WorldWideScience

Sample records for methyl ch3 vinyl

  1. Methyl internal rotation in the microwave spectrum of vinyl acetate.

    Science.gov (United States)

    Nguyen, Ha Vinh Lam; Jabri, Atef; Van, Vinh; Stahl, Wolfgang

    2014-12-26

    The rotational spectrum of vinyl acetate, CH3(CO)OCH═CH2, was measured using two molecular beam Fourier transform microwave spectrometers operating in the frequency range from 2 to 40 GHz. Large splittings up to 2 GHz occurred due to the internal rotation of the acetyl methyl group CH3CO with a V3 potential of 151.492(34) cm(-1), much larger than the barrier of approximately 100 cm(-1) often found in acetates. The torsional transitions were fitted using three different programs XIAM, ERHAM, and BELGI-Cs, whereby the rotational constants, centrifugal distortion constants, and the internal rotation parameters could be determined with very high accuracy. The experimental results were supported by quantum chemical calculations. For a conformational analysis, potential energy surfaces were calculated.

  2. Production of methyl-vinyl ketone from levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A [Verona, WI; West,; Ryan, M [Madison, WI

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  3. Atmospheric fate of methyl vinyl ketone

    DEFF Research Database (Denmark)

    Praske, Eric; Crounse, John D; Bates, Kelvin H

    2015-01-01

    First generation product yields from the OH-initiated oxidation of methyl vinyl ketone (3-buten-2-one, MVK) under both low and high NO conditions are reported. In the low NO chemistry, three distinct reaction channels are identified leading to the formation of (1) OH, glycolaldehyde, and acetyl...

  4. Absolute photoionization cross-section of the methyl radical.

    Science.gov (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  5. Rate Constant and RRKM Product Study for the Reaction Between CH3 and C2H3 at T = 298K

    Science.gov (United States)

    Thorn, R. Peyton, Jr.; Payne, Walter A., Jr.; Chillier, Xavier D. F.; Stief, Louis J.; Nesbitt, Fred L.; Tardy, D. C.

    2000-01-01

    The total rate constant k1 has been determined at P = 1 Torr nominal pressure (He) and at T = 298 K for the vinyl-methyl cross-radical reaction CH3 + C2H3 yields products. The measurements were performed in a discharge flow system coupled with collision-free sampling to a mass spectrometer operated at low electron energies. Vinyl and methyl radicals were generated by the reactions of F with C2H4 and CH4, respectively. The kinetic studies were performed by monitoring the decay of C2H3 with methyl in excess, 6 rate coefficient was determined to be k1(298 K) = (1.02 +/- 0.53)x10(exp -10) cubic cm/molecule/s with the quoted uncertainty representing total errors. Numerical modeling was required to correct for secondary vinyl consumption by reactions such as C2H3 + H and C2H3 + C2H3. The present result for k1 at T = 298 K is compared to two previous studies at high pressure (100-300 Torr He) and to a very recent study at low pressure (0.9-3.7 Torr He). Comparison is also made with the rate constant for the similar reaction CH3 + C2H5 and with a value for k1 estimated by the geometric mean rule employing values for k(CH3 + CH3) and k(C2H3 + C2H3). Qualitative product studies at T = 298 K and 200 K indicated formation of C3H6, C2H2, and C2H5 as products of the combination-stabilization, disproportionation, and combination-decomposition channels, respectively, of the CH3 + C2H3 reaction. We also observed the secondary C4H8 product of the subsequent reaction of C3H5 with excess CH3; this observation provides convincing evidence for the combination-decomposition channel yielding C3H5 + H. RRKM calculations with helium as the deactivator support the present and very recent experimental observations that allylic C-H bond rupture is an important path in the combination reaction. The pressure and temperature dependencies of the branching fractions are also predicted.

  6. Synthesis of tritium labelled methyl vinyl ketone and its use in copolymer analysis

    International Nuclear Information System (INIS)

    Burfield, D.R.; Savariar, C.M.

    1980-01-01

    The synthesis of tritiated methyl vinyl ketone by base catalysed exchange and its use in determining the ketone content of styrene/methyl vinyl ketone copolymers are reported. Methods of assay are described in detail and the general applicability of the method is discussed. (author)

  7. The Microwave Spectrum of Methyl Vinyl Ketone Revisited

    Science.gov (United States)

    Wilcox, David S.; Shirar, Amanda J.; Williams, Owen L.; Dian, Brian C.

    2011-06-01

    A chirped-pulse Fourier transform microwave spectrometer was used to record the rotational spectrum of methyl vinyl ketone (MVK, 3-butene-2-one) from 6 to 18.9 GHz. Two stable conformations were identified: the previously documented antiperiplanar (ap) conformer and synperiplanar (sp), which is reported for the first time in this microwave study. Methyl torsional analysis with XIAM resulted in V3 barrier heights of 433.8(1) and 376.6(2) Cm-1 for ap- and sp-MVK, respectively. Heavy atom isotopic species were detected in natural abundance allowing bond lengths and angles of the molecular frames to be calculated through Kraitchman analysis. A comparison with ab initio calculations is included.

  8. Atmospheric Chemistry of CH3CH2OCH3

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Bjørn Svendsen, Sissel; Østerstrøm, Freja From

    2017-01-01

    The atmospheric chemistry of methyl ethyl ether, CH3CH2OCH3, was examined using FT-IR/relative-rate methods. Hydroxyl radical and chlorine atom rate coefficients of k(CH3CH2OCH3+OH) = (7.53 ± 2.86) × 10−12 cm3 molecule−1 s−1 and k(CH3CH2OCH3+Cl) = (2.35 ± 0.43) × 10−10 cm3 molecule−1 s−1 were...

  9. The methyl rotational potentials of Ga(CH sub 3) sub 3 derived by neutron spectroscopy

    CERN Document Server

    Prager, M; Parker, S F; Desmedt, A; Lechner, R E

    2002-01-01

    High resolution neutron spectra of Ga(CH sub 3) sub 3 show tunnelling transitions between 4.5 and 19 mu eV. The spectrum can be explained within the single-particle model on the basis of the monoclinic C2/c (Z = 16) low temperature crystal structure of Ga(CH sub 3) sub 3 with six inequivalent methyl groups in the unit cell. The overlapping tunnelling lines prevent the extraction of temperature dependent linewidths which would allow us to assign the librational energies measured in the phonon density of states. Classical rotational motion is studied by quasielastic neutron scattering. Three activation energies could be extracted. Methyl librations, tunnelling energies and barrier heights are combined with consistent intensities into rotational potentials. Only the concerted application of all spectroscopic techniques yields a conclusive description.

  10. Synthesis and Properties of the Metallo-Supramolecular Polymer Hydrogel Poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3

    KAUST Repository

    Al-Dossary, Mona S.

    2014-05-01

    Gels are a special class of materials which are composed of 3D networks of crosslinked polymer chains that encapsulate liquid/air in the matrix. They can be classified into organogels or hydrogels (organic solvent for organogel and water for hydrogel). For hydrogels that contain metallic elements in the form of ions, the term of metallo-supramolecular polymer hydrogel (MSPHG) is often used. The aim of this project is to develop a kind of new MSPHG and investigate its properties and possible applications. The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-monosodium maleate) (PVM/Na-MA). By addition of AgNO3-solution, the formation of the silver(I) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3 is obtained. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(I) cations. The supercritical CO2 dried silver(I) hydrogel was characterized by FT-IR, SEM-EDAX, TEM, TGA and Physical adsorption (BET) measurements. The intact silver(I) hydrogel was characterized by cryo-SEM. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(II) cations without disintegration of the hydrogel. The silver(I) hydrogel shows effective antibacterial activity and potential application as burn wound dressing.

  11. Synthesis and properties of the metallo-supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO3: Ag+/Cu2+ ion exchange and effective antibacterial activity

    KAUST Repository

    Xu, Feng

    2014-01-01

    The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-mono-sodium maleate) (PVM/Na-MA). By addition of AgNO 3-solution, the formation of the silver(i) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO 3 is reported. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(i) cations. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(ii) cations without disintegration of the hydrogel. The silver(i) hydrogel shows effective antibacterial activity and potential application as burn wound dressing. © the Partner Organisations 2014.

  12. Additional conformer observed in the microwave spectrum of methyl vinyl ketone

    Science.gov (United States)

    Wilcox, David S.; Shirar, Amanda J.; Williams, Owen L.; Dian, Brian C.

    2011-05-01

    A chirped-pulse Fourier transform microwave spectrometer was used to record the rotational spectrum of methyl vinyl ketone (MVK, 3-butene-2-one). Two stable conformations were identified: the previously documented antiperiplanar (ap) conformer and synperiplanar (sp), which is reported for the first time in this microwave study. Methyl torsional analysis resulted in V3 barrier heights of 433.8(1) and 376.6(2) cm-1 for ap- and sp-MVK, respectively. Heavy atom isotopic species of both conformers were detected in natural abundance allowing bond lengths and angles of the molecular frames to be calculated through Kraitchman analysis. A comparison with ab initio calculations is included.

  13. Improving the Performances of Poly(vinylphosphonic acid) by Compositing or Copolymerization with Poly(4-(α-methyl)vinyl-1H-1,2,3-triazole)

    International Nuclear Information System (INIS)

    Han, Shuaiyuan; Yue, Baohua; Yan, Liuming

    2014-01-01

    Graphical abstract: - Highlights: • Poly(4-(α-methyl)vinyl-1H-1,2,3-triazole) is synthesized • PVPA/PMVTri polymeric composite proton conducting membranes are prepared • The proton conductivity of PVPA is improved by compositing with PMVTri • The water resistance of PVPA is improved by compositing with PMVTri • The oxidative stability is greatly improved - Abstract: The poly(vinylphosphonic acid) (PVPA), poly(4-(α-methyl)vinyl-1H-1,2,3-triazole) (PMVTri), and poly(VPA-co-MVTri) were synthesized, and proton exchange membranes were prepared based on the acid-base polymeric composite of PVPA and PMVTri, and acid-base amphoteric copolymer of poly(VPA-co-MVTri). The overall performances of PVPA, proton conductivity, thermal and oxidative stability, and water resistance, are greatly improved by compositing of PMVTri or copolymerization with 4-(α-methyl)vinyl-1H-1,2,3-triazole (MVTri). About four or eight folds improvement in maximum proton conductivity was observed in the polymeric composite of PVPA/PMVTri or acid-base amphoteric copolymer poly(VPA-co-MVTri) because of the redistribution of ions in the heterostructures of PVPA and PMVTri, respectively, compared with the pristine PVPA. At the same time, the oxidative stability and the water resistance of PVPA were also greatly improved attributing to the absent of α-H in the main chain of PMVTri and the acid-base interaction between the phosphonic acid groups and the triazolyl groups, respectively

  14. Synthesis of Poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate by Maghnite-H+ a Non-toxic Catalyst

    Directory of Open Access Journals (Sweden)

    Mohamed Benadda

    2014-10-01

    Full Text Available In the present work poly (N-vinyl-2-pyrrolidone-co-methyl methacrylate copolymers were prepared successfully and cleanly by a one step process via cationic copolymerization of N-vinyl-2-pyrrolidone (NVP with methyl methacrylate (MMA, in heterogeneous phase using “Maghnite-H+” (Mag-H+ as catalyst in bulk, Maghnite is a montmorillonite sheet silicate clay exchanged with protons to produce Maghnite-H+. Temperature is varied between 20 and 80 °C. The effects of reaction temperature, amount of Mag-H+ on the yield and the intrinsic viscosity (η were investigated. A typical reaction product of poly (NVP-co- MMA was analyzed by infra red spectroscopy (FTIR and 1H-NMR, 13C-NMR spectroscopy as well as by viscosimetry. © 2014 BCREC UNDIP. All rights reservedReceived: 24th November 2013; Revised: 30th June 2014; Accepted: 8th July 2014How to Cite: Benadda, M., Ferrahi, M.I., Belbachir, M. (2014. Synthesis of Poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate by Maghnite-H+ a Non-toxic Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (3: 201-206. (doi: 10.9767/bcrec.9.3.5743.201-206Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.5743.201-206

  15. Contrast between the mechanisms for dissociative electron attachment to CH3SCN and CH3NCS

    Science.gov (United States)

    Miller, Thomas M.; Viggiano, Albert A.; Shuman, Nicholas S.

    2018-05-01

    The kinetics of thermal electron attachment to methyl thiocyanate (CH3SCN), methyl isothiocyanate (CH3NCS), and ethyl thiocyanate (C2H5SCN) were measured using flowing afterglow-Langmuir probe apparatuses at temperatures between 300 and 1000 K. CH3SCN and C2H5SCN undergo inefficient dissociative attachment to yield primarily SCN- at 300 K (k = 2 × 10-10 cm3 s-1), with increasing efficiency as temperature increases. The increase is well described by activation energies of 0.17 eV (CH3SCN) and 0.14 eV (C2H5SCN). CN- product is formed at product but at a rate at 300 K that is below our detection threshold (k differentiating the two mechanisms. The kinetic modeling reproduces the CH3NCS data only if dissociation through the transient anion is considered.

  16. Acid-base properties of 1-methyl-1,4-dilhydroborabenzene, CH3BC5H6

    International Nuclear Information System (INIS)

    Sullivan, S.A.; Sandford, H.; Beauchamp, J.L.; Ashe, A.J. III

    1978-01-01

    Ion cyclotron resonance techniques are employed to determine the gas-phase Bronsted and Lewis acidities as well as the Bronsted basicity of 1-methyl-1,4-dihydroborabenzene, CH 3 BC 5 H 6 . The ring proton is found to be highly acidic with PA(CH 3 BC 5 H 5 - ) = 337 +- 3 kcal/mol. This acidity results from the formation of 6π electron aromatic anion CH 3 BC 5 H 5 - , which is isoelectronic with toluene. Both the Lewis acidity toward F - as a reference base and the proton basicity of the parent molecule suggest that there is little interaction between the diene π system and the electron-deficient boron. This is further confirmed by the similarity of both negative and positive ion chemistry of the borabenzene to that of aliphatic boranes

  17. Coupled-cluster sum-frequency generation nonlinear susceptibilities of methyl (CH3) and methylene (CH2) groups.

    Science.gov (United States)

    Tetsassi Feugmo, Conrard Giresse; Liégeois, Vincent; Champagne, Benoît

    2017-11-15

    The first vibrational sum frequency generation (SFG) spectra based on molecular properties calculated at the coupled cluster singles and doubles (CCSD) level of approximation have been simulated for interfacial model alkyl chains, providing benchmark data for comparisons with approximate methods, including density functional theory (DFT). The approach proceeds in three steps. In the first two steps, the molecular spectral properties are determined: the vibrational normal modes and frequencies and then the derivatives of the dipole moment and of the polarizability with respect to the normal coordinates. These derivatives are evaluated with a numerical differentiation approach, of which the accuracy was monitored using Romberg's procedure. Then, in the last step, a three-layer model is employed to evaluate the macroscopic second-order nonlinear optical responses and thereby the simulated SFG spectra of the alkyl interface. Results emphasize the following facts: (i) the dipole and polarizability derivatives calculated at the DFT level with the B3LYP exchange-correlation functional can differ, with respect to CCSD, by as much as ±10 to 20% and ±20 to 50% for the CH 3 and CH 2 vibrations, respectively; (ii) these differences are enhanced when considering the SFG intensities as well as their variations as a function of the experimental configuration (ppp versus ssp) and as a function of the tilt and rotation angles, defining the orientation of the alkyl chain at the interface; (iii) these differences originate from both the vibrational normal coordinates and the Cartesian derivatives of the dipole moment and polarizability; (iv) freezing the successive fragments of the alkyl chain strongly modifies the SFG spectrum and enables highlighting the delocalization effects between the terminal CH 3 group and its neighboring CH 2 units; and finally (v) going from the free chain to the free methyl model, and further to C 3v constraints on leads to large variations of two ratios

  18. Microwave spectroscopy of HCOO13CH3 in the second methyl torsional excited state

    Science.gov (United States)

    Kobayashi, Kaori; Kuwahara, Takuro; Tachi, Haruka; Urata, Yuki; Tsunekawa, Shozo; Hayashi, Naoto; Higuchi, Hiroyuki; Fujitake, Masaharu; Ohashi, Nobukimi

    2018-01-01

    The new experimental results and analysis of the microwave spectra of HCOO13CH3 in the second methyl torsional excited state are reported. Pseudo-principal axis method (pseudo-PAM) was successfully applied to the normal methyl formate in the second torsional excited state and again applied to this isotopologue. We succeeded to assign 536 A-species transitions up to J = 33 and Ka = 15 and 417 E-species transitions up to J = 32 and Ka = 14. Thirty parameters were used to do the least-squares-analysis by using the pseudo-PAM Hamiltonian consisting of rotational, centrifugal distortion, and internal-rotational constants.

  19. Constraining the Molecular Complexity in the Interstellar Medium—The Formation of Ethyl Methyl Ether (CH3OCH2CH3) in Star-forming Regions

    Science.gov (United States)

    Bergantini, Alexandre; Frigge, Robert; Kaiser, Ralf I.

    2018-05-01

    We report the first confirmed synthesis of ethyl methyl ether (EME, CH3CH2OCH3) within astrophysical model ices containing water (H2O) and methane (CH4) exposed to ionizing radiation at ultra-low temperatures of 5 K. EME (also known as methoxyethane), was recently observed toward Orion KL and currently is the largest confirmed oxygen-bearing molecule found in the interstellar medium. Exploiting isomer-selective photoionization (PI) of the subliming molecules in the temperature-programmed desorption phase at 10.49, 9.92, and 9.70 eV, coupled with reflectron time-of-flight mass spectrometry and isotopic substitution experiments (H2 18O–CH4), the detection of fragment ions of EME at m/z = 45 (C2H5O+) and m/z = 59 (C3H7O+), and probing the proton transfer in subliming ethanol–EME complexes via m/z = 61 (C3H9O+), the present study reveals that EME can be formed from suprathermal reactions initiated by cosmic rays and secondary electrons generated within astrophysical ices. The detection of EME in our experiments represents a significant advance in the understanding of formation pathways of complex organic molecules present in hot cores and helps to constrain astrochemical models on the formation of such species within molecular clouds.

  20. Additive effects on phase transition and interactions in poly(vinyl methyl ether) solutions

    Czech Academy of Sciences Publication Activity Database

    Starovoytova, Larisa; Šťastná, J.; Šturcová, Adriana; Konefal, Rafal; Dybal, Jiří; Velychkivska, Nadiia; Radecki, M.; Hanyková, L.

