WorldWideScience

Sample records for methyl ether acrylate

  1. Thermogravimetric analysis of the polymer acrylate-vinyl ether mixture cured by radiation

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    1998-01-01

    An experiment on thermal stability of the polymer acrylate-vinyl ether mixture cured by radiation have been done using thermogravimetric analysis. Three kinds of acrylic oligomers i.e., epoxy acrylate, urethane acrylate, and polypropylene glycol diacrylate, and vinyl ether monomers i.e., triethylene glycol divinyl ether (DVE-3), 1,4-cyclohexane dimethanol divinyl ether (CHVE), and butanediol monovinyl ether (HBVE) were used in the experiment. Reaction was taken via radical and cationic polymerisation. In case of cationic polymerisation, diphenyliodonium hexafluorophosphate fotoinisiator was used in the formulation. Thermogravimetric analysis was conducted in a nitrogen atmosphere at a flow rate of 40 ml/minute with a constant heating rate 10 o C and evaluation range were done from 25 to 500 o C. The results of thermogravimetric analysis showed that acrylate and DVE-3 mixture produced the polymer films with higher thermal stability than the mixture of acrylate with CHVE or HBVE. The composition of acrylate-vinyl ether mixture and degree of unsaturation of vinyl ether monomers influenced the thermal stability of polymer. The mixture of epoxy acrylate-vinyl ether and polypropylene glycol diacrylate-vinyl ether have 1 initial decomposition temperature whereas the urethane acrylate-vinyl ether mixture has 2 initial decomposition temperatures. (authors)

  2. Microstructural characterization of a novel methyl acrylate-ethyl acrylate copolymer system

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, M.; Castano, V.M. [Instituto de Fisica, UNAM, A.P. 1-1010, Queretaro, Mexico (Mexico); Molina, J.P.; Vazquez, F. [Facultad de Quimica UAEMex, Paseo Tollocan esq. Paseo Colon, Toluca, Estado de Mexico (Mexico)

    1998-12-31

    A number of different compositions of a novel methyl acrylate-ethyl acrylate copolymer were prepared by emulsion polymerization with potassium persulfate as initiator. The compositions synthesized were: 100/0, 75/25, 50/50, 25/75 and 0/100 on weight of methyl acrylate/ethyl acrylate at different temperatures and concentrations of initiators. The effect of other conditions were also studied. The samples were analyzed by Transmission Electron Microscopy. It was found that the size of aggregates and dispersion on sizes are controlled by the synthesis conditions, result partially supported by light scattering. (Author)

  3. Microstructural characterization of a novel methyl acrylate-ethyl acrylate copolymer system

    International Nuclear Information System (INIS)

    Olivares, M.; Castano, V.M.; Molina, J.P.; Vazquez, F.

    1998-01-01

    A number of different compositions of a novel methyl acrylate-ethyl acrylate copolymer were prepared by emulsion polymerization with potassium persulfate as initiator. The compositions synthesized were: 100/0, 75/25, 50/50, 25/75 and 0/100 on weight of methyl acrylate/ethyl acrylate at different temperatures and concentrations of initiators. The effect of other conditions were also studied. The samples were analyzed by Transmission Electron Microscopy. It was found that the size of aggregates and dispersion on sizes are controlled by the synthesis conditions, result partially supported by light scattering. (Author)

  4. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Science.gov (United States)

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  5. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as articles or components of...

  6. Radiation-induced graft copolymerization of methyl acrylate and acrylic acid onto rubber wood fiber

    International Nuclear Information System (INIS)

    Saliza Jam; Mansor Ahmad; Wan Md Zin Wan Yunus; Khairul Zaman Mohd Dahlan

    2001-01-01

    Graft copolymerization of methyl acrylate and acrylic acid monomers onto rubber wood fiber (RWF) was carried out by simultaneous radiation-induced technique. The parameters affecting the grafting reaction were investigated and the optimum conditions for both monomers obtained are as follows: impregnation time = 16 hours, total dose = 30 kGy, methanol : water ratio, 3:1, monomers concentration = 40 v/v % and sulphuric acid concentration = 0.1 mol/L. Fourier Transform Infrared (FTIR), thermogravimetry analysis (TGA), and scanning electron microscope (SEM) analyses used to characterize graft copolymers. The structural investigation by x-ray diffraction (XRD) shows the degree of crystallinity of rubber wood fiber decreased with the incorporation of poly(methyl acrylate) and poly(acrylic acid) grafts. (Author)

  7. STABILITY OF EMULSIFIER-FREE EMULSION COPOLYMERIZATION OF METHYL METHACRYLATE/ BUTYL ACRYLATE/SODIUM MONO(ETHYL POLYOXYETHYLENE) MALEATE

    Institute of Scientific and Technical Information of China (English)

    Mao-gen Zhang; Zhi-xue Weng; Zhi-ming Huang; Zu-ren Pan

    1999-01-01

    A series of new water-soluble bifunctional comonomers having both carboxyl and alkyl polyoxyethylene groups, such as sodium mono(ethyl polyoxyethylene) maleate (ZE series) with various molecular weights of polyoxyethylene ethyl ether, were synthesized and characterized. The effects of the structural factor, the amount and feeding mode of the comonomers, the initiator concentration and polymerization temperature on the stability of emulsifier-free emulsion copolymerization of methyl methacrylate (MMA) and butyl acrylate (BA) in the presence of a small amount of ZE with potassium persulfate as initiator were investigated. Stable, almost monodispersed MMA/BA/ZE emulsifier-free latex particles were prepared.

  8. Formation of Methyl Acrylate from CO 2 and Ethylene via Methylation of Nickelalactones

    KAUST Repository

    Bruckmeier, Christian

    2010-05-24

    The nickel-induced coupling of ethylene and CO2 represents a promising pathway toward acrylates. To overcome the high bond dissociation energies of the M-O moieties, we worked out an in situ methylation of nickelalactones to realize the β-hydride elimination and the liberation of the acrylate species. © 2010 American Chemical Society.

  9. Comparative analysis of skin sensitization potency of acrylates (methyl acrylate, ethyl acrylate, butyl acrylate, and ethylhexyl acrylate) using the local lymph node assay.

    Science.gov (United States)

    Dearman, Rebecca J; Betts, Catherine J; Farr, Craig; McLaughlin, James; Berdasco, Nancy; Wiench, Karin; Kimber, Ian

    2007-10-01

    There are currently available no systematic experimental data on the skin sensitizing properties of acrylates that are of relevance in occupational settings. Limited information from previous guinea-pig tests or from the local lymph node assay (LLNA) is available; however, these data are incomplete and somewhat contradictory. For those reasons, we have examined in the LLNA 4 acrylates: butyl acrylate (BA), ethyl acrylate (EA), methyl acrylate (MA), and ethylhexyl acrylate (EHA). The LLNA data indicated that all 4 compounds have some potential to cause skin sensitization. In addition, the relative potencies of these acrylates were measured by derivation from LLNA dose-response analyses of EC3 values (the effective concentration of chemical required to induce a threefold increase in proliferation of draining lymph node cells compared with control values). On the basis of 1 scheme for the categorization of skin sensitization potency, BA, EA, and MA were each classified as weak sensitizers. Using the same scheme, EHA was considered a moderate sensitizer. However, it must be emphasized that the EC3 value for this chemical of 9.7% is on the borderline between moderate (10%) categories. Thus, the judicious view is that all 4 chemicals possess relatively weak skin sensitizing potential.

  10. Preparation, Characterization and Permeation Behavior of Poly(methyl acrylate-Poly(dimethyl siloxane-Poly(methyl acrylate Block Copolymer/Poly(vinyl acetate Blend Membranes

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Semsarzadeh

    2015-03-01

    Full Text Available Structure of polymeric materials is of the most important factors in determination of the characteristics and properties of the membranes. Various research and developments on polymeric membranes confirm the direct correlation between structure-properties of polymeric membranes. In this research, the structural outcome of poly(methyl acrylate-poly(dimethyl siloxane-poly(methyl acrylate/poly(vinyl acetate blend membranes and its relationship with gas permeation behavior of the blends were investigated. The flexible block copolymer of poly(methyl acrylate-poly(dimethyl siloxane-poly(methyl acrylate (PMA-PDMS-PMA was synthesized via atom transfer radical polymerization. Morphology and chemical structure of the synthesized block copolymer was investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, gel permeation chromatography, X-ray diffraction analysis, differential scanning calorimetry and scanning electron microscopy. Blend membranes of PMA-PDMS-PMA and poly(vinyl acetate (PVAc were prepared by solution casting method in different compositions. By adding poly(vinyl acetate to PMA-PDMS-PMA block copolymer, the selectivity of the membranes for carbon dioxide/methane pair gases were increased by 55%. Fractional free volume (an indication of chain packing efficiency in blend membranes and dielectric constant (an indication of the molar volume and molar polarization of the blend membranes were obtained as the factors reflected the microstructural effect of PMA-PDMS-PMA and PVAc blend membranes. The efforts were directed toward expressing more precise structure-properties relationship of PMA-PDMS-PMA/PVAc blend membranes. The experimental permeability values of the blend membranes reported in this research were compared with the modified logarithmic model. The modified logarithmic model was evaluated for other blend membranes.

  11. Analysis of poly(styrene-co-methyl acrylate) and poly(styrene-co-butyl acrylate) by high-performance liquid chromatography

    NARCIS (Netherlands)

    Sparidans, R.W.; Claessens, H.A.; van Doremaele, G.H.J.; Herk, van A.M.

    1990-01-01

    Poly(styrene—co-methyl acrylate) and poly(styrene—co-butyl acrylate) were separated according to their chemical composition by gradient elution. The chromatographic separation on silica was optimized for a gradient ranging from n-heptane as a non-solvent to dichloromethane containing a small amount

  12. Effects of water on starch-g-polystyrene and starch-g-poly(methyl acrylate) extrudates

    International Nuclear Information System (INIS)

    Henderson, A.M.; Rudin, A.

    1982-01-01

    Polystyrene and poly(methyl acrylate) were grafted onto wheat starch by gamma radiation and chemical initiation, respectively. The respective percent add-on values were 46 and 45; 68% of the polystyrene formed was grafted to starch, and corresponding proportion of poly(methyl acrylate) was 41%. The molecular weight distributions of the homopolymer and graft portions were characterized, and extrusion conditions were established for production of ribbon samples of starch-g-PS and starch-g-PMA. Both copolymer types were considerably weakened by soaking in water, and this effect was more immediate and drastic for starch-g-poly(methyl acrylate). Both graft copolymers regained their original tensile strengths on drying, but the poly(methyl acrylate) specimens did not recover their original unswollen dimensions and retained high breaking elongations characteristic of soaked specimens. Tensile and dynamic mechanical properties of extruded and molded samples of both graft polymers are reported, and plasticizing effects of water are summarized

  13. Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures

    International Nuclear Information System (INIS)

    Hani, Rachida; Solimando, Roland; Negadi, Latifa; Jose, Jacques; Ait Kaci, Ahmed

    2012-01-01

    Highlights: ► Vapor pressures of (1-hexene + methyl butyl ether) or (1-hexene + methyl tert-butyl ether) are reported between (263 and 363) K. ► The two mixtures exhibit positive G E . ► Additionally, molar excess enthalpies, H E , for the two binary systems have been measured at 303.15. - Abstract: The vapor pressures of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary mixtures and of the three pure components were measured by means of a static device at temperatures between (263 and 333) K. The data were correlated with the Antoine equation. From these data, excess Gibbs functions were calculated for several constant temperatures and fitted to a third-order Redlich–Kister equation using the Barker’s method. Additionally, molar excess enthalpies, H E , for the two binary systems have been measured at 303.15 K using an isothermal flow calorimeter.

  14. Continuous emulsion copolymerisation of styrene and methyl acrylate

    NARCIS (Netherlands)

    Boomen, van den F.H.A.M.; Meuldijk, J.; Thoenes, D.

    1996-01-01

    For emulsion polymerisation the reactor type has a strong influence on the final product properties, for example the particle size (distribution) and the polymer composition. A batch copolymerisation of styrene and methyl acrylate shows strong composition drift. The course of the batch reaction has

  15. Formation of Methyl Acrylate from CO 2 and Ethylene via Methylation of Nickelalactones

    KAUST Repository

    Bruckmeier, Christian; Lehenmeier, Maximilian W.; Reichardt, Robert; Vagin, Sergei; Rieger, Bernhard

    2010-01-01

    The nickel-induced coupling of ethylene and CO2 represents a promising pathway toward acrylates. To overcome the high bond dissociation energies of the M-O moieties, we worked out an in situ methylation of nickelalactones to realize the β

  16. Surface-Initiated Atom Transfer Radical Polymerization of Magnetite Nanoparticles with Statistical Poly(tert-butyl acrylate-poly(poly(ethylene glycol methyl ether methacrylate Copolymers

    Directory of Open Access Journals (Sweden)

    Patcharin Kanhakeaw

    2015-01-01

    Full Text Available This work presented the surface modification of magnetite nanoparticle (MNP with poly[(t-butyl acrylate-stat-(poly(ethylene glycol methyl ether methacrylate] copolymers (P[(t-BA-stat-PEGMA] via a surface-initiated “grafting from” atom transfer radical polymerization (ATRP. Loading molar ratio of t-BA to PEGMA was systematically varied (100 : 0, 75 : 25, 50 : 50, and 25 : 75, resp. such that the degree of hydrophilicity of the copolymers, affecting the particle dispersibility in water, can be fine-tuned. The reaction progress in each step of the synthesis was monitored via Fourier transform infrared spectroscopy (FTIR. The studies in the reaction kinetics indicated that PEGMA had higher reactivity than that of t-BA in the copolymerizations. Gel permeation chromatography (GPC indicated that the molecular weights of the copolymers increased with the increase of the monomer conversion. Transmission electron microscopy (TEM revealed that the particles were spherical with averaged size of 8.1 nm in diameter. Dispersibility of the particles in water was apparently improved when the copolymers were coated as compared to P(t-BA homopolymer coating. The percentages of MNP and the copolymer in the composites were determined via thermogravimetric analysis (TGA and their magnetic properties were investigated via vibrating sample magnetometry (VSM.

  17. Techno-economic and carbon footprint assessment of methyl crotonate and methyl acrylate production from wastewater-based polyhydroxybutyrate (PHB)

    NARCIS (Netherlands)

    Fernandez Dacosta, C.; Posada, John A.; Ramirez, C.A.

    2016-01-01

    This paper assesses whether a cleaner and more sustainable production of the chemical building blocks methyl crotonate (MC) and methyl acrylate (MA) can be obtained in an innovative process in which resource consumption, waste generation and environmental impacts are minimized by using

  18. APPLICATION OF PHOTOCATALYTIC PROCESS FOR REMOVAL OF METHYL TERT-BUTYL ETHER FROM HIGHLYCONTAMINATED WATER

    Directory of Open Access Journals (Sweden)

    A. Mesdaghinia

    2007-09-01

    Full Text Available The oxygenate methyl tert-butyl ether is added to gasoline to increase the octane level and to reduce carbon monoxide and hydrocarbon emissions by vehicles. The high mobility, water solubility, and resistance to natural attenuation associated with methyl tert-butyl ether may result in contamination of ground and surface waters. In this research the degradation of aqueous methyl tert-butyl ether at relatively high concentrations was investigated by UV-vis/TiO2/H2O2 photocatalytic process. The effect of important operational parameters such as pH, amount of H2O2, catalyst loading, and irradiation time were also studied. Concentrations of methyl tert-butyl ether and intermediates such as tert-butyl formate and tert-butyl alcohol were measured over a 180 min period using a gas chromatograph equipped with flame ionization detector and combined with headspace sampler. Results showed that the time required for complete degradation increased from 30 to 180min, when the initial concentration was increased from 10 to 500mg/L. The first order rate constant for degradation of methyl tert-butyl ether from the hydroxyl radical was estimated to be 0.177 to 0.022 1/min as the concentration increased from 10 to 500mg/L. Study on the overall mineralization monitored by total organic carbon (TOC analysis showed that in the initial concentration of 100mg/L methyl tert-butyl ether, complete mineralization was obtained after 110min under UV-vis/TiO2/H2O2 photocatalytic process.

  19. A Convenient and Efficient Method for Demethylation of Aryl Methyl Ethers with Magnesium Iodide in Ionic Liquid

    International Nuclear Information System (INIS)

    Lee, Kwan Soo; Kim, Kee D.

    2010-01-01

    We have developed a new and efficient method for the demethylation of various types of aryl methyl ethers using readily available, stable, and easily handled magnesium iodide in [BMIM]BF 4 ionic liquid. Owing to its simplicity and mild reaction conditions the protocol reported herein may serve as a useful alternative to the existing methods for the deprotection of aryl methyl ethers to the corresponding phenolic derivatives. Demethylation of aryl methyl ethers to the corresponding phenols are very important reactions in organic synthesis. A number of methods have been reported for the cleavage of highly stable aryl methyl ethers utilizing strong acids or bases such as aluminum chloride, boron tribromide, cerium chloride, alkaline thiolate, methyl magnesium iodide, and L-Selectride. However, all of these methods invariably suffered from one or more drawbacks such as harsh reaction conditions, long reaction times, difficulty of manipulation, use of exotic reagents, and low reaction yields. Furthermore, in the most of known methods for demethylation of aryl methyl ethers, use of large excess amounts of demethylating agents have been generally required. Thus, it is highly desirable to develop an improved convenient and efficient procedure for demethylation reactions of aryl methyl ethers

  20. A Convenient and Efficient Method for Demethylation of Aryl Methyl Ethers with Magnesium Iodide in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwan Soo [KAIST, Daejeon (Korea, Republic of); Kim, Kee D. [Sangji University, Wonju (Korea, Republic of)

    2010-12-15

    We have developed a new and efficient method for the demethylation of various types of aryl methyl ethers using readily available, stable, and easily handled magnesium iodide in [BMIM]BF{sub 4} ionic liquid. Owing to its simplicity and mild reaction conditions the protocol reported herein may serve as a useful alternative to the existing methods for the deprotection of aryl methyl ethers to the corresponding phenolic derivatives. Demethylation of aryl methyl ethers to the corresponding phenols are very important reactions in organic synthesis. A number of methods have been reported for the cleavage of highly stable aryl methyl ethers utilizing strong acids or bases such as aluminum chloride, boron tribromide, cerium chloride, alkaline thiolate, methyl magnesium iodide, and L-Selectride. However, all of these methods invariably suffered from one or more drawbacks such as harsh reaction conditions, long reaction times, difficulty of manipulation, use of exotic reagents, and low reaction yields. Furthermore, in the most of known methods for demethylation of aryl methyl ethers, use of large excess amounts of demethylating agents have been generally required. Thus, it is highly desirable to develop an improved convenient and efficient procedure for demethylation reactions of aryl methyl ethers.

  1. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ...-methyl acrylate copolymers identified in this section may be safely used as components of articles... Applied Nutrition (HFS-200), Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740...

  2. Liberation of methyl acrylate from metallalactone complexes via M-O ring opening (M = Ni, Pd) with methylation agents

    KAUST Repository

    Lee, S. Y Tina; Ghani, Amylia Abdul; D'Elia, Valerio; Cokoja, Mirza; Herrmann, Wolfgang A.; Basset, Jean-Marie; Kü hn, Fritz

    2013-01-01

    Ring opening of various nickela- and palladalactones induced by the cleavage of the M-O bond by methyl trifluoromethanesulfonate (MeOTf) and methyl iodide (MeI) is examined. Experimental evidence supports the mechanism of ring opening by the alkylating agent followed by β-H elimination leading to methyl acrylate and a metal-hydride species. MeOTf shows by far higher efficiency in the lactone ring opening than any other methylating agent including the previously reported methyl iodide. © 2013 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  3. Amphiphilic copolymers based on PEG-acrylate as surface active water viscosifiers : Towards new potential systems for enhanced oil recovery

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    2016-01-01

    With the purpose of investigating new potential candidates for enhanced oil recovery (EOR), amphiphilic copolymers based on Poly(ethylene glycol) methyl ether acrylate (PEGA) have been prepared by Atom Transfer Radical Polymerization (ATRP). A P(PEGA) homopolymer, a block copolymer with styrene

  4. EFFECTS OF STIMULATOR SUBSTANCES ON AEROBIC METHYL TERT-BUTYL ETHER BIODEGRADATION BY MICROBIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    M. Farrokhi ، S. Ahmadizad

    2009-04-01

    Full Text Available In this study dissolved humic substances and yeast extract were tested in different concentrations for enhancing methyl tert-butyl ether mineralization by isolated microorganisms from a variety of sources. All experiments were conducted at a constant temperature of 25ºC. Vials of 50 mL and 125 mL volume sealed with Teflon-lined Mini-Nert caps was used for microcosm experiments. In all experiments 1% sodium azide were used as control. Samples of bacterial cultures that metabolize methyl tert-butyl ether have been analysed by direct GC analysis using flame ionization detector. Cultures able to metabolize have been found in activated sludge and soils. These microorganisms weregram-positive bacterium. An aerobic microbial consortium was enriched in laboratory for four months. Methyl tert-butyl ether has been shown to biodegrade under aerobic and co-metabolic conditions. A microbial consortium isolated from activated sludges was identified as Cocobacillus. The concentration of the initial attached biomass was about 0.11 g/L of dry weight. The maximum mineralization rate and beneficial effects of stimulator substances on aerobic biodegradation of methyl tert-butyl ether occurred with the culture by combined concentrations of 500 mg/L of yeast extract and 20 mg/L of peat humic growth support of microbial consortium within 216 h and in presence of high oxygen levels and well mixing conditions. It was shown that adding, peat humic and yeast extract together, had better stimulatory effect on methyl tert-butyl ether biodegradation. Results clearly showed a stimulatory effect on methyl tert-butyl ether consumption higher than 20%. Consortium was capable of degrading concentrations of ≤1000 mg/L, whereas concentrations of >1000 mg/L, were not degraded.

  5. Radiation-induced glycoside bond breaking in cellulose methyl ethers

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Boltromeyuk, V.V.; Kovalenko, N.I.; Shadyro, O.I.

    1988-01-01

    Radiation-induced destruction of cellulose methyl ethers of different degree of esterification in aqueous solutions with and without acceptors: (N 2 O, O 2 , H 2 O + , Co(2), Cu(2)) is investigated. It is established that OH radicals make main contribution into radiolytic transformations of cellulose ethers in aqueous solutions. Reactions of radicals with free valency on carbon atoms containing secondary nonsubstituted hydroxyl groups lead also to glycoside bond breaking besides the reaction of β-fragmentation and hydrolysis of radicals with an unpaired electron localized near C 1 , C 4 , C 5 aroms

  6. Estimation of the fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    The fraction of biologically active methyl tert-butyl ether degraders in reactors is just as important for prediction of removal rates as knowledge of the kinetic parameters. The fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample, taken from a packed...... bed reactor, was determined using a batch kinetic based approach. The procedure involved modeling of methyl tert-butyl ether removal rates from batch experiments followed by parameter estimations. It was estimated to be 5-14% (w/w) of the measured volatile suspended solids concentration in the reactor....

  7. Method for determination of methyl tert-butyl ether and its degradation products in water

    Science.gov (United States)

    Church, C.D.; Isabelle, L.M.; Pankow, J.F.; Rose, D.L.; Tratnyek, P.G.

    1997-01-01

    An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method

  8. Peel/seal properties of poly(ethylene methyl acrylate)/polybutene-1 blend films

    Science.gov (United States)

    Mohammdi, Seyedeh Raziyeh; Ajji, Abdellah; Tabatabaei, Seyed H.

    2015-05-01

    Nowadays, the possibility to easy open a food package is of great interest both from the consumer and food producers' perspective. In this study, the peel/seal properties of poly (ethylene methyl acrylate) (EMA)/polybutene-1 (PB-1) blend films were investigated. Three blends of EMA/PB-1 with different methyl acrylate (MA) content were prepared using cast extrusion process. Differential Scanning Calorimetry (DSC) was used to investigate the thermal behavior as well as the crystalinity of the blends. The effect of polymer matrix on the crystalline structure of PB-1 was studied using Wide Angle X-ray Diffraction (WAXD) and DSC. T-peel tests were carried out on the heat sealed films at various seal temperatures. The effect of MA content and heat seal temperature on peel/seal properties (i.e. peel initiation temperature, temperature window of sealability and peel strength) of the films were studied.

  9. Peel/seal properties of poly(ethylene methyl acrylate)/polybutene-1 blend films

    Energy Technology Data Exchange (ETDEWEB)

    Mohammdi, Seyedeh Raziyeh; Ajji, Abdellah; Tabatabaei, Seyed H. [Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3C3A7 (Canada)

    2015-05-22

    Nowadays, the possibility to easy open a food package is of great interest both from the consumer and food producers’ perspective. In this study, the peel/seal properties of poly (ethylene methyl acrylate) (EMA)/polybutene-1 (PB-1) blend films were investigated. Three blends of EMA/PB-1 with different methyl acrylate (MA) content were prepared using cast extrusion process. Differential Scanning Calorimetry (DSC) was used to investigate the thermal behavior as well as the crystalinity of the blends. The effect of polymer matrix on the crystalline structure of PB-1 was studied using Wide Angle X-ray Diffraction (WAXD) and DSC. T-peel tests were carried out on the heat sealed films at various seal temperatures. The effect of MA content and heat seal temperature on peel/seal properties (i.e. peel initiation temperature, temperature window of sealability and peel strength) of the films were studied.

  10. Peel/seal properties of poly(ethylene methyl acrylate)/polybutene-1 blend films

    International Nuclear Information System (INIS)

    Mohammdi, Seyedeh Raziyeh; Ajji, Abdellah; Tabatabaei, Seyed H.

    2015-01-01

    Nowadays, the possibility to easy open a food package is of great interest both from the consumer and food producers’ perspective. In this study, the peel/seal properties of poly (ethylene methyl acrylate) (EMA)/polybutene-1 (PB-1) blend films were investigated. Three blends of EMA/PB-1 with different methyl acrylate (MA) content were prepared using cast extrusion process. Differential Scanning Calorimetry (DSC) was used to investigate the thermal behavior as well as the crystalinity of the blends. The effect of polymer matrix on the crystalline structure of PB-1 was studied using Wide Angle X-ray Diffraction (WAXD) and DSC. T-peel tests were carried out on the heat sealed films at various seal temperatures. The effect of MA content and heat seal temperature on peel/seal properties (i.e. peel initiation temperature, temperature window of sealability and peel strength) of the films were studied

  11. Influence Of Initiator Types And Emulsion Polymerization Techniques To Particle Size Of Copolymerization Styrene-Butyl Acrylate-Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Ariyanti Sarwono

    2008-11-01

    Full Text Available Influence of initiator types and emulsion polymerization techniques to particle size of copolymerization styrene-butyl acrylate-methyl methacrylate. Copoly(styrene/butyl acrylic/methyl methacrylic was prepared by emulsion polymerization method. This paper describes effect of insiator types i.e. ammonium persulfate (APS, hydrogen peroxide, ters-butyl peroxide (TBHP, initiator redox (H2O2/ascorbic acid and polymerization techniques i.e. batch and semicontinue to particle size distribution of copoly(styrene/butyl acrylic/methyl methacrylic. Initiator TBHP and H2O2 could not initiate copolymerization properly, but initiator APS and redox initiate copolymerization with batch and semi continue techniques could well perform. The higher concentration of APS, the greater particle size of the copolymer, but the copolymer is polymodal. Initiator redox (H2O2/ascorbic acid produced greater particle size than initiator redox (ascorbic acid/ H2O2.

  12. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    Science.gov (United States)

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  13. Radiation-initiated graft polymerization of methyl acrylate onto chrome-tanned sheepskin

    International Nuclear Information System (INIS)

    Kaldirimci, C.; Bas, N.

    1982-01-01

    Radiation grafting method was applied to obtain leather-polymer composite. Grafting of methyl acrylate onto chrome-tanned, bluestock sheepskin was investigated under the initiatory effect of 60 Co radiation of 0.20 11.50 Mrad. The percent of grafting was determined and water adsorption and shrinkage temperature measurements were carried out. It was shown that 2-4 Mrad is convenient to produce leather-polymer composite. (author)

  14. Modeling of a Buss-Kneader as a Polymerization Reactor for Acrylates. Part II: Methyl Methacrylate Based Resins

    NARCIS (Netherlands)

    Troelstra, E.J; van Dierendonck, L.L.; Janssen, L.P.B.M.; Renken, A.

    2002-01-01

    The Buss-Kneader has proven to be a suitable reactor for the polymerization of acrylates. In this second part, the polymerization of methyl methacrylate and the ter-polymerization of methyl methacrylate (MMA), hydroxyethyl methacrylate and n-butylmethacrylate is carried out in a pilot Buss-Kneader.

  15. Percutaneous Dissolution of Gallstones using Methyl Tert-Butyl Ether

    OpenAIRE

    1990-01-01

    Radiolucent cholesterol gallstones can be dissolved rapidly by methyl terc-buryl ether (MTBE) introduced directly into the gallbladder. Percutaneous transhepatic catheter placement is a well established interventional radiology procedure and is the preferred route for MTBE administration. A small number of patients have been treated using nasobiliary placement of a gallbladder catheter. Rapid stirring automatic pump systems allow dissolution of most cholesterol stones, but s...

  16. Solution of a gallstone with methyl-tertiary butyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Brambs, H J; Roeren, T; Holstege, A; Raedecke, J

    1987-08-01

    Methyl-t-butyl ether is a new agent to dissolve gallstones. The substance proves to be very successful and acts very rapidly. A percutaneous transhepatic drainage supplies an adequate access route to dissolve calculi within the bile ducts. We report the case of a patient where before insertion of an internal stent a stone in the common bile duct was dissolved within 3 1/2 hours.

  17. Moessbauer spectroscopic study of Fe{sup II}-doped sulphonated poly(ether-urethane)-styrene-acrylate copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, A. A. [Russian Academy of Sciences, Institute of Biochemistry and Physiology of Plants and Microorganisms (Russian Federation); Grigoryeva, O. P.; Fainleib, A. M. [National Academy of Sciences of Ukraine, Institute of Macromolecular Chemistry (Ukraine); Kuzmann, E., E-mail: kuzmann@ludens.elte.hu [Eoetvoes Lorand University, Institute of Chemistry (Hungary)

    2013-04-15

    Thermoplastic linear ionomer based on sulphonated poly(ether-urethane)-styrene-acrylate copolymer, doped with natural Fe{sup 2 + }, was studied by Moessbauer spectroscopy at T = 78 and 290 K to monitor the chemical state of Fe species. The Fe{sup 2 + } added to aqueous suspension of the system was only partly oxidised in the course of polymer film preparation and drying in air. The oxidised part comprised a magnetic phase ({approx}19 % of total Fe both at T = 78 and 298 K) and a quadrupole doublet ({approx}40 %), while Fe{sup II} (over 40 %) stabilised in two types of microenvironments.

  18. Synthesis of methyl acetate from dimethyl ether using group VIII metal salts of phosphotungstic acid

    Energy Technology Data Exchange (ETDEWEB)

    Sardesai, A.; Lee, S.; Tartamella, T.

    2002-04-01

    Dimethyl ether (DME) can be produced much more efficiently in a single-stage, liquid-phase process from natural gas-based syngas as compared to the conventional process via dehydration of methanol. This process, based on dual catalysts slurried in inert oil, alleviates the chemical equilibrium limitation governing the methanol synthesis reaction and concurrently improves per-pass syngas conversion and reactor productivity. The potential, therefore, for production of methyl acetate via dimethyl ether carbonylation is of industrial importance. In the present study, conversion of dimethyl ether and carbon monoxide to methyl acetate is investigated over a variety of group VIII metal-substituted phosphotungstic acid salts. Experimental results of this catalytic reaction using rhodium, iridium, ruthenium, and palladium catalysts are evaluated and compared in terms of selectivity toward methyl acetate. The effects of active metal, support types, multiple metal loading, and feed conditions on carbonylation activity of DME are examined. Iridium metal substituted phosphotungstic acid supported on Davisil type 643 (pore size 150 A, surface area 279 m{sup 2}/g, mesh size 230-425) silica gel shows the highest activity for DME carbonylation. (author)

  19. Continuous ARGET ATPR of methyl methacrylate and butyl acrylate in a stirred tank reactor

    NARCIS (Netherlands)

    Chan, N.; Meuldijk, J.; Cunningham, M.F.; Hutchinson, R.A.

    2013-01-01

    ARGET ATRP (activator regenerated by electron transfer atom transfer radical polymerization) of butyl acrylate (BA) and methyl methacrylate (MMA) was successfully adapted from a batch process to a continuous stirred tank reactor (CSTR) with 50 ppm copper. A series of batch polymerizations were first

  20. PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURES TO METHYL TERTIARY-BUTYL ETHER

    Science.gov (United States)

    Humans can be exposed by inhalation, ingestion, or dermal absorption to methyl tertiary-butyl ether (MTBE), an oxygenated fuel additive, from contaminated water sources. The purpose of this research was to develop a physiologically based pharmacokinetic model describing in human...

  1. Ultrasonic velocities, densities, and excess molar volumes of binary mixtures of N,N-dimethyl formamide with methyl acrylate, or ethyl acrylate, or butyl acrylate, or 2-ethyl hexyl acrylate at T = 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Kondaiah, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Sravana Kumar, D. [Dr. V.S. Krishna Govt. Degree College, Visakhapatnam, Andhra Pradesh (India); Sreekanth, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Krishna Rao, D., E-mail: krdhanekula@yahoo.co.in [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India)

    2011-12-15

    Highlights: > Positive values of V{sub m}{sup E}, indicate dispersion forces between acrylic esters and DMF. > V{sub m}{sup E} values compared with Redlich-Kister polynomial. > Partial molar volumes data conclude that weak interactions exist in the systems. > Measured velocity values compared with theoretical values obtained by polynomials. - Abstract: Ultrasonic velocities, u, densities, {rho}, of binary mixtures of N,N-dimethyl formamide (DMF) with methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), and 2-ethyl hexyl acrylate (EHA), including pure liquids, over the entire composition range have been measured at T = 308.15 K. Using the experimental results, the excess molar volume, V{sub m}{sup E}, partial molar volumes, V-bar {sub m,1}, V-bar{sub m,2}, and excess partial molar volumes, V-bar{sub m,1}{sup E}, V-bar{sub m,2}{sup E} have been calculated. Molecular interactions in the systems have been studied in the light of variation of excess values of calculated properties. The excess properties have been fitted to Redlich-Kister type polynomial and the corresponding standard deviations have been calculated. The positive values of V{sub m}{sup E} indicate the presence of dispersion forces between the DMF and acrylic ester molecules. Further theoretical values of sound velocity in the mixtures have been evaluated using various theories and have been compared with experimental sound velocities to verify the applicability of such theories to the systems studied. Theoretical ultrasonic velocity data have been used to study molecular interactions in the binary systems investigated.

  2. Transformation of Nickelalactones to Methyl Acrylate: On the Way to a Catalytic Conversion of Carbon Dioxide

    KAUST Repository

    Lee, S. Y. Tina

    2011-08-26

    Mu-nick: The methyl iodide-mediated ring opening of nickelalactones, which can be formed by oxidative coupling of carbon dioxide and ethylene at Ni 0 complexes, induces β-H elimination, producing methyl acrylate in yields of up to 56 %. This reaction is found to be very sensitive to the ligands coordinated to the central nickel atom. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Influence of Emulsion Polymerization Techniques to Particle Size of Copoly(styrene/butyl acrylate/methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Tresye Utari

    2008-04-01

    Full Text Available In the majority of applications, particle size and particle size distribution are highly significant factors that determine the properties of a polymer dispersion, such as its flow behavior or its stability. For example, a coating material with small particle size will give smooth coating result, good adhesive strength, good water resistance and latex stability. This article describes influence of various emulsion polymerization techniques to particle size of copoly(styrene/butyl acrylate/methyl methacrylate with mix surfactant SDBS linear chain and nonyl fenol (EO10 and initiator ammonium persulphate. DSC data, solid content and IR spectrum showed that copoly(styrene/butyl acrylate/methyl methacrylate was produced. Batch emulsion polymerization technique gave the highest particle size i.e. 615 nm and also the highest % conversion of monomer i.e. 97%. The more concentration of monomer was seeded to initial charge gave greater particle size and greater poly dispersity index.

  4. Synthesis of acrylic prepolymer

    International Nuclear Information System (INIS)

    Hussin bin Mohd Nor; Dahlan bin Haji Mohd; Mohamad Hilmi bin Mahmood.

    1988-04-01

    An acrylic prepolymer was synthesized from glycidyl methacrylate (GMA), butyl methacrylate (BMA), methyl methacrylate (MMA) and acrylic acid (AA). Butyl acetate (BAc), benzoyl peroxide (BzO), 4-methoxyphenol (MPh) and triethylamine (TEA) were used as solvent, initiator, inhibitor and catalyst respectively. Observations of the synthesis leading to the formation of acrylic prepolymer are described. (author)

  5. Preparation and characterization of poly (methyl methacrylate) and sulfonated poly (ether ether ketone) blend ultrafiltration membranes for protein separation applications

    International Nuclear Information System (INIS)

    Arthanareeswaran, G.; Thanikaivelan, P.; Raajenthiren, M.

    2009-01-01

    Poly (methyl methacrylate) (PMMA) and poly (methyl methacrylate)/sulfonated poly (ether ether ketone) (SPEEK) blend membranes were prepared by phase inversion technique in various composition using N,N'-dimethylformamide as solvent. The prepared membranes were characterized in terms of pure water flux, water content, porosity and thermal stability. The addition of SPEEK to the casting solution resulted in membranes with high pure water flux, water content, porosity and slightly low thermal stability. The cross sectional views of the blend membranes under electron microscope confirm the porosity and water flux results. The effect of the addition of SPEEK into the PMMA matrix on the extent of bovine serum albumin (BSA) separation was studied. It was found that the permeate flux increased significantly while the rejection of BSA from aqueous solution reduced moderately during ultrafiltration (UF) process. The effect was attributed to the increase in porosity and charge of the membrane due to the addition of SPEEK into the PMMA blend solution

  6. Redox polymerization of acrylonitrile-methyl acrylate-fumaronitrile terpolymer as precursor for carbon fiber

    International Nuclear Information System (INIS)

    Jamil, S.N.A.M.; Rusli Daik; Ahmad, I.

    2010-01-01

    Synthesis of acrylonitrile (AN) with methyl acrylate and fumaronitrile as comonomer and termonomer respectively, were carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 degree Celsius. The effect of methyl acrylate (MA) and fumaronitrile (FN) on the glass transition temperature (T g ) and stabilization temperature has been studied by Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermogravimetric Analysis. The T g of poly (AN/ MA) copolymers were found to be lower (∼70 degree Celsius) as compared with polyacrylonitrile (PAN) (210 degree Celsius). However, by incorporating MA into PAN system, the char yield reduced significantly. It was found that FN reduced the initial cyclization temperature of poly (AN/ MA/ FN) terpolymer to ∼230 degree Celsius as compared with poly(AN/ MA) copolymer (∼260 degree Celsius). In addition, FN reduced the heat liberation per unit time during the stabilization process that consequently reduced the emission of volatile group during this process. Thereby, the char yield of poly(AN/ MA/ FN) 90/ 4/ 6 terpolymer is higher at 51 % as compared with poly(AN/ MA) 90/ 10 copolymer (45 %). (author)

  7. Synthesis and Characterization of Solution and Melt Processible Poly(Acrylonitrile-Co-Methyl Acrylate) Statistical Copolymers

    Science.gov (United States)

    Pisipati, Padmapriya

    Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 im. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers. Carbon fibers for polymer matrix composites are currently derived from polyacrylonitrile copolymer fiber precursors where solution spinning accounts for ˜40 % of the total fiber production cost. To expand carbon fiber applications into the automotive industry, the cost of the carbon fiber needs to be reduced from 8 to ˜3-5. In order to develop an alternative melt processing route several benign plasticizers have been investigated. A low temperature, persulfate-metabisulfite initiated emulsion copolymerization was developed to synthesize poly(acrylonitrile-co-methyl acrylate) copolymers with acrylonitrile contents between 91-96 wt% with a molecular weight range of 100-200 kg/mol. This method was designed for a potential industrial scale up. Furthermore, water was investigated as a potential melting point depressant for these copolymers. Twenty-five wt% water lead to a decrease in the Tm of a 93/7 wt/wt % poly(acrylonitrile-co-methyl

  8. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    Science.gov (United States)

    Smith, L.A. Jr.

    1983-03-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C[sub 4] hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether. 1 fig.

  9. Ternary and binary LLE measurements for solvent (2-methyltetrahydrofuran and cyclopentyl methyl ether) + furfural + water between 298 and 343 K

    International Nuclear Information System (INIS)

    Männistö, Mikael; Pokki, Juha-Pekka; Fournis, Ludivine; Alopaeus, Ville

    2017-01-01

    Highlights: • Novel LLE of 2-methyltetrahydrofuran or cyclopentyl methyl ether + furfural + water. • High performance solvents for liquid-liquid extraction exhibited. • Modelled with UNIQUAC-HOC activity coefficient model. • Comparison to other industrial solvents with distribution coefficient and selectivity. - Abstract: The suitability of two solvents for the extraction of furfural from aqueous streams is assessed through novel ternary and binary liquid-liquid equilibria data for mixtures of solvent (2-methyltetrahydrofuran or cyclopentyl methyl ether) + furfural + water. The measured data are reported along with regressed binary interaction parameters for UNIQUAC-HOC activity coefficient model and further analyzed through distribution coefficients and selectivity for furfural. Out of the two solvents, cyclopentyl methyl ether presents a very high selectivity along with good distribution coefficient in the entire temperature range.

  10. 21 CFR 181.30 - Substances used in the manufacture of paper and paperboard products used in food packaging.

    Science.gov (United States)

    2010-04-01

    ... cyanodithioimidocarbamate with ethylene diamine and potassium N-methyl dithiocarbamate and/or sodium 2-mercaptobenzothiazole (slimicides).* Ethyl acrylate and methyl methacrylate copolymers of itaconic acid or methacrylic acid for use... acid (polymerized). Melamine formaldehyde polymer. Methyl acrylate (polymerized). Methyl ethers of mono...

  11. Additive effects on phase transition and interactions in poly(vinyl methyl ether) solutions

    Czech Academy of Sciences Publication Activity Database

    Starovoytova, Larisa; Šťastná, J.; Šturcová, Adriana; Konefal, Rafal; Dybal, Jiří; Velychkivska, Nadiia; Radecki, M.; Hanyková, L.

    2015-01-01

    Roč. 7, č. 12 (2015), s. 2572-2583 ISSN 2073-4360 R&D Projects: GA ČR(CZ) GA13-23392S Institutional support: RVO:61389013 Keywords : additives * LCST * poly(vinyl methyl ether) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.944, year: 2015

  12. Geissoschizine methyl ether, a corynanthean-type indole alkaloid from Uncaria rhynchophylla as a potential acetylcholinesterase inhibitor.

    Science.gov (United States)

    Yang, Zhong-Duo; Duan, Dong-Zhu; Du, Juan; Yang, Ming-Jun; Li, Shuo; Yao, Xiao-Jun

    2012-01-01

    Geissoschizine methyl ether (1), a newly discovered strong acetylcholinesterase (AChE) inhibitor, along with six weakly active alkaloids, vallesiachotamine (2), hisuteine (3), hirsutine (4), isorhynchophylline (5), cisocorynoxeine (6) and corynoxeine (7) have been isolated from Uncaria rhynchophylla. Geissoschizine methyl ether (1) inhibited 50% of AChE activity at concentrations of 3.7 ± 0.3 µg mL(-1) while the IC(50) value of physostigmine as a standard was 0.013 ± 0.002 µg mL(-1). The mode of AChE inhibition by 1 was reversible and non-competitive. In addition, molecular modelling was performed to explore the binding mode of inhibitor 1 at the active site of AChE.

  13. Effect of monomer concentration on the kinetics of emulsifier-free emulsion polymerization of Vinyl Acetate and Methyl Acrylate

    International Nuclear Information System (INIS)

    Mohammad Beigi, H. R.

    2001-01-01

    The effect of monomer concentration on the kinetics of the emulsifier-free emulsion polymerization of vinyl acetate and methyl acrylate were studied. The polymerizations were carried out using potassium persulfate as the initiator. Form the electron micrographs of the resulting lattices, monodisperse PVAc and PMA lattices with particle diameters varying between 149-443 mm and 112-497 nm, respectively were processed. Uniformity of particle size indicated that nucleation of stable particle occurs early in the polymerization process. The polymerization rate was found to be proportional to the 0.88 and 1.5 power of the initial monomer concentration of vinyl acetate and methyl acrylate, respectively. Higher monomer concentration results in fewer particles and larger final particle diameter. With increasing monomer solubility in water the size of particle decreases and its distribution broadens

  14. DERMAL, ORAL, AND INHALATION PHARMACOKINETICS OF METHYL TERTIARY BUTYL ETHER (MTBE) IN HUMAN VOLUNTEERS

    Science.gov (United States)

    Methyl tertiary butyl ether (MTBE), a gasoline additive, used to increase octane and reduce carbon monoxide emissions and ozone precursors has contaminated drinking water leading to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhalation ki...

  15. Crosslinked superhydrophobic films fabricated by simply casting poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-poly(perfluorohexylethyl methacrylate) solution

    Science.gov (United States)

    Wen, Xiufang; Ye, Chao; Cai, Zhiqi; Xu, Shouping; Pi, Pihui; Cheng, Jiang; Zhang, Lijuan; Qian, Yu

    2015-06-01

    This study focuses on the preparation of superhydrophobic films by crosslinkable polymer material-Poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-Poly(perfluorohexylethyl methacrylate) (P (MMA-BA-HEMA)-b-PFMA) with a simple one-step casting process. Nanoscale micelle particles with core-shell structure was obtained by dissolving the polymer and curing agent in the mixture of acetone and 1H, 1H, 5H octafluoropentyl-1,1,2,2 tetrafluoroethyl ether (FHT). Superhydrophobic films were fabricated by casting the micelle solution on the glass slides. By controlling the polymer concentration and acetone/FHT volume ratio, superhydrophobic polymer film with water contact angle of 153.2 ± 2.1° and sliding angle of 4° was obtained. By introducing a curing agent into the micelle solution, mechanical properties of the films can be improved. The adhension grade and hardness of the crosslinked superhydrophobic films reached 2 grade and 3H, respectively. The hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness by nanoscale micelle particles and low surface energy of fluoropolymer. This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  16. (1-Adamantyl)methyl glycidyl ether: a versatile building block for living polymerization.

    Science.gov (United States)

    Moers, Christian; Wrazidlo, Robert; Natalello, Adrian; Netz, Isabelle; Mondeshki, Mihail; Frey, Holger

    2014-06-01

    (1-Adamantyl)methyl glycidyl ether (AdaGE) is introduced as a versatile monomer for oxyanionic polymerization, enabling controlled incorporation of adamantyl moieties in aliphatic polyethers. Via copolymerization with ethoxyethyl glycidyl ether (EEGE) and subsequent cleavage of the acetal protection groups of EEGE, hydrophilic linear polyglycerols with an adjustable amount of pendant adamantyl moieties are obtained. The adamantyl unit permits control over thermal properties and solubility profile of these polymers (LCST). Additionally, AdaGE is utilized as a termination agent in carbanionic polymerization, affording adamantyl-terminated polymers. Using these structures as macroinitiators for the polymerization of ethylene oxide affords amphiphilic, in-chain adamantyl-functionalized block copolymers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. DERMAL, ORAL AND INHALATION PHARMACOKINETICS OF METHYL TERTIARY-BUTYL ETHER (MTBE) IN HUMAN VOLUNTEERS

    Science.gov (United States)

    Methyl tertiary butyl ether (MTBE), a gasoline additive used to increase octane and reduce carbon monoxide emissions and ozone precursors, has contaminated drinking water and can lead to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhal...

  18. Acrylic composition

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Meda, Yutaka.

    1969-01-01

    An acrylic composition and a process for the production of an easily hardenable coating material by irradiating with active energy, particularly electron beams and ultraviolet light, are provided using a mixture of 10%-100% by weight of an unsaturated compound and 90%-0% of a vinyl monomer. The composition has a high degree of polymerization, low volatility, low viscosity and other properties similar to thermosetting acrylic or amino alkyd resins. The aforesaid unsaturated compound is produced by primarily reacting saturated cyclocarboxylic anhydride and/or alpha-, beta-ethylene unsaturated carboxylic anhydride and by secondarily reacting an epoxy radical-containing vinyl monomer by addition reaction with polyhydric alcohols. Each reaction is conducted in the presence of a tertiary amino radical-containing vinyl monomer as a catalyst. The cross-linking is effected generally with an electron beam accelerator of 0.1-2.0 MeV or with a light beam in the 2,000-8,000A range in the presence of a photosensitive agent. In one example, 62 parts of ethylene glycol and 196 parts of maleic anhydride were dissolved in a mixture consisting of 100 parts of n-butyl methacrylate and 30 parts of styrene. To the mixture were added 5 parts of 2-methyl 5 vinyl piridine and 0.005 part of hydroquinone monomethyl ether. After the reaction at 90 0 C for 3 hours, a compound HOC:O-CH=CHC:OCH 2 CH 2 C:OOH was produced. To this solution were added 285 parts of glycidyl methacrylate. After the reaction at 90 0 C for 6 hours, 95% of the carboxylic acids reacted with epoxy radicals. Fourteen examples are given. (Iwakiri, K.)

  19. Risicogrenzen voor MTBE (Methyl tertiair-Butyl Ether) in bodem, sediment, grondwater, oppervlaktewater en voor drinkwaterbereiding

    NARCIS (Netherlands)

    Swartjes FA; Baars AJ; Fleuren RHLJ; Otte PF; LER

    2004-01-01

    Recentelijk is politieke commotie ontstaan ten gevolge van de mogelijke schadelijke gezondheidseffecten van Methyl tertiair-Butyl Ether (MTBE). Dit was reden voor het ministerie van VROM om het RIVM te verzoeken risicogrenzen voor MTBE in bodem, sediment, grondwater, oppervlaktewater, drinkwater en

  20. Searching for trans ethyl methyl ether in Orion KL.

    Science.gov (United States)

    Tercero, B; Cernicharo, J; López, A; Brouillet, N; Kolesniková, L; Motiyenko, R A; Margulès, L; Alonso, J L; Guillemin, J-C

    2015-10-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH 3 CH 2 OCH 3 , through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH 3 CH 2 CH 2 OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 10 15 cm -2 and ≤(1.0 ± 0.2)× 10 15 cm -2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH 3 OCOH, CH 3 CH 2 OCOH, CH 3 OCH 3 , CH 3 OH, and CH 3 CH 2 OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N (CH 3 OCH 3 )/ N (tEME) ≥ 150 in the compact ridge of Orion.

  1. Segmental dynamics in poly(methyl acrylate)-poly(methyl methacrylate) sequential interpenetrating polymer networks: structural relaxation experiments

    International Nuclear Information System (INIS)

    Ribelles, J L Gomez; Duenas, J M Meseguer; Cabanilles, C Torregrosa; Pradas, M Monleon

    2003-01-01

    The miscibility of poly(methyl acrylate)-poly(methyl methacrylate) sequential interpenetrating polymer networks (IPNs) has been studied by probing the conformational mobility of the component polymer chains. These IPNs exhibit the phenomenon of forced compatibilization. In a conventional heating differential scanning calorimetry (DSC) thermogram, the highly cross-linked IPN shows a single glass transition which covers a temperature interval of around 100 d eg C; in contrast, loosely cross-linked IPNs show two glass transitions. The conformational mobility in these IPNs is studied by subjecting them to isothermal annealings at temperatures in the region of the glass transition and below it. The DSC scans measured after these treatments allow one to determine the temperature interval in which the sample is out of thermodynamic equilibrium but keeps enough conformational mobility to relax during the isothermal annealing in such a way that the enthalpy loss is measurable with the sensitivity of a conventional DSC. The results allow one to reach some conclusions about the compositional distribution of the IPN on the nanometre scale

  2. QSPR models of n-octanol/water partition coefficients and aqueous solubility of halogenated methyl-phenyl ethers by DFT method.

    Science.gov (United States)

    Zeng, Xiao-Lan; Wang, Hong-Jun; Wang, Yan

    2012-02-01

    The possible molecular geometries of 134 halogenated methyl-phenyl ethers were optimized at B3LYP/6-31G(*) level with Gaussian 98 program. The calculated structural parameters were taken as theoretical descriptors to establish two new novel QSPR models for predicting aqueous solubility (-lgS(w,l)) and n-octanol/water partition coefficient (lgK(ow)) of halogenated methyl-phenyl ethers. The two models achieved in this work both contain three variables: energy of the lowest unoccupied molecular orbital (E(LUMO)), most positive atomic partial charge in molecule (q(+)), and quadrupole moment (Q(yy) or Q(zz)), of which R values are 0.992 and 0.970 respectively, their standard errors of estimate in modeling (SD) are 0.132 and 0.178, respectively. The results of leave-one-out (LOO) cross-validation for training set and validation with external test sets both show that the models obtained exhibited optimum stability and good predictive power. We suggests that two QSPR models derived here can be used to predict S(w,l) and K(ow) accurately for non-tested halogenated methyl-phenyl ethers congeners. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. INHALATION EXPOSURE TO METHYL TERT-BUTYL ETHER (MTBE) AND DIBROMOCHLOROMETHANE (DBCM) USING CONTINUOUS BREATH ANALYSIS

    Science.gov (United States)

    The oxygenate methyl tert-butyl ether (MTBE) has been added to gasoline to help meet national ambient air quality standards in those parts of the U.S. that are non-compliant for carbon monoxide. Although MTBE has provided important health benefits in terms of reduced haza...

  4. Analysis and Testing of Bisphenol A-Free Bio-Based Tannin Epoxy-Acrylic Adhesives

    OpenAIRE

    Jahanshahi , Shayesteh; Pizzi , Antonio; Abdulkhani , Ali; Shakeri , Alireza

    2016-01-01

    International audience; A tannin-based epoxy acrylate resin was prepared from glycidyl ether tannin (GET) and acrylic acid. The influence of the reaction condition for producing tannin epoxy acrylate was studied by FT-MIR, C-13-NMR, MALDI-TOF spectroscopy and shear strength. The best reaction conditions for producing tannin epoxy acrylate resin without bisphenol A was by reaction between GET and acrylic acid in the presence of a catalyst and hydroquinone at 95 degrees C for 12 h. FT-MIR, C-13...

  5. Morphology in binary blends of poly(vinyl methyl ether) and epsilon-caprolactone-trimethylene carbonate diblock copolymer

    NARCIS (Netherlands)

    Luyten, MC; Bogels, EJF; vanEkenstein, GORA; tenBrinke, G; Bras, W; Komanschek, BE; Ryan, AJ

    The morphology of symmetric diblock copolymer of epsilon-caprolactone (PCL) and trimethylene carbonate (PTMC), in blends with poly(vinyl methyl ether) (PVME) is investigated with (modulated) differential scanning calorimetry (d.s.c.), time resolved small angle (SAXS) and wide angle (WAXS) X-ray

  6. Morphology in binary blends of poly(vinyl methyl ether) and ε-caprolactone-trimethylene carbonate diblock copolymer

    NARCIS (Netherlands)

    Luyten, M.C.; Bögels, E.J.F.; Alberda van Ekenstein, G.O.R.; Brinke, G. ten; Bras, W.; Komanschek, B.E.; Ryan, A.J.

    1997-01-01

    The morphology of symmetric diblock copolymer of ε-caprolactone (PCL) and trimethylene carbonate (PTMC), in blends with poly(vinyl methyl ether) (PVME) is investigated with (modulated) differential scanning calorimetry (d.s.c.), time resolved small angle (SAXS) and wide angle (WAXS) X-ray

  7. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    Science.gov (United States)

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.

  8. Thermodynamic and Kinetic Behavior of the Polystyrene/Poly(vinyl methyl ether) Blend as Studied by Excimer Fluorescence.

    Science.gov (United States)

    1986-01-02

    AD-A±63 895 THERMODYNAMIC AND KINETIC BEHAVIOR OF THE / POLYSTYRENE/POLY(YINYL METHYL E..(U) STANFORD UNIY CALIFDEPT OF CHEMICAL ENGINEERING C N...Polystyrene/Poly(vinyl methyl ether) Blend 7. DEcFRMN 81 toOR 30USptE8 00~ as Studied by Excimer Fluorescence 6 EFRIGOG EOTNME *AUTHOR() a. CONTRACT OR GRANT...werea fondoare ihemoriisof * ~ Ex e sp fluodecositionsdu to deud Gen e and hoog Pinus Florsneis shownhase migrationprocSECURITY CLASIFICTIO OFd

  9. SYNTHESIS OF CHIRAL BINAPHTHYL CROWN ETHERS AND THEIR USE IN ANIONIC POLYMERIZATION OF METHYL METHACRYLATE AS INITIATOR LIGANDS

    Institute of Scientific and Technical Information of China (English)

    Hong-wei Liu; Chuan-fu Chen; Fu Xi

    2004-01-01

    Some chiral binaphthyl crown ethers were synthesized. The anionic polymerization of methyl methacrylate (MMA) was carried out in the presence of t-BuOK, Ph2CHK or Ph2CHNa (RM), and RM coordination initiator by using chiral binaphthyl crown ethers as ligands, respectively. The results showed that in the former case the PMMA obtained has mainly isotactic structure but without optical activity, while in the later case the PMMA produced predominately has syndiotactic suucture also without optical activity.

  10. U.S. Geological Survey laboratory method for methyl tert-Butyl ether and other fuel oxygenates

    Science.gov (United States)

    Raese, Jon W.; Rose, Donna L.; Sandstrom, Mark W.

    1995-01-01

    Methyl tert-butyl ether (MTBE) was found in shallow ground-water samples in a study of 8 urban and 20 agricultural areas throughout the United States in 1993 and 1994 (Squillace and others, 1995, p. 1). The compound is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL), near Denver, uses state-of-the-art technology to analyze samples for MTBE as part of the USGS water-quality studies. In addition, the NWQL offers custom analyses to determine two other fuel oxygenates--ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME). The NWQL was not able to obtain a reference standard for tert-amyl ethyl ether (TAEE), another possible fuel oxygenate (Shelley and Fouhy, 1994, p. 63). The shallow ground-water samples were collected as part of the USGS National Water-Quality Assessment Program. These samples were collected from 211 urban wells or springs and 562 agricultural wells sampled by the USGS in 1993 and 1994. The wells were keyed to specific land-use areas to assess the effects of different uses on ground-water quality (Squillace and others, 1995, p. 2). Ground-water samples were preserved on site to pH less than or equal to 2 with a solution of 1:1 hydrochloric acid. All samples were analyzed at the NWQL within 2 weeks after collection. The purpose of this fact sheet is to explain briefly the analytical method implemented by the USGS for determining MTBE and other fuel oxygenates. The scope is necessarily limited to an overview of the analytical method (instrumentation, sample preparation, calibration and quantitation, identification, and preservation of samples) and method performance (reagent blanks, accuracy, and precision).

  11. Metal Adsorbent Prepared from Poly(Methyl Acrylate)-Grafted Cassava Starch via Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suwanmala, P; Hemvichian, K; Srinuttrakul, W [Nuclear Research and Development Group, Thailand Institute of Nuclear Technology, Bangkok (Thailand)

    2012-09-15

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, %Dg = 191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum conditions: in a mixture solution of 20% HA (w/v) and methanol solution (methanol:H{sub 2}O = 5:1) 300 mL, pH 13, reaction time 2 h, and 20 g of grafted copolymer. The adsorbent was characterized by FTIR, TGA, and DSC. The presence of electron donating groups in adsorbent containing hydroxamic acid groups gives the ability to form polycomplexes with metal ions. The ability of the adsorbent to adsorb various metals was investigated in order to evaluate the possibility of its use in metal adsorption. The adsorbent exhibited a remarkable % adsorption for Cd{sup 2+}, Al{sup 3+}, UO{sub 2} {sup 2+}, V{sup 5+} and Pb{sup 2+} at pH 3, 4, 5, 4, and 3, respectively. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15, and 1.6 mmol/g adsorbent for Cd{sup 2+}, Al{sup 3+}, UO{sub 2} {sup 2+}, V{sup 5+} and Pb{sup 2+}, respectively, in the batch mode adsorption. (author)

  12. Geissoschizine methyl ether N-oxide, a new alkaloid with antiacetylcholinesterase activity from Uncaria rhynchophylla.

    Science.gov (United States)

    Jiang, Wei-Wei; Su, Jia; Wu, Xing-De; He, Juan; Peng, Li-Yan; Cheng, Xiao; Zhao, Qin-Shi

    2015-01-01

    Geissoschizine methyl ether N-oxide, a new oxindole alkaloid, along with 14 known alkaloids, was isolated from the aerial part of Uncaria rhynchophylla. Their structures were identified by comprehensive spectral methods, including 2D NMR experiments, and confirmed by comparing with the literature data. In vitro acetylcholinesterase (AChE) inhibitory activity assay showed that the new compound exhibited anti-AChE activity with IC₅₀ value of 23.4 μM.

  13. Searching for trans ethyl methyl ether in Orion KL★,★★

    Science.gov (United States)

    Tercero, B.; Cernicharo, J.; López, A.; Brouillet, N.; Kolesniková, L.; Motiyenko, R. A.; Margulès, L.; Alonso, J. L.; Guillemin, J.-C.

    2015-01-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm−2 and ≤(1.0 ± 0.2)× 1015 cm−2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion. PMID:26869726

  14. Miconidin and miconidin methyl ether from Primula obconica Hance: new allergens in an old sensitizer

    DEFF Research Database (Denmark)

    Paulsen, Evy; Christensen, Lars P; Andersen, Klaus Ejner

    2006-01-01

    . obconica. 12 primin-positive persons were patch tested with miconidin 0.01% petrolatum (pet.), miconidin in 96% ethanol incorporated into 0.01% pet., and miconidin methyl ether 1.0% pet. All persons were positive to miconidin 0.01% pet., with the strength of reactions very similar to those...

