-induced vacancies, leading to premature fracture in a similar way to that proposed for ferritic steels

  13. Radiation-induced graft copolymerization of methyl acrylate and acrylic acid onto rubber wood fiber

    International Nuclear Information System (INIS)

    Saliza Jam; Mansor Ahmad; Wan Md Zin Wan Yunus; Khairul Zaman Mohd Dahlan

    2001-01-01

    Graft copolymerization of methyl acrylate and acrylic acid monomers onto rubber wood fiber (RWF) was carried out by simultaneous radiation-induced technique. The parameters affecting the grafting reaction were investigated and the optimum conditions for both monomers obtained are as follows: impregnation time = 16 hours, total dose = 30 kGy, methanol : water ratio, 3:1, monomers concentration = 40 v/v % and sulphuric acid concentration = 0.1 mol/L. Fourier Transform Infrared (FTIR), thermogravimetry analysis (TGA), and scanning electron microscope (SEM) analyses used to characterize graft copolymers. The structural investigation by x-ray diffraction (XRD) shows the degree of crystallinity of rubber wood fiber decreased with the incorporation of poly(methyl acrylate) and poly(acrylic acid) grafts. (Author)

  14. Recombination-induced formation of hydrogen-defect complexes in 4H and 6H-SiC: electrical and optical characterization

    International Nuclear Information System (INIS)

    Koshka, Y.; Los, A.; Mazzola, M.S.; Sankin, I.

    2003-01-01

    The phenomenon of recombination-induced passivation of defects with hydrogen was investigated in SiC polytypes. Excitation of the hydrogenated samples with above-band gap light at low temperatures resulted in formation of different non-metastable hydrogen-related luminescence centres. Electrical measurements revealed strong recombination-induced passivation of electrical activity of aluminium and boron acceptors in p-type SiC epilayers, which in some cases resulted in inversion of the conductivity type. Athermal migration of hydrogen is considered as a possible mechanism for the observed phenomena

  15. Crystal structure of (±-1-({[4-(allyloxyphenyl]sulfanyl}methyl-2-(diphenylthiophosphorylferrocene

    Directory of Open Access Journals (Sweden)

    Audric Michelot

    2015-08-01

    Full Text Available The title compound, [Fe(C5H5(C27H24OPS2], is built up from a ferrocene moiety substituted in the 1- and 2-positions by {[4-(allyloxyphenyl]sulfanyl}methyl and diphenylthiophosphoryl groups, respectively. The two S atoms lie on opposite sides of the cyclopentadienyl ring plane to which they are attached. In the crystal, C—H...S hydrogen bonds link the molecules into a ribbon running parallel to the (-110 plane. C—H...π interactions link the ribbons to form a three-dimensional network.

  16. Hydrogen-Bonding Surfaces for Ice Mitigation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas

    2014-01-01

    Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.

  17. Synthesis of Fischer carbene complexes of iridium by C-H bond activation of methyl and cyclic ethers: Evidence for reversible {alpha}-hydrogen migration

    Energy Technology Data Exchange (ETDEWEB)

    Luecke, H.F.; Arndtsen, B.A.; Burger, P.; Bergman, R.G. [Lawrence Berkeley Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)

    1996-03-13

    We report here a mild and versatile route to Fischer carbene complexes of iridium via the activation of C-H bonds of methyl and cyclic ethers, along with our preliminary studies of this rare family of carbene complexes. Theoretical studies suggest that {alpha}-hydrogen migrations can be kinetically favorable if a coordinatively unsaturated species can be accessed. Thus, the lability of the triflate ligand presumably facilitates this process. Further evidence for the rapidity, as well as reversibility, of this rearrangement was obtained by NMR analysis. 20 refs.

  18. Vapour pressures of 1-methyl derivatives of benzimidazole, pyrazole and indole. The energy of the intermolecular hydrogen bond N-H⋯N

    International Nuclear Information System (INIS)

    Almeida, Ana R.R.P.; Monte, Manuel J.S.

    2014-01-01

    Highlights: • Vapour pressures of 1-methyl derivatives of benzimidazole, pyrazole and indole. • Enthalpies, entropies and Gibbs free energies of sublimation/vaporisation were derived. • Temperatures and enthalpies of fusion were determined. • Energy of the intermolecular hydrogen bond N-H⋯N was estimated. - Abstract: The vapour pressures of the liquid phase of 1-methylpyrazole, 1-methylbenzimidazole and 1-methylindole were measured over the temperature ranges (253.9 to 293.3) K, (303.2 to 372.5) K, and (268.6 to 341.9) K, respectively, using a static method. The vapour pressures of the crystalline phase of the two latter compounds were also measured at temperatures between (301.2 to 328.9) K and (267.6 to 275.5) K, respectively. The results obtained enabled the determination of the standard molar enthalpies and entropies of sublimation and of vaporisation at the mean temperatures of the measurements and at T = 298.15 K. The temperatures and molar enthalpies of fusion were determined using differential scanning calorimetry. The enthalpies of the intermolecular hydrogen bonds N-H⋯N in the crystalline phase of benzimidazole and pyrazole were determined and compared with the result previously determined for the energy of the intermolecular hydrogen bond in crystalline imidazole

  19. Structure, function and carcinogenicity of metabolites of methylated and non-methylated polycyclic aromatic hydrocarbons: a comprehensive review.

    Science.gov (United States)

    Flesher, James W; Lehner, Andreas F

    2016-01-01

    The Unified Theory of PAH Carcinogenicity accommodates the activities of methylated and non-methylated polycyclic aromatic hydrocarbons (PAHs) and states that substitution of methyl groups on meso-methyl substituted PAHs with hydroxy, acetoxy, chloride, bromide or sulfuric acid ester groups imparts potent cancer producing properties. It incorporates specific predictions from past researchers on the mechanism of carcinogenesis by methyl-substituted hydrocarbons, including (1) requirement for metabolism to an ArCH2X type structure where X is a good leaving group and (2) biological substitution of a meso-methyl group at the most reactive center in non-methylated hydrocarbons. The Theory incorporates strong inferences of Fieser: (1) The mechanism of carcinogenesis involves a specific metabolic substitution of a hydrocarbon at its most reactive center and (2) Metabolic elimination of a carcinogen is a detoxifying process competitive with that of carcinogenesis and occurring by a different mechanism. According to this outlook, chemical or biochemical substitution of a methyl group at the reactive meso-position of non-methylated hydrocarbons is the first step in the mechanism of carcinogenesis for most, if not all, PAHs and the most potent metabolites of PAHs are to be found among the meso methyl-substituted hydrocarbons. Some PAHs and their known or potential metabolites and closely related compounds have been tested in rats for production of sarcomas at the site of subcutaneous injection and the results strongly support the specific predictions of the Unified Theory.

  20. Direct observation of vibrational energy dispersal via methyl torsions.

    Science.gov (United States)

    Gardner, Adrian M; Tuttle, William D; Whalley, Laura E; Wright, Timothy G

    2018-02-28

    Explicit evidence for the role of methyl rotor levels in promoting energy dispersal is reported. A set of coupled zero-order vibration/vibration-torsion (vibtor) levels in the S 1 state of para -fluorotoluene ( p FT) are investigated. Two-dimensional laser-induced fluorescence (2D-LIF) and two-dimensional zero-kinetic-energy (2D-ZEKE) spectra are reported, and the assignment of the main features in both sets of spectra reveals that the methyl torsion is instrumental in providing a route for coupling between vibrational levels of different symmetry classes. We find that there is very localized, and selective, dissipation of energy via doorway states, and that, in addition to an increase in the density of states, a critical role of the methyl group is a relaxation of symmetry constraints compared to direct vibrational coupling.

  1. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    Science.gov (United States)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  2. Physicochemical properties of the liquid mixture between stearate methyl / acid methyl sulfur stearate

    Directory of Open Access Journals (Sweden)

    Jesús Alfonso Torres Ortega

    2008-06-01

    Full Text Available The need of new alternatives for advance of the domestic oil-chemical industry, based local natural resources, make use of palm oil (Elaeis guineensis, as a source for obtaining alkyl esters, an excellent alternative development to be explored initially by the research groups at universities or institutions of scientifc innovation and development. The sulfonation process for the manufacture of surfactant were conducted in a falling flm reactor by the absorption and chemical reaction with SO3 gas on methyl esters derived from hydrogenated palm stearin. Identifying the properties of the reactants, products, and its mix is very important for the characterized by gas chromatography and infrared spectroscopy. It presents the properties of these inputs as a result of a series of experiments, which varies the mole ratio of the mixture of reactants and products, the process temperature and the percentage of sulfonate agent in the gas fow.

  3. Beam-induced depolarisation at the HERMES transversely polarised hydrogen target

    International Nuclear Information System (INIS)

    Tait, P.

    2006-01-01

    This thesis describes the polarised hydrogen target of the HERMES experiment at DESY in Hamburg. The HERMES target is based on hyperfine-splitting of hydrogen in an external magnetic field and provides nuclear-polarised hydrogen for the HERMES experiment. Particular emphasis is placed on the phenomenon of beam-induced depolarisation. The HERA electron beam consists of short bunches which produce a high-frequency magnetic field. A Fourier analysis of these bunches leads to a series of harmonics, based on the fundamental frequency of roughly 10.4 MHz, which can cause a transition between hyperfine states of the target atoms. Only through careful setting of the external magnetic field is it possible to avoid these transitions and the resulting depolarisation of the target gas. Measurements of these resonances were made during the first HERMES run 1995-2000. The target region was modified in 2001 to allow HERMES to use hydrogen polarised perpendicularly to the direction of the electron beam. This modification gave HERMES access to the so-called 'Transversity' distribution for the first time, but also allows additional resonances in the target, which were previously forbidden by selection rules. The measurement and minimisation of these 'Sigma resonances' are presented. A distinctive feature of the HERMES experiment is its novel storage cell which allows target atoms to make multiple passes of the HERA beam. An exact description of beam-induced depolarisation must therefore consider the geometry of the storage cell and the distribution of the magnetic field throughout the cell. Calculations of the depolarisation can be made by solving the time-dependent Schroedinger equation using first-order perturbation theory. A simple analytical model and a molecular-flow Monte-Carlo are used to predict the exact shape of the resonances. The first measurements of the resonances with a transverse magnetic holding field are presented and compared with the simulations. (orig.)

  4. Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus

    Science.gov (United States)

    Saunderson, Emily A.; Spiers, Helen; Gutierrez-Mecinas, Maria; Trollope, Alexandra F.; Shaikh, Abeera; Mill, Jonathan; Reul, Johannes M. H. M.

    2016-01-01

    Stressful events evoke long-term changes in behavioral responses; however, the underlying mechanisms in the brain are not well understood. Previous work has shown that epigenetic changes and immediate-early gene (IEG) induction in stress-activated dentate gyrus (DG) granule neurons play a crucial role in these behavioral responses. Here, we show that an acute stressful challenge [i.e., forced swimming (FS)] results in DNA demethylation at specific CpG (5′-cytosine–phosphate–guanine-3′) sites close to the c-Fos (FBJ murine osteosarcoma viral oncogene homolog) transcriptional start site and within the gene promoter region of Egr-1 (early growth response protein 1) specifically in the DG. Administration of the (endogenous) methyl donor S-adenosyl methionine (SAM) did not affect CpG methylation and IEG gene expression at baseline. However, administration of SAM before the FS challenge resulted in an enhanced CpG methylation at the IEG loci and suppression of IEG induction specifically in the DG and an impaired behavioral immobility response 24 h later. The stressor also specifically increased the expression of the de novo DNA methyltransferase Dnmt3a [DNA (cytosine-5-)-methyltransferase 3 alpha] in this hippocampus region. Moreover, stress resulted in an increased association of Dnmt3a enzyme with the affected CpG loci within the IEG genes. No effects of SAM were observed on stress-evoked histone modifications, including H3S10p-K14ac (histone H3, phosphorylated serine 10 and acetylated lysine-14), H3K4me3 (histone H3, trimethylated lysine-4), H3K9me3 (histone H3, trimethylated lysine-9), and H3K27me3 (histone H3, trimethylated lysine-27). We conclude that the DNA methylation status of IEGs plays a crucial role in FS-induced IEG induction in DG granule neurons and associated behavioral responses. In addition, the concentration of available methyl donor, possibly in conjunction with Dnmt3a, is critical for the responsiveness of dentate neurons to environmental

  5. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Chen, Man; Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Cheng, Huaiyan [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Yan, You-E [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Feng, Ying-Hong, E-mail: yhfeng@usuhs.edu [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2011-12-15

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination

  6. Methylation pathways in schizophrenia

    International Nuclear Information System (INIS)

    Sargent, T.W. III.

    1982-01-01

    Research on the biochemical causes of human psychosis concentrates on investigating whether schizophremia is linked to abnormalities in the metabolism of methyl carbon groups in the body. The metabolism of C-14 labeled methyl groups in methionine is studied in animals, normal subjects and patient volunteers

  7. Synthesis and Crystal Structure of 1-Chloro-2-methyl-4-nitrobenzene

    Directory of Open Access Journals (Sweden)

    Jim Simpson

    2012-03-01

    Full Text Available The title compound (3 was prepared from 4-chloroaniline in good yield on successive oxidation and methylation and its crystal and molecular structure is reported. The compound crystallizes in the monoclinic space group P 21/n with unit cell dimensions a = 13.5698(8, b = 3.7195 (3, c = 13.5967 (8 Å, ß = 91.703(3 °, V = 685.96 (10 Å3. The molecule is essentially planar with a dihedral angle of 6.2(3 ° between the nitro group and the phenyl ring. The crystal structure is stabilised by π...π contacts between adjacent benzene rings together with C–H...O hydrogen bonds and close Cl...O contacts.

  8. 1,5-Asymmetric induction in the boron-mediated aldol reaction of β-oxygenated methyl ketones

    International Nuclear Information System (INIS)

    Dias, Luiz C.

    2007-01-01

    High levels of substrate-based 1,5-stereo induction are obtained in the boron-mediated aldol reactions of β-oxygenated methyl ketones with achiral and chiral aldehydes. Remote induction from the boron enolates gives the 1,5-anti adducts, with the enolate pi-facial selectivity critically dependent upon the nature of the beta-alkoxy protecting group. This 1,5-anti aldol methodology has been strategically employed in the total synthesis of several natural products. At present, the origin of the high level of 1,5-anti induction obtained with the boron enolates is unclear, although a model based on a hydrogen bonding between the alkoxy oxygen and the formyl hydrogen has been recently proposed. (author)

  9. Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Magudeeswaran, G.; Balasubramanian, V. [Centre for Materials Joining Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu (India); Madhusudhan Reddy, G. [Metal Joining Section, Defence Metallurgical Research Laboratory (DMRL), Kanchanbagh (P.O.) Hyderabad 560 058 Andhra Pradesh (India)

    2008-04-15

    Quenched and tempered (Q and T) steels are prone to hydrogen induced cracking (HIC) in the heat affected zone after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q and T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic (LHF) steel consumables can be used to weld Q and T steels, which can give very low hydrogen levels in the weld deposits. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on hydrogen induced cold cracking of armour grade Q and T steel welds by implant testing. Shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes were used for making welds using ASS and LHF welding consumables. ASS welds made using FCAW process offered a higher resistance to HIC than all other welds considered in this investigation. (author)

  10. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shiqi [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); College of Mechanical Engineering, Yangtze University, Jingzhou 434023 (China); Huang, Yunhua, E-mail: huangyh@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Sun, Bintang, E-mail: bingtangsun@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liao, Qingliang [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Lu, Hongzhou [CITIC Metal Co. Ltd., Room 1901, Capital Mansion 6, Xin Yuan Nanlu, Chaoyang District, Beijing 100004 (China); The School of Resources and Environmental Engineering, East China University of Science and Technology, Meilong road 130, Xujiahui District, Shanghai 200237 (China); Jian, Bian [Niobium Tech Asia, 068898 Singapore (Singapore); Mohrbacher, Hardy [NiobelCon bvba, 2970 Schilde (Belgium); Zhang, Wei; Guo, Aimin [CITIC Metal Co. Ltd., Room 1901, Capital Mansion 6, Xin Yuan Nanlu, Chaoyang District, Beijing 100004 (China); Zhang, Yue [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); The State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-02-25

    The effect of Nb addition (0.022, 0.053, 0.078 wt%) on the hydrogen-induced delayed fracture resistance of 22MnB5 was studied by constant load test and electrochemical hydrogen permeation method. It is shown that the appropriate addition of Nb is beneficial to the improvement of the delayed fracture resistance of tested steel, especially when the steel contains high concentration of hydrogen, and the maximum delayed fracture resistance is obtained at a Nb content of 0.053%.The result of hydrogen permeation test shows that the diffusion coefficient of hydrogen in the steel containing niobium is lower than that in steel without niobium, which indicates that it is harder for hydrogen in the steels containing niobium to diffuse and aggregate. In addition, the reason for Nb improving the delayed fracture resistance of steels is discussed from two aspects: hydrogen trap effect and grain refinement effect. The analysis shows that the main reason leading to the improvement of the delayed fracture resistance is the hydrogen trapping effect of NbC while the grain refinement effect of Nb(C,N) secondary.

  11. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels

    International Nuclear Information System (INIS)

    Zhang, Shiqi; Huang, Yunhua; Sun, Bintang; Liao, Qingliang; Lu, Hongzhou; Jian, Bian; Mohrbacher, Hardy; Zhang, Wei; Guo, Aimin; Zhang, Yue

    2015-01-01

    The effect of Nb addition (0.022, 0.053, 0.078 wt%) on the hydrogen-induced delayed fracture resistance of 22MnB5 was studied by constant load test and electrochemical hydrogen permeation method. It is shown that the appropriate addition of Nb is beneficial to the improvement of the delayed fracture resistance of tested steel, especially when the steel contains high concentration of hydrogen, and the maximum delayed fracture resistance is obtained at a Nb content of 0.053%.The result of hydrogen permeation test shows that the diffusion coefficient of hydrogen in the steel containing niobium is lower than that in steel without niobium, which indicates that it is harder for hydrogen in the steels containing niobium to diffuse and aggregate. In addition, the reason for Nb improving the delayed fracture resistance of steels is discussed from two aspects: hydrogen trap effect and grain refinement effect. The analysis shows that the main reason leading to the improvement of the delayed fracture resistance is the hydrogen trapping effect of NbC while the grain refinement effect of Nb(C,N) secondary

  12. Investigations of hormones during early abortion induced by prostaglandin Fsub(2α) and 15(S)-methyl-PGFsub(2α)

    International Nuclear Information System (INIS)

    Seifert, B.; Liedtke, M.P.; Brockmann, J.; Beissert, M.; Gstoettner, H.; Alexander, H.; Herter, U.

    1978-01-01

    In early pregnancy up the 7th week of pregnancy PGFsub(2α) was infused and 15(S)-methyl-PGFsub(2α) was applied i.m. to induce menstruation in 20 or 19 cases, respectively. In the tested form of application 15(S)-methyl-PGFsub(2α) is effective in 89 per cent of the cases and in 74 per cent complete abortion was achieved. PGFsub(2α) produced bleeding in 80 per cent only and complete abortion in 55 per cent. The differences in these two groups were not statistically significant. The steroid hormones estradiol and progesterone decrease in a successful application of PGs for induction of abortion and reach a value of 75 per cent at the onset of bleeding. The LH concentration in plasma becomes smaller too. In some cases there is a temporary increase in hormones shortly after starting treatment. The results could indicate that the considerable decrease in hormones before the onset of bleeding might be caused by an alteration of the corpus luteum, which is effective during early pregnangy. (author)

  13. (E)-4-Methyl-N-((quinolin-2-yl)ethylidene)aniline as ligand for IIB supramolecular complexes: synthesis, structure, aggregation-induced emission enhancement and application in PMMA-doped hybrid material.

    Science.gov (United States)

    Wang, Ani; Fan, Ruiqing; Dong, Yuwei; Chen, Wei; Song, Yang; Wang, Ping; Hao, Sue; Liu, Zhigang; Yang, Yulin

    2016-12-20

    Judicious structural design employing 2-quinolinecarboxaldehyde and 4-methylaniline was used to generate the Schiff base ligand (E)-4-methyl-N-((quinolin-2-yl)ethylidene)aniline (L). Five IIB complexes, namely, [ZnLCl 2 ] (1), [ZnL(NO 3 ) 2 ] (2), [ZnL(OAc) 2 ] 3 (3), [CdL(OAc) 2 ] 3 (4), and [HgLCl 2 ] (5) have been synthesized based on L. Single-crystal X-ray diffraction analysis indicates that complexes 1, 3 and 4 exhibit 3D networks, whereas 2 and 5 form 2D layers and 1D chains, respectively. TD-DFT calculations show a good correlation with the UV-vis absorption assigned to π → π* intraligand transitions. Furthermore, complexes 1-5 displayed strong greenish luminescent emissions (518-524 nm) in the aggregate state but weak emissions in solution (aggregation-induced emission enhancement), which may be due to the existence of C-HCl/O hydrogen bonding and ππ stacking interactions, resulting in restriction of intramolecular rotation (RIR). Variable-concentration 1 H NMR studies suggested that the aggregates undergo intramolecular changes in conformation due to intermolecular interactions. Moreover, the emission intensity and lifetime exhibited obvious increases induced by mechanical grinding and temperature reduction, which were also attributed to AIEE properties. Subsequently, complex 1 was incorporated into poly(methyl methacrylate) (PMMA), whereby 1-PMMA exhibited enhanced emission intensity (20-fold increase in comparison with that of 1), which offers opportunities for use in plastic greenhouses to increase leaf photosynthesis.

  14. Pseudosymmetric fac-di-aqua-trichlorido[(di-methyl-phosphor-yl)methanaminium-κO]manganese(II).

    Science.gov (United States)

    Reiss, Guido J

    2013-05-01

    In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the Mn(II) metal center has a distorted o-cta-hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol-ecules and the O-coordinated dpmaH cation [dpmaH = (di-methyl-phosphor-yl)methanaminium] complete the coordination sphere. Each complex mol-ecule is connected to its neighbours by O-H⋯Cl and N-H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)].

  15. Effects on gastric mucosa induced by dental bleaching – an experimental study with 6% hydrogen peroxide in rats

    Science.gov (United States)

    PAULA, Anabela Baptista; DIAS, Maria Isabel; FERREIRA, Manuel Marques; CARRILHO, Teresa; MARTO, Carlos Miguel; CASALTA, João; CABRITA, António Silvério; CARRILHO, Eunice

    2015-01-01

    The value of aesthetic dentistry has precipitated several developments in the investigation of dental materials related to this field. The free marketing of these products is a problem and it is subject to various interpretations regarding its legality. There are several techniques for tooth whitening, the most used one being the external bleaching. It is the later version of such technique that poses the greatest danger of ingesting the product. The present study analysed the systemic effect of these products when they are swallowed. Objective This experimental study aimed to observe the effects of a tooth whitening product, whose active agent is 6% hydrogen peroxide, on the gastric mucosa of healthy and non-tumour gastric pathology animals. Material and Methods Fifty Wistar-Han rats were used and then distributed into 5 groups, one for control and four test groups in which the bleaching product was administered in animals with and without non-tumour gastric pathology (induced by the administration of 1 sample of 50% ethanol and 5% of drinking water during 6 days) at different times of study by gavage. There was a decrease in body weight in animals of groups handled during the study period, which was most pronounced in IV and VA groups. Changes in spleen weight relative to body weight revealed no statistically significant changes. An analysis of the frequency was performed on the results of macroscopic observation of the gastric mucosa. Results The gastric mucosa revealed lesions in all manipulated groups, being more frequent in groups III and IV. It appears that there is a synergism when using hydrogen peroxide and 50% ethanol in the same group. Conclusion Therefore, it seems that there are some signs of toxicity 3 to 4 days after administration of 6% hydrogen peroxide. The prescription of these therapies must be controlled by the clinician and the risks must be minimized. PMID:26537721

  16. The Equivalence of the Methyl Groups in Puckered 3,3-DIMETHYL Oxetane

    Science.gov (United States)

    Macario, Alberto; Blanco, Susana; Lopez, Juan Carlos

    2016-06-01

    The spectroscopic study of molecules with large amplitude vibrations have led to reconsider the concept of molecular structure. Sometimes identifying definite bond lengths and angles is not enough to reproduce the experimental data so one must have information on the large amplitude molecular vibration potential energy function and dynamics. 3,3-dimethyloxetane (DMO) has non-planar ring equilibrium configuration and a double minimum potential function for ring-puckering with a barrier of 47 cm-1. The observation of endocyclic 13C and 18O monosubstituted isotopologues allow to conclude that the ring is puckered. However an interesting feature was observed for the 13C substitutions at the methyl carbon atoms. While two different axial and equatorial 13C-methyl groups spectra are predicted from a rigid non-planar ring DMO model, only one species was found. The observed rotational transitions appear at a frequency close to the average of the frequencies predicted for each isotopologue. The observed lines have the same intensity as that found for the 13C_α isotopomer and double that that found for the 13C_β isotopomer.^c This behaviour evidences that the two methyl groups of DMO are equivalent as could be expected for a planar ring. In this work we show how consideration of the potential function and the path for ring puckering motion to calculate the proper kinetic energy terms allow to reproduce the experimental results. Ab initio computations at the CCSD/6-311++G(d,p) level, tested on related systems, have been done for this purpose. J. A. Duckett, T. L. Smithson, and H. Wieser, J. Mol. Spectrosc. 1978, 69 , 159; J. Mol. Struct. 1979, 56, 157 J. C. López, A. G. Lesarri, R. M. Villamañán and J. L. Alonso, J. Mol. Spectrosc. 1990, 141, 231 R. Sánchez, S. Blanco, A. Lesarri, J. C. López and J. L. Alonso, Phys. Chem. Chem. Phys. 2005, 7, 1157

  17. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Drew; Scime, Earl; Short, Zachary, E-mail: zdshort@mix.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26056 (United States)

    2016-11-15

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  18. Holocaust Exposure Induced Intergenerational Effects on FKBP5 Methylation.