    2015-01-01

    Roč. 7, č. 12 (2015), s. 2572-2583 ISSN 2073-4360 R&D Projects: GA ČR(CZ) GA13-23392S Institutional support: RVO:61389013 Keywords : additives * LCST * poly(vinyl methyl ether) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.944, year: 2015

  1. Methyltriphenylphosphonium Methylcarbonate, an All-In-One Wittig Vinylation Reagent.

    Science.gov (United States)

    Cattelan, Lisa; Noè, Marco; Selva, Maurizio; Demitri, Nicola; Perosa, Alvise

    2015-12-07

    The methyltriphenylphosphonium methylcarbonate salt [Ph3 PCH3 ][CH3 OCO2 ], obtained directly by quaternarization of triphenylphosphine with dimethylcarbonate, is a latent ylide that promotes Wittig vinylation of aldehydes and ketones. Alkenes are obtained simply by mixing [Ph3 PCH3 ][CH3 OCO2 ] and the carbonyl and heating in a solvent (no base, no halides, and no inorganic byproducts). Deuterium exchange experiments and the particularly short anion-cation distance measured by XRD in [Ph3 PCH3 ][CH3 OCO2 ] allowed to explain the nature and reactivity of this species. Green chemistry metrics (atom economy, mass index, environmental factor) indicate that this vinylation procedure is more efficient than comparable ones. Deuterated [Ph3 PCD3 ][CH3 OCO2 ] promoted the synthesis of deuterated olefins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preparation, Characterization and Permeation Behavior of Poly(methyl acrylate-Poly(dimethyl siloxane-Poly(methyl acrylate Block Copolymer/Poly(vinyl acetate Blend Membranes

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Semsarzadeh

    2015-03-01

    Full Text Available Structure of polymeric materials is of the most important factors in determination of the characteristics and properties of the membranes. Various research and developments on polymeric membranes confirm the direct correlation between structure-properties of polymeric membranes. In this research, the structural outcome of poly(methyl acrylate-poly(dimethyl siloxane-poly(methyl acrylate/poly(vinyl acetate blend membranes and its relationship with gas permeation behavior of the blends were investigated. The flexible block copolymer of poly(methyl acrylate-poly(dimethyl siloxane-poly(methyl acrylate (PMA-PDMS-PMA was synthesized via atom transfer radical polymerization. Morphology and chemical structure of the synthesized block copolymer was investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, gel permeation chromatography, X-ray diffraction analysis, differential scanning calorimetry and scanning electron microscopy. Blend membranes of PMA-PDMS-PMA and poly(vinyl acetate (PVAc were prepared by solution casting method in different compositions. By adding poly(vinyl acetate to PMA-PDMS-PMA block copolymer, the selectivity of the membranes for carbon dioxide/methane pair gases were increased by 55%. Fractional free volume (an indication of chain packing efficiency in blend membranes and dielectric constant (an indication of the molar volume and molar polarization of the blend membranes were obtained as the factors reflected the microstructural effect of PMA-PDMS-PMA and PVAc blend membranes. The efforts were directed toward expressing more precise structure-properties relationship of PMA-PDMS-PMA/PVAc blend membranes. The experimental permeability values of the blend membranes reported in this research were compared with the modified logarithmic model. The modified logarithmic model was evaluated for other blend membranes.

  3. Photochemical generation of highly destabilized vinyl cations: the effects of alpha- and beta-trifluoromethyl versus alpha- and beta-methyl substituents

    NARCIS (Netherlands)

    Alem, van K.; Belder, G.; Lodder, G.; Zuilhof, H.

    2005-01-01

    The photochemical reactions in methanol of the vinylic halides 1-4, halostyrenes with a methyl or a trifluoromethyl substituent at the - or -position, have been investigated quantitatively. Next to E/Z isomerization, the reactions are formation of vinyl radicals, leading to reductive dehalogenation

  4. Graft polymerization of vinyl acetate onto starch. Saponification to starch-g-poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1979-01-01

    Graft polymerizations of vinyl acetate onto granular cornstarch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinyl acetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. Over half of the polymer was present as ungrafted poly(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficency. Grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate--methyl methacrylate was carried out near 0 0 C; although conversion of monomers to polymer was low and grafted polymer contained 40 to 50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch-g-poly(vinyl alcohol) in hot water was less than 50; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch-g-poly

  5. Radiative forcing calculations for CH3Br

    International Nuclear Information System (INIS)

    Grossman, A.S.; Blass, W.E.; Wuebbles, D.J.

    1995-06-01

    Methyl Bromide, CH 3 Br, is the major organobromine species in the lower atmosphere and is a primary source of bromine in the stratosphere. It has a lifetime of 1.3 years. The IR methyl bromide spectra in the atmospheric window region, 7--13μ, was determined using a well tested Coriolis resonance and ell-doubling (and ell-resonance) computational system. A radiative forcing value of 0.00493 W/m 2 /ppbv was obtained for CH 3 Br and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 278 times the forcing of C0 2 , on a per molecule basis. The radiative forcing calculation is used to estimate the global warming potential (GWP) of CH 3 Br. The results give GWPs for CH 3 Br of the order of 13 for an integration period of 20 years and 4 for an integration period of 100 years (assuming C0 2 = 1, following IPCC [1994]). While CH 3 Br has a GWP which is approximately 25 percent of the GWP of CH 4 , the current emission rates are too low to cause serious atmospheric greenhouse heating effects at this time

  6. Separator Membrane from Crosslinked Poly(Vinyl Alcohol and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride

    Directory of Open Access Journals (Sweden)

    Charu Vashisth Rohatgi

    2015-03-01

    Full Text Available In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride (PMVE-MA. Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity, thermal and electrochemical properties using differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, thermo-gravimetric analysis (TGA and electrochemical impedance spectroscopy (EIS. The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications.

  7. Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride)

    Science.gov (United States)

    Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy

    2015-01-01

    In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019

  8. The Products of the Thermal Decomposition of CH3CHO

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliou, AnGayle; Piech, Krzysztof M.; Zhang, Xu; Nimlos, Mark R.; Ahmed, Musahid; Golan, Amir; Kostko, Oleg; Osborn, David L.; Daily, John W.; Stanton, John F.; Ellison, G. Barney

    2011-04-06

    We have used a heated 2 cm x 1 mm SiC microtubular (mu tubular) reactor to decompose acetaldehyde: CH3CHO + DELTA --> products. Thermal decomposition is followed at pressures of 75 - 150 Torr and at temperatures up to 1700 K, conditions that correspond to residence times of roughly 50 - 100 mu sec in the mu tubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: VUV photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH3CHO, we have studied three isotopologues, CH3CDO, CD3CHO, and CD3CDO. We have identified the thermal decomposition products CH3(PIMS), CO (IR, PIMS), H (PIMS), H2 (PIMS), CH2CO (IR, PIMS), CH2=CHOH (IR, PIMS), H2O (IR, PIMS), and HC=CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH3CHO: Radical decomposition: CH3CHO + DELTA --> CH3 + [HCO] --> CH3 + H + CO Elimination: CH3CHO + DELTA --> H2 + CH2=C=O. Isomerization/elimination: CH3CHO + DELTA --> [CH2=CH-OH] --> HC=CH + H2O. Both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH2=C:, as an intermediate in the decomposition of vinyl alchohol: CH2=CH-OH + DELTA --> [CH2=C:] + H2O --> HC=CH + H2O.

  9. Synthesis of Ethylene or Propylene/1,3-Butadiene Copolymers Possessing Pendant Vinyl Groups with Virtually No Internal Olefins

    Directory of Open Access Journals (Sweden)

    Kenji Michiue

    2015-11-01

    Full Text Available In general, ethylene/1,3-butadiene copolymerizations provides copolymers possessing both pendant vinyls and vinylenes as olefinic moieties. We, at MCI, studied the substituent effects of C2-symmetric zirconocene complexes, rac-[Me2Si(Indenyl’2]ZrCl2 (Indenyl’ = generic substituted indenyl, after activation on the ratio of the pendant vinyls and vinylenes of the resultant copolymers. Complexes examined in this study were rac-dimethylsilylbis (1-indenylzirconium dichloride (1, rac-dimethylsilyl-bis[1-(2-methyl-4,5-benzoindenyl] zirconium dichloride (2, rac-dimethylsilyl-bis[l-(2-methyl -4-phenylindenyl]zirconium dichloride (3, rac-dimethy1si1y1- bis(2-ethyl-4-phenylindenyl zirconium dichloride (4, rac-dimethylsilyl-bis[l-(2-n-propyl -4-(1-naphthylindenyl]zirconium dichloride (5, rac-dimethylsilyl-[1-(2-ethyl-4-(5-(2,2-dimethyl-2,3-dihydro-1H-cyclopenta [a]naphthalenylindenyl][1-(2-n-propyl-4-(5-(2,2-dimethyl-2,3-dihydro-1H-cyclopenta[a] naphthalenylindenyl]zirconium dichloride (6, rac-dimethylsilyl-bis[1-(2-ethyl-4-(9-phenanthrylindenyl]zirconium dichloride (7, and rac-dimethylsilyl-bis[l-(2-n-propyl-4-(9-phenanthrylindenyl]zirconium dichloride (8. We found that the ratio of the pendant vinyls and vinylenes is strongly affected by the bulkiness of the substituent on the complexes examined. The vinyl content increased linearly in the following order, 8 > 7 > 6 > 5 > 4 > 3 > 2 > 1. Notably, complex 8/DMAO formed ethylene/1,3-butadiene copolymers possessing predominant vinyl groups, which can be crucial precursors for functionalized polyolefins. Likewise, complex 8/DMAO afforded propylene/1,3-butadiene copolymers with predominant vinyl groups.

  10. Miscibility and Hydrogen Bonding in Blends of Poly(4-vinylphenol/Poly(vinyl methyl ketone

    Directory of Open Access Journals (Sweden)

    Hana Bourara

    2014-10-01

    Full Text Available The miscibility and phase behavior of poly(4-vinylphenol (PVPh with poly(vinyl methyl ketone (PVMK was investigated by differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was shown that all blends of PVPh/PVMK are totally miscible. A DSC study showed the apparition of a single glass transition (Tg over their entire composition range. When the amount of PVPh exceeds 50% in blends, the obtained Tgs are found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are capable of forming interpolymer complexes. FTIR analysis revealed the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and carbonyl groups, which intensified when the amount of PVPh was increased in blends. Furthermore, the quantitative FTIR study carried out for PVPh/PVMK blends was also performed for the vinylphenol (VPh and vinyl methyl ketone (VMK functional groups. These results were also established by scanning electron microscopy study (SEM.

  11. Morphology in binary blends of poly(vinyl methyl ether) and epsilon-caprolactone-trimethylene carbonate diblock copolymer

    NARCIS (Netherlands)

    Luyten, MC; Bogels, EJF; vanEkenstein, GORA; tenBrinke, G; Bras, W; Komanschek, BE; Ryan, AJ

    The morphology of symmetric diblock copolymer of epsilon-caprolactone (PCL) and trimethylene carbonate (PTMC), in blends with poly(vinyl methyl ether) (PVME) is investigated with (modulated) differential scanning calorimetry (d.s.c.), time resolved small angle (SAXS) and wide angle (WAXS) X-ray

  12. Morphology in binary blends of poly(vinyl methyl ether) and ε-caprolactone-trimethylene carbonate diblock copolymer

    NARCIS (Netherlands)

    Luyten, M.C.; Bögels, E.J.F.; Alberda van Ekenstein, G.O.R.; Brinke, G. ten; Bras, W.; Komanschek, B.E.; Ryan, A.J.

    1997-01-01

    The morphology of symmetric diblock copolymer of ε-caprolactone (PCL) and trimethylene carbonate (PTMC), in blends with poly(vinyl methyl ether) (PVME) is investigated with (modulated) differential scanning calorimetry (d.s.c.), time resolved small angle (SAXS) and wide angle (WAXS) X-ray

  13. Effect of organoelemental compounds of group 3 elements on radical polymerization of vinyl monomers

    International Nuclear Information System (INIS)

    Grishin, D.F.; Mojkin, A.A.

    1996-01-01

    When alkyl, alkyl alkoxy, and alkyl halide derivatives of boron and aluminium are introduced into the system in amounts that are comparable to the concentration of initiator, they coordinate to the growing macroradicals, thus changing their reactivity, and exert regulating effect on the rate of polymerization of vinyl monomers and the molecular mass of the resulting polymers. The said organoelemental compounds accelerate the polymerization of butyl acrylate, methyl methacrylate, acrylonitrile, vinyl acetate, and vinylidene chloride, reduce the molecular mass of acrylic polymers, and virtually do not affect the polymerization of styrene. The specific features of vinyl polymerization are associated with participation of organoelemental additives at the stages of chain growth and chain termination and can be explained within the framework of the mechanism of radical-coordination polymerization. 32 refs., 3 tabs

  14. Williamson alkylation approach to the synthesis of poly(alkyl vinyl ether) copolymers

    International Nuclear Information System (INIS)

    Markova, D.; Christova, D.; Velichkova, R.

    2008-01-01

    A method for synthesis of poly(alkyl vinyl ether-co-vinyl alcohol) copolymers was developed based on the Williamson's alkylation of poly(vinyl acetate) (PVAc) with alkyl iodides. The influence of the alkylating agent and the reaction conditions on the efficiency of the modification reaction was investigated. The copolymers obtained were characterized by means of 1 H NMR and GPC. It was proved that by applying the proposed method copolymers of different composition and properties containing methyl vinyl ether, ethyl vinyl ether as well as n-butyl vinyl ether units could be prepared. Poly(methyl vinyl ether-co-vinyl alcohol)s of high degree of methylation exhibit sharp temperature response at 38-39 deg C in aqueous solution typical of the so-called smart polymers. (authors)

  15. Influence of acrylonitrile butadiene rubber on recyclability of blends prepared from poly(vinyl chloride) and poly(methyl methacrylate).

    Science.gov (United States)

    Suresh, Sunil S; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.

  16. Effect of monomer concentration on the kinetics of emulsifier-free emulsion polymerization of Vinyl Acetate and Methyl Acrylate

    International Nuclear Information System (INIS)

    Mohammad Beigi, H. R.

    2001-01-01

    The effect of monomer concentration on the kinetics of the emulsifier-free emulsion polymerization of vinyl acetate and methyl acrylate were studied. The polymerizations were carried out using potassium persulfate as the initiator. Form the electron micrographs of the resulting lattices, monodisperse PVAc and PMA lattices with particle diameters varying between 149-443 mm and 112-497 nm, respectively were processed. Uniformity of particle size indicated that nucleation of stable particle occurs early in the polymerization process. The polymerization rate was found to be proportional to the 0.88 and 1.5 power of the initial monomer concentration of vinyl acetate and methyl acrylate, respectively. Higher monomer concentration results in fewer particles and larger final particle diameter. With increasing monomer solubility in water the size of particle decreases and its distribution broadens

  17. Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem.

    Science.gov (United States)

    Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H; Wang, Xiao-Gang; Carrington, Tucker; Gatti, Fabien

    2018-02-21

    Quantum mechanical calculations of ro-vibrational energies of CH 4 , CHD 3 , CH 3 D, and CH 3 F were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH 3 subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH 3 . Euler angles specifying the orientation of a frame attached to CH 3 with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH 4 , CHD 3 , and CH 3 D, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CH 3 F, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.

  18. Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem

    Science.gov (United States)

    Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H.; Wang, Xiao-Gang; Carrington, Tucker; Gatti, Fabien

    2018-02-01

    Quantum mechanical calculations of ro-vibrational energies of CH4, CHD3, CH3D, and CH3F were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH3 subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH3. Euler angles specifying the orientation of a frame attached to CH3 with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH4, CHD3, and CH3D, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CH3F, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.

  19. Thermodynamic and Kinetic Behavior of the Polystyrene/Poly(vinyl methyl ether) Blend as Studied by Excimer Fluorescence.

    Science.gov (United States)

    1986-01-02

    AD-A±63 895 THERMODYNAMIC AND KINETIC BEHAVIOR OF THE / POLYSTYRENE/POLY(YINYL METHYL E..(U) STANFORD UNIY CALIFDEPT OF CHEMICAL ENGINEERING C N...Polystyrene/Poly(vinyl methyl ether) Blend 7. DEcFRMN 81 toOR 30USptE8 00~ as Studied by Excimer Fluorescence 6 EFRIGOG EOTNME *AUTHOR() a. CONTRACT OR GRANT...werea fondoare ihemoriisof * ~ Ex e sp fluodecositionsdu to deud Gen e and hoog Pinus Florsneis shownhase migrationprocSECURITY CLASIFICTIO OFd

  20. ChAMP: updated methylation analysis pipeline for Illumina BeadChips.

    Science.gov (United States)

    Tian, Yuan; Morris, Tiffany J; Webster, Amy P; Yang, Zhen; Beck, Stephan; Feber, Andrew; Teschendorff, Andrew E

    2017-12-15

    The Illumina Infinium HumanMethylationEPIC BeadChip is the new platform for high-throughput DNA methylation analysis, effectively doubling the coverage compared to the older 450 K array. Here we present a significantly updated and improved version of the Bioconductor package ChAMP, which can be used to analyze EPIC and 450k data. Many enhanced functionalities have been added, including correction for cell-type heterogeneity, network analysis and a series of interactive graphical user interfaces. ChAMP is a BioC package available from https://bioconductor.org/packages/release/bioc/html/ChAMP.html. a.teschendorff@ucl.ac.uk or s.beck@ucl.ac.uk or a.feber@ucl.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  1. Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate

    Energy Technology Data Exchange (ETDEWEB)

    Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko; Thorpe, James H.; Nguyen, Thanh Lam; Baraban, Joshua H.; Stanton, John F.; Daily, John W.; Ellison, G. Barney

    2017-06-09

    Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH3COOCH3) and methyl butanoate (CH3CH2CH2COOCH3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures of 300 – 1600 K were explored. Decomposition of CH3COOCH3 commences at 1000 K and the initial products are (CH2=C=O and CH3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH2=C=O and CH3OH, CH3, CH2=O, H, CO, CO2) appears. The thermal cracking of CH3CH2CH2COOCH3 begins at 800 K with the formation of (CH3CH2CH=C=O, CH3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH3CH2CH=C=O, CH3OH, CH3, CH2=O, CO, CO2, CH3CH=CH2, CH2CHCH2, CH2=C=CH2, HCCCH2, CH2=C=C=O, CH2=CH2, HCΞCH, CH2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH2-COOCH3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted

  2. Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O

    Science.gov (United States)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  3. Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O

    Science.gov (United States)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  4. Synthesis of ethyl [14CH3]methylmalonyl thioglycolate as a possible substrate analogue of [14CH3]methylmalonyl coenzyme-A

    International Nuclear Information System (INIS)

    Kovacs, I.; Kovacs, Z.