  15. SYNTHESIS OF METHYL TERT-BUTYL ETHER CATALYZED BY ACIDIC ION-EXCHANGE RESINS - INFLUENCE OF THE PROTON ACTIVITY

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1995-01-01

    The catalytic activity of various strong acid ion-exchange resins on the synthesis of methyl tert-butyl ether (MtBE) from methanol and isobutene has been investigated. Relative to Amberlyst 15, Kastel CS 381 and Amberlyst CSP have similar rate constants, whereas Duolite ES 276 and Amberlyst XE 307

  16. Observation on the biodegradation and bioremediation potential of methyl t-butyl ether

    International Nuclear Information System (INIS)

    Salanitro, J.; Wisniewski, H.; McAllister, P.

    1995-01-01

    There have been few reports documenting evidence for the biodegradation of the fuel oxygenate alkyl ether, methyl t-butyl ether (MTBE) in groundwater, soils, and biosludges. Partial (or complete) microbial breakdown of MTBE has been observed in an anaerobic subsoil, a river sediment under methanogenic conditions, a cyclohexane-degrading bacterial consortium and a pure culture of the methylotroph, Methylisnus trichosporium OB3b. An aerobic bacterial enrichment (BC-1) isolated from an industrial transient (non-accumulating) metabolic intermediate. The studies suggest that MTBE is cleaved by BC-1 to TBA which is then metabolized via isopropanol and acetone. There is little information on the occurrence of indigenous MTBE-degraders in groundwater, soils and activated sludges. Preliminary evidence has been obtained, however, from a marketing terminal groundwater site that naturally-occurring MTBE-degraders are present in some monitoring wells. Microcosm experiments with groundwater from this aquifer show that MTBE is aerobically degraded (no TBA formed) with a first-order decay rate (0.31/day) similar to BTEX. Also, MTBE did not inhibit the intrinsic biodegradation potential of BTEX in groundwater microcosms. In summary, the data presented indicate that MTBE biodegradation has been observed in some environmental media. Further work is needed to assess the feasibility of using indigenous or derived aerobic and anaerobic MTBE-degrading cultures for treating fuel ethers in groundwaters or wastewater with in-situ or ex-situ bioremediation technologies

  17. DEVELOPMENT OF PHYSIOLOGICAL-BASED PHARMACOKINETIC MODEL FOR DERMAL ABSORPTION NAD PENETRATION OF METHYL TERTIARY BUTYL ETHER IN HUMANS

    Science.gov (United States)

    Background: Methyl tertiary butyl ether (MTBE) is a volatile organic chemical that is added to gasoline as an octane booster and to reduce vehicular emissions of carbon monoxide. MTBE is introduced into the environment through fuel spills, leakage of storage tanks, and evaporat...

  18. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    Science.gov (United States)

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  19. TAME (tertiary-amyl-methyl ether) gasoline additive production process development; Desenvolvimento do processo de producao de TAME-aditivo para gasolina

    Energy Technology Data Exchange (ETDEWEB)

    Lovisi, Humberto [Petroflex Industria e Comercio S.A., Duqye de Caxias, RJ (Brazil); Piccoli, Ricardo [COPESUL, Companhia Petroquimica do Sul, Triunfo, RS (Brazil)

    1992-12-31

    PETROFLEX and COPESUL jointly developed a TAME production process. Tertiary-amyl-methyl ether (TAME) is obtained by the methoxylation of isoamylenes (2-methyl-1-butene and 2-methyl-2-butene) in a C{sub s} cut over a sulfonic acid resin. Process was developed on the basis of pilot plant and batch experiments. A simplified process flow-sheet and pilot plant data are presented. Isoamylenes conversions higher than 70% were achieved with low by-products formation. (author) 22 refs., 2 figs., 2 tabs.

  20. TAME (tertiary-amyl-methyl ether) gasoline additive production process development; Desenvolvimento do processo de producao de TAME-aditivo para gasolina

    Energy Technology Data Exchange (ETDEWEB)

    Lovisi, Humberto [Petroflex Industria e Comercio S.A., Duqye de Caxias, RJ (Brazil); Piccoli, Ricardo [COPESUL, Companhia Petroquimica do Sul, Triunfo, RS (Brazil)

    1993-12-31

    PETROFLEX and COPESUL jointly developed a TAME production process. Tertiary-amyl-methyl ether (TAME) is obtained by the methoxylation of isoamylenes (2-methyl-1-butene and 2-methyl-2-butene) in a C{sub s} cut over a sulfonic acid resin. Process was developed on the basis of pilot plant and batch experiments. A simplified process flow-sheet and pilot plant data are presented. Isoamylenes conversions higher than 70% were achieved with low by-products formation. (author) 22 refs., 2 figs., 2 tabs.

  1. Volumetric Behaviour of the Ternary System (Methyl Tert-butyl ether + Methylbenzene + Butan-1-ol) and Its Binary sub-System (Methyl Tert-Butyl Ether + Butan-1-ol) within the Temperature Range (298.15–328.15) K

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Troncoso, J.; Škvorová, M.; Havlica, Jaromír; Petrus, P.; Sedláková, Zuzana

    2015-01-01

    Roč. 90, NOV 2015 (2015), s. 59-70 ISSN 0021-9614 R&D Projects: GA ČR(CZ) GAP105/12/0664; GA MŠk(CZ) LD14094 Grant - others:GNIL(IT) 408 REGALIs (CN2012/120) Institutional support: RVO:67985858 Keywords : methylbenzene * density * methyl-tert-butyl ether Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.196, year: 2015

  2. NIOSH Manual of Analytical Methods (third edition). Fourth supplement

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-15

    The NIOSH Manual of Analytical Methods, 3rd edition, was updated for the following chemicals: allyl-glycidyl-ether, 2-aminopyridine, aspartame, bromine, chlorine, n-butylamine, n-butyl-glycidyl-ether, carbon-dioxide, carbon-monoxide, chlorinated-camphene, chloroacetaldehyde, p-chlorophenol, crotonaldehyde, 1,1-dimethylhydrazine, dinitro-o-cresol, ethyl-acetate, ethyl-formate, ethylenimine, sodium-fluoride, hydrogen-fluoride, cryolite, sodium-hexafluoroaluminate, formic-acid, hexachlorobutadiene, hydrogen-cyanide, hydrogen-sulfide, isopropyl-acetate, isopropyl-ether, isopropyl-glycidyl-ether, lead, lead-oxide, maleic-anhydride, methyl-acetate, methyl-acrylate, methyl-tert-butyl ether, methyl-cellosolve-acetate, methylcyclohexanol, 4,4'-methylenedianiline, monomethylaniline, monomethylhydrazine, nitric-oxide, p-nitroaniline, phenyl-ether, phenyl-ether-biphenyl mixture, phenyl-glycidyl-ether, phenylhydrazine, phosphine, ronnel, sulfuryl-fluoride, talc, tributyl-phosphate, 1,1,2-trichloro-1,2,2-trifluoroethane, trimellitic-anhydride, triorthocresyl-phosphate, triphenyl-phosphate, and vinyl-acetate.

  3. INTERACTION OF METHYL-TERT BUTYL ETHER AND WATER STRESS ON SEED GERMINATION AND SEEDLING GROWTH IN SOIL MICROCOSMS

    Science.gov (United States)

    Methyl tert-butyl ether (MTBE) is a widespread contaminant in surface and ground water in the United States. Frequently irrigation is used to water fields to germinate planted seeds and sustain plant growth. A likely possibility exists that water used may have some MTBE. Our s...

  4. Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water.

    Science.gov (United States)

    Levchuk, Irina; Bhatnagar, Amit; Sillanpää, Mika

    2014-04-01

    Wide use of methyl tert-butyl ether (MTBE) as fuel oxygenates leads to worldwide environment contamination with this compound basically due to fuel leaks from storage or pipelines. Presence of MTBE in drinking water is of high environmental and social concern. Existing methods for MTBE removal from water have a number of limitations which can be possibly overcome in the future with use of emerging technologies. This work aims to provide an updated overview of recent developments in technologies for MTBE removal from water. Copyright © 2014. Published by Elsevier B.V.

  5. DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Shokuhi Rad, Ali, E-mail: a.shokuhi@gmail.com [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Sani, Emad; Binaeian, Ehsan [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Peyravi, Majid; Jahanshahi, Mohsen [Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2017-04-15

    Highlights: • Adsorption of three ether molecules on the surface of Ga-doped graphene has been investigated. • High degree of adsorption for all analytes is found. • Ga-doped graphene shows p-type semiconductor property upon adsorption of ether molecules. - Abstract: In this study, we used density functional theory (DFT) to search on the adsorption properties of three important compounds of ether family; diethyl ether (DEE), ethyl methyl ether (EME), and dimethyl ether (DME) on the surface of Gallium doped graphene (GaG). We used three functionals (B3LYP, wb97xd, and MPW1PW91) for optimization and calculation of adsorption energy. After fully optimization, we scrutinized on the charge allocations on the adsorbed ethers as well as GaG (at the area of interaction) based on natural bond orbitals (NBO). Besides, we have calculated the amount of charge transfer upon adsorption of each analyte. We revel that GaG is an ideal adsorbent for chemisorption of all above-mentioned ethers. There is a little difference between the values of adsorption; −123.5, −120, and −118.3 kJ/mol (based on wb97xd) for DEE, EME, and DME, respectively. We found significant changes in the electronic structure of both adsorbent and adsorbate upon adsorption. Moreover, results of charge analyses confirm GaG is a p-type semiconductor.

  6. DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene

    International Nuclear Information System (INIS)

    Shokuhi Rad, Ali; Sani, Emad; Binaeian, Ehsan; Peyravi, Majid; Jahanshahi, Mohsen

    2017-01-01

    Highlights: • Adsorption of three ether molecules on the surface of Ga-doped graphene has been investigated. • High degree of adsorption for all analytes is found. • Ga-doped graphene shows p-type semiconductor property upon adsorption of ether molecules. - Abstract: In this study, we used density functional theory (DFT) to search on the adsorption properties of three important compounds of ether family; diethyl ether (DEE), ethyl methyl ether (EME), and dimethyl ether (DME) on the surface of Gallium doped graphene (GaG). We used three functionals (B3LYP, wb97xd, and MPW1PW91) for optimization and calculation of adsorption energy. After fully optimization, we scrutinized on the charge allocations on the adsorbed ethers as well as GaG (at the area of interaction) based on natural bond orbitals (NBO). Besides, we have calculated the amount of charge transfer upon adsorption of each analyte. We revel that GaG is an ideal adsorbent for chemisorption of all above-mentioned ethers. There is a little difference between the values of adsorption; −123.5, −120, and −118.3 kJ/mol (based on wb97xd) for DEE, EME, and DME, respectively. We found significant changes in the electronic structure of both adsorbent and adsorbate upon adsorption. Moreover, results of charge analyses confirm GaG is a p-type semiconductor.

  7. Synthesis of water-soluble poly [acrylic acid-co-vinyl butyl ether] and its applications in cement admixtures

    International Nuclear Information System (INIS)

    Negim, S.M.; Mun, G.A.; Nurkeeva, Z.S.; Danveesh, H.H.M.

    2005-01-01

    Three composition ratios of poly[acrylic acid (AA)-co-vinyl butyl ether)] were prepared in alcoholic solution using azo-bis-isobutyro-nitrile as initiator (ABIN). The water-soluble copolymers were characterized through FT-IR, 1 H NMR, Mass spectra, ESEM as well as viscosity. The effect of water-soluble copolymers and their sodium salts on the physico-mechanical properties of Ordaniary Portland Cement (O.P.C) pastes was investigated. The results showed that the addition of aqueous solutions from the prepared copolymers and their sodium salts to the cement improve most of the specific characteristics of (O.P.C). As the concentration of the water-soluble copolymer increases, the setting time increases. The combined water content enhances the addition of copolymer to the mixing water. The compressive strength was she increased at all any hydration. The results of the solution of the prepared sodium salt copolymers are better than its copolymers. (author)

  8. Enhancement of methyl tert-butyl ether degradation by the addition of readily metabolizable organic substrates

    International Nuclear Information System (INIS)

    Chen Dongzhi; Chen Jianmeng; Zhong Weihong

    2009-01-01

    Supplements with readily metabolizable organic substrates were investigated to increase the biomass and enhance degradation of methyl tert-butyl ether (MTBE) due to the low biomass yield of MTBE which has been one of the factors for low-rate MTBE degradation. The influence of various organic substrates on the rate of aerobic degradation of methyl tert-butyl ether (MTBE) by Methylibium petroleiphilum PM1 was investigated, and only yeast extract (YE), beef extract and tryptone exhibited stimulatory effect. With the concentration of each substrate being 100 mg/L, the average MTBE removal rate could increase to 1.29, 1.20 and 1.04 mg/(L h), respectively, in comparison with 0.71 mg/(L h) when carried out in medium without addition. The stimulatory effects of YE addition, as well as induction period required by MTBE degradation, varied dramatically with the storage conditions, pre-culture medium and concentrations of the inoculums. The extent of stimulatory effects of YE might be closely related to the proportion of induction period in the total time of MTBE-degradation. The removal efficiency increased from about 50% to 90.5% with the addition of YE in a packed-bed reactor loaded with calcium alginate immobilized cells.

  9. Quaternized poly(methyl methacrylate-co-butyl acrylate-co-vinylbenzyl chloride) membrane for alkaline fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yanting; Guo, Juchen; Wang, Chunsheng [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742 (United States); Chu, Deryn [Sensors and Electron Device Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783 (United States)

    2010-06-15

    Instead of modification of pre-existing polymers, a new route of preparation of polyelectrolyte OH{sup -} conductive membranes via copolymerization of selected functional monomers was reported in this study. A random copolymer of poly(methyl methacrylate-co-butyl acrylate-co-vinylbenzyl chloride) was synthesized via copolymerization, which was followed by quaternization and membrane casting. The intrinsic OH{sup -} conductivity of the free-standing polyelectrolyte membranes can reach 8.2 x 10{sup -3} S cm{sup -1} at 80 C. The alkaline fuel cells using copolymer polyelectrolytes demonstrated the feasibility of the preparation concept of these membranes. (author)

  10. EFFECTS OF ω-ACRYLOYL POLY(ETHYLENE OXIDE) MACROMONOMER ON EMULSIFIER-FREE EMULSION COPOLYMERIZATION OF METHYL METHACRYLATE AND n-BUTYL ACRYLATE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Well-defined nonionic hydrophilic ω-acryloyl poly(ethylene oxide) macromonomer (PEO-A) has been prepared by living anionic polymerization of ethylene oxide with diphenyl methyl potassium as the initiator and acryloyl chloride as the reaction terminating agent. The polymer was characterized by FTIR and SEC. The emulsifier-free emulsion polymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA) containing various concentrations of PEO-A was studied. In all cases stable emulsion coplymerizations of MMA and BA were obtained. The stabilizing effect was found to be dependent on the molecular weight and the feed amount of the macromonomer.

  11. Biodegradation of methyl tert-butyl ether by Kocuria sp.

    Directory of Open Access Journals (Sweden)

    Kiković Dragan D.

    2012-01-01

    Full Text Available Methyl tert-butyl ether (MTBE has been used to replace the toxic compounds from gasoline and to reduce emission of air pollutants. Due to its intensive use, MTBE has become one of the most important environment pollutants. The aim of this paper is isolation and identification of the bacteria from wastewater sample of “HIP Petrohemija” Pančevo (Serbia, capable of MTBE biodegradation. The results of the investigation showed that only the bacterial isolate 27/1 was capable of growth on MTBE. The result of sequence analyzes of 16S rDNA showed that this bacterial isolate belongs to the Kocuria sp. After the incubation period of 86 days, the degradation rates of initial MTBE concentration of 25 and 125 μg/ml were 55 and 36%, respectively. These results indicated that bacteria Kocuria sp. is successfully adapted on MTBE and can be potentially used in bioremediation of soils and waters contaminated with MTBE.

  12. Synthesis and properties of the metallo-supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO3: Ag+/Cu2+ ion exchange and effective antibacterial activity

    KAUST Repository

    Xu, Feng

    2014-01-01

    The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-mono-sodium maleate) (PVM/Na-MA). By addition of AgNO 3-solution, the formation of the silver(i) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO 3 is reported. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(i) cations. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(ii) cations without disintegration of the hydrogel. The silver(i) hydrogel shows effective antibacterial activity and potential application as burn wound dressing. © the Partner Organisations 2014.

  13. Analysis and Testing of Bisphenol A—Free Bio-Based Tannin Epoxy-Acrylic Adhesives

    Directory of Open Access Journals (Sweden)

    Shayesteh Jahanshahi

    2016-04-01

    Full Text Available A tannin-based epoxy acrylate resin was prepared from glycidyl ether tannin (GET and acrylic acid. The influence of the reaction condition for producing tannin epoxy acrylate was studied by FT-MIR, 13C-NMR, MALDI-TOF spectroscopy and shear strength. The best reaction conditions for producing tannin epoxy acrylate resin without bisphenol A was by reaction between GET and acrylic acid in the presence of a catalyst and hydroquinone at 95 °C for 12 h. FT-MIR, 13C-NMR and MALDI-TOF analysis have confirmed that the resin has been prepared under these conditions. The joints bonded with this resin were tested for block shear strength. The results obtained indicated that the best strength performance was obtained by the bioepoxy-acrylate adhesive resin prepared at 95 °C for a 12-h reaction.

  14. Grafting methyl acrylic onto carbon fiber via Diels-Alder reaction for excellent mechanical and tribological properties of phenolic composites

    Science.gov (United States)

    Fei, Jie; Duan, Xiao; Luo, Lan; Zhang, Chao; Qi, Ying; Li, Hejun; Feng, Yongqiang; Huang, Jianfeng

    2018-03-01

    Carbon fibers (CFs) were grafted with methyl acrylic via Diels-Alder reaction at the different oil bath temperature effectively creating a carboxyl functionalized surface. The effect of grafting temperature on the surface morphology and functional groups of carbon fibers were investigated by FTIR, Raman spectroscopy, XPS and SEM respectively. The results showed that the optimal grafting temperature was 80 °C, and the relative surface coverage by carboxylic acid groups increased from an initial 5.16% up to 19.30% significantly improved the chemical activity without damaging the skin and core region of the carbon fibers. Mechanical property tests indicated that the shear and tensile strength of the sample with the grafting temperature of 80 °C (CFRP-3) increased obviously by 90.3% and 78.7%, respectively, compared with the pristine carbon fibers reinforced composite. Further, the sample CFRP-3 exhibited higher and more stable friction coefficient and improved wear resistance, while the wear rate decreased 52.7%, from 10.8 × 10-6 to 5.1 × 10-6 mm3/N m. The present work shows that grafting methyl acrylic via Diels-Alder reaction could be a highly efficient and facile method to functionalize carbon fibers for advanced composites.

  15. Williamson alkylation approach to the synthesis of poly(alkyl vinyl ether) copolymers

    International Nuclear Information System (INIS)

    Markova, D.; Christova, D.; Velichkova, R.

    2008-01-01

    A method for synthesis of poly(alkyl vinyl ether-co-vinyl alcohol) copolymers was developed based on the Williamson's alkylation of poly(vinyl acetate) (PVAc) with alkyl iodides. The influence of the alkylating agent and the reaction conditions on the efficiency of the modification reaction was investigated. The copolymers obtained were characterized by means of 1 H NMR and GPC. It was proved that by applying the proposed method copolymers of different composition and properties containing methyl vinyl ether, ethyl vinyl ether as well as n-butyl vinyl ether units could be prepared. Poly(methyl vinyl ether-co-vinyl alcohol)s of high degree of methylation exhibit sharp temperature response at 38-39 deg C in aqueous solution typical of the so-called smart polymers. (authors)

  16. Synthesis and Properties of the Metallo-Supramolecular Polymer Hydrogel Poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3

    KAUST Repository

    Al-Dossary, Mona S.

    2014-05-01

    Gels are a special class of materials which are composed of 3D networks of crosslinked polymer chains that encapsulate liquid/air in the matrix. They can be classified into organogels or hydrogels (organic solvent for organogel and water for hydrogel). For hydrogels that contain metallic elements in the form of ions, the term of metallo-supramolecular polymer hydrogel (MSPHG) is often used. The aim of this project is to develop a kind of new MSPHG and investigate its properties and possible applications. The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-monosodium maleate) (PVM/Na-MA). By addition of AgNO3-solution, the formation of the silver(I) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3 is obtained. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(I) cations. The supercritical CO2 dried silver(I) hydrogel was characterized by FT-IR, SEM-EDAX, TEM, TGA and Physical adsorption (BET) measurements. The intact silver(I) hydrogel was characterized by cryo-SEM. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(II) cations without disintegration of the hydrogel. The silver(I) hydrogel shows effective antibacterial activity and potential application as burn wound dressing.

  17. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  18. Antimicrobial activity of poly(acrylic acid) block copolymers

    International Nuclear Information System (INIS)

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P.; Lackner, Maximilian

    2014-01-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed

  19. Alkylation of 2,6-di-tert-butylphenol with methyl acrylate catalyzed by potassium-2,6-di-tert-butylphenoxide

    OpenAIRE

    Zaikov, Gennady; Volod’kin, Alexander

    2010-01-01

    The kinetics of catalytic alkylation of 2,6-ditert- butylphenol (ArOH) with methyl acrylate (MA) in the presence of potassium 2,6-di-tert-butylphenoxide (ArOK) depends on the method for the preparation of ArOK. The reaction ofArOH withKOHat temperatures > 453 Kaffords monomeric ArOK, which properties differ from those in the case of potassium 2,6-di-tert-butylphenoxide synthesized by the earliermethods.The regularities ofArOH alkylation depend ontheArOKconcentration, theArOH...

  20. Computational study of chain transfer to monomer reactions in high-temperature polymerization of alkyl acrylates.

    Science.gov (United States)

    Moghadam, Nazanin; Liu, Shi; Srinivasan, Sriraj; Grady, Michael C; Soroush, Masoud; Rappe, Andrew M

    2013-03-28

    This article presents a computational study of chain transfer to monomer (CTM) reactions in self-initiated high-temperature homopolymerization of alkyl acrylates (methyl, ethyl, and n-butyl acrylate). Several mechanisms of CTM are studied. The effects of the length of live polymer chains and the type of monoradical that initiated the live polymer chains on the energy barriers and rate constants of the involved reaction steps are investigated theoretically. All calculations are carried out using density functional theory. Three types of hybrid functionals (B3LYP, X3LYP, and M06-2X) and four basis sets (6-31G(d), 6-31G(d,p), 6-311G(d), and 6-311G(d,p)) are applied to predict the molecular geometries of the reactants, products and transition sates, and energy barriers. Transition state theory is used to estimate rate constants. The results indicate that abstraction of a hydrogen atom (by live polymer chains) from the methyl group in methyl acrylate, the methylene group in ethyl acrylate, and methylene groups in n-butyl acrylate are the most likely mechanisms of CTM. Also, the rate constants of CTM reactions calculated using M06-2X are in good agreement with those estimated from polymer sample measurements using macroscopic mechanistic models. The rate constant values do not change significantly with the length of live polymer chains. Abstraction of a hydrogen atom by a tertiary radical has a higher energy barrier than abstraction by a secondary radical, which agrees with experimental findings. The calculated and experimental NMR spectra of dead polymer chains produced by CTM reactions are comparable. This theoretical/computational study reveals that CTM occurs most likely via hydrogen abstraction by live polymer chains from the methyl group of methyl acrylate and methylene group(s) of ethyl (n-butyl) acrylate.

  1. Synthesis and characterization of poly (n-butyl acrylate)-poly (methyl methacrylate) latex interpenetrating polymer networks by radiation-induced seeded emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haibo [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Peng Jing [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: jpeng@pku.edu.cn; Zhai Maolin; Li Jiuqiang; Wei Genshuan [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Qiao Jinliang [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013 (China)

    2007-11-15

    A series of latex interpenetrating polymer networks (LIPNs) were prepared via a two-stage emulsion polymerization of methyl methacrylate (MMA) or mixture of MMA and n-butyl acrylate (n-BA) on crosslinked poly(n-butyl acrylate)(PBA) seed latex using {sup 60}Co {gamma}-ray radiation. The particles of resultant latex were produced with diameters between 150 and 250 nm. FTIR spectra identified the formation of crosslinked copolymers of PMMA or P(MMA-co-BA). Dynamic light scattering (DLS) showed that with increasing n-BA concentration in second-stage monomers, the particle size of LIPN increased. Transmission electron microscope(TEM) photographs showed that the morphology of resultant acrylate interpenetrating polymer network (IPN) latex varied from the distinct core-shell structure to homogenous particle structure with the increase of n-BA concentration, and the morphology was mainly controlled by the miscibility between crosslinked PBA seed and second-stage copolymers and polarity of P(MMA-co-BA)copolymers. In addition, differential scanning calorimeter (DSC) measurements indicated the existence of reinforced miscibility between PBA seed and P(MMA-co-BA)copolymer in prepared LIPNs.

  2. Lewis Acid Assisted Nickel-Catalyzed Cross-Coupling of Aryl Methyl Ethers by C−O Bond-Cleaving Alkylation: Prevention of Undesired β-Hydride Elimination

    KAUST Repository

    Liu, Xiangqian; Hsiao, Chien-Chi; Kalvet, Indrek; Leiendecker, Matthias; Guo, Lin; Schoenebeck, Franziska; Rueping, Magnus

    2016-01-01

    In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel

  3. Contact allergy to epoxy (meth)acrylates.

    Science.gov (United States)

    Aalto-Korte, Kristiina; Jungewelter, Soile; Henriks-Eckerman, Maj-Len; Kuuliala, Outi; Jolanki, Riitta

    2009-07-01

    Contact allergy to epoxy (meth)acrylates, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA), 2,2-bis[4-(2-hydroxy-3-acryloxypropoxy)phenyl]-propane (bis-GA), 2,2-bis[4-(methacryl-oxyethoxy)phenyl] propane (bis-EMA), 2,2-bis[4-(methacryloxy)phenyl]-propane (bis-MA), and glycidyl methacrylate (GMA) is often manifested together with contact allergy to diglycidyl ether of bisphenol A (DGEBA) epoxy resin. To analyse patterns of concomitant allergic reactions to the five epoxy (meth)acrylates in relation to exposure. We reviewed the 1994-2008 patch test files at the Finnish Institute of Occupational Health (FIOH) for reactions to the five epoxy (meth)acrylates, and examined the patients' medical records for exposure. Twenty-four patients had an allergic reaction to at least one of the studied epoxy (meth)acrylates, but specific exposure was found only in five patients: two bis-GMA allergies from dental products, two bis-GA allergies from UV-curable printing inks, and one bis-GA allergy from an anaerobic glue. Only 25% of the patients were negative to DGEBA epoxy resin. The great majority of allergic patch test reactions to bis-GMA, bis-GA, GMA and bis-EMA were not associated with specific exposure, and cross-allergy to DGEBA epoxy resin remained a probable explanation. However, independent reactions to bis-GA indicated specific exposure. Anaerobic sealants may induce sensitization not only to aliphatic (meth)acrylates but also to aromatic bis-GA.

  4. Preparation of H3-labelled methyl ethers of saturated fatty acids by heterogeneous catalytic isotope exchange in solution with gaseous tritium

    International Nuclear Information System (INIS)

    Shevchenko, V.P.; Myasoedov, N.F.

    1980-01-01

    A simple method of preparing 3 H-labelled methyl ethers of saturated fatty acids in the dioxane solution using the method of isotopic heterogenous catalytic exchange with gaseous tritium, is suggested. 3 H-labelled natural fatty acids (C 12 -C 18 ) are prepared by alkaline hydrolysis [ru

  5. Poly(alkyl acrylate) nonparticles

    International Nuclear Information System (INIS)

    Kreuter, J.

    1985-01-01

    This study deals with the preparation of poly(alkyl acrylic) and poly(alkyl cyanocrylic) nanoparticles. Nonoparticles are solid colloidal particles, consisting of macromolecular materials in which drugs or biologically active materials are dissolved, entrapped, and encapsulated, and/or to which the active substance is adsorbed or attached. Poly(alkyl acrylic) nanoparticles are much more slowly biodegradable than poly(alkyl cyanoacrylate) nanoparticles, and are thus more suitable for drug delivery purposes. Poly(methyl methacrylate) is the material of choice for the use of nanoparticles as an adjuvant for vaccines and are produced by emulsifier-free polymerization in aqueous media. The polymerization, which can be initiated with gamma rays or with potassium peroxodisulfate, is described

  6. Waterborne hyperbranched alkyd-acrylic resin obtained by miniemulsion polymerization

    Directory of Open Access Journals (Sweden)

    Edwin Murillo

    Full Text Available Abstract Four waterborne hyperbranched alkyd-acrylic resins (HBRAA were synthesized by miniemulsion polymerization from a hyperbranched alkyd resin (HBR, methyl methacrylate (MMA, butyl acrylate (BA and acrylic acid (AA, by using benzoyl peroxide (BPO and ammonium persulfate (AP as initiators. The reaction between HBR and acrylic monomers was evidenced by differential scanning calorimetric (DSC, nuclear magnetic resonance (NMR and gel permeation chromatography (GPC. The conversion percentage, glass transition temperature (Tg, content of acrylic polymer (determined by soxhlet extraction and molecular weight increased with the content of acrylic monomers used in the synthesis. The main structure formed during the synthesis was the HBRAA. The analysis by dynamic light scattering (DLS showed that the particle size distribution of HBRAA2, HBRAA3 and HBRAA4 resins were mainly monomodal. The film properties (gloss, flexibility, adhesion and drying time of the HBRAA were good.

  7. Poly(Poly(Ethylene Glycol Methyl Ether Methacrylate Grafted Chitosan for Dye Removal from Water

    Directory of Open Access Journals (Sweden)

    Bryan Tsai

    2017-03-01

    Full Text Available As the demand for textile products and synthetic dyes increases with the growing global population, textile dye wastewater is becoming one of the most significant water pollution contributors. Azo dyes represent 70% of dyes used worldwide, and are hence a significant contributor to textile waste. In this work, the removal of a reactive azo dye (Reactive Orange 16 from water by adsorption with chitosan grafted poly(poly(ethylene glycol methyl ether methacrylate (CTS-GMA-g-PPEGMA was investigated. The chitosan (CTS was first functionalized with glycidyl methacrylate and then grafted with poly(poly(ethylene glycol methyl ether methacrylate using a nitroxide-mediated polymerization grafting to approach. Equilibrium adsorption experiments were carried out at different initial dye concentrations and were successfully fitted to the Langmuir and Freundlich adsorption isotherm models. Adsorption isotherms showed maximum adsorption capacities of CTS-g-GMA-PPEGMA and chitosan of 200 mg/g and 150 mg/g, respectively, while the Langmuir equations estimated 232 mg/g and 194 mg/g, respectively. The fundamental assumptions underlying the Langmuir model may not be applicable for azo dye adsorption, which could explain the difference. The Freundlich isotherm parameters, n and K, were determined to be 2.18 and 17.7 for CTS-g-GMA-PPEGMA and 0.14 and 2.11 for chitosan, respectively. An “n” value between one and ten generally indicates favorable adsorption. The adsorption capacities of a chitosan-PPEGMA 50/50 physical mixture and pure PPEGMA were also investigated, and both exhibited significantly lower adsorption capacities than pure chitosan. In this work, CTS-g-GMA-PPEGMA proved to be more effective than its parent chitosan, with a 33% increase in adsorption capacity.

  8. On the some reactions of mixed ethers of phosphorus acid with acrylonitrile and methyl iodide

    International Nuclear Information System (INIS)

    Gusev, Yu.K.; Chistokletov, V.N.; Petrov, A.A.

    1977-01-01

    The bimolecular mechanism has been confirmed of the redgrouping stage of Arbuzov's classical reactions for phosphites containing primary and secondary radicals in reactions of acrylonitrile and methyl iodide with some mixed ethers of phosphoric acid. It is suggested that dealcylation of the intermediate products formed on interaction of olefins activated by electron-acceptor groups with phosphites containing primary radicals occurs according to the Ssub(N)2-mechanism, secondary radicals, according to the mixed Ssub(N)2 and Ssub(N)1-mechanism,and radicals capable of forming stable carbonium ions, according to the Ssub(N)1-mechanism

  9. Effect of trimethylcolchicinic acid methyl ether d-tartrate (TMCA) on Hodgkin's and non-Hodgkin's lymphoma.

    Science.gov (United States)

    Stolinsky, D C; Jacobs, E M; Irwin, L E; Pajak, T F; Bateman, J R

    1976-01-01

    Trimethylcolchicinic acid methyl ether d-tartrate (TMCA; NSC-36351) was administered daily by mouth to 71 patients with malignant lymphomas. Partical (greater than 50%) responses were observed in eleven of 37 patients with Hodgkin's disesse, two of 22 patients with lymphocytic lymphoma, and one of two patients with mixed cell lymphoma. One complete and three partial responses were noted in nine patients with histiocytic lymphoma. Responses lasted from one to 91+ months (median: four months) and occurred in patients whose disease was resistant to alkylating agents, vinblastine, vincristine, procarbazine, prednisone or BCNU. Toxic effects included leukopenia, thrombocytopenia, nausea, diarrhea, stomatitis, alopecia and dermatitis.

  10. Waterborne hyperbranched alkyd-acrylic resin obtained by mini emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Murillo, Edwin, E-mail: edwinalbertomurillo@gmail.com [Grupo de Investigacion en Materiales Polimericos (GIMAPOL), Universidad Francisco de Paula Santander, San Jose de Cucuta (Colombia); Lopez, Betty [Grupo de Investigacion en Ciencia de los Materiales, Universidad de Antioquia, Calle, Medellin (Colombia)

    2016-10-15

    Four waterborne hyper branched alkyd-acrylic resins (HBRAA) were synthesized by mini emulsion polymerization from a hyper branched alkyd resin (HBR), methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA), by using benzoyl peroxide (BPO) and ammonium persulfate (AP) as initiators. The reaction between HBR and acrylic monomers was evidenced by differential scanning calorimetric (DSC), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The conversion percentage, glass transition temperature (T{sub g}), content of acrylic polymer (determined by soxhlet extraction) and molecular weight increased with the content of acrylic monomers used in the synthesis. The main structure formed during the synthesis was the HBRAA. The analysis by dynamic light scattering (DLS) showed that the particle size distribution of HBRAA2, HBRAA3 and HBRAA4 resins were mainly mono modal. The film properties (gloss, flexibility, adhesion and drying time) of the HBRAA were good. (author)

  11. Radiation chemistry of alternative fuel oxygenates - substituted ethers

    International Nuclear Information System (INIS)

    Mezyk, S. P.; Cooper, W. J.; Bartels, D. M.; Tobien, T.; O'Shea, K. E.

    1999-01-01

    The electron beam process, an advanced oxidation and reduction technology, is based in the field of radiation chemistry. Fundamental to the development of treatment processes is an understanding of the underlying chemistry. The authors have previously evaluated the bimolecular rate constants for the reactions of methyl tert-butyl ether (MTBE) and with this study have extended their studies to include ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE) and tert-amyl methyl ether (TAME) with the hydroxyl radical, hydrogen atom and solvated electron using pulse radiolysis. For all of the oxygenates the reaction with the hydroxyl radical appears to be of primary interest in the destruction of the compounds in water. The rates with the solvated electron are limiting values as the rates appear to be relatively low. The hydrogen atom rate constants are relatively low, coupled with the low yield in radiolysis, they concluded that these are of little significance in the destruction of the alternative fuel oxygenates (and MTBE)

  12. Preparation and Characterization of Acrylic Primer for Concrete Substrate Application

    Directory of Open Access Journals (Sweden)

    El-Sayed Negim

    2016-01-01

    Full Text Available This study dealt with the properties of acrylic primer for concrete substrate using acrylic syrup, made from a methyl methacrylate monomer solution of terpolymers. Terpolymer systems consisting of methyl methacrylate (MMA, 2-ethylhexyl acrylate (2-EHA, and methacrylic acid (MAA with different chemical composition ratios of MMA and 2-EHA were synthesized through bulk polymerization using azobisisobutyronitrile (AIBN as initiator. The terpolymer composition is characterized by FTIR, 1H NMR, DSC, TGA, and SEM. The glass transition temperature and the thermal stability increased with increasing amounts of MMA in the terpolymer backbone. The effect of chemical composition of terpolymers on physicomechanical properties of primer films was investigated. However, increasing the amount of MMA in terpolymer backbone increased tensile and contact angle of primer films while elongation at break, water absorption, and bond strength are decreased. In particular, the primer syrup containing 65% 2-EHA has good bonding strength with concrete substrate around 1.1 MPa.

  13. Detection and Quantification of Methyl tert-Butyl Ether-Degrading Strain PM1 by Real-Time TaqMan PCR

    OpenAIRE

    Hristova, Krassimira R.; Lutenegger, Christian M.; Scow, Kate M.

    2001-01-01

    The fuel oxygenate methyl tert-butyl ether (MTBE), a widely distributed groundwater contaminant, shows potential for treatment by in situ bioremediation. The bacterial strain PM1 rapidly mineralizes and grows on MTBE in laboratory cultures and can degrade the contaminant when inoculated into groundwater or soil microcosms. We applied the TaqMan quantitative PCR method to detect and quantify strain PM1 in laboratory and field samples. Specific primers and probes were designed for the 16S ribos...

  14. Fatty acid methyl esters synthesis from non-edible vegetable oils using supercritical methanol and methyl tert-butyl ether

    International Nuclear Information System (INIS)

    Lamba, Neha; Modak, Jayant M.; Madras, Giridhar

    2017-01-01

    Highlights: • FAMEs were synthesized from non-edible oils using supercritical MeOH and MTBE. • Effect of time, temperature, pressure and molar ratio on conversions was studied. • Rate constants of reaction with methanol and MTBE differ by an order of magnitude. • Non-catalytic supercritical reactions are one order faster than acid catalyzed synthesis. - Abstract: Fatty acid methyl esters (FAMEs) are useful as biodiesel and have environmental benefits compared to conventional diesel. In this study, these esters were synthesized non-catalytically from non-edible vegetable oils: neem oil and mahua oil with two different methylating agents: methanol and methyl tert-butyl ether (MTBE). The effects of temperature, pressure, time and molar ratio on the conversion of triglycerides were studied. The temperature was varied in the range of 523–723 K with molar ratios upto 50:1 and a reaction time of upto 150 min. Conversion of neem and mahua oil to FAMEs with supercritical methanol was found to be 83% in 15 min and 99% in 10 min, respectively at 698 K. Further, a conversion of 46% of mahua oil and 59% of neem oil was obtained in 15 min at 723 K using supercritical MTBE. The rate constants evaluated using pseudo first order reaction kinetics were in the range of 4.7 × 10"−"6 to 1.0 × 10"−"3 s"−"1 for the investigated range of temperatures. The activation energies obtained were in the range of 62–113 kJ/mol for the reaction systems investigated. The supercritical synthesis was found to be superior to the catalytic synthesis of the corresponding FAMEs.

  15. Thermodynamic and kinetic analysis of phase separation of temperature-sensitive poly(vinyl methyl ether) in the presence of hydrophobic tert-butyl alcohol

    Czech Academy of Sciences Publication Activity Database

    Velychkivska, Nadiia; Bogomolova, Anna; Filippov, Sergey K.; Starovoytova, Larisa; Labuta, J.

    2017-01-01

    Roč. 295, č. 8 (2017), s. 1419-1428 ISSN 0303-402X R&D Projects: GA ČR(CZ) GC15-10527J Institutional support: RVO:61389013 Keywords : phase separation * coil-globule transition * poly(vinyl methyl ether) Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.723, year: 2016

  16. Optimization of cellulose acrylate and grafted 4-vinylpyridine and 1-vinylimidazole synthesis

    Directory of Open Access Journals (Sweden)

    Bojanić Vaso

    2010-01-01

    Full Text Available Optimization of cellulose acrylate synthesis by reaction with sodium cellulosate and acryloyl chloride was carried out. Optimal conditions for conducting the synthesis reaction of cellulose acrylate were as follows: the molar ratio of cellulose/potassium-t-butoxide/acryloyl chloride was 1:3:10 and the optimal reaction time was 10 h. On the basis of elemental analysis with optimal conditions for conducting the reaction of cellulose acrylate, the percentage of substitution of glucose units in cellulose Y = 80.7%, and the degree of substitution of cellulose acrylate DS = 2.4 was determined. The grafting reaction of acrylate vinyl monomers onto cellulose in acetonitrile with initiator azoisobutyronitrile (AIBN in a nitrogen atmosphere was performed, by mixing for 5 h at acetonitrile boiling temperature. Radical copolymerization of synthesized cellulose acrylate and 4-vinylpyridine, 1-vinylimidazole, 1-vinyl-2-pyrrolidinone and 9-vinylcarbazole, cellulose-poly-4-vinylpyridine (Cell-PVP, cellulose-poly-1- vinylimidazole (Cell-PVIm and cellulose-poly-1-vinyl-2-pyrrolidinone (Cell-P1V2P and cellulose-poly-9-vinylcarbazole (Cell-P9VK were synthesized. Acrylate cellulose and cellulose grafted copolymers were confirmed by IR spectroscopy, based on elementary analysis and the characteristics of grafted copolymers of cellulose were determined. The mass share of grafted copolymers, X, the relationship of derivative parts/cellulose vinyl group, Z, and the degree of grafting copolymers of cellulose (mass% were determined. In reaction of methyl iodide and cellulose-poly-4-vinylpyridine (Cell-PVP the cellulose-1-methyl-poly-4-vinylpyridine iodide (Cell-1-Me-PVPJ was synthesized. Cellulose acrylate and grafted copolymers were obtained with better thermal, electrochemical and ion-emulation properties for bonding of noble metals Au, Pt, Pd from water solutions. The synthesis optimization of cellulose acrylate was applied as a model for the synthesis of grafted

  17. Synthesis of [11C]-labelled methyl esters: transesterification of enol esters versus BF3 etherate catalysed esterification - a comparative study

    International Nuclear Information System (INIS)

    Ackermann, U.; Falzon, C.; Issa, W.; Tochon-Danguy, H.J.; Sachinidis, J.I.; Blanc, P.; White, J.; Scott, A.M.

    2005-01-01

    An important issue in Positron Emission Tomography (PET) is the development of labelling techniques to incorporate positron emitting radionuclides into biologically active compounds. When labelling with 11C, the short 20 minutes half-life of the radionuclide significantly limits the number of synthetic protocols available to the radiochemist. C-l synthons such as [HCJ-methyl iodide (1) or methyl triflate (2) are readily available and are frequently used as alkylating agents for the preparation of radiopharmaceuticals. However, the use of these alkylating agents often makes it necessary to introduce protecting groups in order to prevent labelling at unwanted sites on the molecule. Since the removal of protecting groups is a time-consuming process, a more direct synthesis strategy is desirable. This has prompted us to investigate the esterification of carboxylic acids using [1 lC]-mcthanol and BF3 etherate as Lewis acid catalyst. Our results have demonstrated that the reaction conditions necessary to promote the esterification can cleave functional groups such as ethers. We have therefore shifted our attention towards the irreversible transesterification of enol esters using [HCl-methanol and a tin catalyst as an alternative strategy to [HC]-methyl ester formation. We have prepared a series of 5 aromatic ethoxy vinyl esters bearing various functional groups. The transesterification (radiolabelling) was carried out in DMSO at 150 Degrees C for 7 minutes in the presence of [HQMeOH and 1.3-dichlo-rotetrabutyldistannoxane as catalyst. We have found that the transesterification of enol esters is a mild and efficient labelling method for the formation of [HCl-methyl esters. The reaction proceeds smoothly and leaves functional groups intact. It requires only one synthesis step compared to two steps for the conventional method, and gives a radiochemical yields of 25%

  18. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  19. Fluorinated bio-acceptable polymers via an ATRP macroinitiator approach

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Haddletion, D.M.; Hvilsted, Søren

    2007-01-01

    Polymers derived from bio-acceptable poly(methyl methacrylate) (PMMA), poly(2-methoxyethyl acrylate) (PMEA), and poly(oligo(ethylene glycol) methyl ether methacrylate) (PPEGMA) have been prepared via atom transfer radical polymerization (ATRP) utilizing an initiator prepared from a fluoroalkoxy-t...... in the advancing water contact angles of all fluoro-containing polymers....

  20. Chronic Carcinogenicity Study of Gasoline Vapor Condensate (GVC) and GVC Containing Methyl Tertiary-Butyl Ether in F344 Rats

    OpenAIRE

    Benson, Janet M.; Gigliotti, Andrew P.; March, Thomas H.; Barr, Edward B.; Tibbetts, Brad M.; Skipper, Betty J.; Clark, Charles R.; Twerdok, Lorraine

    2011-01-01

    Chronic inhalation studies were conducted to compare the toxicity and potential carcinogenicity of evaporative emissions from unleaded gasoline (GVC) and gasoline containing the oxygenate methyl tertiary-butyl ether (MTBE; GMVC). The test materials were manufactured to mimic vapors people would be exposed to during refueling at gas stations. Fifty F344 rats per gender per exposure level per test article were exposed 6 h/d, 5 d/wk for 104 wk in whole body chambers. Target total vapor concentra...

  1. Physicochemical properties of poly(lactic acid-co-glycolic acid film modified via blending with poly(butyl acrylate-co-methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available A series of poly(lactic acid-co-glycolic acid (PLGA/poly(butyl acrylate-co-methyl methacrylate (P(BA-co-MMA blend films with different P(BA-co-MMA mole contents were prepared by casting the polymer blend solution in chloroform. Surface morphologies of the PLGAP(BA-co-MMA blend films were studied by scanning electron microscopy (SEM. Thermal, mechanical, and chemical properties of PLGAP(BA-co-MMA blend films were investigated by differential scanning calorimeter (DSC, thermogravimetric analysis (TGA, tensile tests, and surface contact angle tests. The introduction of P(BA-co-MMA could modify the properties of PLGA films.

  2. Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.

    Science.gov (United States)

    Ensminger, M P; Hess, F D

    1985-05-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.

  3. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F.

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  4. NMR study of temperature-induced phase separation and polymer-solvent interactions in poly(vinyl methyl ether)/D.sub.2./sub.O/ethanol solutions

    Czech Academy of Sciences Publication Activity Database

    Hanyková, L.; Labuta, J.; Spěváček, Jiří

    2006-01-01

    Roč. 47, č. 17 (2006), s. 6107-6116 ISSN 0032-3861 Grant - others:GA UK 294/2004/B Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(vinyl methyl ether)/D2O/ ethanol solutions * temperature-induced phase separation * 1H and 13C NMR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.773, year: 2006

  5. Star polymers by ATRP of styrene and acrylates employing multifunctional initiators

    DEFF Research Database (Denmark)

    Jankova, Katja Atanassova; Bednarek, Melania; Hvilsted, Søren

    2005-01-01

    -bromoisobutyrates or 2-bromopropionates as obtained by reaction with acid bromides. Star polystyrene (PS) is produced by using these macroinitiators and neat styrene in a controlled manner by ATRP at 110 degrees C, employing the catalytic system CuBr and bipyridine. M. up to 51,000 associated with narrow molecular...... weight distributions (PDI degrade thermally in nitrogen in a two-step process in which the first low-temperature step involves...... scission of the ester linkages and the second step corresponds to the normal PS degradation. Star poly(methyl acrylates) with various cores are likewise prepared in a controlled manner by ATRP of methyl acrylate in bulk and in solution at 6080 degrees C with the 1,1,4,7,7-pentamethyldiethylene triamine...

  6. The polymerisation of oligo(ethylene glycol methyl ether) methacrylate from a multifunctional poly(ethylene imine) derived amide : a stabiliser for the synthesis and dispersion of magnetite nanoparticles

    NARCIS (Netherlands)

    Kleine, A.; Altan, C.L.; Yarar, U.E.; Sommerdijk, N.A.J.M.; Bucak, S.; Holder, S.J.

    2014-01-01

    A facile synthetic route to poly(ethylene imine)-graft-poly(oligo(ethylene glycol methyl ether)) (PEI-graft-POEGMA) functionalised superparamagnetic magnetite nanoparticles is described. The polymerisation of OEGMA from a model molecular amide demonstrated the feasibility of POEGMA synthesis under

  7. Hydrogen Bonding Interaction between 1-Propanol and Acrylic ...

    African Journals Online (AJOL)

    The association between 1-propanol and acrylic esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) in non-polar solvents, viz. n-heptane, CCl4, and benzene has been investigated by means of FTIR spectroscopy. The formation constants of the 1:1 complexes have been calculated using Nash's method.

  8. Surface treatment of poly(ethylene terephthalate) by gamma-ray induced graft copolymerization of methyl acrylate and its toughening effect on poly(ethylene terephthalate)/elastomer blend

    International Nuclear Information System (INIS)

    Ma, Liang; Wang, Mozhen; Ge, Xuewu

    2013-01-01

    To improve the compatibility between ethylene-methyl acrylate-glycidyl methacrylate random terpolymer (E-MA-GMA) elastomer and poly(ethylene terephthalate) (PET), thereby enhance the toughening effect of E-MA-GMA on PET, γ-radiation-induced graft copolymerization technique was used to graft methyl acrylate (MA) monomer onto PET. The produced PET-g-PMA copolymer can be used as a self-compatibilizer in PET/E-MA-GMA blend since the copolymer contains the same segments, respectively, with PET and E-MA-GMA. The impact strength of PET/E-MA-GMA blend increased nearly by 30% in the presence of less than 0.1 wt% PET-g-PMA compared with that of the neat PET/elastomer blend, without loss of the tensile strength of the blends. This work proposed a potential application of radiation-induced grafting copolymerization technique on the in-situ compatibilization of PET/elastomer blends so as to improve the integral mechanical properties of PET based engineering plastic. - Highlights: • PMA was grafted onto PET resins by γ-ray radiation-induced copolymerization. • The obtained PET-g-PMA can improve the compatibility between PET and E-MA-GMA. • A small amount of PET-g-PMA can enhance the impact strength of PET/E-MA-GMA blend

  9. Vapour pressures for 1-(butoxymethoxy)butane (dibutoxymethane) and 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane (methyl nonafluorobutyl ether) over the pressure range of (15–80) kPa

    International Nuclear Information System (INIS)

    Gárate, María P.; Bejarano, Arturo; Fuente, Juan C. de la

    2016-01-01

    Highlights: • Vapour pressures of two pure potential dry-cleaning solvent were measured. • Measurements were made over the temperature range of (294.6–442.7) K. • Three commonly used vapour pressure equations were fitted to the experimental data. • The parameters of Antoine and Wagner type equations were estimated. • The relative deviations (rmsd) from the three vapour-pressure equations were <0.6%. - Abstract: Saturated pressures of 1-(butoxymethoxy)butane (dibutoxymethane) and 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane (methyl nonafluorobutyl ether), new potential solvents for dry-cleaning processes, were measured with a dynamic recirculation apparatus at a pressure range of (15–80) kPa, at temperatures of (390.4–442.7) K for dibutoxymethane and (294.6–322.4) K for methyl nonafluorobutyl ether. The vapour pressures were represented using the correlations of Antoine, extended Antoine and Wagner with relative root mean square deviations of, 1%, 6% and 0.6% for dibutoxymethane, and, 1%, 2% and 0.6% for methyl nonafluorobutyl ether, respectively. The experimental data of dibutoxymethane was compared with those available in literature, the result showed consistency between both data sets.

  10. An efficient and highly selective ortho-tert-butylation of p-cresol with methyl tert-butyl ether catalyzed by sulfonated ionic liquids

    Directory of Open Access Journals (Sweden)

    Alamdari Reza Fareghi

    2014-01-01

    Full Text Available A novel series of sulfonic acid-functionalized ionic liquids (SFILs was found to act as efficient catalysts for ortho-tert-butylation of p-cresol with methyl tert-butyl ether (MTBE as the tert-butylating agent without an added solvent. The mono o-tert-butylated product was obtained in up to 80.4% isolated yield and 95.2% selectivity under such green conditions. No O-tert-butylated byproducts were formed.

  11. New biphasic solvent system based on cyclopentyl methyl ether for the purification of a non-polar synthetic peptide by pH-zone refining centrifugal partition chromatography.

    Science.gov (United States)

    Amarouche, Nassima; Boudesocque, Leslie; Borie, Nicolas; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, Florence; Renault, Jean-Hugues

    2014-06-01

    A new type 1 ternary biphasic system composed of cyclopentyl methyl ether, dimethylformamide and water was developed, characterized and successfully used for the purification of a lipophilic, protected peptide by pH-zone refining centrifugal partition chromatography. The protected peptide is an 8-mer, key intermediate in bivalirudin (Angiomax®) synthesis and shows a very low solubility in the solvents usually used in liquid chromatography. All ionic groups, except the N-terminal end of the peptide, are protected by a benzyl group. The purification of this peptide was achieved with a purity of about 99.04% and a recovery of 94% using the new ternary biphasic system cyclopentyl methyl ether/dimethylformamide/water (49:40:11, v/v) in the descending pH-zone refining mode with triethylamine (28 mM) as the retainer and methanesulfonic acid (18 mM) as the eluter. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. UV-A photooxidation of β-carotene in Triton X-100 micelles by nitrodiphenyl ether herbicides

    International Nuclear Information System (INIS)

    Orr, G.L.; Hogan, M.E.

    1985-01-01

    Photooxidation of β-carotene in Triton X-100 micelles was stimulated by lipophilic nitrodiphenyl ether herbicides at concentrations as low as 5 μM after 15 min in UV radiation (UV-A between 315 and 400 nm). Bleaching of β-carotene by acifluorfen-methyl [methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate] was proportional to UV-A intensity and independent of pH. White light (400-700 nm) alone was without effect. At pH 6.5, 100 μM acifluorfen [sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate], a water-soluble nitrodiphenyl ether, stimulated photooxidation of β-carotene after 15 min in UV-A radiation. Activity of 200 μM acifluorfen was enhanced at pHs between 3.5 and 6.5. The chlorodiphenyl ether analogue of acifluorfen-methyl, methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate, exhibited little activity at 200 μM and 200 μM phenyl ether was without effect. Activation energy for acifluorfen-methyl stimulated β-carotene photooxidation near 20 and 30 0 C was 40.3 and 5.6 kJ mol -1 , respectively. Subsequent to UV-A exposure and placement into darkness no further bleaching of β-carotene was detected, indicating that reactive species were generated only in light and consumed quickly in darkness

  13. Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1

    Science.gov (United States)

    Ensminger, Michael P.; Hess, F. Dan

    1985-01-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206

  14. Methacrylate and acrylate allergy in dental personnel.

    Science.gov (United States)

    Aalto-Korte, Kristiina; Alanko, Kristiina; Kuuliala, Outi; Jolanki, Riitta

    2007-11-01

    Methacrylates are important allergens in dentistry. The study aimed to analyse patch test reactivity to 36 acrylic monomers in dental personnel in relation to exposure. We reviewed the test files at the Finnish Institute of Occupational Health from 1994 to 2006 for allergic reactions to acrylic monomers in dental personnel and analysed the clinical records of the sensitized patients. 32 patients had allergic reactions to acrylic monomers: 15 dental nurses, 9 dentists, and 8 dental technicians. The dentists and dental nurses were most commonly exposed to 2-hydroxyethyl methacrylate (2-HEMA), triethyleneglycol dimethacrylate (TREGDMA), and 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA). 8 dentists and 12 dental nurses were allergic to 2-HEMA. The remaining dentist was positive to bis-GMA and other epoxy acrylates. The remaining 3 dental nurses reacted to diethyleneglycol diacrylate (DEGDA) or triethyleneglycol diacrylate (TREGDA), but not to monofunctional and multifunctional methacrylates. Our dental technicians were mainly exposed and sensitized to methyl methacrylate (MMA) and ethyleneglycol dimethacrylate (EGDMA). 1 technician reacted only to 2-HEMA, and another to ethyl methacrylate (EMA) and ethyl acrylate (EA). 2-HEMA was the most important allergen in dentists and dental nurses, and MMA and EGDMA in dental technicians. Reactions to bis-GMA, DEGDA, TREGDA, EMA and EA were relevant in some patients.

  15. IRON(III) NITRATE-CATALYZED FACILE SYNTHESIS OF DIPHENYLMETHYL (DPM) ETHERS FROM ALCOHOLS

    Science.gov (United States)

    Diphenyl methyl (DPM) ethers constitute important structural portion of some pharmaceutical entities and also as protective group for hydroxyl groups in synthetic chemistry. DPM ethers are normally prepared using concentrated acids or base as catalysts, which may result in the fo...

  16. Long-term toughness of photopolymerizable (meth)acrylate networks in aqueous environments.

    Science.gov (United States)

    Smith, Kathryn E; Trusty, Phillip; Wan, Beatrice; Gall, Ken

    2011-02-01

    Photopolymerizable (meth)acrylate networks are potentially advantageous biomaterials due to their ability to be formed in situ, their fast synthesis rates and their tailorable material properties. The objective of this study was to evaluate how immersion time in phosphate-buffered saline (PBS) affects the toughness of photopolymerizable methyl acrylate (MA)-co-methyl methacrylate-co-poly(ethylene glycol) dimethacrylate networks containing various concentrations of MA. Stress-strain behavior was determined by performing tensile strain to failure testing after soaking in PBS for different periods (1 day up to 9 months). In tandem, differential scanning calorimetry and PBS content measurements were undertaken at each time point in order to determine whether time-dependent changes in toughness were related to changes in T(g) or PBS absorption. The effect of immersion time on network toughness was shown to be dependent upon composition in a manner related to the viscoelastic state of the polymer upon initial immersion in PBS. The results demonstrate that tough acrylate-based materials may not maintain their toughness after several months in PBS. In addition, decreasing the PBS content by changing the network hydrophobicity resulted in better toughness maintenance after 9 months. The results provide a possible means to toughen various amorphous acrylate-based implant materials that are being explored for load-bearing biomedical applications, beyond the systems considered in this work. Published by Elsevier Ltd.

  17. Excess molar volumes and deviation in viscosities of binary liquid mixtures of acrylic esters with hexane-1-ol at 303.15 and 313.15K

    OpenAIRE

    Patil, Sujata S.; Mirgane, Sunil R.; Arbad, Balasaheb R.

    2014-01-01

    Densities and viscosities for the four binary liquid mixtures of methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate with hexane-1-ol at temperatures 303.15 and 313.15 K and at atmospheric pressure were measured over the entire composition range. These values were used to calculate excess molar volumes and deviation in viscosities which were fitted to Redlich–Kister polynomial equation. Recently proposed Jouyban Acree model was also used to correlate the experimental value...

  18. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  19. pH-sensitive membranes for lithium separation

    International Nuclear Information System (INIS)

    Smolinska, Katarzyna; Bryjak, Marek; Wolska, Joanna; Kujawski, Wojciech

    2014-01-01

    Dielectric barrier discharge plasma was used to modify track etched poly(ethylene terephthalate) membranes followed by grafting of poly(acrylic acid) and copolymers of acrylic acid and di(ethylene glycol)methyl ether methacrylate. The evaluation by IR and XPS spectroscopies showed that both polymers were successfully grafted to the porous membranes. Determination of permeate fluxes pointed the membranes to have excellent responses to pH changes when grafting yield was not so high. When grafting exceeded 0.1 mg cm −2 stimuli response gel-filled membranes were formed that could be used for transport of alkaline ions. The best permselectivity was observed for poly(ethylene terephthalate) membranes grafted with 1:2 copolymer of acrylic acid and di(ethylene glycol)methyl ether methacrylate. The dialysis was more effectively facilitated for lithium than for potassium or sodium salts at solution of pH = 5.5. - Highlights: • Preparation of pore-filled stimuli response membranes that facilitate transport of alkaline salts. • pH controlled transport of alkaline salts. • Facilitation of lithium transport over sodium and potassium

  20. [Contact dermatitis caused by acrylates among 8 workers in an elevator factory].

    Science.gov (United States)

    Pérez-Formoso, J L; de Anca-Fernández, J; Maraví-Cecilia, R; Díaz-Torres, J M

    2010-05-01

    Acrylates are widely used low-molecular-weight substances, initially introduced in industry in the 1930s and subsequently applied also in medicine and the home. One of their main features is the ability to undergo polymerization. The most commonly used acrylic compounds are cyanoacrylates, methacrylates, and acrylates. To confirm suspicion of occupational disease in a group of workers in an elevator factory. We studied 8 patients with dermatitis of the hands and finger pads. In their work, the patients came into contact with acrylates. Patch testing was applied with an acrylate panel (BIAL-Aristegui, Bilbao, Spain). Seven of the patients (87. 5%) had a positive result with 1% ethylene glycol dimethacrylate. Positive were also observed for 2% hydroxyethyl methacrylate (5 patients, 62. 5%), 1% triethylene glycol dimethacrylate (4 patients, 50%), 10% ethyl methacrylate monomer (3 patients, 37. 5%), 10% methyl methacrylate monomer (2 patients, 25%), 1% ethyl acrylate (1 patient, 12. 5%), and 0. 1% acrylic acid (1 patient, 12. 5%). We highlight the strong sensitizing capacity of acrylates and the importance of taking all necessary preventive measures in industries where these substances are used. Such measures should include avoidance of contact with the product in cases where sensitization has been confirmed.

  1. Degradation of a recalcitrant xenobiotic compound: methyl tert-butyl ether (MTBE) metabolism by mycobacterium austroafricanum; Degradation d'un compose xenobiotique recalcitrant: metabolisme du methyl tert-butyl ether (MTBE) par mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Francois, A

    2002-11-01

    Methyl tert-butyl ether (MTBE) is introduced up to 15% (vol/vol) in gasoline in order to obtain a good octane number and to prevent carbon monoxide emissions. However, as a consequence of storage tanks leakage, MTBE became one of the major pollutants of aquifers because of its very low biodegradability. The present study aimed at investigating the biodegradation of MTBE by Mycobacterium austroafricanum IFP 2012. The MTBE metabolic pathway was partially elucidated owing to the identification of some intermediates (tert-butyl formate (TBF), tert-butyl alcohol (TBA), a-hydroxy-isobutyric acid and acetone) and some enzymatic activities (MTBE/TBA monooxygenase (non hemic and inducible), TBF esterase, 2-propanol: NDMA oxidoreductase and another monooxygenase involved in acetone degradation). The involvement of TBF and the requirement of cobalt could be explanations for the low natural attenuation of MTBE; whereas the methoxy group does not seem to be implicated. (author)

  2. Poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers with Various Molecular Weights as Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Dongfang Pei

    2018-02-01

    Full Text Available At present, research on the relationship of comb-like polymer phase change material structures and their heat storage performance is scarce. Therefore, this relationship from both micro and macro perspectives will be studied in this paper. In order to achieve a high phase change enthalpy, ethylene glycol segments were introduced between the vinyl and the alkyl side chains. A series of poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers (PC14EnVEs (n = 1, 2 with various molecular weights were polymerized by living cationic polymerization. The results of PC14E1VE and PC14E2VE showed that the minimum number of carbon atoms required for side-chain crystallization were 7.7 and 7.2, which were lower than that reported in the literature. The phase change enthalpy 89 J/g (for poly(mono ethylene glycol n-tetradecyl ether vinyl ethers and 86 J/g (for poly(hexadecyl acrylate were approximately equal. With the increase of molecular weight, the melting temperature, the melting enthalpy, and the initial thermal decomposition temperature of PC14E1VE changed from 27.0 to 28.0 °C, from 95 to 89 J/g, and from 264 to 287 °C, respectively. When the number average molar mass of PC14EnVEs exceeded 20,000, the enthalpy values remained basically unchanged. The introduction of the ethylene glycol chain was conducive to the crystallization of alkyl side chains.