    Science.gov (United States)

    Yehuda, Rachel; Daskalakis, Nikolaos P; Bierer, Linda M; Bader, Heather N; Klengel, Torsten; Holsboer, Florian; Binder, Elisabeth B

    2016-09-01

    The involvement of epigenetic mechanisms in intergenerational transmission of stress effects has been demonstrated in animals but not in humans. Cytosine methylation within the gene encoding for FK506 binding protein 5 (FKBP5) was measured in Holocaust survivors (n = 32), their adult offspring (n = 22), and demographically comparable parent (n = 8) and offspring (n = 9) control subjects, respectively. Cytosine-phosphate-guanine sites for analysis were chosen based on their spatial proximity to the intron 7 glucocorticoid response elements. Holocaust exposure had an effect on FKBP5 methylation that was observed in exposed parents as well in their offspring. These effects were observed at bin 3/site 6. Interestingly, in Holocaust survivors, methylation at this site was higher in comparison with control subjects, whereas in Holocaust offspring, methylation was lower. Methylation levels for exposed parents and their offspring were significantly correlated. In contrast to the findings at bin 3/site 6, offspring methylation at bin 2/sites 3 to 5 was associated with childhood physical and sexual abuse in interaction with an FKBP5 risk allele previously associated with vulnerability to psychological consequences of childhood adversity. The findings suggest the possibility of site specificity to environmental influences, as sites in bins 3 and 2 were differentially associated with parental trauma and the offspring's own childhood trauma, respectively. FKBP5 methylation averaged across the three bins examined was associated with wake-up cortisol levels, indicating functional relevance of the methylation measures. This is the first demonstration of an association of preconception parental trauma with epigenetic alterations that is evident in both exposed parent and offspring, providing potential insight into how severe psychophysiological trauma can have intergenerational effects. Published by Elsevier Inc.

  19. Propofol effectively inhibits lithium-pilocarpine- induced status epilepticus in rats via downregulation of N-methyl-D-aspartate receptor 2B subunit expression

    Science.gov (United States)

    Wang, Henglin; Wang, Zhuoqiang; Mi, Weidong; Zhao, Cong; Liu, Yanqin; Wang, Yongan; Sun, Haipeng

    2012-01-01

    Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine. The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior, electroencephalography and 24-hour survival rate. Propofol (12.5–100 mg/kg) improved status epilepticus in a dose-dependent manner, and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection. Western blot results showed that, 24 hours after induction of status epilepticus, the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus. Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels, but not the increase in N-methyl-D-aspartate receptor 2A subunit levels. The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine. This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures. PMID:25737709

  20. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep.

    Science.gov (United States)

    Lan, Xianyong; Cretney, Evan C; Kropp, Jenna; Khateeb, Karam; Berg, Mary A; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E; Khatib, Hasan

    2013-01-01

    Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller's grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  1. Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep

    Directory of Open Access Journals (Sweden)

    Xianyong eLan

    2013-04-01

    Full Text Available Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from d 67 ± 3 of gestation until necropsy (d 130 ± 1, they were fed one of three diets of alfalfa haylage (HY; fiber, corn (CN; starch, or dried corn distiller’s grains (DG; fiber plus protein plus fat. A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methylatransferase (DNMTs genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  2. Effects of ketamine and N-methyl-D-aspartate on fluoxetine-induced antidepressant-related behavior using the forced swimming test.

    Science.gov (United States)

    Owolabi, Rotimi Adegbenga; Akanmu, Moses Atanda; Adeyemi, Oluwole Isaac

    2014-04-30

    This study investigated the effects of ketamine on fluoxetine-induced antidepressant behavior using the forced swimming test (FST) in mice. In order to understand the possible role of N-methyl-d-aspartate (NMDA) neurotransmission in the antidepressant effect of fluoxetine, different groups of mice (n=10) were administered with acute ketamine (3mg/kg, i.p.), acute NMDA (75mg/kg and 150mg/kg, i.p.) and a 21-day chronic ketamine (15mg/kg, i.p./day) were administered prior to the administration of fluoxetine (20mg/kg, i.p.) in the mice. Antidepressant related behavior (immobility score) was measured using the forced swimming test. The results showed that the acute ketamine and fluoxetine alone treatments elicited a significant (pfluoxetine-induced decrease in immobility score. In contrast, pre-treatment with NMDA (150mg/kg) significantly (pfluoxetine-induced decrease in immobility score. On the other hand, chronic administration of ketamine significantly elicited an increase in immobility score as well as reversed the reduction induced by fluoxetine. Similarly, NMDA administration at both 75mg/kg and 150mg/kg increased immobility score in chronically administered ketamine groups. Furthermore, chronic administration of ketamine, followed by NMDA (75mg/kg) and fluoxetine significantly elevated the immobility score when compared with the group that received NMDA and fluoxetine but not chronically treated with ketamine. It can be suggested) that facilitation of NMDA transmission blocked fluoxetine-induced reduction in immobility score, while down-regulation of NMDA transmission is associated with increase in fluoxetine-induced antidepressant-related behavior in mice. Down-regulation of the NMDA transmission is proposed as an essential component of mechanism of suppression of depression related behaviors by fluoxetine. Modulation of NMDA transmission is suggested to be relevant in the mechanism of action of fluoxetine. Copyright © 2014 Elsevier Ireland Ltd. All rights

  3. Model of parameters controlling resistance of pipeline steels to hydrogen-induced cracking

    KAUST Repository

    Traidia, Abderrazak; El-Sherik, A. M.; Duval, Sé bastien; Lubineau, Gilles; El Yagoubi, Jalal

    2014-01-01

    NACE MR0175/ISO 15156-2 standard provides test conditions and acceptance criteria to evaluate the resistance of carbon and low-alloy steels to hydrogen-induced cracking (HIC). The second option proposed by this standard offers a large flexibility

  4. Weak hydrogen bond topology in 1,1-difluoroethane dimer: A rotational study

    Science.gov (United States)

    Chen, Junhua; Zheng, Yang; Wang, Juan; Feng, Gang; Xia, Zhining; Gou, Qian

    2017-09-01

    The rotational spectrum of the 1,1-difluoroethane dimer has been investigated by pulsed-jet Fourier transform microwave spectroscopy. Two most stable isomers have been detected, which are both stabilized by a network of three C—H⋯F—C weak hydrogen bonds: in the most stable isomer, two difluoromethyl C—H groups and one methyl C—H group act as the weak proton donors whilst in the second isomer, two methyl C—H groups and one difluoromethyl C—H group act as the weak proton donors. For the global minimum, the measurements have also been extended to its four 13C isotopologues in natural abundance, allowing a precise, although partial, structural determination. Relative intensity measurements on a set of μa-type transitions allowed estimating the relative population ratio of the two isomers as NI/NII ˜ 6/1 in the pulsed jet, indicating a much larger energy gap between these two isomers than that expected from ab initio calculation, consistent with the result from pseudo-diatomic dissociation energies estimation.

  5. Protective Effects of Hydrogen against Low-Dose Long-Term Radiation-Induced Damage to the Behavioral Performances, Hematopoietic System, Genital System, and Splenic Lymphocytes in Mice

    Directory of Open Access Journals (Sweden)

    Jiaming Guo

    2016-01-01

    Full Text Available Molecular hydrogen (H2 has been previously reported playing an important role in ameliorating damage caused by acute radiation. In this study, we investigated the effects of H2 on the alterations induced by low-dose long-term radiation (LDLTR. All the mice in hydrogen-treated or radiation-only groups received 0.1 Gy, 0.5 Gy, 1.0 Gy, and 2.0 Gy whole-body gamma radiation, respectively. After the last time of radiation exposure, all the mice were employed for the determination of the body mass (BM observation, forced swim test (FST, the open field test (OFT, the chromosome aberration (CA, the peripheral blood cells parameters analysis, the sperm abnormality (SA, the lymphocyte transformation test (LTT, and the histopathological studies. And significant differences between the treatment group and the radiation-only groups were observed, showing that H2 could diminish the detriment induced by LDLTR and suggesting the protective efficacy of H2 in multiple systems in mice against LDLTR.

  6. DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Gavery Mackenzie R

    2010-08-01

    Full Text Available Abstract Background DNA methylation is an epigenetic mechanism with important regulatory functions in animals. While the mechanism itself is evolutionarily ancient, the distribution and function of DNA methylation is diverse both within and among phylogenetic groups. Although DNA methylation has been well studied in mammals, there are limited data on invertebrates, particularly molluscs. Here we characterize the distribution and investigate potential functions of DNA methylation in the Pacific oyster (Crassostrea gigas. Results Methylation sensitive PCR and bisulfite sequencing PCR approaches were used to identify CpG methylation in C. gigas genes and demonstrated that this species possesses intragenic methylation. In silico analysis of CpGo/e ratios in publicly available sequence data suggests that DNA methylation is a common feature of the C. gigas genome, and that specific functional categories of genes have significantly different levels of methylation. Conclusions The Pacific oyster genome displays intragenic DNA methylation and contains genes necessary for DNA methylation in animals. Results of this investigation suggest that DNA methylation has regulatory functions in Crassostrea gigas, particularly in gene families that have inducible expression, including those involved in stress and environmental responses.

  7. A novel kerf-free wafering process combining stress-induced spalling and low energy hydrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pingault, Timothee; Pokam-Kuisseu, Pauline Sylvia; Ntsoenzok, Esidor [CEMTHI - CNRS, Site Cyclotron, 3 A rue de la Ferollerie, 45071 Orleans (France); Blondeau, Jean-Philippe [CEMTHI - CNRS, Site Cyclotron, 3 A rue de la Ferollerie, 45071 Orleans (France); Universite d' Orleans, Chateau de la Source, 45100 Orleans (France); Ulyashin, Alexander [SINTEF, Forskningsveien 1, 0314 Oslo (Norway); Labrim, Hicham; Belhorma, Bouchra [CNESTEN, B.P. 1382 R.P., 10001 Rabat (Morocco)

    2016-12-15

    In this work, we studied the potential use of low-energy hydrogen implantation as a guide for the stress-induced cleavage. Low-energy, high fluence hydrogen implantation in silicon leads, in the right stiffening conditions, to the detachment of a thin layer, around a few hundreds nm thick, of monocrystalline silicon. We implanted monocrystalline silicon wafers with low-energy hydrogen, and then glued them on a cheap metal layer. Upon cooling down, the stress induced by the stressor layers (hardened glue and metal) leads to the detachment of a thin silicon layer, which thickness is determined by the implantation energy. We were then able to clearly demonstrate that, as expected, hydrogen oversaturation layer is very efficient to guide the stress. Using such process, thin silicon layers of around 710 nm-thick were successfully detached from low-energy implanted silicon wafers. Such layers can be used for the growth of very good quality monocrystalline silicon of around 50 μm-thick or less. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Synthesis of methyl acetate from dimethyl ether using group VIII metal salts of phosphotungstic acid

    Energy Technology Data Exchange (ETDEWEB)

    Sardesai, A.; Lee, S.; Tartamella, T.

    2002-04-01

    Dimethyl ether (DME) can be produced much more efficiently in a single-stage, liquid-phase process from natural gas-based syngas as compared to the conventional process via dehydration of methanol. This process, based on dual catalysts slurried in inert oil, alleviates the chemical equilibrium limitation governing the methanol synthesis reaction and concurrently improves per-pass syngas conversion and reactor productivity. The potential, therefore, for production of methyl acetate via dimethyl ether carbonylation is of industrial importance. In the present study, conversion of dimethyl ether and carbon monoxide to methyl acetate is investigated over a variety of group VIII metal-substituted phosphotungstic acid salts. Experimental results of this catalytic reaction using rhodium, iridium, ruthenium, and palladium catalysts are evaluated and compared in terms of selectivity toward methyl acetate. The effects of active metal, support types, multiple metal loading, and feed conditions on carbonylation activity of DME are examined. Iridium metal substituted phosphotungstic acid supported on Davisil type 643 (pore size 150 A, surface area 279 m{sup 2}/g, mesh size 230-425) silica gel shows the highest activity for DME carbonylation. (author)

  9. [Analysis of genomic DNA methylation level in radish under cadmium stress by methylation-sensitive amplified polymorphism technique].

    Science.gov (United States)

    Yang, Jin-Lan; Liu, Li-Wang; Gong, Yi-Qin; Huang, Dan-Qiong; Wang, Feng; He, Ling-Li

    2007-06-01

    The level of cytosine methylation induced by cadmium in radish (Raphanus sativus L.) genome was analysed using the technique of methylation-sensitive amplified polymorphism (MSAP). The MSAP ratios in radish seedling exposed to cadmium chloride at the concentration of 50, 250 and 500 mg/L were 37%, 43% and 51%, respectively, and the control was 34%; the full methylation levels (C(m)CGG in double strands) were at 23%, 25% and 27%, respectively, while the control was 22%. The level of increase in MSAP and full methylation indicated that de novo methylation occurred in some 5'-CCGG sites under Cd stress. There was significant positive correlation between increase of total DNA methylation level and CdCl(2) concentration. Four types of MSAP patterns: de novo methylation, de-methylation, atypical pattern and no changes of methylation pattern were identified among CdCl(2) treatments and the control. DNA methylation alteration in plants treated with CdCl(2) was mainly through de novo methylation.

  10. Oxidative defence reactions in sunflower roots induced by methyl-jasmonate and methyl-salicylate and their relation with calcium signalling.

    Science.gov (United States)

    Garrido, Inmaculada; Espinosa, Francisco; Alvarez-Tinaut, M Carmen

    2009-10-01

    Ca(2+) plays a critical role as second messenger in the signal-response coupling of plant defence responses, and methyl-jasmonate and methyl-salicylate are important components of signal transduction cascades activating plant defences. When intact axenic non-induced seedling roots of sunflower were treated with different Ca(2+) concentrations up to 1 mM, there was no significant increase in O(2)(*-) generation or DMAB-MBTH peroxidase (extracellular, ECPOX) activities in the apoplast, probably because these roots had enough Ca(2+) in their exo- and endocellular reservoirs. Both activities were strongly inhibited by the RBOH-NADPH oxidase inhibitor DPI and by the Ca(2+) surrogate antagonist La(3+), but the voltage-dependent Ca(2+) channel blocker verapamil was only inhibitory at concentrations higher than those active on animal L-type Ca(2+) channels. Concentrations >5 mM EGTA (chelating Ca(2+) in the apoplast) and Li(+) (inhibiting PI cycle dependent endogenous Ca(2+) fluxes) also inhibited both activities. W7, inhibitor of binding of Ca-CaM to its target protein, enhanced both activities, but the inactive analogue W5 showed a similar effect. Our data suggest that Ca(2+) from exocellular and, to a lesser extent, from endocellular stores is involved in oxidative activities, and that RBOH-NADPH oxidase is the main system supporting them. Ca(2+) activation of the PM cytosolic side of RBOH-NADPH oxidase is probably the key to Ca(2+) involvement in these processes. Roots induced by MeJA or MeSA showed significant enhancement of both oxidative activities, as corresponding to the oxidative burst evoked by the two phytohormones in the root apoplast. But while ECPOX activity showed a response to the effectors similar to that described above for non-induced roots, O(2)(*-) generation activity in the apoplast of induced roots was insensitive to EGTA, verapamil and Li(+), the inhibitors of exogenous and endogenous Ca(2+) fluxes; only DPI and La(3+) were inhibitory. As

  11. Assessment of thermal neutron and N-methyl-N-nitrosourea activities in groups of barley mutants with possible breeding use

    International Nuclear Information System (INIS)

    Uhlik, J.; Burianova, S.

    1982-01-01

    During the study of genetic variability induced after the application of thermal neutrons and N-methyl-N-nitrosourea in barley, marked differences were manifest when selected mutated progeny sets with possible breeding use were evaluated. It is recommended on the basis of the results to use separately a chemical mutagen and a physical mutagen for influencing the same material in which it is intended to obtain the largest possible amount of mutated progenies that could be used in breeding. In the set of selected progenies offering the possibility of breeding use, thermal neutrons induced larger proportions of high-tillering progenies, progenies with preference to the first tillers, with longer stalks, with a firm stalk, with one stalk, with an erect ear with deformed spikelets, with ears having deformed first sections, later ripening, with earlier heading time. N-methyl-N-nitrosourea induced larger proportions of progenies with reduced wax production, with broader or narrow blades, with necrosis on leaves, with shorter stalks, with denser ears, with multiple-row ears, with shorter awns, with golden-coloured awns, with medium-early ripening, and with delayed heading time. (author)

  12. Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma.

    Science.gov (United States)

    Wiestler, Benedikt; Capper, David; Sill, Martin; Jones, David T W; Hovestadt, Volker; Sturm, Dominik; Koelsche, Christian; Bertoni, Anna; Schweizer, Leonille; Korshunov, Andrey; Weiß, Elisa K; Schliesser, Maximilian G; Radbruch, Alexander; Herold-Mende, Christel; Roth, Patrick; Unterberg, Andreas; Hartmann, Christian; Pietsch, Torsten; Reifenberger, Guido; Lichter, Peter; Radlwimmer, Bernhard; Platten, Michael; Pfister, Stefan M; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-10-01

    The outcome of patients with anaplastic gliomas varies considerably. Whether a molecular classification of anaplastic gliomas based on large-scale genomic or epigenomic analyses is superior to histopathology for reflecting distinct biological groups, predicting outcomes and guiding therapy decisions has yet to be determined. Epigenome-wide DNA methylation analysis, using a platform which also allows the detection of copy-number aberrations, was performed in a cohort of 228 patients with anaplastic gliomas (astrocytomas, oligoastrocytomas, and oligodendrogliomas), including 115 patients of the NOA-04 trial. We further compared these tumors with a group of 55 glioblastomas. Unsupervised clustering of DNA methylation patterns revealed two main groups correlated with IDH status: CpG island methylator phenotype (CIMP) positive (77.5 %) or negative (22.5 %). CIMP(pos) (IDH mutant) tumors showed a further separation based on copy-number status of chromosome arms 1p and 19q. CIMP(neg) (IDH wild type) tumors showed hallmark copy-number alterations of glioblastomas, and clustered together with CIMP(neg) glioblastomas without forming separate groups based on WHO grade. Notably, there was no molecular evidence for a distinct biological entity representing anaplastic oligoastrocytoma. Tumor classification based on CIMP and 1p/19q status was significantly associated with survival, allowing a better prediction of outcome than the current histopathological classification: patients with CIMP(pos) tumors with 1p/19q codeletion (CIMP-codel) had the best prognosis, followed by patients with CIMP(pos) tumors but intact 1p/19q status (CIMP-non-codel). Patients with CIMP(neg) anaplastic gliomas (GBM-like) had the worst prognosis. Collectively, our data suggest that anaplastic gliomas can be grouped by IDH and 1p/19q status into three molecular groups that show clear links to underlying biology and a significant association with clinical outcome in a prospective trial cohort.

  13. Hydrogen induced dis-proportionation studies on Zr-Co-M (M=Ni, Fe, Ti) ternary alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.; Sastry, P.U.; Jayakrishnan, V.B.

    2016-01-01

    The intermetallic compound ZrCo is considered as a suitable material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER). However, upon repeated hydriding-dehydriding cycles, the hydrogen storage capacity of ZrCo decreases, which is attributed to the disproportionate reaction ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The reduction of hydrogen storage capacity of ZrCo is not desirable for its use in tritium facilities. In our previous studies, attempts were made to improve the durability of ZrCo against dis-proportionation by including a third element. The present study is aimed to investigate the hydrogen induced dis-proportionation of Zr-Co-M (M=Ni, Fe and Ti) ternary alloys under hydrogen delivery conditions

  14. Liberation of methyl acrylate from metallalactone complexes via M-O ring opening (M = Ni, Pd) with methylation agents

    KAUST Repository

    Lee, S. Y Tina; Ghani, Amylia Abdul; D'Elia, Valerio; Cokoja, Mirza; Herrmann, Wolfgang A.; Basset, Jean-Marie; Kü hn, Fritz

    2013-01-01

    Ring opening of various nickela- and palladalactones induced by the cleavage of the M-O bond by methyl trifluoromethanesulfonate (MeOTf) and methyl iodide (MeI) is examined. Experimental evidence supports the mechanism of ring opening by the alkylating agent followed by β-H elimination leading to methyl acrylate and a metal-hydride species. MeOTf shows by far higher efficiency in the lactone ring opening than any other methylating agent including the previously reported methyl iodide. © 2013 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  15. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish

    International Nuclear Information System (INIS)

    Gombeau, Kewin; Pereira, Sandrine; Ravanat, Jean-Luc; Camilleri, Virginie; Cavalie, Isabelle; Bourdineaud, Jean-Paul; Adam-Guillermin, Christelle

    2016-01-01

    We examined the effects of chronic exposure to different concentrations (2 and 20 μg L"−"1) of environmentally relevant waterborne depleted uranium (DU) on the DNA methylation patterns both at HpaII restriction sites (5′-CCGG-3′) and across the whole genome in the zebrafish brain, gonads, and eyes. We first identified sex-dependent differences in the methylation level of HpaII sites after exposure. In males, these effects were present as early as 7 days after exposure to 20 μg L"−"1 DU, and were even more pronounced in the brain, gonads, and eyes after 24 days. However, in females, hypomethylation was only observed in the gonads after exposure to 20 μg L"−"1 DU for 24 days. Sex-specific effects of DU were also apparent at the whole-genome level, because in males, exposure to 20 μg L"−"1 DU for 24 days resulted in cytosine hypermethylation in the brain and eyes and hypomethylation in the gonads. In contrast, in females, hypermethylation was observed in the brain after exposure to both concentrations of DU for 7 days. Based on our current knowledge of uranium toxicity, several hypotheses are proposed to explain these findings, including the involvement of oxidative stress, alteration of demethylation enzymes and the calcium signaling pathway. This study reports, for the first time, the sex- and tissue-specific epigenetic changes that occur in a nonhuman organism after exposure to environmentally relevant concentrations of uranium, which could induce transgenerational epigenetic effects. - Highlights: • This study demonstrates a sex-related effect of DU exposure on DNA methylation patterns. • Impacts on DNA methylation patterns revealed a tissue-specific effect of DU exposure. • The MS–AFLP and HPLC–MS/MS sensitively and complementarily demonstrated the responses to environmental concentrations of DU.

  16. Electronic dipole moment and tunneling state of hydrogen atom in hydrogen-bond materials revealed by neutron and X-ray structure analyses

    International Nuclear Information System (INIS)

    Kiyanagi, Ryoji; Noda, Yukio; Mochida, Tomoyuki; Sugawara, Tadashi

    2007-01-01

    The isolated hydrogen-bonded materials, 5-methyl-9-hydroxyphenalenone (MeHPLN) and 5-bromo-9-hydroxyphenalenone (Br-HPLN), were studied by means of X-ray and neutron diffraction methods. It was found that the position of the nucleus of the hydrogen atom in the hydrogen-bond region does not agree with the center of mass of the electron cloud of the hydrogen atom. This leads to a local electronic dipole moment in the hydrogen-bond region. Using the experimentally obtained dipole moment, phase transition temperatures for MeHPLN and BrHPLN were calculated based on a tunneling model. Result shows good agreement with the ones obtained by a dielectric measurement. (author)

  17. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.

    1985-01-01

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  18. 2-(5-Fluoro-3-isopropylsulfanyl-7-methyl-1-benzofuran-2-ylacetic acid

    Directory of Open Access Journals (Sweden)

    Hong Dae Choi

    2012-04-01

    Full Text Available The title compound, C14H15FO3S, was prepared by alkaline hydrolysis of ethyl 2-(5-fluoro-3-isopropylsulfanyl-7-methyl-1-benzofuran-2-ylacetate. In the crystal, molecules are linked via pairs of O—H...O hydrogen bonds, forming inversion dimers. These dimers are connected by weak C—H...O hydrogen bonds.

  19. Effect of Exposure to 900 MHz GSM Mobile Phone Radiofrequency Radiation on Estrogen Receptor Methylation Status in Colon Cells of Male Sprague Dawley Rats

    Science.gov (United States)

    Mokarram, P.; Sheikhi, M.; Mortazavi, S.M.J.; Saeb, S.; Shokrpour, N.

    2017-01-01

    Background: Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs) can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic diversity, the onset and progression of cancer can be controlled by epigenetic mechanisms such as gene promoter methylation. There are extensive studies on the epigenetic changes of the tumor suppressor genes as well as the identification of methylation biomarkers in colorectal cancer. Some studies have revealed that genetic changes can be induced by exposure to RF radiation. However, whether or not RF radiation is capable of inducing epigenetic alteration has not been clarified yet. To date, no study has been conducted on the effect of radiation on epigenetic alterations in colorectal cancer (CRC). Several studies have also shown that methylation of estrogen receptor α (ERα), MYOD, MGMT, SFRP2 and P16 play an important role in CRC. It can be hypothesized that RF exposure can be a reason for the high incidence of CRC in Iran. This study aimed to investigate whether epigenetic pattern of ERα is susceptible to RF radiation and if RF radiation can induce radioadaptive response as epigenetic changes after receiving the challenge dose (γ-ray). Material and Method: 40 male Sprague-Dawley rats were divided into 4 equal groups (Group I: exposure to RF radiation of a GSM cell phone for 4 hours and sacrificed after 24 hours; Group II: RF exposure for 4 hours, exposure to Co-60 gamma radiation (3 Gy) after 24 hours and sacrificed after 72 hrs; Group III: only 3Gy gamma radiation; Group 4: control group). DNA from colon tissues was extracted to evaluate the methylation status by methylation specific PCR. Results: Our finding showed that exposure to GSM cell phone RF radiation was

  20. Effect of Exposure to 900 MHz GSM Mobile Phone Radiofrequency Radiation on Estrogen Receptor Methylation Status in Colon Cells of Male Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Mokarram P.