    1991-01-01

    Ethyl methylmalonyl thioglycolate is a potential substrate analogue of methylmalonyl-coenzyme-A (methylmalonyl-CoA) in the investigation of propionic acid metabolism. To prove this hypothesis, the tracer ethyl [ 14 CH 3 ] methylmalonyl thioglycolate was synthesized via methyl-Meldrum's acid to carry out the biochemical examinations. The method described can also be used to synthesize [ 14 CH 3 ] methylmalonyl-CoA by transesterification of active labelled methylmalonyl thiophenyl ester. This latter intermediate is chemically stable when stored at room temperature, and the unstable [ 14 CH 3 ]methylmalonyl-CoA can be prepared in one step just preceeding the biochemical experiments. (author)

  5. Convenient procedures for the α-metallation of vinylic ethers and thioethers

    NARCIS (Netherlands)

    Verkruijsse, H.D.; Brandsma, L.; Schleyer, P. von R.

    1987-01-01

    Ethyl vinyl ether H2C=CHOC2H5 and the analogous cyclic vinylic ethers dehydrofuran and 2,3-dihydropyran can be potassiated at −20°C in the α-position with a 1/1/1 molar mixture of BuLi, t-BuOK and TMEDA in hexane. Methyl vinyl sulfide is potassiated very smoothly by a 1/1 molar mixture of BuLi and

  6. Synthesis of chlorophyll-c derivatives by modifying natural chlorophyll-a.

    Science.gov (United States)

    Xu, Meiyun; Kinoshita, Yusuke; Matsubara, Shogo; Tamiaki, Hitoshi

    2016-03-01

    Chlorophyll-a (Chl-a) was extracted from cyanobacterial cells and modified to methyl pyropheophorbide-a. The 3-vinyl-chlorin was transformed to zinc complex of the corresponding 3-acetyl-porphyrin. The zinc porphyrin was oxidized to give cis-7,8- and 17,18-dihydroxy-chlorins as well cis-7,8-cis-17,18-tetrahydroxybacteriochlorin. After zinc-demetallation, the isolated cis-7,8- and 17,18-diols were reduced at the 3-acetyl group and triply dehydrated under acidic conditions to afford two regioisomeric 3-vinyl-porphyrins, methyl divinyl-pyroprotopheophorbide-a possessing the 8-vinyl group and 17-propionate residue (one of the divinyl-protoChl-a derivatives) and methyl pyropheophorbide-c 1 possessing the 8-ethyl group and 17-acrylate residue (one of the Chl-c 1 derivatives), respectively. The resulting 7,8,17,18-tetrol was reduced and then acidically treated, giving five-fold dehydrated free base porphyrin, methyl pyropheophorbide-c 2 possessing the 3,8-divinyl groups and 17-acrylate residue (one of the Chl-c 2 derivatives). The visible absorption and fluorescence emission spectra of the three semi-synthetic 3-vinyl-porphyrins in dichloromethane were compared with those of the corresponding 8-ethyl-porphyrin bearing the 17-propionate residue, methyl pyroprotopheophorbide-a (one of the protoChl-a derivatives). The Soret and Qy absorption maxima were shifted to longer wavelengths with an increase of π-conjugation in a molecule: protoChl-a (8-CH2CH3/17-CH2CH2COOCH3) < divinyl-protoChl-a (8-CH=CH2/17-CH2CH2COOCH3) < Chl-c 1 (8-CH2CH3/17-CH=CHCOOCH3) < Chl-c 2 derivatives (8-CH=CH2/17-CH=CHCOOCH3). The 17(1),17(2)-dehydrogenation broadened the absorption bands. The emission maxima were bathochromically shifted in the same order. The reaction mechanism of the present dehydration indicates that the biosynthetic pathway of Chls-c would include the hydroxylation of the 17-propionate reside at the 17(1)-position and successive dehydration to the 17-acrylate residue.

  7. Laboratory characterization and astrophysical detection of vibrationally excited states of vinyl cyanide in Orion-KL

    Science.gov (United States)

    López, A.; Tercero, B.; Kisiel, Z.; Daly, A. M.; Bermúdez, C.; Calcutt, H.; Marcelino, N.; Viti, S.; Drouin, B. J.; Medvedev, I. R.; Neese, C. F.; Pszczółkowski, L.; Alonso, J. L.; Cernicharo, J.

    2014-12-01

    = 1 ⇔ (ν11 = 1,ν15 = 1) dyad (at 806.4/809.9 K), and ν11 = 3 (at 987.9 K), are populated under warm and dense conditions, so they probe the hottest parts of the Orion-KL source. The vibrational temperatures derived for the ν11 = 1, ν11 = 2, and ν15 = 1 states are 252 ± 76 K, 242 ± 121 K, and 227 ± 68 K, respectively; all of them are close to the mean kinetic temperature of the hot core component (210 K). The total column density of CH2CHCN in the ground state is (3.0 ± 0.9) × 1015 cm-2. We report the detection of methyl isocyanide (CH3NC) for the first time in Orion-KL and a tentative detection of vinyl isocyanide (CH2CHNC). We also give column density ratios between the cyanide and isocyanide isomers, obtaining a N(CH3NC)/N(CH3CN) ratio of 0.002. Conclusions: Laboratory characterization of many previously unassigned vibrationally excited states of vinyl cyanide ranging from microwave to THz frequencies allowed us to detect these molecular species in Orion-KL. Column density, rotational and vibrational temperatures for CH2CHCN in their ground and excited states, and the isotopologues have been constrained by means of a sample of more than 1000 lines in this survey. The full Tables A.6-A.14 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A44This work was based on observations carried out with the IRAM-30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  8. Blends of ethylene-co-vinyl acetate and poly(3-hydroxybutyrate with adhesion property

    Directory of Open Access Journals (Sweden)

    A. de Lucas-Freile

    2018-07-01

    Full Text Available The structure and properties of ethylene-co-vinyl acetate (EVA and poly(3-hydroxybutyrate (PHB blends depended on their PHB content, i.e. PHB phase dominated the structure for amounts of PHB higher than 50 wt%, whereas EVA phase is dominant for PHB content lower than 50 wt%. EVA/PHB (70:30 blend showed unexpected different structure because of higher miscibility and the creation of new interfacial interactions between C=O and CH3 groups of PHB and CH3 and C=O groups of EVA, these interactions led changing of the phase structure of ethylene and vinyl acetate domains in EVA. As a consequence, improved thermal, viscoelastic and morphological properties were obtained. EVA+PHB blends containing 60 wt% or more PHB did not show tack and, interestingly, the addition of 20–30 wt% PHB enhanced the tack and displaced the maximum tack of pure EVA to lower temperature. The tack of EVA/PHB (70:30 blend was the highest among all blends because of its particular structure, fibrillation was also shown. Finally, the adhesion of EVA+PHB blends containing 20–30 wt% PHB to polypropylene (PP substrate was higher than the one of pure EVA because of the interactions between the ethylene domains in EVA phase of the blend and PP substrate surface.

  9. Visible absorption spectrum of the CH3CO radical.

    Science.gov (United States)

    Rajakumar, B; Flad, Jonathan E; Gierczak, Tomasz; Ravishankara, A R; Burkholder, James B

    2007-09-20

    The visible absorption spectrum of the acetyl radical, CH(3)CO, was measured between 490 and 660 nm at 298 K using cavity ring-down spectroscopy. Gas-phase CH(3)CO radicals were produced using several methods including: (1) 248 nm pulsed laser photolysis of acetone (CH(3)C(O)CH(3)), methyl ethyl ketone (MEK, CH(3)C(O)CH(2)CH(3)), and biacetyl (CH(3)C(O)C(O)CH(3)), (2) Cl + CH(3)C(O)H --> CH(3)C(O) + HCl with Cl atoms produced via pulsed laser photolysis or in a discharge flow tube, and (3) OH + CH(3)C(O)H --> CH(3)CO + H(2)O with two different pulsed laser photolysis sources of OH radicals. The CH(3)CO absorption spectrum was assigned on the basis of the consistency of the spectra obtained from the different CH(3)CO sources and agreement of the measured rate coefficients for the reaction of the absorbing species with O(2) and O(3) with literature values for the CH(3)CO + O(2) + M and CH(3)CO + O(3) reactions. The CH(3)CO absorption spectrum between 490 and 660 nm has a broad peak centered near 535 nm and shows no discernible structure. The absorption cross section of CH(3)CO at 532 nm was measured to be (1.1 +/- 0.2) x 10(-19) cm(2) molecule(-1) (base e).

  10. CH3-ReO3 on gamma-Al2O3: understanding its structure, initiation,and reactivity in olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Salameh, Alain; Joubert, Jerome; Baudouin, Anne; Lukens, Wayne; Delbecq, Francoise; Sautet, Philippe; Basset, Jean Marie; Coperet,Christophe

    2007-01-20

    Me-ReO3 on gamma-alumina: understanding the structure, theinitiation and thereactivity of a highly active olefin metathesiscatalyst Heterolytic splitting of the C-H bond of the methyl group ofCH3ReO3 on AlsO reactive sites of alumina as a way to generate the activesite of CH3ReO3 supported on gamma-Al203.

  11. Wax inhibitor based on ethylene vinyl acetate with methyl methacrylate and diethanolamine for crude oil pipeline

    Science.gov (United States)

    Anisuzzaman, S. M.; Abang, S.; Bono, A.; Krishnaiah, D.; Karali, R.; Safuan, M. K.

    2017-06-01

    Wax precipitation and deposition is one of the most significant flow assurance challenges in the production system of the crude oil. Wax inhibitors are developed as a preventive strategy to avoid an absolute wax deposition. Wax inhibitors are polymers which can be known as pour point depressants as they impede the wax crystals formation, growth, and deposition. In this study three formulations of wax inhibitors were prepared, ethylene vinyl acetate, ethylene vinyl acetate co-methyl methacrylate (EVA co-MMA) and ethylene vinyl acetate co-diethanolamine (EVA co-DEA) and the comparison of their efficiencies in terms of cloud point¸ pour point, performance inhibition efficiency (%PIE) and viscosity were evaluated. The cloud point and pour point for both EVA and EVA co-MMA were similar, 15°C and 10-5°C, respectively. Whereas, the cloud point and pour point for EVA co-DEA were better, 10°C and 10-5°C respectively. In conclusion, EVA co-DEA had shown the best % PIE (28.42%) which indicates highest percentage reduction of wax deposit as compared to the other two inhibitors.

  12. Radiative forcing calculations for CH3Cl

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1994-06-01

    Methyl chloride, CH 3 Cl, is the major natural source of chlorine to the stratosphere. The production of CH 3 Cl is dominated by biological sources from the oceans and biomass burning. Production has a seasonal cycle which couples with the short lifetime of tropospheric CH 3 Cl to produce nonuniform global mixing. As an absorber of infrared radiation, CH 3 Cl is of interest for its potential affect on the tropospheric energy balance as well as for its chemical interactions. In this study, we estimate the radiative forcing and global warming potential (GWP) of CH 3 Cl. Our calculations use an infrared radiative transfer model based on the correlated k-distribution algorithm for band absorption. Global and annual average vertical profiles of temperature and trace gas concentration were assumed. The effects of clouds are modeled using three layers of global and annual average cloud optical properties. A radiative forcing value of 0.0053 W/m 2 ppbv was obtained for CH 3 Cl and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 300 times the forcing of CO 2 , on a per molecule basis. The radiative forcing calculation for CH 3 Cl is used to estimate the global warming potential (GWP) of CH 3 Cl. The results give GWPs for CH 3 Cl of the order of 25 at a time of 20 years(CO 2 = 1). This result indicates that CH 3 Cl has the potential to be a major greenhouse gas if significant human related emissions were introduced into the atmosphere

  13. On the Formation of the C{sub 2}H{sub 6}O Isomers Ethanol (C{sub 2}H{sub 5}OH) and Dimethyl Ether (CH{sub 3}OCH{sub 3}) in Star-forming Regions

    Energy Technology Data Exchange (ETDEWEB)

    Bergantini, Alexandre; Maksyutenko, Pavlo; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [Department of Chemistry, University of Hawaii at Mānoa, Honolulu, HI 96822 (United States)

    2017-06-01

    The structural isomers ethanol (CH{sub 3}CH{sub 2}OH) and dimethyl ether (CH{sub 3}OCH{sub 3}) were detected in several low-, intermediate-, and high-mass star-forming regions, including Sgr B2, Orion, and W33A, with the relative abundance ratios of ethanol/dimethyl ether varying from about 0.03 to 3.4. Until now, no experimental data regarding the formation mechanisms and branching ratios of these two species in laboratory simulation experiments could be provided. Here, we exploit tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) to detect and analyze the production of complex organic molecules (COMs) resulting from the exposure of water/methane (H{sub 2}O/CH{sub 4}) ices to energetic electrons. The main goal is to understand the formation mechanisms in star-forming regions of two C{sub 2}H{sub 6}O isomers: ethanol (CH{sub 3}CH{sub 2}OH) and dimethyl ether (CH{sub 3}OCH{sub 3}). The results show that the experimental branching ratios favor the synthesis of ethanol versus dimethyl ether (31 ± 11:1). This finding diverges from the abundances observed toward most star-forming regions, suggesting that production routes on interstellar grains to form dimethyl ether might be missing; alternatively, ethanol can be overproduced in the present simulation experiments, such as via radical–radical recombination pathways involving ethyl and hydroxyl radicals. Finally, the PI-ReTOF-MS data suggest the formation of methylacetylene (C{sub 3}H{sub 4}), ketene (CH{sub 2}CO), propene (C{sub 3}H{sub 6}), vinyl alcohol (CH{sub 2}CHOH), acetaldehyde (CH{sub 3}CHO), and methyl hydroperoxide (CH{sub 3}OOH), in addition to ethane (C{sub 2}H{sub 6}), methanol (CH{sub 3}OH), and CO{sub 2} detected from infrared spectroscopy. The yield of all the confirmed species is also determined.

  14. MILLIMETER WAVE SPECTRUM AND ASTRONOMICAL SEARCH FOR VINYL FORMATE

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, E. R.; Kolesniková, L.; Cabezas, C.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain); Tercero, B.; Cernicharo, J. [Grupo de Astrofísica Molecular, ICMM-CSIC, C/Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco (Spain); Guillemin, J.-C. [Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, F-35708 Rennes Cedex 7 (France)

    2016-11-20

    Previous detections of methyl and ethyl formate make other small substituted formates potential candidates for observation in the interstellar medium. Among them, vinyl formate is one of the simplest unsaturated carboxylic ester. The aim of this work is to provide direct experimental frequencies of the ground vibrational state of vinyl formate in a large spectral range for astrophysical use. The room-temperature rotational spectrum of vinyl formate has been measured from 80 to 360 GHz and analyzed in terms of Watson’s semirigid rotor Hamiltonian. Two thousand six hundred transitions within J = 3–88 and K {sub a} = 0–28 were assigned to the most stable conformer of vinyl formate and a new set of spectroscopic constants was accurately determined. Spectral features of vinyl formate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of vinyl formate are provided.

  15. Synthesis of ethyl ( sup 14 CH sub 3 )methylmalonyl thioglycolate as a possible substrate analogue of ( sup 14 CH sub 3 )methylmalonyl coenzyme-A

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, I. (BIOGAL Pharmaceutical Works, Debrecen (Hungary)); Kovacs, Z. (Inst. of Nuclear Research, Debrecen (Hungary))

    1991-11-01

    Ethyl methylmalonyl thioglycolate is a potential substrate analogue of methylmalonyl-coenzyme-A (methylmalonyl-CoA) in the investigation of propionic acid metabolism. To prove this hypothesis, the tracer ethyl ({sup 14}CH{sub 3}) methylmalonyl thioglycolate was synthesized via methyl-Meldrum's acid to carry out the biochemical examinations. The method described can also be used to synthesize ({sup 14}CH{sub 3}) methylmalonyl-CoA by transesterification of active labelled methylmalonyl thiophenyl ester. This latter intermediate is chemically stable when stored at room temperature, and the unstable ({sup 14}CH{sub 3})methylmalonyl-CoA can be prepared in one step just preceeding the biochemical experiments. (author).

  16. Infrared Spectra and Band Strengths of CH3SH, an Interstellar Molecule

    Science.gov (United States)

    Hudson, R. L.

    2016-01-01

    Three solid phases of CH3SH (methanethiol or methyl mercaptan) have been prepared and their mid-infrared spectra recorded at 10-110 degrees Kelvin, with an emphasis on the 17-100 degrees Kelvin region. Refractive indices have been measured at two temperatures and used to estimate ice densities and infrared band strengths. Vapor pressures for the two crystalline phases of CH3SH at 110 degrees Kelvin are estimated. The behavior of amorphous CH3SH on warming is presented and discussed in terms of Ostwald's step rule. Comparisons to CH3OH under similar conditions are made, and some inconsistencies and ambiguities in the CH3SH literature are examined and corrected.

  17. Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.

    Science.gov (United States)

    Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2009-11-04

    (PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.

  18. Theoretical study of the regioselectivity of the interaction of 3-methyl-4-pyrimidone and 1-methyl-2-pyrimidone with Lewis acids.

    Science.gov (United States)

    Kasende, Okuma Emile; Muya, Jules Tshishimbi; Broeckaert, Lies; Maes, Guido; Geerlings, Paul

    2012-08-23

    A density functional theory (DFT) study is performed to determine the stability of the complexes formed between either the N or O site of 3-methyl-4-pyrimidone and 1-methyl-2-pyrimidone molecules and different ligands. The studied ligands are boron and alkali Lewis acids, namely, B(CH(3))(3), HB(CH(3))(2), H(2)B(CH(3)), BH(3), H(2)BF, HBF(2), BF(3), Li(+), Na(+), and K(+). The acids are divided into two groups according to their hardness. The reactivity predictions, according to the molecular electrostatic potential (MEP) map and the natural bond orbital (NBO) analysis, are in agreement with the calculated relative stabilities. Our findings reveal a strong regioselectivity with borane and its derivatives preferring the nitrogen site in both pyrimidone isomers, while a preference for oxygen is observed for the alkali acids in the 3-methyl-4-pyrimidone molecule. The complexation of 1-methyl-2-pyrimidone with these hard alkali acids does not show any discrimination between the two sites due to the presence of a continuous delocalized density region between the nitrogen and the oxygen atoms. The preference of boron Lewis acids toward the N site is due to the stronger B-N bond as compared to the B-O bond. The influence of fluorine or methyl substitution on the boron atom is discussed through natural orbital analysis (NBO) concentrating on the overlap of the boron empty p-orbital with the F lone pairs and methyl hyperconjugation, respectively. The electrophilicity of the boron acids gives a good overall picture of the interaction capabilities with the Lewis base.