  3. The protection of different Italian marbles with two partially flourinated acrylic copolymers

    Science.gov (United States)

    Poli, T.; Toniolo, L.; Chiantore, O.

    Committing stone protection to polymeric materials started in the sixties but the study and knowledge of the complex and multiple interactions between stone and polymers has only been carried out recently. It's important to note that, together with the factors related to the polymeric system itself, intrinsic properties of the stone substrate, like composition, porosity, and crystalline characteristics, play a relevant role. In this paper the issues related to protection of three different Italian marbles have been investigated: Candoglia marble, employed in the building of the Milan Cathedral, Carrara marble, widely used in sculpture and historical architecture, and S. Giuliano marble, used in the building of the Pisa Cathedral and its famous leaning tower. Specimens coming from blocks of the three quarried stones have been characterized, treated with two new partially fluorinated acrylic copolymers, 2,2,2-trifluoroethyl methacrylate/methyl acrylate (TFEMA/MA), and trifluoromethyl-2,2,2-trifluorethyl methacrylate/methyl acrylate (HFIMA/MA), and tested according to UNI-Normal Italian protocol. All the measurements including capillary water absorption, static contact angles, colour variation, water vapour permeability, and SEM morphological analysis have been carried out before and after the polymeric treatment. The aim of this work is to evaluate the protective efficacy of these two new partially fluorinated acrylic copolymers on the three different marbles, and to correlate the different behaviours with the polymers' properties and with the stone substrates characteristics.

  4. On the predictive capabilities of CPA for applications in the chemical industry: Mulficomponent mixtures containing methyl-methacrylate, dimethyl-ether or acetic acid

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios

    2014-01-01

    mixtures exhibiting vapor-liquid (VLE) and/or liquid-liquid (LLE) equilibrium. The first two cases include mixtures of methyl-methacrylate with acetone or methanol and dimethyl-ether with ethanol, respectively. In these two cases, the classical form of CPA is used. The third case involves aqueous mixtures...... for the acetic acid-water system for which different parameter sets at different temperatures can be recommended. Even with the use of CPA-HV mixing rules, modeling of the acetic acid-water system with few interaction parameters remains a challenging task. Excellent simultaneous VLE and LLE correlation...... is obtained for complex systems such as aqueous mixtures with ethers and esters. The multicomponent results are, with a few exceptions, very satisfactory, especially for the vapor-liquid equilibrium cases. For the demanding aqueous acetic acid-water containing systems, one parameter set is recommended...

  5. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    Science.gov (United States)

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension.

  6. Thermally reversible cross-linked poly(ether-urethanes

    Directory of Open Access Journals (Sweden)

    V. Gaina

    2013-07-01

    Full Text Available Cross-linked poly(ether-urethanes were prepared by Diels-Alder (DA reaction of the furan-containing poly(ether-urethane to bismaleimides and showed thermal reversibility evidenced by differential scanning calorimetry and attenuated total reflectance in conjunction with Fourier transform infrared spectroscopy (ATR-FTIR. The furan-containing poly(ether-urethanes were synthesized by the polyaddition reaction of 1,6-hexamethylene diisocyanate (HMDI or 4,4'- dibenzyl diisocyanate (DBDI to poly(tetramethylene ether glycol (PTMEG having Mn = 250, 650, 1000, 1500 and 2000 and 2-[N,N-bis(2-methyl-2-hydroxyethylamino]furfuryl as chain extender by the solution prepolymer method. The molar ratio of isocyanate: PTMEG:chain extender varied from 2:1:1 to 4:1:3, which produces a molar concentration of furyl group ranging between 3.65•10–4 and 1.25•10–3 mol/g.

  7. Degradation of a recalcitrant xenobiotic compound: methyl tert-butyl ether (MTBE) metabolism by mycobacterium austroafricanum; Degradation d'un compose xenobiotique recalcitrant: metabolisme du methyl tert-butyl ether (MTBE) par mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Francois, A.

    2002-11-01

    Methyl tert-butyl ether (MTBE) is introduced up to 15% (vol/vol) in gasoline in order to obtain a good octane number and to prevent carbon monoxide emissions. However, as a consequence of storage tanks leakage, MTBE became one of the major pollutants of aquifers because of its very low biodegradability. The present study aimed at investigating the biodegradation of MTBE by Mycobacterium austroafricanum IFP 2012. The MTBE metabolic pathway was partially elucidated owing to the identification of some intermediates (tert-butyl formate (TBF), tert-butyl alcohol (TBA), a-hydroxy-isobutyric acid and acetone) and some enzymatic activities (MTBE/TBA monooxygenase (non hemic and inducible), TBF esterase, 2-propanol: NDMA oxidoreductase and another monooxygenase involved in acetone degradation). The involvement of TBF and the requirement of cobalt could be explanations for the low natural attenuation of MTBE; whereas the methoxy group does not seem to be implicated. (author)

  8. Synthesis, Characterization and Bulk Properties of Amphiphilic Copolymers Containing Fluorinated Methacrylates from Sequential Copper-Mediated Radical Polymerization

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Gerstenberg, Michael; Haddleton, David M.

    2008-01-01

    acrylate (MEA), and poly(ethylene glycol) methyl ether methacrylate (PEGMA) by Atom Transfer Radical Polymerization. A kinetic study of the 3FM homopolymerization initiated with ethyl bromoisobutyrate and Cu(I)Br/N-(n-propyl)-2-pyridylmethanimine reveals a living/ controlled polymerization in the range 80...

  9. Theoretical study of chain transfer to solvent reactions of alkyl acrylates.

    Science.gov (United States)

    Moghadam, Nazanin; Srinivasan, Sriraj; Grady, Michael C; Rappe, Andrew M; Soroush, Masoud

    2014-07-24

    This computational and theoretical study deals with chain transfer to solvent (CTS) reactions of methyl acrylate (MA), ethyl acrylate (EA), and n-butyl acrylate (n-BA) self-initiated homopolymerization in solvents such as butanol (polar, protic), methyl ethyl ketone (MEK) (polar, aprotic), and p-xylene (nonpolar). The results indicate that abstraction of a hydrogen atom from the methylene group next to the oxygen atom in n-butanol, from the methylene group in MEK, and from a methyl group in p-xylene by a live polymer chain are the most likely mechanisms of CTS reactions in MA, EA, and n-BA. Energy barriers and molecular geometries of reactants, products, and transition states are predicted. The sensitivity of the predictions to three hybrid functionals (B3LYP, X3LYP, and M06-2X) and three different basis sets (6-31G(d,p), 6-311G(d), and 6-311G(d,p)) is investigated. Among n-butanol, sec-butanol, and tert-butanol, tert-butanol has the highest CTS energy barrier and the lowest rate constant. Although the application of the conductor-like screening model (COSMO) does not affect the predicted CTS kinetic parameter values, the application of the polarizable continuum model (PCM) results in higher CTS energy barriers. This increase in the predicted CTS energy barriers is larger for butanol and MEK than for p-xylene. The higher rate constants of chain transfer to n-butanol reactions compared to those of chain transfer to MEK and p-xylene reactions suggest the higher CTS reactivity of n-butanol.

  10. Nano-emulsion based on acrylic acid ester co-polymer derivatives as an efficient pre-tanning agent for buffalo hide

    OpenAIRE

    El-Monem, Farouk Abd; Hussain, Ahmed I.; Nashy, EL-Shahat H.A.; El-Wahhab, Hamada Abd; Naser, Abd El-Rahman M.

    2014-01-01

    Acrylic copolymer nanoemulsions were prepared based on methyl methacrylate (MMA) and butyl acrylate (BA). The prepared acrylic copolymer emulsions were characterized using solid content, rheological properties, molecular weight, MFFT and TEM. The prepared polymers were used as pre-tanning of the depickled hide to enhance the physico-mechanical properties of tanned leather. The key parameters which affect exhaustion and fixation of chrome tan as well as shrinkage temperature of the tanned leat...

  11. Critical properties of some aliphatic symmetrical ethers

    International Nuclear Information System (INIS)

    Nikitin, Eugene D.; Popov, Alexander P.; Bogatishcheva, Nataliya S.

    2014-01-01

    Highlights: • Critical properties of simple aliphatic ethers were measured. • The ethers decompose at near-critical temperatures. • Pulse-heating method with short residence times was used. -- Abstract: The critical temperatures T c and the critical pressures p c of dihexyl, dioctyl, and didecyl ethers have been measured. According to the measurements, the coordinates of the critical points are T c = (665 ± 7) K, p c = (1.44 ± 0.04) MPa for dihexyl ether, T c = (723 ± 7) K, p c = (1.19 ± 0.04) MPa for dioctyl ether, and T c = (768 ± 8) K, p c = (1.03 ± 0.03) MPa for didecyl ether. All the ethers studied degrade chemically at near-critical temperatures. A pulse-heating method applicable to measuring the critical properties of thermally unstable compounds has been used. The times from the beginning of a heating pulse to the moment of reaching the critical temperature were from 0.06 to 0.46 ms. The short residence times provide little decomposition of the substances in the course of the experiments. The critical properties of the ethers investigated in this work have been discussed together with those of methyl to butyl ethers. The experimental critical constants of the ethers have been compared with those estimated by the group-contribution methods of Wilson and Jasperson and Marrero and Gani. The Wilson/Jasperson method provides a better estimation of the critical temperatures and pressures of simple aliphatic ethers in comparison with the Marrero/Gani method if reliable normal boiling temperatures are used in the method of Wilson and Jasperson

  12. Durability and Mechanical Performance of PMMA/Stone Sludge Nanocomposites for Acrylic Solid Surface Applications

    Directory of Open Access Journals (Sweden)

    Samah EL-Bashir

    2017-11-01

    Full Text Available Acrylic solid surface sheets were prepared by mixing different kinds of stone sludge fillers (SSF in Poly (methyl methacrylate (PMMA nanocomposites. PMMA nanocomposite syrups were made using free radical polymerization of methylmethacrylate (MMA, then two kinds of nanofillers were added, namely, hydrophilic nanosilica and clay Halloysite nanotubules (HNTs. Acrylic solid surface sheets were manufactured by mixing the syrups with SSFs. The morphology of the produced sheets was studied using optical, and Scanning Electron Microscopy (SEM that revealed the uniform distribution of stone sludge in the polymeric matrix. The study of the physical properties showed promising mechanical performance and durability of PMMA/SSF nanocomposites for acrylic solid surface applications.

  13. Convenient procedures for the α-metallation of vinylic ethers and thioethers

    NARCIS (Netherlands)

    Verkruijsse, H.D.; Brandsma, L.; Schleyer, P. von R.

    1987-01-01

    Ethyl vinyl ether H2C=CHOC2H5 and the analogous cyclic vinylic ethers dehydrofuran and 2,3-dihydropyran can be potassiated at −20°C in the α-position with a 1/1/1 molar mixture of BuLi, t-BuOK and TMEDA in hexane. Methyl vinyl sulfide is potassiated very smoothly by a 1/1 molar mixture of BuLi and

  14. Model-based analysis of CO2 revalorization for di-methyl ether synthesis driven by solar catalytic reforming

    International Nuclear Information System (INIS)

    Luu, Minh Tri; Milani, Dia; Sharma, Manish; Zeaiter, Joseph; Abbas, Ali

    2016-01-01

    Highlights: • Solar energy applied for synthesis of di-methyl ether via dry methane reforming. • Concentrated solar energy at receiver reaction zone for syngas generation. • H 2 /CO molar ratio of ‘1’ is maintained via two alternative processing routes. • Assessed three days of operation under different insolation levels. • Improvements of 18.7%, 32.2% and 20% for methane, energy and CO 2 emission intensities. - Abstract: The application of solar energy is investigated for the synthesis of di-methyl ether (DME) in a solar irradiated dry methane reformer (DMR). Solar radiations are concentrated onto a receiver and distributed to the reaction zone to provide necessary energy for syngas (CO and H 2 ) generation. In order to maintain a H 2 /CO molar ratio of ‘1’, as required in DME synthesis, the produced syngas is processed via two alternative routes: solar reformer coupled in parallel with a non-solar reformer (SoR-NSoR) and solar reformer integrated with a water-gas shift reactor (SoR-WGS). It is found that steam methane reforming (SMR) is the most suitable methodology when coupled with a solar reformer due to high H 2 content in the SMR syngas. Further performance analysis is conducted by simulating three days of operation under different insolation levels (high, medium and low irradiations). The simulation results showed that the SoR-WGS configuration produces the highest improvements of 18.7%, 32.2% and 20% in terms of methane, energy and CO 2 emission intensity respectively. This enhanced process performance originates from the exothermic nature of the WGS process which helps in controlling the overall syngas composition, whereas the SoR-NSoR requires fossil based thermal energy to drive the NSoR process to similar control targets. This promising improvement of all metrics in SoR-WGS may stimulate in-depth techno-economic feasibility of this unique solar integration for DME and other synthetic fuels production.

  15. Lewis Acid Assisted Nickel-Catalyzed Cross-Coupling of Aryl Methyl Ethers by C−O Bond-Cleaving Alkylation: Prevention of Undesired β-Hydride Elimination

    KAUST Repository

    Liu, Xiangqian

    2016-04-10

    In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel-catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process.

  16. Bond strength of stainless steel orthodontic brackets bonded to prefabricated acrylic teeth.

    Science.gov (United States)

    Wan Abdul Razak, Wan Salbiah; Sherriff, Martyn; Bister, Dirk; Seehra, Jadbinder

    2017-06-01

    The purpose of this in-vitro study was to evaluate the force to debond stainless steel orthodontic brackets bonded to acrylic teeth using different combinations of adhesive and surface treatments. One hundred prefabricated upper lateral incisor acrylic teeth were divided into 4 equal groups: Transbond XT® adhesive only (Group 1, control), Transbond XT® adhesive with sandblasting (Group 2), Transbond XT® adhesive with abrasion / + methyl methacrylate (MMA) (Group 3) and Triad® Gel only (Group 4). The force in Newtons (N) to debond the brackets was measured. One-way analysis of variance (ANOVA) and pairwise multi-comparison of means (Šidak's adjustment) were undertaken. The highest force to debond was recorded for Group 2 (275.7 N; SD 89.0) followed by Group 3 (241.9 N; SD 76.0), Group 1 (142.7 N; SD 36.7) and Group 4 (67.9 N; SD 21.1). Significant differences in bond strength measurements between the experimental groups were detected. Mean force values for the groups revealed no significant differences between Group 2 and Group 3 (p>0.05). Both sandblasting and surface abrasion/+ application of methyl methacrylate (MMA) in combination with Transbond XT® adhesive are recommended for bonding stainless orthodontic brackets to acrylic teeth.

  17. Carbon fiber reinforced thermoplastic composites from acrylic polymer matrices: Interfacial adhesion and physical properties

    Directory of Open Access Journals (Sweden)

    H. Kishi

    2017-04-01

    Full Text Available Acrylic polymers have high potential as matrix polymers for carbon fiber reinforced thermoplastic polymers (CFRTP due to their superior mechanical properties and the fact that they can be fabricated at relatively low temperatures. We focused on improving the interfacial adhesion between carbon fibers (CFs and acrylic polymers using several functional monomers for co-polymerization with methyl methacrylate (MMA. The copolymerized acrylic matrices showed good adhesion to the CF surfaces. In particular, an acrylic copolymer with acrylamide (AAm showed high interfacial adhesive strength with CFs compared to pure PMMA, and a hydroxyethyl acrylamide (HEAA copolymer containing both amide and hydroxyl groups showed high flexural strength of the CFRTP. A 3 mol% HEAA-copolymerized CFRTP achieved a flexural strength almost twice that of pure PMMA matrix CFRTP, and equivalent to that of an epoxy matrix CFRP.

  18. Carcinogenicity of methyl-tertiary butyl ether in gasoline.

    Science.gov (United States)

    Mehlman, Myron A

    2002-12-01

    Methyl tertiary butyl ether (MTBE) was added to gasoline on a nationwide scale in 1992 without prior testing of adverse, toxic, or carcinogenic effects. Since that time, numerous reports have appeared describing adverse health effects of individuals exposed to MTBE, both from inhalation of fumes in the workplace and while pumping gasoline. Leakage of MTBE, a highly water-soluble compound, from underground storage tanks has led to contamination of the water supply in many areas of the United States. Legislation has been passed by many states to prohibit the addition of MTBE to gasoline. The addition of MTBE to gasoline has not accomplished its stated goal of decreasing air pollution, and it has posed serious health risks to a large portion of the population, particularly the elderly and those with respiratory problems, asthma, and skin sensitivity. Reports of animal studies of carcinogenicity of MTBE began to appear in the 1990s, prior to the widespread introduction of MTBE into gasoline. These reports were largely ignored. In ensuing years, further studies have shown that MTBE causes various types of malignant tumors in mice and rats. The National Toxicology Program (NTP) Board of Scientific Counselors' Report on Carcinogens Subcommittee met in December 1998 to consider listing MTBE as "reasonably anticipated to be a human carcinogen." In spite of recommendations from Dr. Bailer, the primary reviewer, and other scientists on the committee, the motion to list MTBE in the report was defeated by a six to five vote, with one abstention. On the basis of animal studies, it is widely accepted that if a chemical is carcinogenic in appropriate laboratory animal test systems, it must be treated as though it were carcinogenic in humans. In the face of compelling evidence, NTP Committee members who voted not to list MTBE as "reasonably anticipated to be a human carcinogen" did a disservice to the general public; this action may cause needless exposure of many to health risks

  19. Degradation of methyl tert-butyl ether by gel immobilized Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Chen, Dongzhi; Chen, Jianmeng; Zhong, Weihong; Cheng, Zhuowei

    2008-07-01

    Cells of Methylibium petroleiphilum PM1 were immobilized in gel beads to degrade methyl tert-butyl ether (MTBE). Calcium alginate, agar, polyacrylamide and polyvinvyl alcohol were screened as suitable immobilization matrices, with calcium alginate demonstrating the fastest MTBE-degradation rate. The rate was accelerated by 1.8-fold when the beads had been treated in physiological saline for 24h at 28 degrees C. MTBE degradation in mineral salts medium (MSM) was accompanied by the increase of biomass. The half-life of MTBE-degradation activity for the encapsulated cells stored at 28 degrees C was about 120 h, which was obviously longer than that of free cells (approximately 36 h). Efficient reusability of the beads up to 30 batches was achieved in poor nutrition solution as compared to only 6 batches in MSM. The immobilized cells could be operated in a packed-bed reactor for degradation of 10 mg L(-1) MTBE in groundwater with more than 99% removal efficiency at hydraulic retention time of 20 min. These results suggested that immobilized cells of PM1 in bioreactor might be applicable to a groundwater treatment system for the removal of MTBE.

  20. Kinetic Isotope Effects in the Reduction of Methyl Iodide

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    a Grignard reagent to methyl iodide, and for reduction of methyl iodide with tributyltin hydride or with gaseous hydrogen iodide. Very small KIE's were found for electron transfer to methyl iodide from magnesium in ether or from sodium in ammonia. The reason may be that these reactions are transport...

  1. Controlled radical polymerization of acrylates by {gamma}-irradiation in the presence of 1,1-diphenylethene

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zongtao [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang Zhicheng [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)]. E-mail: zczhang@ustc.edu.cn

    2005-12-15

    Poly (butyl acrylate) and poly (methyl acrylate) were successfully prepared in the presence of 1,1-diphenylethene (DPE) by {gamma}-irradiation-induced polymerization in both bulk and solution. The influences of polymerization time, amounts of DPE in system on conversion, molecular weight (MW) and its distribution (M{sub w}/M{sub n}) were studied. The results indicate that the polymerization initiated by {gamma}-irradiation in the presence of DPE shows the character of living radical reaction.

  2. Back-biting termination in methyl methacrylate/tert-butyl acrylate anionic block copolymerization

    Czech Academy of Sciences Publication Activity Database

    Čadová, Eva; Dybal, Jiří; Kříž, Jaroslav; Vlček, Petr; Janata, Miroslav; Toman, Luděk

    2008-01-01

    Roč. 209, č. 16 (2008), s. 1657-1665 ISSN 1022-1352 Institutional research plan: CEZ:AV0Z40500505 Keywords : acrylates * anionic polymerization * spontaneous termination Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.202, year: 2008

  3. Pulse radiolysis study of reactions of alkyl and alkylperoxy radicals originating from methyl tert-butyl ether in the gas phase

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Ellermann, T.

    1995-01-01

    UV spectra and kinetics for the reactions of alkyl and alkylperoxy radicals from methyl tert-butyl ether (MTBE) were studied in 1 atm of SF6 by the pulse radiolysis-UV absorption technique. UV spectra for the radical mixtures were quantified from 215 to 340 nm. At 240 nm, sigma(R) = (2.6 +/- 0.4) X...... and the alkylperoxy radicals with NO and NO2 are (9.1 +/- 1.5) X 10(-13), (4.3 +/- 1.6) X 10(-12) and (1.2 +/- 0.3) X 10(-11) cm(3) molecule(-1) s(-1), respectively. The rate constants given above refer to reaction at the tert-butyl side of the molecule....

  4. Synthesis of Fischer carbene complexes of iridium by C-H bond activation of methyl and cyclic ethers: Evidence for reversible {alpha}-hydrogen migration

    Energy Technology Data Exchange (ETDEWEB)

    Luecke, H.F.; Arndtsen, B.A.; Burger, P.; Bergman, R.G. [Lawrence Berkeley Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)

    1996-03-13

    We report here a mild and versatile route to Fischer carbene complexes of iridium via the activation of C-H bonds of methyl and cyclic ethers, along with our preliminary studies of this rare family of carbene complexes. Theoretical studies suggest that {alpha}-hydrogen migrations can be kinetically favorable if a coordinatively unsaturated species can be accessed. Thus, the lability of the triflate ligand presumably facilitates this process. Further evidence for the rapidity, as well as reversibility, of this rearrangement was obtained by NMR analysis. 20 refs.

  5. 21 CFR 172.872 - Methyl ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl ethyl cellulose. 172.872 Section 172.872... CONSUMPTION Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose... a cellulose ether having the general formula [C6H(10 -x-y)O5(CH3)x(C2H5)y]n, where x is the number...

  6. Two-year drinking water carcinogenicity study of methyl tertiary-butyl ether (MTBE) in Wistar rats.

    Science.gov (United States)

    Dodd, Darol; Willson, Gabrielle; Parkinson, Horace; Bermudez, Edilberto

    2013-07-01

    Methyl tertiary-butyl ether (MTBE) has been used as a gasoline additive to reduce tailpipe emissions and its use has been discontinued. There remains a concern that drinking water sources have been contaminated with MTBE. A two-year drinking water carcinogenicity study of MTBE was conducted in Wistar rats (males, 0, 0.5, 3, 7.5 mg ml(-1); and females, 0, 0.5, 3, and 15 mg ml(-1)). Body weights were unaffected and water consumption was reduced in MTBE-exposed males and females. Wet weights of male kidneys were increased at the end of two years of exposure to 7.5 mg ml(-1) MTBE. Chronic progressive nephropathy was observed in males and females, was more severe in males, and was exacerbated in the high MTBE exposure groups. Brain was the only tissue with a statistically significant finding of neoplasms. One astrocytoma (1/50) was found in a female rat (15 mg ml(-1)). The incidence of brain astrocytomas in male rats was 1/50, 1/50, 1/50 and 4/50 for the 0, 0.5, 3 and 7.5 mg ml(-1) exposure groups, respectively. This was a marginally significant statistical trend, but not statistically significant when pairwise comparisons were made or when multiple comparisons were taken into account. The incidence of astrocytoma fell within historical control ranges for Wistar rats, and the brain has not been identified as a target organ following chronic administration of MTBE, ethyl tert-butyl ether, or tertiary butyl alcohol (in drinking water) to mice and rats. We conclude that the astrocytomas observed in this study are not associated with exposure to MTBE. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Poly(vinyl methyl ether/maleic anhydride)-Doped PEG-PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency.

    Science.gov (United States)

    Wang, Qian; Li, Chan; Ren, Tianyang; Chen, Shizhu; Ye, Xiaoxia; Guo, Hongbo; He, Haibing; Zhang, Yu; Yin, Tian; Liang, Xing-Jie; Tang, Xing

    2017-10-02

    Bioadhesive nanoparticles based on poly(vinyl methyl ether/maleic anhydride) (PVMMA) and poly(ethylene glycol) methyl ether-b-poly(d,l-lactic acid) (mPEG-b-PLA) were produced by the emulsification solvent evaporation method. Paclitaxel was utilized as the model drug, with an encapsulation efficiency of up to 90.2 ± 4.0%. The nanoparticles were uniform and spherical in shape and exhibited a sustained drug release compared with Taxol. m-NPs also exhibited favorable bioadhesive efficiency at the same time. Coumarin 6 or DiR-loaded nanoparticles with/without PVMMA (C6-m-NPs/DiR-m-NPs or C6-p-NPs/DiR-p-NPs) were used for cellular uptake and intestinal adhesion experiments, respectively. C6-m-NPs were shown to enhance cellular uptake, and caveolae/lipid raft mediated endocytosis was the primary route for the uptake of the nanoparticles. Favorable bioadhesive efficiency led to prolonged retention in the intestine reflected by the fluorescence in isolated intestines ex vivo. In a ligated intestinal loops model, C6-m-NPs showed a clear advantage for transporting NPs across the mucus layer over C6-p-NPs and free C6. The apparent permeability coefficient (Papp) of PTX-m-NPs through Caco-2/HT29 monolayers was 1.3- and 1.6-fold higher than PTX-p-NPs and Taxol, respectively, which was consistent with the AUC 0-t of different PTX formulations after oral administration in rats. PTX-m-NPs also exhibited a more effective anticancer efficacy, with an IC 50 of 0.2 ± 1.4 μg/mL for A549 cell lines, further demonstrating the advantage of bioadhesive nanoparticles. The bioadhesive nanoparticles m-NPs demonstrated both mucus permeation and epithelial absorption, and thus, this bioadhesive drug delivery system has the potential to improve the bioavailability of drugs that are insoluble in the gastrointestinal environment.

  8. Anionic polymerization of acrylates. XII. Polymerization of methyl methacrylate and tert-butyl acrylate initiated with alkyllithiums or methyl 2-lithioisobutyrate in the presence of lithium tert-butoxide

    Czech Academy of Sciences Publication Activity Database

    Vlček, Petr; Otoupalová, Jaroslava; Janata, Miroslav; Látalová, Petra; Masař, Bohumil; Toman, Luděk

    2002-01-01

    Roč. 43, č. 25 (2002), s. 7179-7184 ISSN 0032-3861 R&D Projects: GA ČR GA203/01/0513; GA MŠk OC P1.10 Institutional research plan: CEZ:AV0Z4050913 Keywords : ligated anionic polymerization * (meth)acrylates * lithium tert-butoxide Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.838, year: 2002

  9. Development of Electrically Conductive Transparent Coatings for Acrylic Plastic

    Science.gov (United States)

    1952-12-01

    after drying, but increased to 4,000 megoihms/square after 16 hours. 4. Polyacrylic-polyamine Cop-lyrrvrs Aqueous solutions of polymethacrylic acid ...methacrylic acid -methyl methaerylate copolymer re•I. The composite material, i. e., the acrylic and applied coating, retains essentially all the original...ation in 5%, NaOH solution for 5 minutes, rinsed in distilled water, immersed with agitation in 1516 nitric acid for 3 minutes and finally rinsed well

  10. Characterization of Z-RAFT star polymerization of butyl acrylate by size-exclusion chromatography

    NARCIS (Netherlands)

    Boschmann, D.; Edam, R.; Schoenmakers, P.J.; Vana, P.

    2009-01-01

    Z-RAFT star polymerization of butyl acrylate using multifunctional trithiocarbonate-type RAFT agents carrying methyl propionate as the leaving group were used to form star polymers having 3, 4, and 6 arms. The polymerizations showed well controlled behavior up to high monomer conversions. By using a

  11. Synthesis of acrylate guar-gum for delivery of bio-active molecules

    Indian Academy of Sciences (India)

    used in a number of industries (pharmaceutics, personal care, enhanced oil recovery) in which ... to produce guar-gum propyl and methyl ethers, esters and phosphates. ... dation, salt tolerance, faster hydration rate, enzyme resistance, dispersibility, improved dry ... has excellent ability to control rheology by economic water.

  12. Biocompatible Metal-Oxide Nanoparticles: Nanotechnology Improvement of Conventional Prosthetic Acrylic Resins

    Directory of Open Access Journals (Sweden)

    Laura S. Acosta-Torres

    2011-01-01

    Full Text Available Nowadays, most products for dental restoration are produced from acrylic resins based on heat-cured Poly(Methyl MethAcrylate (PMMA. The addition of metal nanoparticles to organic materials is known to increase the surface hydrophobicity and to reduce adherence to biomolecules. This paper describes the use of nanostructured materials, TiO2 and Fe2O3, for simultaneously coloring and/or improving the antimicrobial properties of PMMA resins. Nanoparticles of metal oxides were included during suspension polymerization to produce hybrid metal oxides-alginate-containing PMMA. Metal oxide nanoparticles were characterized by dynamic light scattering, and X-ray diffraction. Physicochemical characterization of synthesized resins was assessed by a combination of spectroscopy, scanning electron microscopy, viscometry, porosity, and mechanical tests. Adherence of Candida albicans cells and cellular compatibility assays were performed to explore biocompatibility and microbial adhesion of standard and novel materials. Our results show that introduction of biocompatible metal nanoparticles is a suitable means for the improvement of conventional acrylic dental resins.

  13. An ORMOSIL-Containing Orthodontic Acrylic Resin with Concomitant Improvements in Antimicrobial and Fracture Toughness Properties

    Science.gov (United States)

    Rueggeberg, Frederick A.; Niu, Li-na; Mettenberg, Donald; Yiu, Cynthia K. Y.; Blizzard, John D.; Wu, Christine D.; Mao, Jing; Drisko, Connie L.; Pashley, David H.; Tay, Franklin R.

    2012-01-01

    Global increase in patients seeking orthodontic treatment creates a demand for the use of acrylic resins in removable appliances and retainers. Orthodontic removable appliance wearers have a higher risk of oral infections that are caused by the formation of bacterial and fungal biofilms on the appliance surface. Here, we present the synthetic route for an antibacterial and antifungal organically-modified silicate (ORMOSIL) that has multiple methacryloloxy functionalities attached to a siloxane backbone (quaternary ammonium methacryloxy silicate, or QAMS). By dissolving the water-insoluble, rubbery ORMOSIL in methyl methacrylate, QAMS may be copolymerized with polymethyl methacrylate, and covalently incorporated in the pressure-processed acrylic resin. The latter demonstrated a predominantly contact-killing effect on Streptococcus mutans ATCC 36558 and Actinomyces naselundii ATCC 12104 biofilms, while inhibiting adhesion of Candida albicans ATCC 90028 on the acrylic surface. Apart from its favorable antimicrobial activities, QAMS-containing acrylic resins exhibited decreased water wettability and improved toughness, without adversely affecting the flexural strength and modulus, water sorption and solubility, when compared with QAMS-free acrylic resin. The covalently bound, antimicrobial orthodontic acrylic resin with improved toughness represents advancement over other experimental antimicrobial acrylic resin formulations, in its potential to simultaneously prevent oral infections during appliance wear, and improve the fracture resistance of those appliances. PMID:22870322

  14. Adverse eff ects of polymeric nanoparticle poly(ethylene glycol- block-polylactide methyl ether (PEG-b-PLA on steroid hormone secretion by porcine granulosa cells

    Directory of Open Access Journals (Sweden)

    Scsukova Sona

    2017-04-01

    Full Text Available Objectives. Development of nanoparticles (NPs for biomedical applications, including medical imaging and drug delivery, is currently undergoing a dramatic expansion. Diverse effects of different type NPs relating to mammalian reproductive tissues have been demonstrated. Th e objective of this study was to explore the in vitro effects of polymeric nanoparticle poly(ethylene glycol-blockpolylactide methyl ether (PEG-b-PLA NPs on functional state and viability of ovarian granulosa cells (GCs, which play an important role in maintaining ovarian function and female fertility.

  15. Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s

    Science.gov (United States)

    Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun

    2018-01-01

    Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.

  16. Vapor phase carbonylation of dimethyl ether and methyl acetate with supported transition metal catalysts

    International Nuclear Information System (INIS)

    Shikada, T.; Fujimoto, K.; Tominaga, H.O.

    1986-01-01

    The synthesis of acetic acid (AcOH) from methanol (MeOH) and carbon monoxide has been performed industrially in the liquid phase using a rhodium complex catalyst and an iodide promoter. The selectivity to AcOH is more than 99% under mild conditions (175 0 C, 28 atm). The homogeneous rhodium catalyst has been also effective for the synthesis of acetic anhydride (Ac 2 O) by carbonylation of dimethyl ether (DME) or methyl acetate (AcOMe). However, rhodium is one of the most expensive metals and its proved reserves are quite limited. It is highly desired, therefore, to develop a new catalyst as a substitute for rhodium. The authors have already reported that nickel supported on active carbon exhibits an excellent activity for the vapor phase carbonylation of MeOh in the presence of iodide promoter and under moderately pressurized conditions. In addition, corrosive attack on reactors by iodide compounds is expected to be negligible in the vapor phase system. In the present work, vapor phase carbonylation of DME and AcOMe on nickel-active carbon (Ni/A.C.) and molybdenum-active carbon (Mo/A.C.) catalysts was studied

  17. Artificial Neural Network Approach to Predict Biodiesel Production in Supercritical tert-Butyl Methyl Ether

    Directory of Open Access Journals (Sweden)

    Obie Farobie

    2016-05-01

    Full Text Available In this study, for the first time artificial neural network was used to predict biodiesel yield in supercritical tert-butyl methyl ether (MTBE. The experimental data of biodiesel yield conducted by varying four input factors (i.e. temperature, pressure, oil-to-MTBE molar ratio, and reaction time were used to elucidate artificial neural network model in order to predict biodiesel yield. The main goal of this study was to assess how accurately this artificial neural network model to predict biodiesel yield conducted under supercritical MTBE condition. The result shows that artificial neural network is a powerful tool for modeling and predicting biodiesel yield conducted under supercritical MTBE condition that was proven by a high value of coefficient of determination (R of 0.9969, 0.9899, and 0.9658 for training, validation, and testing, respectively. Using this approach, the highest biodiesel yield was determined of 0.93 mol/mol (corresponding to the actual biodiesel yield of 0.94 mol/mol that was achieved at 400 °C, under the reactor pressure of 10 MPa, oil-to-MTBE molar ratio of 1:40 within 15 min of reaction time.

  18. Biodegradation of Methyl tert-Butyl Ether by Co-Metabolism with a Pseudomonas sp. Strain

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-09-01

    Full Text Available Co-metabolic bioremediation is supposed to be an impressive and promising approach in the elimination technology of methyl tert-butyl ether (MTBE, which was found to be a common pollutant worldwide in the ground or underground water in recent years. In this paper, bacterial strain DZ13 (which can co-metabolically degrade MTBE was isolated and named as Pseudomonas sp. DZ13 based on the result of 16S rRNA gene sequencing analysis. Strain DZ13 could grow on n-alkanes (C5-C8, accompanied with the co-metabolic degradation of MTBE. Diverse n-alkanes with different carbon number showed a significant influence on the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA. When Pseudomonas sp. DZ13 co-metabolically degraded MTBE with n-pentane as the growth substrate, a higher MTBE-degrading rate (Vmax = 38.1 nmol/min/mgprotein, Ks = 6.8 mmol/L and lower TBA-accumulation was observed. In the continuous degradation experiment, the removal efficiency of MTBE by Pseudomonas sp. Strain DZ13 did not show an obvious decrease after five times of continuous addition.

  19. Oil recovery with sulfomethylated poly (lower alkyl vinyl ether/maleic anhydride)

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-05-22

    Lower alkyl vinyl ether e.g., methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, hexyl vinyl ether, is copolymerized conventionally with maleic anhydride, the resulting copolymer is treated with ammonia or ammonium hydroxide to form the partial amide-ammonium salt, and this salt is in turn treated with formaldehyde and thereafter or simultaneously with ammonium or alkali metal salt sulfite (including bisulfites, etc.) to form an at least partially sulfomethylated copolymer. Aqueous solutions of the sulfomethylated copolymer are useful in increasing the viscosity of drive fluids used in the supplemented recovery of petroleum from subterranean formations. In general, enhancing the polyionic character of mobility control agents used in supplemented recovery of petroleum provides enhanced recovery. Achieving this enhancement of polyionic character through use of sulfonate groups provides a mobility control agent with good ability to sustain viscosity in the presence of brine and lime, usually present in the connate waters of petroleum-bearing formations. (7 claims)

  20. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  1. Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2010-11-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.

  2. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    Science.gov (United States)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  3. Stable carbon and hydrogen isotope analysis of methyl tert-butyl ether and tert-amyl methyl ether by purge and trap-gas chromatography-isotope ratio mass spectrometry: method evaluation and application.

    Science.gov (United States)

    Kujawinski, Dorothea M; Stephan, Manuel; Jochmann, Maik A; Krajenke, Karen; Haas, Joe; Schmidt, Torsten C

    2010-01-01

    In order to monitor the behaviour of contaminants in the aqueous environment effective enrichment techniques often have to be employed due to their low concentrations. In this work a robust and sensitive purge and trap-gas chromatography-isotope ratio mass spectrometry method for carbon and hydrogen isotope analysis of fuel oxygenates in water is presented. The method evaluation included the determination of method detection limits, accuracy and reproducibility of deltaD and delta(13)C values. Lowest concentrations at which reliable delta(13)C values could be determined were 5 microg L(-1) and 28 microg L(-1) for TAME and MTBE, respectively. Stable deltaD values for MTBE and TAME could be achieved for concentrations as low as 25 and 50 microg L(-1). Good long-term reproducibility of delta(13)C and deltaD values was obtained for all target compounds. But deltaD values varying more than 5 per thousand were observed using different thermal conversion tubes. Thus, a correction of deltaD values in the analysis of groundwater samples was necessary to guarantee comparability of the results. The applicability of this method was shown by the analysis of groundwater samples from a gasoline contaminated site. By two dimensional isotope analysis two locations within this site were identified at which anaerobic and aerobic degradation of methyl tert-butyl ether occurred.

  4. Temperature-Induced Desorption of Methyl tert-Butyl Ether Confined on ZSM-5: An In Situ Synchrotron XRD Powder Diffraction Study

    Directory of Open Access Journals (Sweden)

    Elisa Rodeghero

    2017-02-01

    Full Text Available The temperature-induced desorption of methyl tert-butyl ether (MTBE from aqueous solutions onto hydrophobic ZSM-5 was studied by in situ synchrotron powder diffraction and chromatographic techniques. This kind of information is crucial for designing and optimizing the regeneration treatment of such zeolite. The evolution of the structural features monitored by full profile Rietveld refinements revealed that a monoclinic (P21/n to orthorhombic (Pnma phase transition occurred at about 100 °C. The MTBE desorption process caused a remarkable change in the unit-cell parameters. Complete MTBE desorption was achieved upon heating at about 250 °C. Rietveld analysis demonstrated that the desorption process occurred without any significant zeolite crystallinity loss, but with slight deformations in the channel apertures.

  5. Effect of silver nano particles on flexural strength of acrylic resins.

    Science.gov (United States)

    Sodagar, Ahmad; Kassaee, Mohammad Zaman; Akhavan, Azam; Javadi, Negar; Arab, Sepideh; Kharazifard, Mohammad Javad

    2012-04-01

    Poly(methyl methacrylate), PMMA, is widely used for fabrication of removable orthodontic appliances. Silver nano particles (AgNps) have been added to PMMA because of their antimicrobial properties. The aim of this study is to investigate the effect of AgNps on the flexural strength of PMMA. Acrylic liquid containing 0.05% and 0.2% AgNps was prepared for two kinds of acrylic resins: Rapid Repair &Selecta Plus. Two groups without AgNps were used as control groups. For each one, flexural strength was investigated via Three Point Bending method for the 15 acrylic blocks. Two-way ANOVA, one way ANOVA and Tukey tests were used for statistical analysis. Rapid Repair without AgNps showed the highest flexural strength. Addition of 0.05% AgNps to Rapid Repair, significantly decreased its flexural strength while, continuing the addition up to 0.2% increased it nearly up to its primary level. In contrast, addition of AgNps to Selecta Plus increased its flexural strength but addition of 0.05% nano particles was more effective than 0.2%. The effect of AgNps on flexural strength of PMMA depends on several factors including the type of acrylics and the concentrations of nano particles. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  6. Poly(methyl vinyl ether-alt-maleic acid)-functionalized porous silicon nanoparticles for enhanced stability and cellular internalization.

    Science.gov (United States)

    Shahbazi, Mohammad-Ali; Almeida, Patrick V; Mäkilä, Ermei; Correia, Alexandra; Ferreira, Mónica P A; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-03-01

    Currently, developing a stable nanocarrier with high cellular internalization and low toxicity is a key bottleneck in nanomedicine. Here, we have developed a successful method to covalently conjugate poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of (3-aminopropyl)triethoxysilane-functionalized thermally carbonized porous silicon nanoparticles (APSTCPSi NPs), forming a surface negatively charged nanovehicle with unique properties. This polymer conjugated NPs could modify surface smoothness, charge, and hydrophilicity of the developed NPs, leading to considerable improvement in the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the polymer-conjugated NPs, the cellular internalization was increased in both MDA-MB-231 and MCF-7 breast cancer cells. These results provide a proof-of-concept evidence that such polymer-based PSi nanocomposite can be extensively used as a promising candidate for intracellular drug delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption

    Science.gov (United States)

    2011-12-14

    ...This regulation establishes an exemption from the requirement of a tolerance for residues of 2-Propenoic acid, 2-methyl-, polymer with butyl 2-propenoate and ethenylbenzene (CAS Reg. No. 25036-16-2); also known as butyl acrylate-methacrylic acid-styrene polymer when used as an inert ingredient in a pesticide chemical formulation. Momentive Performance Materials submitted a petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting an exemption from the requirement of a tolerance. This regulation eliminates the need to establish a maximum permissible level for residues of 2-Propenoic acid, 2-methyl-, polymer with butyl 2-propenoate and ethenylbenzene on food or feed commodities.

  8. The rapid detection of methyl tert-butyl ether (MtBE) in water using a prototype gas sensor system.

    Science.gov (United States)

    de Lacy Costello, B P J; Sivanand, P S; Ratcliffe, N M; Reynolds, D M

    2005-01-01

    The gasoline additive Methyl-tertiary-Butyl Ether (MtBE) is the second most common contaminant of groundwater in the USA and represents an important soil contaminant. This compound has been detected in the groundwater in at least 27 states as a result of leaking underground storage facilities (gasoline storage tanks and pipelines). Since the health effects of MtBE are unclear the potential threat to drinking water supplies is serious. Therefore, the ability to detect MtBE at low levels (ppb) and on-line at high-risk groundwater sites would be highly desirable. This paper reports the use of 'commercial' and metal oxide sensor arrays for the detection of MtBE in drinking and surface waters at low ppb level (microg.L(-1) range). The output responses from some of the sensors were found to correlate well with MtBE concentrations under laboratory conditions.

  9. Separator Membrane from Crosslinked Poly(Vinyl Alcohol and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride

    Directory of Open Access Journals (Sweden)

    Charu Vashisth Rohatgi

    2015-03-01

    Full Text Available In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride (PMVE-MA. Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity, thermal and electrochemical properties using differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, thermo-gravimetric analysis (TGA and electrochemical impedance spectroscopy (EIS. The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications.

  10. Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride)

    Science.gov (United States)

    Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy

    2015-01-01

    In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019

  11. Color stability and flexural strength of poly (methyl methacrylate) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to beverages and food dye: an in vitro study.

    Science.gov (United States)

    Gujjari, Anil K; Bhatnagar, Vishrut M; Basavaraju, Ravi M

    2013-01-01

    To evaluate the color stability and flexural strength of poly (methyl methacrylate) (PMMA) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to tea, coffee, cola, and food dye. Two provisional crown and bridge resins, one DPI self-cure tooth molding powder (PMMA) (Group A), and one Protemp 4 Temporization Material (bis-acrylic composite) (Group B) were used. Disk-shaped specimens for color stability testing (n = 30 for each material) and bar-shaped specimens for flexural strength testing (n = 30 for each material) were fabricated using a metal mold. The specimens were immersed in artificial saliva, artificial saliva + tea, artificial saliva + coffee, artificial saliva + cola, and artificial saliva + food dye solutions and stored in an incubator at 37°C. Color measurements were taken before immersion, and then after 3 and 7 days of immersion. Flexural strength was evaluated after 7 days of immersion. Group A showed significantly higher color stability as compared to Group B, and artificial saliva + coffee solution had the most staining capacity for the resins. Test solutions had no effect on the flexural strength of Group A, but Group B specimens immersed in artificial saliva + cola showed significantly lower flexural strength values as compared to the control group. The findings of the study showed that for materials used in the study, PMMA was more color stable than bis-acrylic composite based resin. Also, material based on PMMA was more resistant to damage from dietary beverages as compared to bis-acrylic composite based provisional crown and bridge resin.

  12. Waterborne polyurethane-acrylic hybrid nanoparticles by miniemulsion polymerization: applications in pressure-sensitive adhesives.

    Science.gov (United States)

    Lopez, Aitziber; Degrandi-Contraires, Elise; Canetta, Elisabetta; Creton, Costantino; Keddie, Joseph L; Asua, José M

    2011-04-05

    Waterborne polyurethane-acrylic hybrid nanoparticles for application as pressure-sensitive adhesives (PSAs) were prepared by one-step miniemulsion polymerization. The addition of polyurethane to a standard waterborne acrylic formulation results in a large increase in the cohesive strength and hence a much higher shear holding time (greater than seven weeks at room temperature), which is a very desirable characteristic for PSAs. However, with the increase in cohesion, there is a decrease in the relative viscous component, and hence there is a decrease in the tack energy. The presence of a small concentration of methyl methacrylate (MMA) in the acrylic copolymer led to phase separation within the particles and created a hemispherical morphology. The tack energy was particularly low in the hybrid containing MMA because of the effects of lower energy dissipation and greater cross-linking. These results highlight the great sensitivity of the viscoelastic and adhesive properties to the details of the polymer network architecture and hence to the precise composition and synthesis conditions.

  13. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    Science.gov (United States)

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Gasoline ether oxygenate occurrence in Europe, and a review of their fate and transport characteristics in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Stupp, D.; Gass, M.; Leiteritz, H. [Dr. Stupp Consulting DSC, Tauw, Bergisch Gladbach (Germany); Pijls, C. [TAUW, Apeldoorn (Netherlands); Thornton, S. [University of Sheffield, Sheffield (United Kingdom); Smith, J.; Dunk, M.; Grosjean, T.; Den Haan, K. [CONCAWE, Brussels (Belgium)

    2012-06-15

    Ether oxygenates are added to certain gasoline (petrol) formulations to improve combustion efficiency and to increase the octane rating. In this report the term gasoline ether oxygenates (GEO) refers collectively to methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), diisopropyl ether (DIPE), tertiary amyl ethyl ether (TAEE), tertiary hexyl methyl ether (THxME), and tertiary hexyl ethyl ether (THxEE), as well as the associated tertiary butyl alcohol (TBA). This report presents newly collated data on the production capacities and use of MTBE, ETBE, TAME, DIPE and TBA in 30 countries (27 EU countries and Croatia, Norway and Switzerland) to inform continued and effective environmental management practices for GEO by CONCAWE members. The report comprises data on gasoline use in Europe that were provided by CONCAWE and obtained from the European Commission. Furthermore Societe Generale de Surveillance (SGS) provided detailed analytical data (more than 1,200 sampling campaigns) on the GEO composition of gasoline in European countries in the period 2000-2010. Another major aspect of this report is the investigation of GEO distribution in groundwater, drinking water, surface water, runoff water, precipitation (rain/snow) and air in the European environment. Apart from the general sources of literature for the study, local environmental authorities and institutes in the 30 European countries have been contacted for additional information. Finally, a review of the international literature on GEO natural attenuation processes was undertaken with a focus on international reports and peer-reviewed scientific publications to give an overview on the known fate, transport and degradation mechanisms of GEO in the subsurface, to inform risk-management strategies that may rely on natural attenuation processes. The literature reveals that all GEO compounds used in fuels are highly water soluble and weakly retarded by aquifer

  15. Nickel-Catalyzed Alkoxy-Alkyl Interconversion with Alkylborane Reagents through C−O Bond Activation of Aryl and Enol Ethers

    KAUST Repository

    Guo, Lin

    2016-11-07

    A nickel-catalyzed alkylation of polycyclic aromatic methyl ethers as well as methyl enol ethers with B-alkyl 9-BBN and trialkylborane reagents that involves the cleavage of stable C(sp2)−OMe bonds is described. The transformation has a wide substrate scope and good chemoselectivity profile while proceeding under mild reaction conditions; it provides a versatile way to form C(sp2)−C(sp3) bonds that does not suffer from β-hydride elimination. Furthermore, a selective and sequential alkylation process by cleavage of inert C−O bonds is presented to demonstrate the advantage of this method.

  16. Characterization of γ-radiation induced polymerization in ethyl methacrylate and methyl acrylate monomers solutions

    Science.gov (United States)

    Baccaro, Stefania; Casieri, Cinzia; Cemmi, Alessia; Chiarini, Marco; D'Aiuto, Virginia; Tortora, Mariagrazia

    2017-12-01

    The present work is focused on the γ-radiation induced polymerization of ethyl methacrylate (EMA) and methyl acrylate (MA) monomers mixture to obtain a co-polymer with specific features. The effect of the irradiation parameters (radiation absorbed dose, dose rate) and of the environmental atmosphere on the features of the final products was investigated. Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Nuclear Magnetic Resonance high-resolution analyses of hydrogen and carbon nuclei (1H and 13C NMR) were applied to follow the γ-induced modifications by monitoring the co-polymerization process and allowed the irradiation parameters optimization. Diffusion-Ordered NMR (DOSY-NMR) data were used to evaluate the co-polymers polydispersity and polymerization degree. Since the last parameter is strongly influenced by the γ radiation and environmental conditions, a comparison among samples prepared and irradiated in air and under nitrogen atmosphere was carried out. In presence of oxygen, higher radiation was required to obtain a full solid co-polymer since a partial amount of energy released to the samples was involved in competitive processes, i.e. oxygen-containing free radicals formation and primary radicals recombination. Irrespectively to the environmental atmosphere, more homogeneous samples in term of polymerization degree dispersion was achieved at lower dose rates. At radiation absorbed doses higher than those needed for the formation of the co-polymer, while in case of samples irradiated in air heavy depolymerization was verified, a sensible increase of the samples stability was attained if the irradiation was performed under nitrogen atmosphere.

  17. Vinyl Acetate/butyl acrylate/acrylate Research of Ternary Soap-free Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Xiao Li-guang

    2016-01-01

    Full Text Available Through the vinyl acetate/butyl acrylate/acrylic acrylic emulsion preparation without soap vinegar, with solid content, gel, emulsion stability and film forming properties and tensile strength as the main index to study the effect of raw materials on the properties of emulsion. Through the infrared spectrometer soap-free emulsion for microscopic analysis research. Study of the ternary soap-free vinegar acrylic emulsion with good performance.

  18. In situ 1H NMR studies of high-temperature nitroxide-mediated polymerization of n-butyl acrylate

    NARCIS (Netherlands)

    Hlalele, L.; Klumperman, L.

    2011-01-01

    This paper presents results on the independence of the rate of polymerization of n-butyl acrylate (n-BA) toward initial concentration of the alkoxyamine initiator. The alkoxyamine, 2-methyl-2-[N-tert-butyl-N-(1-diethoxyphosphoryl-2,2-dimethylpropyl)aminooxy]propionic acid (MAMA-DEPN), was used to

  19. Involvement of a novel enzyme, MdpA, in methyl tert-butyl ether degradation in Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Schmidt, Radomir; Battaglia, Vince; Scow, Kate; Kane, Staci; Hristova, Krassimira R

    2008-11-01

    Methylibium petroleiphilum PM1 is a well-characterized environmental strain capable of complete metabolism of the fuel oxygenate methyl tert-butyl ether (MTBE). Using a molecular genetic system which we established to study MTBE metabolism by PM1, we demonstrated that the enzyme MdpA is involved in MTBE removal, based on insertional inactivation and complementation studies. MdpA is constitutively expressed at low levels but is strongly induced by MTBE. MdpA is also involved in the regulation of tert-butyl alcohol (TBA) removal under certain conditions but is not directly responsible for TBA degradation. Phylogenetic comparison of MdpA to related enzymes indicates close homology to the short-chain hydrolyzing alkane hydroxylases (AH1), a group that appears to be a distinct subfamily of the AHs. The unique, substrate-size-determining residue Thr(59) distinguishes MdpA from the AH1 subfamily as well as from AlkB enzymes linked to MTBE degradation in Mycobacterium austroafricanum.

  20. A new cytotoxic sterol methoxymethyl ether from a deep water marine sponge Scleritoderma sp. cf. paccardi.

    Science.gov (United States)

    Gunasekera, S P; Kelly-Borges, M; Longley, R E

    1996-02-01

    24(R)-Methyl-5 alpha-cholest-7-enyl 3 beta-methoxymethyl ether (1), a new sterol ether, has been isolated from a deep-water marine sponge Scleritoderma sp. cf. paccardi. Compound 1 exhibited in vitro cytotoxicity against the cultured murine P-388 tumor cell line with an IC50 of 2.3 micrograms/mL. The isolation and structure elucidation of 1 by NMR spectroscopy is described.

  1. Study of protein-probe complexation equilibria and protein-surfactant interaction using charge transfer fluorescence probe methyl ester of N,N-dimethylamino naphthyl acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mahanta, Subrata; Balia Singh, Rupashree; Bagchi, Arnab [Department of Chemistry University of Calcutta 92, A.P.C. Road, Kolkata 700009 (India); Nath, Debnarayan [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Guchhait, Nikhil, E-mail: nguchhait@yahoo.co [Department of Chemistry University of Calcutta 92, A.P.C. Road, Kolkata 700009 (India)

    2010-06-15

    In this paper, we demonstrate the interaction between intramolecular charge transfer (ICT) probe-Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) with bovine serum albumin (BSA) using absorption and fluorescence emission spectroscopy. The nature of probe protein binding interaction, fluorescence resonance energy transfer from protein to probe and time resolved fluorescence decay measurement predict that the probe molecule binds strongly to the hydrophobic cavity of the protein. Furthermore, the interaction of the anionic surfactant sodium dodecyl sulphate (SDS) with water soluble protein BSA has been investigated using MDMANA as fluorescenece probe. The changes in the spectral characteristics of charge transfer fluorescence probe MDMANA in BSA-SDS environment reflects well the nature of the protein-surfactant binding interaction such as specific binding, non-cooperative binding, cooperative binding and saturation binding.

  2. Identification of a polyketide synthase required for alternariol (AOH and alternariol-9-methyl ether (AME formation in Alternaria alternata.

    Directory of Open Access Journals (Sweden)

    Debjani Saha

    Full Text Available Alternaria alternata produces more than 60 secondary metabolites, among which alternariol (AOH and alternariol-9-methyl ether (AME are important mycotoxins. Whereas the toxicology of these two polyketide-based compounds has been studied, nothing is known about the genetics of their biosynthesis. One of the postulated core enzymes in the biosynthesis of AOH and AME is polyketide synthase (PKS. In a draft genome sequence of A. alternata we identified 10 putative PKS-encoding genes. The timing of the expression of two PKS genes, pksJ and pksH, correlated with the production of AOH and AME. The PksJ and PksH proteins are predicted to be 2222 and 2821 amino acids in length, respectively. They are both iterative type I reducing polyketide synthases. PksJ harbors a peroxisomal targeting sequence at the C-terminus, suggesting that the biosynthesis occurs at least partly in these organelles. In the vicinity of pksJ we found a transcriptional regulator, altR, involved in pksJ induction and a putative methyl transferase, possibly responsible for AME formation. Downregulation of pksJ and altR caused a large decrease of alternariol formation, suggesting that PksJ is the polyketide synthase required for the postulated Claisen condensations during the biosynthesis. No other enzymes appeared to be required. PksH downregulation affected pksJ expression and thus caused an indirect effect on AOH production.

  3. Color stability and flexural strength of poly (methyl methacrylate and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to beverages and food dye: An in vitro study

    Directory of Open Access Journals (Sweden)

    Anil K Gujjari

    2013-01-01

    Full Text Available Aim: To evaluate the color stability and flexural strength of poly (methyl methacrylate (PMMA and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to tea, coffee, cola, and food dye. Materials and Methods: Two provisional crown and bridge resins, one DPI self-cure tooth molding powder (PMMA (Group A, and one Protemp 4 Temporization Material (bis-acrylic composite (Group B were used. Disk-shaped specimens for color stability testing (n = 30 for each material and bar-shaped specimens for flexural strength testing (n = 30 for each material were fabricated using a metal mold. The specimens were immersed in artificial saliva, artificial saliva + tea, artificial saliva + coffee, artificial saliva + cola, and artificial saliva + food dye solutions and stored in an incubator at 37°C. Color measurements were taken before immersion, and then after 3 and 7 days of immersion. Flexural strength was evaluated after 7 days of immersion. Results: Group A showed significantly higher color stability as compared to Group B, and artificial saliva + coffee solution had the most staining capacity for the resins. Test solutions had no effect on the flexural strength of Group A, but Group B specimens immersed in artificial saliva + cola showed significantly lower flexural strength values as compared to the control group. Conclusion: The findings of the study showed that for materials used in the study, PMMA was more color stable than bis-acrylic composite based resin. Also, material based on PMMA was more resistant to damage from dietary beverages as compared to bis-acrylic composite based provisional crown and bridge resin.

  4. Synthesis of hydroxylated and methoxylated polybrominated diphenyl ethers

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ke-wen; GAO Li-ping; CAO Jie; YU Hai-wen; ZHANG Zhang

    2009-01-01

    Hydroxylated/methoxylated polybrominated diphenyl ethers (OH/MeO-PBDEs) are not only detected as natural products, but also regarded as metabolites formed from polybrominated diphenyl ethers (PBDEs), which are widely used as flame-retardants in various materials. The aim of the present study was to synthesize authentic OH-PBDEs and MeO-PBDEs, as reference standards for environmental exploration. Twenty OH-PBDEs and their corresponding MeO-PBDEs containing three to six bromine atoms were synthesized via a trial of reactions including coupling, oxidation, bromination, methylation, etc. The products were characterized by GC-MS and 1H-NMR spectroscopy in the work. As results show, all compounds synthesized were up to 99% on purity and be reqarded as authentic standards for detecting the chemical pollutants in the emvironment.

  5. Acrylate Systemic Contact Dermatitis.

    Science.gov (United States)

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates.

  6. Study on Tough Blends of Polylactide and Acrylic Impact Modifier

    Directory of Open Access Journals (Sweden)

    Xiaoli Song

    2014-02-01

    Full Text Available Acrylic impact modifiers (ACRs with different soft/hard monomer ratios (mass ratios were prepared by semi-continuous seed emulsion copolymerization using the soft monomer butyl acrylate and the hard monomer methyl methacrylate, which were used to toughen polylactide (PLA. The effect of soft/hard ACR monomer ratio on the mechanical properties of PLA/ACR blends was investigated. The results showed that the impact strength and the elongation at break of PLA/ACR blends increased with increasing soft/hard ACR monomer ratio, while the tensile and flexural strengths of PLA had little change. The impact strength of PLA/ACR blends could be increased about 4 times more than that of pure PLA when the soft/hard monomer ratio of ACR was 90/10, which was the optimal ratio for good mechanical properties of PLA. Additionally, the possible mechanism of ACR toughening in PLA was discussed through impact fracture phase morphology analysis.

  7. Involvement of a Novel Enzyme, MdpA, in Methyl tert-Butyl Ether Degradation in Methylibium petroleiphilum PM1 ▿

    Science.gov (United States)

    Schmidt, Radomir; Battaglia, Vince; Scow, Kate; Kane, Staci; Hristova, Krassimira R.

    2008-01-01

    Methylibium petroleiphilum PM1 is a well-characterized environmental strain capable of complete metabolism of the fuel oxygenate methyl tert-butyl ether (MTBE). Using a molecular genetic system which we established to study MTBE metabolism by PM1, we demonstrated that the enzyme MdpA is involved in MTBE removal, based on insertional inactivation and complementation studies. MdpA is constitutively expressed at low levels but is strongly induced by MTBE. MdpA is also involved in the regulation of tert-butyl alcohol (TBA) removal under certain conditions but is not directly responsible for TBA degradation. Phylogenetic comparison of MdpA to related enzymes indicates close homology to the short-chain hydrolyzing alkane hydroxylases (AH1), a group that appears to be a distinct subfamily of the AHs. The unique, substrate-size-determining residue Thr59 distinguishes MdpA from the AH1 subfamily as well as from AlkB enzymes linked to MTBE degradation in Mycobacterium austroafricanum. PMID:18791002

  8. Functionalized mesoporous silicas with crown ether moieties for selective adsorption of lithium ions in artificial sea water.