    2017-03-01

    Full Text Available Background: Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic diversity, the onset and progression of cancer can be controlled by epigenetic mechanisms such as gene promoter methylation. There are extensive studies on the epigenetic changes of the tumor suppressor genes as well as the identification of methylation biomarkers in colorectal cancer. Some studies have revealed that genetic changes can be induced by exposure to RF radiation. However, whether or not RF radiation is capable of inducing epigenetic alteration has not been clarified yet. To date, no study has been conducted on the effect of radiation on epigenetic alterations in colorectal cancer (CRC. Several studies have also shown that methylation of estrogen receptor α (ERα, MYOD, MGMT, SFRP2 and P16 play an important role in CRC. It can be hypothesized that RF exposure can be a reason for the high incidence of CRC in Iran. This study aimed to investigate whether epigenetic pattern of ERα is susceptible to RF radiation and if RF radiation can induce radioadaptive response as epigenetic changes after receiving the challenge dose (γ-ray. Material and Method: 40 male Sprague-Dawley rats were divided into 4 equal groups (Group I: exposure to RF radiation of a GSM cell phone for 4 hours and sacrificed after 24 hours; Group II: RF exposure for 4 hours, exposure to Co-60 gamma radiation (3 Gy after 24 hours and sacrificed after 72 hrs; Group III: only 3Gy gamma radiation; Group 4: control group. DNA from colon tissues was extracted to evaluate the methylation status by methylation specific PCR. Results: Our finding showed that exposure to GSM cell phone RF

  1. Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Nakayama, T.

    1999-01-01

    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (R) decreases several orders of magnitude when the substrate temperature...

  2. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGFII) on 1-methyl-4-phenyl pyridinium (MPP) induced oxidative damage in adult cortical neuronal cultures. Methods: Adult rats were randomly divided into 5 groups. Cortical neurons were prepared from rats. The cells were ...

  3. Methylation and Transcripts Expression at the Imprinted GNAS Locus in Human Embryonic and Induced Pluripotent Stem Cells and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Virginie Grybek

    2014-09-01

    Full Text Available Data from the literature indicate that genomic imprint marks are disturbed in human pluripotent stem cells (PSCs. GNAS is an imprinted locus that produces one biallelic (Gsα and four monoallelic (NESP55, GNAS-AS1, XLsα, and A/B transcripts due to differential methylation of their promoters (DMR. To document imprinting at the GNAS locus in PSCs, we studied GNAS locus DMR methylation and transcript (NESP55, XLsα, and A/B expression in human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs derived from two human fibroblasts and their progenies. Results showed that (1 methylation at the GNAS locus DMRs is DMR and cell line specific, (2 changes in allelic transcript expression can be independent of a change in allele-specific DNA methylation, and (3 interestingly, methylation at A/B DMR is correlated with A/B transcript expression. These results indicate that these models are valuable to study the mechanisms controlling GNAS methylation, factors involved in transcript expression, and possibly mechanisms involved in the pathophysiology of pseudohypoparathyroidism type 1B.

  4. Copper induces expression and methylation changes of early development genes in Crassostrea gigas embryos.

    Science.gov (United States)

    Sussarellu, Rossana; Lebreton, Morgane; Rouxel, Julien; Akcha, Farida; Rivière, Guillaume

    2018-03-01

    Copper contamination is widespread along coastal areas and exerts adverse effects on marine organisms such as mollusks. In the Pacific oyster, copper induces severe developmental abnormalities during early life stages; however, the underlying molecular mechanisms are largely unknown. This study aims to better understand whether the embryotoxic effects of copper in Crassostrea gigas could be mediated by alterations in gene expression, and the putative role of DNA methylation, which is known to contribute to gene regulation in early embryo development. For that purpose, oyster embryos were exposed to 4 nominal copper concentrations (0.1, 1, 10 and 20 μg L -1 Cu 2+ ) during early development assays. Embryotoxicity was monitored through the oyster embryo-larval bioassay at the D-larva stage 24 h post fertilization (hpf) and genotoxicity at gastrulation 7 hpf. In parallel, the relative expression of 15 genes encoding putative homeotic, biomineralization and DNA methylation proteins was measured at three developmental stages (3 hpf morula stage, 7 hpf gastrula stage, 24 hpf D-larvae stage) using RT-qPCR. Global DNA content in methylcytosine and hydroxymethylcytosine were measured by HPLC and gene-specific DNA methylation levels were monitored using MeDIP-qPCR. A significant increase in larval abnormalities was observed from copper concentrations of 10 μg L -1 , while significant genotoxic effects were detected at 1 μg L -1 and above. All the selected genes presented a stage-dependent expression pattern, which was impaired for some homeobox and DNA methylation genes (Notochord, HOXA1, HOX2, Lox5, DNMT3b and CXXC-1) after copper exposure. While global DNA methylation (5-methylcytosine) at gastrula stage didn't show significant changes between experimental conditions, 5-hydroxymethylcytosine, its degradation product, decreased upon copper treatment. The DNA methylation of exons and the transcript levels were correlated in control samples for HOXA1 but such

  5. Chilling- and Freezing-Induced Alterations in Cytosine Methylation and Its Association with the Cold Tolerance of an Alpine Subnival Plant, Chorispora bungeana.

    Directory of Open Access Journals (Sweden)

    Yuan Song

    Full Text Available Chilling (0-18°C and freezing (<0°C are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation mediates the adaptation to cold stresses in nature (e.g., in alpine regions. Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h. To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling and -4°C (freezing over five periods of time (0-24 h. Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h. Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana

  6. Hydrogen Inhalation Protects against Ototoxicity Induced by Intravenous Cisplatin in the Guinea Pig

    Directory of Open Access Journals (Sweden)

    Anette E. Fransson

    2017-09-01

    Full Text Available Introduction: Permanent hearing loss and tinnitus as side-effects from treatment with the anticancer drug cisplatin is a clinical problem. Ototoxicity may be reduced by co-administration of an otoprotective agent, but the results in humans have so far been modest.Aim: The present preclinical in vivo study aimed to explore the protective efficacy of hydrogen (H2 inhalation on ototoxicity induced by intravenous cisplatin.Materials and Methods: Albino guinea pigs were divided into four groups. The Cispt (n = 11 and Cispt+H2 (n = 11 groups were given intravenous cisplatin (8 mg/kg b.w., injection rate 0.2 ml/min. Immediately after, the Cispt+H2 group also received gaseous H2 (2% in air, 60 min. The H2 group (n = 5 received only H2 and the Control group (n = 7 received neither cisplatin nor H2. Ototoxicity was assessed by measuring frequency specific ABR thresholds before and 96 h after treatment, loss of inner (IHCs and outer (OHCs hair cells, and by performing densitometry-based immunohistochemistry analysis of cochlear synaptophysin, organic transporter 2 (OCT2, and copper transporter 1 (CTR1 at 12 and 7 mm from the round window. By utilizing metabolomics analysis of perilymph the change of metabolites in the perilymph was assessed.Results: Cisplatin induced electrophysiological threshold shifts, hair cell loss, and reduced synaptophysin immunoreactivity in the synapse area around the IHCs and OHCs. H2 inhalation mitigated all these effects. Cisplatin also reduced the OCT2 intensity in the inner and outer pillar cells and in the stria vascularis as well as the CTR1 intensity in the synapse area around the IHCs, the Deiters' cells, and the stria vascularis. H2 prevented the majority of these effects.Conclusion: H2 inhalation can reduce cisplatin-induced ototoxicity on functional, cellular, and subcellular levels. It is proposed that synaptopathy may serve as a marker for cisplatin ototoxicity. The effect of H2 on the antineoplastic activity of

  7. Hydrogen induced plastic deformation of stainless steel

    NARCIS (Netherlands)

    Gadgil, V.J.; Keim, Enrico G.; Geijselaers, Hubertus J.M.

    1998-01-01

    Hydrogen can influence the behaviour of materials significantly. The effects of hydrogen are specially pronounced in high fugacities of hydrogen which can occur at the surface of steels in contact with certain aqueous environments. In this investigation the effect of high fugacity hydrogen on the

  8. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    Science.gov (United States)

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  9. Fluctuations of electrical and mechanical properties of diamond induced by interstitial hydrogen

    Science.gov (United States)

    Zhuang, Chun-Qiang; Liu, Lei

    2015-01-01

    While experimental evidence demonstrates that the presence of hydrogen (H) impurities in diamond films plays a significant role in determining their physical properties, the small radius of the H atom makes detecting such impurities quite a challenging task. In the present work, first-principles calculations were employed to provide an insight into the effects of the interstitial hydrogen on the electrical and mechanical properties of diamond crystals at the atomic level. The migrated pathways of the interstitial hydrogen are dictated by energetic considerations. Some new electronic states are formed near the Fermi level. The interstitial hydrogen markedly narrows the bandgap of the diamond and weakens the diamond crystal. The obvious decrement of the critical strain clearly implies the presence of an H-induced embrittlement effect. Project supported by the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality, China (Grant No. IDHT20140504), the National Natural Science Foundation of China (Grant No. 51402009), and the Foundation for Young Scholars of Beijing University of Technology, China.

  10. The protective effect of NG-nitro-L-arginine methyl ester and insulin on nitric oxide inhibition and pathology in experimental diabetic rat liver

    International Nuclear Information System (INIS)

    Ozden, H.; Guven, G.; Tekin, N.; Akyuz, F.; Gurer, F.; Kucuk, F.; Ustuner, Mehmet C.; Yaylak, F.

    2009-01-01

    Objective was to determine on protective role of NG-nitro-L-arginine methyl ester (L-NAME) and insulin on the liver in streptoozotocin (STZ) induced diabetic rats. This study was performed in the Department of Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey in 2007. Forty male Wistar albino rats were divided into 5 groups. These were untreated, diabetic control, STZ+insulin, STZ+L-NAME and STZ+insulin+L-NAME induced groups. The STZ was intraperitonally injected into 3 groups and includes insulin, L-NAME and their joint administrations as protective agents. The blood glucose and nitric oxide (NO) levels were determined. The tissue samples were obtained at the end of the fourth week. The liver tissue distortions were evaluated using hematoxylin and eosin staining. The serum glucose level was significantly higher in diabetic control (p=0.000), than the untreated group. The focal pseudo lobular structures without vena centralis increased portal fibrillary necrosis and bile duct stenosis with voagulation necrosis of the peripheral hepatocytes were more observed in diabetic group than the protective agent groups. In addition, insulin and L-NAME lead to hepatocyte regeneration and minimal mononuclear cell infiltration was noted. NG-nitro-L-arginine methyl ester inhibits NO level in STZ+L-NAME induced group. NG-nitro-L-arginine methyl ester either alone or with insulin combination significantly attenuates the liver morphological disarrangements in STZ induced diabetic rats. (author)

  11. Influence of α-methyl group on molecular aggregation structure and surface physicochemical properties of fluoroalkyl side chain polymers

    International Nuclear Information System (INIS)

    Honda, K; Yamaguchi, H; Takahara, A; Sakata, O; Sasaki, S; Takata, M; Morita, M

    2009-01-01

    Influence of α-methyl group on molecular aggregation states and surface physicochemical properties of poly(fluoroalkyl acrylate)s [PFA-C y , where y is fluoromethylene number in R f group] and poly(fluoroalkykl methacrylate)s [PFMA-C y ] thin films were systematically investigated. Spin-coated PFA-C y and PFMA-C y thin films were characterized by dynamic contact angle measurements and grazing-incidence wide-angle X-ray diffraction (GIWAXD) measurements. GIWAXD data revealed that fluoroalkyl side chains of PFA-C y and PFMA-C y with y≥8 formed regular structures in the surface region as well as bulk one. However, the degree of orientation and ordering of the R f groups of PFMA-C 8 thin films was low. Also, the receding contact angle (θ r ) of PFMA-C 8 thin films was lower than that of PFA-C 8 ones. By annealing treatment, the θ r of PFMA-C 8 was increased. These results suggest that the R f groups of PFMA-C 8 were disordered due to presence of the α-methyl group. The R f groups became ordered to pack closely each other by annealing treatment, so that the water repellency was increased.

  12. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups.

    Science.gov (United States)

    Hasan, Sonia M K; Redzic, Zoran B; Alshuaib, Waleed B

    2013-07-03

    This study examined the effect of H2O2 on the delayed rectifier potassium current (IKDR) in isolated hippocampal neurons. Whole-cell voltage-clamp experiments were performed on freshly dissociated hippocampal CA1 neurons of SD rats before and after treatment with H2O2. To reveal the mechanism behind H2O2-induced changes in IKDR, cells were treated with different oxidizing and reducing agents. External application of membrane permeable H2O2 reduced the amplitude and voltage-dependence of IKDR in a concentration dependent manner. Desferoxamine (DFO), an iron-chelator that prevents hydroxyl radical (OH) generation, prevented H2O2-induced reduction in IKDR. Application of the sulfhydryl-oxidizing agent 5,5 dithio-bis-nitrobenzoic acid (DTNB) mimicked the effect of H2O2. Sulfhydryl-reducing agents dithiothreitol (DTT) and glutathione (GSH) alone did not affect IKDR; however, DTT and GSH reversed and prevented the H2O2-induced inhibition of IKDR, respectively. Membrane impermeable agents GSH and DTNB showed effects only when added intracellularly identifying intracellular sulfhydryl groups as potential targets for hydroxyl-mediated oxidation. However, the inhibitory effects of DTNB and H2O2 at the positive test potentials were completely and partially abolished by DTT, respectively, suggesting an additional mechanism of action for H2O2, that is not shared by DTNB. In summary, this study provides evidence for the redox modulation of IKDR, identifies hydroxyl radical as an intermediate oxidant responsible for the H2O2-induced decrease in current amplitude and identifies intracellular sulfhydryl groups as an oxidative target. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines.

    Science.gov (United States)

    Kumar, Ashok; Rai, Padmalatha S; Upadhya, Raghavendra; Vishwanatha; Prasada, K Shama; Rao, B S Satish; Satyamoorthy, Kapettu

    2011-11-01

    Ionizing radiation induces cellular damage through both direct and indirect mechanisms, which may include effects from epigenetic changes. The purpose of this study was to determine the effect of ionizing radiation on DNA methylation patterns that may be associated with altered gene expression. Sixteen human tumor cell lines originating from various cancers were initially tested for radiation sensitivity by irradiating them with γ-radiation in vitro and subsequently, radiation sensitive and resistant cell lines were treated with different doses of a demethylating agent, 5-Aza-2'-Deoxycytidine (5-aza-dC) and a chromatin modifier, Trichostatin-A (TSA). Survival of these cell lines was measured using 3-(4, 5-Dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium (MTT) and clonogenic assays. The effect of radiation on global DNA methylation was measured using reverse phase high performance liquid chromatography (RP-HPLC). The transcription response of methylated gene promoters, from cyclin-dependent kinase inhibitor 2A (p16(INK4a)) and ataxia telangiectasia mutated (ATM) genes, to radiation was measured using a luciferase reporter assay. γ-radiation resistant (SiHa and MDAMB453) and sensitive (SaOS2 and WM115) tumor cell lines were examined for the relationship between radiation sensitivity and DNA methylation. Treatment of cells with 5-aza-dC and TSA prior to irradiation enhanced DNA strand breaks, G2/M phase arrest, apoptosis and cell death. Exposure to γ-radiation led to global demethylation in a time-dependent manner in tumor cells in relation to resistance and sensitivity to radiation with concomitant activation of p16(INK4a) and ATM gene promoters. These results provide important information on alterations in DNA methylation as one of the determinants of radiation effects, which may be associated with altered gene expression. Our results may help in delineating the mechanisms of radiation resistance in tumor cells, which can influence diagnosis, prognosis and

  14. Hydrogen sulfide protects HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Ya-Dan Wen

    Full Text Available BACKGROUND: Hydrogen sulfide (H₂S has been shown to have cytoprotective effects in models of hypertension, ischemia/reperfusion and Alzheimer's disease. However, little is known about its effects or mechanisms of action in atherosclerosis. Therefore, in the current study we evaluated the pharmacological effects of H₂S on antioxidant defenses and mitochondria protection against hydrogen peroxide (H₂O₂ induced endothelial cells damage. METHODOLOGY AND PRINCIPAL FINDINGS: H₂S, at non-cytotoxic levels, exerts a concentration dependent protective effect in human umbilical vein endothelial cells (HUVECs exposed to H₂O₂. Analysis of ATP synthesis, mitochondrial membrane potential (ΔΨm and cytochrome c release from mitochondria indicated that mitochondrial function was preserved by pretreatment with H₂S. In contrast, in H₂O₂ exposed endothelial cells mitochondria appeared swollen or ruptured. In additional experiments, H₂S was also found to preserve the activities and protein expressions levels of the antioxidants enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase in H₂O₂ exposed cells. ROS and lipid peroxidation, as assessed by measuring H₂DCFDA, dihydroethidium (DHE, diphenyl-l-pyrenylphosphine (DPPP and malonaldehyde (MDA levels, were also inhibited by H₂S treatment. Interestingly, in the current model, D, L-propargylglycine (PAG, a selective inhibitor of cystathionine γ-lyase (CSE, abolished the protective effects of H₂S donors. INNOVATION: This study is the first to show that H₂S can inhibit H₂O₂ mediated mitochondrial dysfunction in human endothelial cells by preserving antioxidant defences. SIGNIFICANCE: H₂S may protect against atherosclerosis by preventing H₂O₂ induced injury to endothelial cells. These effects appear to be mediated via the preservation of mitochondrial function and by reducing the deleterious effects of oxidative stress.

  15. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  16. Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2010-11-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.

  17. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    International Nuclear Information System (INIS)

    Qian, Xin; Li, Xinghui; Ma, Fenfen; Luo, Shanshan; Ge, Ruowen; Zhu, Yizhun

    2016-01-01

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H_2S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.

  18. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Xin [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Li, Xinghui [Departments of Physiology and Pathophysiology, Shanghai College of Medicine, Fudan University, Shanghai (China); Ma, Fenfen; Luo, Shanshan [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Ge, Ruowen [Departmentof Biological Sciences, National University of Singapore (Singapore); Zhu, Yizhun, E-mail: zhuyz@fudan.edu.cn [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Departmentof Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (Singapore)

    2016-05-13

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H{sub 2}S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.

  19. The use of alpha-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations

    OpenAIRE

    Moreira, Fabiana G.; Lenartovicz, Veridiana; Souza, Cristina G.M. de; Ramos, Edivan P.; Peralta, Rosane M.

    2001-01-01

    The use of a methyl-D-glucoside (alphaMG), a synthetic analogue of maltose, as carbon source and inducer of amylase synthesis to several species of Aspergillus was studied in submerged and solid-state fermentations. Among a group of ten species, A. tamarii, A. fumigatus and A. flavus were able to produce biomass and high specific amylolytic activity in submerged cultures containing alphaMG as the only carbon source. In solid state fermentation, the enrichment of basal wheat bran or corn cob m...

  20. DNA Methylation Modulates Nociceptive Sensitization after Incision.

    Directory of Open Access Journals (Sweden)

    Yuan Sun

    Full Text Available DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT inhibitor 5-Aza-2'-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2'-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision.

  1. Investigation of microstructure changes in ODS-EUROFER after hydrogen loading

    International Nuclear Information System (INIS)

    Emelyanova, O.V.; Ganchenkova, M.G.; Malitskii, E.; Yagodzinskyy, Y.N.; Klimenkov, M.; Borodin, V.A.; Vladimirov, P.V.; Lindau, R.; Möslang, A.; Hänninen, H.

    2016-01-01

    The effect of hydrogen on the microstructure of mechanically tested ODS-EUROFER steel was investigated by means of transmission electron microscopy, thermal desorption spectroscopy, and atomistic simulations. The presence of yttrium oxide particles notably increases hydrogen uptake in ODS-EUROFER steel as compared to ODS-free EUROFER 97. Under tensile loading, hydrogen accumulation promotes the loss of cohesion at the oxide particle interfaces. First-principles molecular dynamics simulations indicate that hydrogen can be trapped at nanoparticle/matrix interface, creating OH-groups. The accumulation of hydrogen atoms at the oxide particle surface can be the reason for the observed hydrogen-induced oxide/matrix interface weakening and de-cohesion under the action of external tensile stress.

  2. Parameter estimation for hydrogen analysis by using transport method

    International Nuclear Information System (INIS)

    Selvi, S.; Can, N.

    1992-01-01

    A transport method is described which reduces greatly the number of calibration standards needed for hydrogen analysis by neutron induced prompt γ-rays. The counts in the photopeaks from neutron capture in hydrogen for various standard concentrations, the distribution of the source neutron rate entering the thermal group and the reaction rates in the samples are investigated theoretically using 100 energy group cross sections and experimental 252 Cf spectra for a test configuration. Comparison of theoretical results with those measured from the test configuration shows good agreement. (author)

  3. Effect of intermolecular cohesion on coal liquefaction. 3. Reactivity of oxygen methylated coal; Sekitan teibunshika hanno ni okeru bunshikan gyoshuryoku no koka. 3. O-methyl ka tan no hanno tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, M.; Nagaishi, H.; Yoshida, T. [Hokkaido National Industrial Research Institute, Sapporo (Japan)

    1996-10-28

    The reactivity of oxygen methylated coal was studied to control hydrogen bond in bituminous coal liquefaction and intermolecular cohesion such as van der Waals force. In experiment, crushed and dried Illinois coal of 100mesh or less was used as specimen, and oxygen methylated coal was prepared by Liotta`s method using tetrabutylammonium halide. Coal liquefaction was conducted in an electromagnetic agitation autoclave using tetralin solvent under initial hydrogen pressure of 100kg/cm{sup 2} while heating. The molecular weight distribution of the products obtained was measured by gel permeation chromatography (GPC) analysis. The experimental results are as follows. The effect of intermolecular cohesion in bituminous coal on the reactivity is mainly derived from decomposing reaction from preasphaltene to oil. Yields of oil fraction by methylation increase corresponding to release of intermolecular cohesion. Since the thermal release is promoted with temperature rise, the difference in yield due to different treatments decreases. 5 refs., 3 figs., 1 tab.

  4. Solid state {sup 1}H spin-lattice relaxation and isolated-molecule and cluster electronic structure calculations in organic molecular solids: The relationship between structure and methyl group and t-butyl group rotation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianlong, E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, 4 North Jianshe Rd., 2nd Section, Chengdu 610054 (China); Mallory, Frank B. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Mallory, Clelia W. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Odhner, Hosanna R.; Beckmann, Peter A., E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Department of Physics, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States)

    2014-05-21

    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state {sup 1}H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the {sup 1}H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.

  5. Hydrogen-induced cracking: 2

    International Nuclear Information System (INIS)

    Puls, M.P.

    1984-12-01

    There is a strong motivation for understanding the factors controlling zirconium hydride reorientation under stress because of the important role this plays in hydrogen-induced crack growth and/or crack initiation in zirconium and its alloys, particularly under thermal cycling conditions. Following an approach developed by Sauthoff, an analysis of the orienting effect of external stress on the nucleation, growth and coarsening of γ- and delta-zirconium hydride precipitates in zirconium and its alloys is presented. The analysis is based on a previous theoretical study of some of the factors affecting hydride solubility in stressed and unstressed solids. Expressions are derived for the effect of stress on nucleation, growth and coarsening. We conclude, on the basis of these that the preferential orientation of hydride precipitates under stress is most efficient during the nucleation stage. The reason for this is that the overall driving force for nucleation, for the chosen parameters and the usual experimental conditions, is fairly small. Therefore, the driving force for orientating under stress can be a substantial fraction of the overall driving force. The analysis shows that hydride growth is unlikely to play a role in preferential orientation, but coarsening could be important under carefully chosen experimental conditions, which may be relevant to the hydride-cracking process

  6. GLOBAL PROPERTIES OF NEUTRAL HYDROGEN IN COMPACT GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lisa May [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Johnson, Kelsey E. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Gallagher, Sarah C. [Department of Physics and Astronomy, University of Western Ontario, London, ON (Canada); Privon, George C. [Departamento de Astronomía, Universidad de Concepción, Concepción (Chile); Kepley, Amanda A. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Whelan, David G. [Physics Department, Austin College, Sherman, TX 75090 (United States); Desjardins, Tyler D. [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Zabludoff, Ann I. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2016-02-15

    Compact groups of galaxies provide a unique environment to study the evolution of galaxies amid frequent gravitational encounters. These nearby groups have conditions similar to those in the earlier universe when galaxies were assembled and give us the opportunity to witness hierarchical formation in progress. To understand how the compact group environment affects galaxy evolution, we examine the gas and dust in these groups. We present new single-dish GBT neutral hydrogen (H i) observations of 30 compact groups and define a new way to quantify the group H i content as the H i-to-stellar mass ratio of the group as a whole. We compare the H i content with mid-IR indicators of star formation and optical [g − r] color to search for correlations between group gas content and star formation activity of individual group members. Quiescent galaxies tend to live in H i-poor groups, and galaxies with active star formation are more commonly found in H i-rich groups. Intriguingly, we also find “rogue” galaxies whose star formation does not correlate with group H i content. In particular, we identify three galaxies (NGC 2968 in RSCG 34, KUG 1131+202A in RSCG 42, and NGC 4613 in RSCG 64) whose mid-IR activity is discrepant with the H i. We speculate that this mismatch between mid-IR activity and H i content is a consequence of strong interactions in this environment that can strip H i from galaxies and abruptly affect star formation. Ultimately, characterizing how and on what timescales the gas is processed in compact groups will help us understand the interstellar medium in complex, dense environments similar to the earlier universe.

  7. GLOBAL PROPERTIES OF NEUTRAL HYDROGEN IN COMPACT GROUPS

    International Nuclear Information System (INIS)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Privon, George C.; Kepley, Amanda A.; Whelan, David G.; Desjardins, Tyler D.; Zabludoff, Ann I.