  19. Solid-phase synthesis of isoxazoles using vinyl ethers as chameleon catches.

    Science.gov (United States)

    Barrett, A G; Procopiou, P A; Voigtmann, U

    2001-10-04

    [reaction: see text] Regioselective 1,3-dipolar cycloadditions of supported vinyl ethers R(1)C(=CH(2))O-CH(2)-polymer, prepared by the Tebbe olefination of R(1)CO(2)-CH(2)-polymer, with ethyl cyanoformate N-oxide gave supported isoxazoline derivatives. Release from the support under mild acidic conditions gave the isoxazoles ethyl 5-R(1)-isoxazole-3-carboxylates. Alternatively, further on-resin functionalization of the R(1) substituent using Suzuki coupling reactions and release from the support under acidic conditions gave more structurally diverse isoxazoles.

  20. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    International Nuclear Information System (INIS)

    Senent, M. L.; Puzzarini, C.; Hochlaf, M.; Domínguez-Gómez, R.; Carvajal, M.

    2014-01-01

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH 3 -S-CHO (MSCHO) and O-methyl thioformate CH 3 -O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH 3 -S-CHO represents the most stable structure lying 4372.2 cm −1 below cis-CH 3 -O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm −1 ) than for MOCHS (1963.6 cm −1 ). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V 3 (cis) are determined to be 139.7 cm −1 (CH 3 -S-CHO) and 670.4 cm −1 (CH 3 -O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm −1 for CH 3 -S-CHO and negligible for CH 3 -O-CHS

  1. N-[11C]methyl-3,4-methylenedioxyamphetamine (Ecstasy) and 2-methyl-N-[11C]methyl-4,5-methylenedioxyamphetamine. Synthesis and biodistribution studies

    International Nuclear Information System (INIS)

    Patt, M.; Machulla, H.J.; Guendisch, D.; Kovar, K.A.; Wuellner, U.; Blocher, A.

    1999-01-01

    In order to evaluate the neurobiological mechanism causing the psychogenic effects of methylenedioxy-derivatives of amphetamine, the carbon-11 labeled analogues of 3,4-methylenedioxymethamphetamine (MDMA), 2 and 2,N-dimethyl-4,5-methylenedioxyamphetamine (MADAM-6) 4 were prepared for application in in-vivo PET studies by methylation of 3,4-methylenedioxyamphetamine (MDA) 1 and 2-methyl-4,5-methylenedioxyamphetamine 3 with [ 11 C]CH 3 I. The radiochemical yield was determined in dependence on time, temperature and amount of precursor. The best conditions for a fast labeling reaction with carbon-11 on a preparative scale were found to be a reaction time of 10 min using 1 mg of the corresponding dimethyl-precursors 1 or 3, thus obtaining radiochemical yields of 60% (based on produced [ 11 C]CH 3 I). Biodistribution studies were performed in rats, a high brain to blood ratio of 7.5 was observed for [ 11 C]MDMA in contrast to a ratio of 3.7 for [ 11 C]MADAM-6. (author)

  2. Kinetics and mechanism of the reaction of recombination of vinyl and hydroxyl radicals

    Science.gov (United States)

    Knyazev, Vadim D.

    2017-10-01

    The recombination of the vinyl (C2H3) and the hydroxyl (OH) radicals was studied computationally using quantum chemistry and master equation/RRKM. The reaction mechanism includes the initial addition, several isomerization steps, and decomposition via seven different channels. The spectrum of products demonstrates temperature dependence in the 300-3000 K range. At low temperatures (below 1600 K), CH3 + HCO products are dominant but at elevated temperatures vinoxy radical (CH2CHO) and hydrogen atom become more important. The acetyl (CH3CO) + H products and formation of vinylidene (CH2C:) and water products are minor but non-negligible.

  3. Ambient gold-catalyzed O-vinylation of cyclic 1,3-diketone: A vinyl ether synthesis

    Directory of Open Access Journals (Sweden)

    Yumeng Xi

    2013-11-01

    Full Text Available Gold-catalyzed O-vinylation of cyclic 1,3-diketones has been achieved for the first time, which provides direct access to various vinyl ethers. A catalytic amount of copper triflate was identified as the significant additive in promoting this transformation. Both aromatic and aliphatic alkynes are suitable substrates with good to excellent yields.

  4. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    Energy Technology Data Exchange (ETDEWEB)

    Senent, M. L., E-mail: senent@iem.cfmac.csic.es [Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid 28006 (Spain); Puzzarini, C., E-mail: cristina.puzzarini@unibo.it [Dipartimento di Chimica G. Ciamician, Università di Bologna, Via F. Selmi 2, I-40126 Bologna (Italy); Hochlaf, M., E-mail: hochlaf@univ-mlv.fr [Laboratoire de Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, 77454 Marne-la-Vallée (France); Domínguez-Gómez, R., E-mail: rosa.dominguez@upm.es [Departamento de Ingeniería Civil, Cátedra de Química, E.U.I.T. Obras Públicas, Universidad Politécnica de Madrid, Madrid (Spain); Carvajal, M., E-mail: miguel.carvajal@dfa.uhu.es [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Unidad Asociada IEM-CSIC-U.Huelva, Universidad de Huelva, 21071 Huelva (Spain)

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH{sub 3}-S-CHO (MSCHO) and O-methyl thioformate CH{sub 3}-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH{sub 3}-S-CHO represents the most stable structure lying 4372.2 cm{sup −1} below cis-CH{sub 3}-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm{sup −1}) than for MOCHS (1963.6 cm{sup −1}). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V{sub 3}(cis) are determined to be 139.7 cm{sup −1} (CH{sub 3}-S-CHO) and 670.4 cm{sup −1} (CH{sub 3}-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm{sup −1} for CH{sub 3}-S-CHO and negligible for CH{sub 3}-O-CHS.

  5. Crystal structures of titanium–aluminium and –gallium complexes bearing two μ2-CH3 units

    Directory of Open Access Journals (Sweden)

    Tim Oswald

    2017-05-01

    Full Text Available The isotypic crystal structures of two titanocene complexes containing an EMe3 unit (E = Al, Ga; Me = methyl with two μ2-coordinating methyl groups, namely [μ-1(η5-(adamantan-1-yl-2κC1cycylopentadienyl]di-μ2-methyl-methyl-2κC-[1(η5-pentamethylcyclopentadienyl]aluminiumtitanium(III, [AlTi(CH33(C10H15(C15H18], and [μ-1(η5-(adamantan-1-yl-2κC1cycylopentadienyl]di-μ2-methyl-methyl-2κC-[1(η5-pentamethylcyclopentadienyl]galliumtitanium(III, [GaTi(CH33(C10H15(C15H18], are reported. Reacting a dinuclear nitrogen-bridged low-valent titanium(III complex with the Lewis acids AlMe3 or GaMe3 results in the loss of molecular dinitrogen and the formation of two monomeric titanocene(III fragments bearing two μ2-bridging methyl groups. Single crystal X-ray diffraction reveals the formation of a new E—C bond involving the pentafulvene ligand while the bridging and terminal methyl groups remain intact.

  6. Thermotolerant cyclamen with reduced acrolein and methyl vinyl ketone.

    Science.gov (United States)

    Kai, Hiroomi; Hirashima, Keita; Matsuda, Osamu; Ikegami, Hidetoshi; Winkelmann, Traud; Nakahara, Takao; Iba, Koh

    2012-06-01

    Reduced levels of trienoic fatty acids (TAs) in chloroplast membranes induce thermotolerance in several plant species, but the underlying mechanisms remain unclear. TA peroxidation in plant cell membranes generates cytotoxic, TA-derived compounds containing α,β-unsaturated carbonyl groups. The relationship between low TA levels and the amounts of cytotoxic TA-derived compounds was examined using thermotolerant transgenic cyclamen (Cyclamen persicum Mill.) with low TA contents. Changes in the levels of the cytotoxic TA-derived acrolein (ACR), methyl vinyl ketone (MVK), (E)-2-hexenal, 4-hydroxy-2-nonenal, and malondialdehyde were analysed in the leaf tissues of wild-type (WT) and thermotolerant transgenic cyclamen under heat stress. Levels of ACR and MVK in the WT increased in parallel with the occurrence of heat-induced tissue damage, whereas no such changes were observed in the thermotolerant transgenic lines. Furthermore, exogenous ACR and MVK infiltrated into leaves to concentrations similar to those observed in heat-stressed WT leaves caused similar disease symptoms. These results suggest that thermotolerance in transgenic cyclamen depends on reduced production rates of ACR and MVK under heat stress, due to the low level of TAs in these plants.

  7. Graft copolymerization of styrene onto poly(vinyl alcohol) initiated by potassium diperiodatocuprate (III)

    International Nuclear Information System (INIS)

    Bai, L.; Wang, Ch.; Jin, J.; Liu, Y.

    2009-01-01

    The graft copolymerization of styrene onto poly(vinyl alcohol) is studied by using a novel redox system of potassium diperiodatocuprate-poly(vinyl alcohol) (Cu(III)poly(vinyl alcohol) in alkaline medium. Cu(III)-poly(vinyl alcohol) redox pair is an efficient initiator for this graft copolymerization which is proved by high graft efficiency (>97%) and high percentage of graft (>300%). Reaction conditions (monomer-to-poly(vinyl alcohol) weight ratio, initiator concentration, p H, time and temperature) affect the graft parameters which have been investigated systematically. The optimum reaction conditions are found as St/poly(vinyl alcohol) = 5.4; [Cu(III)] = 1*10 -2 M; p H = 12.7; temperature = 50 d eg C ; time = 3.5 h. Further, the equation of the overall polymerization rate can be written as follows: R p = k C 1.9 (St) C 1.7 (Cu(III)). The overall activation energy was calculated to be 42.0 kJ/mol based on the experimental data of the relations between R p and C(St); R p and C(Cu(III)); and R p and temperature. A mechanism is proposed to explain the formation of radicals and the initiation. The structure of the graft copolymers is confirmed by Fourier transfer infrared spectroscopy. Some peaks were compared with poly(vinyl alcohol) at 3080.34-3001.79 cm -1 (=C-H stretching in the phenyl ring), 1600.34-1450.95 cm -1 (C=C stretching in the phenyl ring), 755.17 cm -1 and 698.64 cm -1 (=C-H out-off-plane bending in phenyl ring) which are considered to belong to the characteristic absorption bands of phenyl group of polystyrene. Therefore it proves that the graft copolymer is composed of poly(vinyl alcohol) and polystyrene. thermal gravimetric analysis thermo grams of poly(vinyl alcohol) and poly(vinyl alcohol)-graft-polystyrene are investigated as well. As it is shown the initial decomposition temperature of poly(vinyl alcohol)-g-polystyrene(377.3 d eg C ) is much higher than that of poly(vinyl alcohol) (241.8 d eg C ), which indicates that the thermal stability of the

  8. Effects of collision energy and vibrational excitation of CH3 + cations on its reactivity with hydrocarbons: But-2-yne CH3CCCH3 as reagent partner

    Science.gov (United States)

    Cernuto, Andrea; Lopes, Allan; Romanzin, Claire; Cunha de Miranda, Barbara; Ascenzi, Daniela; Tosi, Paolo; Tonachini, Glauco; Maranzana, Andrea; Polášek, Miroslav; Žabka, Jan; Alcaraz, Christian

    2017-10-01

    The methyl carbocation is ubiquitous in gaseous environments, such as planetary ionospheres, cometary comae, and the interstellar medium, as well as combustion systems and plasma setups for technological applications. Here we report on a joint experimental and theoretical study on the mechanism of the reaction CH3 + + CH3CCCH3 (but-2-yne, also known as dimethylacetylene), by combining guided ion beam mass spectrometry experiments with ab initio calculations of the potential energy hypersurface. Such a reaction is relevant in understanding the chemical evolution of Saturn's largest satellite, Titan. Two complementary setups have been used: in one case, methyl cations are generated via electron ionization, while in the other case, direct vacuum ultraviolet photoionization with synchrotron radiation of methyl radicals is used to study internal energy effects on the reactivity. Absolute reactive cross sections have been measured as a function of collision energy, and product branching ratios have been derived. The two most abundant products result from electron and hydride transfer, occurring via direct and barrierless mechanisms, while other channels are initiated by the electrophilic addition of the methyl cation to the triple bond of but-2-yne. Among the minor channels, special relevance is placed on the formation of C5H7 +, stemming from H2 loss from the addition complex. This is the only observed condensation product with the formation of new C—C bonds, and it might represent a viable pathway for the synthesis of complex organic species in astronomical environments and laboratory plasmas.

  9. Synthesis of Fe3O4@SiO2@OSi(CH2)3NHRN(CH2PPh2)2PdCl2 type nanocomposite complexes: Highly efficient and magnetically-recoverable catalysts in vitamin K3 synthesis.

    Science.gov (United States)

    Uruş, Serhan

    2016-12-15

    The synthesis of aminomethylphosphine-metal complexes have opened a new perspective to the catalytic applications of organic compounds. Magnetic Fe3O4 nano-core was synthesized using the closed quartz tube with Teflon cover and microwaved 200°C for 1h with power controlled instrument set to max. 600W. Novel nano-composite supported; Fe3O4@SiO2(CH2)3NHArN(CH2PPh2)2 and Fe3O4@SiO2(CH2)3N(CH2PPh2)2 type bis(diphenylphosphinomethyl)amino ligands and their Pd(II) complexes have been synthesized and characterized with FT-IR, SEM, EDX, TEM, UV-Visible, XRD and TG/DTA techniques. All the complexes were used as heterogeneous catalysts in the oxidation of 2-methyl naphthalene (2MN) to 2-methyl-1, 4-naphthoquinone (vitamin K3, menadione, 2MNQ) in the presence of hydrogen peroxide and acetic acid. Selectivity reached about 55-60% with a conversion of 90-96% using the nano-magnetite supported aminomethylphosphine-Pd(II) complexes. The complexes were very active in three times in the catalytic recycling experiments in five catalytic cycles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Spectroscopic detection and mapping of vinyl cyanide on Titan

    Science.gov (United States)

    Cordiner, Martin; Yukiko Palmer, Maureen; Lai, James; Nixon, Conor A.; Teanby, Nicholas; Charnley, Steven B.; Vuitton, Veronique; Kisiel, Zbigniew; Irwin, Patrick; Molter, Ned; Mumma, Michael J.

    2017-10-01

    The first spectroscopic detection of vinyl cyanide (otherwise known as acrylonitrile; C2H3CN) on Titan was obtained by Palmer et al. (2017), based on three rotational emission lines observed with ALMA at millimeter wavelengths (in receiver band 6). The astrobiological significance of this detection was highlighted due to the theorized ability of C2H3CN molecules to combine into cell membrane-like structures under the cold conditions found in Titan's hydrocarbon lakes. Here we report the detection of three additional C2H3CN transitions at higher frequencies (from ALMA band 7 flux calibration data). We present the first emission maps for this gas on Titan, and compare the molecular distribution with that of other nitriles observed with ALMA including HC3N, CH3CN, C2H5CN and HNC. The molecular abundance patterns are interpreted based on our understanding of Titan's high-altitude photochemistry and time-variable global circulation. Similar to the short-lived HC3N molecule, vinyl cyanide is found to be most abundant in the vicinity of the southern (winter) pole, whereas the longer-lived CH3CN is more concentrated in the north. The vertical abundance profile of C2H3CN (from radiative transfer modeling), as well as its latitudinal distribution, are consistent with a short photochemical lifetime for this species. Complementary results from our more recent (2017) nitrile mapping studies at higher spatial resolution will also be discussed.REFERENCES:Palmer, M. Y., Cordiner, M. A., Nixon, C. A. et al. "ALMA detection and astrobiological potential of vinyl cyanide on Titan", Sci. Adv. 2017, 3, e1700022

  11. Self-supported poly(methyl methacrylate-acrylonitrile-vinyl acetate)-based gel electrolyte for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Y.H.; Zhou, D.Y.; Rao, M.M.; Cai, Z.P.; Liang, Y. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Li, W.S.; Tan, C.L. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Lab of Electrochemical Technology on Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006 (China)

    2009-04-01

    Self-supported gel polymer electrolyte (GPE) was prepared based on copolymer, poly(methyl methacrylate-acrylonitrile-vinyl acetate) (P(MMA-AN-VAc)). The copolymer P(MMA-AN-VAc) was synthesized by emulsion polymerization and the copolymer membrane was prepared through phase inversion. The structure and the performance of the copolymer, the membrane and the GPE were characterized by FTIR, NMR, SEM, XRD, DSC/TG, LSV, CA, and EIS. It is found that the copolymer was formed through the breaking of double bond C=C in each monomer. The membrane has low crystallinity and has low glass transition temperature, 39.1 C, its thermal stability is as high as 310 C, and its mechanical strength is improved compared with P(MMA-AN). The GPE is electrochemically stable up to 5.6 V (vs. Li/Li{sup +}) and its conductivity is 3.48 x 10{sup -3} S cm{sup -1} at ambient temperature. The lithium ion transference number in the GPE is 0.51 and the conductivity model of the GPE is found to obey the Vogel-Tamman-Fulcher (VTF) equation. (author)

  12. Thermodynamic and kinetic analysis of phase separation of temperature-sensitive poly(vinyl methyl ether) in the presence of hydrophobic tert-butyl alcohol

    Czech Academy of Sciences Publication Activity Database

    Velychkivska, Nadiia; Bogomolova, Anna; Filippov, Sergey K.; Starovoytova, Larisa; Labuta, J.

    2017-01-01

    Roč. 295, č. 8 (2017), s. 1419-1428 ISSN 0303-402X R&D Projects: GA ČR(CZ) GC15-10527J Institutional support: RVO:61389013 Keywords : phase separation * coil-globule transition * poly(vinyl methyl ether) Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.723, year: 2016

  13. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2...

  14. Kinetics of the reactions H+C2H4->C2H5, H+C2H5->2CH3 and CH3+C2H5->products studies by pulse radiolysis combined with infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Sillesen, A.; Ratajczak, E.; Pagsberg, P.

    1993-01-01

    Formation of methyl radicals via the consecutive reactions H+C2H4+M-->C2H5+M (1) and H+C2H5-->CH3+CH3 (2a) was initiated by pulse radiolysis of 10-100 mbar H-2 in the presence of ethylene. The kinetics of CH3 Were studied by monitoring the transient infrared absorption at the Q(3, 3) line of the ...

  15. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    International Nuclear Information System (INIS)

    Heinze, D.; Mang, Th.; Popescu, C.; Weichold, O.