    Science.gov (United States)

    Sung, Soo Park; Moorthy, Madhappan Santha; Song, Hyun-Jin; Ha, Chang-Sik

    2014-11-01

    Lithium ion has been increasingly recognized in a wide range of industrial applications. In this work, we studied on the adsorption of Li+ in the artificial seawater with high selectivity using methyl-crown ether (AC-SBA-15) and aza-crown ether (HMC-SBA-15) moieties-functionalized mesoporous silica materials. First, methyl-crown ether and aza-crown ether moieties-functionalized mesoporous silica materials were synthesized via two-step post-synthesis process using a grafting method. The functionalized materials were employed to the metal ion adsorption from aqueous solution (artificial seawater) containing Li+, Co2+, Cr3+ and Hg2+. The prepared hybrid material showed high selectivity for Li+ ion in the artificial seawater at pH 8.0. The absorbed amount of Li+ was 73 times higher than Cr3+ for aza-crown ether containing AC-SBA-15 as an absorbent. The absorbed amount of Co2+ (4.5 x 10(-5) mol/g), Cr3+ (1.5 x 10(-5) mol/g) and Hg2+ (2.25 x 10(-4) mol/g) were remarkably lower than the case of Li+. On the other hand, the absorbed amount of various metal ions of HMC-SBA-15 with amine groups in alky chains and crown ether moieties were 1.1 x 10(-3) mol/g for Li+, 5.0 x 10(-5) mol/g for Co2+, 2.9 x 10(-4) mol/g for Cr3+, 2.8 x 10(-4) mol/g for Hg2+ mol/g, respectively.

  9. He-Ne laser protection barrier by means of poly (Tetrafluoroethylene-Perfluoro vinyl Ether) grafted by acrylic acid complexed with Cu(II)

    International Nuclear Information System (INIS)

    El-Ahdal, M.A.; Fayek, S.A.; El-Sawy, N.M.

    2006-01-01

    Appropriate eye and skin protection is a prerequisite for the safe operation of He-Ne laser in industrial and laboratory environments. In the present paper, measurement of the optical parameters of poly (tetrafluoroethylene-perfluorovinyl ether) grafted by acrylic acid and complexed with Cu(II) are reported. He-Ne laser beam radiation on wavelength of 632.8 nm and power 12.5mW was used. Transmittance and reflectance spectra and refractive index dispersion are presented. The study showed that the material has a protective level 4. Environmental conditions like thermal and fading processes were tested. This suggested that the material preserves its protective features as a protective eye and skin barriers of protective level 4. This was applied for occupational working time up to 8 h, temperature up to 50 degree C and for a time equal 74 days after laser irradiation. Radiation protection from laser sources has attracted a great deal of attention for long time because of their importance for human body. Intensive progress in lasers, optical communications, and data storage has challenged scientists to achieve perfection in optical components. These challenges have resulted in an active development of a wide variety of unconventional optical elements (Hariharan, 1996 and Efimov et al., 2002). Alexandrite solid state lasers with a wavelength of about 755 nm are frequently used in the field of medicine (Schirmarcher and Sutter, 2001). For removing tattoos, the Q-switched versions with impulse widths of several ten nanoseconds are an ideal instrument to keep the thermal stress of the patient's skin at low level. He-Ne laser is one of the most commonly used visible light lasers

  10. Naturally occurring methyl salicylate glycosides.

    Science.gov (United States)

    Mao, Ping; Liu, Zizhen; Xie, Meng; Jiang, Rui; Liu, Weirui; Wang, Xiaohong; Meng, Shen; She, Gaimei

    2014-01-01

    As an important part of non steroids anti-inflammation drug (NSAIDs), salicylate has developed from natural substance salicylic acid to natrium salicylicum, to aspirin. Now, methyl salicylate glycoside, a new derivative of salicylic acid, is modified with a -COOH group integrated one methyl radical into formic ether, and a -OH linked with a monosaccharide, a disaccharide or a trisaccharide unit by glycosidic linkage. It has the similar pharmacological activities, anti-inflammatory, analgesic, antipyretic and antithrombotic as the previous salicylates' without resulting in serious side effects, particularly the gastrointestinal toxicity. Owing to the superiority of those significant bioactivities, methyl salicylate glycosides have became a hot research area in NSAIDs for several years. This paper compiles all 9 naturally occurring methyl salicylate glycosides, their distribution of the resource and pharmacological mechanism, which could contribute to the new drug discovery.

  11. Construction of wettability gradient surface on copper substrate by controlled hydrolysis of poly(methyl methacrylate–butyl acrylate) films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong, E-mail: Yong.Z@mail.scut.edu.cn [Guangzhou Panyu Polytechnic, Guangzhou 511483 (China); Cheng, Jiang; Yang, Zhuo-ru [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2014-10-01

    We report a gradient wettability surface on copper slide prepared by a simple controlled ester group hydrolysis procedure of poly(methyl methacrylate–butyl acrylate) [P (MMA-BA)] films coated on the copper substrate. In the method, sodium hydroxide solutions are selected to prepare surface gradient wettability on P (MMA-BA) films. The P (MMA-BA) copolymers with different MMA contents are first synthesized by a conventional free atom radical solution polymerization method. The transfer of surface chemical composition from the ester group to acid salt is achieved by hydrolysis in NaOH solution. The effects of different concentrations of NaOH solution and reaction times on the physicochemical properties of the resulting surfaces are studied. The field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) results show that the varying concentration along the substrate length is only attributed to the hydrolysis reaction of ester groups. The hydrolysis causes insignificant change on the morphology of the original film on the copper substrate. In addition, it is found that the MMA copolymer content has a significant influence on the concentration of ester groups on the outermost surface and thus important for forming the slope gradients.

  12. Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers: Pt. 2

    International Nuclear Information System (INIS)

    Abdel-Ghaffar, M.; Hegazy, E.A.; Dessouki, A.M.; El-Sawy, N.M.; El-Assy, N.B.

    1991-01-01

    Radiation induced grafting of acrylic acid onto poly (tetrafluoroethylene-perfluorovinyl ether) (PFA) films was investigated. The grafted films rapidly absorbed Fe 3+ , Co 2+ , Ni 2+ , and Cu 2+ ions in high efficiency. The polyacrylic acid grafted onto PFA acted as a chelating site for the previously selected transition metal ions. Such prepared copolymer-metal complexes were confirmed spectrophotometrically via IR, UV-spectrometry, X-ray fluorescence, X-ray diffraction, and colour index measurements. Electrical conductivity and mechanical properties of PFA grafted copolymer-metal complexes were investigated. The applications of such prepared copolymer-metal complexes in the field of semiconductors besides its performance as a cation-exchange membrane may be of great interest. (author)

  13. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA).

    Science.gov (United States)

    Finneran, K T; Lovley, D R

    2001-05-01

    The potential for anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) was investigated in laboratory incubations of sediments from a petroleum-contaminated aquifer and in aquatic sediments. The addition of humic substances (HS) stimulated the anaerobic degradation of MTBE in aquifer sediments in which Fe(III) was available as an electron acceptor. This is attributed to the fact that HS and other extracellular quinones can stimulate the activity of Fe(III)-reducing microorganisms by acting as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. MTBE was not degraded in aquifer sediments without Fe(III) and HS. [14C]-MTBE added to aquatic sediments adapted for anaerobic MTBE degradation was converted to 14CO2 in the presence or absence of HS or the HS analog, anthraquione-2,6-disulfonate. Unamended aquatic sediments produced 14CH4 as well as 14CO2 from [14C]-MTBE. The aquatic sediments also rapidly consumed TBA under anaerobic conditions and converted [14C]-TBA to 14CH4 and 14CO2. An adaptation period of ca. 250-300 days was required prior to the most rapid anaerobic MTBE degradation in both sediment types, whereas TBA was metabolized in the aquatic sediments without a lag. These results demonstrate that, under the appropriate conditions, MTBE and TBA can be degraded in the absence of oxygen. This suggests that it may be possible to design strategies for the anaerobic remediation of MTBE in petroleum-contaminated subsurface environments.

  14. Developmental toxicity evaluation of inhaled tertiary amyl methyl ether in mice and rats.

    Science.gov (United States)

    Welsch, Frank; Elswick, Barbara; James, R Arden; Marr, Melissa C; Myers, Christina B; Tyl, Rochelle W

    2003-01-01

    This evaluation was part of a much more comprehensive testing program to characterize the mammalian toxicity potential of the gasoline oxygenator additive tertiary amyl methyl ether (TAME), and was initiated upon a regulatory agency mandate. A developmental toxicity hazard identification study was conducted by TAME vapor inhalation exposure in two pregnant rodent species. Timed-pregnant CD(Sprague-Dawley) rats and CD-1 mice, 25 animals per group, inhaled TAME vapors containing 0, 250, 1500 or 3500 ppm for 6 h a day on gestational days 6-16 (mice) or 6-19 (rats). The developmental toxicity hazard potential was evaluated following the study design draft guidelines and end points proposed by the United States Environmental Protection Agency. Based on maternal body weight changes during pregnancy, the no-observable-adverse-effect level (NOAEL) was 250 ppm for maternal toxicity in rats and 1500 ppm for developmental toxicity in rats using the criterion of near-term fetal body weights. In mice, more profound developmental toxicity was present than in rats, at both 1500 and 3500 ppm. At the highest concentration, mouse litters revealed more late fetal deaths, significantly reduced fetal body weights per litter and increased incidences of cleft palate (classified as an external malformation), as well as enlarged lateral ventricles of the cerebrum (a visceral variation). At 1500 ppm, mouse fetuses also exhibited an increased incidence of cleft palate and the dam body weights were reduced. Therefore, the NOAEL for the mouse maternal and developmental toxicity was 250 ppm under the conditions of this study. Copyright 2003 John Wiley & Sons, Ltd.

  15. Synthesis of polymer hybrid latex poly(methyl methacrylate-co-butyl acrylate) with organo montmorillonite via miniemulsion polymerization method for barrier paper

    Science.gov (United States)

    Chanra, J.; Budianto, E.; Soegijono, B.

    2018-03-01

    Hybrid polymer latex based on combination of organic-inorganic materials, poly(methyl methacrylate-co-butyl acrylate) (PMMBA) and organo-montmorillonite (OMMT) were synthesized via miniemulsion polymerization technique. Modification of montmorillonite (MMT) through the incorporation of myristyltrimethylammonium bromide (MTAB) into the clay’s interlayer spaces were investigated by Small-Angle X-ray Scattering (SAXS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). Barrier property and thermal stability of polymer latex film sample were investigated through its Water Vapor Transmission Rate (WVTR) and Thermogravimetric Analysis (TGA). The results indicated that addition of OMMT as filler in PMMBA increased the barrier property and thermal stability of the latex film. Addition of 8.0% (wt) OMMT increased the barrier property and thermal stability. Miniemusion polymerization process with higher addition (>8.0 wt%) of OMMT resulting in high latex viscosity, particle size, and high amount of coagulum. The utilization of this hybrid polymer could benefits paper and board industries to produce high quality barrier paper for food packaging.

  16. Microstructural Analysis of Carbonyl Signal in the 13C NMR Spectra of Methyl Methacrylate - n-Butyl Acrylate Copolymer

    International Nuclear Information System (INIS)

    Bujak, P.; Matlengiewicz, M.

    2005-01-01

    Microstructural information on acrylic copolymers, i.e. distribution of the comonomers along the macromolecular chain and their stereochemical arrangement (tacticity) can be derived from 13 C NMR, analyzing the splitting of their carbonyl signal. In the 100 MHz 13 C NMR spectrum of poly(methyl methacrylate-co-n-butyl acrylate), PMMA-nBA, the carbonyl signal at 174-178,5 ppm is clearly split into the lines of configurational-compositional pentads. This splitting is slightly different in different solvents, hence, recording of the same sample in different solvents may reveal differences important to correct assignment of individual sequences, since their probabilities (intensities) remain the same, while the chemical shift can vary in different solvents. If we would like to perform a complete analysis at this level we have to determine the distribution of 272 individual pentads. The outermost lines in the carbonyl signal of the copolymer can be assigned to the sequences of pure composition by simple comparison with the spectra of respective homopolymers. The rest of the inner lines cannot be easily attributed, therefore, a series of copolymer samples of different composition were synthesized in order to observe the different heterosequences, since depending on copolymer composition, different signals representing individual sequences, assume different relative intensities. To confirm the correctness of proposed attribution a simulation of the carbonyl signal can be performed. It is therefore necessary to know the intensities and positions of individual signals, representing individual compositional-configurational pentads. Calculation of the intensity of the lines can be performed assuming Bernoullian and/or Markov statistics, separately for compositional and configurational sequences and verifying the overall distribution of the individual probabilities. The position of the individual lines cannot be straightforwardly determined, therefore, we have adopted an

  17. Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions

    Science.gov (United States)

    Landmeyer, J.E.; Chapelle, F.H.; Herlong, H.H.; Bradley, P.M.

    2001-01-01

    Microbial communities indigenous to a shallow groundwater system near Beaufort, SC, degraded milligram per liter concentrations of methyl tert-butyl ether (MTBE) under natural and artificial oxic conditions. Significant MTBE biodegradation was observed where anoxic, MTBE-contaminated groundwater discharged to a concrete-lined ditch. In the anoxic groundwater adjacent to the ditch, concentrations of MTBE were > 1 mg/L. Where groundwater discharge occurs, dissolved oxygen (DO) concentrations beneath the ditch exceeded 1.0 mg/L to a depth of 1.5 m, and MTBE concentrations decreased to CO2 in laboratory liquid culture studies, with no accumulation of intermediate compounds. Upgradient of the ditch in the anoxic, MTBE and BTEX-contaminated aquifer, addition of a soluble oxygen release compound resulted in oxic conditions and rapid MTBE biodegradation by indigenous microorganisms. In an observation well located closest to the oxygen addition area, DO concentrations increased from 0.4 to 12 mg/L in <60 days and MTBE concentrations decreased from 20 to 3 mg/L. In the same time period at a downgradient observation well, DO increased from <0.2 to 2 mg/L and MTBE concentrations decreased from 30 to <5 mg/L. These results indicate that microorganisms indigenous to the groundwater system at this site can degrade milligram per liter concentrations of MTBE under natural and artificial oxic conditions.

  18. Risk characterization of methyl tertiary butyl ether (MTBE) in tap water.

    Science.gov (United States)

    Stern, B R; Tardiff, R G

    1997-12-01

    Methyl tertiary butyl ether (MTBE) can enter surface water and groundwater through wet atmospheric deposition or as a result of fuel leaks and spills. About 30% of the U.S. population lives in areas where MTBE is in regular use. Ninety-five percent of this population is unlikely to be exposed to MTBE in tap water at concentrations exceeding 2 ppb, and most will be exposed to concentrations that are much lower and may be zero. About 5% of this population may be exposed to higher levels of MTBE in tap water, resulting from fuel tank leaks and spills into surface or groundwater used for potable water supplies. This paper describes the concentration ranges found and anticipated in surface and groundwater, and estimates the distribution of doses experienced by humans using water containing MTBE to drink, prepare food, and shower/bathe. The toxic properties (including potency) of MTBE when ingested, inhaled, and in contact with the skin are summarized. Using a range of human toxic potency values derived from animal studies, margins of exposure (MOE) associated with alternative chronic exposure scenarios are estimated to range from 1700 to 140,000. Maximum concentrations of MTBE in tap water anticipated not to cause adverse health effects are determined to range from 700 to 14,000 ppb. The results of this analysis demonstrate that no health risks are likely to be associated with chronic and subchronic human exposures to MTBE in tap water. Although some individuals may be exposed to very high concentrations of MTBE in tap water immediately following a localized spill, these exposures are likely to be brief in duration due to large-scale dilution and rapid volatilization of MTBE, the institution of emergency response and remediation measures to minimize human exposures, and the low taste and odor thresholds of MTBE which ensure that its presence in tap water is readily detected at concentrations well below the threshold for human injury.

  19. Biocompatible Metal-Oxide Nanoparticles: Nanotechnology Improvement of Conventional Prosthetic Acrylic Resins

    International Nuclear Information System (INIS)

    Acosta-Torres, L.S.; Lopez-Marin, L.M.; Padron, G.H.; Castano, V.M.; Nunez-Anita, R.E.

    2011-01-01

    Nowadays, most products for dental restoration are produced from acrylic resins based on heat-cured Poly(Methyl Methacrylate) (PMMA). The addition of metal nanoparticles to organic materials is known to increase the surface hydrophobicity and to reduce adherence to biomolecules. This paper describes the use of nano structured materials, TiO 2 and Fe 2 O 3 , for simultaneously coloring and/or improving the antimicrobial properties of PMMA resins. Nanoparticles of metal oxides were included during suspension polymerization to produce hybrid metal oxides-alginate-containing PMMA. Metal oxide nanoparticles were characterized by dynamic light scattering, and X-ray diffraction. Physicochemical characterization of synthesized resins was assessed by a combination of spectroscopy, scanning electron microscopy, viscometry, porosity, and mechanical tests. Adherence of Candida albicans cells and cellular compatibility assays were performed to explore biocompatibility and microbial adhesion of standard and novel materials. Our results show that introduction of biocompatible metal nanoparticles is a suitable means for the improvement of conventional acrylic dental resins.

  20. Ferrocene Compounds. XXVI. C- and O-Ferrocenylalkylation of Methyl Salicylate

    OpenAIRE

    Kovač, Veronika; Rapić, Vladimir; Alagić, Jasmina; Barišić, Lidija

    1999-01-01

    Reaction of equimolar amounts of methyl salicylate, sodium and N,N,N-trimethylferrocylammonium iodide (1a) in ethanol gave 55% of ethyl 1-ferrocenylethyl ether (4). By refluxing a solution of 9 mmol sodium and 3 mmol of FcCHRNMe3I (1a, R = H; 1b, R = Me; 1c, R = Ph) in a large excess of methyl salicylate for 2-3 hours, the corresponding methyl 5-ferrocylsalicylates (5) (10-23%) and methyl-3-ferrocylsalicylates (6) (12-20%) were obtained. During conversion of salt 1b, besides of 5b and 6b, 20%...

  1. [Acrylic resin removable partial dentures].

    Science.gov (United States)

    de Baat, C; Witter, D J; Creugers, N H J

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of removable partial dentures, the acrylic resin removable partial denture has 3 favourable aspects: the economic aspect, its aesthetic quality and the ease with which it can be extended and adjusted. Disadvantages are an increased risk of caries developing, gingivitis, periodontal disease, denture stomatitis, alveolar bone reduction, tooth migration, triggering of the gag reflex and damage to the acrylic resin base. Present-day indications are ofa temporary or palliative nature or are motivated by economic factors. Special varieties of the acrylic resin removable partial denture are the spoon denture, the flexible denture fabricated of non-rigid acrylic resin, and the two-piece sectional denture. Furthermore, acrylic resin removable partial dentures can be supplied with clasps or reinforced by fibers or metal wires.

  2. Calcium carbonate growth in the presence of water soluble cellulose ethers

    International Nuclear Information System (INIS)

    Zhang Fengju; Yang Xinguo; Tian Fei

    2009-01-01

    Calcium carbonate precipitation was performed in the presence of methyl cellulose (MC) and two kinds of hydroxyethyl cellulose (HEC FD-10000, HEC FD-30000). The results demonstrated that the final product morphology and structure of CaCO 3 crystals are highly sensitive to the concentration of the cellulose ethers aqueous solution. By precisely controlling their concentrations, all these three cellulose ethers solutions have the ability of protecting metastable vaterite from thermodynamically transforming into stable calcite. The intermediate products investigation showed to some extent the phase transformation of calcium carbonate in its growing process from metastable vaterite to calcite and indicated that the calcium carbonate crystal growth in HEC solutions occurs through dissolution and reprecipitation process. Calcium carbonate growth in both presence of HEC and ethanol or Mg 2+ was also examined. This work demonstrates the potential of water soluble cellulose ethers in controlling biominerals crystallization and growth. The results are revelatory for biomineralization and fabricating new organic-inorganic hybrids based on cellulose derivatives.

  3. Residual monomer content determination in some acrylic denture base materials and possibilities of its reduction

    Directory of Open Access Journals (Sweden)

    Kostić Milena

    2009-01-01

    Full Text Available Background/Aim. Polymethyl methacrylate is used for producing a denture basis. It is a material made by the polymerization process of methyl methacrylate. Despite of the polymerization type, there is a certain amount of free methyl methacrylate (residual monomer incorporated in the denture, which can cause irritation of the oral mucosa. The aim of this study was to determine the amount of residual monomer in four different denture base acrylic resins by liquid chromatography and the possibility of its reduction. Methods. After the polymerization, a postpolymerization treatment was performed in three different ways: in boiling water for thirty minutes, with 500 W microwaves for three minutes and in steam bath at 22º C for one to thirty days. Results. The obtained results showed that the amount of residual monomer is significantly higher in cold polymerizing acrylates (9.1-11%. The amount of residual monomer after hot polymerization was in the tolerance range (0.59- 0.86%. Conclusion. The obtained results denote a low content of residual monomer in the samples which have undergone postpolymerization treatment. A lower percent of residual monomer is established in samples undergone a hot polymerization.

  4. Blood pharmacokinetics of tertiary amyl methyl ether in male and female F344 rats and CD-1 mice after nose-only inhalation exposure.

    Science.gov (United States)

    Sumner, Susan C J; Janszen, Derek B; Asgharian, Bahman; Moore, Timothy A; Bobbitt, Carol M; Fennell, Timothy R

    2003-01-01

    Interest in understanding the biological behavior of aliphatic ethers has increased owing to their use as gasoline additives. The purpose of this study was to investigate the blood pharmacokinetics of the oxygenate tertiary amyl methyl ether (TAME), its major metabolite tertiary amyl alcohol (TAA) and acetone in rats and mice following inhalation exposure to TAME. Species differences in the area under the curve (AUC) for TAME were significant at each exposure concentration. For rats, the blood TAME AUC increased in proportion with an increase in exposure concentration. For mice, an increase in exposure concentration (100-500 ppm) resulted in a disproportional increase in the TAME AUC. Mice had greater (two- to threefold) blood concentrations of TAA compared with rats following exposure to 2500 or 500 ppm TAME. Mice had a disproportional increase in the TAA AUC with an increase in exposure concentration (100-500 ppm). This difference could result from saturation of a process (e.g. oxidation, glucuronide conjugation) that is involved in the further metabolism of TAA. For each species, gender and exposure concentration, acetone increased during exposure and returned to control values by 16 h following exposure. The source of acetone could be both as a metabolite of TAA or an effect on endogenous metabolism produced by exposure to TAME. Copyright 2003 John Wiley & Sons, Ltd.

  5. The Formation of Polycomplexes of Poly(Methyl Vinyl Ether-Co-Maleic Anhydride and Bovine Serum Albumin in the Presence of Copper Ions

    Directory of Open Access Journals (Sweden)

    Karahan Mesut

    2014-09-01

    Full Text Available The binary and ternary complex formations of poly(methyl vinyl ether-co-maleic anhydride (PMVEMA with copper ions and with bovine serum albumin (BSA in the presence of copper ions in phosphate buffer solution at pH = 7 were examined by the techniques of UV-visible, fluorescence, dynamic light scattering, atomic force microscopy measurements. In the formation of binary complexes of PMVEMA-Cu(II, the addition of copper ions to the solution of PMVEMA in phosphate buffer solution at pH = 7 forms homogeneous solutions when the molar ratio of Cu(II/MVEMA is 0.5. Then the formations of ternary complexes of PMVEMA-Cu(II-BSA were examined. Study analysis revealed that the toxicities of polymer-metal and polymer-metal-protein mixture solutions depend on the nature and ratio of components in mixtures.

  6. [Biodegradation of methyl tert-butyl ether by stabilized immobilized Methylibium petroleiphilum PM1 cells and its biodegradation kinetics analysis].

    Science.gov (United States)

    Cheng, Zhuo-wei; Fu, Ling-xiao; Jiang, Yi-feng; Chen, Jian-meng; Zhang, Rong

    2011-05-01

    Methylibium petroleiphilum PM1, which is capable of degrading methyl tert-butyl ether (MTBE) , was immobilized in calcium alginate gel beads. Several methods were explored to increase the strength of these gel beads. The central composite design analysis indicated that the introduction of 0.2 mol x L(-1) Ca2+ into the crosslinking solution, 1.38 mmol x L(-1) Ca2+ into the growth medium and 0.1% polyethyleneimine (PEI) as the chemical crosslinking agent could increase the stability of the Ca-alginate gel beads with no loss of biodegradation activity. The stabilized immobilized cells could be used 400 h continuously with no breakage and no bioactivity loss. Examination of scanning electron microscope demonstrated that a membrane surrounding the gel beads was formed and the cells could grow and breed well in the stabilized calcium alginate gel beads. Kinetic analysis of the gel bead-degradation indicated that the rate-limiting step was biochemical process instead of intraparticle diffusion process. The diameter of 3 mm affected the biodegradability less while high concentration of PEI induced much more serious mass transfer restraint.

  7. Interaction parameters of poly(vinyl methyl ether) in 2-propanol-water mixture as determined by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Takada, Masako; Kurita, Kimio; Okano, Koji; Furusaka, Michihiro.

    1994-01-01

    The small-angle neutron scattering from semidilute solutions of poly(vinyl methyl ether)(PVME) in a 2-propanol-water mixture has been measured, the volume concentration of 2-propanol in the aqueous solvent being 10%, in the temperature range just below the lower critical solution temperature(LCST). The binary and ternary cluster integrals of polymer segments were determined from the concentration dependence of the correlation length at each temperature. We have calculated the contribution of segment-segment interaction to the entropy, S int and enthalpy, U int from the measured temperature dependences of these interaction parameters and found that both values are positive in accordance with the previously measured PVME-water system and PVME-(water+methanol) system. However, the value of S int for PVME-(water+2-propanol) system is larger than that for PVME-(water+methanol) system having the same alcohol concentration, and it is even larger than that for PVME-water system. This anomalous behavior is explained as due to the preferential solvation of 2-propanol molecules to the segments of PVME. (author)

  8. Dermal oncogenicity bioassays of monofunctional and multifunctional acrylates and acrylate-based oligomers.

    Science.gov (United States)

    DePass, L R; Maronpot, R R; Weil, C S

    1985-01-01

    Several important components of photocurable coatings were studied for dermal tumorigenic activity by repeated application to the skin of mice. The substances tested were 2-ethylhexyl acrylate (EHA) and methylcarbamoyloxyethyl acrylate (MCEA) (monomers); neopentyl glycol diacrylate (NPGDA), esterdiol-204-diacrylate (EDDA), and pentaerythritol tri(tetra)acrylate (PETA) (cross-linkers); and three acrylated urethane oligomers. For each bioassay, 40 C3H/HeJ male mice were dosed 3 times weekly on the dorsal skin for their lifetime with the highest dose of the test agent that caused no local irritation or reduction in body weight gain. Two negative control groups received acetone (diluent) only. A positive control group received 0.2% methylcholanthrene (MC). NPGDA and EHA had significant tumorigenic activity with tumor yields of eight and six tumor-bearing mice (three and two malignancies), respectively. The MC group had 34 mice with carcinomas and 1 additional mouse with a papilloma. MCEA had no dermal tumorigenic activity but resulted in early mortality. No skin tumors in the treatment area were observed in the other groups. Additional studies will be necessary to elucidate possible relationships between structure and tumorigenic activity for the acrylates.

  9. Excess molar volumes and deviation in viscosities of binary liquid mixtures of acrylic esters with hexane-1-ol at 303.15 and 313.15 K

    Directory of Open Access Journals (Sweden)

    Sujata S. Patil

    2014-12-01

    Full Text Available Densities and viscosities for the four binary liquid mixtures of methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate with hexane-1-ol at temperatures 303.15 and 313.15 K and at atmospheric pressure were measured over the entire composition range. These values were used to calculate excess molar volumes and deviation in viscosities which were fitted to Redlich–Kister polynomial equation. Recently proposed Jouyban Acree model was also used to correlate the experimental values of density and viscosity. The mixture viscosities were correlated by several semi-empirical approaches like Hind, Choudhary–Katti, Grunberg–Nissan, Tamura and Kurata, McAllister three and four body model equations. A graphical representation of excess molar volumes and deviation in isentropic compressibility shows positive nature whereas deviation in viscosity shows negative nature at both temperatures for all four binary liquid mixtures. Positive values of excess molar volumes show that volume expansion is taking place causing rupture of H-bonds in self associated alcohols. The results were discussed in terms of molecular interactions prevailing in the mixtures.

  10. Acrylic vessel cleaning tests

    International Nuclear Information System (INIS)

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-01-01

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory

  11. A microstructural analysis of isoprenol ether-based polycarboxylates and the impact of structural motifs on the dispersing effectiveness

    International Nuclear Information System (INIS)

    Plank, Johann; Li, Huiqun; Ilg, Manuel; Pickelmann, Julia; Eisenreich, Wolfgang; Yao, Yan; Wang, Ziming

    2016-01-01

    Generally, polycarboxylate superplasticizers (PCEs) are synthesized via aqueous free radical copolymerization. The conditions during copolymerization such as relative reactivity and feeding mode and ratio of monomers can cause different monomer sequences in the final product. In this study, the sequence of monomers in PCE polymers synthesized from acrylic acid and isoprenyloxy polyethylene glycol (IPEG) macromonomer was characterized by 13 C nuclear magnetic resonance (NMR) spectroscopy. Three different triads of monomer sequences (EAE, AAE and AAA; E = ether, A = acid monomer) were detected. It was found that IPEG PCEs predominantly contain the structural motifs of AAE and EAE, and less of AAA. Higher additions of acrylic acid do not incorporate into the structure of PCE, but convert to HMW polyacrylate as by-product instead. A PCE with optimal dispersing effectiveness was achieved at high contents of IPEG macromonomer, a molecular weight (M w ) around 40,000 Da and narrow molecular weight distribution.

  12. Adsorption of uranium ions by crosslinked polyester resin functionalized with acrylic acid from aqueous solutions

    International Nuclear Information System (INIS)

    Cemal Oezeroglu; Niluefer Metin

    2012-01-01

    In this paper, the crosslinked polyester resin containing acrylic acid functional groups was used for the adsorption of uranium ions from aqueous solutions. For this purpose, the crosslinked polyester resin of unsaturated polyester in styrene monomer (Polipol 353, Poliya) and acrylic acid as weight percentage at 80 and 20%, respectively was synthesized by using methyl ethyl ketone peroxide (MEKp, Butanox M60, Azo Nobel)-cobalt octoate initiator system. The adsorption of uranium ions on the sample (0.05 g copolymer and 5 mL of U(VI) solution were mixed) of the crosslinked polyester resin functionalized with acrylic acid was carried out in a batch reactor. The effects of adsorption parameters of the contact time, temperature, pH of solution and initial uranium(VI) concentration for U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid were investigated. The adsorption data obtained from experimental results depending on the initial U(VI) concentration were analyzed by the Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The adsorption capacity and free energy change were determined by using D-R isotherm. The obtained experimental adsorption data depending on temperature were evaluated to calculate the thermodynamic parameters of enthalpy (ΔH o ), entropy (ΔS o ) and free energy change (ΔG o ) for the U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. The obtained adsorption data depending on contact time were analyzed by using adsorption models such as the modified Freundlich, Elovich, pseudo-first order and pseudo-second-order kinetic models. (author)

  13. Comparison of Properties among Dendritic and Hyperbranched Poly(ether ether ketones and Linear Poly(ether ketones

    Directory of Open Access Journals (Sweden)

    Atsushi Morikawa

    2016-02-01

    Full Text Available Poly(ether ether ketone dendrimers and hyperbranched polymers were prepared from 3,5-dimethoxy-4′-(4-fluorobenzoyldiphenyl ether and 3,5-dihydroxy-4′-(4-fluorobenzoyldiphenyl ether through aromatic nucleophilic substitution reactions. 1-(tert-Butyldimethylsiloxy-3,5-bis(4-fluorobenzoylbenzene was polycondensed with bisphenols, followed by cleavage of the protective group to form linear poly(ether ketones having the same hydroxyl groups in the side chains as the chain ends of the dendrimer and hyperbranched polymers. Their properties, such as solubilities, reduced viscosities, and thermal properties, were compared with one another. Similar comparisons were also carried out among the corresponding methoxy group polymers, and the size of the molecules was shown to affect the properties.

  14. Bonding auto-polymerising acrylic resin to acrylic denture teeth.

    LENUS (Irish Health Repository)

    Nagle, Susan

    2009-09-01

    This study investigated the effect of surface treatments on the shear bond strength of an auto-polymerising acrylic resin cured to acrylic denture teeth. The surface treatments included a combination of grit-blasting and\\/or wetting the surface with monomer. Samples were prepared and then stored in water prior to shear testing. The results indicated that the application of monomer to the surface prior to bonding did not influence the bond strength. Grit blasting was found to significantly increase the bond strength.

  15. Enhancement of the Biodegradability of Methyl tert- Butyl Ether (MTBE by Advanced Oxidation

    Directory of Open Access Journals (Sweden)

    Mehraban Sadeghi

    2006-06-01

    Full Text Available The effectiveness of ozone treatment for improving the biodegradability of recalcitrant pollutants has been proved by investigating the ozonation reaction of Methyl tert-Butyl Ether (MTBE as a bioresistant gasoline oxygenate. Laboratory scale experiments have been carried out at room temperature by bubbling for 120 minutes ozonated air (3.4 ppm/min into 3 liter of an alkaline (pH=11.5 aqueous solution (100 mg/L of MTBE. The experimental results indicated that during the ozonation, complete MTBE degradation occurs in 100 minutes and after this time, ozone consumption goes on very slowly. At the end of the ozonation, after 100 minutes, the initial value of COD (256 mg O2/L is 98 and corresponds to a relative removal of about 62%. As for MTBE solution biodegradability expressed as (BOD5 / (COD ratio, during the first 90 minutes, its value regularly increases from lowest 0.01 up to a maximum of 0.68 that corresponds to an ozone consumption of 1.25 mg per each mg of COD initially present in the solution. The research showed that partial degradation of MTBE in the advanced oxidation processes results an increase in its biological degradation. But more oxidation results lower  (BOD5 / (COD ratio. Also the research showed that for idealization of the chemical oxidation conditions of MTBE, it needs to decrease COD to 46-68% before the biological degradation. The experimental results for determining the rate of MTBE removal due to stripping showed that about 14% of MTBE strips out after an hour of sparging with oxygen gas. The fraction of MTBE oxidized and/or striped increases to about 28% (in pH=7 and 70% (in pH=11.5 with ozonation over the same time period.

  16. Numerical analysis of spray characteristics of dimethyl ether and diethyl ether fuel

    International Nuclear Information System (INIS)

    Mohan, Balaji; Yang, Wenming; Yu, Wenbin; Tay, Kun Lin

    2017-01-01

    Highlights: • Thermo-physical properties of liquid DME and DEE are reported. • Ether fuels tend to cavitate higher compared to that of diesel fuel. • Spray tip penetration and SMD are found to be lesser for ether fuels. • Ether fuels shows excellent atomization behavior. - Abstract: In this work, the spray characteristics of ether fuels such as dimethyl ether (DME) and diethyl ether (DEE) have been numerically investigated using KIVA-4 CFD code. A new hybrid spray model developed by coupling the standard KHRT model to cavitation sub model was used. The detailed thermo-physical properties of ether fuels have been predicted and validated with experimental results available from literature. The cavitation inception inside the injector nozzle hole has been studied for ether fuels in comparison with diesel fuel. It was found that ether fuels cavitates higher compared to that of conventional diesel fuel because of its low viscosity. The spray tip penetration of diesel fuel was longer than that of ether fuels due to high viscosity and density of diesel fuel. Ether fuels characterized by low Ohnesorge number and high Reynolds number showed better atomization behavior compared to that of the diesel fuel.

  17. Synthesis of Poly(styrene-acrylates-acrylic acid Microspheres and Their Chemical Composition towards Colloidal Crystal Films

    Directory of Open Access Journals (Sweden)

    Luis A. Ríos-Osuna

    2016-01-01

    Full Text Available In this paper, polystyrene colloidal microspheres have been prepared using hexyl acrylate (HA, ethylhexyl acrylate (EHA, isooctyl acrylate (IOA, butyl acrylate (BA, or isobutyl acrylate (IBA as comonomers. Microspheres with diameters from 212 to 332 nm and with a polystyrene content of 65–78% were prepared. The particles prepared in this work do not present the typical core-shell structure; as a consequence, DSC analysis showed that the microspheres exhibited only one Tg. TEM images show that the particles with comonomer content below ~30% were spherical and regular. Microspheres containing comonomer between 21 to 25% produced the less brittle films showing very iridescent colors. The films prepared from microspheres containing hexyl, ethylhexyl, and isooctyl acrylate as comonomers are firmly attached to the substrate due to their adhesive properties. The large decrease of the fragility observed in these films makes them much more attractive materials in sensing applications.

  18. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles

    Directory of Open Access Journals (Sweden)

    Canan Bural

    2011-08-01

    Full Text Available OBJECTIVES: Residual methyl methacrylate (MMA may leach from the acrylic resin denture bases and have adverse effects on the oral mucosa. This in vitro study evaluated and correlated the effect of the leaching residual MMA concentrations ([MMA]r on in vitro cytotoxicity of L-929 fibroblasts. MATERIAL AND METHODS: A total of 144 heat-polymerized acrylic resin specimens were fabricated using 4 different polymerization cycles: (1 at 74ºC for 9 h, (2 at 74ºC for 9 h and terminal boiling (at 100ºC for 30 min, (3 at 74ºC for 9 h and terminal boiling for 3 h, (4 at 74ºC for 30 min and terminal boiling for 30 min. Specimens were eluted in a complete cell culture medium at 37ºC for 1, 2, 5 and 7 days. [MMA]r in eluates was measured using high-performance liquid chromatography. In vitro cytotoxicity of eluates on L-929 fibroblasts was evaluated by means of cell proliferation using a tetrazolium salt XTT (sodium 3´-[1-phenyl-aminocarbonyl-3,4-tetrazolium]bis(4-methoxy-6-nitrobenzenesulphonic acid assay. Differences in [MMA]r of eluates and cell proliferation values between polymerization cycles were statistically analyzed by Kruskal-Wallis, Friedman and Dunn's multiple comparison tests. The correlation between [MMA]r of eluates and cell proliferation was analyzed by Pearson's correlation test (p<0.05. RESULTS: [MMA]r was significantly (p<0.001 higher in eluates of specimens polymerized with cycle without terminal boiling after elution of 1 and 2 days. Cell proliferation values for all cycles were significantly (p<0.01 lower in eluates of 1 day than those of 2 days. The correlation between [MMA]r and cell proliferation values was negative after all elution periods, showing significance (p<0.05 for elution of 1 and 2 days. MMA continued to leach from acrylic resin throughout 7 days and leaching concentrations markedly reduced after elution of 1 and 2 days. CONCLUSION: Due to reduction of leaching residual MMA concentrations, use of terminal boiling in

  19. Studies on atom transfer radical polymerization of acrylates and styrenes with controlled polymeric block structures

    OpenAIRE

    Ibrahim, Khalid

    2006-01-01

    Atom transfer radical polymerization (ATRP) was applied to homo and block copolymerization of vinyl monomers methacrylates, acrylates, and styrene with iron (FeCl2.4H2O) as the transition metal in most cases. As complexing ligand either a commercially available ligand (triphenyl phosphine) (PPh3) or synthetic aliphatic amines were used. As initiators, methyl 2-bromopropionate, ethyl 2-bromoisobutyrate, α,α-dichloroacetophenone, and poly(ethylene oxide) macroinitiator were employed. Block ...

  20. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate

    International Nuclear Information System (INIS)

    Sun Xiaoguang; Hou Jun; Kerr, John B.

    2005-01-01

    Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li + salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE 8 -co-E 3 SO 3 Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE 8 -g-E n SO 3 Li, n = 2, 3). The highest conductivity at 25 deg. C of 2.0 x 10 -7 S cm -1 was obtained for the PAE 8 -co-E 3 SO 3 Li with a salt concentration of EO/Li = 40. The conductivity of PAE 8 -g-E 3 SO 3 Li is lower than that of PAE 8 -co-E 3 SO 3 Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li + . The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE 8 -g-E 2 SO 3 Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 μA cm -2 at 85 deg. C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer

  1. Development of natural rubber membranes for separation of methyl tert-butyl ether and methanol

    International Nuclear Information System (INIS)

    Nur Azrini Ramlee; Ghazali Mohd Nawawi; Khairul Zaman Dahlan

    2010-01-01

    As a new commercial process, membrane separation raises significant expectations in the process plant of the future and therefore this research was being initiated to develop and characterize pervaporation membrane based on natural rubber (NR). Natural Rubber SMR-L grade which was supplied by Malaysia Rubber Research Institute (MRRI) was used for the development of the membranes via interpenetrating polymer network (IPN) techniques. Polystyrene (PS) was used to modify the natural rubber to further improve their mechanical and chemical properties. The membranes were prepared with various blend ratios of natural rubber, polystyrene and divinyl benzene as cross linker with constant 1 % of dicumyl peroxide as the initiator. The developed membranes were then characterized to study the functional group presence, membranes morphology, crosslink density, tear strength, adsorption of the membranes and pervaporation separation of Methyl-Tert-Butyl-Ether (MTBE) and Methanol. Pervaporation process was conducted by using varies of MTBE concentration 10, 30, 50 and 70 wt % and at differ operation temperature, 25 degree Celsius and 55 degree Celsius. Separation performance of IPN NR/ PS membranes were based on the presented permeation flux and separation factor. Examination through Fourier Transform Infrared Spectroscopy (FTIR), determined crosslink density and tear strength, 6 series of IPN NR/ PS membranes were successfully developed using natural rubber. Observation from Scanning Electron Microscopy (SEM) showed that the membranes were dense and appropriated for the pervaporation process application. From the pervaporation of MTBE and Methanol, IPN NR/ PS membranes of series D4N30 shown low permeation flux of MTBE but high separation factor while D2N70 membranes was vice versa for both temperature of 25 degree Celsius and 55 degree Celsius. (author)

  2. Isotopic exchange of cyclic ethers with deuterium over metal catalysts

    International Nuclear Information System (INIS)

    Duchet, J.C.; Cornet, D.

    1976-01-01

    The exchange reaction between deuterium and cyclic ethers (oxolane and α-methyl derivatives) has been investigated using rhodium and palladium catalysts. The first hydrogen undergoing exchange has been found to be located on a β-carbon. This fact, and the poisoning of the exchange of cyclopentane in the presence of ether, suggest that the O atom participates in the exchange mechanism of ethers. It appears, however, that the oxygen--metal bonding occurs only during this simple exchange process; simultaneous adsorption of oxygen and a vicinal carbon causes hydrogenolysis of the O--C bond. In each case multiple exchange is important. In the oxolane molecule two sets of exchangeable hydrogens are distinguished according to their reactivities, as could be expected by analogy with cycloalkanes. However, this distinction is not so clear in the exchange patterns of substituted oxolanes, since intermediate maxima are observed in these cases. It is suggested that the conformational properties of the substituted rings cause a constraint in the formation of 3,4-diadsorbed oxolanes. Thus, multiple exchange, based on α,β-process, and epimerization via the ''roll-over'' mechanism occur preferentially in certain parts of the molecules

  3. Synthesis of acrylates and methacrylates from coal-derived syngas

    Energy Technology Data Exchange (ETDEWEB)

    Spivey, J.J.; Gogate, M.R.; Jang, B.W.L. [Bechtel, San Francisco, CA (United States)] [and others

    1995-12-31

    Acrylates and methacrylates are among the most widely used chemical intermediates in the world. One of the key chemicals of this type is methyl methacrylate. Of the 4 billion pounds produced each year, roughly 85% is made using the acetone-cyanohydrin process, which requires handling of large quantities of hydrogen cyanide and produces ammonium sulfate wastes that pose an environmental disposal challenge. The U.S. Department of Energy and Eastman Chemical Company are sharing the cost of research to develop an alternative process for the synthesis of methyl methacrylate from syngas. Research Triangle Institute is focusing on the synthesis and testing of active catalysts for the condensation reactions, and Bechtel is analyzing the costs to determine the competitiveness of several process alternatives. Results thus far show that the catalysts for the condensation of formaldehyde and the propionate are key to selectively producing the desired product, methacrylic acid, with a high yield. These condensation catalysts have both acid and base functions and the strength and distribution of these acid-base sites controls the product selectivity and yield.

  4. Investigation of factors affecting slurry copolymerization of acrylo nitrite-vinylacetate for preparation of acrylic fibers

    International Nuclear Information System (INIS)

    Hajian, M.; Tavakoli, T.; Azarnasab, M.; Hossepian, M.

    2001-01-01

    Since 1978, acrylic fibers have been prepared by slurry polymerization comprising of about 94% acrylonitrile (A N) and 6% methyl methacrylate (M A) as a comonomer to a make bulky polymer and improve the dye ability of acrylic fibers in a continuous process by redox initiator (potassium persulfate and ammonium, ferrous sulfate). The slurry polymer obtained after neutralization, washing and drying are converted to polymer powder. The polymer is dissolved in dimethyl formamide (Dmf) and converted to acrylic fibers. Since 1998, it has been suggested that M A may be replaced by vinylacetate (V Ac), because V Ac has properties like M A and is a monomer produced by Arak Petrochemical CO. Therefore, in this project A N and V Ac were polymerized under the same conditions of A N and M A copolymerization process. Many tests have been carried out on the resulted polymer such as IR, viscosity, particle size, Whiteness of polymer powder and similar results were obtained as in the for former copolymer. In this work some important factors such as concentration of V Ac, time and temperature of polymerization reaction and also speed of agitator have been optimized

  5. Nano-emulsion based on acrylic acid ester co-polymer derivatives as an efficient pre-tanning agent for buffalo hide

    Directory of Open Access Journals (Sweden)

    Farouk Abd El-Monem

    2017-05-01

    Full Text Available Acrylic copolymer nanoemulsions were prepared based on methyl methacrylate (MMA and butyl acrylate (BA. The prepared acrylic copolymer emulsions were characterized using solid content, rheological properties, molecular weight, MFFT and TEM. The prepared polymers were used as pre-tanning of the depickled hide to enhance the physico-mechanical properties of tanned leather. The key parameters which affect exhaustion and fixation of chrome tan as well as shrinkage temperature of the tanned leather were studied and evaluated using SEM, shrinkage temperature and the mechanical properties of the pre-tanned leather. The results showed that, the prepared polymers A & C are the best polymers in improving the physical properties of the treated leather. Furthermore, the shrinkage temperature and the mechanical properties of the tanned leather were improved. In addition, a significant enhancement in the texture of the leather treated by the polymers was noticed as proved by scanning electron microscopy (SEM.

  6. Poly(lauryl acrylate) and poly(stearyl acrylate) grafted multiwalled carbon nanotubes for polypropylene composites

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Jankova Atanasova, Katja; Hvilsted, Søren

    2014-01-01

    Two new polymer grafts on an industrial grade multiwalled carbon nanotube (MWCNT) were prepared through a non-oxidative pathway employing controlled free radical polymerization for surface initiated polymer grafting. After photochemical introduction of an ATRP initiator onto the MWCNT......, polymerizations of lauryl or stearyl acrylate were performed, resulting in two novel polymer modifications on the MWCNT (poly(lauryl acrylate) or poly(stearyl acrylate)). The method was found to give time dependent loading of polymers as a function of time (up to 38 wt% for both acrylates), and showed a plateau...... in loading after 12 h of polymerization. The modified nanomaterials were melt mixed into polypropylene composites with very low filler loading (0.3 wt%), whereafter both the thermal and electrical properties were investigated by DSC and dielectric resonance spectroscopy. The electrical properties were found...

  7. The fungal phytotoxin alternariol 9-methyl ether and some of its synthetic analogues inhibit the photosynthetic electron transport chain.

    Science.gov (United States)

    Demuner, Antonio Jacinto; Barbosa, Luiz Cláudio Almeida; Miranda, Ana Cristina Mendes; Geraldo, Guilherme Carvalho; da Silva, Cleiton Moreira; Giberti, Samuele; Bertazzini, Michele; Forlani, Giuseppe

    2013-12-27

    Alternariol and monomethylalternariol are natural phytotoxins produced by some fungal strains, such as Nimbya and Alternaria. These substances confer virulence to phytopathogens, yet no information is available concerning their mode of action. Here we show that in the micromolar range alternariol 9-methyl ether is able to inhibit the electron transport chain (IC50 = 29.1 ± 6.5 μM) in isolated spinach chloroplasts. Since its effectiveness is limited by poor solubility in water, several alternariol analogues were synthesized using different aromatic aldehydes. The synthesized 6H-benzo[c]cromen-6-ones, 5H-chromene[4,3-b]pyridin-5-one, and 5H-chromene[4,3-c]pyridin-5-one also showed inhibitory properties, and three 6H-benzo[c]cromen-6-ones were more effective (IC50 = 12.8-22.8 μM) than the lead compound. Their addition to the culture medium of a cyanobacterial model strain was found to inhibit algal growth, with a relative effectiveness that was consistent with their activity in vitro. In contrast, the growth of a nonphotosynthetic plant cell culture was poorly affected. These compounds may represent a novel lead for the development of new active principles targeting photosynthesis.

  8. Method detection limit determination and application of a convenient headspace analysis method for methyl tert-butyl ether in water.

    Science.gov (United States)

    O'Neill, Dennis T; Rochette, Elizabeth A; Ramsey, Philip J

    2002-11-15

    Methyl tert-butyl ether (MTBE) is a common groundwater contaminant, introduced to the environment by leaking petroleum storage tanks, urban runoff, and motorized watercraft. In this study. a simplified (static) headspace analysis method was adapted for determination of MTBE in water samples and soil water extracts. The MDL of the headspace method was calculated to be 2.0 microg L(-1) by the EPA single-concentration design method(1) and 1.2 microg L(-1) by a calibration method developed by Hubaux and Vos (Hubaux, A.; Vos, G. Anal. Chem. 1970,42, 849-855). The MDL calculated with the Hubaux and Vos method was favored because it considers both a true positive and a false positive. The static headspace method was applied to analysis of a tap water sample and a monitoring well sample from a gasoline service station, a river sample, and aqueous extracts from soil excavated during removal of a leaking underground storage tank (LUST). The water samples examined in this study had MTTBE concentrations ranging from 6 to 19 microg L(-1). Aqueous extracts of a soil sample taken from the LUST site had 8 microg L(-1) MTBE.

  9. Assessing soil ecotoxicity of methyl tert-butyl ether using earthworm bioassay; closed soil microcosm test for volatile organic compounds

    International Nuclear Information System (INIS)

    An, Youn-Joo

    2005-01-01

    An earthworm bioassay was conducted to assess ecotoxicity in methyl tert-butyl ether (MTBE)-amended soils. Ecotoxicity of MTBE to earthworms was evaluated by a paper contact method, natural field soil test, and an OECD artificial soil test. All tests were conducted in closed systems to prevent volatilization of MTBE out of test units. Test earthworm species were Perionyx excavatus and Eisenia andrei. Mortality and abnormal morphology of earthworms exposed to different concentrations of MTBE were examined. MTBE was toxic to both earthworm species and the severity of response increased with increasing MTBE concentrations. Perionyx excavatus was more sensitive to MTBE than Eisenia andrei in filter papers and two different types of soils. MTBE toxicity was more severe in OECD artificial soils than in field soils, possibly due to the burrowing behavior of earthworms into artificial soils. The present study demonstrated that ecotoxicity of volatile organic compounds such as MTBE can be assessed using an earthworm bioassay in closed soil microcosm with short-term exposure duration. - Earthworm bioassay can be a good protocol to assess soil ecotoxicity of volatile organic compounds such as MTBE

  10. 40 CFR 721.405 - Polyether acrylate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether acrylate. 721.405 Section... § 721.405 Polyether acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyether acrylate (PMN P-95-666) is subject to...

  11. Synthesis of Novel Ether Thionocarbamates and Study on Their Flotation Performance for Chalcopyrite

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2016-09-01

    Full Text Available Novel ether thionocarbamates, O-butoxy isopropyl-N-ethoxycarbonyl thionocarbamate (BIPECTC and O-(2-butoxy-1-methylethoxy isopropyl-N-ethoxycarbonyl thionocarbamate (BMIPECTC, were synthesized in this study. Their collecting efficiencies in the flotation of chalcopyrite were investigated using flotation tests, adsorption measurements, ultraviolet spectra (UV and Fourier transform-infrared spectroscopy (FT-IR and density functional theory (DFT calculations. The synthesized ether thionocarbamates showed better frothing properties than methyl-isobutyl-carbinol (MIBC and stronger affinity to chalcopyrite compared with O-isopropyl-N-ethyl thionocarbamate (IPETC and O-isobutyl-N-ethoxycarbonyl thionocarbamate (IBECTC. UV spectra analysis showed that the ether thionocarbamates react with Cu2+, with the exception of Fe2+, Ni2+, Zn2+ and Pb2+. Additionally, it was further confirmed by FTIR spectra that a chemical reaction occurs between copper ion and BIPECTC and BMIPECTC. The adsorption capacity measurements revealed that chalcopyrite exhibits good adsorption ability for ether thionocarbamates at an approximate pH of 8–10, which agrees with the flotation tests. The quantum chemistry calculation results indicated that the ether thionocarbamates exhibit stronger collecting ability for copper mineral in terms of frontier molecular orbital analysis, binding model simulation with copper ions and the molecular hydrophobicity compared with IPETC and IBECTC. The computational results are in very good agreement with the experimental results.

  12. Validation of methodologies for the analysis of lead and methyl-ether in gasoline, using the techniques of atomic emission with plasma source coupled inductively and micellar liquid chromatography

    International Nuclear Information System (INIS)

    Redondo Escalante, M.

    1995-01-01

    This study established and optimized the experimental variables for the lead quantization through the Icp-Aes technique, in aqueous media. A comparative study of several proposal methods, that appears in the literature for the extraction in aqueous media of the lead in gasoline was made. It determined that it is not possible, to make this procedure using the reaction of hydrolysis of tetraethyl lead. The op tim conditions were established, for the lead quantization in gasoline, using methyl-isobutyl-ketone and also ethanol as dis solvents. The conditions of the proposed methodologies were optimized, and the variables of analytical performance were defined. It was demonstrated, that it is possible to prepare lead dissolution patterns, in organic media, starting from inorganic salts of this metal. The techniques of chromatography of gases and of liquid chromatography of high pressure, in the analysis of methyl-ter butyl-ether (Mtbe), were compared. It demonstrated that it is possible, to quantize the Mtbe through the HPLC technique, and it found that the 'micellar' liquid chromatography. (author) [es

  13. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery

    Science.gov (United States)

    Xi, Jingyu; Li, Zhaohua; Yu, Lihong; Yin, Bibo; Wang, Lei; Liu, Le; Qiu, Xinping; Chen, Liquan

    2015-07-01

    The properties of sulfonated poly(ether ether ketone) (SPEEK) membranes with various degree of sulfonation (DS) and casting solvent are investigated for vanadium redox flow battery (VRFB). The optimum DS of SPEEK membrane is firstly confirmed by various characterizations such as physicochemical properties, ion selectivity, and VRFB single-cell performance. Subsequently the optimum casting solvent is selected for the optimum DS SPEEK membrane within N,N‧-dimethylformamide (DMF), N,N‧-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The different performance of SPEEK membranes prepared with various casting solvents can be attributed to the different interaction between solvent and -SO3H group of SPEEK. In the VRFB single-cell test, the optimum SPEEK membrane with DS of 67% and casting solvent of DMF (S67-DMF membrane) exhibits higher VRFB efficiencies and better cycle-life performance at 80 mA cm-2. The investigation of various DS and casting solvent will be effective guidance on the selection and modification of SPEEK membrane towards VRFB application.

  14. Well-defined copolymers synthesized by RAFT polymerization as effective modifiers to enhance the photocatalytic performance of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vasilaki, E., E-mail: euavasilakh@gmail.com [Department of Chemistry, University of Crete, 710 03, Heraklion, Crete (Greece); Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Kaliva, M. [Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Department of Materials Science and Technology, University of Crete, 710 03, Heraklion, Crete (Greece); Katsarakis, N. [Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Vamvakaki, M. [Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Department of Materials Science and Technology, University of Crete, 710 03, Heraklion, Crete (Greece)

    2017-03-31

    Highlights: • Well-defined, random functional copolymers were synthesized by RAFT polymerization. • Novel TiO{sub 2} particles in-situ modified with copolymers were synthesized. • The hybrid catalysts exhibited reduced aggregation and particle size. • The photocatalytic removal of methylene blue was higher for the hybrid catalysts. - Αbstract: The enhancement of the photocatalytic performance of anatase TiO{sub 2} nanoparticles is demonstrated by a facile route, involving their in-situ surface modification with preformed polymer chains. Random copolymers of poly(ethylene glycol) methyl ether acrylate-co-methacrylic acid (PEGA-co-MAA) or poly(ethylene glycol) methyl ether acrylate-co-dopamine methacrylamide (PEGA-co-DMA) were synthesized by reversible addition−fragmentation chain-transfer (RAFT) polymerization and were bound onto the surface of anatase titania nanoparticles via the “grafting to” method. The hybrid nanocatalysts were characterized by fourier transform infrared spectroscopy, zeta-potential measurements, X-ray powder diffraction, thermogravimetric analysis and transmission electron microscopy. Their photocatalytic performance was evaluated by the decoloration of methylene blue (MB) dye in aqueous media under UV–vis light irradiation. The enhanced photoactivity and reusability of the polymer modified photocatalysts compared to that of bare TiO{sub 2} nanoparticles was attributed to their improved dispersability and colloidal stability, the smaller particle size that leads to a larger surface area and the increased adsorption capacity of the dye onto the polymer modified nanoparticles.

  15. Well-defined copolymers synthesized by RAFT polymerization as effective modifiers to enhance the photocatalytic performance of TiO_2

    International Nuclear Information System (INIS)

    Vasilaki, E.; Kaliva, M.; Katsarakis, N.; Vamvakaki, M.

    2017-01-01

    Highlights: • Well-defined, random functional copolymers were synthesized by RAFT polymerization. • Novel TiO_2 particles in-situ modified with copolymers were synthesized. • The hybrid catalysts exhibited reduced aggregation and particle size. • The photocatalytic removal of methylene blue was higher for the hybrid catalysts. - Αbstract: The enhancement of the photocatalytic performance of anatase TiO_2 nanoparticles is demonstrated by a facile route, involving their in-situ surface modification with preformed polymer chains. Random copolymers of poly(ethylene glycol) methyl ether acrylate-co-methacrylic acid (PEGA-co-MAA) or poly(ethylene glycol) methyl ether acrylate-co-dopamine methacrylamide (PEGA-co-DMA) were synthesized by reversible addition−fragmentation chain-transfer (RAFT) polymerization and were bound onto the surface of anatase titania nanoparticles via the “grafting to” method. The hybrid nanocatalysts were characterized by fourier transform infrared spectroscopy, zeta-potential measurements, X-ray powder diffraction, thermogravimetric analysis and transmission electron microscopy. Their photocatalytic performance was evaluated by the decoloration of methylene blue (MB) dye in aqueous media under UV–vis light irradiation. The enhanced photoactivity and reusability of the polymer modified photocatalysts compared to that of bare TiO_2 nanoparticles was attributed to their improved dispersability and colloidal stability, the smaller particle size that leads to a larger surface area and the increased adsorption capacity of the dye onto the polymer modified nanoparticles.

  16. Cosmic Ether

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    A prerelativistic approach to particle dynamics is explored in an expanding Robertson-Walker cosmology. The receding galactic background provides a distinguished frame of reference and a unique cosmic time. In this context the relativistic, purely geometric space-time concept is criticized. Physical space is regarded as a permeable medium, the cosmic ether, which effects the world-lines of particles and rays. We study in detail a Robertson-Walker universe with linear expansion factor and negatively curved, open three-space; we choose the permeability tensor of the ether in such a way that the semiclassical approximation is exact. Galactic red-shifts depend on the refractive index of the ether. In the local Minkowskian limit the ether causes a time variation of mass, which scales inversely proportional to cosmic time. In the globally geodesic rest frames of galactic observers the ether manifests itself in an unbounded speed of signal transfer, in bifurcations of world-lines, and in time inversion effects.

  17. Synthesis of racemic [methyl-d3]-labeled cis- and trans-3'-hydroxycotinine

    International Nuclear Information System (INIS)

    Ravard, A.; Crooks, P.A.

    1994-01-01

    A method is described for the synthesis of the racemic [methyl-d 3 ] forms of the nicotine metabolites cis-3'-hydroxycotinine and trans-3'-hydroxycotinine. The key intermediate was [methyl-d 3 ]-N-methylhydroxylamine, obtained from a selective hydrogenation of d 3 -nitro-methane. This intermediate was converted to [methyl-d 3 ]-α-3-pyridyl-N-methylnitrone, which was condensed with methyl acrylate to give a mixture of isomeric isoxazolidines. The hydrogenolysis of this mixture afforded a 70:30 mixture of [methyl-d 3 ] cis- and trans-3'-hydroxycotinine, from which the pure cis-isomer could be isolated by recrystallization from acetone. [Methyl-d 3 ]-trans-3'-hydroxycotinine could be prepared in high yield from the cis-isomer via chiral inversion utilizing a Mitsunobu reaction, or by chromatographic separation from a mixture of the cis- and trans-3'-benzoyloxycotinine, followed by O-debenzoylation in methanolic NaOH. (author)

  18. Prolonged Hypocalcemic Effect by Pulmonary Delivery of Calcitonin Loaded Poly(Methyl Vinyl Ether Maleic Acid Bioadhesive Nanoparticles

    Directory of Open Access Journals (Sweden)

    J. Varshosaz

    2014-01-01

    Full Text Available The purpose of the present study was to design a pulmonary controlled release system of salmon calcitonin (sCT. Therefore, poly(methyl vinyl ether maleic acid [P(MVEMA] nanoparticles were prepared by ionic cross-linking method using Fe2+ and Zn2+ ions. Physicochemical properties of nanoparticles were studied in vitro. The stability of sCT in the optimized nanoparticles was studied by electrophoretic gel method. Plasma calcium levels until 48 h were determined in rats as pulmonary-free sCT solution or nanoparticles (25 μg·kg−1, iv solution of sCT (5 μg·kg−1, and pulmonary blank nanoparticles. The drug remained stable during fabrication and tests on nanoparticles. The optimized nanoparticles showed proper physicochemical properties. Normalized reduction of plasma calcium levels was at least 2.76 times higher in pulmonary sCT nanoparticles compared to free solution. The duration of hypocalcemic effect of pulmonary sCT nanoparticles was 24 h, while it was just 1 h for the iv solution. There was not any significant difference between normalized blood calcium levels reduction in pulmonary drug solution and iv injection. Pharmacological activity of nanoparticles after pulmonary delivery was 65% of the iv route. Pulmonary delivery of P(MVEMA nanoparticles of sCT enhanced and prolonged the hypocalcemic effect of the drug significantly.