    2016-01-01

    Compact groups of galaxies provide a unique environment to study the evolution of galaxies amid frequent gravitational encounters. These nearby groups have conditions similar to those in the earlier universe when galaxies were assembled and give us the opportunity to witness hierarchical formation in progress. To understand how the compact group environment affects galaxy evolution, we examine the gas and dust in these groups. We present new single-dish GBT neutral hydrogen (H i) observations of 30 compact groups and define a new way to quantify the group H i content as the H i-to-stellar mass ratio of the group as a whole. We compare the H i content with mid-IR indicators of star formation and optical [g − r] color to search for correlations between group gas content and star formation activity of individual group members. Quiescent galaxies tend to live in H i-poor groups, and galaxies with active star formation are more commonly found in H i-rich groups. Intriguingly, we also find “rogue” galaxies whose star formation does not correlate with group H i content. In particular, we identify three galaxies (NGC 2968 in RSCG 34, KUG 1131+202A in RSCG 42, and NGC 4613 in RSCG 64) whose mid-IR activity is discrepant with the H i. We speculate that this mismatch between mid-IR activity and H i content is a consequence of strong interactions in this environment that can strip H i from galaxies and abruptly affect star formation. Ultimately, characterizing how and on what timescales the gas is processed in compact groups will help us understand the interstellar medium in complex, dense environments similar to the earlier universe

  8. Root cause study on hydrogen generation and explosion through radiation-induced electrolysis in the Fukushima Daiichi accident

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Genn, E-mail: sajig@bd5.so-net.ne.jp

    2016-10-15

    Highlights: • Reviewed how LWRs have coped with “water radiolysis”, during normal operation to severe accidents. • Concluded “water radiolysis” is not likely a route course of the hydrogen explosions at Fukushima. • Performed modeling studies based on “radiation-induced electrolysis” on Unit 1–Unit 4. • Generation of several tens of thousands cubic meters hydrogen gas is predicted before the hydrogen explosions. • Upon SBO, early safe disposal of hydrogen from RPVs is indispensable in BWRs. - Abstract: Since the scientific cause for a series of hydrogen explosions during the Fukushima accident has not been established, the author investigated his basic theory named “radiation-induced electrolysis (RIE)” by applying the estimation of the amounts of H{sub 2} generation during the active phase of the Fukushima accident. The author's theory was originally developed by including Faraday's law of electrolysis into the basic time-dependent material balance equation of radiation-chemical species for his study on accelerated corrosion phenomena which is widely observed in aged plants. As such this theory applies to the early phase of the accident before the loss of water levels in the reactor cores, although the simulations were performed from the time of seismic reactor trip to the hydrogen explosions in this paper. Through this mechanism as much as 29,400 m{sup 3}-STP of hydrogen gas is estimated to be accumulated inside the PCV just prior to the hydrogen explosion which occurred one day after the reactor trip in 1F1. With this large volume of hydrogen gas the explosion was a viable possibility upon the “venting” operation. In view of this observation, hydrogen generation from the spent fuel pools was also investigated. For the investigation of the 1F4 SFP, the pool water temperature and flow velocity due to natural circulation were changed widely to identify conditions of large hydrogen generation. During the trial calculations

  9. Effects on gastric mucosa induced by dental bleaching – an experimental study with 6% hydrogen peroxide in rats

    Directory of Open Access Journals (Sweden)

    Anabela Baptista PAULA

    2015-10-01

    Full Text Available The value of aesthetic dentistry has precipitated several developments in the investigation of dental materials related to this field. The free marketing of these products is a problem and it is subject to various interpretations regarding its legality. There are several techniques for tooth whitening, the most used one being the external bleaching. It is the later version of such technique that poses the greatest danger of ingesting the product. The present study analysed the systemic effect of these products when they are swallowed.Objective This experimental study aimed to observe the effects of a tooth whitening product, whose active agent is 6% hydrogen peroxide, on the gastric mucosa of healthy and non-tumour gastric pathology animals.Material and Methods Fifty Wistar-Han rats were used and then distributed into 5 groups, one for control and four test groups in which the bleaching product was administered in animals with and without non-tumour gastric pathology (induced by the administration of 1 sample of 50% ethanol and 5% of drinking water during 6 days at different times of study by gavage. There was a decrease in body weight in animals of groups handled during the study period, which was most pronounced in IV and VA groups. Changes in spleen weight relative to body weight revealed no statistically significant changes. An analysis of the frequency was performed on the results of macroscopic observation of the gastric mucosa.Results The gastric mucosa revealed lesions in all manipulated groups, being more frequent in groups III and IV. It appears that there is a synergism when using hydrogen peroxide and 50% ethanol in the same group.Conclusion Therefore, it seems that there are some signs of toxicity 3 to 4 days after administration of 6% hydrogen peroxide. The prescription of these therapies must be controlled by the clinician and the risks must be minimized.

  10. Damped Quantum Rotation of the Methyl Group in 9-Methyltriptycene Derivatives. The Magnitude of The Effect vs. The Activation Energy

    International Nuclear Information System (INIS)

    Czerski, I.; Szymanski, S.

    2005-01-01

    According to the damped quantum rotation (DQR) theory, hindered rotation of methyl groups, reflected in NMR spectra, is a quantum mechanical process controlled by two quantum mechanical rate constants k t and k K . The subscripts t and K, designating '' tunneling '' and '' Kramers '', refer to two specific, long-lived quantum coherence in the methyl rotor system each of which engages the space and spin coordinates of the three protons, correlated by the Pauli principle. Only in the instances where k t and k K happen to be equal, the NMR picture will be the same as for a hypothetical CH 3 group undergoing classical jumps between its three equivalent orientations, described by single rate constant k '. Departure of the ratio c = k t /k K from 1 can thus serve as a quick measure of the degree of non classicality in the stochastic dynamics of the methyl group or, in other words, of the magnitude of the DQR effect. When the Arrhenius activation energy, Ea, for k K is about 12 kJmol -1 , the non classicality factor c can exceed 5. This is an inference from our recent single-crystal NMR studies at temperatures 60 - 110 K. On an intuitive ground, there should be an inverse (but hardly linear) correlation between E a and c. Indeed, for strongly hindered methyl group in 9-methyltripticene derivatives for which the activation energies can exceed 37 kJmol -1 , the DQR effect proves to be much smaller, with the corresponding values of c not exceeding 1.20. Nonetheless, for the values of c above 1.10 it can still be clearly seen in liquid-phase NMR spectra. Here we report on our recent liquid-phase NMR experiments with a series of 9-methyltriptycene derivatives for which the values of E a for k K span the range 37.4 - 44.8 kJmol -1 while the respective, average values of c vary between 1.04 and 1.20. It comes out that, within such a narrow variability range of E a , the correlation between c and E a no longer holds. For example, for 1,2,3,4-tetrabromo-9,10-dimethyltriptycene

  11. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway.

    Science.gov (United States)

    Wu, Juan; Liu, Xinhui; Fan, Jinjin; Chen, Wenfang; Wang, Juan; Zeng, Youjia; Feng, Xiaorang; Yu, Xueqing; Yang, Xiao

    2014-04-06

    Bardoxolone methyl (BARD) is an antioxidant modulator that acts through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This study aimed to investigate the role of BARD in protecting kidneys from aristolochic acid (AA)-induced acute kidney injury (AKI). Male C57BL/6 mice received intraperitoneal (i.p.) injections of aristolochic acid I (AAI) (5mg/kg/day) for 5 days to produce acute AA nephropathy (AAN) model. BARD (10mg/kg/day, i.p.) was applied for 7 consecutive days, starting 2 days prior to AAI administration. The mice in the AA group showed AKI as evidenced by worsening kidney function evaluated by blood urea nitrogen (BUN) and serum creatinine (SCr) levels, and severe tubulointerstitial injury marked by massive tubule necrosis in kidney tissues. BARD significantly reduced BUN and SCr levels which were elevated by AAI. Additionally, AAI-induced histopathological renal damage was ameliorated by BARD. Furthermore, the expression of Nrf2 was reduced, and its repressor Kelch-like ECH-associated protein 1 (Keap1) was increased significantly, whereas heme oxygenase-1 (HO-1) was upregulated and NAD(P)H quinone oxidoreductase-1 (NQO1) was barely increased in the cytoplasm of tubules in kidneys after treatment with AAI. BARD significantly upregulated renal Nrf2, NQO1 and HO-1 expression and downregulated Keap1 expression compared with those in the AA group. Moreover, it was found that Nrf2 was expressed both in the cytoplasm and nuclear of glomeruli and tubules, whereas NQO1 and HO-1 were localized in the cytoplasm of tubules only. In conclusion, AA-induced acute renal injury was associated with impaired Nrf2 activation and expression of its downstream target genes in renal tissues. BARD prevented renal damage induced by AAI, and this renoprotective effect may be exerted by activating the Nrf2 signaling pathway and increasing expression of the downstream target genes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. 8-Alkylcoumarins from the Fruits of Cnidium monnieri Protect against Hydrogen Peroxide Induced Oxidative Stress Damage

    Directory of Open Access Journals (Sweden)

    Chi-I Chang

    2014-03-01

    Full Text Available Three new 8-alkylcoumarins, 7-O-methylphellodenol-B (1, 7-methoxy-8-(3-methyl- 2,3-epoxy-1-oxobutylchromen-2-one (2, and 3'-O-methylvaginol (3, together with seven known compounds (4–10 were isolated from the fruits of Cnidium monnieri. Their structures were determined by detailed analysis of spectroscopic data and comparison with the data of known analogues. All the isolates were evaluated the cytoprotective activity by MTS cell proliferation assay and the results showed that all the three new 8-alkylcoumarins exhibited cytoprotective effect on Neuro-2a neuroblastoma cells injured by hydrogen peroxide.

  13. The use of alpha-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations

    Directory of Open Access Journals (Sweden)

    Fabiana G. Moreira

    2001-03-01

    Full Text Available The use of a methyl-D-glucoside (alphaMG, a synthetic analogue of maltose, as carbon source and inducer of amylase synthesis to several species of Aspergillus was studied in submerged and solid-state fermentations. Among a group of ten species, A. tamarii, A. fumigatus and A. flavus were able to produce biomass and high specific amylolytic activity in submerged cultures containing alphaMG as the only carbon source. In solid state fermentation, the enrichment of basal wheat bran or corn cob medium with alphaMG increased up to 3 times the production of amylases. In both submerged and solid state fermentations, alphaMG was more effective inducer of amylases than maltose and starch.

  14. The use of a-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations

    Directory of Open Access Journals (Sweden)

    Moreira Fabiana G.

    2001-01-01

    Full Text Available The use of a methyl-D-glucoside (alphaMG, a synthetic analogue of maltose, as carbon source and inducer of amylase synthesis to several species of Aspergillus was studied in submerged and solid-state fermentations. Among a group of ten species, A. tamarii, A. fumigatus and A. flavus were able to produce biomass and high specific amylolytic activity in submerged cultures containing alphaMG as the only carbon source. In solid state fermentation, the enrichment of basal wheat bran or corn cob medium with alphaMG increased up to 3 times the production of amylases. In both submerged and solid state fermentations, alphaMG was more effective inducer of amylases than maltose and starch.

  15. Alteration in Methylation Pattern of Retinoblastoma 1 Gene Promotor Region in Intestinal Metaplasia with or without Helicobacter pylori and Gastric Cancer Patients.

    Science.gov (United States)

    Boyacioglu, Seda Orenay; Kasap, Elmas; Yuceyar, Hakan; Korkmaz, Mehmet

    2016-01-01

    Helicobacter pylori, intestinal metaplasia (IM), and gene methylation play important roles in gastric carcinogenesis. However, the association among H. pylori infection, IM, gastric cancer (GC), and gene methylation is not fully understood. Cell cycle control involving retinoblastoma 1 (RB1) gene is one of the main regulatory pathways reported to be altered in gastric carcinogenesis. The purpose of this research is to assess the methylation status of RB1 gene in GC and IM with or without H. pylori infection, and to discuss the possible role of H. pylori-induced RB1 gene methylation in the mechanism of gastric carcinogenesis. The methylation profile of RB1 gene was analyzed by sodium bisulfite modification and methylation-specific PCR in GC (n = 24), IM patients with H. pylori positive (n = 20) and negative (n = 20), and control subjects (n = 20). According to methylation levels in RB1 gene; the high correlation values were detected between H. pylori positive-IM group and GC group, and between H. pylori positive-IM and H. pylori negative-IM groups (p gene. High methylation levels in RB1 gene in H. pylori positive individuals may suggest an elevated risk of gastric cancer occurrence.

  16. Methyl and isopropyl N-methylanthranilates attenuate diclofenac- and ethanol-induced gastric lesions in rats.

    Science.gov (United States)

    Radulović, Niko S; Jovanović, Ivan; Ilić, Ivan R; Randjelović, Pavle J; Stojanović, Nikola M; Miltojević, Ana B

    2013-11-19

    Two natural alkaloids, methyl (M) and isopropyl (I) N-methylanthranilates, with recently demonstrated significant pharmacological activities, were assayed for their possible overall effect on intact gastric mucosa and their protective properties towards the onset of gastric lesions induced by diclofenac (a non-steroidal anti-inflammatory drug, NSAID) or ethanol. The influence of I and M on gastric mucosa integrity was assessed by oral administration in doses of 200mg/kg. The gastroprotective action of I and M in doses of 50, 100 and 200mg/kg was analyzed in the diclofenac and ethanol-induced gastric lesion models in rats. After the treatment, the stomachs of the animals were analyzed (captured by a digital camera). Ulcer scoring, morphometric and histopathological analyses of the stomachs were done. The oral application of these compounds on their own, even in quite high doses (200mg/kg) did not induce gastric lesions. Both alkaloids exerted a very strong antiulcer activity, even in low doses (50mg/kg), by decreasing the number of lesions caused by the application of either diclofenac or ethanol, eliminating them completely or reducing them to a form of mucosal hyperemia. Their possible mechanism of action was discussed and due to their many positive properties including anxiolytic, antidepressant, antinociceptive, anti-inflammatory and gastroprotective activities, as well as a cheap and simple synthetic route for their preparation, methyl and isopropyl N-methylanthranilates, both alike, might represent a cost effective alternative sought for in the treatment of peptic ulcers and/or new safer NSAIDs for pain management. © 2013.

  17. What climate information is recorded in stable isotope ratios of wood lignin methoxyl groups?

    Science.gov (United States)

    Greule, Markus; Keppler, Frank

    2010-05-01

    The stable isotope composition of the bioelements C, O, H and N in plant organic matter is known to be a very powerful for various environmental impacts. Particularly tree rings are suitable for this analysis because they exhibit a "climate archive" with a yearly or even biannual resolution. One of the most determined wood compounds is cellulose which amongst others is used to reconstruct the temperature due to measurement of stable hydrogen and oxygen isotopes. Therefore cellulose is converted into cellulose nitrate to eliminate the exchangeable hydroxyl hydrogen or equilibration methods are used. However, a general problem associated with the determination of the stable hydrogen values of marker compounds for the study of climate and environmental conditions is the isolation of the pure compound for analysis by isotope ratio mass spectrometry. Exploitation of components of wood as markers, in particular, has been restricted by the very labour intensive and time consuming preparation of samples (e.g. cellulose nitrate). An alternative way to record climate information from tree rings was recently proposed by Keppler et al. (2007) who measured the stable hydrogen values of methoxyl groups in wood. Lignin methoxyl groups are considered to be stable, i.e. the hydrogen atoms of the methoxyl moiety do not exchange with those of plant water during ongoing metabolic reactions in the plant. Thus the initial deuterium content of the methoxyl groups of lignin in woody tissue at formation is retained throughout the lifetime of the tree and in preserved tissue. The methoxyl content of lignin in wood is usually determined by the Zeisel method (Zeisel, 1885) - the reaction between methyl ethers and hydroiodic acid to form methyl iodide. Exploiting this reaction for the measurement of stable hydrogen values of lignin methoxyl groups ensures that during the entire analytical procedure the isotope signal is preserved since no isotopic exchange occurs between the methyl groups and

  18. Diatomite-supported Pd-M (M=Cu, Co, Ni) bimetal nanocatalysts for selective hydrogenation of long-chain aliphatic esters.

    Science.gov (United States)

    Huang, Changliang; Zhang, Hongye; Zhao, Yanfei; Chen, Sha; Liu, Zhimin

    2012-11-15

    Diatomite supported Pd-M (M=Cu, Co, Ni) bimetal nanocatalysts with various metal compositions were prepared and characterized by means of X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was demonstrated that the metal nanoparticles were uniformly distributed on the support, and their size was centered around 8 nm with a relatively narrow size distribution. The catalysts were used to catalyze hydrogenation of long-chain aliphatic esters, including methyl palmitate, methyl stearate, and methyl laurate. It was indicated that the all diatomite-supported Pd-based bimetal catalysts were active to the selective hydrogenation of long-chain esters to corresponding alcohols at 270°C, originated from the synergistic effect between the metal particles and the diatomite support. For the selective hydrogenation of methyl palmitate, Pd-Cu/diatomite with metal loading of 1% and Pd/Cu=3 displayed the highest performance, giving a 1-hexadecanol yield of 82.9% at the substrate conversion of 98.8%. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.

    Science.gov (United States)

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-03-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER.

  20. Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate

    International Nuclear Information System (INIS)

    Sahraoui, Lakhdar; Khimeche, Kamel; Dahmani, Abdallah; Mokbel, Ilham; Jose, Jacques

    2016-01-01

    Highlight: • Vapor-liquid equilibria, Enthalpy of Vaporization, saturated Fatty Acid Methyl Ester. - Abstract: Vapor pressures of six saturated Fatty Acid Methyl Esters (FAMEs), methyl hexanoate (or methyl caproate), methyl octanoate (or methyl caprylate), Methyl decanoate (or methyl caprate), methyl dodecanoate (or methyl laurate), methyl tetradecanoate (or methyl myristate), and methyl hexadecanoate (or methyl palmitate) were measured from 1 Pa to 100 kPa and at temperature range between 262 and 453 K using a static apparatus. The experimental data (P-T) were compared with the available literature data.

  1. Site-Specific Hydrogen Isotope Composition of Propane: Mass spectrometric methods, equilibrium temperature dependence, and kinetics of exchange

    Science.gov (United States)

    Xie, H.; Ponton, C.; Kitchen, N.; Lloyd, M. K.; Lawson, M.; Formolo, M. J.; Eiler, J. M.

    2016-12-01

    Intramolecular isotope ordering can constrain temperatures of synthesis, mechanisms of formation, and/or source substrates of organic compounds. Here we explore site-specific hydrogen isotope variations of propane. Statistical thermodynamic models predict that at equilibrium methylene hydrogen (-CH2-) in propane will be 10's of per mil higher in D/H ratio than methyl hydrogen (-CH3) at geologically relevant temperatures, and that this difference is highly temperature dependent ( 0.5-1 ‰/°C). Chemical-kinetic controls on site-specific D/H in propane could constrain the mechanisms, conditions and extents of propane synthesis or destruction. We have developed a method for measuring the difference in D/H ratio between methylene and methyl hydrogen in propane by gas source mass spectrometry. The data were measured using the Thermo Fisher Double Focusing Sector high resolution mass spectrometer (DFS), and involve comparison of the D/H ratios of molecular ion (C3H8+) and the ethyl fragmental ion (C2H5+). We demonstrate the accuracy and precision of this method through analysis of D-labeled and independently analyzed propanes. In the exchange experiments, propane was heated (100-200 oC) either alone or in the presence of D-enriched water (δD=1,1419 ‰ SMOW), with or without one of several potentially catalytic substrates for hours to weeks. Propane was found to exchange hydrogen with water vigorously at 200 °C in the presence of metal catalysts. In the presence of Ni catalyst, methylene hydrogen exchanges 2.5 times faster than methyl hydrogen. Hydrogen exchange in the presence of Pd catalyst is more effective and can equilibrate hydrogen isotope distribution on propane on the order of 7 days. Isotopic exchange in the presence of natural materials have also been tested, but is only measurable in the methylene group at 200 °C. High catalytic activity of Pd permits attainment of a bracketed, time-invariant equilibrium state that we use to calibrate the site

  2. Alkaloid fraction of Uncaria rhynchophylla protects against N-methyl-D-aspartate-induced apoptosis in rat hippocampal slices.

    Science.gov (United States)

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Sun-Yeou; Kim, Hocheol; Kim, Chang-Ju; Lim, Eunhee

    2003-09-04

    Uncaria rhynchophylla is a medicinal herb which has sedative and anticonvulsive effects and has been applied in the treatment of epilepsy in Oriental medicine. In this study, the effect of alkaloid fraction of U. rhynchophylla against N-methyl-D-aspartate (NMDA)-induced neuronal cell death was investigated. Pretreatment with an alkaloid fraction of U. rhynchophylla for 1 h decreased the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices and also inhibited NMDA-induced enhanced expressions of apoptosis-related genes such as c-jun, p53, and bax. In the present study, the alkaloid fraction of U. rhynchophylla was shown to have a protective property against NMDA-induced cytotoxicity by suppressing the NMDA-induced apoptosis in rat hippocampal slices.

  3. Hydrogen damage in stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1981-01-01

    Hydrogen damage has been studied in a wide variety of stainless steels. Both internal and external hydrogen damage were evaluated by ductility or J-integral under rising tensile loads and by fractography. Analysis of the data has emphasized the potential effects of strain-induced martensite on hydrogen damage. Strain-induced martensite was neither necessary nor sufficient for hydrogen damage in the alloys studied. Neither ductility loss nor fracture-mode change correlated generally with martensite formation. Alloy composition, particularly nickel and nitrogen contents, was the primary factor in resistance to hydrogen damage. Thermomechanical processing, however, could alter the degree of hydrogen damage in an alloy and was critical for optimizing resistance to hydrogen damage. 10 figures, 10 tables

  4. Synthesis of racemic [methyl-d3]-labeled cis- and trans-3'-hydroxycotinine

    International Nuclear Information System (INIS)

    Ravard, A.; Crooks, P.A.

    1994-01-01

    A method is described for the synthesis of the racemic [methyl-d 3 ] forms of the nicotine metabolites cis-3'-hydroxycotinine and trans-3'-hydroxycotinine. The key intermediate was [methyl-d 3 ]-N-methylhydroxylamine, obtained from a selective hydrogenation of d 3 -nitro-methane. This intermediate was converted to [methyl-d 3 ]-α-3-pyridyl-N-methylnitrone, which was condensed with methyl acrylate to give a mixture of isomeric isoxazolidines. The hydrogenolysis of this mixture afforded a 70:30 mixture of [methyl-d 3 ] cis- and trans-3'-hydroxycotinine, from which the pure cis-isomer could be isolated by recrystallization from acetone. [Methyl-d 3 ]-trans-3'-hydroxycotinine could be prepared in high yield from the cis-isomer via chiral inversion utilizing a Mitsunobu reaction, or by chromatographic separation from a mixture of the cis- and trans-3'-benzoyloxycotinine, followed by O-debenzoylation in methanolic NaOH. (author)

  5. Hydrogen charging/discharging system with liquid organic compounds: a lacunar oxide catalyst to hydrogenate the unsaturated organic compound

    International Nuclear Information System (INIS)

    Jalowiecki-Duhamel, L.; Carpentier, J.; Payen, E.; Heurtaux, F.

    2006-01-01

    Lacunar mixed oxides based on cerium nickel and aluminium or zirconium CeM 0.5 Ni x O y s (M = Zr or Al), able to store high quantities of hydrogen, have been analysed in the hydrogenation of toluene into methyl-cyclohexane (MCH). When these solids present very good toluene hydrogenation activity and selectivity towards MCH in presence of H 2 , in absence of gaseous hydrogen, the reactive hydrogen species stored in the solid can hydrogenate toluene into MCH. The hydrogenation activity under helium + toluene flow decreases as a function of time and becomes nil. The integration of the curve obtained allows to determine the extractable hydrogen content of the solid used, and a value of 1.2 wt % is obtained at 80 C on a CeAl 0.5 Ni 3 O y compound pre-treated in H 2 at 300 C. To optimise the system, different parameters have been analysed, such as the catalyst formulation, the metal content, the pre-reducing conditions as well as the reaction conditions under helium + toluene. (authors)

  6. Elucidaton of DNA methylation changes in response to ionizng radiation induced double strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Herrlitz, Maren Linda

    2014-07-04

    would be an effect of overexpression or be indicative of a possible function in these nuclear subcompartments is yet to be elucidated. Additionally, by using flow cytometry analysis, exposure to IR and concomitant overexpression of TET2CD-GFP strongly induced 5hmC formation, therefore suggesting a function of TET2 in response to irradiation. Recruitment analysis showed that the TET2 catalytic domain was recruited to UV laser-induced but not X-rays- or heavy ion-induced damage sites. Endogenous TET2, which was analyzed in high TET2 expressing human fibroblasts, was recruited to damage sites after irradiation with heavy ions or X-rays. As 5hmC is the direct product of the catalytic activity of TET enzymes, local 5hmC formation and abundance at damage sites was investigated. It was observed that 5hmC accumulated at heavy ion- as well as X-ray-induced DNA double strand breaks (DSBs). In addition, investigating 5hmC foci over time after irradiation with X-rays revealed that 5hmC formation and kinetics is similar to that of γH2AX foci, whereby every 5hmC focus co-localized with γH2AX. However, this did not hold true for all γH2AX foci, whose total number was always higher than that of 5hmC. Furthermore, 5hmC (and γH2AX) foci formation was almost unaffected by the inhibition of DNA-PKcs' enzymatic activity. Conversely, 5hmC and γH2AX foci persistence was significantly delayed after DNA-PKcs inhibition. Results obtained in this thesis show that DNA methylation changes (5hmC formation) take place within the time frame of one replication cycle after exposure to IR and that these changes can be observed at sites of DSBs. 5hmC at DSBs might be formed by the oxidative function of TET2, which was shown to be recruited to DSBs. However, involvement of the other TET enzymes in 5hmC production cannot be excluded. Therefore, these results suggest a role of 5hmC in the response to IR induced DSBs, whereby the here presented data suggest that the fast, radiation induced

  7. Elucidaton of DNA methylation changes in response to ionizng radiation induced double strand breaks

    International Nuclear Information System (INIS)

    Herrlitz, Maren Linda

    2014-01-01

    would be an effect of overexpression or be indicative of a possible function in these nuclear subcompartments is yet to be elucidated. Additionally, by using flow cytometry analysis, exposure to IR and concomitant overexpression of TET2CD-GFP strongly induced 5hmC formation, therefore suggesting a function of TET2 in response to irradiation. Recruitment analysis showed that the TET2 catalytic domain was recruited to UV laser-induced but not X-rays- or heavy ion-induced damage sites. Endogenous TET2, which was analyzed in high TET2 expressing human fibroblasts, was recruited to damage sites after irradiation with heavy ions or X-rays. As 5hmC is the direct product of the catalytic activity of TET enzymes, local 5hmC formation and abundance at damage sites was investigated. It was observed that 5hmC accumulated at heavy ion- as well as X-ray-induced DNA double strand breaks (DSBs). In addition, investigating 5hmC foci over time after irradiation with X-rays revealed that 5hmC formation and kinetics is similar to that of γH2AX foci, whereby every 5hmC focus co-localized with γH2AX. However, this did not hold true for all γH2AX foci, whose total number was always higher than that of 5hmC. Furthermore, 5hmC (and γH2AX) foci formation was almost unaffected by the inhibition of DNA-PKcs' enzymatic activity. Conversely, 5hmC and γH2AX foci persistence was significantly delayed after DNA-PKcs inhibition. Results obtained in this thesis show that DNA methylation changes (5hmC formation) take place within the time frame of one replication cycle after exposure to IR and that these changes can be observed at sites of DSBs. 5hmC at DSBs might be formed by the oxidative function of TET2, which was shown to be recruited to DSBs. However, involvement of the other TET enzymes in 5hmC production cannot be excluded. Therefore, these results suggest a role of 5hmC in the response to IR induced DSBs, whereby the here presented data suggest that the fast, radiation induced demethylation

  8. Electrostatic settling of catalyst particles in hydrogenation of methyl benzoate. Denkai chinkoho ni yoru ansokukosan mechiru suisoka hannoeki kara no shokubai ryushi bunri

    Energy Technology Data Exchange (ETDEWEB)

    Kato, K. (Japan Energy Corp., Tokyo (Japan). Central Research Lab.)