    2016-01-01

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl_3–(CH_2CH (OCO(CH_2)_mCH_3))_n–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  16. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, D.; Mang, Th. [Aachen University of Applied Sciences, Heinrich-Mussmann-Str. 1, 52428 Jülich (Germany); Popescu, C., E-mail: crisan.popescu@kao.com [KAO Germany GmbH, Pfungstädterstr. 98-100, 64297 Darmstadt (Germany); Weichold, O., E-mail: weichold@ibac.rwth-aachen.de [Institute of Building Materials Research, Schinkelstr. 3, 52062 Aachen (Germany)

    2016-08-10

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl{sub 3}–(CH{sub 2}CH (OCO(CH{sub 2}){sub m}CH{sub 3})){sub n}–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  17. Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles

    Science.gov (United States)

    Jeon, Young Pyo; Woo, Sung Jun; Kim, Tae Whan

    2018-03-01

    Transparent and flexible photodetectors (PDs) based on CH3NH3PbI3 perovskite nanoparticles (NPs) were fabricated by using co-evaporation of methyl ammonium iodide and lead iodide. X-ray diffraction patterns and high-resolution transmission electron microscopy images demonstrated the formation of perovskite NPs. The optical transmittance of the perovskite NPs/glass was above 80% over the entire range of visible wavelengths, indicative of high transparency. The PDs based on CH3NH3PbI3 perovskite NPs were sensitive to a broad range of visible light from 450 to 650 nm. The currents in the PDs under exposure to red, green, and blue light-emitting diodes were enhanced to 5, 10, and 20 times that of the PD in the dark, respectively. The rise and the decay times of the PDs were 50 and 120 μs. The current in the perovskite NP PD on a polyethylene terephthalate substrate was enhanced by approximately 69% when the NP PD was exposed to a blue LED emitting at a wavelength of 459 nm. Despite multiple bending, the transparent and flexible PDs based on methyl ammonium iodide and lead iodide NPs showed reproducibility and high stability in performance.

  18. Kinetics of the Reaction of CH3O2 Radicals with OH Studied over the 292-526 K Temperature Range.

    Science.gov (United States)

    Yan, Chao; Kocevska, Stefani; Krasnoperov, Lev N

    2016-08-11

    Reaction of methyl peroxy radicals with hydroxyl radicals, CH3O2 + OH → CH3O + HO2 (1a) and CH3O2 + OH → CH2OO + H2O (1b) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 292-526 K temperature range and pressure 1 bar (bath gas He). Hydroxyl radicals were generated in the reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N2O at 193.3 nm, with H2O. Methyl peroxy radicals were generated in the reaction of methyl radicals, CH3, produced in the photolysis of acetone at 193.3 nm, and subsequent reaction of CH3 with O2. Temporal profiles of OH were monitored via transient absorption of light from a DC discharge H2O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The overall rate constant of the reaction is k1a+1b = (8.4 ± 1.7) × 10(-11)(T/298 K)(-0.81) cm(3) molecule(-1) s(-1) (292-526 K). The branching ratio of channel 1b at 298 K is less than 5%.

  19. Investigation of Complexation of Linear Poly(N-vinyl-2-pyrrolidone) with Poly(methacrylic acid-co-methyl methacrylate) Gel

    OpenAIRE

    Liu, Guoqin; Yan, Guojin; Zou, Wenjun; Li, Zhengxin

    2011-01-01

    The contraction of poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) gel induced by complexation with linear poly(N-vinyl-2-pyrrolidone) (PVP) is quite different from that of poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMAA) gel. It was found that the concentration of PVP has a strong effect on the complexation with P(MAA-co-MMA) gel. When PVP was introduced into the P(MAA-co-MMA) network, its dynamic mechanic properties vary greatly between complexed and uncomplexed netwo...

  20. The reaction of fluorine atoms with methanol: yield of CH3O/CH2OH and rate constant of the reactions CH3O + CH3O and CH3O + HO2.

    Science.gov (United States)

    Assaf, Emmanuel; Schoemaecker, Coralie; Vereecken, Luc; Fittschen, Christa

    2018-04-25

    Xenondifluoride, XeF2, has been photolysed in the presence of methanol, CH3OH. Two reaction pathways are possible: F + CH3OH → CH2OH + HF and F + CH3OH → CH3O + HF. Both products, CH2OH and CH3O, will be converted to HO2 in the presence of O2. The rate constants for the reaction of both radicals with O2 differ by more than 3 orders of magnitude, which allows an unequivocal distinction between the two reactions when measuring HO2 concentrations in the presence of different O2 concentrations. The following yields have then been determined from time-resolved HO2 profiles: φCH2OH = (0.497 ± 0.013) and φCH3O = (0.503 ± 0.013). Experiments under low O2 concentrations lead to reaction mixtures containing nearly equal amounts of HO2 (converted from the first reaction) and CH3O (from the second reaction). The subsequent HO2 decays are very sensitive to the rate constants of the reaction between these two radicals and the following rate constants have been obtained: k(CH3O + CH3O) = (7.0 ± 1.4) × 10-11 cm3 s-1 and k(CH3O + HO2) = (1.1 ± 0.2) × 10-10 cm3 s-1. The latter reaction has also been theoretically investigated on the CCSD(T)//M06-2X/aug-cc-pVTZ level of theory and CH3OH + O2 have been identified as the main products. Using μVTST, a virtually pressure independent rate constant of k(CH3O + HO2) = 4.7 × 10-11 cm3 s-1 has been obtained, in good agreement with the experiment.

  1. DC conduction mechanism and dielectric properties of Poly (methyl methacrylate)/Poly (vinyl acetate) blends doped and undoped with malachite green

    International Nuclear Information System (INIS)

    Abd-El Kader, F.H.; Osman, W.H.; Hafez, R.S.

    2013-01-01

    Cast thin films of Poly (methyl methacrylate)/Poly (vinyl acetate) blends of different concentrations undoped and doped with malachite green have been prepared and subjected to both dc electrical conduction and dielectric spectroscopy measurements. The analysis of dc electrical conduction data showed that the space charge limited current mechanism has been dominant for Poly (vinyl acetate) while Schottky-Richardson conduction mechanism prevailed for the Poly (methyl methacrylate) and blended samples. The values of field lowering constant β and the thermal activation energy ΔE involved in the dc conduction were reported, which provide another support for the suggested Schottky-Richardson mechanism. The increase in current for the blend sample doped with malachite green has been attributed to the formation of charge transfer complexes inside the polyblend matrix. The dielectric constant as a function of temperature for all samples have been calculated which are affected by the composition ratio and the addition of dye. The relaxation peak that appeared in the dielectric loss curve at 347 K for the doped blend sample is related to local dipoles that are present in the dye material. The obtained relaxation process spectra present in the investigated samples were analyzed with the well-known model of Havriliak-Negami.

  2. NMR study of temperature-induced phase separation and polymer-solvent interactions in poly(vinyl methyl ether)/D.sub.2./sub.O/ethanol solutions

    Czech Academy of Sciences Publication Activity Database

    Hanyková, L.; Labuta, J.; Spěváček, Jiří

    2006-01-01

    Roč. 47, č. 17 (2006), s. 6107-6116 ISSN 0032-3861 Grant - others:GA UK 294/2004/B Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(vinyl methyl ether)/D2O/ ethanol solutions * temperature-induced phase separation * 1H and 13C NMR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.773, year: 2006

  3. Direct Vinylation of Alcohols or Aldehydes Employing Alkynes as Vinyl Donors: A Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation

    Science.gov (United States)

    Patman, Ryan L.; Chaulagain, Mani Raj; Williams, Vanessa M.; Krische, Michael J.

    2011-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation, 2-butyne couples to benzylic and aliphatic alcohols 1a–1i to furnish allylic alcohols 2a–2i, constituting a direct C-H vinylation of alcohols employing alkynes as vinyl donors. Under related transfer hydrogenation conditions employing formic acid as terminal reductant, 2-butyne couples to aldehydes 4a, 4b, and 4e to furnish identical products of carbonyl vinylation 2a, 2b, and 2e. Thus, carbonyl vinylation is achieved from the alcohol or the aldehyde oxidation level in the absence of any stoichiometric metallic reagents. Nonsymmetric alkynes 6a–6c couple efficiently to aldehyde 4b to provide allylic alcohols 2m–2o as single regioisomers. Acetylenic aldehyde 7a engages in efficient intramolecular coupling to deliver cyclic allylic alcohol 8a. PMID:19173651

  4. EPR study of gamma-irradiated N-methyl-L-alanine, DL-2-methyl glutamic acid hemihydrate and Di-leucine hydrochloride in solid state

    Science.gov (United States)

    Sütçü, Kerem; Osmanoğlu, Y. Emre

    2017-12-01

    In this study, it was aimed to investigate ɣ-irradiated powders of N-methyl-L-alanine (NMLA), DL-2-methyl glutamic acid hemihydrate (DL2MGAH), and Di-leucine hydrochloride (DLHCl) at room temperature by electron paramagnetic resonance spectroscopy. After the γ-irradiation the samples indicated the existence of the CH3ĊNHCH3COOH, HOOCCH3NH2CĊHCH2COOH·1/2H2O and (CH3)2ĊCH2CH NHCOOHCOCH (NH2HCl) CH2CH (CH3)2 radicals, respectively. The spectral parameters of the radicals were determined. The results were compared with the earlier studies and discussed accordingly.

  5. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    Science.gov (United States)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  6. Increased recombination of CH3 radicals on stainless steel

    International Nuclear Information System (INIS)

    Gorodetsky, A.E.; Zalavutdinov, R.Kh.; Zakharov, A.P.; Vnukov, S.P.; Varshavskaya, I.G.; Makhankov, A.N.; Mazul, I.V.; Federici, G.

    2005-01-01

    By using a so-called 'stream technique', which consists of flowing gas in laminar regime along a quartz tube, we determine that CH 3 radicals are completely removed from the pumped mixture (CH 4 /C X H Y /H 2 /H/CH 3 ) after several hundred collisions with the inner surface of a stainless steel insert (T = 380-470 K). The methyl sticking coefficient decreased to ∼10 -6 and the recombination coefficient increased up to ∼0.01 at impingement with the metal surface. After passing through the heated zone no hydrocarbon deposition occurred at 300 K. However, unsaturated hydrocarbons, which formed in discharge zone and appeared as a result of interaction of radicals with stainless steel, condensed in a liquid phase at a temperature of ∼130 K and partial pressure of 0.01-0.1 Pa. Liquid films underwent partial polymerization and formed island deposits, which were stable at 300 K

  7. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    Science.gov (United States)

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  8. Graft copolymerization of vinyl monomers onto nylon 6 fibers by γ-ray pre-irradiation in air

    International Nuclear Information System (INIS)

    Iwasaki, Tatsuo; Ueda, Yoshitsugu

    1992-01-01

    Vinyl acetate, methyl methacrylate, alkyl acrylates, acrylonitrile, and acrylamide, were grafted onto nylon 6 fibers by the γ-ray pre-irradiation technique, and the effects of grafting on the microstructure and the mechanical properties of the graft copolymers were investigated. According to the analysis by wide-angle X-ray diffraction, the degree of crystallization decreased by increasing the percent graft of poly(vinyl acetate) in the grafted nylon 6 films. The mechanical parameters, such as the Young's modulus and the tensile strength at break, increased with increasing percent graft up to 50%. When percent grafting was smaller than 50%, rather homogeneous amorphous materials were obtained with vinyl acetate, while heterogeneous ones were obtained with other vinyl monomers. A poly(vinyl alcohol) grafted nylon 6 was obtained effectively by saponification of poly(vinyl acetate) grafted nylon 6, the former showing higher mechanical properties than the latter. Similar behavior was observed after saponification of the poly(methyl acrylate) grafted nylon 6. (author)

  9. Complex methyl groups dynamics in [(CH3)4P]3Sb2Br9 (PBA) from low to high temperatures by proton spin-lattice relaxation and narrowing of proton NMR spectrum.

    Science.gov (United States)

    Latanowicz, L; Medycki, W; Jakubas, R

    2009-11-01

    Molecular dynamics of a polycrystalline sample of [(CH(3))(4)P](3)Sb(2)Br(9) (PBA) has been studied on the basis of the T(1) (24.7 MHz) relaxation time measurement, the proton second moment of NMR and the earlier published T(1) (90 MHz) relaxation times. The study was performed in a wide range of temperatures (30-337 K). The tunnel splitting omega(T) of the methyl groups was estimated as of low frequency (from kHz to few MHz). The proton spin pairs of the methyl group are known to perform a complex internal motion being a resultant of four components. Three of them involve mass transportation over and through the potential barrier and are characterized by the correlation times tau(3) and tau(T)of the jumps over the barrier and tunnel jumps in the threefold potential of the methyl group and tau(iso) the correlation time of isotropic rotation of the whole TMP cation. For tau(3) and tau(iso) the Arrhenius temperature dependence was assumed, while for tau(T)--the Schrödinger one. The fourth motion causes fluctuations of the tunnel splitting frequency, omega(T), and it is related to the lifetime of the methyl spin at the energy level. The correlation function for this fourth motion (tau(omega) correlation time) has been proposed by Müller-Warmuth et al. In this paper a formula for the correlation function and spectral density of the complex motion made of the above-mentioned four components was derived and used in interpretation of the T(1) relaxation time. The second moment of proton NMR line at temperatures below 50K is four times lower than its value for the rigid structure. The three components of the internal motion characterized by tau(T), tau(H), and tau(iso) were proved to reduce the second moment of the NMR line. The tunnel jumps of the methyl group reduce M(2) at almost 0K, the classical jumps over the barrier reduce M(2) in the vicinity of 50K, while the isotropic motion near 150K. Results of the study on the dynamics of CH(3) groups of TMP cation based on

  10. Exploring mechanisms of a tropospheric archetype: CH{sub 3}O{sub 2} + NO

    Energy Technology Data Exchange (ETDEWEB)

    Launder, Andrew M.; Agarwal, Jay; Schaefer, Henry F., E-mail: ccq@uga.edu [Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602 (United States)

    2015-12-21

    Methylperoxy radical (CH{sub 3}O{sub 2}) and nitric oxide (NO) contribute to the propagation of photochemical smog in the troposphere via the production of methoxy radical (CH{sub 3}O) and nitrogen dioxide (NO{sub 2}). This reaction system also furnishes trace quantities of methyl nitrate (CH{sub 3}ONO{sub 2}), a sink for reactive NO{sub x} species. Here, the CH{sub 3}O{sub 2} + NO reaction is examined with highly reliable coupled-cluster methods. Specifically, equilibrium geometries for the reactants, products, intermediates, and transition states of the ground-state potential energy surface are characterized. Relative reaction enthalpies at 0 K (ΔH{sub 0K}) are reported; these values are comprised of electronic energies extrapolated to the complete basis set limit of CCSDT(Q) and zero-point vibrational energies computed at CCSD(T)/cc-pVTZ. A two-part mechanism involving CH{sub 3}O and NO{sub 2} production followed by radical recombination to CH{sub 3}ONO{sub 2} is determined to be the primary channel for formation of CH{sub 3}ONO{sub 2} under tropospheric conditions. Constrained optimizations of the reaction paths at CCSD(T)/cc-pVTZ suggest that the homolytic bond dissociations involved in this reaction path are barrierless.

  11. Investigation of Complexation of Linear Poly(N-vinyl-2-pyrrolidone with Poly(methacrylic acid-co-methyl methacrylate Gel

    Directory of Open Access Journals (Sweden)

    Guoqin Liu

    2011-01-01

    Full Text Available The contraction of poly(methacrylic acid-co-methyl methacrylate (P(MAA-co-MMA gel induced by complexation with linear poly(N-vinyl-2-pyrrolidone (PVP is quite different from that of poly(acrylic acid (PAA or poly(methacrylic acid (PMAA gel. It was found that the concentration of PVP has a strong effect on the complexation with P(MAA-co-MMA gel. When PVP was introduced into the P(MAA-co-MMA network, its dynamic mechanic properties vary greatly between complexed and uncomplexed networks. It had the following results: (1 the higher modulus ratio; (2 a slight contraction of gel.

  12. Unimolecular fragrmentations of the radical cation of the high-valent organometal oxide CH3ReO3 and its reactivity with ethylene in the gas phase

    Science.gov (United States)

    Schröder, Detlef; Herrmann, W. A.; Fischer, Richard W.; Schwarz, Helmut

    1992-12-01

    The unimolecular chemistry of CH3ReO[radical sign]+3 in the gas phase commences with a methyl migration to' generate CH3 OReO[radical sign]+2. This further undergoes multiple hydrogen migration to the metal centre to generate an intermediate which serves as a precursor for the elimination of both molecular hydrogen and of carbon monoxide. If CH3ReO[radical sign]+3 is reacted with ethylene, inter alia products are observed which point to a competition between an intramolecular metathesis reaction of the ethylene-inserted intermediate CH3CH2CH2ReO3[radical sign]+ and epoxidation of ethylene to generate c-C2H4O.

  13. Poly(methyl vinyl ether-alt-maleic acid)-functionalized porous silicon nanoparticles for enhanced stability and cellular internalization.