  19. Thermal and Optical Properties of New Poly(amide-imide)/Nanocomposite Reinforced by Layer Silicate Containing Diphenyl Ether Moieties

    Science.gov (United States)

    Faghihi, Khalil; Faramarzi, Ellahe; Shabanian, Meisam

    2011-04-01

    New poly(amide-imide)-montmorillonite reinforced nanocomposites containing Bis(4-N-trimellitylimido) diphenyl ether moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 4 was synthesized by the direct polycondensation reaction of Bis(4-N-trimellitylimido) diphenyl ether 3 with 4,4'-diamino diphenyl ether 2 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nanocomposite films 4a and 4b with 10 and 20 mass% silicate particles respectively, were characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The properties of nanocomposites films were investigated by using Uv-vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements.

  20. A Hydrogen Ion-Selective Sensor Based on Non-Plasticised Methacrylic-acrylic Membranes

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2002-08-01

    Full Text Available A methacrylic-acrylic polymer was synthesised for use as a non-plasticised membrane for hydrogen ion-selective sensor incorporating tridodecylamine as an ionophore. The copolymer consisted of methyl methacrylate and n-butyl acrylate monomers in a ratio of 2:8. Characterisation of the copolymer using FTNMR demonstrated that the amount of each monomer incorporated during solution polymerisation was found to be similar to the amount used in the feed before polymerisation. The glass transition temperature of the copolymer determined by differential scanning calorimetry was -30.9 ºC. Potentiometric measurements conducted showed a linear pH response range of 4.3 – 9.6 with the response slope of 56.7 mV/decade. The selectivity of the sensors towards hydrogen ions was similar to other plasticiser based membrane electrodes and the logarithmic selectivity coefficients for discrimination against interference cations is close to –9.7. However, the incorporation of a lipophilic anion as membrane additive is essential in ensuring optimum performance of the hydrogen ion sensor.

  1. Graft copolymerization of a series of alkyl acrylates and alkyl methacrylates onto polyethylene

    International Nuclear Information System (INIS)

    Zurakowska-Orszagh, J.; Soerjosoeharto, K.; Busz, W.; Oldziejewski, J.

    1977-01-01

    Graft copolymerization of a series of alkyl acrylates and alkyl methacrylates into polyethylene of Polish production was investigated, using benzoyl peroxide as the initiator as well as preirradiation technique, namely ionizing radiation from a 60 Co γ-source. The effect of α-carbon methyl substituent of methacrylates as well as the influence of the length of alkyl chains in the ester groups of both series of monomers into the grafting process was observed. The ungrafted and some of the grafted polyethylene film obtained was studied by infrared spectrophotometry. (author)

  2. Gene mdpC plays a regulatory role in the methyl-tert-butyl ether degradation pathway of Methylibium petroleiphilum strain PM1.

    Science.gov (United States)

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M; Denison, Michael S; Hristova, Krassimira R

    2015-04-01

    Among the few bacteria known to utilize methyl tert-butyl ether (MTBE) as a sole carbon source, Methylibium petroleiphilum PM1 is a well-characterized organism with a sequenced genome; however, knowledge of the genetic regulation of its MTBE degradation pathway is limited. We investigated the role of a putative transcriptional activator gene, mdpC, in the induction of MTBE-degradation genes mdpA (encoding MTBE monooxygenase) and mdpJ (encoding tert-butyl alcohol hydroxylase) of strain PM1 in a gene-knockout mutant mdpC(-). We also utilized quantitative reverse transcriptase PCR assays targeting genes mdpA, mdpJ and mdpC to determine the effects of the mutation on transcription of these genes. Our results indicate that gene mdpC is involved in the induction of both mdpA and mdpJ in response to MTBE and tert-butyl alcohol (TBA) exposure in PM1. An additional independent mechanism may be involved in the induction of mdpJ in the presence of TBA. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials

    International Nuclear Information System (INIS)

    Pei, Dong-fang; Chen, Sai; Li, Shu-qin; Shi, Hai-feng; Li, Wei; Li, Xuan; Zhang, Xing-xiang

    2016-01-01

    A series of poly(polyethylene glycol n-alkyl ether vinyl ether)s (PC m E n VEs) with various lengths of alkyl chains and polyethylene glycol spacers as side chain (m = 16,18; n = 1,2) were synthesized via two steps. First, monomers-ethylene glycol hexadecyl ether vinyl ether (C 16 E 1 VE), ethylene glycol octadecyl ether vinyl ether (C 18 E 1 VE), diethylene glycol hexadecyl ether vinyl ether (C 16 E 2 VE) and diethylene glycol octadecyl ether vinyl ether (C 18 E 2 VE) were synthesized by a modified Williamson etherification. Then, four new types of phase change materials were successfully fabricated by a living cationic polymerization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were employed to characterize their composition, thermal properties and crystallization behavior. The results show that, the side chains of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are in a hexagonal lattice, and the onset temperatures for melting of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are 39.8 °C, 37.4 °C, 51.0 °C and 48.9 °C, the onset temperatures for crystallization are 36.7 °C, 35.2 °C, 47.4 °C and 46.3 °C, respectively. The enthalpy changes of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 100 J/g; on the contrary, it is 96 J/g for PC 16 E 1 VE. The enthalpy decrease is no more than 11% after 10 heating and cooling cycles. The 5 wt% mass loss temperatures of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 300 °C; on the contrary, it’s 283 °C for PC 16 E 1 VE. Using a weak polarity, flexible alkyl ether chain (-OCH 2 CH 2 O-) as a spacer to link the main chain and side chain is conducive to the crystallization of the alkyl side chain. These new phase change materials can be applied in heat storage, energy conservation, and environmental protection.

  4. High performance oligomers: synthesis and photochemical properties of calix(n)arene containing various photoreactive groups

    International Nuclear Information System (INIS)

    Nishikubo, T.; Kameyama, A.

    1999-01-01

    Photoreactive calix(n)arenes containing radical polymerizable (meth)acrylate groups, and catatonically polymerizable vinyl ether, propargyl ether, oxirane and oxetane groups were synthesized by certain reactions of calix(n)arenes with the corresponding (meth)acrylic acid derivatives, vinyl ether compound, epibromohydrin and oxetane derivatives, respectively. The photochemical reaction of these calix(n)arene derivatives were also examined

  5. Compliant gel polymer electrolyte based on poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) for flexible lithium-ion batteries

    International Nuclear Information System (INIS)

    Ma, Xianguo; Huang, Xinglan; Gao, Jiandong; Zhang, Shu; Deng, Zhenghua; Suo, Jishuan

    2014-01-01

    Highlights: •Compliant gel polymer electrolyte based on P(MA-co-AN)/PVA is facilely prepared for flexible lithium-ion batteries. •The compliant gel polymer electrolyte displays high ionic conductivity, self-standing and mechanical flexible. •The compliant gel polymer electrolyte exhibits excellent chemical and electrochemical performances. -- Abstract: In this report, mechanically compliant gel polymer electrolyte (GPE) for flexible lithium-ion batteries is facilely fabricated. The GPE that based on the poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) (P(MA-co-AN)/PVA) was prepared via emulsion polymerization. Herein, the P(MA-co-AN) copolymer is anticipated to exert beneficial for the bendability of the GPE, as well as swollen with the liquid electrolyte to provide a facile pathway for ion movement. The PVA serves as a stabilizer during the emulsion polymerization and a mechanical framework for the compliant polymer membrane. Performance benefits of the mechanically compliant membrane are elucidated in terms of mechanical behavior, thermostability and ionic conductivity. The GPE is still self-standing and mechanical flexible after swollen with liquid electrolyte. The GPE displays a conductivity of 0.98 mS cm −1 with the uptake electrolyte up to 150% of its own weight at 30 °C, excellent electrochemical stability window (5.2 V vs. Li/Li + ) and favorable interfacial characteristics. When used in flexible lithium-ion batteries, such a GPE demonstrates satisfactory compatibility with LiCoO 2 and graphite electrodes

  6. Catabolism of methyl ter-butyl ether (MTBE): characterization of the enzymes of Mycobacterium austroafricanum IFP 2012 involved in MTBE degradation; Catabolisme du methyl tert-butyl ether (MTBE): caracterisation des enzymes impliquees dans la degradation du MTBE chez Mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Ferreira, N

    2005-11-15

    Methyl tert-butyl ether (MTBE) is added to gasoline to meet the octane index requirement. its solubility in water and its poor biodegradability made the use of MTBE a great environmental concern, particularly regarding aquifers. We previously isolated M austroafricanum IFP 2012 able to use MTBE as a sole source of carbon and energy and the MTBE pathway was partially characterized. In the present study, which aimed at isolating the genes involved in MTBE biodegradation in order to use them for estimation of MTBE biodegradation capacities in contaminated environment, we isolated a new M. austroafricanum strain, IFP 2015. A new degradation intermediate, the 2-methyl 1,2-propane-diol (2-M1,2-PD), the product of tert-butanol (TBA) oxidation, was identified. We also determined the enzymes induced during growth of M. austroafricanum IFP 2012 on MTBF. Then, using the tools of protein analysis and of molecular biology, we isolated and cloned the mpd genes cluster in the plasmid pCL4D. Heterologous expression of the recombinant plasmid in M smegmatis tmc2 155, showed the involvement of an 2-M1,2-PD dehydrogenase (MpdB) and a hydroxy-iso-butyr-aldehyde dehydrogenase (MpdC), encoded by mpdB and mpdC, respectively. Both enzymes were responsible for the conversion of 2-M 1,2-PD to hydroxy-isobutyric acid (HIBA). A further survey of different M austroafricanum strains, including IFP 2012, IFP 2015 and JOBS (ex-M vaccae) showed the link between the ability to grow on C{sub 2} to C{sub 16} n-alkanes and the MTBE and TBA degradation capacities. The alkB gene was partially sequenced in all these strains. Expression of alkB was demonstrated in M. austroafricanum IFP 2012 after growth on propane, hexane, hexadecane and TBA. Finally, we identified 2-propanol as the intermediate of HIBA degradation. The gene encoding the 2-propanol:p-N,N'-dimethyl-4-nitroso-aniline (NDMA) oxidoreductase was detected M austroafricanum IFP 2012. (author)

  7. Catabolism of methyl ter-butyl ether (MTBE): characterization of the enzymes of Mycobacterium austroafricanum IFP 2012 involved in MTBE degradation; Catabolisme du methyl tert-butyl ether (MTBE): caracterisation des enzymes impliquees dans la degradation du MTBE chez Mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Ferreira, N.

    2005-11-15

    Methyl tert-butyl ether (MTBE) is added to gasoline to meet the octane index requirement. its solubility in water and its poor biodegradability made the use of MTBE a great environmental concern, particularly regarding aquifers. We previously isolated M austroafricanum IFP 2012 able to use MTBE as a sole source of carbon and energy and the MTBE pathway was partially characterized. In the present study, which aimed at isolating the genes involved in MTBE biodegradation in order to use them for estimation of MTBE biodegradation capacities in contaminated environment, we isolated a new M. austroafricanum strain, IFP 2015. A new degradation intermediate, the 2-methyl 1,2-propane-diol (2-M1,2-PD), the product of tert-butanol (TBA) oxidation, was identified. We also determined the enzymes induced during growth of M. austroafricanum IFP 2012 on MTBF. Then, using the tools of protein analysis and of molecular biology, we isolated and cloned the mpd genes cluster in the plasmid pCL4D. Heterologous expression of the recombinant plasmid in M smegmatis tmc2 155, showed the involvement of an 2-M1,2-PD dehydrogenase (MpdB) and a hydroxy-iso-butyr-aldehyde dehydrogenase (MpdC), encoded by mpdB and mpdC, respectively. Both enzymes were responsible for the conversion of 2-M 1,2-PD to hydroxy-isobutyric acid (HIBA). A further survey of different M austroafricanum strains, including IFP 2012, IFP 2015 and JOBS (ex-M vaccae) showed the link between the ability to grow on C{sub 2} to C{sub 16} n-alkanes and the MTBE and TBA degradation capacities. The alkB gene was partially sequenced in all these strains. Expression of alkB was demonstrated in M. austroafricanum IFP 2012 after growth on propane, hexane, hexadecane and TBA. Finally, we identified 2-propanol as the intermediate of HIBA degradation. The gene encoding the 2-propanol:p-N,N'-dimethyl-4-nitroso-aniline (NDMA) oxidoreductase was detected M austroafricanum IFP 2012. (author)

  8. Misconceptions about the ether

    International Nuclear Information System (INIS)

    Duffy, M.C.

    1980-01-01

    Several misconceptions concerning the ether concept and ether models are reviewed and clarified so that the relationship between modern ether theory and orthodox relativity may be better understood. The question of the ether's supposed superfluidity as a concept, and its status in modern physics remains to be answered. (author)

  9. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...

  10. Water-base acrylic terpolymer as a corrosion inhibitor for SAE1018 in simulated sour petroleum solution in stagnant and hydrodynamic conditions

    International Nuclear Information System (INIS)

    Vakili Azghandi, M.; Davoodi, A.; Farzi, G.A.; Kosari, A.

    2012-01-01

    Highlights: ► Corrosion inhibition of a water-base copolymer, ATP, was studied. ► Efficiency more than 90% was obtained with 0.8 mmol/L ATP in 2000 rpm. ► ATP obeys Langmuir isotherm in static and hydrodynamic conditions. ► With the presence of ATP, OM images showed a decrease in surface attack. - Abstract: The effect of static and hydrodynamic conditions (0–2000 rpm) on corrosion inhibition of a water-base acrylic terpolymer (ATP), methyl methacrylate/butyl acrylate/acrylic acid, for SAE1018 steel in simulated sour petroleum corrosive solution (NACE 1D196) were investigated by AC/DC electrochemical tests. Increase in rotation speed accelerates the corrosion rate; however the corrosion inhibitor efficiency increases. This was attributed to the enhanced mass transport of inhibitor molecules to the metal surface. OM examinations also demonstrate that in presence of ATP, a decrease in corrosion attacks is observed. Thermodynamic calculations also showed that ATP obeys Langmuir adsorption isotherm and adsorbs chemically into the surface.

  11. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2017-01-01

    Full Text Available Methyl tert-butyl ether (MTBE has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC. A polypyrrole (PPy-modified GAC composite (PPy/GAC was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR and Brunauer-Emmett-Teller (BET surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation, the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration <20 μg/L. Pseudomonas aeruginosa and Acinetobacter pittii may be the predominant bacteria responsible for MTBE degradation in these biofilm reactors.

  12. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Athar; Mahdavian, Ali Reza, E-mail: a.mahdavian@ippi.ac.ir; Salehi-Mobarakeh, Hamid

    2017-03-15

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe{sub 3}O{sub 4} nanoparticles with polymerizable groups is presented here. After synthesis of Fe{sub 3}O{sub 4} nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe{sub 3}O{sub 4} are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe{sub 3}O{sub 4} nanoparticles (0–10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles. - Highlights: • Chemical modification of magnetite nanoparticles. • Encapsulation of modified magnetite with acrylic copolymer. • Superparamagnetic Fe3O4/polyacrylic nanocomposite particles.

  13. Sorption of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) to synthetic resins.

    Science.gov (United States)

    Bi, Erping; Haderlein, Stefan B; Schmidt, Torsten C

    2005-10-01

    Methyl tert-butyl ether (MTBE) is a widely used gasoline oxygenate. Contamination of MTBE and its major degradation product tert-butyl alcohol (TBA) in groundwater and surface water has received great attention. However, sorption affinity and sorption mechanisms of MTBE and TBA to synthetic resins, which can be potentially used in removal of these contaminants from water, in passive sampling, or in enrichment of bacteria, have not been studied systemically. In this study, kinetic and equilibrium sorption experiments (single solute and binary mixtures) on four synthetic resins were conducted. The sorption affinity of the investigated sorbents for MTBE and TBA decreases in the order Ambersorb 563>Optipore L493>Amberlite XAD4>Amberlite XAD7, and all show higher sorption affinity for MTBE than for TBA. Binary experiments with o-xylene, a major compound of gasoline as co-contaminant, imply that all resins preferentially sorb o-xylene over MTBE or TBA, i.e., there is sorption competition. In the equilibrium aqueous concentration (Ceq) range (0.1-139.0 mg/L for MTBE, and 0.01-48.4 mg/L for TBA), experimental and modeling results as well as sorbent characteristics indicate that micropore filling and/or some other type of adsorption process (e.g., adsorption to specific sites of high sorption potential at low concentrations) rather than partitioning were the dominant sorption mechanisms. Optipore L493 has favourable sorption and desorption characteristics, and is a suitable sorbent, e.g., in bacteria enrichment or passive sampling for moderately polar compounds. However, for highly polar compounds such as TBA, Ambersorb 563 might be a better choice, especially in water treatment.

  14. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine

    International Nuclear Information System (INIS)

    Gómez-Cuenca, F.; Gómez-Marín, M.; Folgueras-Díaz, M.B.

    2013-01-01

    Highlights: • Effect of propylene glycol ethers on diesel fuel properties. • Effect of these compounds on diesel engine performance and emissions. • Blends with ⩽4 wt.% of oxygen do not change substantially diesel fuel quality. • Blends with ⩽2.5 wt.% of oxygen reduce CO, HC and NOx emissions, but not smoke. • These compounds are helpful to reach a cleaner combustion in a diesel engine. - Abstract: The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (⩽4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. NOx emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load

  15. The influence of Metolose structure on the free volume and the consequent metoprolol tartrate release of patches.

    Science.gov (United States)

    Papp, József; Marton, Sylvia; Süvegh, Károly; Zelkó, Romána

    2009-01-01

    Matrix-type patches containing Metoprolol tartrate were prepared from two types of Metolose and acrylate polymers. Metolose SM 4000 and Metolose 90SH 100.000SR were applied in different proportions in the patches where the total polymer content was kept constant in each sample. The purpose of the study was to investigate the effect of Metolose structure on the free volume of the patches and the consequent drug release profile. The drug release profiles were characterized by zero-order and first-order models. The results indicate that Metolose, containing hydroxypropyl ether groups and methyl ether groups, enables the formation of H-bonds, thus increasing the free volume holes and the consequent extent and rate of drug release of patches.

  16. Breaking the regioselectivity rule for acrylate insertion in the Mizoroki-Heck reaction.

    Science.gov (United States)

    Wucher, Philipp; Caporaso, Lucia; Roesle, Philipp; Ragone, Francesco; Cavallo, Luigi; Mecking, Stefan; Göttker-Schnetmann, Inigo

    2011-05-31

    In modern methods for the preparation of small molecules and polymers, the insertion of substrate carbon-carbon double bonds into metal-carbon bonds is a fundamental step of paramount importance. This issue is illustrated by Mizoroki-Heck coupling as the most prominent example in organic synthesis and also by catalytic insertion polymerization. For unsymmetric substrates H(2)C = CHX the regioselectivity of insertion is decisive for the nature of the product formed. Electron-deficient olefins insert selectively in a 2,1-fashion for electronic reasons. A means for controlling this regioselectivity is lacking to date. In a combined experimental and theoretical study, we now report that, by destabilizing the transition state of 2,1-insertion via steric interactions, the regioselectivity of methyl acrylate insertion into palladium-methyl and phenyl bonds can be inverted entirely to yield the opposite "regioirregular" products in stoichiometric reactions. Insights from these experiments will aid the rational design of complexes which enable a catalytic and regioirregular Mizoroki-Heck reaction of electron-deficient olefins.

  17. Cytotoxic and DNA-damaging effects of methyl tert-butyl ether and its metabolites on HL-60 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tang, G.H. [Xian Medical Univ. (China); Shen, Y.; Shen, H.M. [National Univ. of Singapore (Singapore)] [and others

    1996-12-31

    Methyl tert-butyl ether (MTBE) is a widely used oxygenate in unleaded gasoline; however, few studies have been conducted on the toxicity of this compound. This study evaluates the cytotoxic and DNA-damaging effects of MTBE and its metabolites in a human haemopoietic cell line, HL-60. The metabolites of MTBE studied include tertiary butyl alcohol (TBA), {alpha}-hydroxyisobutyric acid (HIBA), and formaldehyde. Comet assay is used to assess DNA damage, and the cytotoxicity is investigated by lactate dehydrogenease (LDH) release. The results show no significant cytotoxic effects of MTBE, TBA, and HIBA over a concentration ranging from 1 to 30 mM. Formaldehyde, in contrast, causes a substantial LDH release at a concentration of 5 {mu}M. Hydrogen peroxide, a known oxidative agent, at concentrations ranging from 10 to 100 {mu}M, produces a significant dose-related increase in DNA damage, whereas a much higher concentration of MTBE (1 to 30 mM) is required to produce a similar observation. The genotoxic effects of TBA and HIBA appear to be identical to that of MTBE. Conversely, DNA damage is observed for formaldehyde at a relatively low concentration range (5 to 100 {mu}M). These findings suggest that MTBE and its metabolites, except formaldehyde, have relatively low cytotoxic and genotoxic effects. 16 refs., 4 figs.

  18. Influence of Methacrylic-Acrylic Copolymer Composition on Plasticiser-free Optode Films for pH Sensors

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2003-03-01

    Full Text Available In this work we have examined the use of plasticiser-free polymeric films incorporating a proton selective chromoionophore for optical pH sensor. Four types of methacrylic-acrylic copolymers containing different compositions of n-butyl acrylate (nBA and methyl methacrylate (MMA were synthesised for use as optical sensor films. The copolymers were mixed with appropriate amounts of chromoionophore (ETH5294 and a lipophilic salt before spin coated on glass slides to form films for the evaluation of pH response using spectrophotometry. Co-polymer films with high nBA content gave good response and the response time depended on the film thickness. A preliminary evaluation of the optical films of high nBA content with pHs from 2 - 14 showed distinguishable responses from pH 5 - 9. However, the adhesion of the pH sensitive film was good for copolymers with higher content of MMA but not for films with high nBA.

  19. Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China.

    Science.gov (United States)

    Hu, Dalin; Yang, Jianping; Liu, Yungang; Zhang, Wenjuan; Peng, Xiaowu; Wei, Qinzhi; Yuan, Jianhui; Zhu, Zhiliang

    2016-02-06

    Methyl tertiary butyl ether (MTBE), a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs) in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01) and both were lower than 50 ppm (an occupational threshold limit value). The calculated cancer risks (CRs) at the investigated petrol stations was 0.170 to 0.240 per 10⁶ for operating workers, and 0.026 to 0.049 per 10⁶ for support staff, which are below the typical target range for risk management of 1 × 10(-6) to 1 × 10(-4); The hazard quotients (HQs) for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk.

  20. Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China

    Directory of Open Access Journals (Sweden)

    Dalin Hu

    2016-02-01

    Full Text Available Methyl tertiary butyl ether (MTBE, a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet  little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01 and both were lower than 50 ppm (an occupational threshold limit value. The calculated cancer risks (CRs at the investigated petrol stations was 0.170 to 0.240 per 106 for operating workers, and 0.026 to 0.049 per 106 for support staff, which are below the typical target range for risk management of 1 × 10−6 to 1 × 10−4; The hazard quotients (HQs for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk.

  1. Synthesis, characterization and antimicrobial activity of important heterocyclic acrylic copolymers

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The acrylate monomer, 7-acryloyloxy-4-methyl coumarin (AMC has been synthesized by reacting 7-hydroxy-4-methyl coumarin, with acryloyl chloride in the presence of NaOH at 0–5°C. Copolymers of 7-acryloyloxy-4-methyl coumarin (AMC with vinyl acetate (VAc were synthesized in DMF (dimethyl formamide solution at 70±1°C using 2,2′-azobisisobutyronitrile (AIBN as an initiator with different monomer-to-monomer ratios in the feed. The copolymers were characterized by Fourier transform infra red (FTIR spectroscopy. The copolymer composition was evaluated by 1H-NMR (proton nuclear magnetic resonance and was further used to determine reactivity ratios. The monomer reactivity ratios for AMC (M1-VAc (M2 pair were determined by the application of conventional linearization methods such as Fineman-Ross (r1 = 0.6924; r2 = 0.6431, Kelen-Tüdõs (r1 = 0.6776; r2 = 0.6374 and extended Kelen-Tüdõs (r1 = 0.6657; r2 = 0.6256. Thermo gravimetric analysis showed that thermal decomposition of the copolymers occurred in single stage in the temperature range of 263–458°C. The molecular weights of the polymers were determined using gel permeation chromatography. The homo and copolymers were tested for their antimicrobial properties against selected microorganisms.

  2. Large Acrylic Spherical Windows In Hyperbaric Underwater Photography

    Science.gov (United States)

    Lones, Joe J.; Stachiw, Jerry D.

    1983-10-01

    Both acrylic plastic and glass are common materials for hyperbaric optical windows. Although glass continues to be used occasionally for small windows, virtually all large viewports are made of acrylic. It is easy to uderstand the wide use of acrylic when comparing design properties of this plastic with those of glass, and glass windows are relatively more difficult to fabricate and use. in addition there are published guides for the design and fabrication of acrylic windows to be used in the hyperbaric environment of hydrospace. Although these procedures for fabricating the acrylic windows are somewhat involved, the results are extremely reliable. Acrylic viewports are now fabricated to very large sizes for manned observation or optical quality instrumen tation as illustrated by the numerous acrylic submersible vehicle hulls for hu, an occupancy currently in operation and a 3600 large optical window recently developed for the Walt Disney Circle Vision under-water camera housing.

  3. MALDI-TOF MS analysis of the self-termination products in the anionic methyl methacrylate/tert-butyl acrylate block copolymerization

    Czech Academy of Sciences Publication Activity Database

    Vlček, Petr; Čadová, Eva; Horský, Jiří; Janata, Miroslav

    2015-01-01

    Roč. 72, č. 9 (2015), s. 2227-2239 ISSN 0170-0839 Institutional support: RVO:61389013 Keywords : anionic polymerization * acrylates * block copolymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.371, year: 2015

  4. Dynamically formed hydrous zirconium (IV) oxide-polyelectrolyte membranes. III: Poly(acrylic acid) and substituted poly(acrylic acid) homo, co and terpolymer membranes

    International Nuclear Information System (INIS)

    Van Reenen, A.J.; Sanderson, R.D.

    1989-01-01

    A series of acrylic acid and substituted acrylic acid homo, co and terpolymers was synthesised. These polymers were used as polyelectrolytes in dynamically formed hydrous zirconium (iv) oxide-polyelectrolyte membranes. Substitution of the acrylic acid α-hydrogen was done to increase the number of carboxylic acid groups per monomer unit and to change the acid strength of acrylic acid carboxylic acid group. None of these changes improved the salt rejection of these membranes over that of commercially used poly(acrylic acid). Improvement in rejection was found when a hydrophobic comonomer, vinyl acetate, was used in conjunction with acrylic acid in a copolymer dynamic membrane. 16 refs., 6 figs., 1 tab

  5. [Acrylic resin removable partial dentures

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Creugers, N.H.J.

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of

  6. Synthesis of some fenchyl-substituted alkenes and enol-ethers containing 3-oxyphenyl substituents by the Barton-Kellogg reaction

    International Nuclear Information System (INIS)

    Ciscato, Luiz Francisco M.L.; Bartoloni, Fernando H.; Baader, Wilhelm Josef; Bastos, Erick L.; Guenther, Wolfgang; Weiss, Dieter; Beckert, Rainer

    2010-01-01

    The synthesis of one fenchyl-substituted alkene and two enol-ethers, containing 3-oxyphenyl substituents by the Barton-Kellogg reaction is described. The tri-substituted aromatic fenchylalkene 1a was prepared in 53% yield from thiofenchone and a diazoanisole; whereas enol-ethers 1b and 1c were obtained (95 and 75% yield, respectively) using an inverse approach based on diazofenchone and aromatic thionoesters. A mixture of Z and E isomers was obtained in all cases; isomer attribution and quantification has been carried out by analysis of NMR spectroscopic data assisted by theoretical calculations (E/Z ratio: 1a = 0.72, 1b = 2.2, 1c = 1.8). Reaction proceeds with low stereoselectivity leading to the preferential formation of diastereoisomeric olefins and enol-ethers where the aromatic substituent resides at the side of the two fenchyl methyl groups. (author)

  7. Synthesis of some fenchyl-substituted alkenes and enol-ethers containing 3-oxyphenyl substituents by the Barton-Kellogg reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ciscato, Luiz Francisco M.L.; Bartoloni, Fernando H.; Baader, Wilhelm Josef, E-mail: wjbaader@iq.usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental; Bastos, Erick L. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Guenther, Wolfgang; Weiss, Dieter; Beckert, Rainer [Friedrich-Schiller Universitaet Jena (Germany). Institut fuer Organische Chemie und Makromolekulare Chemie

    2010-07-01

    The synthesis of one fenchyl-substituted alkene and two enol-ethers, containing 3-oxyphenyl substituents by the Barton-Kellogg reaction is described. The tri-substituted aromatic fenchylalkene 1a was prepared in 53% yield from thiofenchone and a diazoanisole; whereas enol-ethers 1b and 1c were obtained (95 and 75% yield, respectively) using an inverse approach based on diazofenchone and aromatic thionoesters. A mixture of Z and E isomers was obtained in all cases; isomer attribution and quantification has been carried out by analysis of NMR spectroscopic data assisted by theoretical calculations (E/Z ratio: 1a = 0.72, 1b = 2.2, 1c = 1.8). Reaction proceeds with low stereoselectivity leading to the preferential formation of diastereoisomeric olefins and enol-ethers where the aromatic substituent resides at the side of the two fenchyl methyl groups. (author)

  8. Radiation curing applications of palm oil acrylates

    International Nuclear Information System (INIS)

    Mohd Hilmi Mahmood; Khairul Zaman; Rida, Anak Tajau; Mek Zah Salleh; Rosley Che Ismail

    2007-01-01

    Various palm oil based urethan acrylate prepolymers (UP) were prepared from palm oil based polyols, diisocyanate compounds and hydroxyl terminated acrylate monomers by following procedure derived from established methods. The products were compared with each other in term of their molecular weights (MW), viscosities, curing speed by UV irradiation, gel contents and film hardness. The molecular structure of diisocyanate compounds and hydroxyl acrylate monomers were tend to determine the molecular weights and hence viscosities of the final products of urethan acrylate prepolymers (UP), whereas, the MW of the UP has no direct effects on the UV curing properties of the prepolymers. (author)

  9. Interactions between Therapeutic Proteins and Acrylic Acid Leachable.

    Science.gov (United States)

    Liu, Dengfeng; Nashed-Samuel, Yasser; Bondarenko, Pavel V; Brems, David N; Ren, Da

    2012-01-01

    Leachables are chemical compounds that migrate from manufacturing equipment, primary containers and closure systems, and packaging components into biopharmaceutical and pharmaceutical products. Acrylic acid (at concentration around 5 μg/mL) was detected as leachable in syringes from one of the potential vendors (X syringes). In order to evaluate the potential impact of acrylic acid on therapeutic proteins, an IgG 2 molecule was filled into a sterilized X syringe and then incubated at 45 °C for 45 days in a pH 5 acetate buffer. We discovered that acrylic acid can interact with proteins at three different sites: (1) the lysine side chain, (2) the N-terminus, and (3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed. Even thought a small amount (from 0.02% to 0.3%) of protein was found to be modified by acrylic acid, the modified protein can potentially be harmful due to the toxicity of acrylic acid. After being modified by acrylic acid, the properties of the therapeutic protein may change due to charge and hydrophobicity variations. Acrylic acid was detected to migrate from syringes (Vendor X) into a therapeutic protein solution (at a concentration around 5 μg/mL). In this study, we discovered that acrylic acid can modify proteins at three different sites: (1) the lysine side chain, 2) the N-terminus, and 3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed.

  10. Dynamical mechanical analysis of photocrosslinked hyperbranched urethane acrylates

    Directory of Open Access Journals (Sweden)

    BRANKO DUNJIC

    2004-06-01

    Full Text Available A series of acrylate functionalized samples based on hyperbranched hydroxy-terminated polyesters with different molecular weights and different degrees of acrylation were synthesized. The obtained urethane acrylates were slightly yellow viscose liquids. Their composition was characterized by FTIR and 1H-NMR spectroscopy and their molecular weights were measured by GPC. All the synthesized samples were diluted with 25 wt.% 1,4-butanediol dimethacrylate (BDDM. The rheological properties of the uncured samples and the dynamic mechanical properties of the UV cured samples were examined. All the samples exhibit Newtonian behavior, which indicates the absence of physical entanglements in these polymers. The viscosity increases with increasing number of acrylic groups per molecule. The glass transition temperature of the UV cured samples increases with increasing the number of acrylic groups per molecule. The value of the storage modulus in the rubber-elastic plateau and the cross-link density increase with increasing number of acrylic groups per molecule. The formed networks are inhomogeneous and the residual unsaturation is the highest in the samples with the largest number of acrylic groups per molecule.

  11. Reproductive toxicity of the glycol ethers.

    Science.gov (United States)

    Hardin, B D

    1983-06-01

    The glycol ethers are an important and widely used class of solvents. Recent studies have demonstrated that ethylene glycol monomethyl ether (EGME), ethylene glycol dimethyl ether (EGdiME), ethylene glycol monoethyl ether (EGEE), and ethylene glycol monoethyl ether acetate (EGEEA) are teratogenic. Other studies have demonstrated that testicular atrophy or infertility follow treatment of males with EGME, ethylene glycol monomethyl ether acetate (EGMEA), EGEE, EGEEA, diethylene glycol dimethyl ether (diEGdiME), and diethylene glycol monoethyl ether (diEGEE). Experimental data are reviewed and structure-activity relationships are speculated upon.

  12. Emission Studies in CI Engine using LPG and Palm Kernel Methyl Ester as Fuels and Di-ethyl Ether as an Additive

    Science.gov (United States)

    Dora, Nagaraju; Jothi, T. J. Sarvoththama

    2018-05-01

    The present study investigates the effectiveness of using di-ethyl ether (DEE) as the fuel additive in engine performance and emissions. Experiments are carried out in a single cylinder four stroke diesel engine at constant speed. Two different fuels namely liquefied petroleum gas (LPG) and palm kernel methyl ester (PKME) are used as primary fuels with DEE as the fuel additive. LPG flow rates of 0.6 and 0.8 kg/h are considered, and flow rate of DEE is varied to maintain the constant engine speed. In case of PKME fuel, it is blended with diesel in the latter to the former ratio of 80:20, and DEE is varied in the volumetric proportion of 1 and 2%. Results indicate that for the engine operating in LPG-DEE mode at 0.6 kg/h of LPG, the brake thermal efficiency is lowered by 26%; however, NOx is subsequently reduced by around 30% compared to the engine running with only diesel fuel at 70% load. Similarly, results of PKME blended fuel showed a drastic reduction in the NOx and CO emissions. In these two modes of operation, DEE is observed to be significant fuel additive regarding emissions reduction.

  13. Comparison of the Retinal Straylight in Pseudophakic Eyes with PMMA, Hydrophobic Acrylic, and Hydrophilic Acrylic Spherical Intraocular Lens

    Directory of Open Access Journals (Sweden)

    Ya-wen Guo

    2014-01-01

    Full Text Available Purpose. To investigate the intraocular straylight value after cataract surgery. Methods. In this study, 76 eyes from 62 patients were subdivided into three groups. A hydrophobic acrylic, a hydrophilic acrylic, and a PMMA IOL were respectively, implanted in 24 eyes, 28 eyes, and 24 eyes. Straylight was measured using C-Quant at 1 week and 1 month postoperatively in natural and dilated pupils. Results. The hydrophilic acrylic IOLs showed significantly lower straylight values than those of the hydrophobic acrylic IOLs in dilated pupils at 1 week and 1 month after surgery (P0.05. Moreover, no significant difference was found in straylight between natural and dilated pupils in each group at 1 week and 1 month postoperatively (P>0.05. Conclusions. Although the hydrophobic acrylic IOL induced more intraocular straylight, straylight differences among the 3 IOLs were minimal. Pupil size showed no effect on intraocular straylight; the intraocular straylight was stable 1 week after surgery.

  14. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate polymer...

  15. Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Kane, Staci R; Chakicherla, Anu Y; Chain, Patrick S G; Schmidt, Radomir; Shin, Maria W; Legler, Tina C; Scow, Kate M; Larimer, Frank W; Lucas, Susan M; Richardson, Paul M; Hristova, Krassimira R

    2007-03-01

    Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C(5) to C(12)) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an approximately 4-Mb circular chromosome and an approximately 600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (approximately 99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria.

  16. Biofiltration and inhibitory interactions of gaseous benzene, toluene, xylene, and methyl tert-butyl ether.

    Science.gov (United States)

    Shim, Eun-Hwa; Kim, Jaisoo; Cho, Kyung-Suk; Ryu, Hee Wook

    2006-05-01

    This study evaluated the individual and combined removal capacities of benzene, toluene, and xylene (B, T, and X) in the presence and absence of methyl tert-butyl ether (MTBE) in a polyurethane biofilter inoculated with a BTX-degrading microbial consortium, and further examined their interactive effects in various mixtures. In addition, Polymerase chain reaction-denaturing gradient gel electrophoresis and phylogenetic analysis of 16S rRNA gene sequences were used to compare the microbial community structures found in biofilters exposed to the various gases and gas mixtures. The maximum individual elimination capacities (MECs) of B, T, and X were 200, 238, and 400 g m(-3) h(-1), respectively. There was no significant elimination of MTBE alone. Addition of MTBE decreased the MECs of B,T, and X to 75, 100, and 300 g m(-3) h(-1), respectively, indicating that benzene was most strongly inhibited by MTBE. When the three gases were mixed (B + T + X), the removal capacities of individual B, T, and X were 50, 90, and 200 g m(-3) h(-1), respectively. These capacities decreased to 40, 50, and 100 g m(-3) h(-1) when MTBE was added to the mix. The MEC of the three-gas mixture (B + T + X) was 340 g m(-3) h(-1), and that of the four-gas mixture was 200 g m(-3) h(-1). Although MTBE alone was not degraded by the biofilter, it could be co-metabolically degraded in the presence of toluene, benzene, or xylene with the MECs of 34, 23, and 14 g m(-3) h(-1), respectively. The microbial community structure analysis revealed that two large groups could be distinguished based on the presence or absence of MTBE, and many of the dominant bacteria in the consortia were closely related to bacteria isolated from aromatic hydrocarbon-contaminated sites and/ or oil wastewaters. These findings provide important new insights into biofiltration and may be used to improve the rational design of biofilters for remediation of petroleum gas-contaminated airstreams according to composition types of mixed

  17. Part I. Naltrexone-derived conjugate addition ligands for opioid receptors. Part II. Chemical and enantioselective aspects of the metabolism of verapamil

    International Nuclear Information System (INIS)

    Olsen, L.D.

    1987-01-01

    Selective chemoaffinity ligands to aid in identification and purification of opioid receptor subtypes were prepared from 6α- and 6β-naltrexol, obtained stereoselectively from the μ-receptor antagonist naltrexone. The targets were the 6α- and 6β-methacrylate ethers and 6α- and 6β-methacrylate esters prepared from reaction of 6α- and 6β-naltrexol with methyl α-(bromomethyl)acrylate or methacryloyl chloride. Of three methacrylate derivatives, the 6α-ether was the most potent in an opioid receptor binding assay with [ 3 H]-naltrexone. In the presence of sodium ion, preincubation of the 6α-ether resulted in recovery of about 60% of original [ 3 H]-naltrexone binding suggesting some irreversible effects. The methacrylate esters precipitated withdrawal in morphine dependent monkeys. The enantiomers of verapamil, a calcium channel antagonist, have different pharmacological and pharmacokinetic properties. The oxidative metabolism of verapamil was studied in rat and human liver microsomes and in man after a single oral dose

  18. Radiation-grafting of 2-hydroxyethylmethacrylate and oligo (ethylene glycol) methyl ether methacrylate onto polypropylene films by one step method

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Jimenez, Alejandro [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico); Alvarez-Lorenzo, Carmen; Concheiro, Angel [Departamento de Farmacia y Tecnologia Farmaceutica, Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Bucio, Emilio, E-mail: ebucio@nucleares.unam.mx [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico)

    2012-01-15

    Polypropylene films were modified with 2-hydroxyethylmethacrylate (HEMA) and oligo (ethylene glycol) methyl ether methacrylate (OEGMA) using the pre-irradiation method with gamma-rays (one step method). The effect of absorbed dose from 10 to 100 kGy, temperature (50, 60, and 70 {sup o}C), monomer concentration between 12.5% and 62.5%, monomers ratio from 10% to 90% and reaction time from 5 to 50 h; on the degree of grafting was determined. The grafted samples were analyzed by FTIR-ATR, TGA, DSC, swelling, and contact angle. Grafts onto polymeric films between 3% and 109% were obtained at doses from 10 to 100 kGy and a dose rate around 7.4 kGy/h. The graft percent increased with the content in HEMA in the HEMA:OEGMA feed mixture, which indicates a lower reactivity of OEGMA compared to HEMA. The hydrogel layer grafted on the polypropylene substrate increases the hydrophilicity of the surface and also provides certain temperature-responsiveness, which may be of interest for biomedical applications. - Highlights: > PP was grafted with a hydrogel layer applying the {gamma}-ray pre-irradiation method. > Effects of radiation dose, time, temperature and monomers concentration were evaluated. > Grafted layer increases the hydrophilicity of PP films. > HEMA and OEGMA grafted onto PP may be of interest for biomedical applications.

  19. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials, containers...

  20. Theoretical calculation on a compound formed by methyl alcohol and simmondsin

    Directory of Open Access Journals (Sweden)

    İzzet KARA

    2016-12-01

    Full Text Available Etheric oil results from the esterification reactions of oil acids with alcohols. In these reactions, one molecule water (H2O is composed of H× protons from oil acids and OH- groups which separated from alcohol. Etheric oil is commonly used in food industry, perfume industry and medicine. From this perspective, we need to know physical properties of etheric oil as well as chemical properties. In this study, the highest occupied molecular orbital (HOMO energies, the lowest unoccupied molecular orbital (LUMO energies, the electronic properties (total energy, electronegativity, chemical hardness and softness, NBO analysis and thermodynamic parameters of a compound formed by methyl alcohol and simmondsin have been performed by using Gaussian 09W program. The structural and spectroscopic data of the molecule in the ground state have been calculated by using density functional method (DFT/B3LYP with the 6-31++G(d,p basis set.

  1. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...

  2. Effects of Novel Structure Bonding Materials on Properties of Aeronautical Acrylic

    Directory of Open Access Journals (Sweden)

    LI Zhisheng

    2017-06-01

    Full Text Available Novel structure bonding materials, J-351 epoxy adhesive film with low curing temperature and liquid modified acrylate SY-50s adhesive were chosen and characterized. The effects of adhesives on the mechanical properties of acrylic were studied. The results reveal that both adhesives have excellent bonding properties to acrylic. The stress-solvent crazing value of J-351 is higher than that of SY-50s. With the application of adhesive on the surface, mechanical properties of acrylic are declined. Casting acrylic shows more drastic decline than that of oriented acrylic. Through the characterization of fracture surface, we find that fracture of tensile sample derives from the side with adhesive. Mechanical properties of acrylic are more sensitive to SY-50s, because the liquid adhesive presents integrate bonding interface with acrylic. The interface between J-351 and acrylic is clear, making acrylic insensitive to J-351 film. Edge attachment strength of samples bonded with J-351 are higher than that of samples bonded with SY-50s due to the effects of adhesives on acrylic. J-351 epoxy adhesive film presents preferable application performance in the structure bonding of aeronautical acrylic.

  3. Advances in acrylic-alkyd hybrid synthesis and characterization

    Science.gov (United States)

    Dziczkowski, Jamie

    2008-10-01

    In situ graft acrylic-alkyd hybrid resins were formed by polymerizing acrylic and acrylic-mixed monomers in the presence of alkyds by introduction of a free radical initiator to promote graft formation. Two-dimensional NMR, specifically gradient heteronuclear multiple quantum coherence (gHMQC), was used to clarify specific graft sites of the hybrid materials. Both individual and mixed-monomer systems were produced to determine any individual monomer preferences and to model current acrylic-alkyd systems. Different classes of initiators were used to determine any initiator effects on graft location. The 2D-NMR results confirm grafting at doubly allylic hydrogens located on the fatty acid chains and the polyol segment of the alkyd backbone. The gHMQC spectra show no evidence of grafting across double bonds on either pendant fatty acid groups or THPA unsaturation sites for any of the monomer or mixed monomer systems. It was also determined that choice of initiator has no effect on graft location. In addition, a design of experiments using response surface methodology was utilized to obtain a better understanding of this commercially available class of materials and relate both the chemical and physical properties to one another. A Box-Behnkin design was used, varying the oil length of the alkyd phase, the degree of unsaturation in the polyester backbone, and acrylic to alkyd ratio. Acrylic-alkyd hybrid resins were reduced with an amine/water mixture. Hydrolytic stability was tested and viscoelastic properties were obtained to determine crosslink density. Cured films were prepared and basic coatings properties were evaluated. It was found that the oil length of the alkyd is the most dominant factor for final coatings properties of the resins. Acrylic to alkyd ratio mainly influences the resin properties such as acid number, average molecular weight, and hydrolytic stability. The degree of unsaturation in the alkyd backbone has minimal effects on resin and film

  4. N-Alkylated dinitrones from isosorbide as cross-linkers for unsaturated bio-based polyesters

    Directory of Open Access Journals (Sweden)

    Oliver Goerz

    2014-04-01

    Full Text Available Isosorbide was esterified with acryloyl chloride and crotonic acid yielding isosorbide diacrylate (9a and isosorbide dicrotonate (9b, which were reacted with benzaldehyde oxime in the presence of zinc(II iodide and boron triflouride etherate as catalysts to obtain N-alkylated dinitrones 10a/b. Poly(isosorbide itaconite -co- succinate 13 as a bio-based unsaturated polyester was cross-linked by a 1,3-dipolar cycloaddition with the received dinitrones 10a/b. The 1,3-dipolar cycloaddition led to a strong change of the mechanical properties which were investigated by rheological measurements. Nitrones derived from methyl acrylate (3a and methyl crotonate (3b were used as model systems and reacted with dimethyl itaconate to further characterize the 1,3-dipolaric cycloaddition.

  5. Ketene as a Reaction Intermediate in the Carbonylation of Dimethyl Ether to Methyl Acetate over Mordenite

    DEFF Research Database (Denmark)

    Rasmussen, Dominik Bjørn; Christensen, Jakob Munkholt; Temel, Burcin

    2015-01-01

    Unprecedented insight into the carbonylation of dimethyl ether over Mordenite is provided through the identification of ketene (CH2CO) as a reaction intermediate. The formation of ketene is predicted by detailed DFT calculations and verified experimentally by the observation of doubly deuterated ...

  6. Exogenous ether lipids predominantly target mitochondria.

    Directory of Open Access Journals (Sweden)

    Lars Kuerschner

    Full Text Available Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking.

  7. Biosynthetic conversion of thebaine to codeinone. Mechanism of ketone formation from enol ether in vivo

    International Nuclear Information System (INIS)

    Horn, J.S.; Paul, A.G.; Rapoport, H.

    1978-01-01

    Biosynthesis of the morphinan alkaloids proceeds by conversion of the enol ether or thebaine to the keto group of neopinone and thence to codeinone. To determine the mechanism of this transformation, [G- 14 C,6- 18 O]thebaine was fed to Papaver somniferum and the codeine and morphine were isolated. Comparison of the 18 O/ 14 C ratios in the codeine and morphine isolated with that of the thebaine fed showed that approximately 34% of the 18 O had been retained. Parallel feedings with [G- 14 C,6- 18 O]-codeinone demonstrated that the loss was due to nonenzymic exchange. Thus, the mechanism of enol ether cleavage in thebaine is established as cleavage of the 6-O-methyl group with retention of the 6-oxygen in the codeinone

  8. Ether formulations of relativity

    International Nuclear Information System (INIS)

    Duffy, M.C.

    1980-01-01

    Contemporary ether theories are surveyed and criticised, especially those formally identical to orthodox Relativity. The historical development of Relativity, Special and General, in terms of an ether, is briefly indicated. Classical interpretations of Generalized Relativity using ether are compared to Euclidean formulations using a background space. The history of a sub-group of theories, formulating a 'new' Relativity involving modified transforms, is outlined. According to the theory with which they agree, recent supposed detections of drift are classified and criticised. Cosmological evidence suggesting an ether is mentioned. Only ether theories formally identical to Relativity have been published in depth. They stand criticised as being contrary to the positivist spirit. The history of mechanical analogues is traced, from Hartley's representing gravitating matter as spherical standing waves, to recent suggestions that vortex-sponge might model electromagnetic, quantum, uncertainty and faster-than-light phenomena. Contemporary theories are particular physical theories, themselves 'second interpretations' of a primary mathematical model. Mechanical analogues are auxiliary, not necessary, to other theory, disclosing relationships between classical and non-classical descriptions of assemblies charging state. The ether-relativity polemic, part of a broader dispute about relativity, is founded on mistaken conceptions of the roles of mathematical and physical models, mechanical analogues; and a distored view of history, which indicates that ether theories have become relativistic. (author)

  9. Effects of composition and layer thickness of a butyl acrylate/acrylic acid copolymer on the adhesion properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghim, Deoukchen; Kim, Jung Hyeun [University of Seoul, Seoul (Korea, Republic of)

    2016-02-15

    Acrylic pressure-sensitive adhesives are synthesized by solution copolymerization using n-butyl acrylate and acrylic acid (AA) in ethyl acetate anhydrous. The copolymer composition is controlled for good adhesive properties by varying AA content. The monomer conversion is measured by the gravimetric method and FTIR technique. The adhesive layer thickness is measured by scanning electron microscopy, and the adhesive properties are evaluated with loop tack, 180 .deg. peel, and holding time measurements. The peel force increases with increasing the AA content up to 3 wt% and decreases at the AA content higher than 3 wt%, but the tack force decreases with increasing the AA content. The holding time increases with increasing the AA content, and it shows a similar trend with the T{sub g} of adhesives. The increase of layer thickness improves tack and peel forces, but it weakens the holding power. A tape thickness of about 20 μm shows well-balanced properties at 3 wt% AA content in the acrylic copolymer system.

  10. Effects of composition and layer thickness of a butyl acrylate/acrylic acid copolymer on the adhesion properties

    International Nuclear Information System (INIS)

    Ghim, Deoukchen; Kim, Jung Hyeun

    2016-01-01

    Acrylic pressure-sensitive adhesives are synthesized by solution copolymerization using n-butyl acrylate and acrylic acid (AA) in ethyl acetate anhydrous. The copolymer composition is controlled for good adhesive properties by varying AA content. The monomer conversion is measured by the gravimetric method and FTIR technique. The adhesive layer thickness is measured by scanning electron microscopy, and the adhesive properties are evaluated with loop tack, 180 .deg. peel, and holding time measurements. The peel force increases with increasing the AA content up to 3 wt% and decreases at the AA content higher than 3 wt%, but the tack force decreases with increasing the AA content. The holding time increases with increasing the AA content, and it shows a similar trend with the T g of adhesives. The increase of layer thickness improves tack and peel forces, but it weakens the holding power. A tape thickness of about 20 μm shows well-balanced properties at 3 wt% AA content in the acrylic copolymer system.

  11. Effect of modified graphene and microwave irradiation on the mechanical and thermal properties of poly(styrene-co-methyl methacrylate)/graphene nanocomposites

    KAUST Repository

    Zubair, Mukarram; Jose, Jobin Vinodh; Emwas, Abdul-Hamid M.; Al-Harthi, Mamdouh Ahmed

    2014-01-01

    The effect of modified graphene (MG) and microwave irradiation on the interaction between graphene (G) and poly(styrene-co-methyl meth acrylate) [P(S-co-MMA)] polymer matrix has been studied in this article. Modification of graphene was performed

  12. Amylase catalyzed synthesis of glycosyl acrylates and their polymerization

    NARCIS (Netherlands)

    Kloosterman, Wouter M.J.; Jovanovic, Danijela; Brouwer, Sander; Loos, Katja

    2014-01-01

    The enzymatic synthesis of novel (di)saccharide acrylates from starch and 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and 4-hydroxybutyl acrylate (2-HEA, 2-HEMA and 4-HBA) catalyzed by various commercially available amylase preparations is demonstrated. Both liquefaction and

  13. Continuous production of biodiesel under supercritical methyl acetate conditions: Experimental investigation and kinetic model.

    Science.gov (United States)

    Farobie, Obie; Matsumura, Yukihiko

    2017-10-01

    In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.

  14. Improved surface hydrophilicity and antifouling property of polysulfone ultrafiltration membrane with poly(ethylene glycol) methyl ether methacrylate grafted graphene oxide nanofillers

    Science.gov (United States)

    Wang, Haidong; Lu, Xiaofei; Lu, Xinglin; Wang, Zhenghui; Ma, Jun; Wang, Panpan

    2017-12-01

    In this study, the GO-g-P(PEGMA) nanoplates were first synthesized by grafting hydrophilic poly (poly (ethylene glycol) methyl ether methacrylate) via surface-initiated atom transfer radical polymerization (SI-ATRP) method. A novel polysulfone (PSF) nanocomposite membrane using GO-g-P(PEGMA) nanoplates as nanofillers was fabricated. FTIR, TGA, 1H NMR, GPC and TEM were applied to verify the successful synthesis of the prepared nanoplates, while SEM, AFM, XPS, contact angle goniometry and filtration experiments were used to characterize the fabricated nanocomposite membranes. It was found that the new prepared nanofillers were well dispersed in organic PSF matrix, and the PSF/GO-g-P(PEGMA) nanocomposite membrane showed significant improvements in water flux and flux recovery rate. Based on the results of resistance-in-series model, the nanocomposite membrane exhibited superior resistance to the irreversible fouling. The excellent filtration and antifouling performance are attributed to the segregation of GO-g-P(PEMGA) nanofillers toward the membrane surface and the pore walls. Notably, the blended nanofillers appeared a stable retention in/on nanocomposite membrane after 30 days of washing time. The demonstrated method of synthesis GO-g-P(PEGMA) in this study can also be extended to preparation of other nanocomposite membrane in future.

  15. Methyl-perfluoroheptene-ethers (CH3OC7F13): measured OH radical reaction rate coefficients for several isomers and enantiomers and their atmospheric lifetimes and global warming potentials.

    Science.gov (United States)

    Jubb, Aaron M; Gierczak, Tomasz; Baasandorj, Munkhbayar; Waterland, Robert L; Burkholder, James B

    2014-05-06

    Mixtures of methyl-perfluoroheptene-ethers (CH3OC7F13, MPHEs) are currently in use as replacements for perfluorinated alkanes (PFCs) and poly-ether heat transfer fluids, which are persistent greenhouse gases with lifetimes >1000 years. At present, the atmospheric processing and environmental impact from the use of MPHEs is unknown. In this work, rate coefficients at 296 K for the gas-phase reaction of the OH radical with six key isomers (including stereoisomers and enantiomers) of MPHEs used commercially were measured using a relative rate method. Rate coefficients for the six MPHE isomers ranged from ∼ 0.1 to 2.9 × 10(-12) cm(3) molecule(-1) s(-1) with a strong stereoisomer and -OCH3 group position dependence; the (E)-stereoisomers with the -OCH3 group in an α- position relative to the double bond had the greatest reactivity. Rate coefficients measured for the d3-MPHE isomer analogues showed decreased reactivity consistent with a minor contribution of H atom abstraction from the -OCH3 group to the overall reactivity. Estimated atmospheric lifetimes for the MPHE isomers range from days to months. Atmospheric lifetimes, radiative efficiencies, and global warming potentials for these short-lived MPHE isomers were estimated based on the measured OH rate coefficients along with measured and theoretically calculated MPHE infrared absorption spectra. Our results highlight the importance of quantifying the atmospheric impact of individual components in an isomeric mixture.

  16. Allergic contact dermatitis to acrylates in disposable blue diathermy pads.

    Science.gov (United States)

    Sidhu, S. K.; Shaw, S.

    1999-01-01

    We report 2 cases of elicitation of allergic contact dermatitis to acrylates from disposable blue diathermy pads used on patients who underwent routine surgery. Their reactions were severe, and took approximately 5 weeks to resolve. Both patients gave a prior history of finger tip dermatitis following the use of artificial sculptured acrylic nails, which is a common, but poorly reported, cause of acrylate allergy. Patch testing subsequently confirmed allergies to multiple acrylates present in both the conducting gel of disposable blue diathermy pads, and artificial sculptured acrylic nails. We advocate careful history taking prior to surgery to avoid unnecessary exposure to acrylates in patients already sensitized. Images Figure 1 Figure 2 PMID:10364952

  17. Detection of free radicals by radical trapping and 15N NMR spectroscopy in copolymerization of methyl acrylate and styrene

    NARCIS (Netherlands)

    Kelemen, P.; Klumperman, B.

    2003-01-01

    The macroradicals taking part in the copolymn. of Me acrylate and styrene were trapped by reaction with a 15N labeled stable nitroxyl radical at 70 DegC. The nitroxyl radical is formed in situ from a thermally instable alkoxyamine precursor. 15N NMR spectroscopy is applied to detect the trapping

  18. Palm oil based polyols for acrylated polyurethane production

    International Nuclear Information System (INIS)

    Rida Tajau; Mohd Hilmi Mahmood; Mek Zah Salleh; Khairul Zaman Mohd Dahlan; Rosley Che Ismail

    2006-01-01

    Palm oil becomes important renewable resources for the production of polyols for the polyurethane manufacturing industry. The main raw materials used for the production of acrylated polyurethane are polyols, isocyanates and hydroxyl terminated acrylate compounds. In these studies, polyurethane based natural polymer (palm oil), i.e., POBUA (Palm Oil Based Urethane Acrylate) were prepared from three different types of palm oil based polyols i.e., epoxidised palm oil (EPOP), palm oil oleic acid and refined, bleached and deodorized (RBD) palm olein based polyols. The performances of these three acrylated polyurethanes when used for coatings and adhesives were determined and compared with each other. (Author)

  19. Rotation of methyl side groups in polymers: A Fourier transform approach to quasielastic neutron scattering. 1: Homopolymers

    International Nuclear Information System (INIS)

    Arrighi, V.; Higgins, J.S.; Howells, W.S.

    1995-01-01

    The rotational motion of the ester methyl group in poly(methyl methacrylate) (PMMA) was investigated using quasielastic neutron scattering (QENS). A comparison between the authors results and the QENS data reported in the literature for PMMA-d 5 indicates that the amount of quasielastic broadening is highly dependent upon the energy resolution of the spectrometer. This anomalous behavior is here attributed to the method of analysis, namely, the use of a single rotational frequency. Such a procedure leads to a non-Arrhenius temperature dependence, to a temperature-dependent elastic incoherent structure factor, and to values of rotational frequency which are resolution dependent. They propose an alternative approach to the analysis of the QENS data which accounts for the existence of a distribution of rotational frequencies. The frequency data are Fourier transformed to the time domain, and the intermediate scattering function is fitted using a stretched exponential or Kohlraush-Williams-Watts function. The excellent overlap between data from different spectrometers leaves no doubt on the adequacy of their procedure. Measurements of the ether methyl group rotation in poly(vinyl methyl ether) (PVME) are also reported. The PVME data confirm that the behavior observed for PMMA-d 5 is likely to be a common feature to all polymeric systems

  20. Poly (ethylene oxide)-block-poly (n-butyl acrylate)-blockpoly (acrylic acid) triblock terpolymers with highly asymmetric hydrophilic blocks: synthesis and aqueous solution properties

    OpenAIRE

    Petrov, P. (Petar); Yoncheva, K. (Krassimira); Mokreva, P. (Pavlina); Konstantinov, S. (Spiro); Irache, J.M. (Juan Manuel); Müller, A.H.E. (Axel H.E.)

    2013-01-01

    The synthesis and aggregation behaviour in aqueous media of novel amphiphilic poly(ethylene oxide)- block-poly(n-butyl acrylate)-block-poly(acrylic acid) (PEO–PnBA–PAA) triblock terpolymers were studied. Terpolymers composed of two highly asymmetric hydrophilic PEO (113 monomer units) and PAA (10–17 units) blocks, and a longer soft hydrophobic PnBA block (163 or 223 units) were synthesized by atom transfer radical polymerisation (ATRP) of n-butyl acrylate and tert-butyl acrylate ...

  1. Bond strength test of acrylic artificial teeth with prosthetic base

    Directory of Open Access Journals (Sweden)

    Erna Kurnikasari

    2008-07-01

    Full Text Available Denture consists of acrylic artificial teeth and acrylic prothesis base bond chemically with a bond strength of 315 kgF/cm2. Most of the commercial acrylic artificial teeth do not specify their specifications and all of those acrylic artificial teeth do not include mechanical data (bond strength. The aim of this study is to discover which acrylic artificial teeth meet ADA specification no. 15. This study is a descriptive analytic study performed to 5 acrylic artificial teeth posterior brands commonly used by dentists and technicians. From each brand, 3 sample teeth were taken. The acrylic artificial teeth were prepared into a rectangular shape and were attached between acrylic prothesis base simulation and jigs. The sample was given tensile load using a Universal Testing Machine. The amount of force that causes the teeth to be fractured was recorded and the bond strength was calculated. The results of the study show that the average value for the five acrylic artificial teeth for the five brands were as followed: Brand A, 125.993 kgF/cm2; B, 188.457 kgF/cm2; C, 175.880 kgF/cm2; D, 153.373 kgF/cm2; E, 82.839 kgF/cm2. The data can be tested statistically by using One Way ANOVA test and Dunnett test (alpha = 0.05. From the study, it is concluded that the five acrylic artificial teeth have a bond strength below the ADA specification no. 15.