    1994-03-01

    As benzyl alcohol (BA), which is one of the simplest alcohol having aromatic ring, has been used widely for the fields related to soap, perfume and chemicals industry, its usage has not always been so much because of its expensiveness. Authors developed previously a new process technique to produce cheaper and higher purity BA not through chlorination process using toluene as its raw materials. The BA can be obtained by hydrogenating methyl benzoate (MB) at a dispersion babble tower using cupper-chromium type powder catalyst in mixed solvent of methanol and toluene. The catalyst becomes much fine particles after the reaction. In this study, it is examined to separate MB hydrogenation reaction solution obtained by electrostatic settling into solid and liquid phases as an aim to improve the BA production process. Rate of electrostatic settling does not depend upon solid concentration, slurry forming conditions, electrode materials, specific resistance of slurry layer and others, but is in proportion to electric field intensity. Furthermore, process of the electrostatic settling is expressed by an equation. 9 refs., 9 figs., 3 tabs.

  9. Progesterone up-regulates vasodilator effects of calcitonin gene-related peptide in N(G)-nitro-L-arginine methyl ester-induced hypertension.

    Science.gov (United States)

    Gangula, P R; Wimalawansa, S J; Yallampalli, C

    1997-04-01

    We recently reported that calcitonin gene-related peptide can reverse the hypertension produced by N(G)-nitro-L-arginine methyl ester in pregnant rats. In the current study we investigated whether these vasodilator effects of calcitonin gene-related peptide were progesterone dependent. Calcitonin gene-related peptide or N(G)-nitro-L-arginine methyl ester was infused through osmotic minipumps, either separately or in combination, to groups of five pregnant rats from day 17 of gestation until day 8 post partum or to nonpregnant ovariectomized rats for 8 days. Progesterone was injected during days 1 to 6 post partum and for 6 days after ovariectomy. Systolic blood pressure was measured daily. Animals receiving N(G)-nitro-L-arginine methyl ester exhibited significant elevations of blood pressure during pregnancy and post partum. Coadministration of calcitonin gene-related peptide to these rats reversed the hypertension during pregnancy but not during the postpartum period. At the dose used in this study calcitonin gene-related peptide administered alone was without significant effects on blood pressure. However, it reduced both the mortality and growth restriction of the fetus associated with N(G)-nitro-L-arginine methyl ester in these animals. Calcitonin gene-related peptide reversed the hypertension in N(G)-nitro-L-arginine methyl ester-infused postpartum rats during the periods of progesterone treatment only, and these effects were lost when progesterone treatment was stopped. Neither progesterone nor calcitonin gene-related peptide alone were effective. To further confirm these observations, progesterone effects were tested in ovariectomized adult rats. Similar to the findings in postpartum rats, calcitonin gene-related peptide completely reversed the elevation in blood pressure in N(G)-nitro-L-arginine methyl ester-treated rats receiving progesterone injections. The effects of calcitonin gene-related peptide were apparent only during the progesterone treatment

  10. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo

    Science.gov (United States)

    Kawamura, Tomohiro; Wakabayashi, Nobunao; Shigemura, Norihisa; Huang, Chien-Sheng; Masutani, Kosuke; Tanaka, Yugo; Noda, Kentaro; Peng, Ximei; Takahashi, Toru; Billiar, Timothy R.; Okumura, Meinoshin; Toyoda, Yoshiya; Kensler, Thomas W.

    2013-01-01

    Hyperoxic lung injury is a major concern in critically ill patients who receive high concentrations of oxygen to treat lung diseases. Successful abrogation of hyperoxic lung injury would have a huge impact on respiratory and critical care medicine. Hydrogen can be administered as a therapeutic medical gas. We recently demonstrated that inhaled hydrogen reduced transplant-induced lung injury and induced heme oxygenase (HO)-1. To determine whether hydrogen could reduce hyperoxic lung injury and investigate the underlying mechanisms, we randomly assigned rats to four experimental groups and administered the following gas mixtures for 60 h: 98% oxygen (hyperoxia), 2% nitrogen; 98% oxygen (hyperoxia), 2% hydrogen; 98% balanced air (normoxia), 2% nitrogen; and 98% balanced air (normoxia), 2% hydrogen. We examined lung function by blood gas analysis, extent of lung injury, and expression of HO-1. We also investigated the role of NF-E2-related factor (Nrf) 2, which regulates HO-1 expression, by examining the expression of Nrf2-dependent genes and the ability of hydrogen to reduce hyperoxic lung injury in Nrf2-deficient mice. Hydrogen treatment during exposure to hyperoxia significantly improved blood oxygenation, reduced inflammatory events, and induced HO-1 expression. Hydrogen did not mitigate hyperoxic lung injury or induce HO-1 in Nrf2-deficient mice. These findings indicate that hydrogen gas can ameliorate hyperoxic lung injury through induction of Nrf2-dependent genes, such as HO-1. The findings suggest a potentially novel and applicable solution to hyperoxic lung injury and provide new insight into the molecular mechanisms and actions of hydrogen. PMID:23475767

  11. N-Methyl-3,4-methylenedioxyamphetamine-induced hepatotoxicity in rats: Oxidative stress after acute and chronic administration

    Directory of Open Access Journals (Sweden)

    Ninković Milica

    2004-01-01

    Full Text Available Background. The underlying mechanisms of N-Methyl-3,4-methylenedioxyamphetamine-MDMA-induced hepatotoxicity are still unknown. The aim of this study was to evaluate hepatic oxido-reductive status in the rats liver after the single and repeated administration of MDMA. Methods. MDMA was dissolved in distilled water and administered in the doses of 5 mg, 10 mg, 20 mg, and 40 mg/kg. The animals from the acute experiment were treated per os with the single dose of the appropriate solution, through the orogastric tube. The animals from the chronic experiment were treated per os, with the doses of 5, 10, or 20 mg/kg of MDMA every day during 14 days. The control groups were treated with water only. Eight hours after the last dose, the animals were sacrificed, dissected their livers were rapidly removed, frozen and stored at -70°C until the moment of analysis. The parameters of oxidative stress in the crude mitochondrial fractions of the livers were analyzed. Results. Superoxide dismutase (SOD activity increased in the livers of the animals that were treated with single doses of MDMA. Chronically treated animals showed the increased SOD activity only after the highest dose (20 mg/kg. The content of reduced glutathione decreased in both groups, but the depletion was much more expressed after the single administration. Lipid peroxidation index increased in dose-dependent manner in both groups, being much higher after the single administration. Conclusion. The increased index of lipid peroxidation and the decreased reduced glutathione levels suggested that MDMA application induced the state of oxidative stress in the liver. These changes were much more expressed after the single administration of MDMA.

  12. Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ and in situ transmission electron microscopy studies

    International Nuclear Information System (INIS)

    Ghica, C; Nistor, L C; Vizireanu, S; Dinescu, G

    2011-01-01

    The smart-cut(TM) process is based on inducing and processing structural defects below the free surface of semiconductor wafers. The necessary defects are currently induced by implantation of light elements such as hydrogen or helium. An alternative softer way to induce shallow subsurface defects is by RF-plasma hydrogenation. To facilitate the smart-cut process, the wafers containing the induced defects need to be subjected to an appropriate thermal treatment. In our experiments, (0 0 1) Si wafers are submitted to 200 and 50 W hydrogen RF-plasma and are subsequently annealed. The samples are studied by transmission electron microscopy (TEM), before and after annealing. The plasma-introduced defects are {1 1 1} and {1 0 0} planar-like defects and nanocavities, all of them involving hydrogen. Many nanocavities are aligned into strings almost parallel to the wafer surface. The annealing is performed either by furnace thermal treatment at 550 deg. C, or by in situ heating in the electron microscope at 450, 650 and 800 deg. C during the TEM observations. The TEM microstructural studies indicate a partial healing of the planar defects and a size increase of the nanometric cavities by a coalescence process of the small neighbouring nanocavities. By annealing, the lined up nanometric voids forming chains in the as-hydrogenated sample coalesced into well-defined cracks, mostly parallel to the wafer surface.

  13. Radically altered T cell receptor signaling in glycopeptide-specific T cell hybridoma induced by antigen with minimal differences in the glycan group

    DEFF Research Database (Denmark)

    Jensen, T; Nielsen, M; Gad, Monika

    2001-01-01

    A T cell hybridoma raised against the synthetic glycopeptide T(72)(Tn) was used to study whether the initial TCR signaling events are markedly different when the hybridoma is stimulated with glycopeptides closely related to the cognate glycopeptide antigen. T(72)(Tn) has an alpha-D-GalNAc group O......)(alpha-D-GlcNAc), which differs from T(72)(Tn) solely by the orientation of a hydroxy group in the carbohydrate structure, completely failed to induce detectable tyrosine phosphorylation and IL-2 secretion. APC pulsed with S(72)(Tn), which differs from T(72)(Tn) by not having a methyl group in the serine......-linked to the central threonine in the decapeptide VITAFTEGLK, and the hybridoma is known to be highly specific for this carbohydrate group. T(72)(Tn)-pulsed APC induced tyrosine phosphorylation of the TCR-zeta 21- and 23-kDa proteins and the downstream p42/44 MAP kinase and strong IL-2 secretion. APC pulsed with T(72...

  14. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xiufang [Key Laboratory of Molecular Epigenetic of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Long Likun [Inspection and Quarantine Technology Centre of Zhongshan Entry-Exit Inspection and Quarantine Bureau, Zhongshan 528400, Guangdong Province (China); Zhang Yunhong; Xue Yiqun; Liu Jingchun; Lin Xiuyun [Key Laboratory of Molecular Epigenetic of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Liu Bao [Key Laboratory of Molecular Epigenetic of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China)], E-mail: baoliu6677@yahoo.com.cn

    2009-03-09

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  15. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Ou Xiufang; Long Likun; Zhang Yunhong; Xue Yiqun; Liu Jingchun; Lin Xiuyun; Liu Bao

    2009-01-01

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  16. Absence of Hydrogen Sulfide-Induced Hypometabolism in Pigs: A Mechanistic Explanation in Relation to Small Nonhibernating Mammals

    NARCIS (Netherlands)

    Dirkes, Marcel C.; Milstein, Dan M. J.; Heger, Michal; van Gulik, Thomas M.

    2015-01-01

    Artificially induced hypometabolism in nonhibernating mammals may have considerable clinical implications. Numerous studies in small rodent models have demonstrated that hydrogen sulfide (H2S) induces hypometabolism, supposedly as a result of histotoxic hypoxia. However, the induction of

  17. Heavy-ion radiation induced bystander effect in mice

    Science.gov (United States)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  18. Radiation-induced polymerization monitored in situ by time-resolved fluorescence of probe molecules in methyl methacrylate

    International Nuclear Information System (INIS)

    Frahn, Mark S.; Abellon, Ruben D.; Luthjens, Leonard H.; Vermeulen, Martien J.W.; Warman, John M.

    2003-01-01

    A technique is presented for monitoring radiation-induced polymerizations in situ based on the measurement of the fluorescence lifetime of molecular probes dissolved in the polymerizing medium. This method is illustrated with results on methyl methacrylate (MMA) using two fluorogenic probe molecules; N-(2-anthracene)methacrylamide (AnMA) and maleimido-fluoroprobe (MFP), a molecule which has a highly dipolar excited state

  19. 76 FR 26331 - Dijji Corp., Hydro Environmental Resources, Inc. (n/k/a EXIM Internet Group, Inc.), Hydrogen...

    Science.gov (United States)

    2011-05-06

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Dijji Corp., Hydro Environmental Resources, Inc. (n/k/a EXIM Internet Group, Inc.), Hydrogen Power, Inc., and InsynQ, Inc.; Order of Suspension of... there is a lack of current and accurate information concerning the securities of Hydrogen Power, Inc...

  20. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata.

    Science.gov (United States)

    Cohen, Michael F; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N; Yamasaki, Hideo

    2015-01-01

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.

  1. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    Directory of Open Access Journals (Sweden)

    Michael F Cohen

    2015-07-01

    Full Text Available In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared (SR-FTIR spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.

  2. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide

    Science.gov (United States)

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl­benzene­sulfonamide moiety. In the crystal, mol­ecules are ­connected through N—H⋯N hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network parallel to (001). PMID:24427093

  3. Main factors causing intergranular and quasi-cleavage fractures at hydrogen-induced cracking in tempered martensitic steels

    Science.gov (United States)

    Kurokawa, Ami; Doshida, Tomoki; Hagihara, Yukito; Suzuki, Hiroshi; Takai, Kenichi

    2018-05-01

    Though intergranular (IG) and quasi-cleavage (QC) fractures have been widely recognized as typical fracture modes of the hydrogen-induced cracking in high-strength steels, the main factor has been unclarified yet. In the present study, the hydrogen content dependence on the main factor causing hydrogen-induced cracking has been examined through the fracture mode transition from QC to IG at the crack initiation site in the tempered martensitic steels. Two kinds of tempered martensitic steels were prepared to change the cohesive force due to the different precipitation states of Fe3C on the prior γ grain boundaries. A high amount of Si (H-Si) steel has a small amount of Fe3C on the prior austenite grain boundaries. Whereas, a low amount of Si (L-Si) steel has a large amount of Fe3C sheets on the grain boundaries. The fracture modes and initiations were observed using FE-SEM (Field Emission-Scanning Electron Microscope). The crack initiation sites of the H-Si steel were QC fracture at the notch tip under various hydrogen contents. While the crack initiation of the L-Si steel change from QC fracture at the notch tip to QC and IG fractures from approximately 10 µm ahead of the notch tip as increasing in hydrogen content. For L-Si steels, two possibilities are considered that the QC or IG fracture occurred firstly, or the QC and IG fractures occurred simultaneously. Furthermore, the principal stress and equivalent plastic strain distributions near the notch tip were calculated with FEM (Finite Element Method) analysis. The plastic strain was the maximum at the notch tip and the principle stress was the maximum at approximately 10 µm from the notch tip. The position of the initiation of QC and IG fracture observed using FE-SEM corresponds to the position of maximum strain and stress obtained with FEM, respectively. These findings indicate that the main factors causing hydrogen-induced cracking are different between QC and IG fractures.

  4. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans.

    Science.gov (United States)

    Puentes-Cala, Edinson; Liebeke, Manuel; Markert, Stephanie; Harder, Jens

    2018-05-01

    The enzymatic functionalization of hydrocarbons is a central step in the global carbon cycle initiating the mineralization of methane, isoprene and monoterpenes, the most abundant biologically produced hydrocarbons. Also, terpene-modifying enzymes have found many applications in the energy-economic biotechnological production of fine chemicals. Here we describe a limonene dehydrogenase that was purified from the facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen grown on monoterpenes under denitrifying conditions in the absence of molecular oxygen. The purified limonene:ferrocenium oxidoreductase activity hydroxylated the methyl group of limonene (1-methyl-4-(1-methylethenyl)-cyclohex-1-ene) yielding perillyl alcohol ([4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol). The enzyme had a dithiothreitol:perillyl alcohol oxidoreductase activity yielding limonene. Mass spectrometry and molecular size determinations revealed a heterodimeric enzyme comprising CtmA and CtmB. Recently the two proteins had been identified by transposon mutagenesis and proteomics as part of the cyclic terpene metabolism ( ctm ) in Castellaniella defragrans and were annotated as FAD-dependent oxidoreductases of the protein domain family phytoene dehydrogenases and related proteins (COG1233). CtmAB is the first heterodimeric enzyme in this protein superfamily. Flavins in the purified CtmAB are oxidized by ferrocenium and are reduced by limonene. Heterologous expression of CtmA, CtmB and CtmAB in E. coli demonstrated that limonene dehydrogenase activity required both subunits carrying each a flavin cofactor. Native CtmAB oxidized a wide range of monocyclic monoterpenes containing the allylic methyl group motif (1-methyl-cyclohex-1-ene). In conclusion, we have identified CtmAB as a hydroxylating limonene dehydrogenase and the first heteromer in a family of FAD-dependent dehydrogenases acting on allylic methylene or methyl CH-bonds. We suggest a placement in EC 1

  5. 'Radiation-induced electrolysis'. A potential root cause of hydrogen explosions in the Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    Saji, Genn

    2014-01-01

    Although water radiolysis, decomposition of water by radiation, is a well-known phenomenon the exact mechanism is not well characterized especially for potential hydrogen generation during severe accidents. The author first reviewed the water radiolysis phenomena in LWRs during normal operation to severe accidents (e.g., TMI- and Chernobyl accidents) and performed a scoping estimation of H_2 generation modeled for the Fukushima Daiichi accident. The estimation incorporates the decay heat curve combined with G-values. When a set of radiological chain reactions are incorporated the resultant reverse reactions were found to reduce the hydrogen generation substantially. In view of the observation that the water radiolysis is not likely induced appreciable effects in H_2 generation during the accident, this author investigated his basic theory named 'radiation-induced electrolysis' in the estimation of amounts of H_2 generation during the active phase of the Fukushima accident. The author's theory was originally developed by including Faraday's Law of Electrolysis into the basic time-dependent material balance equation of radiation-chemical species for his study on accelerated corrosion phenomena which is widely observed in aged plants. With this mechanism as much as 5,300 m"3-STP of accumulated hydrogen gas is estimated to be inside the PCV just prior to the hydrogen explosion which occurred a day after the reactor trip in Unit 1. For Units 2 and 3, the estimated volumes are 5,900 m"3-STP. Within just several hours after the initiation of SBO, as much as a few thousand cubic meters in STP of hydrogen gas is generated due to a high decay heat. With these large volumes of hydrogen gas the hydrogen explosion was a viable possibility upon the 'venting' operation. For the 1F4 Spent Fuel Pool where the entire core loading had been evacuated, SBO was found to have induced a rapid on-set of electrolysis when the pool water temperature reached as high as 50°C with a range of

  6. DNA methylation regulates gabrb2 mRNA expression: developmental variations and disruptions in l-methionine-induced zebrafish with schizophrenia-like symptoms.

    Science.gov (United States)

    Wang, L; Jiang, W; Lin, Q; Zhang, Y; Zhao, C

    2016-11-01

    Single nucleotide polymorphisms (SNPs) in the human type A gamma-aminobutyric acid (GABA) receptor β 2 subunit gene (GABRB2) have been associated with schizophrenia and quantitatively correlated with mRNA expression in the postmortem brain tissue of patients with schizophrenia. l-Methionine (MET) administration has been reported to cause a recrudescence of psychotic symptoms in patients with schizophrenia, and similar symptoms have been generated in MET-induced mice. In this study, a zebrafish animal model was used to evaluate the relationship between the gabrb2 mRNA expression and its promoter DNA methylation in developmental and MET-induced schizophrenia-like zebrafish. The results indicated developmental increases in global DNA methylation and decreases in gabrb2 promoter methylation in zebrafish. A significant increase in gabrb2 mRNA levels was observed after GABA was synthesized. Additionally, the MET-triggered schizophrenia-like symptoms in adult zebrafish, involving social withdrawal and cognitive dysfunction analyzed with social interaction and T-maze behavioral tests, were accompanied by significantly increased DNA methylation levels in the global genome and the gabrb2 promoter. Furthermore, the significant correlation between gabrb2 mRNA expression and gabrb2 promoter methylation observed in the developmental stages became non-significant in MET-triggered adult zebrafish. These findings demonstrate that gabrb2 mRNA expression is associated with DNA methylation varies by developmental stage and show that these epigenetic association mechanisms are disrupted in MET-triggered adult zebrafish with schizophrenia-like symptoms. In conclusion, these results provide plausible epigenetic evidence of the GABA A receptor β 2 subunit involvement in the schizophrenia-like behaviors and demonstrate the potential use of zebrafish models in neuropsychiatric research. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  7. Protective single/combined treatment with betel leaf and turmeric against methyl (acetoxymethyl) nitrosamine-induced hamster oral carcinogenesis.

    Science.gov (United States)

    Azuine, M A; Bhide, S V

    1992-05-28

    The inhibitory effect of oral administration of betel-leaf extract (BLE) and 2 of its constituents, beta-carotene and alpha-tocopherol, as single agents or in combination with dietary turmeric on methyl(acetoxymethyl)nitrosamine (DMN-OAC)-induced oral carcinogenesis in Syrian hamsters was studied. DMN-OAC was administered twice monthly for 6 months. The chemopreventive effect of BLE or its constituents with turmeric was determined by comparing tumor incidence observed in treated groups with that seen in control animals. The apparent site-specific chemopreventive effect of BLE or its constituents was demonstrated by inhibition of tumor incidence, reduction of tumor burden, extension of the tumor latency period and regression of established, frank tumors. The inhibitory effect of BLE or its constituents combined with turmeric was higher than that of the individual constituents. The study suggests that BLE could be developed as a potential chemopreventive agent for human oral cancer.

  8. Histone methylation and aging: Lessons learned from model systems

    Science.gov (United States)

    McCauley, Brenna S.; Dang, Weiwei

    2014-01-01

    Aging induces myriad cellular and, ultimately, physiological changes that cause a decline in an organism's functional capabilities. Although the aging process and pathways that regulate it have been extensively studied, only in the last decade have we begun to appreciate that dynamic histone methylation may contribute to this process. In this review, we discuss recent work implicating histone methylation in aging. Loss of certain histone methyltransferases and demethylases changes lifespan in invertebrates, and alterations in histone methylation in aged organisms regulate lifespan and aging phenotypes, including oxidative stress-induced hormesis in yeast, insulin signaling in Caenorhabiditis elegans and mammals, and the senescence-associated secretory phenotype in mammals. In all cases where histone methylation has been shown to impact aging and aging phenotypes, it does so by regulating transcription, suggesting that this is a major mechanism of its action in this context. Histone methylation additionally regulates or is regulated by other cellular pathways that contribute to or combat aging. Given the numerous processes that regulate aging and histone methylation, and are in turn regulated by them, the role of histone methylation in aging is almost certainly underappreciated. PMID:24859460

  9. The effect of mesenchymal stem cells on the p53 methylation in irradiation-induced thymoma in C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Hai B Zheng

    2015-01-01

    Conclusion: MSCs decrease the incidence of irradiation-induced thymoma, which may be mediated by improving thymus microenvironment and changing the methylation of p53 promoter, and subsequently maintaining genome′s stability.

  10. Light-induced metastable structural changes in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H. [Univ. of Chicago, IL (United States)

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  11. Induced modules over group algebras

    CERN Document Server

    Karpilovsky, Gregory

    1990-01-01

    In 1898 Frobenius discovered a construction which, in present terminology, associates with every module of a subgroup the induced module of a group. This construction proved to be of fundamental importance and is one of the basic tools in the entire theory of group representations.This monograph is designed for research mathematicians and advanced graduate students and gives a picture of the general theory of induced modules as it exists at present. Much of the material has until now been available only in research articles. The approach is not intended to be encyclopedic, rather each topic is

  12. A grey-based group decision-making methodology for the selection of hydrogen technologiess in Life Cycle Sustainability perspective

    DEFF Research Database (Denmark)

    Manzardo, Alessandro; Ren, Jingzheng; Mazzi, Anna

    2012-01-01

    The objective of this research is to develop a grey-based group decision-making methodology for the selection of the best renewable energy technology (including hydrogen) using a life cycle sustainability perspective. The traditional grey relational analysis has been modified to better address...... the issue of uncertainty. The proposed methodology allows multi-person to participate in the decision-making process and to give linguistic evaluation on the weights of the criteria and the performance of the alternative technologies. In this paper, twelve hydrogen production technologies have been assessed...... using the proposed methodology, electrolysis of water technology by hydropower has been considered to be the best technology for hydrogen production according to the decision-making group....