    Science.gov (United States)

    Shahbazi, Mohammad-Ali; Almeida, Patrick V; Mäkilä, Ermei; Correia, Alexandra; Ferreira, Mónica P A; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-03-01

    Currently, developing a stable nanocarrier with high cellular internalization and low toxicity is a key bottleneck in nanomedicine. Here, we have developed a successful method to covalently conjugate poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of (3-aminopropyl)triethoxysilane-functionalized thermally carbonized porous silicon nanoparticles (APSTCPSi NPs), forming a surface negatively charged nanovehicle with unique properties. This polymer conjugated NPs could modify surface smoothness, charge, and hydrophilicity of the developed NPs, leading to considerable improvement in the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the polymer-conjugated NPs, the cellular internalization was increased in both MDA-MB-231 and MCF-7 breast cancer cells. These results provide a proof-of-concept evidence that such polymer-based PSi nanocomposite can be extensively used as a promising candidate for intracellular drug delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression

    Science.gov (United States)

    2010-01-01

    Background In the last decade, biochemical studies have revealed that epigenetic modifications including histone modifications, histone variants and DNA methylation form a complex network that regulate the state of chromatin and processes that depend on it including transcription and DNA replication. Currently, a large number of these epigenetic modifications are being mapped in a variety of cell lines at different stages of development using high throughput sequencing by members of the ENCODE consortium, the NIH Roadmap Epigenomics Program and the Human Epigenome Project. An extremely promising and underexplored area of research is the application of machine learning methods, which are designed to construct predictive network models, to these large-scale epigenomic data sets. Results Using a ChIP-Seq data set of 20 histone lysine and arginine methylations and histone variant H2A.Z in human CD4+ T-cells, we built predictive models of gene expression as a function of histone modification/variant levels using Multilinear (ML) Regression and Multivariate Adaptive Regression Splines (MARS). Along with extensive crosstalk among the 20 histone methylations, we found H4R3me2 was the most and second most globally repressive histone methylation among the 20 studied in the ML and MARS models, respectively. In support of our finding, a number of experimental studies show that PRMT5-catalyzed symmetric dimethylation of H4R3 is associated with repression of gene expression. This includes a recent study, which demonstrated that H4R3me2 is required for DNMT3A-mediated DNA methylation--a known global repressor of gene expression. Conclusion In stark contrast to univariate analysis of the relationship between H4R3me2 and gene expression levels, our study showed that the regulatory role of some modifications like H4R3me2 is masked by confounding variables, but can be elucidated by multivariate/systems-level approaches. PMID:20653935

  15. Investigation of Structural and Electronic Properties of CH3NH3PbI3 Stabilized by Varying Concentrations of Poly(Methyl Methacrylate (PMMA

    Directory of Open Access Journals (Sweden)

    Celline Awino

    2017-08-01

    Full Text Available Studies have shown that perovskites have a high potential of outdoing silicon based solar cells in terms of solar energy conversion, but their rate of degradation is also high. This study reports on improvement on the stability of CH3NH3PbI3 by passivating it with polymethylmethacrylate (PMMA. Structural and electronic properties of CH3NH3PbI3 stabilized by polymethylmethacrylate (PMMA were investigated by varying concentrations of PMMA in the polymer solutions. Stability tests were performed over a period of time using modulated surface photovoltage (SPV spectroscopy, X-ray diffraction (XRD, and photoluminescence (PL measurements. The XRD patterns confirm the tetragonal structure of the deposited CH3NH3PbI3 for every concentration of PMMA. Furthermore, CH3NH3PbI3 coated with 40 mg/mL of PMMA did not show any impurity phase even after storage in air for 43 days. The Tauc gap (ETauc determined on the basis of the in-phase SPV spectra was found in the range from 1.585 to 1.62 eV for the samples stored during initial days, but shifted towards lower energies as the storage time increased. This can be proposed to be due to different chemical reactions between CH3NH3PbI3/PMMA interfaces and air. PL intensity increased with increasing concentration of PMMA except for the perovskite coated with 40 mg/mL of PMMA. PL quenching in the perovskite coated with 40 mg/mL of PMMA can be interpreted as fast electron transfer towards the substrate in the sample. This study shows that, with an optimum concentration of PMMA coating on CH3NH3PbI3, the lifetime and hence stability on electrical and structural behavior of CH3NH3PbI3 is improved.

  16. Chemistry of phosphido-bridged dimolybdenum complexes. Part 2: the reaction of [(η-C5H5)2Mo2(μ-H)(μ-PMe2) (CO)4] with alkynes: X-ray crystal structure of [(η-C5H5)2Mo2 (μ-σ:η2-C(Me) = CHMe) (μ-PMe2) (CO)3

    International Nuclear Information System (INIS)

    Conole, G.; Henrick, K.; McPartlin, M.; Horton, A.D.; Mays, M.J.

    1988-01-01

    The photolytic reactions with alkynes have been studied. With MeC ≡ CMe the major product is the μ-vinyl complex which has been characterised by a single crystal X-ray diffraction study. This shows that the methyl groups on the μ-vinyl ligand adopt a mutually trans orientation; the Mo - Mo bond length is 3.056 (1) A (mean for two independent molecules). The unsymmetrical alkynes give inseparable isomeric mixtures but HC ≡ CH and PhC ≡ CPh do not give simple μ-vinyl products. Each of the above μ-vinyl complexes is accompanied by a minor yield of the corresponding oxo complex and a low yield of such a complex is also obtained in the reaction with acetylene itself. 21 refs

  17. A Computational Study of Chalcogen-containing H2 X…YF and (CH3 )2 X…YF (X=O, S, Se; Y=F, Cl, H) and Pnicogen-containing H3 X'…YF and (CH3 )3 X'…YF (X'=N, P, As) Complexes.

    Science.gov (United States)

    McDowell, Sean A C; Buckingham, A David

    2018-04-20

    A computational study was undertaken for the model complexes H 2 X…YF and (CH 3 ) 2 X…YF (X=O, S, Se; Y=F, Cl, H), and H 3 X'…YF and (CH 3 ) 3 X'…YF (X'=N, P, As), at the MP2/6-311++G(d,p) level of theory. For H 2 X…YF and H 3 X'…YF, noncovalent interactions dominate the binding in order of increasing YF dipole moment, except for H 3 As…F 2 , and possibly H 3 As…ClF. However, for the methyl-substituted complexes (CH 3 ) 2 X…YF and (CH 3 ) 3 X'…YF the binding is especially strong for the complexes containing F 2 , implying significant chemical bonding between the interacting molecules. The relative stability of these complexes can be rationalized by the difference in the electronegativity of the X or X' and Y atoms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Revealing the properties of defects formed by CH3NH2 molecules in organic-inorganic hybrid perovskite MAPbBr3

    Science.gov (United States)

    Wang, Ji; Zhang, Ao; Yan, Jun; Li, Dan; Chen, Yunlin

    2017-03-01

    The properties of defects in organic-inorganic hybrid perovskite are widely studied from the first-principles calculation. However, the defects of methylamine (methylamine = CH3NH2), which would be easily formed during the preparation of the organic-inorganic hybrid perovskite, are rarely investigated. Thermodynamic properties as well as defect states of methylamine embedded MAPbX3 (MA = methyl-ammonium = CH3NH3, X = Br, I) are studied based on first-principles calculations of density functional theory. It was found that there is a shallow defect level near the highest occupied molecular orbital, which induced by the interstitial methylamine defect in MAPbBr3, will lead to an increase of photoluminescence. The calculation results showed that interstitial defect states of methylamine may move deeper due to the interaction between methylamine molecules and methyl-ammonium cations. It was also showed that the interstitial methylamine defect is stable at room temperature, and the defect can be removed easily by annealing.

  19. Methyl vinyl glycolate as a diverse platform molecule

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte; Taarning, Esben; Madsen, Robert

    2016-01-01

    and various long-chain terminal olefins give unsaturated α-hydroxy fatty acid methyl esters in good yields. [3,3]-Sigmatropic rearrangements of MVG also proceed in good yields to give unsaturated adipic acid derivatives. Finally, rearrangement of the allylic acetate of MVG proceeds in acceptable yield...

  20. Methyl halide emissions from greenhouse-grown mangroves

    Science.gov (United States)

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.

    2007-01-01

    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  1. Free-radical coupling, cleavage, and redox reactions in 60Co γ radiolysis of aqueous methyl acetate. Effects of additives

    International Nuclear Information System (INIS)

    Bernath, T.; Parsons, G.H. Jr.; Cohen, S.G.

    1975-01-01

    Reaction of methyl acetate with e - /sub aq/ may lead to CH 3 C(O )OCH 3 (I - ), CH 3 C(OH)OCH 3 (II), and CH 3 CO (IIA), and with .OH and H. to .CH 2 CO 2 CH 3 (III), and to CH 3 CO 2 CH 2 . (IV). Methyl acetate is consumed, G = --3.5, and the loss is decreased by formate which scavenges .H and .OH, and increased by N 2 O which converts e - /sub aq/ to .OH. Hydrogen is formed, G = 1.1, and this is decreased by scavengers for H., and increased by H + which converts e - /sub aq/ to H.. In radiolysis of 0.027 M methyl acetate, 1.5 x 10 22 ev/l., radical combination products are: ethylene diacetate (CH 3 CO 2 CH 2 CH 2 OCOCH 3 ) (EDA), G = 0.48, from IV + IV; methyl β-acetoxypropionate (CH 3 CO 2 CH 2 CH 2 CO 2 CH 3 ) (MAP), G = 0.28, from IV + III; dimethyl succinate (DMS), G = 0.05, from III + III; and a mixture of methyl acetoacetate and acetonyl acetate (MAA and AA), (MAS and AA), G = 0.07. Biacetyl is not observed. β-Mercaptopropionic acid, 0.0005 M, prevents formation of coupling products, as it reduces radicals III and IV, and thiyl radical oxidizes radical II back to methyl acetate. Other sources of .OH, Fenton's reagent and H 2 O 2 -uv, lead to EDA, MAP, and DMS with a high IV/III ratio. H. preferentially attacks acyl C--H; .OH preferentially attacks alkoxyl C--H. Yields of radicals involved in formation of coupling products and acetic acid are estimated: G(II and IIA) = 1.2; G(III) = 1.4; G(IV) = 1.7. Part of the radicals, G approximately 1.6, regenerate methyl acetate by self-repair reduction of IV and III by II. Deuterium is introduced into methyl acetate during radiolysis in D 2 O. (U.S.)

  2. Laboratory rotational spectrum of singly 13C-substituted dimethyl ether up to 1.5 THz and interstellar detection of 13CH_3O12CH_3 - a fruitful interplay between laboratory work and inter

    Science.gov (United States)

    Koerber, M.; Bisschop, S.; Endres, C.; Lewen, F.; Schlemmer, S.

    2011-05-01

    Dimethyl ether (CH_3OCH_3) is found in high abundance in star forming regions. However, the interstellar formation process of dimethyl ether still remains unclear up to now. In current gas-grain models gas-phase synthesis via self-methylation of methanol evaporating from grains is discussed in contrast to the surface reaction of CH_3 with successively hydrogenated CO (Garrod & Herbst 2006). An observational test for the formation mechanism has been proposed by Charnley et al. (2004) making use of the 13C fractionation into CO at low temperatures on grains: Comparing the 12C/13C ratio of molecules to the 12CO/13CO ratio allows to distinguish between formation from CO on cold grains and pure gas-phase formation routes. The isotopic ratio of species like dimethyl ether thus can be used as a tracer of the chemical evolution of the observed region. Due to its two methyl groups undergoing large amplitude motions and a relatively strong dipole moment of μ = 1.302 D it shows a strong and dense complex spectrum all over the terahertz region relevant for Herschel and ALMA observations. Accurate transition frequencies are needed to interpret the astronomical spectra. For the main isotopologue extensive data are now available (Endres et al. 2009). However, due to the greatly improved sensitivity of the new observatories isotopic species of abundant molecules like dimethyl ether are appearing in the spectra as well. In this work we present laboratory measurements of singly 13C-substituted dimethyl ether (13CH_3O12CH_3) up to 1.5 THz. More than 1700 transitions of 13CH_3O12CH_3 with rotational quantum numbers up to J = 53 and K = 25 have been analyzed. Based on the laboratory measurements singly 13C-substituted dimethyl ether has been detected for the first time in the spectrum of G327.3-0.6 (Bisschop et al. in prep.) and a preliminary value for the 12C/13C abundance ratio has been determined.

  3. Bimolecular reaction of CH3 + CO in solid p-H2: Infrared absorption of acetyl radical (CH3CO) and CH3-CO complex

    Science.gov (United States)

    Das, Prasanta; Lee, Yuan-Pern

    2014-06-01

    We have recorded infrared spectra of acetyl radical (CH3CO) and CH3-CO complex in solid para-hydrogen (p-H2). Upon irradiation at 248 nm of CH3C(O)Cl/p-H2 matrices, CH3CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (ν9), 2989.1 (ν1), 2915.6 (ν2), 1880.5 (ν3), 1419.9 (ν10), 1323.2 (ν5), 836.6 (ν7), and 468.1 (ν8) cm-1 were observed. When CD3C(O)Cl was used, lines of CD3CO at 2246.2 (ν9), 2244.0 (ν1), 1866.1 (ν3), 1046.7 (ν5), 1029.7 (ν4), 1027.5 (ν10), 889.1 (ν6), and 723.8 (ν7) cm-1 appeared. Previous studies characterized only three vibrational modes of CH3CO and one mode of CD3CO in solid Ar. In contrast, upon photolysis of a CH3I/CO/p-H2 matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH3-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm-1. The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH3CO can be readily produced from photolysis of CH3C(O)Cl because of the diminished cage effect in solid p-H2 but not from the reaction of CH3 + CO because of the reaction barrier. Even though CH3 has nascent kinetic energy greater than 87 kJ mol-1 and internal energy ˜42 kJ mol-1 upon photodissociation of CH3I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ˜27 kJ mol-1 for the formation of CH3CO from the CH3 + CO reaction; a barrierless channel for formation of a CH3-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H2.

  4. Atmospheric chemistry of CF3CH2CH2OH

    DEFF Research Database (Denmark)

    Hurley, Michael D.; Misner, Jessica A.; Ball, James C.

    2005-01-01

    Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF3CH2C(O)H and CF3CH2CH2OH in 700 Torr of N-2 or air diluent at 296 2 K. The rate constants determined were k(Cl+CF3CH2C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF3CH2C(O)H) = (2.57 +/- 0.44...

  5. Decreased viscosity of rat-liver DNA treated by 3'-methyl-4-dimethylaminoazobenzene, detected with a new viscometric approach.

    Science.gov (United States)

    Parodi, S; Balbi, C; Taningher, M; Pala, M; Russo, P; Abelmoschi, M L; Santi, L

    1982-11-01

    DNA damage induced in vivo by 3'-methyl-4-dimethylaminoazobenzene (3'CH3DAB) was investigated with 2 differently sensitive techniques: the alkaline elution assay and the viscometric measurement of DNA damage. 3'CH3DAB appeared to be falsely negative with the alkaline elution assay, whereas with the viscometric approach, which is about 30-50 times more sensitive, it appeared positive, and the DNA damage was dose-dependent.

  6. Radiation curing of mixtures of diallylphthalate prepolymer and vinyl monomer, 9

    International Nuclear Information System (INIS)

    Gotoda, Masao; Kitada, Yoshinori.

    1975-01-01

    Radiation curing, mainly by electron beams was studied with mixtures of low molecular weight diallylphthalate prepolymer (DAPsub(p).L) and vinyl monomers with special reference to their workability. Among the vinyl monomers, acrylonitrile gave a solution of low viscosity and methyl acrylate gave a solution of low dose curing. Radiation curing of DAPsub(p).L/vinyl monomer mixtures impregnated in wood was also tried. To obtain uniform wood-polymer composites, γ-irradiation after impregnation at 10 kg/cm 2 was found to be required for thick plate (110 mm), while electron beam irradiation after impregnation at normal pressure was sufficient for thin plate. (author)

  7. Torsion-rotation structure and quasi-symmetric-rotor behaviour for the CH3SH asymmetric CH3-bending and C-H stretching bands of E parentage

    Science.gov (United States)

    Lees, R. M.; Xu, Li-Hong; Guislain, B. G.; Reid, E. M.; Twagirayezu, S.; Perry, D. S.; Dawadi, M. B.; Thapaliya, B. P.; Billinghurst, B. E.

    2018-01-01

    High-resolution Fourier transform spectra of the asymmetric methyl-bending and methyl-stretching bands of CH3SH have been recorded employing synchrotron radiation at the FIR beamline of the Canadian Light Source. Analysis of the torsion-rotation structure and relative intensities has revealed the novel feature that for both bend and stretch the in-plane and out-of-plane modes behave much like a Coriolis-coupled l-doublet pair originating from degenerate E modes of a symmetric top. As the axial angular momentum K increases, the energies of the coupled "l = ±1" modes diverge linearly, with effective Coriolis ζ constants typical for symmetric tops. For the methyl-stretching states, separated at K = 0 by only about 1 cm-1, the assigned sub-bands follow a symmetric top Δ(K - l) = 0 selection rule, with only ΔK = -1 transitions observed to the upper l = -1 in-plane A‧ component and only ΔK = +1 transitions to the lower l = +1 out-of-plane A″ component. The K = 0 separation of the CH3-bending states is larger at 9.1 cm-1 with the l-ordering reversed. Here, both ΔK = +1 and ΔK = -1 transitions are seen for each l-component but with a large difference in relative intensity. Term values for the excited state levels have been fitted to J(J + 1) power-series expansions to obtain substate origins. These have then been fitted to a Fourier model to characterize the torsion-K-rotation energy patterns. For both pairs of vibrational states, the torsional energies display the customary oscillatory behaviour as a function of K and have inverted torsional splittings relative to the ground state. The spectra show numerous perturbations, indicating local resonances with the underlying bath of high torsional levels and vibrational combination and overtone states. The overall structure of the two pairs of bands represents a new regime in which the vibrational energy separations, torsional splittings and shifts due to molecular asymmetry are all of the same order, creating a

  8. Ab Initio Chemical Kinetics for the CH3 + O((3)P) Reaction and Related Isomerization-Decomposition of CH3O and CH2OH Radicals.

    Science.gov (United States)

    Xu, Z F; Raghunath, P; Lin, M C

    2015-07-16

    The kinetics and mechanism of the CH3 + O reaction and related isomerization-decomposition of CH3O and CH2OH radicals have been studied by ab initio molecular orbital theory based on the CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ, CCSD/aug-cc-pVDZ, and G2M//B3LYP/6-311+G(3df,2p) levels of theory. The predicted potential energy surface of the CH3 + O reaction shows that the CHO + H2 products can be directly generated from CH3O by the TS3 → LM1 → TS7 → LM2 → TS4 path, in which both LM1 and LM2 are very loose and TS7 is roaming-like. The result for the CH2O + H reaction shows that there are three low-energy barrier processes including CH2O + H → CHO + H2 via H-abstraction and CH2O + H → CH2OH and CH2O + H → CH3O by addition reactions. The predicted enthalpies of formation of the CH2OH and CH3O radicals at 0 K are in good agreement with available experimental data. Furthermore, the rate constants for the forward and some key reverse reactions have been predicted at 200-3000 K under various pressures. Based on the new reaction pathway for CH3 + O, the rate constants for the CH2O + H and CHO + H2 reactions were predicted with the microcanonical variational transition-state/Rice-Ramsperger-Kassel-Marcus (VTST/RRKM) theory. The predicted total and individual product branching ratios (i.e., CO versus CH2O) are in good agreement with experimental data. The rate constant for the hydrogen abstraction reaction of CH2O + H has been calculated by the canonical variational transition-state theory with quantum tunneling and small-curvature corrections to be k(CH2O + H → CHO + H2) = 2.28 × 10(-19) T(2.65) exp(-766.5/T) cm(3) molecule(-1) s(-1) for the 200-3000 K temperature range. The rate constants for the addition giving CH3O and CH2OH and the decomposition of the two radicals have been calculated by the microcanonical RRKM theory with the time-dependent master equation solution of the multiple quantum well system in the 200-3000 K temperature range at 1 Torr to

  9. Copolymers of Vinyl-Containing Benzoxazine with Vinyl Monomers as Precursors for High Performance Thermosets

    Directory of Open Access Journals (Sweden)

    Tsutomu Takeichi

    2015-04-01

    Full Text Available A benzoxazine containing a vinyl group (P-4va was prepared by the reaction of phenol, 4-vinylaniline, and paraformaldehyde. A differential scanning calorimetry (DSC study revealed that ring-opening polymerization of the benzoxazine and chain polymerization of the vinyl group occurred in the same temperature range. When 2,2'-azobisisobutyronitrile was added as a radical initiator to P-4va, however, only the vinyl groups were polymerized at lower temperature, giving oligo(P-4va that contains pendent benzoxazine units. Radical copolymerization of P-4va with various vinyl monomers such as styrene, methyl methacrylate (MMA, and n-butyl acrylate (BuA was examined. The chemical structure of the copolymers was confirmed by FT-IR and 1H-NMR to be one of polyolefins bearing benzoxazine units as the pendant groups. The weight-average molecular weights of the copolymers determined by size exclusion chromatography were to be in the range of 1900–51,500 depending on the comonomers. DSC of the copolymers showed that the maxima of the exothermic peaks corresponding to the ring-opening polymerization of the pendent benzoxazine units were observed in the temperature range of 229–250 °C. Thermal cure up to 240 °C of the copolymer films afforded homogenous transparent films with improved thermal properties. Tough cured film was obtained by the copolymerization with MMA, while a tough and flexible film was obtained by the copolymerization with BuA.