  2. The Effect of Water Contaminated with Methyl Tertiary Butyl Ether (MTBE) on the Rat's Weight and Tissue

    International Nuclear Information System (INIS)

    Backer, Wadiah Saleh; AboKhatwa, Ahmed Nabil; Katouah, Hanadi Ahmed

    2008-01-01

    Lead is known to cause deleterious effects on health and environment. Therefore, it was removed from car-fuel, in the United States since 1979. In January 2001, Saudi Arabia and other Arabian Gulf States, replaced lead with a synthetic organic substance called methyl tertiary-butyl ether (MTBE). MTBE is added to gasoline at 12-15%. It dissolves readily in water and evaporates quickly. This study was focused on the possible health hazards of MTBE in drinking water as manifested by changes in weight and vital tissues (heart, liver, kidney, lung, and testis) of rat. This study also aimed to establish a quantitative relationship between MTBE concentration and changes that occur to these tissues. One hundred and twenty male Wistar rats were exposed to five different MTBE concentrations (0.0, 1,000, 1,500, 2,000, 2,500 ppm) for 60 days. The results showed that most of MTBE-treated animals have revealed significant weight loss and the maximum weight loss (nearly 10 %) was achieved at the highest concentration (2,500 ppm) after 60 days of treatment. Also, both liver and heart weights were significantly reduced by almost 9%, and kidneys by 8% of MTBE concentration of 2,000 ppm. At a higher concentration (2,500 ppm), liver weight was reduced by 12%. The weight of other tissues (lungs and testes) remained unchanged. The outcome of the results may lead to hepatic disorder. This disorder could reduce plasma glucose, or increase some hepatic markers like ALT, AST, and GGT activity, or elevate the levels of sodium and chloride in plasma and may have other side effects. (author)

  3. Optimization of reactive simulated moving bed systems with modulation of feed concentration for production of glycol ether ester.

    Science.gov (United States)

    Agrawal, Gaurav; Oh, Jungmin; Sreedhar, Balamurali; Tie, Shan; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2014-09-19

    In this article, we extend the simulated moving bed reactor (SMBR) mode of operation to the production of propylene glycol methyl ether acetate (DOWANOL™ PMA glycol ether) through the esterification of 1-methoxy-2-propanol (DOWANOL™ PM glycol ether) and acetic acid using AMBERLYST™ 15 as a catalyst and adsorbent. In addition, for the first time, we integrate the concept of modulation of the feed concentration (ModiCon) to SMBR operation. The performance of the conventional (constant feed) and ModiCon operation modes of SMBR are analyzed and compared. The SMBR processes are designed using a model based on a multi-objective optimization approach, where a transport dispersive model with a linear driving force for the adsorption rate has been used for modeling the SMBR system. The adsorption equilibrium and kinetics parameters are estimated from the batch and single column injection experiments by the inverse method. The multiple objectives are to maximize the production rate of DOWANOL™ PMA glycol ether, maximize the conversion of the esterification reaction and minimize the consumption of DOWANOL™ PM glycol ether which also acts as the desorbent in the chromatographic separation. It is shown that ModiCon achieves a higher productivity by 12-36% over the conventional operation with higher product purity and recovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Assessment of genotoxicity of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay

    International Nuclear Information System (INIS)

    Chen, Colin S.; Hseu, You C.; Liang, Shih H.; Kuo, J.-Y.; Chen, Ssu. C.

    2008-01-01

    Methyl-tert-butyl ether (MTBE) is a gasoline oxygenate and antiknock additive substituting for lead alkyls currently in use worldwide. Benzene, toluene, ethylbenzene, and xylene (BTEX) are volatile monoaromatic hydrocarbons which are commonly found together in crude petroleum and petroleum products such as gasoline. The aim of this study is to evaluate the genotoxic effects of these tested chemicals in human lymphocytes. Using the alkaline comet assay, we showed that all of the tested chemicals induce DNA damage in isolated human lymphocytes. This effect could follow from the induction of DNA strands breaks. The neutral version of the test revealed that MTBE, benzene, and xylenes induce DNA double-strand breaks at 200 μM. Apart from MTBE, the spin traps, 5,5-dimethyl-pyrroline-N-oxide (DMPO) and N-tert-butyl-α-phenylnitrone (PBN) can decrease the level of DNA damage in BTEX at 200 μM. This indicated that DNA damage could result from the participation of free radicals in DNA-damaging effect, which was further supported by the fact that post-treatment of formamidopyrimidine-DNA glycosylase (Fpg), enzyme recognizing oxidized DNA purines, gave rise to a significant increase in the extent of DNA damage in cells treated with benzene, and xylene at 200 μM. The results obtained suggested that MTBE and BTEX could induce a variety type of DNA damage such as single-strand breaks (SSBs), double-strand breaks (DSBs), and oxidative base modification

  5. Use of Acrylic Acid Sodium Acrylate Polymer to Maintain Cocoa Seed Viability

    Directory of Open Access Journals (Sweden)

    Pudji Rahardjo

    2010-08-01

    Full Text Available The main problem of cocoa seed storage is moisture content of the seeds because cocoa seeds will germinate if cocoa seeds moisture content is high. The objective of this research is to maintain the cocoa seeds viability in storage using acrylic acid sodium acrylate polymer (AASAP. The function of AASAP is to absorb humidity in storage due to their ability to retain water and to prevent water loss. The experiment was conducted in a laboratory of Indonesian Coffee and Cocoa Research Institute and in Kaliwining Experimental Garden. This experiment was arranged by factorial randomized complete design, in wich AASAP dosages 0%; 0.1% (0.1 g/100 seeds; 0.2% (0.2 g/100 seeds, 0.3% (0.3 g/100 seeds, 0,4% (0,4g/100 seeds, combined with seeds storage period 1, 2, 3 and 4 weeks. The experiment used 3 replications and each repli cation used 100 seeds. Parameter of observation consisted of percentage of seeds germinated in storage, percentage of seeds infected by fungi in storage, seeds moisture content, percentage of seeds germination after storage, and early growth of cocoa seedlings. The results of the experiment showed that AASAP application with some dosages cocoa seeds storage cause to germinate in storage during 2 weeks. AASAP application with some dosages in cocoa seeds storage for 2 weeks would not result in infection by fungi and did not significantly affect seed germination after storage for 1, 2 and 4 weeks, and percentage of germination of cocoa seed after storage for 3 weeks decreased with increase dosage of AASAP. Higher dosage of AASAP would reduce early growth of cocoa seedling. Key words : Theobroma cacao, seed, acrylic acid sodium acrylate, seed storage, viabilty.

  6. Ionizing radiation method for forming acrylic pressure sensitive adhesives and coated substrates

    International Nuclear Information System (INIS)

    Dowbenko, R.; Christenson, R.M.

    1975-01-01

    Pressure-sensitive adhesive having improved adhesive properties are formed by subjecting a mixture comprising a monomer selected from the group consisting of alkyl acrylates, hydroxyalkyl acrylates, alkoxyalkyl acrylates, cyanoalkyl acrylates, alkyl methacrylates, hydroxyalkyl methacrylates, alkoxyalkyl methacrylates, cyanoalkyl methacrylates, N-alkoxymethylacrylamides, and N-alkoxymethylmethacrylamides, and a homopolymer or copolymer selected from the group consisting of polymers of alkyl acrylates, hydroxyalkyl acrylates, alkoxyalkyl acrylates, cyanoalkyl acrylates, alkyl methacrylates, hydroxyalkyl methacrylates, alkoxyalkyl methacrylates, cyanoalkyl methacrylates, acrylamide, methacrylamide, N-(substituted alkyl) acrylamides, N-(substituted alkyl) methacrylamides, alkyl acrylamides, alkyl methacrylamides, and N-alkoxymethylacrylamides and N-alkoxymethylmethacrylamides to ionizing irradiation. The adhesive material finds utility as binding resins in laminates, coatings on substrates, and as film adhesives. (U.S.)

  7. COMPARATIVE ANALYSIS OF WATER SORPTION BY DIFFERENT ACRYLIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Milena Kostić

    2014-06-01

    Full Text Available Acrylic materials are used daily for the production of mobile dental restorations and orthodontic appliances. The presence of residual monomer, as a product of incomplete polymerisation of material, results in more porous structure of the material, which greatly reduces the mechanical and physical quality of the acrylic restorations and increases the absorption of liquids. The aim of this study was to examine the water absorption of different types of resin material. In the study it was assumed that the cold polymerized acrylates show a greater potential for absorbing fluid from the environment in relation to the hot polymerized acrylic. The study included two hot and two cold polymerized acrylates, and cold polymerized acrylate impregnated with aesthetic pearls. In order to determine the degree of water absorption, the mass of the samples was measured before and after one day, seven days and thirty days of immersion in a water bath of body temperature. The tested hot and cold polymerized acrylates after immersion in water bath showed standard values of water absorption. The degree of water absorption was not significantly influenced by the type and manner of polymerisation. Water absorption values were significantly higher after seven days and thirty days of water storage relative to the observational period of one day.

  8. Synthesis and characterization of acrylated Parkia biglobosa ...

    African Journals Online (AJOL)

    The results revealed that acid functional acrylic copolymers containing maleic anhydride as a functional co-monomer can successfully be used to modify alkyd resins yielding acrylated resins with better drying, flexibility, scratch hardness, impact resistance and chemical resistance properties. However there exist optimum ...

  9. Preparation and characterization of silica/fluorinated acrylate copolymers hybrid films and the investigation of their icephobicity

    International Nuclear Information System (INIS)

    Huang Yanfen; Hu Mingjie; Yi Shengping; Liu Xinghai; Li Houbin; Huang Chi; Luo Yunbai; Li Yan

    2012-01-01

    Inexpensive hydrophobic and icephobic coatings and films were obtained by a simple method. These coatings were prepared by mixing silica sol and fluorinated acrylate copolymers. There was a phase separation process in the film-forming which can provide the excellent performance. Small amount (about 2 wt.%) of fluorinated (methyl) acrylate was used in all of these coatings. The coatings were eco-friendly by using ethanol as the solvent system. Scanning electron microscopy, atomic force microscope, energy dispersive X-ray fluorescence spectrometer, water contact angle, thermal gravimetric analysis and tests of adhesion and hardness had been performed to characterize the morphological feature, chemical composition, hydrophobicity and icephobicity of the surface, thermal stability and mechanical properties of the coatings. The results showed that the films had good hydrophobicity, high thermal stability and excellent mechanical properties of adhesion strength and pencil hardness. Furthermore, by testing their properties of delaying water droplet from icing, it was found that ice formation was delayed for 90 min compared with the glass surface at − 5.6 °C. The hybrid coatings may be suitable for large-scale and practical application owing to its flexibility and simplicity. - Highlights: ► Coatings were prepared by mixing fluorinated acrylate copolymer and silica. ► Mechanical properties and anti-icing performance of the coatings were examined. ► Water contact angle increased with raising SiO 2 (sol)/monomers weight ratio. ► Ice formation was delayed for 90 min at − 5.6 °C.

  10. Ether the nothing that connects everything

    CERN Document Server

    Milutis, Joe

    2006-01-01

    In Ether, the histories of the unseen merge with discussions of the technology of electromagnetism. Navigating more than three hundred years of the ether''s cultural and artistic history, Joe Milutis reveals its continuous reinvention and tangible impact without ever losing sight of its ephemeral, elusive nature. The true meaning of ether, Milutis suggests, may be that it can never be fully grasped.

  11. [Treatment of acrylate wastewater by electrocatalytic reduction process].

    Science.gov (United States)

    Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min

    2011-10-01

    High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process.

  12. Usage of the word 'ether'

    International Nuclear Information System (INIS)

    Duffy, M.C.

    1980-01-01

    Confusion has been caused by scientists using the one word 'ether' to classify models differing from each other in important respects. Major roles assigned to the word are examined, and the nature of modern ether theories surveyed. The part played by the several meanings attached to the word, in the ether concept, is outlined. (author)

  13. The failure of poly (ether ether ketone) in high speed contacts

    Science.gov (United States)

    Briscoe, B. J.; Stuart, B. H.; Sebastian, S.; Tweedale, P. J.

    1993-04-01

    The paper describes an experimental study, with an associated analysis incorporating supplementary data, of the anti-boundary lubricating action of an alkane-aliphatic carboxylic acid lubricant system in a poly (ether ether ketone)-mild steel contact. The experiments involve progressively increasing the load in a contact formed between a polymer plate and a rotating steel shaft and estimating the frictional work dissipated. Scuffing is identified when a rapid increase in frictional work is noted at a characteristic normal load. It is shown that the additive induces premature scuffing. Subsidiary data is provided using Raman spectroscopy and hardness probes, and confirms that certain additives such as decanoic acid and dodecylamine will induce surface plasticization in poly (ether ether ketone). The trends in the frictional data have been interpreted using the adhesive model of friction in conjunction with temperature-dependent interfacial theology and bulk mechanical property data. It is proposed that the scuffing process is induced prematurely as a consequence of excessive additive-induced subsurface plasticization. Restricted surface plasticization in this system provides an enhanced self-lubricating capacity.

  14. Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arnauld Vinçon-Laugier

    2017-08-01

    Full Text Available The occurrence of non-isoprenoid alkyl glycerol ether lipids in Bacteria and natural environments is increasingly being reported and the specificity and diagenetic stability of these lipids make them powerful biomarkers for biogeochemical and environmental studies. Yet the environmental controls on the biosynthesis of these peculiar membrane lipids remain poorly documented. Here, the lipid content of two mesophilic (Desulfatibacillum aliphaticivorans and Desulfatibacillum alkenivorans and one thermophilic (Thermodesulfobacterium commune sulfate-reducing bacteria—whose membranes are mostly composed of ether lipids—was investigated as a function of growth temperature (20–40°C and 54–84°C, respectively. For all strains, the cellular lipid content was lower at sub- or supra-optimal growth temperature, but the relative proportions of dialkyl glycerols, monoalkyl glycerols and fatty acids remained remarkably stable whatever the growth temperature. Rather than changing the proportions of the different lipid classes, the three strains responded to temperature changes by modifying the average structural composition of the alkyl and acyl chains constitutive of their membrane lipids. Major adaptive mechanisms concerned modifications of the level of branching and of the proportions of the different methyl branched lipids. Specifically, an increase in temperature induced mesophilic strains to produce less dimethyl branched dialkyl glycerols and 10-methyl branched lipids relative to linear structures, and the thermophilic strain to decrease the proportion of anteiso relative to iso methyl branched compounds. These modifications were in agreement with a regulation of the membrane fluidity. In one mesophilic and the thermophilic strains, a modification of the growth temperature further induced changes in the relative proportions of sn-2 vs sn-1 monoalkyl glycerols, suggesting an unprecedented mechanism of homeoviscous adaptation in Bacteria. Strong

  15. Biocompatibility of acrylic resin after being soaked in sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Nike Hendrijatini

    2009-06-01

    Full Text Available Background: Acrylic resin as basic material for denture will stay on oral mucosa for a very long time. The polymerization of acrylic resin can be performed by conventional method and microwave, both produce different residual monomer at different toxicity. Acrylic resin can absorb solution, porous and possibly absorb disinfectantt as well, that may have toxic reaction with the tissue. Sodium Hypochlorite as removable denture disinfectant can be expected to be biocompatible to human body. The problem is how biocompatible acrylic resin which has been processed by conventional method and microwave method after being soaked in sodium hypochlorite solution. Purpose: The aim of this study was to understand in vitro biocompatibility of acrylic resin which has polimerated by conventional method and microwave after being soaked in sodium hypochlorite using tissue culture. Methods: Four groups of acrylic resin plate were produced, the first group was acrylic resin plate with microwave polymeration and soaked in sodium hypochlorite, the second group was acrylic resin plate with microwave polymeration but not soaked, the thirdwas one with conventional method and soaked and the last group was one with conventional method but not soaked, and in 1 control group. Each group consists of 7 plates. Biocompatibility test was performed in-vitro on each material using fibroblast tissue culture (BHK-21 cell-line. Result: The percentage between living cells and dead cells from materials which was given acrylic plate was wounted. The data was analyzed statistically with T test. Conclusion: The average value of living cells is higher in acrylic resin poimerization using microwave method compared to conventional method, in both soaked and non soaked (by sodium hypochlorite group. This means that sodium hypochlorite 0.5% was biocompatible to the mouth mucosa as removable denture disinfectant for 10 minutes soaking and washing afterwards.

  16. Investigation of Acrylic Acid at High Pressure using Neutron Diffraction

    DEFF Research Database (Denmark)

    Johnston, Blair F.; Marshall, William G.; Parsons, Simon

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalised using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new...

  17. Chemo-enzymatic synthesis route to poly(glucosyl-acrylates) using glucosidase from almonds

    NARCIS (Netherlands)

    Kloosterman, Wouter M. J.; Roest, Steven; Priatna, Siti R.; Stavila, Erythrina; Loos, Katja

    2014-01-01

    Novel types of glucosyl-acrylate monomers are obtained by beta-glucosidase from almond catalyzed glycosidation reaction. The saccharide-acrylate monomers were synthesized by reaction of D-glucose with hydroxyl functional acrylates: 2-hydroxyethyl acrylate (2-HEA), 2-hydroxyethyl methacrylate

  18. Whole-Genome Analysis of the Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1▿ †

    Science.gov (United States)

    Kane, Staci R.; Chakicherla, Anu Y.; Chain, Patrick S. G.; Schmidt, Radomir; Shin, Maria W.; Legler, Tina C.; Scow, Kate M.; Larimer, Frank W.; Lucas, Susan M.; Richardson, Paul M.; Hristova, Krassimira R.

    2007-01-01

    Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C5 to C12) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an ∼4-Mb circular chromosome and an ∼600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (∼99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria. PMID:17158667

  19. Dissociative Photoionization of Diethyl Ether.

    Science.gov (United States)

    Voronova, Krisztina; Mozaffari Easter, Chrissa M; Covert, Kyle J; Bodi, Andras; Hemberger, Patrick; Sztáray, Bálint

    2015-10-29

    The dissociative photoionization of internal energy selected diethyl ether ions was investigated by imaging photoelectron photoion coincidence spectroscopy. In a large, 5 eV energy range Et2O(+) cations decay by two parallel and three sequential dissociative photoionization channels, which can be modeled well using statistical theory. The 0 K appearance energies of the CH3CHOCH2CH3(+) (H-loss, m/z = 73) and CH3CH2O═CH2(+) (methyl-loss, m/z = 59) fragment ions were determined to be 10.419 ± 0.015 and 10.484 ± 0.008 eV, respectively. The reemergence of the hydrogen-loss ion above 11 eV is attributed to transition-state (TS) switching, in which the second, outer TS is rate-determining at high internal energies. At 11.81 ± 0.05 eV, a secondary fragment of the CH3CHOCH2CH3(+) (m/z = 73) ion, protonated acetaldehyde, CH3CH═OH(+) (m/z = 45) appears. On the basis of the known thermochemical onset of this fragment, a reverse barrier of 325 meV was found. Two more sequential dissociation reactions were examined, namely, ethylene and formaldehyde losses from the methyl-loss daughter ion. The 0 K appearance energies of 11.85 ± 0.07 and 12.20 ± 0.08 eV, respectively, indicate no reverse barrier in these processes. The statistical model of the dissociative photoionization can also be used to predict the fractional ion abundances in threshold photoionization at large temperatures, which could be of use in, for example, combustion diagnostics.

  20. Effect of benzene and ethylbenzene on the transcription of methyl-tert-butyl ether degradation genes of Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M; Denison, Michael S; Hristova, Krassimira R

    2016-09-01

    Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds' impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1.

  1. Part I. Naltrexone-derived conjugate addition ligands for opioid receptors. Part II. Chemical and enantioselective aspects of the metabolism of verapamil

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, L.D.

    1987-01-01

    Selective chemoaffinity ligands to aid in identification and purification of opioid receptor subtypes were prepared from 6..cap alpha..- and 6..beta..-naltrexol, obtained stereoselectively from the ..mu..-receptor antagonist naltrexone. The targets were the 6..cap alpha..- and 6..beta..-methacrylate ethers and 6..cap alpha..- and 6..beta..-methacrylate esters prepared from reaction of 6..cap alpha..- and 6..beta..-naltrexol with methyl ..cap alpha..-(bromomethyl)acrylate or methacryloyl chloride. Of three methacrylate derivatives, the 6..cap alpha..-ether was the most potent in an opioid receptor binding assay with (/sup 3/H)-naltrexone. In the presence of sodium ion, preincubation of the 6..cap alpha..-ether resulted in recovery of about 60% of original (/sup 3/H)-naltrexone binding suggesting some irreversible effects. The methacrylate esters precipitated withdrawal in morphine dependent monkeys. The enantiomers of verapamil, a calcium channel antagonist, have different pharmacological and pharmacokinetic properties. The oxidative metabolism of verapamil was studied in rat and human liver microsomes and in man after a single oral dose.

  2. Chronic carcinogenicity study of gasoline vapor condensate (GVC) and GVC containing methyl tertiary-butyl ether in F344 rats.

    Science.gov (United States)

    Benson, Janet M; Gigliotti, Andrew P; March, Thomas H; Barr, Edward B; Tibbetts, Brad M; Skipper, Betty J; Clark, Charles R; Twerdok, Lorraine

    2011-01-01

    Chronic inhalation studies were conducted to compare the toxicity and potential carcinogenicity of evaporative emissions from unleaded gasoline (GVC) and gasoline containing the oxygenate methyl tertiary-butyl ether (MTBE; GMVC). The test materials were manufactured to mimic vapors people would be exposed to during refueling at gas stations. Fifty F344 rats per gender per exposure level per test article were exposed 6 h/d, 5 d/wk for 104 wk in whole body chambers. Target total vapor concentrations were 0, 2, 10, or 20 g/m³ for the control, low-, mid-, and high-level exposures, respectively. Endpoints included survival, body weights, clinical observations, organs weights, and histopathology. GVC and GMVC exerted no marked effects on survival or clinical observations and few effects on organ weights. Terminal body weights were reduced in all mid- and high-level GVC groups and high-level GMVC groups. The major proliferative lesions attributable to gasoline exposure with or without MTBE were renal tubule adenomas and carcinomas in male rats. GMV exposure led to elevated testicular mesothelioma incidence and an increased trend for thyroid carcinomas in males. GVMC inhalation caused an increased trend for testicular tumors with exposure concentration. Mid- and high-level exposures of GVC and GMVC led to elevated incidences of nasal respiratory epithelial degeneration. Overall, in these chronic studies conducted under identical conditions, the health effects in F344 rats following 2 yr of GVC or GMVC exposure were comparable in the production of renal adenomas and carcinomas in male rats and similar in other endpoints.

  3. Chronic Carcinogenicity Study of Gasoline Vapor Condensate (GVC) and GVC Containing Methyl Tertiary-Butyl Ether in F344 Rats

    Science.gov (United States)

    Benson, Janet M.; Gigliotti, Andrew P.; March, Thomas H.; Barr, Edward B.; Tibbetts, Brad M.; Skipper, Betty J.; Clark, Charles R.; Twerdok, Lorraine

    2011-01-01

    Chronic inhalation studies were conducted to compare the toxicity and potential carcinogenicity of evaporative emissions from unleaded gasoline (GVC) and gasoline containing the oxygenate methyl tertiary-butyl ether (MTBE; GMVC). The test materials were manufactured to mimic vapors people would be exposed to during refueling at gas stations. Fifty F344 rats per gender per exposure level per test article were exposed 6 h/d, 5 d/wk for 104 wk in whole body chambers. Target total vapor concentrations were 0, 2, 10, or 20 g/m3 for the control, low-, mid-, and high-level exposures, respectively. Endpoints included survival, body weights, clinical observations, organs weights, and histopathology. GVC and GMVC exerted no marked effects on survival or clinical observations and few effects on organ weights. Terminal body weights were reduced in all mid- and high-level GVC groups and high-level GMVC groups. The major proliferative lesions attributable to gasoline exposure with or without MTBE were renal tubule adenomas and carcinomas in male rats. GMV exposure led to elevated testicular mesothelioma incidence and an increased trend for thyroid carcinomas in males. GVMC inhalation caused an increased trend for testicular tumors with exposure concentration. Mid- and high-level exposures of GVC and GMVC led to elevated incidences of nasal respiratory epithelial degeneration. Overall, in these chronic studies conducted under identical conditions, the health effects in F344 rats following 2 yr of GVC or GMVC exposure were comparable in the production of renal adenomas and carcinomas in male rats and similar in other endpoints. PMID:21432714

  4. New acrylic resin composite with improved thermal diffusivity.

    Science.gov (United States)

    Messersmith, P B; Obrez, A; Lindberg, S

    1998-03-01

    Studies have shown that physical characteristics of denture base materials may affect patient acceptance of denture prostheses by altering sensory experience of food during mastication. Thermal diffusivity is one material property that has been cited as being important in determining gustatory response, with denture base acrylic resins having low thermal diffusivity compared with denture base metal alloys. This study prepared and characterized experimental acrylic resin composite material with increased thermal diffusivity. Sapphire (Al2O3) whiskers were added to conventional denture base acrylic resin during processing to achieve loadings of 9.35% and 15% by volume. Cylindrical test specimens containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 degree to 70 degrees C). Thermal diffusivities of the sapphire containing composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the volume percentage of sapphire filler, which suggested that the high aspect ratio ceramic particles formed a pathway for heat conduction through the insulating polymer matrix. The thermal diffusivity of denture base acrylic resin was increased by the addition of thermally conducting sapphire whiskers.

  5. UV-crosslinkable photoreactive self-adhesive hydrogels based on acrylics

    Directory of Open Access Journals (Sweden)

    Czech Zbigniew

    2016-06-01

    Full Text Available Hydrogels are a unique class of macromolecular networks that can hold a large fraction of an aqueous solvent within their structure. They are suitable for biomedical area including controlled drug delivery and for technical applications as self-adhesive materials for bonding of wet surfaces. This paper describes photoreactive self-adhesive hydrogels based on acrylics crosslinked using UV radiation. They are prepared in ethyl acetate through radical polymerization of monomers mixture containing 2-ethylhexyl acrylate (2-EHA, butyl acrylate (BA, acrylic acid (AA and copolymerizable photoinitiator 4-acryloyloxy benzophenone (ABP at presence of radical starter 2.2’-azobis-diisobutyronitrile AIBN. The synthesized acrylic copolymers were determined by viscosity and GPC analysis and later modified using ethoxylated amines. 4-acryloyloxy benzophenone (ABP was used as crosslinking monomer. After UV crosslinking the properties of these novel synthesized hydrogels, such as tack, peel adhesion, shears strength, elongation and water adsorption were also studied.

  6. Artificial saliva effect on toxic substances release from acrylic resins

    Directory of Open Access Journals (Sweden)

    Kostić Milena

    2015-01-01

    Full Text Available Background/Aim. Acrylic-based resins are intensively used in dentistry practice as restorative or denture-base materials. The purpose of this study was to analyze the surface structure of denture base resins and the amount of released potentially toxic substances (PTS immediately upon polymerization and incubation in different types of artificial saliva. Methods. Storage of acrylic samples in two models of artificial saliva were performed in a water bath at the temperature of 37 ± 1°C. Analysis of the surface structure of samples was carried out using scanning electronic microscopy analysis immediately after polymerization and after the 30-day incubation. The amounts of PTS per day, week and month extracts were measured using high-pressure liquid chromatography. Results. Surface design and amount of PTS in acrylic materials were different and depended on the types and duration of polymerization. The surfaces of tested acrylates became flatter after immersing in solutions of artificial saliva. The degree of acrylic materials release was not dependent on the applied model of artificial saliva. Conclusion. In order to improve biological features of acrylic resin materials, it was recommended that dentures lined with soft or hard coldpolymerized acrylates should be kept at least 1 to 7 days in water before being given to a patient. So, as to reach high degree of biocompatibility preparation of prosthetic restorations from heat-polymerized acrylate was unnecessary. [Projekat Ministarstva nauke Republike Srbije, br. 41017

  7. 78 FR 55644 - Styrene, Copolymers with Acrylic Acid and/or Methacrylic Acid; Tolerance Exemption

    Science.gov (United States)

    2013-09-11

    ..., 3-sulfopropyl acrylate, 3-sulfopropyl methacrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium, potassium, ammonium..., hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium, potassium...

  8. Anionic polymerization of acrylates. XI. Effect of composition and ageing of the Li ester enolate/tert-butoxide initiating complex on the anionic polymerization of methyl methacrylate and 2-ethylhexyl acrylate

    Czech Academy of Sciences Publication Activity Database

    Vlček, Petr; Otoupalová, Jaroslava; Kříž, Jaroslav; Schmidt, Pavel

    2000-01-01

    Roč. 161, - (2000), s. 127-134 ISSN 1022-1360. [Microsymposium: Advances in Polymerization Methods: Controlled Synthesis of Functionalized Polymers /39./. Praha, 12.07.1999-15.07.1999] R&D Projects: GA MŠk OC P1.10; GA AV ČR KSK2050602 Grant - others:CZ-US(XC) 95009 Institutional research plan: CEZ:AV0Z4050913 Keywords : anionic polymerization * acrylates * initiating system Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.406, year: 2000

  9. The development of epoxidised palm oil acrylate (EPOLA) and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Mohd Hilmi [Nuclear Energy Unit, Bangi, Selangor (Malaysia)

    1994-12-31

    The topics are discussed briefly. Acrylated palm oil is prepared through acrylation process, whereby, acrylic acid is introduced into oxirane group of the EPOP (epoxidised palm oil products), EPOLA (epoxidised palm oil products acrylate) was found curable when subjected to UV (ultrviolet) light giving soft coatings. EPOLA is used as radiation curable filler/sealer, radiation curable pressure sensitive adhesives and satisfactorily be coated on wood substrates (rubberwood parquets).

  10. The development of epoxidised palm oil acrylate (EPOLA) and its applications

    International Nuclear Information System (INIS)

    Mohd Hilmi Mahmood

    1993-01-01

    The topics are discussed briefly. Acrylated palm oil is prepared through acrylation process, whereby, acrylic acid is introduced into oxirane group of the EPOP (epoxidised palm oil products), EPOLA (epoxidised palm oil products acrylate) was found curable when subjected to UV (ultrviolet) light giving soft coatings. EPOLA is used as radiation curable filler/sealer, radiation curable pressure sensitive adhesives and satisfactorily be coated on wood substrates (rubberwood parquets)

  11. Uptake of polybrominated diphenyl ethers by carrot and lettuce crops grown in compost-amended soils.

    Science.gov (United States)

    Bizkarguenaga, E; Iparraguirre, A; Oliva, E; Quintana, J B; Rodil, R; Fernández, L A; Zuloaga, O; Prieto, A

    2016-02-01

    The uptake of polybrominated diphenyl ethers (PBDEs) by carrot and lettuce was investigated. Degradation of PBDEs in soil in the absence of the plants was discarded. Different carrot (Nantesa and Chantenay) and lettuce (Batavia Golden Spring and Summer Queen) varieties were grown in fortified or contaminated compost-amended soil mixtures under greenhouse conditions. After plant harvesting, roots (core and peel) and leaves were analyzed separately for carrot, while for lettuce, leaves and hearts were analyzed together. The corresponding bioconcentration factors (BCFs) were calculated. In carrots, a concentration gradient of 2,2',3,4,4',5'-hexabromodiphenyl ether (BDE-138) became evident that decreased from the root peel via root core to the leaves. For decabromodiphenyl ether (BDE-209) at the low concentration level (7 and 20 ng g(-1)), the leaves incorporated the highest concentration of the target substance. For lettuce, a decrease in the BCF value (from 0.24 to 0.02) was observed the higher the octanol-water partition coefficient, except in the case of BDE-183 (BCF = 0.51) and BDE-209 (BCF values from 0.41 to 0.74). Significant influence of the soils and crop varieties on the uptake could not be supported. Metabolic debromination, hydroxylation or methylation of the target PBDEs in the soil-plant system was not observed.

  12. Photochemistry of acrylates at 222 nm

    International Nuclear Information System (INIS)

    Knolle, Wolfgang; Naumov, Sergej; Madani, Mohamed; Sonntag, Clemens von

    2005-01-01

    Excimer lamps as monochromatic UV sources with an intense short-wavelength emission (especially KrCl * , 222 nm) allow a photoinitiator-free initiation of the acrylate polymerisation. Laser photolysis (KrCl * excimer laser, pulse width 20 ns, up to 5 mJ per pulse) gives rise to similar transient spectra (λ max ∼ 280 nm) for all acrylates studied. As the rather unspecific spectra do not allow conclusions as to the main reaction channel, a product study has been performed by GC-MS following steady-state photolysis of acrylate solutions in acetonitrile, methanol and n-hexane. Somewhat unexpected, α-cleavage seems to be a main reaction channel, and quantum chemical calculations show that such a reaction can occur from either the excited singlet state or the unrelaxed triplet state, but not from the relaxed triplet state that is observed spectroscopically. A reaction scheme accounting for the observed products is presented

  13. PREPARATION AND PROPERTIES OF THREE NEUTRAL COPPER (I COMPLEXES BASED ON BIS[2-(DIPHENYLPHOSPHINOPHENYL]ETHER PHENYL] ETHER AND SUBSTITUTED IMIDAZOLE-2,9-DIMETHYL-1,10-PHENANTHROLINE

    Directory of Open Access Journals (Sweden)

    Xin Fang Liu

    2017-10-01

    Full Text Available With deprotonated 2-(4-nitro phenyl-, 2-(4-methyl phenyl-, and 2-(4-methoxy phenyl imidazoled-2,9-dimethyl-1,10-phenanthroline (NPIP, MPIP and MoPIP as nitrogen ligands, as well as bis[2-(diphenylphosphino phenyl]ether (DPEphos as phosphorus ligand, three Cu(I neutral complex has been synthesized and characterized by infrared spectroscopy (IR, elemental analysis and 1H NMR methods. TG-DTA shows that the complex begins to decompose when the temperature reached about 220 oC, indicating their high thermo-stability. The emission spectrum shows that the complexes exhibit yellow emission with a peak emission wavelength of 576, 585 and 596 nm under excitation of 287 nm in powder state.

  14. Silane Cross-Linked Sulfonted Poly(Ether Ketone/Ether Benzimidazoles for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Zilu Yao

    2017-11-01

    Full Text Available γ-(2,3-epoxypropoxy propyltrimethoxysilane (KH-560 was incorporated in various proportions into side-chain-type sulfonated poly(ether ketone/ether benzimidazole (SPEKEBI as a crosslinker, to make membranes with high ion exchange capacities and excellent performance for direct methanol fuel cells (DMFCs. Systematical measurements including Fourier transform infrared (FT-IR, scanning electron microscopy-energy-dispersive and X-ray photoelectron spectroscopy (XPS proved the complete disappearance of epoxy groups in KH-560 and the existence of Si in the membranes. The resulting membranes showed increased mechanical strength and thermal stability compared to the unmodified sulfonated poly(ether ketone/ether benzimidazole membrane in appropriate doping amount. Meanwhile, the methanol permeability has decreased, leading to the increase of relative selectivities of SPEKEBI-x-SiO2 membranes. Furthermore, the H2/O2 cell performance of SPEKEBI-2.5-SiO2 membrane showed a much higher peak power density compared with the pure SPEKEBI memrbrane.

  15. Radiation-induced cationic curing of vinyl ethers

    International Nuclear Information System (INIS)

    Lapin, S.C.

    1992-01-01

    Recently there has been an increasing interest in nonacrylate radiation-curable coatings. Vinyl ethers are particularly reactive under cationic polymerization reaction conditions. The high efficiency of the photoacid initiators combined with the high reactivity of vinyl ether monomers makes this a potentially very useful system. This chapter discusses the preparation of vinyl ethers, introduces vinyl ether-functional monomers and oligomers, describes radiation-induced cationic polymerization of vinyl ethers, and discusses various coating systems. Throughout the chapter, an emphasis is placed on radiation-curable coating applications. 64 refs., 5 figs., 11 tabs

  16. Synthesis and characterization of acrylated Parkia biglobosa medium oil alkyds

    Directory of Open Access Journals (Sweden)

    E.T. Akintayo

    2004-12-01

    Full Text Available Acrylated Parkia biglobosa medium oil alkyd prepared by the reaction between an acid containing acrylic copolymer and a monoglyceride followed by the addition of polyol and dibasic acid has been investigated for improved properties. The results revealed that acid functional acrylic copolymers containing maleic anhydride as a functional co-monomer can successfully be used to modify alkyd resins yielding acrylated resins with better drying, flexibility, scratch hardness, impact resistance and chemical resistance properties. However there exist optimum levels for modification of alkyds with such copolymers beyond which certain film properties are adversely affected.

  17. Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies.

    Science.gov (United States)

    Taha, Muhammad; Imran, Syahrul; Ismail, Nor Hadiani; Selvaraj, Manikandan; Rahim, Fazal; Chigurupati, Sridevi; Ullah, Hayat; Khan, Fahad; Salar, Uzma; Javid, Muhammad Tariq; Vijayabalan, Shantini; Zaman, Khalid; Khan, Khalid Mohammed

    2017-10-01

    A new library of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives (1-23) were synthesized and characterized by EI-MS and 1 H NMR, and screened for their α-amylase inhibitory activity. Out of twenty-three derivatives, two molecules 19 (IC 50 =0.38±0.82µM) and 23 (IC 50 =1.66±0.14µM), showed excellent activity whereas the remaining compounds, except 10 and 17, showed good to moderate inhibition in the range of IC 50 =1.77-2.98µM when compared with the standard acarbose (IC 50 =1.66±0.1µM). A plausible structure-activity relationship has also been presented. In addition, in silico studies was carried out in order to rationalize the binding interaction of compounds with the active site of enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. All-acrylic superelastomers: facile synthesis and exceptional mechanical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei; Goodwin, Andrew; Wang, Yangyang; Yin, Panchao; Wang, Weiyu; Zhu, Jiahua; Wu, Ting; Lu, Xinyi; Hu, Bin; Hong, Kunlun; Kang, Nam-Goo; Mays, Jimmy (Tennessee-K); (ORNL)

    2018-01-01

    All-acrylic multigraft copolymers made by a facile synthesis procedure exhibit elongation at break >1700% and strain recovery behavior far exceeding those of commercial acrylic and styrenic triblock copolymers.

  19. The Evaluation of Relationship between Spirometric Disorders and Methyl methacrylate in Dental Laboratories Personnel

    OpenAIRE

    E. Nadi; M.J. Asari; A. Zamanian

    2010-01-01

    Introduction & Objective: Methyl methacrylate (MMA), as a monomer of acrylic resin that has a wide variety of usages in denture fabrication, is considered as an air pollution indicator in the laboratories. Occupational exposure to these compound vapors can cause respiratory hypersensitivity, occupational asthma, eye and skin irritation and Allergic Contact Dermatitis (ACD). Therefore control of MMA exposure may promote the personnel’s health. The aim of this study was to determine the relati...

  20. Long-Chain Diacrylate Crosslinkers and Use of PEG Crosslinks in Poly(potassium acrylate-acrylic acid)/Kaolin Composite Superabsorbents

    OpenAIRE

    Koroush Kabiri; Siavash Nafisi; Mohammad jalaledin Zohuriaan-Mehr; Ali Akbar Yousefi

    2013-01-01

    Long-chain diacrylate crosslinkers based on linear α,ω-diols were synthesized and characterized using FTIR and 1H NMR spectroscopy. The highest reaction yield (99.5%) was due to polyethylene glycol diacrylate 1000 (PEGDA-1000). Then, kaolin-containing poly(potassium acrylate-acrylic acid) superabsorbent composites and kaolin-free counterparts were synthesized using PEGDA-1000.The effect of the crosslinker concentration on swelling, rheological and thermo-mechanical properties was investigated...

  1. Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K

    International Nuclear Information System (INIS)

    Wisniak, Jaime; Peralta, Rene D.; Infante, Ramiro; Cortez, Gladis

    2005-01-01

    Densities of the binary systems of 1,1-dimethylethyl methyl ether (MTBE) with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate have been measured as a function of the composition, at 298.15 and 308.15 K and atmospheric pressure, using an Anton Paar DMA 5000 oscillating U-tube densimeter. The calculated excess molar volumes were correlated with the Redlich-Kister equation and with a series of Legendre polynomials. The excess molar volumes are negative for the binaries of MTBE + methacrylates; the system MTBE with vinyl acetate presents near ideal behavior. The excess coefficient of thermal expansion is positive for all the systems studied here; the value of the coefficient for the system MTBE + allyl methacrylate is at least three times larger than that for the other systems

  2. Poly (ether ether ketone) membranes for fuel cells

    International Nuclear Information System (INIS)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D.; Hui, Wang S.; Oliveira, Vivianna S. de

    2015-01-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  3. Ion-Selective Ionic Polymer Metal Composite (IPMC) actuator based on crown ether containing sulfonated Poly(Arylene Ether Ketone)

    NARCIS (Netherlands)

    Tas, S.; Zoetebier, B.; Sukas, O.S.; Bayraktar, M.; Hempenius, M.; Vancso, G.J.; Nijmeijer, K.

    2017-01-01

    This study introduces the concept of ion selective actuation in polymer metal composite actuators, employing crown ether bearing aromatic polyether materials. For this purpose, sulfonated poly(arylene ether ketone) (SPAEK) and crown ether containing SPAEK with molar masses suitable for membrane

  4. The difference of acrylic resin residual monomer levels with various polymerization method

    Directory of Open Access Journals (Sweden)

    Sherman Salim

    2011-12-01

    Full Text Available Background: After polymerization process, heat cured acrylic resin denture base actually still contains residual monomers that can become potential irritants later in oral cavity. Polymerization process is essential to obtain acrylic resin which can meet the requirements of the biocompatible and good physical properties. To meet the requirements, there are several methods of polymerization process used. Purpose: The purpose of this study was to determine the differences of the residual monomer levels of acrylic resin processed by various polymerization methods. Methods: Acrylic resin powder and liquid were mixed based on the rules of factory, and sample was made with size of 30 mm × 50 mm × 3 mm and then polymerized by using microwave at 70° C for 24 hours based on the methods of Japan Industrial Standard (JIS. Each group of samples was cut with weight of ± 0.2 g, dissolved in 5 ml of methyl ethyl ketone in test tubes, and then stored at ± 5° C for four days. Residual monomer level was conducted by using gas chromatograph mass spectrometer. Data obtained were then analyzed by using One-Way ANOVA test with p < 0.05. Results: After the level of polymerizing residual monomer with JIS method was compared to that at 70° C for 24 hours using microwave, it is known that there were significant differences (p < 0.05. Conclusion: The highest level of residual monomer of acrylic resin was that polymerized at 70° C for 24 hours.Latar belakang: Basis gigi tiruan yang berbahan dasar resin akrilik jenis heat cured setelah proses polimerisasi selesai masih mengandung monomer sisa yang berpotensi sebagai bahan iritan dalam rongga mulut. Proses polimerisasi sangat penting untuk mendapatkan resin akrilik yang memenuhi persyaratan biokompatibilitas dan fisik yang baik. Untuk persyaratan tersebut digunakan berbagai macam proses polimerisasi. Tujuan: Penelitian ini bertujuan untuk menentukan kadar monomer sisa resin akrilik yang diproses dengan metode

  5. Synthesis and characterization of functional acrylic copolymers via RAFT mini-emulsion polymerization

    Science.gov (United States)

    Yılmaz, Onur; Özkan, ćiǧdem Kılıçarislan; Yılmaz, Catalina N.; Yorgancıoǧlu, Ali; Özgünay, Hasan; Karavana, Hüseyin Ata

    2017-12-01

    Copolymers bearing reactive functional groups with controlled molecular weights are of importance since they can be used in many fields such as composites, coatings, membranes, catalysis, biology, optoelectronics, pharmaceuticals, etc. In the present study low molecular weight copolymers based on butyl acrylate (BA) and methyl methacrylate (MMA) in combination with reactive functional monomers of vinyl trietoxysilane (VTES), 3-trimetoxysilylpropyl methacrylate (TMSPMA) and glycidyl methacrylate (GMA) were synthesized via RAFT mini-emulsion technique using 2-cyano 2-propyldodecyldithiocarbonate as CTA agent. The results showed that the average molecular weights of copolymers were close to the theoretical values. On the other hand, PDI values were found to be higher than conventional RAFT polymers. The particle sizes of the latexes were small with very homogenous distributions and good stability. FTIR, H-NMR and TGA results verified the success of copolymer syntheses.

  6. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Thomas [Archer Daniels Midland Company, Decatur, IL (United States); Erpelding, Michael [Archer Daniels Midland Company, Decatur, IL (United States); Schmid, Josef [Archer Daniels Midland Company, Decatur, IL (United States); Chin, Andrew [Archer Daniels Midland Company, Decatur, IL (United States); Sammons, Rhea [Archer Daniels Midland Company, Decatur, IL (United States); Rockafellow, Erin [Archer Daniels Midland Company, Decatur, IL (United States)

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  7. The sensitizing capacity of multifunctional acrylates in the guinea pig.

    Science.gov (United States)

    Björkner, B

    1984-10-01

    The multifunctional acrylates used in ultraviolet (UV) curable resins act as cross-linkers and "diluents". They are usually based on di(meth)acrylate esters of dialcohols or tri- and tetra-acrylate esters of polyalcohols. In UV-curable coatings, the most commonly used are pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA) and 1,6-hexanediol diacrylate (HDDA). In other uses, such as dental composite resin materials, the dimethacrylic monomers based on n-ethylene glycol are the most useful. The sensitizing capacity of various multifunctional acrylates and their cross-reactivity pattern have been investigated with the guinea pig maximization test. The tests show that BUDA (1,4-butanediol diacrylate) and HDDA are moderate to strong sensitizers and that they probably cross-react with each other. The n-ethylene glycol diacrylates and methacrylates tested are weak or non-sensitizers. Tripropylene glycol diacrylate (TPGDA) is a moderate and neopentyl glycol diacrylate (NPGDA) a strong sensitizer, whereas neopentyl glycol dimethacrylate is a non-sensitizer. The commercial PETA is a mixture of pentaerythritol tri- and tetra-acrylate (PETA-3 and PETA-4). PETA-3 is a much stronger sensitizer than PETA-4. Simultaneous reactions were seen between PETA-3, PETA-4 and TMPTA. The oligotriacrylate OTA 480 is a moderate sensitizer, but no concomitant reactions were seen with PETA-3, PETA-4 or TMPTA. Of the multifunctional acrylates tested, the di- and triacrylic compounds should be regarded as potent sensitizers. The methacrylated multifunctional acrylic compounds are weak or non-sensitizers.

  8. Molecular recognition at methyl methacrylate/n-butyl acrylate (MMA/nBA) monomer unit boundaries of phospholipids at p-MMA/nBA copolymer surfaces.

    Science.gov (United States)

    Yu, Min; Urban, Marek W; Sheng, Yinghong; Leszczynski, Jerzy

    2008-09-16

    Lipid structural features and their interactions with proteins provide a useful vehicle for further advances in membrane proteins research. To mimic one of potential lipid-protein interactions we synthesized poly(methyl methacrylate/ n-butyl acrylate) (p-MMA/nBA) colloidal particles that were stabilized by phospholipid (PLs). Upon the particle coalescence, PL stratification resulted in the formation of surface localized ionic clusters (SLICs). These entities are capable of recognizing MMA/nBA monomer interfaces along the p-MMA/nBA copolymer backbone and form crystalline SLICs at the monomer interface. By utilizing attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and selected area electron diffraction (SAD) combined with ab initio calculations, studies were conducted that identified the origin of SLICs as well as their structural features formed on the surface of p-MMA/nBA copolymer films stabilized by 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) PL. Specific entities responsible for SLIC formation are selective noncovalent bonds of anionic phosphate and cationic quaternary ammonium segments of DLPC that interact with two neighboring carbonyl groups of nBA and MMA monomers of the p-MMA/nBA polymer backbone. To the best of our knowledge this is the first example of molecular recognition facilitated by coalescence of copolymer colloidal particles and the ability of PLs to form SLICs at the boundaries of the neighboring MMA and nBA monomer units of the p-MMA/nBA chain. The dominating noncovalent bonds responsible for the molecular recognition is a combination of H-bonding and electrostatic interactions.

  9. UV-Curing of Nanoparticle Reinforced Acrylates

    International Nuclear Information System (INIS)

    Bauer, F.

    2006-01-01

    Polymer reinforcement by silica and alumina nanoparticles evidently yields improved surface hardness. Single mixing of nanoparticles into an acrylate formulations, however, leads to highly viscous solutions inappropriate for coating procedures. The incompatibility of inorganic fillers and organic polymers can be avoided by surface modification providing an interface between the two dissimilar materials. For example, vinyltrimethoxysilane (VTMO) can react via hydrolysis/condensation reactions with hydroxyl groups present on the inorganic surface and should bond via the polymerisation-active vinyl group to an acrylate resin through crosslinking reactions. Grafting reactions of surface OH groups and different trialkoxysilanes were studied by thermogravimetry, infrared, and multinuclear NMR spectroscopy. The copolymeri-zation of modified nanoparticles with the acrylate matrix has been investigated by 13 C NMR spectroscopy. UV curing under nitrogen inertization revealed a lower reactivity of vinyl groups of VTMO-modified silica compared to grafted methacryloxypropyl-trimethoxysilane (MEMO) which showed complete conversion of olefinic carbons (signals at 120 - 140 ppm). Under conditions of oxygen inhibition, the effect of the kind and the concentration of photoinitiator on the photopoly-merization reaction was studied. Compared to neat polyacrylate coatings the nanocomposite materials exhibit markedly improved properties, e.g., heat, scratch, and abrasion resistance. However, a much better abrasion resistance was obtained for coatings containing both silica nano-particles and corundum microparticles. In particular cases, radiation curing with 172 nm photons generated by Xe excimer was performed to obtain structured polymer surfaces, i.e., matting of the reinforced acrylate coatings

  10. All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone

    International Nuclear Information System (INIS)

    Sivaraman, P.; Kushwaha, R.K.; Shashidhara, K.; Hande, V.R.; Thakur, A.P.; Samui, A.B.; Khandpekar, M.M.

    2010-01-01

    All solid supercapacitor based on polyaniline (PANI) and crosslinked sulfonated poly[ether ether ketone] (XSPEEK,) is reported in this paper. The crosslinker used for sulfonated poly[ether ether ketone] (SPEEK) is 1,4-bis(hydroxymethyl) benzene. The XSPEEK is used as both solid electrolyte and separator membrane. Supercapacitors are fabricated using various PANI/XSPEEK weight ratios. These are characterized by cyclic voltammetry and galvanostatic charge-discharge studies. The supercapacitor with PANI/XSPEEK weight ratio 1:0.5, exhibit a specific capacitance of 480 F g -1 of PANI. To the best of authors' knowledge, the value reported here is the highest for a supercapacitor based on a proton conducting solid polymer electrolyte and PANI. Detailed electrochemical impedance spectroscopy analysis is carried out. The analysis shows that the complex capacitance of the supercapacitor depends on the XSPEEK content. The time constant (t 0 ), derived from the imaginary part of complex capacitance decreases with increase in the XSPEEK content in the supercapacitor. Cycle life characteristics of the supercapacitor show a decrease in specific capacitance during initial cycles and get stabilized during later cycles.

  11. Deriving Biomonitoring Equivalents for selected E- and P-series glycol ethers for public health risk assessment.

    Science.gov (United States)

    Poet, Torka; Ball, Nicholas; Hays, Sean M

    2016-01-01

    Glycol ethers are a widely used class of solvents that may lead to both workplace and general population exposures. Biomonitoring studies are available that have quantified glycol ethers or their metabolites in blood and/or urine amongst exposed populations. These biomonitoring levels indicate exposures to the glycol ethers, but do not by themselves indicate a health hazard risk. Biomonitoring Equivalents (BEs) have been created to provide the ability to interpret human biomonitoring data in a public health risk context. The BE is defined as the concentration of a chemical or metabolite in a biological fluid (blood or urine) that is consistent with exposures at a regulatory derived safe exposure limit, such as a tolerable daily intake (TDI). In this exercise, we derived BEs for general population exposures for selected E- and P-series glycol ethers based on their respective derived no effect levels (DNELs). Selected DNELs have been derived as part of respective Registration, Evaluation, Authorisation and Regulation of Chemicals (REACh) regulation dossiers in the EU. The BEs derived here are unique in the sense that they are the first BEs derived for urinary excretion of compounds following inhalation exposures. The urinary mass excretion fractions (Fue) of the acetic acid metabolites for the E-series GEs range from approximately 0.2 to 0.7. The Fues for the excretion of the parent P-series GEs range from approximately 0.1 to 0.2, with the exception of propylene glycol methyl ether and its acetate (Fue = 0.004). Despite the narrow range of Fues, the BEs exhibit a larger range, resulting from the larger range in DNELs across GEs. The BEs derived here can be used to interpret human biomonitoring data for inhalation exposures to GEs amongst the general population. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Hydrogen storage by functionalised Poly(ether ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, R.; Giacoppo, G.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy). Inst. for Advanced Energy Technologies

    2010-07-01

    In this work a functionalised polymer was studied as potential material for hydrogen storage in solid state. A Poly(ether ether ketone) (PEEK) matrix was modified by a manganese oxide in situ formation. Here we report the functionalisation process and the preliminary results on hydrogen storage capability of the synthesised polymer. The polymer was characterized by Scanning Electron Microscopy, X-ray diffraction, Transmission Electron Microscopy and Gravimetric Hydrogen Adsorption measurements. In the functionalised PEEK, morphological changes occur as a function of oxide precursor concentration and reaction time. Promising results by gravimetric measurements were obtained with a hydrogen sorption of 0.24%wt/wt at 50 C and 60 bar, moreover, reversibility hydrogen adsorption and desorption in a wide range of both temperature and pressure was confirmed. (orig.)

  13. Thermochemical biorefinery based on dimethyl ether as intermediate: Technoeconomic assessment

    International Nuclear Information System (INIS)

    Haro, P.; Ollero, P.; Villanueva Perales, A.L.; Gómez-Barea, A.

    2013-01-01

    Highlights: ► A thermochemical biorefinery based on bio-DME as intermediate is studied. ► The assessed concepts (12) lead to multi-product generation (polygeneration). ► In all concepts DME is converted by carbonylation or hydrocarbonylation. ► Rates of return are similar to or higher than plants producing a single product. -- Abstract: Thermochemical biorefinery based on dimethyl ether (DME) as an intermediate is studied. DME is converted into methyl acetate, which can either be hydrogenated to ethanol or sold as a co-product. Considering this option together with a variety of technologies for syngas upgrading, 12 different process concepts are analyzed. The considered products are ethanol, methyl acetate, H 2 , DME and electricity. The assessment of each alternative includes biomass pretreatment, gasification, syngas clean-up and conditioning, DME synthesis and conversion, product separation, and heat and power integration. A plant size of 500 MW th processing poplar chips is taken as a basis. The resulting energy efficiency to products ranges from 34.9% to 50.2%. The largest internal rate of return (28.74%) corresponds to a concept which produces methyl acetate, DME and electricity (exported to grid). A sensitivity analysis with respect to total plant investment (TPI), total operation costs (TOC) and market price of products was carried out. The overall conclusion is that, despite its greater complexity, this kind of thermochemical biorefinery is more profitable than thermochemical bioprocesses oriented to a single product.

  14. Influence of α-methyl group on molecular aggregation structure and surface physicochemical properties of fluoroalkyl side chain polymers

    International Nuclear Information System (INIS)

    Honda, K; Yamaguchi, H; Takahara, A; Sakata, O; Sasaki, S; Takata, M; Morita, M

    2009-01-01

    Influence of α-methyl group on molecular aggregation states and surface physicochemical properties of poly(fluoroalkyl acrylate)s [PFA-C y , where y is fluoromethylene number in R f group] and poly(fluoroalkykl methacrylate)s [PFMA-C y ] thin films were systematically investigated. Spin-coated PFA-C y and PFMA-C y thin films were characterized by dynamic contact angle measurements and grazing-incidence wide-angle X-ray diffraction (GIWAXD) measurements. GIWAXD data revealed that fluoroalkyl side chains of PFA-C y and PFMA-C y with y≥8 formed regular structures in the surface region as well as bulk one. However, the degree of orientation and ordering of the R f groups of PFMA-C 8 thin films was low. Also, the receding contact angle (θ r ) of PFMA-C 8 thin films was lower than that of PFA-C 8 ones. By annealing treatment, the θ r of PFMA-C 8 was increased. These results suggest that the R f groups of PFMA-C 8 were disordered due to presence of the α-methyl group. The R f groups became ordered to pack closely each other by annealing treatment, so that the water repellency was increased.

  15. (Meth)Acrylate Occupational Contact Dermatitis in Nail Salon Workers: A Case Series.

    Science.gov (United States)

    DeKoven, Samuel; DeKoven, Joel; Holness, D Linn

    Recently, many cases of acrylate-associated allergic contact dermatitis have appeared among nail salon workers. Common acrylate-containing products in nail salons include traditional nail polish, ultraviolet-cured shellac nail polish, ultraviolet-cured gel nails, and press-on acrylic nails. Nail salon technicians seen in the occupational medicine clinic in 2015 and 2016 were identified, and their patch test results and clinical features were summarized. Patch testing was done with the Chemotechnique (Meth)Acrylate nail series, and either the North American Standard series or the North American Contact Dermatitis Group screening series. Six patients were identified, all women, ages 38 to 58. Common presentations included erythematous dermatitis of the dorsa of the hands, palms, and forearms and fissures on the fingertips. Less common sites of eruptions included the periorbital region, cheeks, posterior ears, neck, sacral area, lateral thighs, and dorsa of the feet. All patients reacted to hydroxyethyl methacrylate, and 5 patients reacted to ethyl acrylate. Each patient also reacted to (meth)acrylates that are not found on either standard series, including ethyleneglycol dimethacrylate, 2-hydroxypropyl methacrylate, and 2-hydroxyethyl acrylate. The authors report 6 cases of allergic contact dermatitis to acrylates in nail technicians seen over the past year, representing a new trend in their clinic. These cases are reflective of a growing trend of nail technicians with allergic contact dermatitis associated with occupational (meth)acrylate exposure. Efforts to improve prevention are needed.

  16. Exposure to methyl tert-butyl ether, benzene, and total hydrocarbons at the Singapore-Malaysia causeway immigration checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.; Ong, H.Y.; Kok, P.W. [and others

    1996-12-31

    The primary aim of this study was to determine the extent and levels of exposure to volatile organic compounds (VOCs) from automobile emissions in a group of immigration officers at a busy cross-border checkpoint. A majority (80%) of the workers monitored were exposed to benzene at levels between 0.01 and 0.5 ppm, with only 1.2% exceeding the current Occupational Safety and Health Administration occupational exposure limit of 1 ppm. The geometric mean (GM) concentrations of 8-hr time-weighted average exposure were 0.03 ppm, 0.9 ppm, and 2.46 ppm for methyl-tert-butyl ether (MTBE), benzene, and total hydrocarbons (THC), respectively. The highest time-weighted average concentrations measured were 1.05 ppm for MTBE, 2.01 ppm for benzene, and 34 ppm for THC. It was found that motorbikes emitted a more significant amount of pollutants compared with motor cars. On average, officers at the motorcycle booths were exposed to four to five times higher levels of VOCs (GMs of 0.07 ppm, 0.23 ppm, and 4.7 ppm for MTBE, benzene, and THC) than their counterparts at the motor car booths (GMs of 0.01 ppm, 0.05 ppm, and 1.5 ppm). The airborne concentrations of all three pollutants correlated with the flow of vehicle traffic. Close correlations were also noted for the concentrations in ambient air for the three pollutants measured. Benzene and MTBE had a correlation coefficient of 0.97. The overall findings showed that the concentrations of various VOCs were closely related to the traffic density, suggesting that they were from a common source, such as exhaust emissions from the vehicles. The results also indicated that although benzene, MTBE, and THC are known to be volatile, a significant amount could still be detected in the ambient environment, thus contributing to our exposure to these compounds. 4 refs., 6 figs.

  17. In vitro cytotoxicity of self-curing acrylic resins of different colors

    Directory of Open Access Journals (Sweden)

    Luciana Borges Retamoso

    2014-08-01

    Full Text Available OBJECTIVE: The aim of this study was to assess the in vitro cytotoxicity of acrylic resins of different colors over time. METHODS: Specimens were divided into 4 groups (n = 6 according to the color of the acrylic resin (Orto Class, Clássico, Campinas, São Paulo, Brazil: Group 1: clear acrylic resin; group 2: pink acrylic resin; group 3: blue acrylic resin and group 4: green acrylic resin. All specimens were fabricated according to the mass manipulation technique and submitted to mechanical polishing protocol. The control was performed with an amalgam specimen (C+, a glass specimen (C- and cell control (CC. Specimens were immersed in Minimum Eagle's Medium (MEM and incubated for 24 h at 37o C. The extracts from the experimental material were filtered and mixed with L929 fibroblast. Cytotoxicity was evaluated at 4 different times, 24, 48, 72 and 168 h. After contact, cells were incubated for 24 h and added to 100 µ of 0.01% neutral red dye. The cells were incubated for 3 h for pigment incorporation and fixed. Cells viability was determined by a spectroscopic (BioTek, Winooski, Vermont, USA with a 492-nm wavelength λ=492 nm. RESULTS: There were no statistical differences between the experimental groups and the CC and C- groups. CONCLUSION: Clear, pink, blue and green self-curing acrylic resins fabricated by means of the mass manipulation technique and mechanically polished are not cytotoxic. Neither the pigment added to the self-curing acrylic resin nor the factor of time influenced the cytotoxicity of the material.