  13. Exercise attenuates intermittent hypoxia-induced cardiac fibrosis associated with sodium-hydrogen exchanger-1 in rats

    Directory of Open Access Journals (Sweden)

    Tsung-I Chen

    2016-10-01

    Full Text Available Purpose: To investigate the role of sodium–hydrogen exchanger-1 (NHE-1 and exercise training on intermittent hypoxia-induced cardiac fibrosis in obstructive sleep apnea (OSA, using an animal model mimicking the intermittent hypoxia of OSA. Methods: Eight-week-old male Sprague–Dawley rats were randomly assigned to control (CON, intermittent hypoxia (IH, exercise (EXE or IH combined with exercise (IHEXE groups. These groups were randomly assigned to subgroups receiving either a vehicle or the NHE-1 inhibitor cariporide. The EXE and IHEXE rats underwent exercise training on an animal treadmill for 10 weeks (5 days/week, 60 minutes/day, 24–30 m/minute, 2–10% grade. The IH and IHEXE rats were exposed to 14 days of IH (30 seconds of hypoxia - nadir of 2-6% O2 - followed by 45 seconds of normoxia for 8 hours/day. At the end of 10 weeks, rats were sacrificed and then hearts were removed to determine the myocardial levels of fibrosis index, oxidative stress, antioxidant capacity and NHE-1 activation. Results: Compared to the CON rats, IH induced higher cardiac fibrosis, lower myocardial catalase and superoxidative dismutase activities, higher myocardial lipid and protein peroxidation and higher NHE-1 activation (p < 0.05 for each, which were all abolished by cariporide. Compared to the IH rats, lower cardiac fibrosis, higher myocardial antioxidant capacity, lower myocardial lipid and protein peroxidation and lower NHE-1 activation were found in the IHEXE rats (p < 0.05 for each. Conclusion: IH-induced cardiac fibrosis was associated with NHE-1 hyperactivity. However, exercise training and cariporide exerted an inhibitory effect to prevent myocardial NHE-1 hyperactivity, which contributed to reduced IH-induced cardiac fibrosis. Therefore, NHE-1 plays a critical role in the effect of exercise on IH-induced increased cardiac fibrosis.

  14. Effects of dietary [alpha]-tocopherol and [beta]-carotene on lipid peroxidation induced by methyl mercuric chloride in mice

    Energy Technology Data Exchange (ETDEWEB)

    Raun Andersen, H; Andersen, O [Department of Environmental Medicine, University of Odense, Odense (Denmark)

    1993-01-01

    Exposure of male CBA mice to methyl mercuric chloride, CH[sub 3]HgCl, (10-40 mg/l in drinking water) for 2 weeks resulted in dose-related Hg deposition and enhanced lipid peroxidation in liver, kidney and brain. Mice were fed well-defined semisynthetic diets containing different levels of [alpha]-tocopherol (10, 100 or 1000 mg/kg) or [beta]-carotene (1000, 10,000 or 100,000 IU/kg) for four weeks, two groups on each diet. The concentration of [alpha]-tocopherol and [beta]-carotene used corresponded to deficient, normal and high levels. During the last two weeks, one group on each diet was given 40 mg CH[sub 3]HgCl/l of drinking water. High dietary [alpha]-tocopherol protected against CH[sub 3]HgCl induced hepatic lipid peroxidation, whereas the [alpha]-tocopherol deficient diet further enhanced CH[sub 3]HgCl induced hepatic lipid peroxidation. Similar, though statistically non-significant effects occurred in the kidneys, [alpha]-tocopherol did not protect against CH[sub 3]HgCl induced lipid peroxidation in the brain. Excess dietary [beta]-carotene further enhanced CH[sub 3]HgCl induced lipid peroxidation in liver, kidney and brain. CH[sub 3]HgCl significantly decreased the activity of total glutathione peroxidase (T-GSH-Px) and Se-dependent glutathione peroxidase (Se-GSH-Px) in the kidneys in all dietary groups. High dietary [alpha]-tocopherol enhanced the activity of Se-GSH-Px in liver and kidney compared to the activity in mice fed the normal level of [alpha]-tocopherol. This occurred in mice exposed to CH[sub 3]-HgCl as well as in unexposed mice, and the difference between CH[sub 3]HgCl exposed and unexposed mice was not diminished. High dietary [alpha]-tocopherol increased the activity of both Se-GSH-Px and T-GSH-Px in the brain of CH[sub 3]HgCl-exposed mice. The dietary level of [beta]-carotene did not affect the activity of the two enzymes in the organs investigated. (au) (43 refs.).

  15. Effects of dietary α-tocopherol and β-carotene on lipid peroxidation induced by methyl mercuric chloride in mice

    International Nuclear Information System (INIS)

    Raun Andersen, H.; Andersen, O.

    1993-01-01

    Exposure of male CBA mice to methyl mercuric chloride, CH 3 HgCl, (10-40 mg/l in drinking water) for 2 weeks resulted in dose-related Hg deposition and enhanced lipid peroxidation in liver, kidney and brain. Mice were fed well-defined semisynthetic diets containing different levels of α-tocopherol (10, 100 or 1000 mg/kg) or β-carotene (1000, 10,000 or 100,000 IU/kg) for four weeks, two groups on each diet. The concentration of α-tocopherol and β-carotene used corresponded to deficient, normal and high levels. During the last two weeks, one group on each diet was given 40 mg CH 3 HgCl/l of drinking water. High dietary α-tocopherol protected against CH 3 HgCl induced hepatic lipid peroxidation, whereas the α-tocopherol deficient diet further enhanced CH 3 HgCl induced hepatic lipid peroxidation. Similar, though statistically non-significant effects occurred in the kidneys, α-tocopherol did not protect against CH 3 HgCl induced lipid peroxidation in the brain. Excess dietary β-carotene further enhanced CH 3 HgCl induced lipid peroxidation in liver, kidney and brain. CH 3 HgCl significantly decreased the activity of total glutathione peroxidase (T-GSH-Px) and Se-dependent glutathione peroxidase (Se-GSH-Px) in the kidneys in all dietary groups. High dietary α-tocopherol enhanced the activity of Se-GSH-Px in liver and kidney compared to the activity in mice fed the normal level of α-tocopherol. This occurred in mice exposed to CH 3 -HgCl as well as in unexposed mice, and the difference between CH 3 HgCl exposed and unexposed mice was not diminished. High dietary α-tocopherol increased the activity of both Se-GSH-Px and T-GSH-Px in the brain of CH 3 HgCl-exposed mice. The dietary level of β-carotene did not affect the activity of the two enzymes in the organs investigated. (au) (43 refs.)

  16. Improved labeling strategy for 13C relaxation measurements of methyl groups in proteins

    International Nuclear Information System (INIS)

    Lee, Andrew L.; Urbauer, Jeffrey L.; Wand, A. Joshua

    1997-01-01

    Selective incorporation of 13 C into the methyl groups of protein side chains is described as a means for simplifying the measurement and interpretation of 13 C relaxation parameters.High incorporation (>90%) is accomplished by using pyruvate(3- 13 C, 99%) as the sole carbon source in the growth media for protein overexpression in E. coli. This improved labeling scheme increases the sensitivity of the relaxation experiments by approximately fivefold when compared to randomly fractionally 13 C-labeled protein, allowing high-quality measurements on relatively dilute (<1 mM)protein samples at a relatively low cost

  17. Treatment of methyl orange by nitrogen non-thermal plasma in a corona reactor: The role of reactive nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Cadorin, Bruno Mena, E-mail: brunomenacadorin@gmail.com [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Tralli, Vitor Douglas [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Ceriani, Elisa [Department of Chemical Sciences, Università di Padova (Italy); Benetoli, Luís Otávio de Brito [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Marotta, Ester, E-mail: ester.marotta@unipd.it [Department of Chemical Sciences, Università di Padova (Italy); Ceretta, Claudio [Department of Industrial Engineering, Università di Padova (Italy); Debacher, Nito Angelo [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Paradisi, Cristina [Department of Chemical Sciences, Università di Padova (Italy)

    2015-12-30

    Highlights: • Nitration of methyl orange is one of the main processes in treatment with N{sub 2}-plasma. • MS/MS analysis shows preferred nitration of methyl orange in ortho position. • N{sub 2} plasma, N{sub 2}-PAW, reaction with NO{sub 2}{sup −} or NO{sub 2}{sup −}/H{sub 2}O{sub 2} at pH 2 give the same products. - Abstract: Methyl orange (MO) azo dye served as model organic pollutant to investigate the role of reactive nitrogen species (RNS) in non-thermal plasma (NTP) induced water treatments. The results of experiments in which MO aqueous solutions were directly exposed to N{sub 2}-NTP are compared with those of control experiments in which MO was allowed to react with nitrite, nitrate and hydrogen peroxide, which are species formed in water exposed to N{sub 2}-NTP. Treatment of MO was also performed in PAW, Plasma Activated Water, that is water previously exposed to N{sub 2}-NTP. Both direct N{sub 2}-NTP and N{sub 2}-PAW treatments induced the rapid decay of MO. No appreciable reaction was instead observed when MO was treated with NO{sub 3}{sup −} and H{sub 2}O{sub 2} either under acidic or neutral pH. In contrast, in acidic solutions MO decayed rapidly when treated with NO{sub 2}{sup −} and with a combination of NO{sub 2}{sup −} and H{sub 2}O{sub 2}. Thorough product analysis was carried out by HPLC coupled with UV–vis and ESI–MS/MS detectors. In all experiments in which MO reaction was observed, the major primary product was a derivative nitro-substituted at the ortho position with respect to the N,N-dimethylamino group of MO. The reactions of RNS are discussed and a mechanism for the observed nitration products is proposed.

  18. CH3SH adsorption properties and mechanism of deodorant filter made of iron hydroxide on porous iron frame; Tetsu takotaisei dasshu filter no methyl mercaptan jokyo seino to jokyo kiko

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T. [Nippon Steel Corp., Tokyo (Japan)

    1998-05-10

    It is suggested that methyl mercaptan is decomposed to methyl sulfide and hydrogen by reaction with the a-iron hydroxide, and then the methyl sulfide combines with sulfur crystal and the hydrogen changes into water by the chemical reaction with the {alpha}-iron hydroxide. A deodorant filter was made by treating porous metallic iron with an aqueous solution of L-ascorbic acid, iron (II) sulfate and calcium hydroxide aqueous solution to deposit the iron ascorbate and the {alpha}-iron hydroxide on it. Then the deodorant filter was exposed to the hydrogen sulfide to yield the sulfur crystals on the surface of the deodorant filter. The methyl mercaptan removal capacity of the deodorant filter was studied with repetition of removal tests. Results show that the methyl mercaptan removal capacity of the deodorant filter is a little smaller than that of conventional granular activated carbon. 6 refs., 6 figs., 3 tabs.

  19. Effect of carbon sources on the aggregation of photo fermentative bacteria induced by L-cysteine for enhancing hydrogen production.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Ding, Jie; Wang, Qilin; Ma, Chao; Zhou, Xu; Ren, Nan-Qi

    2016-12-01

    Poor flocculation of photo fermentative bacteria resulting in continuous biomass washout from photobioreactor is a critical challenge to achieve rapid and stable hydrogen production. In this work, the aggregation of Rhodopseudomonas faecalis RLD-53 was successfully developed in a photobioreactor and the effects of different carbon sources on hydrogen production and aggregation ability were investigated. Extracellular polymeric substances (EPS) production by R. faecalis RLD-53 cultivated using different carbon sources were stimulated by addition of L-cysteine. The absolute ζ potentials of R. faecalis RLD-53 were considerably decreased with addition of L-cysteine, and aggregation barriers based on DLVO dropped to 15-43 % of that in control groups. Thus, R. faecalis RLD-53 flocculated effectively, and aggregation abilities of strain RLD-53 cultivated with acetate, propionate, lactate and malate reached 29.35, 32.34, 26.07 and 24.86 %, respectively. In the continuous test, hydrogen-producing activity was also promoted and reached 2.45 mol H 2 /mol lactate, 3.87 mol H 2 /mol propionate and 5.10 mol H 2 /mol malate, respectively. Therefore, the aggregation of R. faecalis RLD-53 induced by L-cysteine is independent on the substrate types, which ensures the wide application of this technology to enhance hydrogen recovery from wastewater dominated by different organic substrates.

  20. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    DNA methylation is a type of epigenetic modification where a methyl group is added to the cytosine or adenine residue of a given DNA sequence. It has been observed that DNA methylation is achieved by some collaborative agglomeration of certain proteins and non-coding RNAs. The assembly of IDN2 and its ...

  1. Preventive effect of Oenothera rosea on N-methyl-N-nitrosourea- (NMU induced gastric cancer in rats

    Directory of Open Access Journals (Sweden)

    Almora-Pinedo Y

    2017-12-01

    Full Text Available Yuan Almora-Pinedo,1 Jorge Arroyo-Acevedo,2 Oscar Herrera-Calderon,3 Víctor Chumpitaz-Cerrate,4 Renán Hañari-Quispe,5 Aldo Tinco-Jayo,6 Cesar Franco-Quino,4 Linder Figueroa-Salvador7 1Department of Pharmacy, Hospital Nacional Hipólito Unanue, Lima, 2Laboratory of Experimental Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, 3Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga de Ica, Ica, 4Laboratory of Physiology and Pharmacology, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, 5Laboratory of Animal Physiology, Universidad Andina Néstor Cáceres Velasquez, Puno, 6Academic Department of Human Medicine, School of Pharmacy and Biochemistry, Universidad Nacional San Cristóbal de Huamanga, Ayacucho, 7School of Medicine, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru Background: Currently, gastric cancer (GC is considered a public health problem worldwide. Using medicinal plants for the prevention of chronic diseases such as cancer constitutes new alternatives in traditional medicine. Oenothera rosea (OR could be an option, but it needs to be evaluated. Aim: The main objective of this study was to evaluate the protective effect of OR extract on N-methyl-N-nitrosourea (NMU-induced GC in rats. Methods: In total, 80 male Holtzman rats were randomized into five groups. Group A received the saline solution (5mL/kg, group B received NMU 500 μg/kg (cancer inductor by oral administration for 16 weeks, and groups C, D, and E were treated with OR extract (100, 200, and 300 mg/kg, respectively and NMU in order to evaluate the preventive effect on cancer induced by NMU for 16 weeks. Blood and histological samples of stomachs were collected to determine histopathological, biochemical, and hematological parameters between different experimental groups. Results: Groups C, D, and E presented less histopathological changes such as anaplastic and

  2. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Norman H. [Vanderbilt Univ., Nashville, TN (United States); Feldman, L. C. [Vanderbilt Univ., Nashville, TN (United States); Luepke, G. [College of William and Mary, Williamsburg, VA (United States)

    2015-09-14

    impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated

  3. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peñ a, Gerardo D.J.; Alrefaai, Mhd Maher; Yang, Seung Yeon; Raj, Abhijeet; Brito, Joaquin L.; Stephen, Samuel; Anjana, Tharalekshmy; Pillai, Vinu; Al Shoaibi, Ahmed; Chung, Suk-Ho

    2016-01-01

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  4. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peña, Gerardo D.J.

    2016-07-23

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  5. Methylation profiling identified novel differentially methylated markers including OPCML and FLRT2 in prostate cancer.

    Science.gov (United States)

    Wu, Yu; Davison, Jerry; Qu, Xiaoyu; Morrissey, Colm; Storer, Barry; Brown, Lisha; Vessella, Robert; Nelson, Peter; Fang, Min

    2016-04-02

    To develop new methods to distinguish indolent from aggressive prostate cancers (PCa), we utilized comprehensive high-throughput array-based relative methylation (CHARM) assay to identify differentially methylated regions (DMRs) throughout the genome, including both CpG island (CGI) and non-CGI regions in PCa patients based on Gleason grade. Initially, 26 samples, including 8 each of low [Gleason score (GS) 6] and high (GS ≥7) grade PCa samples and 10 matched normal prostate tissues, were analyzed as a discovery cohort. We identified 3,567 DMRs between normal and cancer tissues, and 913 DMRs distinguishing low from high-grade cancers. Most of these DMRs were located at CGI shores. The top 5 candidate DMRs from the low vs. high Gleason comparison, including OPCML, ELAVL2, EXT1, IRX5, and FLRT2, were validated by pyrosequencing using the discovery cohort. OPCML and FLRT2 were further validated in an independent cohort consisting of 20 low-Gleason and 33 high-Gleason tissues. We then compared patients with biochemical recurrence (n=70) vs. those without (n=86) in a third cohort, and they showed no difference in methylation at these DMR loci. When GS 3+4 cases and GS 4+3 cases were compared, OPCML-DMR methylation showed a trend of lower methylation in the recurrence group (n=30) than in the no-recurrence (n=52) group. We conclude that whole-genome methylation profiling with CHARM revealed distinct patterns of differential DNA methylation between normal prostate and PCa tissues, as well as between different risk groups of PCa as defined by Gleason scores. A panel of selected DMRs may serve as novel surrogate biomarkers for Gleason score in PCa.

  6. Folic Acid Reduces Tau Phosphorylation by Regulating PP2A Methylation in Streptozotocin-Induced Diabetic Mice

    Science.gov (United States)

    Zheng, Miaoyan; Zou, Chen; Li, Mengyue; Huang, Guowei; Gao, Yuxia; Liu, Huan

    2017-01-01

    High incidence rate of Alzheimer’s disease (AD) is observed in patients with type 2 diabetes. Aggregated β-amyloid (Aβ) and hyperphosphorylated tau are the hallmarks of AD. Hyperphosphorylated tau has been detected in diabetic animals as well as in diabetic patients. Folates mediate the transfer of one carbon unit, required in various biochemical reactions. The effect of folate on tau phosphorylation in diabetic models still remains unknown. In this study, we investigated the effect and mechanism of folic acid on hyperphosphorylation of tau in streptozotocin (STZ)-induced diabetic mice. Diabetic mice induced by STZ, at the age of 10 weeks, were administered with three levels of folic acid: folic acid-deficient diet, diet with normal folic acid content, and 120 μg/kg folic acid diet for 8 weeks. Levels of serum folate and blood glucose were monitored. Tau phosphorylation, protein phosphatase 2A (PP2A) methylation, and Glycogen synthase kinase 3β (GSK-3β) phosphorylation were detected using Western blot. The S-adenosyl methionine:S-adenosyl homocysteine ratio (SAM:SAH) in brain tissues was also determined. DNA methyltransferase (DNMT) mRNA expression levels were detected using real-time PCR. Folic acid reduced tau hyperphosphorylation at Ser396 in the brain of diabetes mellitus (DM) mice. In addition, PP2A methylation and DNMT1 mRNA expression were significantly increased in DM mice post folic acid treatment. GSK-3β phosphorylation was not regulated by folic acid administration. Folic acid can reduce tau phosphorylation by regulating PP2A methylation in diabetic mice. These results support that folic acid can serve as a multitarget neuronal therapeutic agent for treating diabetes-associated cognitive dysfunction. PMID:28422052

  7. Thermodynamic study of phase transitions in methyl esters of ortho- meta- and para-aminobenzoic acids

    International Nuclear Information System (INIS)

    Almeida, Ana R.R.P.; Monte, Manuel J.S.

    2012-01-01

    Highlights: ► Vapor pressures of liquid and crystalline phases of methyl esters of the aminobenzoic acids were measured. ► Accurate values of enthalpies of sublimation, vaporization, and fusion were derived. ► The enthalpy of intermolecular NH–O hydrogen bonds in methyl p-aminobenzoate was determined. ► The volatility of the methyl benzoates was compared with the volatility of the parent acids. - Abstract: A static method based on capacitance gauges was used to measure the vapor pressures of the condensed phases of the methyl esters of the three aminobenzoic acids. For methyl o-aminobenzoate the vapor pressures of the liquid phase were measured in the range (285.4 to 369.5) K. For the meta and para isomers vapor pressures of both crystalline and liquid phases were measured in the ranges (308.9 to 376.6) K, and (332.9 to 428.0) K, respectively. Vapor pressures of the latter compound were also measured using the Knudsen effusion method in the temperature range (319.1 to 341.2) K. From the dependence of the vapor pressures on the temperature, the standard molar enthalpies and entropies of sublimation and of vaporization were derived. Differential scanning calorimetry was used to measure the temperatures and molar enthalpies of fusion of the three isomers. The results enabled the estimation of the enthalpy of the intermolecular (N−H … O) hydrogen bond in the crystalline methyl p-aminobenzoate. A correlation relating the temperature of fusion and the enthalpy and Gibbs energy of sublimation of benzene, methyl benzoates and benzoic acids was derived.

  8. Effects of temperature and salinity on survival, growth and DNA methylation of juvenile Pacific abalone, Haliotis discus hannai Ino

    Science.gov (United States)

    Kong, Ning; Liu, Xiao; Li, Junyuan; Mu, Wendan; Lian, Jianwu; Xue, Yanjie; Li, Qi

    2017-09-01

    Temperature and salinity are two of the most potent abiotic factors influencing marine mollusks. In this study, we investigated the individual and combined effects of temperature and salinity on the survival and growth of juvenile Pacific abalone, Haliotis discus hannai Ino, and also examined the DNA methylation alteration that may underpin the phenotypic variation of abalone exposed to different rearing conditions. The single-factor data showed that the suitable ranges of temperature and salinity were 16-28°C at a constant salinity of 32, and 24-40 at a constant temperature of 20°C, respectively. The two-factor data indicated that both survival and growth were significantly affected by temperature, salinity and their interaction. The optimal temperature-salinity combination for juveniles was 23-25°C and 30-36. To explore environment-induced DNA methylation alteration, the methylation-sensitive amplified polymorphism (MSAP) technique was used to analyze the genomic methylation profiles of abalone reared in optimal and adverse conditions. Neither temperature nor salinity induced evident changes in the global methylation level, but 67 and 63 differentially methylated loci were identified in temperature and salinity treatments, respectively. The between-group eigen analysis also showed that both temperature and salinity could induce epigenetic differentiation in H. discus hannai Ino. The results of our study provide optimal rearing conditions for juvenile H. discus hannai Ino, and represent the first step toward revealing the epigenetic regulatory mechanism of abalone in response to thermal and salt stresses.

  9. Crystal and molecular structures of sixteen charge-assisted hydrogen bond-mediated diisopropylammonium salts from different carboxylic acids

    Science.gov (United States)

    Lin, Zhihao; Hu, Kaikai; Jin, Shouwen; Ding, Aihua; Wang, Yining; Dong, Lingfeng; Gao, Xingjun; Wang, Daqi

    2017-10-01

    Cocrystallization of the commonly available organic amine, diisopropylamine, with a series of carboxylic acids gave a total of sixteen molecular salts with the compositions: diisopropylaminium 2-methyl-2-phenoxypropanate [(Hdpa)+ · (mpa-), mpa- = 2-methyl-2-phenoxypropanoate] (1), diisopropylaminium 2-methyl-2-(naphthalen-2-yloxy)-propionate [(Hdpa)+ · (npa-), npa- = 2-methyl-2-(naphthalen-2-yloxy)-propionate] (2), diisopropylaminium indole-3-acetate [(Hdpa)+ · (iaa-), iaa- = indole-3-acetate] (3), diisopropylaminium 4-chlorophenoxyacetate [(Hdpa)+ · (cpa-), cpa- = 4-chlorophenoxyacetate] (4), diisopropylaminium 2,4-dichlorophenoxyacetate [(Hdpa)+ · (dcpa-), dcpa- = 2,4-dichlorophenoxyacetate] (5), diisopropylaminium 4-hydroxybenzoate [(Hdpa)+ · (hba-), hba- = 4-hydroxybenzoate] (6), diisopropylaminium 4-aminobenzoate [(Hdpa)+ · (aba-), aba- = 4-aminobenzoate] (7), tetra(diisopropylaminium) tetra(1-hydroxy-2-naphthoate) trihydrate [(Hdpa)44+ · (2-hnpa)44- · 3H2O, 2-hnpa = 1-hydroxy-2-naphthoate] (8), diisopropylaminium 2-hydroxy-3-naphthoate [(Hdpa)+ · (3-hnpa-), 3-hnpa- = 2-hydroxy-3-naphthoate] (9), diisopropylaminium 5-bromosalicylate [(Hdpa)+ · (bsa-), bsa- = 5-bromosalicylate] (10), diisopropylaminium 3,5-dinitrobenzoate [(Hdpa)+ · (dna-), dna- = 3,5-dinitrobenzoate] (11), diisopropylaminium 3,5-dinitrosalicylate [(Hdpa)+ · (3,5-dns-), 3,5-dns- = 3,5-dinitrosalicylate] (12), tetra(diisopropylaminium) bis(m-phthalate) monohydrate [(Hdpa+)4 · (mpta2-)2 · H2O, mpta2- = m-phthalate] (13), bis(diisopropylaminium) dihydrogen 1,2,3,4-butane tetracarboxylate [(Hdpa+)2 · (H2Bta2-), H2Bta2- = dihydrogen 1,2,3,4-butane tetracarboxylate] (14), bis(diisopropylaminium) mucate [(Hdpa+)2 · (muc2-), muc2- = mucate] (15), and diisopropylaminium hydrogen 1,2-phenylenediacetate [(Hdpa) · (Hpda-), Hpda- = hydrogen 1,2-phenylenediacetate] (16). The sixteen salts have been characterised by XRD technique, IR, and elemental analysis, and the melting points of all the

  10. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress.

    Science.gov (United States)

    Wang, Wensheng; Zhao, Xiuqin; Pan, Yajiao; Zhu, Linghua; Fu, Binying; Li, Zhikang

    2011-09-20

    DNA methylation, one of the most important epigenetic phenomena, plays a vital role in tuning gene expression during plant development as well as in response to environmental stimuli. In the present study, a methylation-sensitive amplified polymorphism (MSAP) analysis was performed to profile DNA methylation changes in two contrasting rice genotypes under salt stress. Consistent with visibly different phenotypes in response to salt stress, epigenetic markers classified as stable inter-cultivar DNA methylation differences were determined between salt-tolerant FL478 and salt-sensitive IR29. In addition, most tissue-specific DNA methylation loci were conserved, while many of the growth stage-dependent DNA methylation loci were dynamic between the two genotypes. Strikingly, salt stress induced a decrease in DNA methylation specifically in roots at the seedling stage that was more profound in IR29 than in the FL478. This result may indicate that demethylation of genes is an active epigenetic response to salt stress in roots at the seedling stage, and helps to further elucidate the implications of DNA methylation in crop growth and development. Copyright © 2011. Published by Elsevier Ltd.