  10. Rate Constants for the Reactions of OH with CH(sub 3)Cl, CH(sub 2) C1(sub 2), CHC1(sub 3)and CH(sub 3)Br

    Science.gov (United States)

    Hsu, H-J.; DeMore, W.

    1994-01-01

    Rate constants for the reactions of OH with CH3C1, CH2Cl2, CHCl3 and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2)and for CH2Cl2, HFC-161 (CH3CH2F).

  11. Oil recovery with sulfomethylated poly (lower alkyl vinyl ether/maleic anhydride)

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-05-22

    Lower alkyl vinyl ether e.g., methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, hexyl vinyl ether, is copolymerized conventionally with maleic anhydride, the resulting copolymer is treated with ammonia or ammonium hydroxide to form the partial amide-ammonium salt, and this salt is in turn treated with formaldehyde and thereafter or simultaneously with ammonium or alkali metal salt sulfite (including bisulfites, etc.) to form an at least partially sulfomethylated copolymer. Aqueous solutions of the sulfomethylated copolymer are useful in increasing the viscosity of drive fluids used in the supplemented recovery of petroleum from subterranean formations. In general, enhancing the polyionic character of mobility control agents used in supplemented recovery of petroleum provides enhanced recovery. Achieving this enhancement of polyionic character through use of sulfonate groups provides a mobility control agent with good ability to sustain viscosity in the presence of brine and lime, usually present in the connate waters of petroleum-bearing formations. (7 claims)

  12. Methanesulfonates of high-valent metals. Syntheses and structural features of MoO_2(CH_3SO_3)_2, UO_2(CH_3SO_3)_2, ReO_3(CH_3SO_3), VO(CH_3SO_3)_2, and V_2O_3(CH_3SO_3)_4 and their thermal decomposition under N_2 and O_2 atmosphere

    International Nuclear Information System (INIS)

    Betke, Ulf; Neuschulz, Kai; Wickleder, Mathias S.

    2011-01-01

    Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO_3, UO_2(CH_3COO)_2.2 H_2O, Re_2O_7(H_2O)_2, and V_2O_5 with CH_3SO_3H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO_2(CH_3SO_3)_2 (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm"3, Z=8) contains [MoO_2] moieties connected by [CH_3SO_3] ions to form layers parallel to (100). UO_2(CH_3SO_3)_2 (P2_1/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1) "c"i"r"c"l"e, V=1.8937(3) nm"3, Z=8) consists of linear UO_2"2"+ ions coordinated by five [CH_3SO_3] ions, forming a layer structure. VO(CH_3SO_3)_2 (P2_1/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1) "c"i"r"c"l"e, V=0.8290(2) nm"3, Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO_3(CH_3SO_3) (P anti 1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2) "c"i"r"c"l"e, V=1.1523(4) nm"3, Z=8) a chain structure exhibiting infinite O-[ReO_2]-O-[ReO_2]-O chains is formed. Each [ReO_2]-O-[ReO_2] unit is coordinated by two bidentate [CH_3SO_3] ions. V_2O_3(CH_3SO_3)_4 (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm"3, Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH_3SO_3] ligands. Additional methanesulfonate ions connect the [V_2O_3] groups along [001]. Thermal decomposition of the compounds was monitored under N_2 and O_2 atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N_2 the decomposition proceeds with reduction of the metal leading to the oxides MoO_2, U_3O_7, V_4O_7, and VO_2; for MoO_2(CH_3SO_3)_2, a small amount of MoS_2 is formed. If the thermal decomposition is carried out in a atmosphere of O_2 the oxides MoO_3 and V_2O_5 are formed. (Copyright copyright 2011 WILEY-VCH Verlag

  13. Radical Cationic Pathway for the Decay of Ionized Glyme Molecules in Liquid Solution.

    Science.gov (United States)

    Taletskiy, Konstantin S; Borovkov, Vsevolod I; Schegoleva, Lyudmila N; Beregovaya, Irina V; Taratayko, Andrey I; Molin, Yuriy N

    2015-11-12

    Chemical stability of primary radical cations (RCs) generated in irradiated matter determines substantially the radiation resistance of organic materials. Transformations of the RCs of the glyme molecules, R(-O-CH2-CH2-)nO-R (R = CH3, n = 1-4) has been studied on the nanosecond time scale by measuring the magnetic field effects in the recombination fluorescence from irradiated liquid solutions of the glymes. In all cases, the RCs observed were different from that expected for the primary ones and revealed very similar hyperfine couplings independent of the poly(ethylene oxide) chain length and of the substitution of terminal methyl groups by C2H5 or CH2CH2Cl, as has been shown with diglyme as an example. Quantum chemical analysis of possible chemical transformations for the monoglyme RC as a model system allowed us to discover the reaction pathway yielding the methyl vinyl ether RC. The pathway involves intramolecular proton transfer followed by C-O bond cleavage. Only one (-O-CH2-CH2-O-) fragment is involved in this transformation, which is nearly barrierless due to the catalytic effect of adjacent glyme molecules. The rapid formation of the methyl vinyl ether RC in the irradiated monoglyme was confirmed by the numerical simulation of the experimental curves of the time-resolved magnetic field effect. These findings suggest that the R'-O-CH═CH2(•+) formation is a typical decay pathway for the primary RCs in irradiated liquid glymes.

  14. Inhibition of Ps Formation in Benzene and Cyclohexane by CH3CI and CH3Br

    DEFF Research Database (Denmark)

    Wikander, G.; Mogensen, O. E.; Pedersen, Niels Jørgen

    1983-01-01

    Positron-annihilation lifetime spectra have been measured for mixtures of CH3Cl and CH3Br in cyclohexane and of CH3Cl in benzene. The ortho-positronium (Ps) yield decreased monotonically from 38% and 43% in cyclohexane and benzene respectively to 11% in pure CH3Cl and 6% in pure CH3Br. The strength......− anions to form Ps. while it forms a bound state with the halides. X−. CH3Cl was a roughly three times weaker Ps inhibitor in benzene than in cyclohexane, which shows that CH3Cl− does not dechlorinate in times comparable to or shorter than 400–500 ps in benzene. An improved model for the explanation of Ps...

  15. The methylcobalt(III) complex of a tetrapodal pentadentate amine ligand, 2,6-bis(1′,3′-diamino-2′-methyl-prop-2′-yl)pyridine

    DEFF Research Database (Denmark)

    Grohmann, Andreas; Heinemann, Frank W; Kofod, Pauli

    1999-01-01

    The pentaamine methylcobalt(III) compound [Co(pyN4)(CH3)](NO3)2 (pyN4=2,6-bis(1′,3′-diamino-2′-methyl-prop-2′-yl)pyridine) has been synthesised from [Co(NH3)5(CH3)](NO3)2 and pyN4 by ligand exchange, and characterised by IR, 1H, 13C and 59Co NMR spectroscopy as well as elemental analysis. The str......The pentaamine methylcobalt(III) compound [Co(pyN4)(CH3)](NO3)2 (pyN4=2,6-bis(1′,3′-diamino-2′-methyl-prop-2′-yl)pyridine) has been synthesised from [Co(NH3)5(CH3)](NO3)2 and pyN4 by ligand exchange, and characterised by IR, 1H, 13C and 59Co NMR spectroscopy as well as elemental analysis...... nitrogen atom, while the four equivalent primary amino groups take the equatorial positions. The other axial position, trans to the pyridine ring, is occupied by the methyl group. The Co–Npy bond length of 2.018(2) Å is significantly elongated compared with other cobalt(III) complexes of the pyN4 ligand...

  16. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications.

    Science.gov (United States)

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo

    2014-03-26

    Hybrid AMX3 perovskites (A = Cs, CH3NH3; M = Sn, Pb; X = halide) have revolutionized the scenario of emerging photovoltaic technologies, with very recent results demonstrating 15% efficient solar cells. The CH3NH3PbI3/MAPb(I(1-x)Cl(x))3 perovskites have dominated the field, while the similar CH3NH3SnI3 has not been exploited for photovoltaic applications. Replacement of Pb by Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Density Functional Theory electronic structure methods have so far delivered an unbalanced description of Pb- and Sn-based perovskites. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 electronic properties are discussed in light of their exploitation for solar cells, and found to be dominantly due to relativistic effects. These effects stabilize the CH3NH3PbI3 material towards oxidation, by inducing a deeper valence band edge. Relativistic effects, however, also increase the material band-gap compared to CH3NH3SnI3, due to the valence band energy downshift (~0.7 eV) being only partly compensated by the conduction band downshift (~0.2 eV).

  17. Gas-Phase Infrared Spectra of Vinyl Selenol and Vinyl Tellurol

    Science.gov (United States)

    Benidar, Abdessamad; Khater, Brahim; Guillemin, Jean-Claude; Gámez, José A.; Yáñez, Manuel

    2009-10-01

    The infrared spectra (3500-500 cm-1) of gaseous vinyl selenol and vinyl tellurol have been recorded at 0.1 cm-1 resolution. For the latter the spectra were obtained at room temperature, but for the former a temperature of -40 °C was required because of the chemical instability of vinyl selenol at room temperature. To compensate the very weak vapor pressure of vinyl tellurol at room temperature, a long optical path up to 136 m was necessary to record its spectrum. B3LYP density functional theory (DFT) calculations have been performed to assign the different absorption bands. Since an unambiguous assignment of the absorption bands requires a precise knowledge on the relative abundance of the syn and gauche rotamers of these compounds, their relative energies and their anharmonic vibrational frequencies were obtained using a very extended Def2-QZVP basis set. Two rotamers, the syn, which is planar, and a nonplanar gauche, were found to be local minima for both compounds. The gauche rotamer presents two degenerate conformers, which differ by the position of the SeH (TeH) hydrogen atom above or below the molecular plane. Our theoretical results are in good agreement with the main features of the experimental spectra. Fundamental bands and some combination bands of vinyl selenol and vinyl tellurol were assigned and compared with those of vinyl alcohol and vinyl thiol, whose spectra had been reported previously in the literature.

  18. Micro-syntheses for the use of carbon 13 or carbon 14. Micro-preparations of methyl alcohol, methyl iodide, and sodium acetate labeled in the methyl group

    International Nuclear Information System (INIS)

    Baret, C.; Pichat, L.

    1951-11-01

    Apparatus and technique are described in detail for (1) reduction of CO 2 to CH 3 OH with LiAlH 4 , (2) conversion of the methanol to CH 3 I by HI, (3) formation of the Mg Grignard reagent, and (4) addition of inactive CO 2 to form CH 3 COOH. All these operations have been carried out on 0.005 moles. Methyl-labeled Na acetate has been prepared in 67% yield based on the Ba 14 CO 3 used as starting material. (author) [fr

  19. Ultrasonic irradiation-promoted one-pot synthesis of CH3NH3PbBr3 quantum dots without using flammable CH3NH2 precursor

    Science.gov (United States)

    Jiang, Han; Wang, Chunlei; Lv, Changgui; Xu, Shuhong; Zhu, Li; Zhang, Ruohu; Cui, Yiping

    2017-02-01

    At present, the CH3NH3PbBr3 quantum dots (QDs) reported in the literature usually contain two synthesis steps: the initial preparation of CH3NH3Br via the reaction of flammable CH3NH2 and HBr, together with the subsequent formation of CH3NH3PbBr3 QDs. To avoid the use of dangerous CH3NH2, this work develops a novel one-pot method for synthesizing CH3NH3PbBr3 QDs using safe and commercially available reactants (CH3NH3Cl, KBr and PbCl2). It is found that ultrasonic treatment plays a key role during the synthesis of CH3NH3PbBr3 QDs. Without ultrasonic irradiation, it is not possible to synthesize CH3NH3PbBr3 QDs under heating or vigorous stirring. Aliquots of samples taken at different ultrasonic irradiation time intervals show a time-dependent redshift in the emission wavelength. This suggests the formation of CH3NH3PbCl3 QDs first, followed by the formation of CH3NH3PbBr3 QDs through ultrasonically promoted halide exchange. Moreover, mixed CH3NH3PbCl x Br3-x QDs with a tunable emission wavelength can also be prepared through this one-pot method by controlling the ultrasonic irradiation time. In comparison to the previous two-step method, the current one-pot method is simpler, less time-consuming and does not use flammable CH3NH2. The as-prepared CH3NH3PbBr3 QDs show a comparable photoluminescence (PL) quantum yield (QY) to that of the literature. What is more, the ultrasonic time-controlled emission wavelength of CH3NH3PbCl x Br3-x QDs also provides an alternative way of tuning QD emission to the traditional way of controlling the halide ratios.

  20. CH3Br adsorption on MgO/Mo ultrathin films: A DFT study

    Science.gov (United States)

    Cipriano, Luis A.; Tosoni, Sergio; Pacchioni, Gianfranco

    2018-06-01

    The adsorption of methyl bromide on MgO ultrathin films supported on Mo(100) was studied by means of density functional theory calculations, in comparison to the MgO(100) and Mo(100) surfaces. The adsorption energy and geometry were shown to depend on the thickness of the supported oxide film. MgO films as thick as 2ML (or more) display adsorptive properties similar to MgO(100), i.e. the adsorption of CH3Br is mostly due to dispersion and the molecule lies in a tilted geometry almost parallel to the surface. The CH3Br HOMO-LUMO gap is almost unaltered with respect to the gas phase. On metallic Mo(100) surfaces the bonding is completely different with the CH3Br molecule strongly bound and the C-Br bond axis almost vertical with respect to the metal surface. The MgO monolayer supported on Mo exhibits somehow intermediate properties: the tilt angle is larger and the bonding is stronger than on MgO(100), due to the effect of the supporting metal. In this case, a small reduction of the HOMO-LUMO gap of the adsorbed molecule is reported. The results help to rationalize the observed behavior in photodissociation of CH3Br supported on different substrates.

  1. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate/poly(N-vinyl-2-pyrrolidone/multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Liu Guoqin

    2014-01-01

    Full Text Available Poly(methacrylic acid-co-methyl methacrylate (P(MAA-co-MMA was prepared in the presence of poly(N-vinyl-2-pyrrolidone (PVP and multiwalled carbon nanotubes (MWNTs via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased.

  2. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate)/poly(N-vinyl-2-pyrrolidone)/multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Guoqin, Liu; Wei, Miao [College of Material Science and Engineering, Henan University of Technology (China); Lin-Jian, Shangguan, E-mail: mikepolymer@126.com [School of Mechanical Engineering, North China University of Water Conservancy and Electric Power (China)

    2014-06-01

    Poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) was prepared in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) and multi-walled carbon nanotubes (MWNTs) via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA)/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA)/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM) revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA)/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased. (author)

  3. Mechanical, relaxation behavior and thermal degradation of UV irradiated poly(vinyl acetate)/poly( methyl methacrylate) blends

    International Nuclear Information System (INIS)

    Mansour, S.A.; Hafez, M.; Hussien, K.A.

    2005-01-01

    The effect of different doses of UV- irradiation on the mechanical and relaxation properties of poly(vinyl acetate)/poly(methyl methacrylate) blends were studied. Films of PVAc/PMMA blend with different contents were prepared using the casting technique. Also, PMMA could be blended with PVAc to improve its impact strength. Moreover UV-irradiation causes degradation of PVAc and formation of ketonic and aldehyde carbonyl groups according to a suggested scheme. Irradiation of PvAc/ PMMA blends causes a higher degree of degradation as compared to the PVAc alone although the PMMA is more susceptible than PVAc to the influence of radiation. Recognizable differences are observed for all parameters between the unirradiated and irradiated samples. Existence of a relaxation mechanism within the first 200s is reported. The shear modulus for all samples is also obtained and discussed. These data are used to calculate the strain energy density using the equation proposed by Blatzetal(1974 trans. Soc.Rheol. 18 145-61), based on the n-measure of Sethe

  4. Rhodium-catalyzed C-H functionalization with N-acylsaccharins.

    Science.gov (United States)

    Wu, Hongxiang; Liu, Tingting; Cui, Ming; Li, Yue; Jian, Junsheng; Wang, Hui; Zeng, Zhuo

    2017-01-18

    A rhodium-catalyzed C-H functionalization with activated amides by decarbonylation has been developed. Notably, this is the first C-H arylation employing N-acylsaccharins as coupling partners to give biaryls in good to excellent yields. The highlight of the work is the high tolerance of functional groups such as formyl, ester, and vinyl and the use of a removable directing group.

  5. Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells

    Science.gov (United States)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Chien, Wen-Chen; Chiu, Sheng-Shin

    The quaternized poly(vinyl alcohol)/alumina (designated as QPVA/Al 2O 3) nanocomposite polymer membrane was prepared by a solution casting method. The characteristic properties of the QPVA/Al 2O 3 nanocomposite polymer membranes were investigated using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), micro-Raman spectroscopy, and AC impedance method. Alkaline direct methanol fuel cell (ADMFC) comprised of the QPVA/Al 2O 3 nanocomposite polymer membrane were assembled and examined. Experimental results indicate that the DMFC employing a cheap non-perfluorinated (QPVA/Al 2O 3) nanocomposite polymer membrane shows excellent electrochemical performances. The peak power densities of the DMFC with 4 M KOH + 1 M CH 3OH, 2 M CH 3OH, and 4 M CH 3OH solutions are 28.33, 32.40, and 36.15 mW cm -2, respectively, at room temperature and in ambient air. The QPVA/Al 2O 3 nanocomposite polymer membranes constitute a viable candidate for applications on alkaline DMFC.