  18. Activity relationships for aromatic crown ethers

    International Nuclear Information System (INIS)

    Wilson, Mark James

    1998-01-01

    This thesis involves an investigation of aromatic crown ethers and a study of their binding constants for alkali metals. The study was motivated by the current needs of the semiconductor industry to improve the scavenging of mobile ions from fabricated circuits. A number of aromatic crown ethers have been sulphonated in an attempt to improve their water solubility and cation binding activity. These materials have been extensively studied and their binding activity determined. In collaboration with a molecular modelling study, the effect of ionisable sulphonate groups on the macrocycles' behaviour has been investigated. The broader issue of the effect of substituents in aromatic crown ethers has also been studied with the preparation of a wide range of substituted crown ethers. The cation binding activity of these materials has been found to bear a simple relationship to the electron withdrawing nature of the aromatic substituents. This relationship can be accurately monitored using electronic charge densities from molecular modelling and this rational has been applied to the study of proton ionisable and lariating crown ethers. The incorporation of crown ethers into polyamic acid and polyimide frameworks has also been investigated, where the resulting materials have been found to exhibit unusual cation binding and uptake properties. These results imply that the combination of the crown ethers' macrocycle and adjacent carboxylic acid residues, from the polyamic acids, are conducive to effective cationic binding. NMR measurements, in conjunction with molecular modelling, have been used to explore the geometry changes encountered as the crown ether goes from it's uncomplexed to its complexed state. The energy requirement for these geometry changes has subsequently been used to examine the cation selectivity of these materials. The electronic charge changes associated with the complexation have also been investigated and correlated with the theoretical results. (author)

  19. γ-aminobutyric acidA (GABAA) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    International Nuclear Information System (INIS)

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing; Chen Jingyuan

    2009-01-01

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA A receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA A receptor α1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA A receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  20. Biaxial deformation behaviour of poly-ether-ether-ketone

    Science.gov (United States)

    Turner, Josh; Menary, Gary; Martin, Peter

    2018-05-01

    The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).

  1. The evolution of palm oil acrylates within 20 years in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Rida Tajau; Nurul Huda Mudri

    2016-01-01

    Acrylated palm oil was synthesized from epoxidized palm oil (EPOP), in early 1989, through acrylation/methacrylation process at Radiation Technology Division laboratory. The acrylated products namely Epoxidized Palm Oil Acrylate/Methacrylate (EPOLA/ EPOMA), with the molecular weight around 2000-3000 g/mol, was found curable when subjected to UV or EB irradiations. Isocyanation of EPOLAs resulted in a resin called Palm Oil Based Urethane Acrylate (POBUA). POBUA possess certain advantages over EPOLA such as much higher molecular weight between 5000 to 20000 g/ mol, better curing speed, crosslinking density, higher abrasion resistance and also higher pendulum hardness. Hyper branched polyurethane acrylate (HBPUA) from palm oil oleic was synthesized by a three-step reaction in 2012. The reaction was confirmed by several analytical data; hydroxyl value (OHV), FTIR, GPC and NMR spectroscopy analyses. The thermal decomposition of HBPUA formulations shows good thermal stability up to 450 degree Celsius. (author)

  2. Novel crosslinked membranes based on sulfonated poly(ether ether ketone) for direct methanol fuel cells.

    Science.gov (United States)

    Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam

    2011-07-14

    Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.

  3. Preparation and Characterization of Sulfonated Poly (ether ether ...

    African Journals Online (AJOL)

    NJD

    2007-08-10

    Aug 10, 2007 ... Preparation and Characterization of Sulfonated Poly (ether ... Currently perfluori- ... with phosphoric acid solution according to the method described earlier.11,12 ... where A is the membrane area available for diffusion; CA is.

  4. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.-F.; Su, S.-H., E-mail: minimono42@gmail.com

    2013-10-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO{sub 4} were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO{sub 4}, the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance.

  5. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    International Nuclear Information System (INIS)

    Chiu, K.-F.; Su, S.-H.

    2013-01-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO 4 were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO 4 , the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance

  6. Fracture resistance of Kevlar-reinforced poly(methyl methacrylate) resin: a preliminary study.

    Science.gov (United States)

    Berrong, J M; Weed, R M; Young, J M

    1990-01-01

    The reinforcing effect of Kevlar fibers incorporated in processed poly(methyl methacrylate) resin samples was studied using 0% (controls), 0.5%, 1%, and 2% by weight of the added fibers. The samples were subjected to impact testing to determine fracture resistance, and sample groups were statistically compared using an ANOVA. Each reinforced sample had significantly greater fracture resistance (P less than 0.05) than the control, and no difference was found either within or between control groups. The use of reinforcing Kevlar fibers appears to enhance the fracture resistance of acrylic resin denture base materials.

  7. Hardness and wear properties of boron-implanted poly(ether-ether-ketone) and poly-ether-imide

    International Nuclear Information System (INIS)

    Lee Youngchul; Lee, E.H.; Mansur, L.K.

    1992-01-01

    The effects of boron beam irradiation on the hardness, friction, and wear of polymer surfaces were investigated. Typical high-performance thermoplastics, poly(ether-ether-ketone) (PEEK) and a poly-ether-imide (Ultem) were studied after 200 keV boron ion beam treatment at ambient temperature to doses of 2.3x10 14 , 6.8x10 14 , and 2.2x10 15 ions cm -2 . The hardnesses of pristine and boron-implanted materials were characterized by a conventional Knoop method and a load-depth sensing nanoindentation technique. Both measurements showed a significant increase in hardness with increasing dose. The increase in hardness was also found to depend on the penetration depth of the diamond indenter. Wear and friction properties were characterized by a reciprocating sliding friction tester with an SAE 52100 high-carbon, chrome steel ball at 0.5 and 1 N normal loads. Wear and frictional properties varied in a complex fashion with polymer type and dose, but not much with normal load. A substantial reduction in friction coefficient was observed for PEEK at the highest dose but no reduction was observed for Ultem. The wear damage was substantially reduced at the highest dose for both Ultem and PEEK. For the system studied, the highest dose, 2.2x10 15 ions cm -2 , appears to be optimum in improving wear resistance for both PEEK and Ultem. (orig.)

  8. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, B.T.; Nijmeijer, K.; Benes, N.E.

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (≤5 wt%) and not too low spin speeds

  9. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, Beata; Nijmeijer, Dorothea C.; Benes, Nieck Edwin

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (B5 wt%) and not too low spin speeds

  10. Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Jihuai; Lan, Zhang; Lin, Jianming; Huang, Miaoliang; Hao, Shancun; Fang, Leqing

    2007-01-01

    The influence of solvents on the property of poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and photovoltaic performance of quasi-solid-state dye-sensitized solar cells (DSSCs) were investigated. Solvents or mixed solvents with large donor number enhance the liquid electrolyte absorbency, which further influences the ionic conductivity of polymer gel electrolyte. A polymer gel electrolyte with ionic conductivity of 4.45 mS cm -1 was obtained by using poly (acrylic acid)-oligo-(ethylene glycol) as polymer matrix, and absorbing 30 vol.% N-methyl pyrrolidone and 70 vol.% γ-butyrolactone with 0.5 M NaI and 0.05 M I 2 . By using this polymer gel electrolyte coupling with 0.4 M pyridine additive, a quasi-solid-state dye-sensitized solar cell with conversion efficiency of 4.74% was obtained under irradiation of 100 mW cm -2 (AM 1.5)

  11. 77 FR 61600 - Certain New Chemicals; Receipt and Status Information

    Science.gov (United States)

    2012-10-10

    ... (G) Additive..... (G) Alkenoic acid, polymers with acrylate and polyalkandiol alkane ether alkyl..., polymer with alkyl acrylate, alkyl acrylate. P-12-0236 08/21/2012 08/20/2012 (G) Polyester amine adduct. P...]ethyl]carbamate and 2-propanol, potassium salt, peroxydisulfuric acid ([(HO)s(O)2]2O2) sodium salt (1:2...

  12. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  13. The uptake, distribution, metabolism, and excretion of methyl tertiary-butyl ether inhaled alone and in combination with gasoline vapor.

    Science.gov (United States)

    Benson, Janet M; Tibbetts, Brad M; Barr, Edward B

    2003-06-13

    The purpose of these studies was to evaluate the tissue uptake, distribution, metabolism, and excretion of methyl tertiary-butyl ether (MTBE) in rats and to determine the effects of coinhalation of the volatile fraction of unleaded gasoline on these parameters. Male F344 rats were exposed nose-only once for 4 h to 4, 40, or 400 ppm 14C-MTBE and to 20 and 200 ppm of the light fraction of unleaded gasoline (LFG) containing 4 and 40 ppm 14C-MTBE, respectively. To evaluate the effects of repeated inhalation of LFG on the fate of inhaled MTBE, rats were exposed for 7 consecutive days to 20 and 200 ppm LFG followed on d 8 by exposure to LFG containing 14C-MTBE. Three subgroups of rats were included for evaluation of respiratory parameters, rates and routes of excretion, and tissue distribution and elimination. MTBE and its chief metabolite, tertiary-butyl alcohol, were quantitated in blood and kidney (immediately after exposure), and the major urinary metabolites, 2-hydroxyisobutyric acid and 2-methyl-1,2- propanediol, were identified and quantified in urine. Inhalation of MTBE alone or as a component of LFG had no concentration-dependent effect on respiratory minute volume. The initial body burdens (IBBs) of MTBE equivalents achieved after 4 h of exposure to MTBE did not increase linearly with exposure concentration. MTBE equivalents rapidly distributed to all tissues examined, with the largest percentages distributed to liver. Between 40 and 400 ppm, there was a significant reduction in percentage of the IBB present in the major organs examined, both immediately and 72 h after exposure. At 400 ppm, the elimination rates of MTBE equivalents from tissues changed significantly. Furthermore, at 400 ppm there was a significant decrease in the elimination half-time of volatile organic compounds (VOCs) in breath and a significant increase in the percentage of the IBB of MTBE equivalents eliminated as VOCs in breath. LFG coexposure significantly decreased the percentage of the

  14. Thermal stability of sulfonated Poly(Ether Ether Ketone) films : on the role of Protodesulfonation

    NARCIS (Netherlands)

    Koziara, B.T.; Kappert, E.J.; Ogieglo, W.; Nijmeijer, Kitty; Hempenius, M.A.; Benes, N.E.

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material,

  15. In vitro evaluation of poly(ethylene glycol)-block-poly(ε-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rusen, Laurentiu [National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania); Neacsu, Patricia; Cimpean, Anisoara [University of Bucharest, Department of Biochemistry and Molecular Biology, Bucharest (Romania); Valentin, Ion; Brajnicov, Simona; Dumitrescu, L.N. [National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania); Banita, Janina [University of Bucharest, Faculty of Chemistry, Bucharest (Romania); IBAR, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, RO-060031 Bucharest (Romania); Dinca, Valentina, E-mail: valentina.dinca@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania); Dinescu, Maria [National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania)

    2016-06-30

    Understanding and controlling natural and synthetic biointerfaces is known to be the key to a wide variety of application within cell culture and tissue engineering field. As both material characteristics and methods are important in tailoring biointerfaces characteristics, in this work we explore the feasibility of using Matrix Assisted Pulsed Laser Evaporation technique for obtaining synthetic copolymeric biocoatings (i.e. poly(ethylene glycol)-block-poly(ε-caprolactone) methyl ether) for evaluating in vitro Vero and MC3T3-E1 pre-osteoblasts cell response. Characterization and evaluation of the coated substrates were carried out using different techniques. The Fourier transform infrared spectroscopy data demonstrated that the main functional groups in the MAPLE-deposited films remained intact. Atomic Force Microscopy images showed the coatings to be continuous, with the surface roughness depending on the deposition parameters. Moreover, the behaviour of the coatings in medium mimicking the pH and temperature of the human body was studied and corelated to degradation. Spectro-ellipsometry (SE) and AFM measurements revealed the degradation trend during immersion time by the changes in coating thickness and roughness. In vitro biocompatibility was studied by indirect contact tests on Vero cells in accordance with ISO 10993-5/2009. The results obtained in terms of cell morphology (phase contrast microscopy) and cytotoxicity (LDH and MTT assays) proved biocompatibility. Furthermore, direct contact assays on MC3T3-E1 pre-osteoblasts demonstrated the capacity of all analyzed specimens to support cell adhesion, normal cellular morphology and growth.

  16. In vitro evaluation of poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation

    Science.gov (United States)

    Rusen, Laurentiu; Neacsu, Patricia; Cimpean, Anisoara; Valentin, Ion; Brajnicov, Simona; Dumitrescu, L. N.; Banita, Janina; Dinca, Valentina; Dinescu, Maria

    2016-06-01

    Understanding and controlling natural and synthetic biointerfaces is known to be the key to a wide variety of application within cell culture and tissue engineering field. As both material characteristics and methods are important in tailoring biointerfaces characteristics, in this work we explore the feasibility of using Matrix Assisted Pulsed Laser Evaporation technique for obtaining synthetic copolymeric biocoatings (i.e. poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether) for evaluating in vitro Vero and MC3T3-E1 pre-osteoblasts cell response. Characterization and evaluation of the coated substrates were carried out using different techniques. The Fourier transform infrared spectroscopy data demonstrated that the main functional groups in the MAPLE-deposited films remained intact. Atomic Force Microscopy images showed the coatings to be continuous, with the surface roughness depending on the deposition parameters. Moreover, the behaviour of the coatings in medium mimicking the pH and temperature of the human body was studied and corelated to degradation. Spectro-ellipsometry (SE) and AFM measurements revealed the degradation trend during immersion time by the changes in coating thickness and roughness. In vitro biocompatibility was studied by indirect contact tests on Vero cells in accordance with ISO 10993-5/2009. The results obtained in terms of cell morphology (phase contrast microscopy) and cytotoxicity (LDH and MTT assays) proved biocompatibility. Furthermore, direct contact assays on MC3T3-E1 pre-osteoblasts demonstrated the capacity of all analyzed specimens to support cell adhesion, normal cellular morphology and growth.

  17. Microencapsulation of 2-octylcyanoacrylate tissue adhesive for self-healing acrylic bone cement.

    Science.gov (United States)

    Brochu, Alice B W; Chyan, William J; Reichert, William M

    2012-10-01

    Here, we report the first phase of developing self-healing acrylic bone cement: the preparation and characterization of polyurethane (PUR) microcapsules containing a medical cyanoacrylate tissue adhesive. Capsules were prepared by interfacial polymerization of a toluene-2,4-diisocyanate-based polyurethane prepolymer with 1,4-butanediol to encapsulate 2-octylcyanoacrylate (OCA). Various capsule characteristics, including: resultant morphology, average size and size distribution, shell thickness, content and reactivity of encapsulated agent, and shelf life are investigated and their reliance on solvent type and amount, surfactant type and amount, temperature, pH, agitation rate, reaction time, and mode of addition of the oil phase to the aqueous phase are presented. Capsules had average diameters ranging from 74 to 222 μm and average shell thicknesses ranging from 1.5 to 6 μm. The capsule content was determined via thermogravimetric analysis and subsequent analysis of the capsules following up to 8 weeks storage revealed minimal loss of core contents. Mechanical testing of OCA-containing capsules showed individual capsules withstood compressive forces up to a few tenths of Newtons, and the contents released from crushed capsules generated tensile adhesive forces of a few Newtons. Capsules were successfully mixed into the poly(methyl methacrylate) bone cement, surviving the mixing process, exposure to methyl methacrylate monomer, and the resulting exothermic matrix curing. Copyright © 2012 Wiley Periodicals, Inc.

  18. O-methylation of natural phenolic compounds based on green chemistry using dimethyl carbonate

    Science.gov (United States)

    Prakoso, N. I.; Pangestu, P. H.; Wahyuningsih, T. D.

    2016-02-01

    The alkyl aryl ether compounds, of which methyl eugenol and veratraldehyde are the simplest intermediates can be synthesized by reacting eugenol and vanillin with the green reagent dimethyl carbonate (DMC). The reaction was carried out under mild of temperature and pressure. Excellent yields and selective products were obtained (95-96%) after a few hours. In the end of the reaction, the catalysts (base and Phase Transfer Catalyst) can be recovered and regenerated.

  19. Synthesis and Characterization of the Most Active Copper ATRP Catalyst Based on Tris[(4-dimethylaminopyridyl)methyl]amine.

    Science.gov (United States)

    Ribelli, Thomas G; Fantin, Marco; Daran, Jean-Claude; Augustine, Kyle F; Poli, Rinaldo; Matyjaszewski, Krzysztof

    2018-01-31

    The tris[(4-dimethylaminopyridyl)methyl]amine (TPMA NMe2 ) as a ligand for copper-catalyzed atom transfer radical polymerization (ATRP) is reported. In solution, the [Cu I (TPMA NMe2 )Br] complex shows fluxionality by variable-temperature NMR, indicating rapid ligand exchange. In the solid state, the [Cu II (TPMA NMe2 )Br][Br] complex exhibits a slightly distorted trigonal bipyramidal geometry (τ = 0.89). The UV-vis spectrum of [Cu II (TPMA NMe2 )Br] + salts is similar to those of other pyridine-based ATRP catalysts. Electrochemical studies of [Cu(TPMA NMe2 )] 2+ and [Cu(TPMA NMe2 )Br] + showed highly negative redox potentials (E 1/2 = -302 and -554 mV vs SCE, respectively), suggesting unprecedented ATRP catalytic activity. Cyclic voltammetry (CV) in the presence of methyl 2-bromopropionate (MBrP; acrylate mimic) was used to determine activation rate constant k a = 1.1 × 10 6 M -1 s -1 , confirming the extremely high catalyst reactivity. In the presence of the more active ethyl α-bromoisobutyrate (EBiB; methacrylate mimic), total catalysis was observed and an activation rate constant k a = 7.2 × 10 6 M -1 s -1 was calculated with values of K ATRP ≈ 1. ATRP of methyl acrylate showed a well-controlled polymerization using as little as 10 ppm of catalyst relative to monomer, while side reactions such as Cu I -catalyzed radical termination (CRT) could be suppressed due to the low concentration of L/Cu I at a steady state.

  20. Synthesis and Characterization of Core-Shell Acrylate Based Latex and Study of Its Reactive Blends

    Directory of Open Access Journals (Sweden)

    Ying Nie

    2008-03-01

    Full Text Available Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA, butyl acrylate (BA, 2-ethylhexyl acrylate (EHA and glycidyl methacrylate (GMA as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA component as the core and P(EHA-co-GMA component as the shell. Results of Transmission Electron Microscopy (TEM and Dynamics Light Scattering (DLS tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF or urea-formaldehyde resin (UF. It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment.

  1. Synthesis and characterization of waterborne polyurethane acrylate copolymers

    International Nuclear Information System (INIS)

    Sultan, Misbah; Bhatti, Haq Nawaz; Zuber, Mohammad; Barikani, Mehdi

    2013-01-01

    Polyurethane acrylate copolymers were synthesized by emulsion polymerization process. To reduce the environmental hazards, organic solvents were replaced by eco-friendly aqueous system. Concentration of polyurethane and acrylate monomer was varied to investigate the effect of chemical composition on performance properties of copolymers. FTIR spectroscopy was used as a key tool to record the chemical synthesis route. The synthesized copolymer emulsions were characterized by evaluating their particle size, viscosity, dry weight content, chemical and water resistance. Thermal decomposition was studied by thermogravimetric analysis. Scanning electron microscope was used to visualize the morphological structure of copolymers. The experimental results indicate better polyurethane acrylate compatibility till the ratio of 30/70. However, these copolymers exhibited synergistic effects between the two polymers and revealed a remarkable improvement in numerous coating properties

  2. Toughening epoxy acrylate with polyurethane acrylates and hyper-branched polyester in three dimensional printing

    Science.gov (United States)

    Fang, Chao; Li, Ning; Liu, Yang; Lu, Gang

    2018-05-01

    In order to improve the toughness of epoxy acrylate (EA) in three dimensional printing (3D-printing), bifunctional polyurethane acrylate (PUA) and trifunctional PUA were firstly blended with EA. The multi-indicators orthogonal experiment, designed with the indicators of tensile strength, elongation at break and impact strength, was used to find out the optimal formulation. Then, hyper-branched polyesters (HBPs) was added to improve the toughness of the photocurable system. The microstructures of the cured specimens were characterized by optical microscopy and scanning electron microscopy. By analyzing their mechanical properties and microstructures, it was revealed that the best addition amounts of HBP are 10 wt%. Results indicated that their toughness improved a lot comparing with pure EA. The changes of mechanical properties were characterized by DMA. The addition of HBP could cause a loss in stiffness, elasticity modulus and thermostability.

  3. Electrochemical investigation on an acrylated thiophene

    Energy Technology Data Exchange (ETDEWEB)

    Hogervorst, A.C.R. (TNO Plastics and Rubber Research Inst., Delft (Netherlands)); Kock, T.J.J.M. (TNO Plastics and Rubber Research Inst., Delft (Netherlands)); Ruiter, B. de (TNO Plastics and Rubber Research Inst., Delft (Netherlands)); Waal, A. van der (TNO Plastics and Rubber Research Inst., Delft (Netherlands))

    1993-03-22

    The electrochemical behaviour of electropolymerized 2-(3-thienyl)ethyl acrylate (PAcrT) has been investigated, and compared to the behaviour of electropolymerized thiophene and 3-n-decylthiophene (PDT). The effect of electron beam irradiation on the electrochemical properties of these three polymers has been studied. It has been found that for PAcrT the oxidation wave shifts to higher potentials upon electron beam irradiation. For PDT a similar but smaller change occurs. We suggest that the shift of the oxidation wave of PAcrT is caused by cross-links, formed between the acrylate substituents, which fixate the main chain parts in twisted states and reduce the conjugation length. (orig.)

  4. Preparations and applications in UV curing coatings of epoxy acrylates containing carboxyl

    International Nuclear Information System (INIS)

    Wu Yu Min

    1999-01-01

    This paper introduces preparations of epoxy acrylates containing carboxyl through the reactions of epoxy acrylates with butanedioic anhydride, pentanedioic anhydride, cis-butenedioic anhydride, phthalic anhydride, tetrabromophthalic anhydride and -tetrahydrophthalic anhydride. These epoxy acrylates containing carboxyl have been applied to UV-curing coatings and their effects on properties of UV-curing coatings have been studied

  5. On new physical reality (on ψ-ether)

    International Nuclear Information System (INIS)

    Isaev, P.S.

    2002-01-01

    It is shown that there exists a new physical reality - the ψ-ether. All the achievements of quantum mechanics and quantum field theory are due to the fact that both the theories include the influence of ψ-ether on the physical processes occurring in the Universe. Physics of the XX century was first of all the physics of ψ-ether

  6. Effects of secretagogues on ATP levels and protein carboxyl methylation in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Bjorndahl, J.M.; Rutledge, C.O.

    1986-01-01

    The influence of various substances which are known to alter free intracellular calcium concentrations on protein carboxyl methyltransferase (PCM) activity was investigated in rat brain synaptosomes. The synaptosomes were labeled with L-[ 3 H]methionine and the 3 H-methyl esters of proteins were formed from the methyl donor S-[ 3 H]adenosyl-L-methionine ([ 3 H]AdoMet). The calcium ionophore A23187 and ouabain decreased PCM activity and the decrease produced by A23187 was antagonized by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid and MnCl 2 . On the other hand, ruthenium red, an inhibitor of calcium uptake, stimulated PCM activity. These data suggest that PCM activity is inversely related to the free cytoplasmic calcium concentration. Veratridine, A23187 and elevated potassium ions decreased the levels of ATP and [ 3 H]AdoMet. The A23187-mediated decrease in ATP levels and the reduced [ 3 H]AdoMet formation was antagonized by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid and MnCl 2 . Inhibition of metabolic activity of the synaptosomes by NaCN led to: decreased ATP levels; inhibition of [3H]AdoMet formation; and inhibition of PCM activity. These data suggest that the decrease in protein methylation produced by secretagogues is associated with an increase in the concentration of free intracellular calcium which results in a decrease in the metabolically active pool of ATP. This leads to a decreased rate of AdoMet formation, a cosubstrate for PCM and a resultant decrease in PCM activity

  7. Ultraviolet curing of acrylated liquid natural rubber for surface coating application

    OpenAIRE

    Kannikar Kwanming; Pairote Klinpituksa; Wae-asae Waehamad

    2009-01-01

    Ultraviolet curable acrylated liquid natural rubber was prepared by grafting of photosensitive molecule onto liquid natural rubber for surface coating application. The liquid natural rubber (LNR) was firstly obtained by degradation of natural rubber latex with hydrogen peroxide and cobalt acetylacetonate at 65oC for 72 hrs. The preparation of acrylated natural rubber was carried out by the reaction of acrylic acid and epoxidized liquid natural rubber (ELNR) prior obtained from LNR with formic...

  8. Aerobic degradation of methyl tert-butyl ether in a closed symbiotic system containing a mixed culture of Chlorella ellipsoidea and Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Zhong, Weihong; Li, Yixiao; Sun, Kedan; Jin, Jing; Li, Xuanzhen; Zhang, Fuming; Chen, Jianmeng

    2011-01-30

    The contamination of groundwater by methyl tert-butyl ether (MTBE) is one of the most serious environmental problems around the world. MTBE degradation in a closed algal-bacterial symbiotic system, containing a mixed culture of Methylibium petroleiphilum PM1 and Chlorella ellipsoidea, was investigated. The algal-bacterial symbiotic system showed increased MTBE degradation. The MTBE-degradation rate in the mixed culture (8.808 ± 0.007 mg l(-1) d(-1)) was higher than that in the pure bacterial culture (5.664 ± 0.017 mg l(-1) d(-1)). The level of dissolved oxygen was also higher in the mixed culture than that in the pure bacterial culture. However, the improved efficiency of MTBE degradation was not in proportional to the biomass of the alga. The optimal ratio of initial cell population of bacteria to algae was 100:1. An immobilized culture of mixed bacteria and algae also showed higher MTBE degradation rate than the immobilized pure bacterial culture. A mixed culture with algae and PM1 immobilized separately in different gel beads showed higher degradation rate (8.496 ± 0.636 mg l(-1) d(-1)) than that obtained with algae and PM1 immobilized in the same gel beads (5.424 ± 0.010 mg l(-1) d(-1)). Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Discovery of potent and selective acetylcholinesterase (AChE) inhibitors: acacetin 7-O-methyl ether Mannich base derivatives synthesised from easy access natural product naringin.

    Science.gov (United States)

    Liu, Hao-Ran; Men, Xue; Gao, Xiao-Hui; Liu, Lin-Bo; Fan, Hao-Qun; Xia, Xin-Hua; Wang, Qiu-An

    2018-03-01

    Naringin, as a component universal existing in the peel of some fruits or medicinal plants, was usually selected as the material to synthesise bioactive derivates since it was easy to gain with low cost. In present investigation, eight new acacetin-7-O-methyl ether Mannich base derivatives (1-8) were synthesised from naringin. The bioactivity evaluation revealed that most of them exhibited moderate or potent acetylcholinesterase (AChE) inhibitory activity. Among them, compound 7 (IC 50 for AChE = 0.82 ± 0.08 μmol•L -1 , IC 50 for BuChE = 46.30 ± 3.26 μmol•L -1 ) showed a potent activity and high selectivity compared with the positive control Rivastigmine (IC 50 for AChE = 10.54 ± 0.86 μmol•L -1 , IC 50 for BuChE = 0.26 ± 0.08 μmol•L -1 ). The kinetic study suggested that compound 7 bind to AChE with mix-type inhibitory profile. Molecular docking study revealed that compound 7 could combine both catalytic active site (CAS) and peripheral active site (PAS) of AChE with four points (Trp84, Trp279, Tyr70 and Phe330), while it could bind with BuChE via only His 20.

  10. Constraining the Molecular Complexity in the Interstellar Medium—The Formation of Ethyl Methyl Ether (CH3OCH2CH3) in Star-forming Regions

    Science.gov (United States)

    Bergantini, Alexandre; Frigge, Robert; Kaiser, Ralf I.

    2018-05-01

    We report the first confirmed synthesis of ethyl methyl ether (EME, CH3CH2OCH3) within astrophysical model ices containing water (H2O) and methane (CH4) exposed to ionizing radiation at ultra-low temperatures of 5 K. EME (also known as methoxyethane), was recently observed toward Orion KL and currently is the largest confirmed oxygen-bearing molecule found in the interstellar medium. Exploiting isomer-selective photoionization (PI) of the subliming molecules in the temperature-programmed desorption phase at 10.49, 9.92, and 9.70 eV, coupled with reflectron time-of-flight mass spectrometry and isotopic substitution experiments (H2 18O–CH4), the detection of fragment ions of EME at m/z = 45 (C2H5O+) and m/z = 59 (C3H7O+), and probing the proton transfer in subliming ethanol–EME complexes via m/z = 61 (C3H9O+), the present study reveals that EME can be formed from suprathermal reactions initiated by cosmic rays and secondary electrons generated within astrophysical ices. The detection of EME in our experiments represents a significant advance in the understanding of formation pathways of complex organic molecules present in hot cores and helps to constrain astrochemical models on the formation of such species within molecular clouds.

  11. N-Heterocyclic Olefins as Initiators for the Polymerization of (Meth)Acrylic Monomers: A Combined Experimental and Theoretical Approach

    KAUST Repository

    Naumann, Stefan

    2017-08-25

    The zwitterionic organopolymerization of four different acrylic monomers (N,N-dimethylacrylamide, methyl acrylate, methyl methacrylate and tert-butyl methacrylate) based on neutral initiators, so-called N-heterocyclic olefins (NHOs), is presented. Scope and underlying (deactivation-)mechanisms where studied in a combined experimental and computational effort. From a range of differently structured NHOs it emerged that imidazole-, in contrast to imidazoline- and benzimidazole-derivatives, readily polymerize the selected monomers. While the additive-free reactions proceed with a relatively low degree of control to yield largely atactic material, for the acrylamide the addition of LiCl as µ-type ligand has been shown to result in a rapid and quantitative monomer consumption. The thus generated poly(N,N-dimethyl acrylamide) was found to be highly isotactic (>90% isotactic dyads) with high molecular weight (Mn = 250 000 – 650 000 g/mol, ÐM = 1.3- 1.6). Complementing DFT calculations considered the zwitterionic chain growth with respect to competing side reactions, namely spirocycles and enamine formation. It was found that NHOs with unsaturated backbone better support the zwitterionic chain growth, with the spirocycles acting as dormant species that slow down but do not quench the polymerization process. Contrasting this, enamine formation irreversibly terminates the polymerization and is found to be energetically favored. This pathway can be blocked by introduction of substituents on the exocyclic carbon of the NHO, resulting in structures like 2-isopropylidene-1,3,4,5-tetramethylimidazoline (4) which consequently deliver the most controlled polymerizations. Finally, a good correlation of the initiation energy barrier with the buried volume (%VBur) and the Parr electrophilicity index is described, allowing for a quick and reliable screening of potential monomers based on these two readily accessible parameters.

  12. Isolate PM1 populations are dominant and novel methyl tert-butyl ether-degrading bacterial in compost biofilter enrichments.

    Science.gov (United States)

    Bruns, M A; Hanson, J R; Mefford, J; Scow, K M

    2001-03-01

    The gasoline additive MTBE, methyl tert-butyl ether, is a widespread and persistent groundwater contaminant. MTBE undergoes rapid mineralization as the sole carbon and energy source of bacterial strain PM1, isolated from an enrichment culture of compost biofilter material. In this report, we describe the results of microbial community DNA profiling to assess the relative dominance of isolate PM1 and other bacterial strains cultured from the compost enrichment. Three polymerase chain reaction (PCR)-based profiling approaches were evaluated: denaturing gradient gel electrophoresis (DGGE) analysis of 230 bp 16S rDNA fragments; thermal gradient gel electrophoresis (TGGE) analysis of 575 bp 16S rDNA fragments; and non-denaturing polyacrylamide gel electrophoresis of 300-1,500 bp fragments containing 16S/23S ribosomal intergenic transcribed spacer (ITS) regions. Whereas all three DNA profiling approaches indicated that PM1-like bands predominated in mixtures from MTBE-grown enrichments, ITS profiling provided the most abundant and specific sequence data to confirm strain PM1's presence in the enrichment. Moreover, ITS profiling did not produce non-specific PCR products that were observed with T/DGGE. A further advantage of ITS community profiling over other methods requiring restriction digestion (e.g. terminal restriction fragment length polymorphisms) was that it did not require an additional digestion step or the use of automated sequencing equipment. ITS bands, excised from similar locations in profiles of the enrichment and PM1 pure culture, were 99.9% identical across 750 16S rDNA positions and 100% identical across 691 spacer positions. BLAST comparisons of nearly full-length 16S rDNA sequences showed 96% similarity between isolate PM1 and representatives of at least four different genera in the Leptothrix subgroup of the beta-Proteobacteria (Aquabacterium, Leptothrix, Rubrivivax and Ideonella). Maximum likelihood and parsimony analyses of 1,249 nucleotide

  13. Rhodocomatulin-Type Anthraquinones from the Australian Marine Invertebrates Clathria hirsuta and Comatula rotalaria.

    Science.gov (United States)

    Khokhar, Shahan; Pierens, Gregory K; Hooper, John N A; Ekins, Merrick G; Feng, Yunjiang; Davis, Rohan A

    2016-04-22

    Chemical investigations of an Australian sponge, Clathria hirsuta, from the Great Barrier Reef, have resulted in the isolation of two known anthraquinones, rhodocomatulin 5,7-dimethyl ether (1) and rhodocomatulin 7-methyl ether (2). Additionally, four new anthraquinone metabolites, 6-methoxyrhodocomatulin 7-methyl ether, 3-bromo-6-methoxy-12-desethylrhodocomatulin 7-methyl ether, 3-bromo-6-methoxyrhodocomatulin 7-methyl ether, and 3-bromorhodocomatulin 7-methyl ether (3-6), were also isolated and characterized. This is the first report of the rhodocomatulin-type anthraquinones from a marine sponge, as 1 and 2 were previously isolated from the marine crinoid genus Comatula. An additional chemical investigation of the marine crinoid Comatula rotalaria enabled the isolation of further quantities of 1 and 2, as well as two additional new crinoid metabolites, 12-desethylrhodocomatulin 5,7-dimethyl ether and 12-desethylrhodocomatulin 7-methyl ether (7 and 8). An NMR spectroscopic analysis of compounds 7 and 8 provided further insight into the rhodocomatulin planar structure and, together with the successful implementation of DFT-NMR calculations, confirmed that the rhodocomatulin metabolites existed as para rather than ortho quinones.

  14. Technology and the use of acrylics for provisional dentine protection.

    Science.gov (United States)

    Kapusevska, Biljana; Dereban, Nikola; Popovska, Mirjana; Nikolovska, Julijana; Radojkova Nikolovska, Vеrа; Zabokova Bilbilova, Efka; Mijoska, Aneta

    2013-01-01

    Acrylics are compounds polymerized from monomers of acrylic, metacrylic acid or acrylonitrates. The purpose of this paper is to present the technology and use of acrylics for provisional dentine protection in the practice of dental prosthodontics. For this reason, we followed 120 clinical cases from the everyday clinical practice, divided into 4 groups of 30 patients who needed prosthetic reconstruction. The first group included cases in which we applied celluloid crowns for dentine protection, for the second group we used acrylic teeth from a set of teeth for complete dentures; in the third and fourth groups the fabrication was done with the system of an impression matrix and the acrylic resin block technique respectively. In all the examined patients, the gingival index by Silness and Loe and the vitality of the dental pulp were verified clinically, after preparation and 8 days from the placement of the provisional crown. The value for dental sensitivity measured after preparation was 2.59, and 8 days after the placement of the provisional crown it bwas 3.1. From these results we can conclude that after the 8th day from the placement of the provisional crown, there was an adaptation period, characterized by a decrease in the painful sensations. The value of the Silness and Loe gingival index measured after the preparation was 1.34, and 8 days from the placement of the provisional crown was 0.94. The results inclined us to the fact that the provisional acrylic crowns facilitated the reparation of the periodontal tissue.

  15. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    Science.gov (United States)

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-08-04

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.

  16. Enzyme-Catalyzed Synthesis of Saccharide Acrylate Monomers from Nonedible Biomass

    NARCIS (Netherlands)

    Kloosterman, Wouter M. J.; Brouwer, Sander; Loos, Katja

    Various cellulase preparations were found to catalyze the transglycosidation between cotton linters and 2-hydroxyethyl acrylate. The conversion and enzyme activity were found to be optimal in reaction mixtures that contained 5 vol% of the acrylate. The structures of the products were revealed by

  17. Sulfonated poly(ether ether ketone) membranes for electric double layer capacitors

    International Nuclear Information System (INIS)

    Kim, Wan Ju; Kim, Dong-Won

    2008-01-01

    Sulfonated poly(ether ether ketone) (S-PEEK) with different degree of sulfonation (DS) has been prepared and evaluated as a proton conducting membrane for electric double layer capacitor (EDLC). The polymer electrolytes prepared with S-PEEK membrane exhibited ionic conductivities about 1.2 x 10 -3 -4.5 x 10 -3 S cm -1 at room temperature, which depended on both soaking solvent and degree of sulfonation. The quasi-solid-state EDLCs consisted of activated carbon electrodes and S-PEEK membrane were assembled, and their electrochemical characteristics were studied by cyclic voltammetry and charge-discharge cycle tests. The effect of DS on the electrochemical performances of EDLCs has been investigated

  18. Extraction of flavonoids from garden (Salvia officinalis L. and glutinous (Salvia glutinosa L. sage by ultrasonic and classical maceration

    Directory of Open Access Journals (Sweden)

    DRAGAN T. VELICKOVIC

    2007-01-01

    Full Text Available Flavonoids were analysed in the extracts of garden (Salvia officinalis L. and glutinous (Salvia glutinosa L. sage. Ultrasonic extraction (20 minutes at 40 °C and classical maceration (6 h at room temperature of the extractable substances from dried herbs and dried residual plant materials from which the essential oil had previously been removed by hydrodistillation were performed with petroleum ether, 70 % aqueous solution of ethanol and water. It was found that the extracts from both plants contained flavonoids, but their compositions were dependent of the plant species, the polarity of the extracting solvent and the extraction technique applied. Apigenin and its derivatives (e.g., apigenin 4'-methyl ether, scutellarein 6-methyl ether, isoscutellarein 8-methyl ether, luteolin and 6-OH-luteolin-6-methyl ether where distinctive for S. officinalis. Apigenin, luteolin, 6-OH-luteolin-6-methyl ether, kaempherol 3-methyl ether, kaempherol 3,7-dimethyl ether, quercetin 3,7,3'-trimethyl ether and quercetin 3,7,3',4'-tetramethyl ether were distinctive for S. glutinosa. The flavonoids were also detected in considerable quantities in the plant material from which the essential oils had been already removed. Hence, this industrial waste plant material might be further used as a source of the flavonoids.

  19. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    International Nuclear Information System (INIS)

    Rida Tajau; Nurulhuda Mohd Yunus; Mohd Hilmi Mahmood; Mek Zah Salleh; Nik Ghazali Nik Salleh

    2013-01-01

    Full-text: The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidized palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) for example EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80 %) than the palm oil based compounds (up to 70 %), where the different is around 10-15 %. The hardness property from this two type coatings can reached until 50 % at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newton's (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photo initiator give higher adhesion property and their also showed a higher glossiness property on the glass substrate compared to the coatings containing irgacure-819 photo initiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough. (author)

  20. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    International Nuclear Information System (INIS)

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd

    2014-01-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough

  1. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    Energy Technology Data Exchange (ETDEWEB)

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia); Ibrahim, Mohammad Izzat [Faculty of Science, University of Malaya (UM), 50603 Kuala Lumpur (Malaysia); Yunus, Nurulhuda Mohd [Faculty of Science and Technology, National University Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  2. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties.

    Science.gov (United States)

    Halacheva, Silvia S; Adlam, Daman J; Hendow, Eseelle K; Freemont, Tony J; Hoyland, Judith; Saunders, Brian R

    2014-05-12

    The potential of various pH-responsive alkyl (meth)acrylate ester- and (meth)acrylic acid-based copolymers, including poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) and poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA), to form pH-sensitive biocompatible and biodegradable hollow particle gel scaffolds for use in non-load-bearing soft tissue regeneration have been explored. The optimal copolymer design criteria for preparation of these materials have been established. Physical gels which are both pH- and redox-sensitive were formed only from PMMA-AA copolymers. MMA is the optimal hydrophobic monomer, whereas the use of various COOH-containing monomers, e.g., MAA and AA, will always induce a pH-triggered physical gelation. The PMMA-AA gels were prepared at physiological pH range from concentrated dispersions of swollen, hollow, polymer-based particles cross-linked with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP). A linear relationship between particle swelling ratios, gel elasticity, and ductility was observed. The PMMA-AA gels with lower AA contents feature lower swelling ratios, mechanical strengths, and ductilities. Increasing the swelling ratio (e.g., through increasing AA content) decreased the intraparticle elasticity; however, intershell contact and gel elasticity were found to increase. The mechanical properties and performance of the gels were tuneable upon varying the copolymers' compositions and the structure of the cross-linker. Compared to PMMA-AA/CYS, the PMMA-AA/DTP gels were more elastic and ductile. The biodegradability and cytotoxicity of the new hollow particle gels were tested for the first time and related to their composition, mechanical properties, and morphology. The new PMMA-AA/CYS and PMMA-AA/DTP gels have shown good biocompatibility, biodegradability, strength, and interconnected porosity and therefore have good potential as a tissue repair agent.

  3. Promoting environmentally sound management of polybrominated diphenyl ethers in Asia.

    Science.gov (United States)

    Li, Jinhui; Zhao, Nana; Liu, Xue; Wu, Xiaoyang

    2014-06-01

    Polybrominated diphenyl ethers with persistent organic pollutant properties are required to be controlled by the Stockholm Convention. Recently, polybrominated diphenyl ether contamination has become widespread in Asia, mainly because of the disposal and recycling processes of polybrominated diphenyl ether-containing wastes. The management status, production, usage, import/export, treatment, and disposal, as well as implementation deficiencies for the environmentally sound management of polybrominated diphenyl ethers and polybrominated diphenyl ether-containing materials in ten Asian countries were investigated and assessed in this study. This information could help the participating countries implement the Stockholm Convention and could promote the regional environmentally sound management of polybrominated diphenyl ether-containing articles and products. The results obtained were as follows. (1) Most of the countries studied lacked environmental policies and regulations, or even standards of polybrominated diphenyl ether pollution management and emission control actions. Accurate data on the consumption and importation of polybrominated diphenyl ether-containing materials, however, were not available for all the participating countries. In addition, there were no special treatment or disposal systems for polybrominated diphenyl ether-containing materials, or emission-cutting measures for the treatment of waste in these countries, owing to the lack of sufficient funding or technologies. (2) The improper dismantling of e-waste is a major source of polybrominated diphenyl ether emissions in these countries. (3) Proper e-waste management could result in a breakthrough in the environmentally sound management of this major polybrominated diphenyl ether-containing material flow, and could significantly reduce polybrominated diphenyl ether emissions. Finally, based on the study results, this article puts forward some recommendations for improving the environmentally

  4. Clinical Aspects of Combination of Ceramic and Acrylic Occlusal Surfaces

    Directory of Open Access Journals (Sweden)

    Z. Ozhohan

    2017-03-01

    Full Text Available The objective of the research was to develop and substantiate the methods of constructing the occlusal surfaces when manufacturing aesthetic fixed restorations through the combination of different materials. Materials and methods. The study included 65 patients with ceramic and acrylic occlusal surfaces of aesthetic fixed dental prostheses. Group I included 21 patients with a combination of ceramic and acrylic occlusal surfaces. Group II included 22 patients with a combination of ceramic occlusal surfaces. Group III included 22 patients with a combination of acrylic occlusal surfaces. The patients were observed 3, 6 and 12 months after prosthetic repair. Results. The greatest increase in the occlusal contact surface area of fixed restorations was observed in Group I, that is, when combining dental prostheses with ceramic and acrylic occlusal surfaces. Considering uneven abrasion of the occlusal surfaces, we do not recommend to combine different materials when veneering the occlusal surface of the antagonistic teeth. Conclusions. This study demonstrated the important role of the correct combination of materials when veneering the occlusal surfaces. Physical and chemical properties of materials, namely the abrasion resistance play a significant role in the long-term denture functioning. The smallest increase in the occlusal contact surface area was observed in Group II when combining ceramic occlusal surfaces. It was due to a good abrasion resistance of ceramics as compared to acrylic resin as well as the presence of the glazed layer which prevents the premature abrasion of the occlusal surfaces of the antagonistic teeth due to lower surface roughness. The combination of acrylic resin and ceramics when constructing the occlusal surfaces of fixed restorations in Group I demonstrated the highest rate of the increase in the occlusal contact surface area – 9.93%. It was due to a low hardness of acrylic resin and its high surface roughness. In

  5. Chemoselective Deprotection of Triethylsilyl Ethers

    Science.gov (United States)

    Chandra, Tilak; Broderick, William E.; Broderick, Joan B.

    2009-01-01

    An efficient and selective method was developed for the deprotection of triethylsilyl (TES) ethers using formic acid in methanol (5–10%) or in methylene chloride 2–5%) with excellent yields. TES ethers are selectively deprotected to the corresponding alcohols in high yields using formic acid in methanol under mild reaction conditions. Other hydroxyl protecting groups like t-butyldimethylsilyl (TBDMS) remain unaffected. PMID:20183570

  6. Surfactant and counter-ion distribution in styrene-butyl acrylate-acrylic acid dry latex submonolayers

    Directory of Open Access Journals (Sweden)

    Keslarek Amauri José

    2004-01-01

    Full Text Available Styrene-butyl acrylate-acrylic acid latex submonolayers prepared using a non-reactive phosphate surfactant together with a reactive sulfonate surfactant were examined in a transmission microscope using electron energy loss spectroscopy imaging (ESI-TEM. Phosphorus is nearly absent from the particles core but it is detected in a thick shell and in unusual, strongly scattering structures with a low carbon content, and largely made out of inorganic phosphate. P is also dispersed outside the particles, while S is uniformly distributed within then. The Na and N elemental maps show that the respective monovalent ions (Na+ and NH4+ have different distributions, in the latex: Na signal within the particles is stronger than in the background, while N is accumulated at the particle borders. The distributions of surfactant and counter-ions are thus different from some current assumptions, but they support recent results on the distribution of ionic constituents in latex films, by scanning electric potential microscopy.

  7. Laboratory rotational spectrum of singly 13C-substituted dimethyl ether up to 1.5 THz and interstellar detection of 13CH_3O12CH_3 - a fruitful interplay between laboratory work and inter

    Science.gov (United States)

    Koerber, M.; Bisschop, S.; Endres, C.; Lewen, F.; Schlemmer, S.

    2011-05-01

    Dimethyl ether (CH_3OCH_3) is found in high abundance in star forming regions. However, the interstellar formation process of dimethyl ether still remains unclear up to now. In current gas-grain models gas-phase synthesis via self-methylation of methanol evaporating from grains is discussed in contrast to the surface reaction of CH_3 with successively hydrogenated CO (Garrod & Herbst 2006). An observational test for the formation mechanism has been proposed by Charnley et al. (2004) making use of the 13C fractionation into CO at low temperatures on grains: Comparing the 12C/13C ratio of molecules to the 12CO/13CO ratio allows to distinguish between formation from CO on cold grains and pure gas-phase formation routes. The isotopic ratio of species like dimethyl ether thus can be used as a tracer of the chemical evolution of the observed region. Due to its two methyl groups undergoing large amplitude motions and a relatively strong dipole moment of μ = 1.302 D it shows a strong and dense complex spectrum all over the terahertz region relevant for Herschel and ALMA observations. Accurate transition frequencies are needed to interpret the astronomical spectra. For the main isotopologue extensive data are now available (Endres et al. 2009). However, due to the greatly improved sensitivity of the new observatories isotopic species of abundant molecules like dimethyl ether are appearing in the spectra as well. In this work we present laboratory measurements of singly 13C-substituted dimethyl ether (13CH_3O12CH_3) up to 1.5 THz. More than 1700 transitions of 13CH_3O12CH_3 with rotational quantum numbers up to J = 53 and K = 25 have been analyzed. Based on the laboratory measurements singly 13C-substituted dimethyl ether has been detected for the first time in the spectrum of G327.3-0.6 (Bisschop et al. in prep.) and a preliminary value for the 12C/13C abundance ratio has been determined.

  8. [Early contributions from Erlangen to the theory and practice of ether and chloroform anesthesia. 1. Heyfelder's clinical trial with ether and chloroform].

    Science.gov (United States)

    Hintzenstern, U v; Schwarz, W

    1996-02-01

    The era of modern anaesthesia in Germany began on January 24th, 1847. This day, professor in ordinary Johann Ferdinand Heyfelder anaesthetized a patient with sulphuric ether in the clinic of surgery and ophthalmology of the University of Erlangen. By March 17th, 1847, Heyfelder had performed 121 surgical procedures under ether. The operations in majority were teeth-extractions, and a few more complex operations such as the treatment of a harelip or of lip cancer or the resection of the shoulder joint. Heyfelder described in detail 108 of these inhalations in a little book entitled The experiments with sulphuric ether. This monograph published in March, 1847, represents one of the first complete dissertations on sulphuric ether in the German literature. In a special chapter he analyzed the development of various physiological and psychological parameters during etherization. Heyfelder also examined blood and urine of some etherized patients and reported that he did not find any important or specific alterations. In 1847, Heyfelder was probably the first to apply salt-ether in man. After 4 administrations he concluded that salt ether acted more quickly but shorter than sulphuric ether. Advantageous were its application without problems and ease of induction. Disadvantageous were its high volatility, its price and the difficulty of getting it in a pure form. From December, 1847, on Heyfelder started to use chloroform. He was now able to perform more major operations, for example, the total resection of the hip-joint. In his book The experiments with sulphuric ether, salt ether, and chloroform he describes a great number of anaesthetic administrations using these 3 agents. In his summary Heyfelder concluded, that chloroform was undoubtly superior to sulphuric ether mainly because it was a quicker acting and longer lasting agent and leads to deeper narcosis. Moreover its application was much easier for it needed no special apparatus. However, because of its great

  9. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 85748 Garching Germany

    2018-03-06

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  10. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  11. Direct Synthesis of Hyperbranched Poly(acrylic acid-co-3-hydroxypropionate

    Directory of Open Access Journals (Sweden)

    Efkan Çatıker

    2015-01-01

    Full Text Available Hyperbranched poly(acrylic acid-co-3-hydroxypropionate (PAcHP was synthesized by base-catalyzed hydrogen transfer polymerization of acrylic acid through one step. The copolymers obtained through solution and bulk polymerization were insoluble in water and all organic solvents tried. Structural and compositional characterizations of hyperbranched PAcHP were performed by using FTIR, solid 13C-NMR, TGA, and titrimetric analysis. Acrylate fraction of the hyperbranched PAcHP obtained via bulk polymerization was determined as 60–65% by comparing TGA curves of hyperbranched PAcHP and pure poly(3-hydroxy propionate (PHP. However, analytical titration of the same sample revealed that acrylic acid units were about 47.3%. The results obtained from TGA and analytical titration were used to evaluate the chemical structure of the copolymer. Hyperbranched PAcHP exhibited hydrogel properties. Swelling behavior of the copolymer was investigated at a wide pH range and ionic strength. The dynamic swelling profiles of hyperbranched PAcHP exhibited a fast swelling behavior in the first hour and achieved the equilibrium state within 12 h in PBS. Depending on the conditions, the copolymers exhibited swelling ratios up to 2100%. As the copolymer has easily biodegradable propionate and versatile functional acrylic acid units, it can be used as not only biodegradable material in medical applications but also raw material in personal care commodities.

  12. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    Science.gov (United States)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  13. Synthesis and characterization of copolymers 4,5-dihydroisoxazole and (-)-menthyl acrylates

    International Nuclear Information System (INIS)

    Passo, Joel A.; Merlo, Aloir A.; Eccher, Juliana; Bechtold, Ivan H.; Kelly, Stephen M.

    2012-01-01

    Five monomers 5-[4-(5-cyano-4,5-dihydroisoxazol-3-yl)phenoxy]undecyl acrylate (7a); n-alkyl 3-{4-[5-(acryloyloxyundecyl)oxyphenyl]}-4,5-dihydroisoxazole-5-carboxylate (7b,c for n-butyl and n-hexyl, respectively); 3-{4-[5-(acryloyloxyundecyl) oxyphenyl]}-4,5-dihydroisoxazole-5-carboxylic acid (7d) and (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl acrylate (9) and the corresponding copolymers 10a-d,11 and homopolymers 12 from 7a and 13 from 9 were designed and synthesized. Except for acrylate 9 which is derived from (-)-menthol, all of the monomers belong to the series containing the isoxazoline ring linked to the acrylate unit by a flexible spacer chain of eleven methylene units. They presented low glass temperature and despite birefringence behavior, these copolymers showed no mesomorphic properties. (author)

  14. Electron beam curable branched chain polyurethane acrylates for magnetic media coatings

    International Nuclear Information System (INIS)

    Ukachi, Takashi; Haga, Kei-ichi; Matsumura, Yoshio

    1989-01-01

    Electron beam curable binder resins have been studied to realize the high quality magnetic coatings. It was supposed that resins with a higher crosslink density could lead to magnetic coatings with higher abrasion resistance. Branched chain polyurethane acrylates show a higher degree of cure by irradiation with an electron beam in comparison with linear polyurethane acrylates. This paper describes the potential wear resistance between properties of magnetic coatings and the physical properties of the cured unpigmented branched chain polyurethane acrylates that were used as the binder resins. (author)

  15. Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate

    International Nuclear Information System (INIS)

    Zhang, G.; Leparoux, S.; Liao, H.; Coddet, C.

    2006-01-01

    In this paper, the feasibility of microwave (MW) sintering PEEK (poly-ether-ether-ketone) based coatings was investigated. Three coatings were studied: pure PEEK, micron-SiC and nano-SiC particles filled (wt.10%) PEEK coatings. The results indicate that, for the two composite coatings, the SiC particles distributed in the polymer matrix, as a good MW susceptor, could be heated preferentially by MW radiation. Consequently, the polymer matrix was heated by these particles

  16. Influence of Chemical Blends on Palm Oil Methyl Esters’ Cold Flow Properties and Fuel Characteristics

    Directory of Open Access Journals (Sweden)

    Obed M. Ali

    2014-07-01

    Full Text Available Alternative fuels, like biodiesel, are being utilized as a renewable energy source and an effective substitute for the continuously depleting supply of mineral diesel as they have similar combustion characteristics. However, the use of pure biodiesel as a fuel for diesel engines is currently limited due to problems relating to fuel properties and its relatively poor cold flow characteristics. Therefore, the most acceptable option for improving the properties of biodiesel is the use of a fuel additive. In the present study, the properties of palm oil methyl esters with increasing additive content were investigated after addition of ethanol, butanol and diethyl ether. The results revealed varying improvement in acid value, density, viscosity, pour point and cloud point, accompanied by a slight decrease in energy content with an increasing additive ratio. The viscosity reductions at 5% additive were 12%, 7%, 16.5% for ethanol, butanol and diethyl ether, respectively, and the maximum reduction in pour point was 5 °C at 5% diethyl ether blend. Engine test results revealed a noticeable improvement in engine brake power and specific fuel consumption compared to palm oil biodiesel and the best performance was obtained with diethyl ether. All the biodiesel-additive blend samples meet the requirements of ASTM D6751 biodiesel fuel standards for the measured properties.

  17. Landfills as sources of polyfluorinated compounds, polybrominated diphenyl ethers and musk fragrances to ambient air

    Science.gov (United States)

    Weinberg, Ingo; Dreyer, Annekatrin; Ebinghaus, Ralf

    2011-02-01

    In order to investigate landfills as sources of polyfluorinated compounds (PFCs), polybrominated diphenyl ethers (PBDEs) and synthetic musk fragrances to the atmosphere, air samples were simultaneously taken at two landfills (one active and one closed) and two reference sites using high volume air samplers. Contaminants were accumulated on glass fiber filters (particle phase) and PUF/XAD-2/PUF cartridges (gas phase), extracted by methyl-tert butyl ether/acetone (neutral PFCs), methanol (ionic PFCs) or hexane/acetone (PBDEs, musk fragrances), and detected by GC-MS (neutral PFCs, PBDEs, musk fragrances) or HPLC-MS/MS (ionic PFCs). Total concentrations ranged from 84 to 706 pg m -3 (volatile PFCs, gas phase), from fragrances, gas + particle phase) and from 1 to 11 pg m -3 (PBDEs, gas + particle phase). Observed sum concentrations of PFCs and synthetic musk fragrances and partly PBDE concentrations were elevated at landfill sites compared to corresponding reference sites. Concentrations determined at the active landfill were higher than those of the inactive landfill. Overall, landfills can be regarded as a source of synthetic musk fragrances, several PFCs and potentially of PBDEs to ambient air.

  18. Study on grafting of different types of acrylic monomers onto natural rubber by γ-rays

    International Nuclear Information System (INIS)

    Dafader, N.C.; Haque, M.E.; Akhtar, F.; Ahmad, M.U.

    2006-01-01

    A comparative study of various acrylic monomers for grafting onto natural rubber was done. The stability of natural rubber latex (NRL) against coagulum with monomer, mechanical properties of grafted rubbers and percent of grafting were investigated. The NRL with monomers, methylacrylate (MA), ethylacrylate (EA) and n-butylacrylate (n-BA), is unstable but it is stable with methyl methacrylate (MMA), n-butyl methacrylate (BMA) and cyclohexyl methacrylate (CHMA). The mechanical properties and degree of grafting attained a maximum at a total radiation dose of 4 kGy. The values of tensile properties of MMA and CHMA grafted rubbers are almost similar, and higher than those of BMA grafted rubbers. On the other hand, the degree of grafting for CHMA is higher than those of MMA and BMA grafted rubbers. The infrared (IR) spectra of monomer grafted natural rubber were also studied

  19. Bubble-point measurement for the binary mixture of propargyl acrylate and propargyl methacrylate in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Baek, Seung-Hyun; Byun, Hun-Soo

    2016-01-01

    Highlights: • Phase behaviours for the (CO_2 + propargyl (meth)acrylate) systems by static method were measured. • (P, x) isotherms is obtained at pressures up to 19.14 MPa and at temperature of (313.2 to 393.2) K. • The (CO_2 + propargyl acrylate) and (CO_2 + propargyl methacrylate) systems exhibit type-I behaviour. - Abstract: Acrylate and methacrylate (acrylic acid type) are compounds with weak polarity which show a non-ideal behaviour. Phase behaviour of these systems play a significant role as organic solvents in industrial processes. High pressure phase behaviour data were reported for binary mixture of propargyl acrylate and propargyl methacrylate in supercritical carbon dioxide. The bubble-point curves for the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) mixtures were measured by static view cell apparatus at temperature range from 313.2 K to 393.2 K and at pressures below 19.14 MPa. The (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) systems exhibit type-I phase behaviour. The (carbon dioxide + (meth)acrylate) systems had continuous critical mixture curves with maximums in pressure located between the critical temperatures of carbon dioxide and propargyl acrylate or carbon dioxide and propargyl methacrylate. The solubility behaviour of propargyl (meth)acrylate in the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl acrylate) systems increases as the temperature increases at a fixed pressure. The experimental results for the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) systems correlate with the Peng–Robinson equation of state using a van der Waals one-fluid mixing rule. The critical properties of propargyl acrylate and propargyl methacrylate were predicted with the Joback–Lyderson group contribution and Lee–Kesler method.

  20. Actinide/crown ether chemistry

    International Nuclear Information System (INIS)

    Benning, M.M.

    1988-01-01

    A structural survey of actinide/crown ether compounds was conducted in order to investigate the solid state chemistry of these complexes. Several parameters - the metal size, crown type, counterion, solvent systems and reaction and crystallization conditions - were varied to correlate their importance in complexation. Under atmospheric conditions, two types of complexes were isolated, those containing only hydrogen-bonded crown interactions and instances where the crown interacts directly with the metal center. In both cases, water seems to play a very important role. When coordinated to the metal, water molecules exhibit the necessary donor properties required for the formation of hydrogen-bonded contacts. The water molecules also provide fierce competition with the crown ethers for metal-binding sites and in most cases prohibit the formation of complexes in which direct metal-ligand association exists. The results of this study indicate that direct interaction between the metal atoms and the crown ethers, in the presence of water, can only occur with polyether conformations which limit the steric replusions within the metal coordination sphere

  1. Determination of the free radical concentration ratio in the copolymerization of methyl acrylate and styrene. Application of radical trapping and 15N NMR spectroscopy

    NARCIS (Netherlands)

    Kelemen, P.; Klumperman, B.

    2004-01-01

    15N-labeled nitroxides are employed to trap propagating radicals in the copolymn. of styrene and Me acrylate. The resulting polymeric alkoxyamines are analyzed by 15N NMR.The assignment of the obsd. bands to the two possible end groups of the propagating copolymer chain is achieved by comparison of

  2. 17O NMR parameters of some substituted benzyl ethers components: Ab initio study

    Directory of Open Access Journals (Sweden)

    Mahdi Rezaei Sameti

    2016-09-01

    Full Text Available The 17O NMR chemical shielding tensors and chemical shift for a set of substituted benzyl ethers derivatives containing (methyl, ethyl, isopropyl, t-butyl, brome and lithium have been calculated. The molecular structures were fully optimized using B3LYP/6-31G(d,p. The calculation of the 17O shielding tensors employed the GAUSSIAN 98 implementation of the gauge-including atomic orbital (GIAO and continuous set of gauge transformations (CSGT by using 6-31G (d,p, 6-31++G(d,p and 6-311++G(d,p basis set methods at density functional levels of theories (DFT. The values determined using the GIAO and CSGT were found to give a good agreement with the experimental chemical shielding.

  3. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Nordiana; Ali, Ab Malik Marwan [Ionic Material and Devices Research Laboratory, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Lepit, Ajis; Rasmidi, Rosfayanti [Faculty of Applied Sciences, Universiti Teknologi MARA Sabah, Beg Berkunci 71, 88997 Kota Kinabalu (Malaysia); Subban, Ri Hanum Yahaya [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Yahya, Muhd Zu Azhan [Faculty of Defence Science & Technology, Universiti Pertahanan Nasional Malaysia, 57000 Kuala Lumpur (Malaysia)

    2015-08-28

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  4. Optimization of cellulose acrylate and grafted 4-vinylpyridine and 1-vinylimidazole synthesis

    OpenAIRE

    Bojanić Vaso

    2010-01-01

    Optimization of cellulose acrylate synthesis by reaction with sodium cellulosate and acryloyl chloride was carried out. Optimal conditions for conducting the synthesis reaction of cellulose acrylate were as follows: the molar ratio of cellulose/potassium-t-butoxide/acryloyl chloride was 1:3:10 and the optimal reaction time was 10 h. On the basis of elemental analysis with optimal conditions for conducting the reaction of cellulose acrylate, the percentage of substitution of glucose units in c...