  11. Annotating the genome by DNA methylation.

    Science.gov (United States)

    Cedar, Howard; Razin, Aharon

    2017-01-01

    DNA methylation plays a prominent role in setting up and stabilizing the molecular design of gene regulation and by understanding this process one gains profound insight into the underlying biology of mammals. In this article, we trace the discoveries that provided the foundations of this field, starting with the mapping of methyl groups in the genome and the experiments that helped clarify how methylation patterns are maintained through cell division. We then address the basic relationship between methyl groups and gene repression, as well as the molecular rules involved in controlling this process during development in vivo. Finally, we describe ongoing work aimed at defining the role of this modification in disease and deciphering how it may serve as a mechanism for sensing the environment.

  12. Hexaaquabis[3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanido-κ2N3,O4]barium tetrahydrate

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Do

    2013-11-01

    Full Text Available In the title compound, [Ba(C7H5N2O52(H2O6]·4H2O, the Ba2+ cation lies on a twofold rotation axis and is ten-coordinated by two 3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanide oxo O atoms [Ba—O = 2.8715 (17 Å], two hydroxyimino N atoms [Ba—N = 3.036 (2 Å], and six water molecules [Ba—O = 2.847 (2, 2.848 (2, and 2.880 (2 Å]. The 3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanide monoanions act in a bidentate chelating manner, coordinating through an N atom of the non-deprotonated hydroxyimino group and an O atom of the neighboring oxo group. Two lattice water molecules are located in the cavities of the framework and are involved in hydrogen bonding to O atoms of one of the coordinating water molecules and the O atom of a keto group of the ligand. As a result, a three-dimensional network is formed.

  13. Carvedilol induces endogenous hydrogen sulfide tissue concentration changes in various mouse organs.

    Science.gov (United States)

    Wiliński, Bogdan; Wiliński, Jerzy; Somogyi, Eugeniusz; Piotrowska, Joanna; Góralska, Marta; Macura, Barbara

    2011-01-01

    Carvedilol, a third generation non-selective adrenoreceptor blocker, is widely used in cardiology. Its action has been proven to reach beyond adrenergic antagonism and involves multiple biological mechanisms. The interaction between carvedilol and endogenous 'gasotransmitter' hydrogen sulfide (H2S) is unknown. The aim of the study is to assess the influence of carvedilol on the H2S tissue level in mouse brain, liver, heart and kidney. Twenty eight SJL strain female mice were administered intraperitoneal injections of 2.5 mg/kg b.w./d (group D1, n=7), 5 mg/kg b.w./d (group D2, n=7) or 10 mg/kg b.w./d of carvedilol (group D3, n=7). The control group (n=7) received physiological saline in portions of the same volume (0.2 ml). Measurements of the free tissue H2S concentrations were performed according to the modified method of Siegel. A progressive decline in H2S tissue concentration along with an increase in carvedilol dose was observed in the brain (12.5%, 13.7% and 19.6%, respectively). Only the highest carvedilol dose induced a change in H2S tissue level in the heart - an increase by 75.5%. In the liver medium and high doses of carvedilol increased the H2S level by 48.1% and 11.8%, respectively. In the kidney, group D2 showed a significant decrease of H2S tissue level (22.5%), while in the D3 group the H2S concentration increased by 12.9%. Our study has proven that carvedilol affects H2S tissue concentration in different mouse organs.

  14. [Mifepristone inhibites the migration of endometrial cancer cells through regulating H19 methylation].

    Science.gov (United States)

    Lu, Z Z; Yan, L; Zhang, H; Li, M J; Zhang, X H; Zhao, X X

    2016-06-23

    To investigate the effect and mechanism of mifepristone on the migration of human endometrial carcinoma cells. A human endometrial carcinoma cell line, Ishikawa cells, was cultured in vitro and treated with mifepristone at different concentrations. Wound healing assay was applied to detect the migration of Ishikawa cells. RT-PCR and methylation-specific PCR (MSP) were used to detect the levels of H19 mRNA and its DNA methylation. Western-blot was used to detect the expressions of HMGA2 and epithelial to mesenchymal transition (EMT) related proteins. When treated with different concentrations of mifepristone for 48 hours, the width of scratch of the the control group, the 5 mg/L and the 10 mg/L mifepristone treatment groups were (4.18±0.07)mm, (4.68±0.07)mm, and(4.99±0.07)mm, respectively (Pendometrial carcinoma cells partially through methylation-induced of transcriptional inhibition of H19, which results in the down-regulation of HMGA2 and vimentin and upregulation of E-cadherin.

  15. Glufosinate ammonium induces convulsion through N-methyl-D-aspartate receptors in mice.

    Science.gov (United States)

    Matsumura, N; Takeuchi, C; Hishikawa, K; Fujii, T; Nakaki, T

    2001-05-18

    Glufosinate ammonium, a broad-spectrum herbicide, causes convulsion in rodents and humans. Because of the structural similarities between glufosinate and glutamate, the convulsion induced by glufosinate ammonium may be ascribed to glutamate receptor activation. Three N-methyl-D-asparate (NMDA) receptor antagonists, dizocilpine, LY235959, and Compound 40, and an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptor antagonist, NBQX, were coadministrated with glufosinate ammonium (80 mg/kg, intraperitoneally) in mice. Statistical analyses showed that the NMDA receptor antagonists markedly inhibited the convulsions, while the AMPA/kainate receptor antagonist had no effect on the convulsion. These results suggest that the convulsion caused by glufosinate ammonium is mediated through NMDA receptors.

  16. Hydrogen sulfide: A novel nephroprotectant against cisplatin-induced renal toxicity.

    Science.gov (United States)

    Dugbartey, George J; Bouma, Hjalmar R; Lobb, Ian; Sener, Alp

    2016-07-01

    Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links, which damage rapidly dividing cancer cells upon binding to DNA, its nephrotoxic effect results from metabolic conversion of cisplatin into a nephrotoxin and production of reactive oxygen species, causing oxidative stress leading to renal tissue injury and potentially, kidney failure. Despite therapeutic targets in several pre-clinical and clinical studies, there is still incomplete protection against cisplatin-induced nephrotoxicity. Hydrogen sulfide (H2S), the third discovered gasotransmitter next to nitric oxide and carbon monoxide, has recently been identified in several in vitro and in vivo studies to possess specific antioxidant, anti-inflammatory and anti-apoptotic properties that modulate several pathogenic pathways involved in cisplatin-induced nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and displays recent findings in the H2S field that could disrupt such mechanisms to ameliorate cisplatin-induced renal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Novel methyl transfer during chemotaxis in Bacillus subtilis

    International Nuclear Information System (INIS)

    Thoelke, M.S.; Kirby, J.R.; Ordal, G.W.

    1989-01-01

    If Bacillus subtilis is incubated in radioactive methionine in the absence of protein synthesis, the methyl-accepting chemotaxis proteins (MCPs) become radioactively methylated. If the bacteria are further incubated in excess nonradioactive methionine (cold-chased) and then given the attractant aspartate, the MCPs lose about half of their radioactivity due to turnover, in which lower specific activity methyl groups from S-adenosylmethionine (AdoMet) replace higher specific activity ones. Due to the cold-chase, the specific activity of the AdoMet pool is reduced at least 2-fold. If, later, the attractant is removed, higher specific activity methyl groups return to the MCPs. Thus, there must exist an unidentified methyl carrier than can reversibly receive methyl groups from the MCPs. In a similar experiment, labeled cells were transferred to a flow cell and exposed to addition and removal of attractant and of repellent. All four kinds of stimuli were found to cause methanol production. Bacterial with maximally labeled MCPs were exposed to many cycles of addition and removal of attractant; the maximum amount of radioactive methanol was evolved on the third, not the first, cycle. This result suggests that there is a precursor-product relationship between methyl groups on the MCPs and on the unidentified carrier, which might be the direct source of methanol. However, since no methanol was produced when a methyltransferase mutant, whose MCPs were unmethylated, was exposed to addition and removal of attractant or repellent, the methanol must ultimately derive from methylated MCPs

  18. N- and O-methylation of sphingomyelin markedly affects its membrane properties and interactions with cholesterol

    DEFF Research Database (Denmark)

    Bjorkbom, A.; Rog, T.; Kankaanpaa, P.

    2011-01-01

    -phase instability (T(m), was lowered by similar to 7 degrees C). Atomistic molecular dynamics simulations showed that fluid phase bilayers with methylated SM analogs were more expanded but thinner compared to PSM bilayers. It was further revealed that 3-OH methylation dramatically attenuated hydrogen bonding also...... containing PSM. Molecular dynamics simulations revealed further that cholesterol's bilayer location was deeper in PSM bilayers as compared to the location in bilayers made from methylated SM analogs. This study shows that the interfacial properties of SMs are very important for interlipid interactions...

  19. Role of microtexture in the interaction and coalescence of hydrogen-induced cracks

    Energy Technology Data Exchange (ETDEWEB)

    Venegas, V. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico D.F. 07738 (Mexico); Caleyo, F. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico D.F. 07738 (Mexico)], E-mail: fcaleyo@gmail.com; Baudin, T. [Laboratoire de Physico-Chimie de l' Etat Solide, ICMMO, UMR CNRS 8182, Batiment 410, Universite de Paris Sud, 91405, Orsay, Cedex (France); Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico D.F. 07738 (Mexico); Penelle, R. [Laboratoire de Physico-Chimie de l' Etat Solide, ICMMO, UMR CNRS 8182, Batiment 410, Universite de Paris Sud, 91405, Orsay, Cedex (France)

    2009-05-15

    The role of microtexture in hydrogen-induced crack interaction and coalescence is investigated in line pipe steels using electron backscatter diffraction. Experimental evidence shows that, depending on the local grain orientation, crack interaction and coalescence can depart from the conditions predicted by the mixed-mode fracture mechanics of isotropic linear elastic materials. Stress simulation and microtexture analysis are used to explain the experimental observations.

  20. Role of microtexture in the interaction and coalescence of hydrogen-induced cracks

    International Nuclear Information System (INIS)

    Venegas, V.; Caleyo, F.; Baudin, T.; Hallen, J.M.; Penelle, R.

    2009-01-01

    The role of microtexture in hydrogen-induced crack interaction and coalescence is investigated in line pipe steels using electron backscatter diffraction. Experimental evidence shows that, depending on the local grain orientation, crack interaction and coalescence can depart from the conditions predicted by the mixed-mode fracture mechanics of isotropic linear elastic materials. Stress simulation and microtexture analysis are used to explain the experimental observations.

  1. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro.

    Directory of Open Access Journals (Sweden)

    Dessie Salilew-Wondim

    imprinting and chromosome segregation in IVP blastocyst groups. Furthermore, 1.6, 3.4, 3.9 and 9.4% of the differentially methylated regions that were overlapped to the transcriptome profile data were negatively correlated with the gene expression patterns in ZY, 4C, 16C and IVP blastocyst groups, respectively. Therefore, this finding indicated that suboptimal culture condition during preimplantation embryo development induced changes in the DNA methylation landscape of the resulting blastocysts in a stage dependent manner and the altered DNA methylation pattern was only partly explained the observed aberrant gene expression patterns of the blastocysts.

  2. Relationship between methylation status of vitamin D-related genes, vitamin D levels, and methyl-donor biochemistry

    Directory of Open Access Journals (Sweden)

    Emma Louise Beckett

    2016-12-01

    Full Text Available Vitamin D is known for its role in the regulation of gene expression via the vitamin D receptor, a nuclear transcription factor. More recently, a role for vitamin D in regulating DNA methylation has been identified as an additional mechanism of modulation of gene expression. How methylation status influences vitamin D metabolism and response pathways is not yet clear. Therefore, we aimed to assess the relationship between plasma 25-hydroxycholecalciferol (25(OHD and the methylation status of vitamin D metabolism enzyme genes (CYP2R1, CYP27B1 and CYP24A1 and the vitamin D receptor gene (VDR. This analysis was conducted in the context of dietary vitamin D, and background methyl donor related biochemistry, with adjustment for several dietary and lifestyle variables. Percentage methylation at CpG sites was assessed in peripheral blood cells using methylation sensitive and dependent enzymes and qPCR. Standard analytical techniques were used to determine plasma 25(OHD and homocysteine, and serum folate and B12, with the relationship to methylation status assessed using multi-variable regression analysis. CYP2R1 and VDR methylation were found to be independent predictors of plasma 25(OHD, when adjusted for vitamin D intake and other lifestyle variables. CYP24A1 was related to plasma 25(OHD directly, but not in the context of vitamin D intake. Methyl-group donor biochemistry was associated with the methylation status of some genes, but did not alter the relationship between methylation and plasma 25(OHD. Modulation of methylation status of CYP2R1, CYP24A1 and VDR in response to plasma 25(OHD may be part of feedback loops involved in maintaining vitamin D homeostasis, and may explain a portion of the variance in plasma 25(OHD levels in response to intake and sun exposure. Methyl-group donor biochemistry, while a potential independent modulator, did not alter this effect.

  3. [Association of etheno-DNA adduct and DNA methylation level among workers exposed to diesel engine exhaust].

    Science.gov (United States)

    Shen, M L; He, Z N; Zhang, X; Duan, H W; Niu, Y; Bin, P; Ye, M; Meng, T; Dai, Y F; Yu, S F; Chen, W; Zheng, Y X

    2017-06-06

    Objective: To investigate the association between etheno-DNA adduct and the promoter of DNA methylation levels of cyclin dependent kinase inhibitor 2A (P16), Ras association domain family 1 (RASSF1A) and O-6-methylguanine-DNA methyltransferase (MGMT) in workers with occupational exposure to diesel engine exhaust (DEE). Methods: We recruited 124 diesel engine testing workers as DEE exposure group and 112 water pump operator in the same area as control group in Henan province in 2012 using cluster sampling. The demographic data were obtained by questionnaire survey; urine after work and venous blood samples were collected from each subject. The urinary etheno-DNA adducts were detected using UPLC-MS/MS, including 1,N6-etheno-2'-deoxyadenosine (εdA) and 3,N4-etheno-2'-deoxycytidine(εdC). The DNA methylation levels of P16, RASSF1A, and MGMT were evaluated using bisulfite-pyrosequencing assay. The percentage of methylation was expressed as the 5-methylcytosine (5mC) over the sum of cytosines (%5mC). Spearman correlation and multiple linear regression were applied to analyze the association between etheno-DNA adducts and DNA methylation of P16, RASSF1A, and MGMT. Results: The median ( P (25)- P (75)) of urinary εdA level was 230.00 (98.04-470.91) pmol/g creatinine in DEE exposure group, and 102.10 (49.95-194.48) creatinine in control group. The level of εdA was higher in DEE exposure group than control group ( P 0.05) . Multiple linear regression confirmed the negative correlation between εdA and DNA methylation levels of P16, RASSF1A, and MGMT in non-smoking group (β (95 %CI ) was -0.068 (-0.132--0.003), -0.082 (-0.159--0.004) and -0.048 (-0.090--0.007), P values were 0.039, 0.039 and 0.024, respectively). Moreover, εdC was negative associated with DNA methylation level of MGMT in non-smoking group (β (95 %CI ) was -0.094 (-0.179--0.008), P= 0.032). Conclusion: DEE exposure could induce the increased of εdA and decreased of DNA methylation levels of P16, RASSF1A

  4. An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines

    KAUST Repository

    Traidia, Abderrazak

    2012-11-01

    This paper presents a comprehensive finite element model for the numerical simulation of Hydrogen Induced Cracking (HIC) in steel pipelines exposed to sulphurous compounds, such as hydrogen sulphide (H2S). The model is able to mimic the pressure build-up mechanism related to the recombination of atomic hydrogen into hydrogen gas within the crack cavity. In addition, the strong couplings between non-Fickian hydrogen diffusion, pressure build-up and crack extension are accounted for. In order to enhance the predictive capabilities of the proposed model, problem boundary conditions are based on actual in-field operating parameters, such as pH and partial pressure of H 2S. The computational results reported herein show that, during the extension phase, the propagating crack behaves like a trap attracting more hydrogen, and that the hydrostatic stress field at the crack tip speed-up HIC related crack initiation and growth. In addition, HIC is reduced when the pH increases and the partial pressure of H2S decreases. Furthermore, the relation between the crack growth rate and (i) the initial crack radius and position, (ii) the pipe wall thickness and (iii) the fracture toughness, is also evaluated. Numerical results agree well with experimental data retrieved from the literature. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  5. Alteration in Expression and Methylation of IGF2/H19 in Placenta and Umbilical Cord Blood Are Associated with Macrosomia Exposed to Intrauterine Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Rina Su

    Full Text Available Macrosomia is one of the most common complications in gestational diabetes mellitus. Insulin-like growth factor 2 and H19 are two of the imprinted candidate genes that are involved in fetal growth and development. Change in methylation at differentially methylated region of the insulin-like growth factor 2 and H19 has been proved to be an early event related to the programming of metabolic profile, including macrosomia and small for gestational age in offspring. Here we hypothesize that alteration in methylation at differentially methylated region of the insulin-like growth factor 2 and H19 is associated with macrosomia induced by intrauterine hyperglycemia.The expression of insulin-like growth factor 2 is significant higher in gestational diabetes mellitus group (GDM group compared to normal glucose tolerance group (NGT group both in umbilical cord blood and placenta, while the expression of H19 is significant lower in GDM group in umbilical cord blood. The expression of insulin-like growth factor 2 is significant higher in normal glucose tolerance with macrosomia group (NGT-M compared to normal glucose tolerance with normal birthweight group (NGT-NBW group both in placenta and umbilical cord blood. A model with interaction term of gene expression of IGF2 and H19 found that IGF2 and the joint action of IGF2 and H19 in placenta showed significantly relationship with GDM/NGT and GDM-NBW/NGT-NBW. A borderline significant association was seen among IGF2 and H19 in cord blood and GDM-M/NGT-M. The methylation level at different CpG sites of insulin-like growth factor 2 and H19 in umbilical cord blood was also significantly different among groups. Based on the multivariable linear regression analysis, the methylation of the insulin-like growth factor 2 / H19 is closely related to birth weight and intrauterine hyperglycemia.We confirmed the existence of alteration in DNA methylation in umbilical cord blood exposed to intrauterine hyperglycemia and

  6. Effects of External Hydrogen on Hydrogen Transportation and Distribution Around the Fatigue Crack Tip in Type 304 Stainless Steel

    Science.gov (United States)

    Chen, Xingyang; Zhou, Chengshuang; Cai, Xiao; Zheng, Jinyang; Zhang, Lin

    2017-10-01

    The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α' martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/ α' martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α' martensite.

  7. Methyl group dynamics in a glass and its crystalline counterpart by neutron scattering

    CERN Document Server

    Moreno, A J; Colmenero, J; Frick, B

    2002-01-01

    Methyl group dynamics in the same sample of sodium acetate trihydrate in crystalline and glassy states have been investigated by neutron scattering. Measurements have been carried out in the whole temperature range covering the crossover from rotational tunneling to classical hopping. The results in the crystalline sample have been analyzed according to the usual single-particle model, while those in the glass were analyzed in terms of a broad Gaussian distribution of single-particle potentials, with a standard deviation of 205 K. The average barrier in the glass (417 K) takes, within the experimental error, the same value as the unique barrier in the crystal. (orig.)

  8. Formation of Methyl Acrylate from CO 2 and Ethylene via Methylation of Nickelalactones

    KAUST Repository

    Bruckmeier, Christian; Lehenmeier, Maximilian W.; Reichardt, Robert; Vagin, Sergei; Rieger, Bernhard

    2010-01-01

    The nickel-induced coupling of ethylene and CO2 represents a promising pathway toward acrylates. To overcome the high bond dissociation energies of the M-O moieties, we worked out an in situ methylation of nickelalactones to realize the β

  9. Protein methylation in pea chloroplasts

    International Nuclear Information System (INIS)

    Niemi, K.J.; Adler, J.; Selman, B.R.

    1990-01-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with [ 3 H-methyl]-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile [ 3 H]methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the [ 3 H]methyl group

  10. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum.

    Science.gov (United States)

    Snoeren, Tjeerd A L; Mumm, Roland; Poelman, Erik H; Yang, Yue; Pichersky, Eran; Dicke, Marcel

    2010-05-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA.

  11. Dependence of the saturated light-induced defect density on macroscopic properties of hydrogenated amorphous silicon

    OpenAIRE

    Park, H. R.; Liu, J. Z.; Roca i Cabarrocas, P.; Maruyama, A.; Isomura, M.; Wagner, S.; Abelson, J. R.; Finger, F.

    2008-01-01

    We report a study of the saturated light-induced defect density Ns,sat in 37 hydrogenated (and in part fluorinated) amorphous silicon [a-Si:H(F)] films grown in six different reactors under widely different conditions. Ns,sat was attained by exposing the films to light from a krypton ion laser (λ=647.1 nm). Ns,sat is determined by the constant photocurrent method and lies between 5×1016 and 2×1017 cm−3. Ns,sat drops with decreasing optical gap Eopt and hydrogen content cH, but is not correlat...

  12. Acute exercise remodels promoter methylation in human skeletal muscle

    DEFF Research Database (Denmark)

    Barrès, Romain; Yan, Jie; Egan, Brendan

    2012-01-01

    DNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene ex...

  13. Bee venom protects SH-SY5Y human neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death.

    Science.gov (United States)

    Doo, Ah-Reum; Kim, Seung-Nam; Kim, Seung-Tae; Park, Ji-Yeun; Chung, Sung-Hyun; Choe, Bo-Young; Chae, Younbyoung; Lee, Hyejung; Yin, Chang-Shik; Park, Hi-Joon

    2012-01-06

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by progressive selective loss of dopaminergic neurons in the substantia nigra. Recently, bee venom was reported to protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced mice PD model, however, the underlying mechanism is not fully understood. The objective of the present study is to investigate the neuroprotective mechanism of bee venom against Parkinsonian toxin, 1-methyl-4-phenylpyridine (MPP(+)), in SH-SY5Y human neuroblastoma cells. Our results revealed that bee venom pretreatment (1-100 ng/ml) increased the cell viability and decreased apoptosis assessed by DNA fragmentation and caspase-3 activity assays in MPP(+)-induced cytotoxicity in SH-SY5Y cells. Bee venom increased the anti-apoptotic Bcl-2 expression and decreased the pro-apoptotic Bax, cleaved PARP expressions. In addition, bee venom prevented the MPP(+)-induced suppression of Akt phosphorylation, and the neuroprotective effect of bee venom against MPP(+)-induced cytotoxicity was inhibited by a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002. These results suggest that the anti-apoptotic effect of bee venom is mediated by the cell survival signaling, the PI3K/Akt pathway. These results provide new evidence for elucidating the mechanism of neuroprotection of bee venom against PD. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. The cognitive impairment induced by zinc deficiency in rats aged 0∼2 months related to BDNF DNA methylation changes in the hippocampus.

    Science.gov (United States)

    Hu, Yan-Dan; Pang, Wei; He, Cong-Cong; Lu, Hao; Liu, Wei; Wang, Zi-Yu; Liu, Yan-Qiang; Huang, Cheng-Yu; Jiang, Yu-Gang

    2017-11-01

    This study was carried out to understand the effects of zinc deficiency in rats aged 0∼2 months on learning and memory, and the brain-derived neurotrophic factor (BDNF) gene methylation status in the hippocampus. The lactating mother rats were randomly divided into three groups (n = 12): zinc-adequate group (ZA: zinc 30 mg/kg diet), zinc-deprived group (ZD: zinc 1 mg/kg diet), and a pair-fed group (PF: zinc 30 mg/kg diet), in which the rats were pair-fed to those in the ZD group. After weaning (on day 23), offspring were fed the same diets as their mothers. After 37 days, the zinc concentrations in the plasma and hippocampus were measured, and the behavioral function of the offspring rats was measured using the passive avoidance performance test. We then assessed the DNA methylation patterns of the exon IX of BDNF by methylation-specific quantitative real-time PCR and the mRNA expression of BDNF in the hippocampus by RT-PCR. Compared with the ZA and PF groups, rats in the ZD group had shorter latency period, lower zinc concentrations in the plasma and hippocampus (P zinc-deficient diet during 0∼2 month period. Furthermore, this work supports the speculative notion that altered DNA methylation of BDNF in the hippocampus is one of the main causes of cognitive impairment by zinc deficiency.