  5. Rearrangements of Cycloalkenyl Aryl Ethers

    Directory of Open Access Journals (Sweden)

    Mercedesz Törincsi

    2016-04-01

    Full Text Available Rearrangement reactions of cycloalkenyl phenol and naphthyl ethers and the acid-catalyzed cyclization of the resulting product were investigated. Claisen rearrangement afforded 2-substituted phenol and naphthol derivatives. Combined Claisen and Cope rearrangement resulted in the formation of 4-substituted phenol and naphthol derivatives. In the case of cycloocthylphenyl ether the consecutive Claisen and Cope rearrangements were followed by an alkyl migration. The mechanism of this novel rearrangement reaction is also discussed.

  6. Ether: Bitcoin's competitor or ally?

    OpenAIRE

    Bouoiyour, Jamal; Selmi, Refk

    2017-01-01

    Although Bitcoin has long been dominant in the crypto scene, it is certainly not alone. Ether is another cryptocurrency related project that has attracted an intensive attention because of its additional features. This study seeks to test whether these cryptocurrencies differ in terms of their volatile and speculative behaviors, hedge, safe haven and risk diversification properties. Using different econometric techniques, we show that a) Bitcoin and Ether are volatile and relatively more resp...

  7. Use of experimental design for the purge-and-trap-gas chromatography-mass spectrometry determination of methyl tert.-butyl ether, tert.-butyl alcohol and BTEX in groundwater at trace level.

    Science.gov (United States)

    Bianchi, F; Careri, M; Marengo, E; Musci, M

    2002-10-25

    An efficient method for the simultaneous determination of methyl tert.-butyl ether, tert.-butyl alcohol, benzene, toluene, ethylbenzene and xylene isomers in groundwater by purge-and-trap-gas chromatography-mass spectrometry was developed and validated. Experimental design was used to investigate the effects of temperature of extraction, time of extraction and percentage of salt added to the water samples. Regression models and desirability functions were applied to find the experimental conditions providing the highest global extraction yield. Validation was carried out in terms of limits of detection (LOD), limits of quantitation (LOQ), linearity and precision. LOD values ranging from 2.6 to 23 ng l(-1) were achieved, whereas linearity was statistically verified over two orders of magnitude for each compound. Precision was evaluated testing two concentration levels. Good results were obtained both in terms of intra-day repeatability and intermediate precision: RSD% lower than 4.5% at the highest concentration and lower than 13% at the lowest one were calculated for intra-day repeatability. A groundwater sample suspected of contamination by leaking underground petroleum storage tanks was analysed and some of the analytes were detected and quantitated.

  8. Radioinduced grafting of acrylic acid on expanded polystyrene matrices

    International Nuclear Information System (INIS)

    Postolache, C.; Simion, Corina; Dragomir, A.; Ponta, C.; Chirvasoiu, G.; Postolache, Carmen

    1998-01-01

    The unfixed surface radioactive contamination for low energy β radionuclides ( 3 H and 14 C) is determined by wiping the checked surfaces with sponge of absorbent materials. The activity built up by this sponge is measured by a liquid scintillator spectrometer. In this work, a method of obtaining sponges of expanded polystyrene with hydrophobic surface by radioinduced grafting of the acrylic acid is presented. These sponges have diameters of 28 mm, thicknesses of 1.5 - 2 mm and density of 22 mg/cm 3 . The samples were immersed in a grafting solution with the following composition: acrylic acid 30%, Cu SO 4 1%; water 69% which were deeply impregnated in repeated operations under vacuum and pressure conditions, respectively. Finally, the samples were exposed to γ radiation emitted by a 60 Co source (IETI 10 000 - IFIN-HH). The dose rates were 0.3, 0.5 and 1 Mrad/h. The range of the absorbed doses was 1 - 25 Mrad. The yields of radiochemical grafting have been determined by gravimetric, spectrophotometric and radiometric methods. The grafting agent used was 3 H labelled acrylic acid. The solvation capacity and the quenching characteristics of the grafted sponges in liquid scintillators, as well as the sampling yields have been analyzed as function of irradiation procedure and the percentage of grafted acrylic fragments. The superficial grafting of the acrylic acid has been carried out by the mentioned technique, leading to the increase of the wiping efficiency of the unfixed surface contaminating activity, without changes of polymer solubility in liquid scintillators and without the perturbation of the radioactivity detection process. (authors)

  9. [Hydrogen peroxide, chloramine T and chlorhexidrine in the disinfection of acrylic resin].

    Science.gov (United States)

    Czerwińska, W; Kedzia, A; Kałowski, M

    1978-01-01

    The effectiveness of 3% h drogen peroxide, 5% chloramine T and 0,5% chlorhexidine gluconate solutions in disinfection of acrylic resine plates massively infected with oral flora was analysed. The acrylic resine plates used for investigations, were infected in vitro with mixed salivary flora characterized by small numbers of yeast-like fungi (1st group), or great number of these microorganisms (2nd group). Infected plates were exposed to solutions of analysed disinfectants during various time periods. After rinsing or inactivation of disinfectant residues, acrylic plates were put into bacteriological medium and incubated during 7 days period in 37 degrees C. The results of this study indicated the effectiveness of acrylic plates disinfection to be dependent on used disinfectant, time of exposition, and microorganisms present on the surface of acrylic resine. The solutions of disinfectants were less active in the cases of plates infected with material containing great numbers of yeast-like microorganisms. Among analysed disinfectants 0,5% solution of chlorhexidine was characterized by most effective and rapid activity, whereas 3% solution of hydrogen peroxide was found to be the least effective.

  10. Acrylic Triblock Copolymers Incorporating Isosorbide for Pressure Sensitive Adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, James J.; Hillmyer, Marc A.; Reineke, Theresa M. (UMM)

    2016-05-10

    A new monomer acetylated acrylic isosorbide (AAI) was prepared in two steps using common reagents without the need for column chromatography. Free radical polymerization of AAI afforded poly(acetylated acrylic isosorbide) (PAAI), which exhibited a glass transition temperature (Tg) = 95 °C and good thermal stability (Td, 5% weight loss; N2 = 331 °C, air = 291 °C). A series of ABA triblock copolymers with either poly(n-butyl acrylate) (PnBA) or poly(2-ethylhexyl acrylate) (PEHA) as the low Tg midblocks and PAAI as the high Tg end blocks were prepared using Reversible Addition–Fragmentation chain Transfer (RAFT) polymerization. The triblock copolymers ranging from 8–24 wt % PAAI were evaluated as pressure sensitive adhesives by 180° peel, loop tack, and static shear testing. While the PAAI-PEHA-PAAI series exhibited poor adhesive qualities, the PAAI-PnBA-PAAI series of triblock copolymers demonstrated peel forces up to 2.9 N cm–1, tack forces up to 3.2 N cm–1, and no shear failure up to 10000 min. Dynamic mechanical analysis indicated that PAAI-PEHA-PAAI lacked the dissipative qualities needed to form an adhesive bond with the substrate, while the PAAI-PnBA-PAAI series exhibited a dynamic mechanical response consistent with related high performing PSAs.

  11. Homogeneous synthesis of cellulose acrylate-g-poly (n-alkyl acrylate) solid-solid phase change materials via free radical polymerization.

    Science.gov (United States)

    Qian, Yong-Qiang; Han, Na; Bo, Yi-Wen; Tan, Lin-Li; Zhang, Long-Fei; Zhang, Xing-Xiang

    2018-08-01

    A novel solid-solid phase change materials, namely, cellulose acrylate-g-poly (n-alkyl acrylate) (CA-g-PAn) (n = 14, 16 and 18) were successfully synthesized by free radical polymerization in N, N-dimethylacetamide (DMAc). The successful grafting was confirmed by fourier transform infrared spectra (FT-IR) and nuclear magnetic resonance (NMR). The properties of the CA-g-PAn copolymers were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The phase change temperatures and the melting enthalpies of CA-g-PAn copolymers are in the range of 10.1-53.2 °C and 15-95 J/g, respectively. It can be adjusted by the contents of poly (n-alkyl acrylate) and the length of alkyl side-chain. The thermal resistant temperatures of CA-g-PA14, 16 and 18 copolymers are 308 °C, 292 °C and 273 °C, respectively. It show that all of grafting materials exhibit good thermal stability and shape stability. Therefore, it is expected to be applied in the cellulose-based thermos-regulating field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Allergic contact dermatitis from sculptured acrylic nails: special presentation with an airborne pattern

    Science.gov (United States)

    Maio, Paula; Carvalho, Rodrigo; Amaro, Cristina; Santos, Raquel; Cardoso, Jorge

    2012-01-01

    Methylmethacrylate was first reported in 1941 as a cause of contact dermatitis. Since then, occupational contact allergies to acrylates in dentistry, orthopedic surgery, printing industry and industry have been reported, but few reports are found in the literature as a consequence of the contact with sculptured artificial acrylic nails which are increasingly popular. We describe here 3 patients with contact allergy to acrylates in artificial sculptured nails. Patch tests were performed with the Portuguese baseline series of contact allergens and an extended series of acrylates were applied. In particular, we tested three female patients with allergic contact dermatitis from sculptured acrylic nails. Two of these patients were both customers and also technical nail beauticians. Two patients developed periungual eczema; one presented only with face and eyelid dermatitis had no other lesions. The tests showed positive reaction to 2-hydroxyethylmethacrylate (2-HEMA) and 2-hydroxypropylmethacrylate (2-HPMA) in all the three patients. Our cases demonstrate the variety of clinical presentations of allergic contact dermatitis from acrylic sculptured nails. They show the need to warn patients of persistent and sometimes permanent side effects of these products. They also emphasize the importance of cosmetic ingredient labeling. PMID:25386316

  13. Catalytic hydroprocessing of lignin β-O-4 ether bond model compound phenethyl phenyl ether over ruthenium catalysts

    NARCIS (Netherlands)

    Gomez-Monedero, B.; Faria, J.; Bimbela, F.; Ruiz, M.P.

    2017-01-01

    The catalytic hydroprocessing of phenethyl phenyl ether (PPE), a model compound of one of the most significant ether linkages within lignin structure, β-O-4, has been studied. Reactions were carried out using two ruthenium-based catalysts, supported on different materials: 3.8 wt.% Ru/C and 3.9 wt.%

  14. Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use

    Directory of Open Access Journals (Sweden)

    Denny Joseph Manual Kollareth

    2018-03-01

    Full Text Available Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [3H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [3H]cholesteryl oleoyl ether and [3H]cholesteryl hexadecyl ether from different suppliers, employing in vitro, in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro, in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments. Keywords: Cholesteryl ether, J774 A2 macrophages, Soy oil emulsion, Thin layer chromatography, triDHA emulsion

  15. Surface morphology changes of acrylic resins during finishing and polishing phases

    Directory of Open Access Journals (Sweden)

    Glaucio Serra

    2013-12-01

    Full Text Available INTRODUCTION: The finishing and polishing phases are essential to improve smoothness and shining on the surface of acrylic resins used to make removable orthodontic appliances. A good surface finishing reduces roughness, which facilitates hygiene, prevents staining and provides greater comfort to the patients. OBJECTIVE: The aim of this paper was to analyze the changes on surface morphology of acrylic resins during finishing and polishing phases. METHODS: Thirty discs (10 mm in diameter and 5 mm in length were made with acrylic resin and randomly divided into ten groups. The control group did not receive any treatment while the other groups received gradual finishing and polishing. The last group received the entire finishing and polishing procedures. Surface morphology was qualitatively analyzed through scanning electron microscopy and quantitatively analyzed through a laser profilometer test. RESULTS: The acrylic resin surfaces without treatment showed bubbles which were not observed in the subsequent phases. Wearing out with multilaminated burs, finishing with wood sandpaper and finishing with water sandpaper resulted in surfaces with decreasing irregularities. The surfaces that were polished with pumice and with low abrasive liquids showed high superficial smoothness. CONCLUSION: Highly smooth acrylic resin surfaces can be obtained after mechanical finishing and polishing performed with multilaminated burs, wood sandpaper, water sandpaper, pumice and low abrasive liquids.

  16. Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use.

    Science.gov (United States)

    Manual Kollareth, Denny Joseph; Chang, Chuchun L; Hansen, Inge H; Deckelbaum, Richard J

    2018-03-01

    Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [ 3 H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [ 3 H]cholesteryl oleoyl ether and [ 3 H]cholesteryl hexadecyl ether from different suppliers, employing in vitro , in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro , in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments.

  17. A Facile and Efficient Synthesis of Diaryl Amines or Ethers under Microwave Irradiation at Presence of KF/Al2O3 without Solvent and Their Anti-Fungal Biological Activities against Six Phytopathogens

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2013-09-01

    Full Text Available A series of diaryl amines, ethers and thioethers were synthesized under microwave irradiation efficiently at presence of KF/Al2O3 in 83%–96% yields without any solvent. The salient characters of this method lie in short reaction time, high yields, general applicability to substrates and simple workup procedure. At the same time, their antifungal biological activities against six phytopathogen were evaluated. Most of the compounds (3b, 3c, 3g–o are more potent than thiophannate-methyl against to Magnaporthe oryzae. This implies that diaryl amine or ether moiety may be helpful in finding a fungicide against Magnaporthe oryzae.

  18. Polyurethane acrylate networks including cellulose nanocrystals: a comparison between UV and EB- curing

    Science.gov (United States)

    Furtak-Wrona, K.; Kozik-Ostrówka, P.; Jadwiszczak, K.; Maigret, J. E.; Aguié-Béghin, V.; Coqueret, X.

    2018-01-01

    A water-based polyurethane (PUR) acrylate water emulsion was selected as a radiation curable matrix for preparing nanocomposites including cellulose nanocrystals (CNC) prepared by controlled hydrolysis of Ramie fibers. Cross-linking polymerization of samples prepared in the form of films or of 1 mm-thick bars was either initiated by exposure to the 395 nm light of a high intensity LED lamp or by treatment with low energy electron beam (EB). The conversion level of acrylate functions in samples submitted to increasing radiation doses was monitored by Fourier Transform Infrared Spectroscopy (FTIR). Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were used to characterize changes in the glass transition temperature of the PUR-CNC nanocomposites as a function of acrylate conversion and of CNC content. Micromechanical testing indicates the positive effect of 1 wt% CNC on Young's modulus and on the tensile strength at break (σ) of cured nanocomposites. The presence of CNC in the PUR acrylate matrix was shown to double the σ value of the nanocomposite cured to an acrylate conversion level of 85% by treatment with a 25 kGy dose under EB, whereas no increase of σ was observed in UV-cured samples exhibiting the same acrylate conversion level. The occurrence of grafting reactions inducing covalent linkages between the polysaccharide nanofiller and the PUR acrylate matrix during the EB treatment is advanced as an explanation to account for the improvement observed in samples cured under ionizing radiation.

  19. Development of a novel oxirane-acrylate composite restorative resin material

    Science.gov (United States)

    Sripathi Panditaradhyula, Anuhya

    The need for resin with a long clinical life can be satiated through the novel formulation of varying concentrations of oxirane and acrylate monomers with an increase in filler loading in the sample, which will allow the creation of a resin that is less susceptible to chemical degradation along with improved mechanical properties. Various concentrations of oxirane and acrylate monomers with a three-component photoinitiation system, which is capable of both free radical (acrylate) and cationic (oxirane) initiation, are used. The resin composites were placed in the Speedmixer for 30 seconds and gravitation convection oven for one minute, repeated 5-7 times. The resin composites were used to create a 9.525 mm diameter * 1.5875 mm thick resin mold. The mold was then photocured for twenty seconds on both sides using VALO blue LED light. The Rockwell hardness and shore D durometer hardness served as relative measures of bonding between the monomers. The ideal formulation of oxirane and acrylate concentrations were used to perform the Instron 3 point bend test, as well as contact angle determination. The goal is to identify a resin with a clinical life twice that of the resins being used in practice. Potential findings include ideal oxirane and acrylate concentrations with the highest shore D durometer hardness, Rockwell hardness, contact angle values, and Instron 3 point bend test values. Ideal color, transparency and properties of the resin are taken into account. Optimization of oxirane and acrylate monomers, impact while using various filler components (salination, number of fillers), filler particle size variations and variations in using different filler concentrations are observed. Results of using micro and nano-sized monomers are also studied. Addition of fluorinated acrylate monomer to the micro and nano composite was the next goal. A comparison of all the above stated compositions to the control group 70/30 BisTEG was done. A study on the degradation behavior

  20. Alkyd-acrylic hybrid systems for use as binders in waterborne paints

    NARCIS (Netherlands)

    Nabuurs, T.; Baijards, R.A.; German, A.L.

    1994-01-01

    Alkyd-acrylic hybrids were prepd. by polymg. the acrylic monomers in the presence of colloidal alkyd droplets. Polymn. in the presence of alkyd caused a retardation of the polymn. through radical delocalization following radical transfer to the unsatd. groups of the fatty acids in the alkyd. The

  1. Synthesis and Thermal Properties of Acrylonitrile/Butyl Acrylate/Fumaronitrile and Acrylonitrile/Ethyl Hexyl Acrylate/Fumaronitrile Terpolymers as a Potential Precursor for Carbon Fiber

    OpenAIRE

    Jamil, Siti Nurul Ain Md; Daik, Rusli; Ahmad, Ishak

    2014-01-01

    A synthesis of acrylonitrile (AN)/butyl acrylate (BA)/fumaronitrile (FN) and AN/EHA (ethyl hexyl acrylate)/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (Tg) and stabilization temperature was studied using Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermog...

  2. Effective utilization of B20 blend with diethyl ether and ethanol as oxygenated additives

    Directory of Open Access Journals (Sweden)

    Upadrasta-Satya Vara-Prasad

    2011-01-01

    Full Text Available In the recent times' fatty acid methyl ester popularly called as biodiesel has become more prominent alternate fuel for compression ignition engines based on a single fuel concept. Since, use of neat biodiesel on a large scale is raising certain difficulties and is being adopted in a blended form with petro-diesel fuel and B20 blend has become standardized. However, the HC and NOx emissions of B20 are still on the higher side. Present work aims at experimental evaluation of a single cylinder water-cooled diesel engine by adopting various proportions of ethanol and diethyl ether blends in order to improve performance and emission characteristics of B20 blend. Besides employing different amounts of ethanol and diethyl ether, simultaneous influence of injector nozzle hole size and fuel injection pressure are also investigated to arrive at an optimum configuration. Brake specific fuel consumption and hydrocarbon emissions values are lower with B20 and DEE 5 whereas B20 with DEE15 yielded lower NOx emissions. It is observed that addition of oxygenates have improved the combustion process and lower emissions are obtained. The present investigation revealed that blends with oxygenated additives having higher Cetane rating are superior to neat blend.

  3. Preparation of Photoresponsive Functionalized Acrylic Nanoparticles Cantaining Carbazole Groups for Smart Cellulosic Papers

    Directory of Open Access Journals (Sweden)

    Jaber Keyvan Rad

    2017-11-01

    Full Text Available Photoresponsive functionalized polymer nanoparticles were prepared as useful materials for preparation of smart papers. Such polymer nanoparticles have wide applications in several fields including papers, sensors, bioimaging and biomedicine. First, carbazole as a photosensitive compound was modified with 2-bromoethanol through substitution nucleation reaction to its hydroxyl derivative (N-(2-hydroxyethyl carbazole, CzEtOH. The synthesis of 2-N-carbazolylethyl acrylate (CzEtA monomer was carried out by modification reaction of CzEtOH with acryloyl chloride and the chemical structures of the products were characterized. Next, CzEtA, methyl methacrylate (MMA and butyl acrylate were copolymerized to prepare photoresponsive functionalized polymer nanoparticles through mini-emulsion polymerization in order to form a hydrophobic core. This was followed by copolymerization of MMA and glycidyl methacrylate by seeded emulsion polymerization to give a functionalized outer layer on the latex particles. Absorption characteristics, size, size distribution (narrow size distribution and morphology of the nanoparticles were studied by ultraviolet-visible (UV-Vis spectroscopy, dynamic laser light scattering (DLS analysis and scanning electron microscopy (SEM micrographs, respectively. Finally, due to the importance of photoresponsive smart papers and their wide applications, cellulosic fibers were reacted with the prepared functionalized latex particles for preparation of smart papers. Morphology of the fibers was investigated with respect to the surface-immobilized polymers on the cellulosic paper and their smart behavior was evaluated by UV irradiation at 254 nm. The results revealed fast color changes and the obtained cellulosic papers became violet upon irradiation. This work shows some promising feature of these materials for preparation of anti-counterfeiting papers, where the safety becomes a major concern.

  4. Numerical investigation on the effect of injection pressure on the internal flow characteristics for diethyl ether, dimethyl ether and diesel fuel injectors using CFD

    Directory of Open Access Journals (Sweden)

    Vijayakumar Thulasi

    2011-01-01

    Full Text Available The spray characteristics of the diesel fuel are greatly affected by the cavitation formed inside the injector due to the high pressure differential across the nozzle. Many researchers across the globe are exploring the potential of using diethyl ether and dimethyl ether as an alternate for diesel fuel to meet the strict emission norms. Due to the variation in the fuel properties the internal flow characteristics in injectors for ether fuels are expected to be different from that of the diesel fuel. In this paper computational technique is used to study and compare the internal flow characteristics of diethyl ether, dimethyl ether and diesel fuel. The two phase flow model considering the fuel as a mixture of liquid and vapor is adopted for the simulation study. The injection pressure is varied from 100 to 400 bar and the flow characteristics of all three fuels are simulated and compared. Results indicate that all three fuels have distinct cavitating patterns owing to different property values. The dimethyl ether is found to be more cavitating than diesel and diethyl ether fuels as expected. The mass of fuel injected are found to be decreasing for the ether fuels when compared with diesel fuel at all injection pressures.

  5. The transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion

    Directory of Open Access Journals (Sweden)

    Devi Rianti

    2006-12-01

    Full Text Available A laboratoric experimental study was conducted on the transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion. The aim of this study is to know the difference of acrylic resin transverse strengths caused by immersion time variations in a concentrate solution. The study was carried out on unpolished acrylic resin plates with 65 × 10 × 2,5 mm dimension; solution with 15% Coleus amboinicus, Lour extract, and 30, 60, 90 days immersion times to measure the transverse strength and sterilized aquadest was used as control. Acrylic resin plates transverse strength was measured using Autograph AG-10 TE. The data was analyzed using One-Way Anova and LSD with 5% degree of significance. The result showed that longer immersion time will decrease the transverse strength of the acrylic resin plates. After 90 days immersion time, the transverse strength decrease is still above the recommended standard transverse strength.

  6. The 11C-radioisotopic study of methanol conversion on V-MCM-41; the influence of methyl iodide on the transformation

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Szelecsenyi, F.; Kovacs, Z.; Solmaz, A.; Balci, S.; Dogu, T.

    2007-01-01

    Complete text of publication follows. The MCM-41 mesoporous material has Lewis and even Bronsted acid sites to produce dimethyl ether with some hydrocarbons, while over metal modified MCM-41 mostly formaldehyde and dimethoxy methane (i.e. methylal) or methyl formate are produced. In present experiments V incorporated basically mild acid sites of MCM-41 was prepared by low temperature direct synthesis. The V-MCM-41 has enough main active Lewis sites (by V-) to form formaldehyde and also light Bronsted acid sites to let the adsorbed formaldehyde eliminate and afterwards, with methanol, to form dimethoxy methane in nonoxidative environment. This V-MCM-41 has been tested by ethanol conversion in non-oxidative environments too and diethoxy methane as main product was detected. In present work the methanol conversion, as well as the methanol co-reaction with methyl iodide are studied from the same V-MCM-41 sample using 11 C-technique. The 11 C-labelled radioactive methanol has been already applied for determination of methanol conversion rates on Cu-modified MCM-41. The V-MCM-41 was prepared by direct hydrothermal synthesis method. The adsorption rate of 11 C-methanol and, after the reaction, the desorption rate of the remaining 11 C-derivatives on catalyst were continuously detected by gamma detectors. The derivatives were analyzed by radio-gas chromatography (gas chromatograph with FID coupled on-line with a radioactivity detector). Both dimethyl ether and hydrocarbon formation are also in slight degrees according to weak Lewis and Bronsted acidities. Since the conversion was carried out without added oxygen gas, only the frame oxygen can take part into catalysis. In presence of non-radioactive methyl iodide, the radioactive methanol is converted to radioactive methyl iodide on V-MCM-41. The radio-GC analysis confirmed that the iodide induced change of the reaction performance was reversible i.e. the radioactive methyl iodide was regenerated to non-radioactive methyl

  7. Polyurethane acrylate networks including cellulose nanocrystals: a comparison between UV and EB- curing

    International Nuclear Information System (INIS)

    Furtak-Wrona, K.; Kozik-Ostrówka, P.; Jadwiszczak, K.; Maigret, J.E.; Aguié-Béghin, V.; Coqueret, X.

    2018-01-01

    A water-based polyurethane (PUR) acrylate water emulsion was selected as a radiation curable matrix for preparing nanocomposites including cellulose nanocrystals (CNC) prepared by controlled hydrolysis of Ramie fibers. Cross-linking polymerization of samples prepared in the form of films or of 1 mm-thick bars was either initiated by exposure to the 395 nm light of a high intensity LED lamp or by treatment with low energy electron beam (EB). The conversion level of acrylate functions in samples submitted to increasing radiation doses was monitored by Fourier Transform Infrared Spectroscopy (FTIR). Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were used to characterize changes in the glass transition temperature of the PUR-CNC nanocomposites as a function of acrylate conversion and of CNC content. Micromechanical testing indicates the positive effect of 1 wt% CNC on Young's modulus and on the tensile strength at break (σ) of cured nanocomposites. The presence of CNC in the PUR acrylate matrix was shown to double the σ value of the nanocomposite cured to an acrylate conversion level of 85% by treatment with a 25 kGy dose under EB, whereas no increase of σ was observed in UV-cured samples exhibiting the same acrylate conversion level. The occurrence of grafting reactions inducing covalent linkages between the polysaccharide nanofiller and the PUR acrylate matrix during the EB treatment is advanced as an explanation to account for the improvement observed in samples cured under ionizing radiation. - Highlights: • Nanocomposites were prepared from o/w PUR acrylate emulsion and CNC suspension. • Nanocomposite and reference materials were cured to the same conversion by UV or EB. • Introducing 1 wt% CNC in EB-cured composites doubles the tensile strength. • UV-cured nanocomposites did not show significant improvement in tensile strength.

  8. Crystal structure transformation in potassium acrylate

    Science.gov (United States)

    Pai Verneker, V. R.; Vasanthakumari, R.

    1983-10-01

    Potassium acrylate undergoes a reversible phase transformation around 335°K with an activation energy of 133 kcal/mole. Differential scanning calorimetry and high temperature X-ray powder diffraction techniques have been used to probe this phenomenon.

  9. In situ reactive compatibilization of natural rubber/acrylic-bentonite composites via peroxide-induced vulcanization

    International Nuclear Information System (INIS)

    Fu, Lihua; Lei, Zhiwen; Xu, Chuanhui; Chen, Yukun

    2016-01-01

    To achieve good interfacial interaction between fillers and rubber matrix is always a hot topic in rubber reinforcing industry. In this paper, acid activated bentonite (Bt) was alkalified to be alkaline calcium-bentonite (ACBt), then acrylic acid (AA) was employed to modify ACBt to obtain acrylic-bentonite (ABt). The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) illustrated that acrylate groups were chemically boned onto the surface of Bt and the layer spacing of Bt was increased. During peroxide-induced vulcanization, in situ compatibilization of ABt was realized via the reaction between the unsaturated bonds of acrylate groups on the surface of Bt and the natural rubber (NR) chains. This resulted in an enhanced cross-linked network which contributed to the improved mechanical properties of NR/ABt composites. - Highlights: • Acrylate groups were chemically boned onto the surface of bentonite. • In situ compatibilization was realized via the reaction of acrylate group and NR. • ABt particles participated in forming the NR crosslink network. • A potential reinforcing material options for “white” rubber products.

  10. In situ reactive compatibilization of natural rubber/acrylic-bentonite composites via peroxide-induced vulcanization

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lihua; Lei, Zhiwen [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Xu, Chuanhui, E-mail: xuhuiyee@gxu.edu.cn [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Yukun, E-mail: cyk@scut.edu.cn [The Key Laboratory of Polymer Processing Engineering, Ministry of Education, China(South China University of Technology), Guangzhou, 510640 (China)

    2016-02-15

    To achieve good interfacial interaction between fillers and rubber matrix is always a hot topic in rubber reinforcing industry. In this paper, acid activated bentonite (Bt) was alkalified to be alkaline calcium-bentonite (ACBt), then acrylic acid (AA) was employed to modify ACBt to obtain acrylic-bentonite (ABt). The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) illustrated that acrylate groups were chemically boned onto the surface of Bt and the layer spacing of Bt was increased. During peroxide-induced vulcanization, in situ compatibilization of ABt was realized via the reaction between the unsaturated bonds of acrylate groups on the surface of Bt and the natural rubber (NR) chains. This resulted in an enhanced cross-linked network which contributed to the improved mechanical properties of NR/ABt composites. - Highlights: • Acrylate groups were chemically boned onto the surface of bentonite. • In situ compatibilization was realized via the reaction of acrylate group and NR. • ABt particles participated in forming the NR crosslink network. • A potential reinforcing material options for “white” rubber products.

  11. Research of Polylactic Acid Modiifed by Polymethyl Acrylate-Methyl Methacrylate Copolymer%聚丙烯酸甲酯-甲基丙烯酸甲酯共聚物改性聚乳酸的研究

    Institute of Scientific and Technical Information of China (English)

    苏桂仙; 李光辉; 和芹; 李德玲

    2015-01-01

    为了提高聚乳酸(PLA)的韧性,采用聚丙烯酸甲酯-甲基丙烯酸甲酯(PMA-MMA)对PLA进行共混改性。采用悬浮聚合法,以丙烯酸甲酯(MA)、甲基丙烯酸甲酯(MMA)为共聚单体,制备珠粒状的PMA-MMA共聚物。通过熔融共混法,分别以PMA-MMA共聚物为增韧剂,聚乙二醇为增塑剂,聚乙烯蜡为润滑剂,对PLA进行改性,对改性后的PLA复合材料的热性能和力学性能进行研究。结果表明,随着PMA-MMA共聚物用量的增加,PLA复合材料的拉伸强度呈先增大后减小的趋势,而断裂伸长率和冲击强度不断增大。当PMA-MMA共聚物用量为15份时, PLA复合材料的拉伸强度达到最大值,为52.2 MPa;当PMA-MMA共聚物用量为25份时,PLA复合材料冲击强度为53.26 kJ/m2,是纯PLA的4.4倍,断裂伸长率为54.9%。PMA-MMA共聚物与PLA的相容性好,有明显的增韧作用。PMA-MMA共聚物的加入并未降低PLA复合材料的热性能。%In order to improve the toughness of poly(lactic acid)(PLA),polymethyl acrylate-methyl methacrylate(PMA-MMA) copolymer was used to mix with PLA. Methyl acrylate (MA) and methyl methacrylate(MMA) were used as the monomers for the preparation of PMA-MMA copolymer by means of suspention polymerization. PLA and PMA-MMA copolymer were melt-blended with polyethylene glycol(PEG) as a plasticizer and polyethylene as a lubricant. The modified PLA composites were studied by means of heat resistance and mechanical properties. The results show that with the increase of PMA-MMA copolymer content, the elongation at break and impact strength of the composites are improved,and its tensile strength increases first and then decreases. While the content of PMA-MMA copolymer is 15 phr,the tensile strength of the composite has the best tensile strength of 52.2 MPa. While the content of PMA-MMA copolymer is 25 phr,the impact strength of the composite is 53.26 kJ/m2,which is the 4.4 times of the pure PLA

  12. AIRBORNE POLYBROMINATED DIPHENYL ETHERS IN A COMPUTER CLASSROOM OF COLLEGE IN TAIWAN

    Directory of Open Access Journals (Sweden)

    F. H. Chang ، C. R. Yang ، C. Y. Tsai ، W. C. Lin

    2009-04-01

    Full Text Available This study characterized the airborne exposure of students to thirty polybrominated diphenyl ether congeners inside and outside a computer classroom in a southern Taiwan college. Arithmetic mean values of total indoor and outdoor polybrominated diphenyl ether concentrations were 125.0 pg/m3 (89.8 to 203.9 pg/m3 and 110.3 pg/m3 (83.5 to 157.0 pg/m3, respectively. Total indoor polybrominated diphenyl ether concentrations were one order of magnitude lower than those detected in homes in Birmingham, United Kingdom and in Ottawa, Canada but were several times higher than those measured in the ambient air in Ottawa, Canada and from the Bohai Sea to the Arctic. The five highest indoor concentrations of polybrominated diphenyl ether congeners were decabromodiphenyl ether (23.0 pg/m3, 4,4’-dibromodiphenyl ether (15.9 pg/m3, 2,2’,3,4,4’,5,5’,6-octabromodiphenyl ether (10.6 pg/m3, 2,4-dibromodiphenyl ether (10.3 pg/m3 and 2,2’,3,4,4’,5’,6-heptabromodiphenyl ether (10.0 pg/m3. Although indoor and outdoor total polybrominated diphenyl ether concentrations did not significantly differ, the indoor concentrations of 2,4-dibromodiphenyl ether, 2,2’,4-tribromodiphenyl ether, 2,4,4’-tribromodiphenyl ether, 2,2’,4,5’-tetrabromodiphenyl ether and 2,3’,4’,6-tetrabromodiphenyl ether were significantly higher than their outdoor concentrations. This study suggests the following measures: 1 to increase the air exchange rate and open classroom doors and windows for several minutes before classes to reduce indoor PBDE concentrations; 2 to reduce polybrominated diphenyl ether emissions from new devices, it’s better to use computer-related products that meet the Restriction of Hazardous Substances Directive adopted by the European Union.

  13. Thermal Stability of Sulfonated Poly(Ether Ether Ketone) Films: on the Role of Protodesulfonation

    OpenAIRE

    Koziara, Beata; Kappert, Emiel; Ogieglo, Wojciech; Nijmeijer, Dorothea C.; Hempenius, Mark A.; Benes, Nieck Edwin

    2016-01-01

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material, most likely via a slight cross-linking by H-substitution. It is well-known that the sulfonate proton plays a major role in the desulfonation reactions, and exchanging the protons with other cations ...

  14. Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate

    International Nuclear Information System (INIS)

    Sahraoui, Lakhdar; Khimeche, Kamel; Dahmani, Abdallah; Mokbel, Ilham; Jose, Jacques

    2016-01-01

    Highlight: • Vapor-liquid equilibria, Enthalpy of Vaporization, saturated Fatty Acid Methyl Ester. - Abstract: Vapor pressures of six saturated Fatty Acid Methyl Esters (FAMEs), methyl hexanoate (or methyl caproate), methyl octanoate (or methyl caprylate), Methyl decanoate (or methyl caprate), methyl dodecanoate (or methyl laurate), methyl tetradecanoate (or methyl myristate), and methyl hexadecanoate (or methyl palmitate) were measured from 1 Pa to 100 kPa and at temperature range between 262 and 453 K using a static apparatus. The experimental data (P-T) were compared with the available literature data.

  15. α-Diazo oxime ethers for N-heterocycle synthesis.

    Science.gov (United States)

    Choi, Subin; Ha, Sujin; Park, Cheol-Min

    2017-06-01

    This Feature Article introduces the preparation and synthetic utility of α-diazo oxime ethers. α-Oximino carbenes are useful synthons for N-heterocycles, and can be easily prepared from α-diazo oxime ethers as precursors. We begin with the preparation of α-diazo oxime ethers and their application in [3+2] cycloaddition. It turns out that the nature of metals bound to carbenes plays a crucial role in modulating the reactivity of α-oximino carbenes, in which copper carbenes smoothly react with enamines, whereas the less reactive enol ethers and nitriles require gold carbenes. In Section 3.2, a discussion on N-O and C-H bond activation is presented. Carbenes derived from diazo oxime ethers show unique reactivity towards N-O and C-H bond activation, in which the proximity of the two functionalities, carbene and oxime ether, dictates the preferred reaction pathways toward pyridines, pyrroles, and 2H-azirines. In Section 3.3, the development of tandem reactions based on α-diazo oxime ethers is discussed. The nature of carbenes in which whether free carbenes or metal complexes are involved dissects the pathway and forms different types of 2H-azirines. The 2H-azirine formation turned out to be an excellent platform for the tandem synthesis of N-heterocycles including pyrroles and pyridines. In the last section, we describe the electrophilic activation of 2H-azirines with vinyl carbenes and oximino carbenes. The resulting azirinium species undergo rapid ring expansion rearrangements to form pyridines and pyrazines.

  16. Effect of microwave cured acrylic resin on candidal growth in complete denture

    International Nuclear Information System (INIS)

    Rasmy, A.H.M.

    2009-01-01

    This study was conducted to evaluate the effect of heat-cured acrylic resin denture base and microwave-cured acrylic resin denture base on candidal growth . Seven completely edentulous male patients with on history of denture wearing participated in this study. all the selected patients were re-habilitated by mucosa supported complete dentures .The dentures were constructed from conventional heat-cured acrylic resin denture base following monoplane concept of occlusion. Before dismissing the patients and one month after denture insertion, salivary samples were collected according to oral rinse technique. one month resting period was allowed so as candidal count can reach to normal, then dentures were re based using microwave-cured acrylic denture base, before denture insertion and one month after denture insertion, salivary sample were collected before and one month following the same oral rinse technique.

  17. Recovery of Acrylic Acid Using Calcium Peroxide Nanoparticles: Synthesis, Characterisation, Batch Study, Equilibrium, and Kinetics

    Directory of Open Access Journals (Sweden)

    B. S. De

    2018-03-01

    Full Text Available Recovery of acrylic acid from aqueous solution using low-cost CaO2 nanoparticles was investigated. CaO2 nanoparticles were synthesized by co-precipitation technique and characterised using XRD and FTIR. A mechanism was proposed for adsorption of acrylic acid onto CaO2 nanoparticles based on FTIR analysis. Acrylic acid recovery is highly dependent on contact time, CaO2 nanoparticle dosage, initial acrylic concentration, and temperature. Langmuir, Freundlich, Dubinin-Radushkevich, Tempkin, Hill, Redlich-Peterson, Sips and Toth isotherms were used and well represented by Redlich-Peterson isotherm (R2 = 0.9998 as compared to other isotherms. Kinetic studies revealed pseudo-second-order kinetics (k2 = 1.962·10–4 g mg–1 min–1 for adsorption of acrylic acid onto CaO2 nanoparticles. CaO2 nanoparticles exhibited high acrylic acid recovery over varied concentration ranges. The acrylic acid can be regenerated by desorption from the surface of adsorbent and utilised for numerous applications. The presented results may be useful for the design of adsorption system using nanoparticles, which can be extended to other systems.

  18. High-impact strength acrylic denture base material processed by autoclave.

    Science.gov (United States)

    Abdulwahhab, Salwan Sami

    2013-10-01

    To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society

  19. Dimethyl ether as a drift-chamber gas

    International Nuclear Information System (INIS)

    Bari, G.; Basile, M.; Bonvicini, G.; Cara Romeo, G.; Casaccia, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; D'Ali, G.; Del Papa, C.; Focardi, S.; Iacobucci, G.; Maccarrone, G.; Massam, T.; Motta, F.; Nania, R.; Palmonari, F.; Prisco, G.; Sartorelli, G.; Susinno, G.; Votano, L.; Zichichi, A.; Istituto Nazionale di Fisica Nucleare, Bologna; European Organization for Nuclear Research, Geneva; Istituto Nazionale di Fisica Nucleare, Frascati; Michigan Univ., Ann Arbor; Palermo Univ.

    1986-01-01

    We have continued the testing of dimethyl ether as a drift-chamber gas in order to improve the understanding of its properties. In particular, we report on measurement accuracy, on systematic effects, and some preliminary data on the ageing of a detector filled with dimethyl ether. (orig.)

  20. Process for making propenyl ethers and photopolymerizable compositions containing them

    Science.gov (United States)

    Crivello, James V.

    1996-01-01

    Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  1. Science and history explored by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Baias, Maria Antoaneta

    2009-01-01

    Nuclear Magnetic Resonance was chosen as the main tool for investigating different biological and chemical systems, as it is unique in providing the information details about the morphology and molecular structures and conformations by which the fundamental properties of these biological and chemical systems can be understood. Proton spin-diffusion experiments combined with 13 C CPMAS spectroscopy were successfully applied to characterize the changes that occur during the thermal denaturation of keratin fibers from wool and hair. A model describing both the effect of thermal denaturation and the effect of different chemical treatments on keratin fibers is presented. Proton NMR spectroscopy was used for studying the proton exchange in Sulfonated Polyether Ether Ketone proton exchange membranes revealing that the water exchange processes in hydrated SPEEK-silica membranes are more efficient when low concentrations of polyethoxysiloxane (PEOS) are used for the membrane preparation. Proton 1D exchange spectroscopy combined with transverse relaxation measurements offered good insight in the state of water in hydrated SPEEK/SiO 2 membranes revealing that concentrations of 5%-10% wt. PEOS could enhance the electrical conductivity of PEM. Hyperpolarized 129 Xe NMR spectroscopy was successfully applied for monitoring the free radical polymerization reactions of methyl methacrylate, methyl acrylate and the copolymerization of methyl methacrylate and methyl acrylate. The observation of Xe chemical shift and linewidths during the reactions reveal information about the polymer chain growths during the polymerizations. The successful application of the NMR-MOUSE to visualise the different anatomical layers with varying proton densities opens the possibility of its use in clinical studies such as osteoporosis for bone density measurements. The NMR-MOUSE was also successfully applied for the analysis of violins and bows and a classification of the violins and bows as a function of

  2. RATE CONSTANTS FOR THE REACTIONS OF OH RADICALS AND CL ATOMS WITH DI-N-PROPYL ETHER AND DI-N-BUTYL ETHER AND THEIR DEUTERATED ANALOGS. (R825252)

    Science.gov (United States)

    Using relative rate methods, rate constants for the gas-phase reactions of OH radicals and Cl atoms with di-n-propyl ether, di-n-propyl ether-d14, di-n-butyl ether and di-n-butyl ether-d18 have been measured at 296 ? 2 K and atmos...

  3. The anthraquinones rubiadin and its 1-methyl ether isolated from Heterophyllaea pustulata reduces Candida tropicalis biofilms formation.

    Science.gov (United States)

    Marioni, Juliana; da Silva, María Angel; Cabrera, José Luis; Montoya, Susana C Núñez; Paraje, María Gabriela

    2016-11-15

    Candida tropicalis is increasingly becoming among the most commonly isolated pathogens causing fungal infections with an important biofilm-forming capacity. This study addresses the antifungal effect of rubiadin (AQ1) and rubiadin 1-methyl ether (AQ2), two photosensitizing anthraquinones (AQs) isolated from Heterophyllaea pustulata, against C. tropicalis biofilms, by studying the cellular stress and antioxidant response in two experimental conditions: darkness and irradiation. The combination with Amphotericin B (AmB) was assayed to evaluate the synergic effect. Biofilms of clinical isolates and reference strain of Candida tropicalis were treated with AQs (AQ1 or AQ2) and/or AmB, and the biofilms depletion was studied by crystal violet and confocal scanning laser microscopy (CSLM). The oxidant metabolites production and the response of antioxidant defense system were also evaluated under dark and irradiation conditions, being the light a trigger for photo-activation of the AQs. The Reactive Oxygen Species (ROS) were detected by the reduction of Nitro Blue Tetrazolium test, and Reactive Nitrogen Intermediates (RNI) by the Griess assay. ROS accumulation was also detected inside biofilms by using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) probe, which was visualized by CSLM. Superoxide dismutase (SOD) activity and the total antioxidant capacity of biofilms were measured by spectrophotometric methods. The minimun inhibitory concentration for sessile cells (SMIC) was determined for each AQs and AmB. The fractional inhibitory concentration index (FICI) was calculated for the combinations of each AQ with AmB by the checkerboard microdilution method. Biofilm reduction of both strains was more effective with AQ1 than with AQ2. The antifungal effect was mediated by an oxidative and nitrosative stress under irradiation, with a significant accumulation of endogenous ROS detected by CSLM and an increase in the SOD activity. Thus, the prooxidant-antioxidant balance was

  4. Substantial production of drosophilin A methyl ether (tetrachloro-1,4-dimethoxybenzene) by the lignicolous basidiomycete Phellinus badius in the heartwood of mesquite ( Prosopis juliflora) trees

    Science.gov (United States)

    Garvie, Laurence A. J.; Wilkens, Barry; Groy, Thomas L.; Glaeser, Jessie A.

    2015-04-01

    Toxic organohalogen pollutants produced as by-products of industrial processes, such as chloroform and polychlorinated dibenzo- p-dioxins, also have significant natural sources. A substantial terrestrial source of halogenated organics originates from fungal decay of wood and leaf litter. Here we show that the lignicolous basidiomycete Phellinus badius deposits up to 30,000 mg of the halogenated metabolite drosophilin A methyl ether (DAME, tetrachloro-1,4-dimethoxybenzene) per kilogram of decayed heartwood in the mesquite Prosopis juliflora. DAME occurs as clusters of glassy crystals up to 1 mm long within the decayed heartwood. In addition, the Phellinus badius basidiocarps contain an average of 24,000 mg DAME/kg dried fruiting body, testifying to the significant translocation and accumulation of Cl accompanied by DAME biosynthesis. The high DAME concentrations attest to the substantial Cl content of the heartwood, which averages near 5,000 ppm, with Cl/K near 1:1, consistent with an inorganic chloride precursor. Phellinus badius has a circumglobal distribution in the tropics and subtropics, where it is widely distributed on hardwoods and commonly associated with decay of mesquite. There is the potential for extensive DAME formation within decayed heartwood worldwide given the extensive range of Phellinus badius and its propensity to form DAME within mesquites. Further, DAME production is not limited to Phellinus badius but occurs in a range of lignicolous basidiomycetes, suggesting a significant natural reservoir for this chloroaromatic with potential environmental implications.

  5. Selective crystallization of cations with crown ethers

    International Nuclear Information System (INIS)

    Heffels, Dennis Egidius

    2014-01-01

    The aim of this work was to study the selectivity and preferences of the incorporation of differently sized cations in the cavities of various crown ethers and the characterization of the resulting compounds. The coordination preferences of crown ethers with different cavities have long been known, and the impact of other effects on the structure formation have increasingly become the focus of attention. In this work a comparative overview of the coordination preferences depending on various factors was undertaken. The focus was mainly on the variation of the cavity of the crown ether in the presence of differently sized cations. In addition, the effects of the solvent and differently coordinating anions have been investigated. Within the framework of this work, basic coordination preferences could be detected with rare earth nitrates, which are affected particularly by the choice of the solvent. The formation of different types of structures could be controlled by varying the conditions such that the incorporation of the cation in the cavity of the crown ether was influenced and the formation of a particular type of structure can be influenced partly by the choice of solvent. In this case no direct preferences for the incorporation into the cavity of the crown ether in relation to the cation size were observed for rare earth cations. However, the coordination of the crown ether leads in each case - for lanthanides - to rather high coordination numbers. A total of five new rare earth complexes and two structural variants could be observed with crown ethers. In the study of the selectivity of the incorporation into the cavity, known structures were also reproduced and further structures were characterized but the crystal structures not entirely solved. With the use of monovalent cations such as potassium, lithium or silver a total of nine new compounds could be synthesized, while no clear preferences for the incorporation of certain cations were detected. The

  6. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of a...

  7. Radiation-induced transformations of cellulose ethers

    International Nuclear Information System (INIS)

    Nud'ga, L.A.; Petropavlovskii, G.S.; Plisko, E.A.; Isakova, O.V.; Ershov, B.G.

    1988-01-01

    The purpose of this investigation was to study the transformation which take place under the action of γ-radiation in a number of cellulose ethers containing both saturated (carboxymethyl, hydroxyethyl) and unsaturated (allyl, methacryloyl) groups. Irradiation was carried out on a 60 Co unit in air at 77 and 300 K; the dose rate was 37 and 50 kGy/h respectively. The EPR spectra of γ-irradiated hydroxyethyl- and allylhydroxyethylcelluloses are identical. Under the action of γ-radiation extensive changes took place in cellulose ethers which are exhibited in degradation or the formation of three-dimensional structures and are accompanied by a change in the functional composition. The efficiency in the formation of radicals and their localization are determined by the nature and number of substituents in the cellulose ethers

  8. Cytotoxicity Evaluation of Two Bis-Acryl Composite Resins Using Human Gingival Fibroblasts.

    Science.gov (United States)

    Gonçalves, Fabiano Palmeira; Alves, Gutemberg; Guimarães, Vladi Oliveira; Gallito, Marco Antônio; Oliveira, Felipe; Scelza, Míriam Zaccaro

    2016-01-01

    Bis-acryl resins are used for temporary dental restorations and have shown advantages over other materials. The aim of this work was to evaluate the in vitro cytotoxicity of two bis-acryl composite resins (Protemp 4 and Luxatemp Star), obtained at 1, 7 and 40 days after mixing the resin components, using a standardized assay employing human primary cells closely related to oral tissues. Human gingival fibroblast cell cultures were exposed for 24 h to either bis-acryl composite resins, polystyrene beads (negative control) and latex (positive control) extracts obtained after incubation by the different periods, at 37 °C under 5% CO2. Cell viability was evaluated using a multiparametric procedure involving sequential assessment (using the same cells) of mitochondrial activity (XTT assay), membrane integrity (neutral red test) and total cell density (crystal violet dye exclusion test). The cells exposed to the resin extracts showed cell viability indexes exceeding 75% after 24 h. Even when cells were exposed to extracts prepared with longer conditioning times, the bis-acryl composite resins showed no significant cytotoxic effects (p>0.05), compared to the control group or in relation to the first 24 h of contact with the products. There were no differences among the results obtained for the bis-acryl composite resins evaluated 24 h, 7 days and 40 days after mixing. It may be concluded that the bis-acryl resins Protemp 4 and Luxatemp Star were cytocompatible with human gingival fibroblasts, suggesting that both materials are suitable for use in contact with human tissues.

  9. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    International Nuclear Information System (INIS)

    Tewatia, Arya; Hendrix, Justin; Dong, Zhizhong; Taghon, Meredith; Tse, Stephen; Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas; Lynch, Jennifer

    2017-01-01

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  10. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, Arya; Hendrix, Justin [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Dong, Zhizhong [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Taghon, Meredith [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Tse, Stephen [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Lynch, Jennifer, E-mail: jklynch@rci.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States)

    2017-02-15

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  11. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    International Nuclear Information System (INIS)

    Teichmann, Juliane; Valtink, Monika; Funk, Richard H W; Engelmann, Katrin; Nitschke, Mirko; Pette, Dagmar; Gramm, Stefan; Werner, Carsten; Härtel, Frauke V; Noll, Thomas

    2015-01-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na + /K + -ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty. (paper)

  12. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    Science.gov (United States)

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V; Noll, Thomas; Funk, Richard H W; Engelmann, Katrin; Werner, Carsten

    2015-01-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty. PMID:27877823

  13. Structural degradation of acrylic bone cements due to in vivo and simulated aging.

    Science.gov (United States)

    Hughes, Kerry F; Ries, Michael D; Pruitt, Lisa A

    2003-05-01

    Acrylic bone cement is the primary load-bearing material used for the attachment of orthopedic devices to adjoining bone. Degradation of acrylic-based cements in vivo results in a loss of structural integrity of the bone-cement-prosthesis interface and limits the longevity of cemented orthopedic implants. The purpose of this study is to investigate the effect of in vivo aging on the structure of the acrylic bone cement and to develop an in vitro artificial aging protocol that mimics the observed degradation. Three sets of retrievals are examined in this study: Palacos brand cement retrieved from hip replacements, and Simplex brand cement retrieved from both hip and knee replacement surgeries. In vitro aging is performed using oxidative and acidic environments on three acrylic-based cements: Palacos, Simplex, and CORE. Gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) are used to examine the evolution of molecular weight and chemical species within the acrylic cements due to both in vivo and simulated aging. GPC analysis indicates that molecular weight is degraded in the hip retrievals but not in the knee retrievals. Artificial aging in an oxidative environment best reproduces this degradation mechanism. FTIR analysis indicates that there exists a chemical evolution within the cement due to in vivo and in vitro aging. These findings are consistent with scission-based degradation schemes in the cement. Based on the results of this study, a pathway for structural degradation of acrylic bone cement is proposed. The findings from this investigation have broad applicability to acrylic-based cements and may provide guidance for the development of new bone cements that resist degradation in the body. Copyright 2003 Wiley Periodicals, Inc.

  14. Investigation of Complexation of Linear Poly(N-vinyl-2-pyrrolidone) with Poly(methacrylic acid-co-methyl methacrylate) Gel

    OpenAIRE

    Liu, Guoqin; Yan, Guojin; Zou, Wenjun; Li, Zhengxin

    2011-01-01

    The contraction of poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) gel induced by complexation with linear poly(N-vinyl-2-pyrrolidone) (PVP) is quite different from that of poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMAA) gel. It was found that the concentration of PVP has a strong effect on the complexation with P(MAA-co-MMA) gel. When PVP was introduced into the P(MAA-co-MMA) network, its dynamic mechanic properties vary greatly between complexed and uncomplexed netwo...

  15. Contribution to the study by infrared spectroscopy of addition compounds of boron fluorides and ethers-oxides or organic sulphides; Contribution a l'etude par spectroscopie infrarouge des composes d'addition des fluorures de bore et des ethers-oxydes ou des sulfures organiques

    Energy Technology Data Exchange (ETDEWEB)

    Le Calve, Jacques

    1964-03-09

    This research thesis reports the study of complexes formed with boron fluoride and ethers or organic sulphides. In a first part, the author recalls vibration modes of free boron fluoride and of this compound in a complex. In the next parts, he reports the analysis of infrared spectra of groups present in addition compounds (between 400 and 1500 cm{sup -1}). He discusses spectrum modifications of electron donors by formation of a coordination bound. Experimental conditions are presented in appendix [French] Nous avons enregistre les spectres infrarouges de 400 a 4000 cm{sup -1} des composes d'addition du fluorure de bore et des oxydes de methyle, d'ethyle et du tetrahydrofuranne a l'etat gazeux, a l'etat liquide et a - 180 deg. a l'etat solide. Nous avons egalement etudie les complexes du fluorure de bore et des sulfures de methyle, d'ethyle et du tetrahydrothiophene a l'etat liquide. Le groupement c-c-OBF{sub 3} des trois composes des ethers avait fait l'objet d'une analyse tres recente que nous avons discutee. La comparaison des spectres et leur evolution en fonction de l'etat physique nous a notamment permis de mettre en evidence un couplage des vibrations de valence symetrique ν{sub s}(BF{sub 3}) et ν(OB) avec celles de meme symetrie du squelette de l'ether, en particulier la vibration ν{sub s}(COC). Ce couplage rend illusoires les correlations qui avaient ete proposees entre la basicite du donneur et la position d'une bande attribuee hativement a la vibration ν{sub s}(BF{sub 3}). Pour les composes d'addition des sulfures, nous avons attribue les principales vibrations du groupement C-C-SBF{sub 3}. La vibration de valence degeneree ν{sub s}(BF{sub 3}) apparait vers 1180 cm{sup -1}. Les vibrations de valence symetriques ν{sub s}(BF{sub 3}) et ν(SB) sont couplees et se manifestent dans les spectres par deux bandes vers 800 et 600 cm{sup -1}. Enfin, une absorption vers 460 cm{sup -1} correspond a l'une des vibrations de deformation symetrique ou degeneree

  16. Measurement of critical temperatures and critical pressures for binary mixtures of methyl tert-butyl ether (MTBE) + alcohol and MTBE + alkane

    International Nuclear Information System (INIS)

    Han, Kewei; Xia, Shuqian; Ma, Peisheng; Yan, Fangyou; Liu, Tao

    2013-01-01

    Highlights: • The critical properties of seven binary mixtures related to gasoline were measured. • The critical properties of the five systems containing MTBE were reported for the first time. • Binary interaction parameters were fitted by experimental data using PR EOS with Wong–Sandler mixing rule. • Redlich–Kister equation was used to correlate the experimental data. -- Abstract: A set of high-pressure view apparatus was designed for determining the critical properties of chemicals. In order to check the reliability of the apparatus, the critical temperatures (T c ) and critical pressures (P c ) of pure n-heptane, cyclohexane, methanol, ethanol, 1-propanol, methyl tert-butyl ether (MTBE), and binary mixture n-hexane + ethanol were measured. The experimental data were in good agreement with the literature data, which proves the reliability of the apparatus used in the work. The critical temperatures and critical pressures of five binary mixtures containing gasoline additive (MTBE + n-heptane, MTBE + cyclohexane, MTBE + methanol, MTBE + ethanol, MTBE + 1-propanol) were measured using the high-pressure view cell with visual observation. The critical temperatures and critical pressures for the five binary mixtures were all reported for the first time. In addition, the critical temperatures and critical pressures of the binary mixture n-heptane + cyclohexane (two of main components in gasoline) were also measured. All the critical lines for the mixtures studied are continuous which connect the critical points of the two pure components, indicating their phase diagrams belong to type I proposed by Scott and van Konynenburg. The critical points of these systems were calculated by the Peng–Robinson equation of state with the Wong–Sandler mixing rule. This model could calculate the critical properties of the mixtures well with the binary interaction parameter k ij obtained by fitting the experimental critical data. And the experimental data were all

  17. On the ether-like Lorentz-breaking actions

    International Nuclear Information System (INIS)

    Petrov, A.Yu; Nascimento, J.R.; Gomes, M.; Silva, A. J. da

    2011-01-01

    We demonstrate the generation of the CPT-even, ether-like Lorentz-breaking actions for the scalar and electro-magnetic fields via their appropriate Lorentz-breaking coupling to spinor fields in three, four and five space-time dimensions. Besides, we show that the ether-like terms for the spinor field also can be generated as a consequence of the same couplings. The key result which will be presented here is the finiteness of the ether-like term for the electromagnetic field not only in three and five space-time dimensions where it is natural due to known effects of the dimensional regularization but also in four space-time dimensions. Moreover, we present the calculation of the last result within different calculational schemes and conclude that the result for the four-dimensional ether-like term for the electromagnetic field essentially depending on the calculation scheme, similarly to the result for the Carroll-Field-Jackiw (CFJ) term which probably signalizes a possibility for arising of a new anomaly. Also we discuss the dispersion relations in the theories with ether-like Lorentz-breaking terms which allows to discuss the consistency of the Lorentz-breaking modified theories for different (space-like or time-like) Lorentz-breaking vectors and find the tree-level effective (Breit) potential for fermion scattering and the one-loop effective potential corresponding to the action of the scalar field. (author)

  18. The transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion

    OpenAIRE

    Rianti, Devi

    2006-01-01

    A laboratoric experimental study was conducted on the transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion. The aim of this study is to know the difference of acrylic resin transverse strengths caused by immersion time variations in a concentrate solution. The study was carried out on unpolished acrylic resin plates with 65 × 10 × 2,5 mm dimension; solution with 15% Coleus amboinicus, Lour extract, and 30, 60, 90 days immersion times to measure the tra...

  19. Ultraviolet curing of acrylated liquid natural rubber for surface coating application

    Directory of Open Access Journals (Sweden)

    Kannikar Kwanming

    2009-01-01

    Full Text Available Ultraviolet curable acrylated liquid natural rubber was prepared by grafting of photosensitive molecule onto liquid natural rubber for surface coating application. The liquid natural rubber (LNR was firstly obtained by degradation of natural rubber latex with hydrogen peroxide and cobalt acetylacetonate at 65oC for 72 hrs. The preparation of acrylated natural rubber was carried out by the reaction of acrylic acid and epoxidized liquid natural rubber (ELNR prior obtained from LNR with formic acid and hydrogen peroxide in the ratio of 2:1 by weight in toluene at 80oC for 6, 9, 12, 18, and 24 hrs. It was found that the percentage of acrylate grafted onto liquid natural rubber depended on the reaction time. Surface coating was performed by using acrylated liquid natural rubber and 1,6-hexanediol diacrylate (HDDA or tripropylene glycol diacrylate (TPGDA as a crosslinker and Irgarcure 184 or Irgarcure 651 as a photoinitiator under UV exposure for 30, 60, and 90 seconds. The hardness test of cured products was investigated using the Pencil hardness test at pencil level of 2B to 6H. It was found that the highest hardness of surface coating was at pencil level of 4H for the product using TPGDA and Irgacure 651 in the ratio of 80:10 parts per hundred of rubber (phr. The cured products were able to resist to 2% H2SO4 and distilled water for more than 24 hrs.

  20. Species and gender differences in the metabolism and distribution of tertiary amyl methyl ether in male and female rats and mice after inhalation exposure or gavage administration.

    Science.gov (United States)

    Sumner, Susan C J; Janszen, Derek B; Asgharian, Bahman; Moore, Timothy A; Parkinson, Horace D; Fennell, Timothy R

    2003-01-01

    Tertiary amyl methyl ether (TAME) is a gasoline fuel additive used to reduce emissions. Understanding the metabolism and distribution of TAME is needed to assess potential human health issues. The effect of dose level, duration of exposure and route of administration on the metabolism and distribution of TAME were investigated in male and female F344 rats and CD-1 mice following inhalation or gavage administration. By 48 h after exposure, >96% of the administered radioactivity was expired in air (16-71%) or eliminated in urine and feces (28-72%). Following inhalation exposure, mice had a two- to threefold greater relative uptake of [14C]TAME compared with rats. Metabolites were excreted in urine of rats and mice that are formed by glucuronide conjugation of tertiary amyl alcohol (TAA), oxidation of TAA to 2,3-dihydroxy-2-methylbutane and glucuronide conjugation of 2,3-dihydroxy-2-methylbutane. A saturation in the uptake and metabolism of TAME with increased exposure concentration was indicated by a decreased relative uptake of total [14C]TAME equivalents and an increase in the percentage expired as volatiles. A saturation of P-450 oxidation of TAA was indicated by a disproportional decrease of 2,3-dihydroxy-2-methylbutane and its glucuronide conjugate with increased exposure concentration. Copyright 2003 John Wiley & Sons, Ltd.