  15. Laser induced desorption as hydrogen retention diagnostic method

    Energy Technology Data Exchange (ETDEWEB)

    Zlobinski, Miroslaw

    2016-07-15

    Laser Induced Desorption Spectroscopy (LIDS) is a diagnostic method to measure the hydrogen content in the surface of a material exposed to a hydrogen isotope (H,D,T) plasma. It is developed mainly to monitor hydrogen retention in the walls of magnetic fusion devices that have to limit the amount of their fuel tritium mainly due to safety reasons. The development of fusion increasingly focusses on plasma-wall interactions for which in situ diagnostics like LIDS are required that work during plasma operation and without tile removal. The method has first been developed for thin amorphous hydrocarbon (a-C:H < 500 nm) layers successfully and is studied in the present work on thick (15 μm) layers, carbon fibre composites (CFCs), bulk tungsten (W), W fuzz and mixed C/W materials. In LID a 3 ms Nd:YAG (1064 nm) laser pulse heats a spot of diameter 3 mm with 500 {sup MW}/{sub m{sup 2}} on W to 1800 K at the surface and thus above 1300 K within ca. 0.2 mm depth. On C materials (graphite, CFC, a-C:H) this temperature guarantees a nearly complete (>95%) desorption already within 1.5 ms pulse duration. The retained hydrogen atoms are desorbed locally, recombine to molecules and migrate promptly to the surface via internal channels like pores and grain boundaries. Whereas, in W the retained hydrogen atoms have to diffuse through the bulk material, which is a relatively slow process also directed into the depth. The desorbed hydrogen fraction can thus be strongly reduced to 18-91% as observed here. This fraction is measured by melting the central part of a previously heated spot ca. 40 μm deep with a diameter 2 mm, 3 ms laser pulse, releasing the remaining hydrogen. W samples exposed to different plasmas in TEXTOR, Pilot-PSI, PSI-2, PADOS and PlaQ show that the desorption fraction of LID mainly decreases due to higher sample temperature during plasma exposure. The heat causes deeper hydrogen diffusion and/or stronger hydrogen trapping due to creation of traps with higher

  16. Laser induced desorption as hydrogen retention diagnostic method

    International Nuclear Information System (INIS)

    Zlobinski, Miroslaw

    2016-01-01

    Laser Induced Desorption Spectroscopy (LIDS) is a diagnostic method to measure the hydrogen content in the surface of a material exposed to a hydrogen isotope (H,D,T) plasma. It is developed mainly to monitor hydrogen retention in the walls of magnetic fusion devices that have to limit the amount of their fuel tritium mainly due to safety reasons. The development of fusion increasingly focusses on plasma-wall interactions for which in situ diagnostics like LIDS are required that work during plasma operation and without tile removal. The method has first been developed for thin amorphous hydrocarbon (a-C:H < 500 nm) layers successfully and is studied in the present work on thick (15 μm) layers, carbon fibre composites (CFCs), bulk tungsten (W), W fuzz and mixed C/W materials. In LID a 3 ms Nd:YAG (1064 nm) laser pulse heats a spot of diameter 3 mm with 500 MW / m 2 on W to 1800 K at the surface and thus above 1300 K within ca. 0.2 mm depth. On C materials (graphite, CFC, a-C:H) this temperature guarantees a nearly complete (>95%) desorption already within 1.5 ms pulse duration. The retained hydrogen atoms are desorbed locally, recombine to molecules and migrate promptly to the surface via internal channels like pores and grain boundaries. Whereas, in W the retained hydrogen atoms have to diffuse through the bulk material, which is a relatively slow process also directed into the depth. The desorbed hydrogen fraction can thus be strongly reduced to 18-91% as observed here. This fraction is measured by melting the central part of a previously heated spot ca. 40 μm deep with a diameter 2 mm, 3 ms laser pulse, releasing the remaining hydrogen. W samples exposed to different plasmas in TEXTOR, Pilot-PSI, PSI-2, PADOS and PlaQ show that the desorption fraction of LID mainly decreases due to higher sample temperature during plasma exposure. The heat causes deeper hydrogen diffusion and/or stronger hydrogen trapping due to creation of traps with higher binding energy

  17. Hydrogen-Bonded Complexes of Phenylacetylene with Water, Methanol, Ammonia, and Methylamine. The Origin of Methyl Group-Induced Hydrogen Bond Switching

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Robert; Hobza, Pavel; Patwari, G. N.

    2009-01-01

    Roč. 113, č. 24 (2009), s. 6620-6625 ISSN 1089-5639 R&D Projects: GA MŠk LC512 Grant - others:DST(IN) SR/S1/PC/23/2008 Institutional research plan: CEZ:AV0Z40550506 Keywords : infrared spectra * ab initio CCSD(T) calculations * phenylacetylene Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.899, year: 2009

  18. Involvement of mismatch repair proteins in adaptive responses induced by N-methyl-N'-nitro-N-nitrosoguanidine against {gamma}-induced genotoxicity in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Ayumi; Sakamoto, Yasuteru; Masumura, Kenichi; Honma, Masamitsu [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Nohmi, Takehiko, E-mail: nohmi@nihs.go.jp [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan)

    2011-08-01

    Highlights: {yields} Health effects of radiation should be evaluated in combination with chemicals. {yields} Here, we show that MNNG suppresses radiation-induced genotoxicity in human cells. {yields} Mismatch repair proteins play critical roles in the apparent adaptive responses. {yields} Chemical exposure may modulate radiation-induced genotoxicity in humans. - Abstract: As humans are exposed to a variety of chemical agents as well as radiation, health effects of radiation should be evaluated in combination with chemicals. To explore combined genotoxic effects of radiation and chemicals, we examined modulating effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a direct-acting methylating agent, against genotoxicity of {gamma}-radiation. Human lymphoblastoid TK6 cells and its mismatch-deficient derivative, i.e., MT1 cells, were treated with MNNG for 24 h before they were exposed to {gamma}-irradiation at a dose of 1.0 Gy, and the resulting genotoxicity was examined. In TK6 cells, the pretreatments with MNNG at low doses suppressed frequencies of the thymidine kinase (TK) gene mutation and micronucleus (MN) formation induced by {gamma}-irradiation and thus the dose responses of TK and MN assays were U-shaped along with the pretreatment doses of MNNG. In contrast, the genotoxic effects of MNNG and {gamma}-irradiation were additive in MT1 cells and the frequencies of TK mutations and MN induction increased along with the doses of MNNG. Apoptosis induced by {gamma}-radiation was suppressed by the pretreatments in TK6 cells, but not in MT1 cells. The expression of p53 was induced and cell cycle was delayed at G2/M phase in TK6, but not in MT1 cells, by the treatments with MNNG. These results suggest that pretreatments of MNNG at low doses suppress genotoxicity of {gamma}-radiation in human cells and also that mismatch repair proteins are involved in the apparent adaptive responses.

  19. [Study of relationship between arsenic methylation and skin lesion in a population with long-term high arsenic exposure].

    Science.gov (United States)

    Su, Liqin; Cheng, Yibin; Lin, Shaobin; Wu, Chuanye

    2007-05-01

    To investigate the difference of arsenic metabolism in populations with long-term high arsenic exposure and explore the relationship between arsenic metabolism diversity and skin lesion. 327 residents in an arsenic polluted village were voluntarily enrolled in this study. Questionnaire survey and medical examination were carried out to learn basic information and detect skin lesions. Urinary inorganic and methylated arsenic were speciated by high performance liquid chromatography combined with hydride-generation atomic fluorescence spectrometry. Total arsenic concentration in hair was determined with DDC-Ag method. Hair arsenic content of studied polutions was generally high, but no significant difference were found among the studied four groups. MMA and DMA concentration in urine increased with studied polution age, and were positively related with skin lesion grade. The relative proportion of MMA in serious skin lesion group was significantly higher than in other 3 groups, while DMA/MMA ratio was significantly lower than control and mild group. The relative proportion of MMA was positively related with skin lesion grade, DMA/ MMA ratio was negatively related with skin lesion grade. Males could have higher arsenic cumulation and lower methylation capacity than those of females. The population of above 40 years old may have higher methylation capacity than those of adults below 40yeas old. Smokers and drinkers seemed lower methylation capacity than those of non-smokers and non-drinkers respectively. The methylation of arsenic could affect by several factors, including age gender, smoking and drinking. Arsenic methylation copacity mey be associated with skin lesion induced by arsenic exposure.

  20. Dendronized Polymers with Ureidopyrimidinone Groups

    DEFF Research Database (Denmark)

    Scherz, Leon F.; Costanzo, Salvatore; Huang, Qian

    2017-01-01

    A library of poly(methyl methacrylate)-based dendronized polymers with generation numbers g = 1-3 was prepared, which contain different degrees of dendritic substitution (0-50%) with strongly hydrogen bonding 2-ureido-4[1H]-pyrimidinone (UPy) moieties at their respective g = 1 levels. Our...

  1. Pseudosymmetric fac-di­aqua­trichlorido[(di­methyl­phosphor­yl)methanaminium-κO]manganese(II)

    Science.gov (United States)

    Reiss, Guido J.

    2013-01-01

    In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the MnII metal center has a distorted o­cta­hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol­ecules and the O-coordinated dpmaH cation [dpmaH = (di­methyl­phosphor­yl)methanaminium] complete the coordination sphere. Each complex mol­ecule is connected to its neighbours by O—H⋯Cl and N—H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)]. PMID:23723764

  2. High Charge Mobility of a Perylene Bisimide Dye with Hydrogen-bond Formation Group

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A perylene bisimide dye covalently bonded with a hydrogen-bond formation group of 1,3, 5-triazine-2, 4-diamine has been synthesized. Its casting films show a charge carrier mobility over 10-3 cm2/Vs, which is in the range of the highest values found for other promising charge transport materials suitable for solution processable technique.

  3. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats.

    Directory of Open Access Journals (Sweden)

    Ismael Palacios-García

    Full Text Available Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that

  4. Potential roles of DNA methylation in the initiation and establishment of replicative senescence revealed by array-based methylome and transcriptome analyses.

    Directory of Open Access Journals (Sweden)

    Mizuho Sakaki

    Full Text Available Cellular senescence is classified into two groups: replicative and premature senescence. Gene expression and epigenetic changes are reported to differ between these two groups and cell types. Normal human diploid fibroblast TIG-3 cells have often been used in cellular senescence research; however, their epigenetic profiles are still not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed the gene expression and DNA methylation profiles of three types of senescent cells, namely, replicatively senescent, ras-induced senescent (RIS, and non-permissive temperature-induced senescent SVts8 cells, using gene expression and DNA methylation microarrays. The expression of genes involved in the cell cycle and immune response was commonly either down- or up-regulated in the three types of senescent cells, respectively. The altered DNA methylation patterns were observed in replicatively senescent cells, but not in prematurely senescent cells. Interestingly, hypomethylated CpG sites detected on non-CpG island regions ("open sea" were enriched in immune response-related genes that had non-CpG island promoters. The integrated analysis of gene expression and methylation in replicatively senescent cells demonstrated that differentially expressed 867 genes, including cell cycle- and immune response-related genes, were associated with DNA methylation changes in CpG sites close to the transcription start sites (TSSs. Furthermore, several miRNAs regulated in part through DNA methylation were found to affect the expression of their targeted genes. Taken together, these results indicate that the epigenetic changes of DNA methylation regulate the expression of a certain portion of genes and partly contribute to the introduction and establishment of replicative senescence.

  5. N-Methyl-d-Aspartate (NMDA Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Vivian V. Costa

    2017-04-01

    Full Text Available Zika virus (ZIKV infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801, agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration.

  6. Inducing β Phase Crystallinity in Block Copolymers of Vinylidene Fluoride with Methyl Methacrylate or Styrene

    Directory of Open Access Journals (Sweden)

    Nahal Golzari

    2017-07-01

    Full Text Available Block copolymers of poly(vinylidene fluoride (PVDF with either styrene or methyl methacrylate (MMA were synthesized and analyzed with respect to the type of the crystalline phase occurring. PVDF with iodine end groups (PVDF-I was prepared by iodine transfer polymerization either in solution with supercritical CO2 or in emulsion. To activate all iodine end groups Mn2(CO10 is employed. Upon UV irradiation Mn(CO5 radicals are obtained, which abstract iodine from PVDF-I generating PVDF radicals. Subsequent polymerization with styrene or methyl methacrylate (MMA yields block copolymers. Size exclusion chromatography and NMR results prove that the entire PVDF-I is converted. XRD, FT-IR, and differential scanning calorimetry (DSC analyses allow for the identification of crystal phase transformation. It is clearly shown that the original α crystalline phase of PVDF-I is changed to the β crystalline phase in case of the block copolymers. For ratios of the VDF block length to the MMA block length ranging from 1.4 to 5 only β phase material was detected.

  7. Iron(II) complexes of new hexadentate 1,1,1-tris-(iminomethyl)ethane podands, and their 7-methyl-1,3,5-triazaadamantane rearrangement products.

    Science.gov (United States)

    Diener, Sara A; Santoro, Amedeo; Kilner, Colin A; Loughrey, Jonathan J; Halcrow, Malcolm A

    2012-04-07

    New iron(II) podand complexes have been prepared, by condensation of 2-(aminomethyl)-2-methyl-1,3-diaminopropane with 3 equiv of a heterocyclic aldehyde in the presence of hydrated Fe[BF(4)](2) or Fe[ClO(4)](2) as templates. The 2-(aminomethyl)-2-methyl-1,3-diaminopropane is prepared in situ by deprotonation of its trihydrochloride salt. The chloride must be removed from these reactions by precipitation with silver, to avoid the formation of the alternative 2,4,6-trisubstituted-7-methyl-1,3,5-triazaadamantane condensation products, or their FeCl(2) adducts. The crystal structures of two 2,4,6-tri(pyridyl)-7-methyl-1,3,5-triazaadamantane-containing species are presented, and contain two different geometric isomers of this tricyclic ring with three equatorial, or two equatorial and one axial, pyridyl substituents. Both structures feature strong C-HX (X = Cl or F) hydrogen bonding from the aminal C-H groups in the triazaadamantane ring. Five iron(II) podand complexes were successfully obtained, all of which contain low-spin iron centres.

  8. Prediction of methyl-side Chain Dynamics in Proteins

    International Nuclear Information System (INIS)

    Ming Dengming; Brueschweiler, Rafael

    2004-01-01

    A simple analytical model is presented for the prediction of methyl-side chain dynamics in comparison with S 2 order parameters obtained by NMR relaxation spectroscopy. The model, which is an extension of the local contact model for backbone order parameter prediction, uses a static 3D protein structure as input. It expresses the methyl-group S 2 order parameters as a function of local contacts of the methyl carbon with respect to the neighboring atoms in combination with the number of consecutive mobile dihedral angles between the methyl group and the protein backbone. For six out of seven proteins the prediction results are good when compared with experimentally determined methyl-group S 2 values with an average correlation coefficient r-bar=0.65±0.14. For the unusually rigid cytochrome c 2 no significant correlation between prediction and experiment is found. The presented model provides independent support for the reliability of current side-chain relaxation methods along with their interpretation by the model-free formalism

  9. Studies of initial stage in coal liquefaction. Effect of decomposition of oxygen-functional groups on coal liquefaction; Ekika hanno no shoki katei ni kansuru kenkyu. 3. Gansanso kannoki no bunkai kyodo to ekika hanno eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Komeiji, A.; Kaneko, T.; Shimazaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    Pretreatment of brown coal in oil was conducted using 1-methyl naphthalene or mixture of tetralin and 1-methyl naphthalene as solvent at temperatures ranging from 300 to 430{degree}C under nitrogen atmosphere. Effects of the solvent properties on the structural change of oxygen-functional groups (OFG) and coal liquefaction were investigated by means of quantitative analysis of OFG and solid state {sup 13}C-NMR measurement. When hydrogen transfer from solvent was insufficient, it was suggested that brown coal molecules loose their hydrogen to be aromatized. While, at lower temperatures ranging from 300 to 350{degree}C, hydrogen contained in brown coal molecules was consumed for the stabilization of pyrolytic radicals, and the deterioration of liquefaction was not observed. When hydrogen transfer from solvent was insufficient at higher temperatures above 400{degree}C in nitrogen atmosphere during pretreatment in oil, crosslinking like benzofuran type was formed by dehydration condensation of hydroxyl group in brown coal, to deteriorate the liquefaction, remarkably. The addition of donor solvent like tetralin decreased the formation of crosslinking like benzofuran type, which suppressed the deterioration of liquefaction. 8 refs., 5 figs.

  10. Stress-induced DNA methylation changes and their heritability in asexual dandelions

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Jansen, J.J.; Van Dijk, P.J.; Biere, A.

    2010-01-01

    • DNA methylation can cause heritable phenotypic modifications in the absence of changes in DNA sequence. Environmental stresses can trigger methylation changes and this may have evolutionary consequences, even in the absence of sequence variation. However, it remains largely unknown to what extent

  11. Stress-induced DNA methylation changes and their heritability in asexual dandelions

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Jansen, J.J.; Dijk, P.J.; Biere, A.

    2010-01-01

    DNA methylation can cause heritable phenotypic modifications in the absence of changes in DNA sequence. Environmental stresses can trigger methylation changes and this may have evolutionary consequences, even in the absence of sequence variation. However, it remains largely unknown to what extent

  12. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity.

    Science.gov (United States)

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T

    2011-04-15

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.

  13. Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N-Methyl-d-Aspartate Receptor Antagonist-Induced Rat Models of Schizophrenia.

    Science.gov (United States)

    Nakashima, Masato; Imada, Haruka; Shiraishi, Eri; Ito, Yuki; Suzuki, Noriko; Miyamoto, Maki; Taniguchi, Takahiko; Iwashita, Hiroki

    2018-04-01

    The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. Modulation of the glutamatergic signaling pathway, including N -methyl-d-aspartate (NMDA) receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play pivotal roles as intracellular second messengers downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of a selective and brain-penetrant PDE2A inhibitor, ( N -{(1 S )-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3- b ]pyrazine-4(1 H )-carboxamide) (TAK-915) as a novel treatment of schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg significantly upregulated the phosphorylation of α -amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits induced by the NMDA receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in the rat passive avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  14. EBSD study of hydrogen-induced cracking in API-5 L-X46 pipeline steel

    International Nuclear Information System (INIS)

    Venegas, V.; Caleyo, F.; Gonzalez, J.L.; Baudin, T.; Hallen, J.M.; Penelle, R.

    2005-01-01

    The spatial distribution of plastic deformation and grain orientation surrounding hydrogen-induced cracks (HIC) is investigated in samples of API-5L-X46 pipeline steel using scanning electron microscopy and electron backscattering diffraction (EBSD). This work shows direct experimental evidence of the influence of microstructure, microtexture and mesotexture on HIC crack path

  15. Hydrogen embrittlement and hydrogen induced stress corrosion cracking of high alloyed austenitic materials; Wasserstoffversproedung und wasserstoffinduzierte Spannungsrisskorrosion hochlegierter austenitischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Mummert, K; Uhlemann, M; Engelmann, H J [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1998-11-01

    The susceptiblity of high alloyed austenitic steels and nickel base alloys to hydrogen-induced cracking is particularly determined by 1. the distribution of hydrogen in the material, and 2. the microstructural deformation behaviour, which last process is determined by the effects of hydrogen with respect to the formation of dislocations and the stacking fault energy. The hydrogen has an influence on the process of slip localization in slip bands, which in turn affects the microstructural deformation behaviour. Slip localization increases with growing Ni contents of the alloys and clearly reduces the ductility of the Ni-base alloy. Although there is a local hydrogen source involved in stress corrosion cracking, emanating from the corrosion process at the cathode, crack growth is observed only in those cases when the hydrogen concentration in a small zone ahead of the crack tip reaches a critical value with respect to the stress conditions. Probability of onset of this process gets lower with growing Ni content of the alloy, due to increasing diffusion velocity of the hydrogen in the austenitic lattice. This is why particularly austenitic steels with low Ni contents are susceptible to transcrystalline stress corrosion cracking. In this case, the microstructural deformation process at the crack tip is also influenced by analogous processes, as could be observed in hydrogen-loaded specimens. (orig./CB) [Deutsch] Die Empfindlichkeit von hochlegierten austentischen Staehlen und Nickelbasislegierungen gegen wasserstoffinduziertes Risswachstum wird im wesentlichen bestimmt durch 1. die Verteilung von Wasserstoff im Werkstoff und 2. das mikrostrukturelle Verformungsverhalten. Das mikrostrukturelle Deformationsverhalten ist wiederum durch den Einfluss von Wasserstoff auf die Versetzungsbildung und die Stapelfehlerenergie charakterisiert. Das mikrostrukturelle Verformungsverhalten wird durch wasserstoffbeeinflusste Gleitlokalisierung in Gleitbaendern bestimmt. Diese nimmt mit

  16. [Variation of long-chain 3-hydroxyacyl-CoA dehydrogenase DNA methylation in placenta of different preeclampsia-like mouse models].

    Science.gov (United States)

    Han, Yiwei; Yang, Zi; Ding, Xiaoyan; Yu, Huan; Yi, Yanhong

    2015-10-01

    of LCAHD gene at 3, 11, 13, 14, 18 sites in L-NAME, LPS, ApoC3 and β-2GPI groups were significantly higher than those in the normal saline control group (P preeclampsia onset caused a lower methylation level in L-NAME group, but PI experimental stage was significantly higher than EG and LG experimental stages in LPS group (P preeclampsia onset caused a higher methylation level in L-NAME group, but PI experimental stage was significantly lower than EG and LG experimental stages in LPS group (P preeclampsia-like models respectively; LCHAD gene expression and DNA methylation may not have obvious correlation in LPS and ApoC3 induced preeclampsia-like models. Differences exist in LCHAD DNA methylation in preeclampsia-like models generated by different ways, revealed a molecular basis to expand our understanding of the multi-factorial pathogenesis of preeclampsia.

  17. Measurement of formic acid, acetic acid and hydroxyacetaldehyde, hydrogen peroxide, and methyl peroxide in air by chemical ionization mass spectrometry: airborne method development

    Science.gov (United States)

    Treadaway, Victoria; Heikes, Brian G.; McNeill, Ashley S.; Silwal, Indira K. C.; O'Sullivan, Daniel W.

    2018-04-01

    A chemical ionization mass spectrometry (CIMS) method utilizing a reagent gas mixture of O2, CO2, and CH3I in N2 is described and optimized for quantitative gas-phase measurements of hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HCOOH), and the sum of acetic acid (CH3COOH) and hydroxyacetaldehyde (HOCH2CHO; also known as glycolaldehyde). The instrumentation and methodology were designed for airborne in situ field measurements. The CIMS quantification of formic acid, acetic acid, and hydroxyacetaldehyde used I- cluster formation to produce and detect the ion clusters I-(HCOOH), I-(CH3COOH), and I-(HOCH2CHO), respectively. The CIMS also produced and detected I- clusters with hydrogen peroxide and methyl peroxide, I-(H2O2) and I-(CH3OOH), though the sensitivity was lower than with the O2- (CO2) and O2- ion clusters, respectively. For that reason, while the I- peroxide clusters are presented, the focus is on the organic acids. Acetic acid and hydroxyacetaldehyde were found to yield equivalent CIMS responses. They are exact isobaric compounds and indistinguishable in the CIMS used. Consequently, their combined signal is referred to as the acetic acid equivalent sum. Within the resolution of the quadrupole used in the CIMS (1 m/z), ethanol and 1- and 2-propanol were potential isobaric interferences to the measurement of formic acid and the acetic acid equivalent sum, respectively. The CIMS response to ethanol was 3.3 % that of formic acid and the response to either 1- or 2-propanol was 1 % of the acetic acid response; therefore, the alcohols were not considered to be significant interferences to formic acid or the acetic acid equivalent sum. The multi-reagent ion system was successfully deployed during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) in 2014. The combination of FRAPPÉ and laboratory calibrations allowed for the post-mission quantification of formic acid and the acetic acid equivalent sum observed during the Deep

  18. Microtribological study of perfluoropolyether with different functional groups coated on hydrogen terminated Si

    Energy Technology Data Exchange (ETDEWEB)

    Minn, Myo; Satyanarayana, Nalam [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Sinha, Sujeet K., E-mail: mpesks@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Kondo, Hirofumi [Sony Chemical and Information Device Corporation, R and D Division, 1078 Kamiishikawa, Kanuma 322-8503 (Japan)

    2012-01-15

    Friction and wear properties of different perfluoropolyether (PFPE) films with and without hydrogen termination on Si (Si-H) were studied using a ball-on-disk tribometer. The physical and chemical properties of the films were evaluated using contact angle measurement, atomic force microscopy and X-ray photoelectron spectroscopy. Coating of PFPEs onto bare Si has lowered the coefficient of friction (from 0.6 for Si to {approx}0.05 with PFPE) and enhanced the wear durability (20,000 times) in comparison with those for bare Si which failed immediately. The introduction of hydrogen termination onto Si prior to PFPE coating has further increased the wear durability of PFPE with different functional groups several times (>5 times) under a normal load of 30 mN and a sliding speed of 0.052 m/s.

  19. Methyl-Analyzer--whole genome DNA methylation profiling.

    Science.gov (United States)

    Xin, Yurong; Ge, Yongchao; Haghighi, Fatemeh G

    2011-08-15

    Methyl-Analyzer is a python package that analyzes genome-wide DNA methylation data produced by the Methyl-MAPS (methylation mapping analysis by paired-end sequencing) method. Methyl-MAPS is an enzymatic-based method that uses both methylation-sensitive and -dependent enzymes covering >80% of CpG dinucleotides within mammalian genomes. It combines enzymatic-based approaches with high-throughput next-generation sequencing technology to provide whole genome DNA methylation profiles. Methyl-Analyzer processes and integrates sequencing reads from methylated and unmethylated compartments and estimates CpG methylation probabilities at single base resolution. Methyl-Analyzer is available at http://github.com/epigenomics/methylmaps. Sample dataset is available for download at http://epigenomicspub.columbia.edu/methylanalyzer_data.html. fgh3@columbia.edu Supplementary data are available at Bioinformatics online.

  20. Protective effect of methanol extract of Uncaria rhynchophylla against excitotoxicity induced by N-methyl-D-aspartate in rat hippocampus.

    Science.gov (United States)

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Dae-Keun; Shin, Min-Chul; Jang, Mi-Hyeon; Kim, Chang-Ju; Kim, Yong-Sik; Kim, Sun-Yeou; Kim, Hocheol

    2003-05-01

    Uncaria rhynchophylla is a medicinal herb used for convulsive disorders in Oriental medicine. In this study, the effect of the methanol extract of Uncaria rhynchophylla against N-methyl-D-aspartate (NMDA)-induced excitotoxicity was investigated. Pretreatment with the extract of Uncaria rhynchopylla reduced the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices. In the patch clamp study, Uncaria rhynchophylla significantly inhibited NMDA receptor-activated ion current in acutely dissociated hippocampal CA1 neurons. These results indicate that Uncaria rhynchophylla offers protection against NMDA-induced neuronal injury and inhibitory action on NMDA receptor-mediated ion current may be a mechanism behind the neuroprotective effect of Uncaria rhynchophylla.