  6. Activation of methane by zinc: gas-phase synthesis, structure, and bonding of HZnCH3.

    Science.gov (United States)

    Flory, Michael A; Apponi, Aldo J; Zack, Lindsay N; Ziurys, Lucy M

    2010-12-08

    The methylzinc hydride molecule, HZnCH3, has been observed in the gas phase for the first time in the monomeric form using high-resolution spectroscopic techniques. The molecule was synthesized by two methods: the reaction of dimethylzinc with hydrogen gas and methane in an AC discharge and the reaction of zinc vapor produced in a Broida-type oven with methane in a DC discharge. HZnCH3 was identified on the basis of its pure rotational spectrum, which was recorded using millimeter/submillimeter direct-absorption and Fourier transform microwave techniques over the frequency ranges 332-516 GHz and 18-41 GHz, respectively. Multiple rotational transitions were measured for this molecule in seven isotopic variants. K-ladder structure was clearly present in all of the spectra, indicating a molecule with C3v symmetry and a (1)A1 ground electronic state. Extensive quadrupole hyperfine structure arising from the (67)Zn nucleus was observed for the H(67)ZnCH3 species, suggesting covalent bonding to the zinc atom. From the multiple isotopic substitutions, a precise structure for HZnCH3 has been determined. The influence of the axial hydrogen atom slightly distorts the methyl group but stabilizes the Zn-C bond. This study suggests that HZnCH3 can be formed through the oxidative addition of zinc to methane in the gas phase under certain conditions. HZnCH3 is the first metal-methane insertion complex to be structurally characterized.

  7. 21 CFR 172.872 - Methyl ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl ethyl cellulose. 172.872 Section 172.872... CONSUMPTION Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose... a cellulose ether having the general formula [C6H(10 -x-y)O5(CH3)x(C2H5)y]n, where x is the number...

  8. Methyl bromide residues in fumigated cocoa beans

    International Nuclear Information System (INIS)

    Adomako, D.

    1975-01-01

    The 14 C activity in unroasted [ 14 C]-methyl bromide fumigated cocoa beans was used to study the fate and persistence of CH 3 Br in the stored beans. About 70% of the residues occurred in the shells. Unchanged CH 3 Br could not be detected, all the sorbed CH 3 Br having reacted with bean constituents apparently to form 14 C-methylated derivatives and inorganic bromide. No 14 C activity was found in the lipid fraction. Roasting decreased the bound (non-volatile) residues, with corresponding changes in the activities and amounts of free sugars, free and protein amino acids. Roasted nibs and shells showed a two-fold increase in the volatile fraction of the 14 C residue. This fraction may be related to the volatile aroma compounds formed by Maillard-type reactions. (author)

  9. Micro-syntheses for the use of carbon 13 or carbon 14. Micro-preparations of methyl alcohol, methyl iodide, and sodium acetate labeled in the methyl group; Microsyntheses pour l'emploi de carbone 13 ou de carbone 14. Micropreparations d'alcool methylique, d'iodure de methyle et d'acetate de sodium marque sur le groupement methyle

    Energy Technology Data Exchange (ETDEWEB)

    Baret, C; Pichat, L

    1951-11-01

    Apparatus and technique are described in detail for (1) reduction of CO{sub 2} to CH{sub 3}OH with LiAlH{sub 4}, (2) conversion of the methanol to CH{sub 3}I by HI, (3) formation of the Mg Grignard reagent, and (4) addition of inactive CO{sub 2} to form CH{sub 3}COOH. All these operations have been carried out on 0.005 moles. Methyl-labeled Na acetate has been prepared in 67% yield based on the Ba{sup 14}CO{sub 3} used as starting material. (author) [French] Description detaillee d'une technique deja connue pour la reduction du gaz carbonique en alcool methylique par LiAlH{sub 4}. Conversion du methanol en iodure de methyle. Ce dernier transforme en reactif de Grigard, et carbonate, fournit de l'acide acetique. Toutes ces operations on ete effectuees sur 5 x 10{sup -3} moles. La methode a ete appliquee a la synthese d'acetate de sodium marque par le groupement methyle par {sup 14}C avec un rendement global de 67% base sur le carbonate de baryum radioactif mis en oeuvre. (auteurs)

  10. Radiation induced copolymerization of N-vinyl-2-pyrrolidone with vinyl acetate [Paper No. RD-3

    International Nuclear Information System (INIS)

    Ramakrishna, M.S.; Dhal, P.K.; Deshpande, D.D.; Babu, G.N.

    1982-01-01

    Copolymerization of N-vinyl-2-pyrrolidone (NVP) with vinyl acetate (VAC) was carried out using gamma-ray radiation. The compositions of the copolymers were determined from elemental analysis and the monomer reactivity ratios have been calculated using YBR method. The glass transition temperature and the intrinsic viscosities of the copolymers have been determined. All the experimental results were discussed in terms of the nature of the monomers. (author)

  11. Conformational and spectroscopic study of xanthogen ethyl formates, ROC(S)SC(O)OCH2CH3. Isolation of CH3CH2OC(O)SH

    Science.gov (United States)

    Juncal, Luciana C.; Cozzarín, Melina V.; Romano, Rosana M.

    2015-03-01

    ROC(S)SC(O)OCH2CH3, with R = CH3sbnd , (CH3)2CHsbnd and CH3(CH2)2sbnd , were obtained through the reaction between potassium xanthate salts, ROC(S)SK, and ethyl chloroformate, ClC(O)OCH2CH3. The liquid compounds were identified and characterized by 1H and 13C NMR and mass spectrometry. The conformations adopted by the molecules were studied by DFT methods. 6 conformers were theoretically predicted for R = CH3sbnd and (CH3)2CHsbnd , while the conformational flexibility of the n-propyl substituent increases the total number of feasible rotamers to 21. For the three molecules, the conformers can be associated in 3 groups, being the most stable the AS forms - the Cdbnd S double bond anti (A) with respect to the Csbnd S single bond and the Ssbnd C single bond syn (S) with respect to the Cdbnd O double bond - followed by AA and SS conformers. The vibrational spectra were interpreted in terms of the predicted conformational equilibrium, presenting the ν(Cdbnd O) spectral region signals corresponding to the three groups of conformers. A moderated pre-resonance Raman enhancement of the ν(Cdbnd S) vibrational mode of CH3(CH2)2OC(S)SC(O)OCH2CH3 was detected, when the excitation radiation approaches the energy of a n → π∗ electronic transition associated with the Cdbnd S chromophore. UV-visible spectra in different solvents were measured and interpreted in terms of TD-DFT calculations. The unknown molecule CH3CH2OC(O)SH was isolated by the UV-visible photolysis of CH3OC(S)SC(O)OCH2CH3 isolated in Ar matrix, and also obtained as a side-product of the reaction between potassium xanthate salts, ROC(S)SK, and ethyl chloroformate, ClC(O)OCH2CH3.

  12. Kinetic isotope effects in the gas phase reactions of OH and Cl with CH3Cl, CD3Cl, and 13CH3Cl

    Directory of Open Access Journals (Sweden)

    A. A. Gola

    2005-01-01

    Full Text Available The kinetic isotope effects in the reactions of CH3Cl, 13CH3Cl and CD3Cl with OH radicals and Cl atoms were studied in relative rate experiments at 298±2 K and 1013±10 mbar. The reactions were carried out in a smog chamber using long path FTIR detection and the spectroscopic data analyzed employing a non-linear least squares spectral fitting method using measured high-resolution infrared spectra as well as absorption cross sections from the HITRAN database. The reaction rates of 13CH3Cl and CD3Cl with OH and Cl were determined relative to CH3Cl as: kOH+CH3ClkOH+CH3Cl/kOH+13CH3Cl}kOH+13CH3Cl=1.059±0.008, kOH+CH3ClkOH+CH3Cl/kOH+CD3ClkOH+CD3Cl=3.9±0.4, kCl+CH3ClkCl+CH3Cl/kCl+13CH3ClkCl+13CH3Cl =1.070±0.010 and kCl+CH3ClkCl+CH3Cl/kCl+CD3ClkCl+CD3Cl=4.91±0.07. The uncertainties given are 2σ from the statistical analyses and do not include possible systematic errors. The unexpectedly large 13C kinetic isotope effect in the OH reaction of CH3Cl has important implications for the global emission inventory of CH3Cl.

  13. Synthesis of (E)-9-Oxo-2-decenoic acid (the queen substance of honeybee) from methyl 3-formylpropionate; 3-horumiruporopion san mechiru wo mochiita (E)-9-okiso-2-desen san (Mitsubachi joo busshitsu) no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Tsukasa, H. [Toyotama Koryo Co. Ltd., Tokyo (Japan)

    1997-05-20

    The queen substance, (E)-9-oxo-2-decenoic acid (1) is a pheromone secreted by queen honeybee (Apis mellifera) and inhibits reproductive ability of worker bees. Several synthesese have been reported. It was synthesized starting from methyl-3-formylpropionate this time. Methyl 7,7-ethylenedioxy-4-oxooctanoate was prepared by radical addition reaction from (2) and 2-methyl-2-vinyl-1,3-dioxolane and reduced to an ethyelenedioxy carboxylic acid with hydrazine and KOH. This compound was converted to an alcohol by reduction with sodium bis(2-methoxyethoxy)aluminum hydride, followed by oxidation with pyridinium chlorochromate to an acetal aldehyde, which was condensed with malonic acid and (1) was obtained after the hydrolysis with hydrochloric acid. 7 refs., 1 tab.

  14. Isomerization and dissociation in competition: the two-component dissociation rates of methyl acetate ions

    Science.gov (United States)

    Mazyar, Oleg A.; Mayer, Paul M.; Baer, Tomas

    1997-11-01

    Threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy has been used to investigate the unimolecular chemistry of metastable methyl acetate ions, CH3COOCH3.+. The rate of molecular ion fragmentation with the loss of CH3O. and CH2OH radicals as a function of ion internal energy was obtained from the coincidence data and used in conjunction with Rice-Ramsperger-Kassel-Markus and ab initio molecular orbital calculations to model the dissociation/isomerization mechanism of the methyl acetate ion (A). The data were found to be consistent with the mechanism involving a hydrogen-bridged complex CH3CO[middle dot][middle dot][middle dot]H[middle dot][middle dot][middle dot]OCH2.+(E) as the direct precursor of the observed fragments CH3CO+ and CH2OH.. The two-component decay rates were modeled with a three-well-two-product potential energy surface including the distonic ion CH3C(OH)OCH2.+(B) and enol isomer CH2C(OH)OCH3.+(C), which are formed from the methyl acetate ion by two consecutive [1,4]-hydrogen shifts. The 0 K heats of formation of isomers B and C as well as transition states TSAB, TSBC, and TSBE (relative to isomer A) were calculated from Rice-Ramsperger-Kassel-Markus (RRKM) theory.

  15. [3 + 2]-Cycloadditions of nitrile ylides after photoactivation of vinyl azides under flow conditions

    Directory of Open Access Journals (Sweden)

    Stephan Cludius-Brandt

    2013-08-01

    Full Text Available The photodenitrogenation of vinyl azides to 2H-azirines by using a photoflow reactor is reported and compared with thermal formation of 2H-azirines. Photochemically, the ring of the 2H-azirines was opened to yield the nitrile ylides, which underwent a [3 + 2]-cycloaddition with 1,3-dipolarophiles. When diisopropyl azodicarboxylate serves as the dipolarophile, 1,3,4-triazoles become directly accessible starting from the corresponding vinyl azide.

  16. Searching for trans ethyl methyl ether in Orion KL.

    Science.gov (United States)

    Tercero, B; Cernicharo, J; López, A; Brouillet, N; Kolesniková, L; Motiyenko, R A; Margulès, L; Alonso, J L; Guillemin, J-C

    2015-10-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH 3 CH 2 OCH 3 , through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH 3 CH 2 CH 2 OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 10 15 cm -2 and ≤(1.0 ± 0.2)× 10 15 cm -2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH 3 OCOH, CH 3 CH 2 OCOH, CH 3 OCH 3 , CH 3 OH, and CH 3 CH 2 OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N (CH 3 OCH 3 )/ N (tEME) ≥ 150 in the compact ridge of Orion.

  17. Diazadienes in chemistry of lanthanides: latest view on old ligands. Synthesis, structure and properties of complexes {[(R)CNC6H3Pr2i]2}Lu(THF)2(μ-Cl)2Li(THF2 (R=CH3, CH2)

    International Nuclear Information System (INIS)

    Makhrova, T.V.; Fukin, G.K.; Cherkasov, A.V.; Trifonov, A.A.

    2008-01-01

    Reaction of dianion derivative [DADLi 2 ] (DAD -1,4-bis(2,6-diisopropylphenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene) prepared in situ by the reduction of corresponding DAD by the excess of metal lithium in THF with anhydrous LuCl 3 (1:1) results in the formation of the metal cyclic complex {[(R)CNC 6 H 3 Pr 2 i ] 2 }Lu(THF) 2 (μ-Cl) 2 Li(THF) 2 (1) containing the fragment N-C(Me)=C(Me)-N. DAD Treatment by two equivalents BuLi in the mixture ether-hexane (20 Deg C) results in the activation of the C-H bond of methyl substitutes at imine carbon. By the reaction of dilithium derivative [DAD - 2 H Li 2 ] formed in situ with LuCl 3 in THF the complex {[(CH 2 )CNC 6 H 3 Pr 2 i ] 2 }Lu(THF) 2 (μ-Cl) 2 Li(THF) 2 (2) with diamide ligand N-C(=CH 2 )-C(=CH 2 )-N was prepared. Structures of 1 and 2 complexes have been established by X-ray structure analysis [ru

  18. Pathways of CH3Hg and Hg ingestion in benthic organisms: an enriched isotope approach.

    Science.gov (United States)

    Taylor, Vivien F; Bugge, Deenie; Jackson, Brian P; Chen, Celia Y

    2014-05-06

    Mercury is a widespread contaminant in marine food webs, and identifying uptake pathways of mercury species, CH3Hg(+) and Hg(2+), into low trophic level organisms is important to understanding its entry into marine food webs. Enriched stable isotope tracers were used to study benthic vs. pelagic pathways of CH3Hg(+) and Hg(2+) uptake via food to the infaunal estuarine amphipod, Leptocheirus plumulosus. Algal cells differentially labeled with isotopically enriched CH3Hg(+) or Hg(2+) were added simultaneously to the sediment and water column of microcosms, and Hg species were monitored in amphipods and in sediment and water compartments. Methylation of Hg(2+) occurred during the course of the experiment, enhancing the uptake of Hg(2+) spikes. Trophic transfer of Hg from algae added to the water column was determined to be the major uptake route for amphipods, suggesting inputs of contaminated organic matter from the pelagic zone are important to mercury bioaccumulation even in organisms living in sediments.

  19. EPR investigation of gamma-irradiated L-citrulline, α-methyl-DL-serine, 3-fluoro-DL-valine and N-acetyl-L-cysteine

    Science.gov (United States)

    Osmanoğlu, Y. Emre; Sütçü, Kerem; Başkan, M. Halim

    2017-02-01

    The spectroscopic parameters of the paramagnetic species produced in gamma-irradiated L-citrulline, α-methyl-DL-serine, 3-fluoro-DL-valine and N-acetyl-L-cysteine were investigated at room temperature at a dose of 20 kGy by using EPR technique. The paramagnetic species were attributed to NH2CONH(CH2)3ĊNH2COOH, HOCH2ĊCH3COOH and HOĊHCCH3NH2COOH, CH3CH3ĊCHNH2COOH and SHCH2ĊNHCOCH3COOH radicals, respectively. EPR data of the unpaired electron with the environmental protons and 14N nucleus were used to characterize the contributing radicals produced in gamma irradiated compounds. In this paper, the stability of these compounds at room temperature after irradiation was also studied.

  20. Atomic force measurements of 16-mercaptohexadecanoic acid and its salt with CH3, OH, and CONHCH3 functionalized self-assembled monolayers

    International Nuclear Information System (INIS)

    Morales-Cruz, Angel L.; Tremont, Rolando; Martinez, Ramon; Roman-tilde ach, Rodolfo; Cabrera, Carlos R.

    2005-01-01

    Chemical and mechanical properties of different compounds can be elucidated by measuring fundamental forces such as adhesion, attraction and repulsion, between modified surfaces by means of atomic force microscopy (AFM) in force mode calibration. This work presents a combination of AFM, self-assembled monolayers (SAMs), and crystallization techniques to study the forces of interaction between excipients and active ingredients used in pharmaceutical formulations. SAMs of 16-mercaptohexadecanoate, which represent magnesium stereate, were used to modify the probe tip, whereas CH 3 -, OH- and CONHCH 3 -functional SAMs were formed on a gold-coated mica substrate, and used as examples of the surfaces of lactose and theophylline. The crystals of lactose and theophylline were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modification of gold surfaces with 16-mercaptohexadecanoate, 10-mercapto-1-decanol (OH-functional SAM), 1-decanethiol (CH 3 -functional) and N-methyl-11-mercaptoundecanamide (CONHCH 3 -functional SAM) was studied by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Fourier transform-infrared spectroscopy (FT-IR) in specular reflectance mode. XPS and AES results of the modified surfaces showed the presence of sulfur binding, and kinetic energies that correspond to the presence of 10-mercapto-1-decanol, 1-decanethiol, N-methyl-11-mercaptoundecanamide and the salt of 16-mercaptohexadecanoic acid. The absorption bands in the IR spectra further confirm the modification of the gold-coated substrates with these compounds. Force versus distance measurements were performed between the modified tip and the modified gold-coated mica substrates. The mean adhesion forces between the COO - Ca 2+ functionalized tip and the CH 3 -, OH-, and CONHCH 3 -modified substrates were determined to be 4.5, 8.9 and 6.3 nN, respectively. The magnitude of the adhesion force (ion-dipole) interaction between the modified

  1. Electron paramagnetic resonance of gamma irradiated (CH3)3NHClO4 and CH3NH3ClO4 single crystals

    International Nuclear Information System (INIS)

    Yavuz, Metin; Koeksal, Fevzi

    1999-01-01

    Gamma irradiation damage centers in (CH 3 ) 3 NHClO 4 and CH 3 NH 3 ClO 4 single crystals have been investigated at room temperature by the electron paramagnetic resonance (EPR) technique. It has been found that γ-irradiation produces the (CH 3 ) 3 N + radical in the first, and NH + 3 and ClO 3 radicals in the second compound. The EPR parameters of the observed radicals have been determined and discussed

  2. Radicals derived from acetaldehyde and vinyl alcohol.

    Science.gov (United States)

    Estep, Marissa L; Morgan, W James; Winkles, Alexander T; Abbott, Adam S; Villegas-Escobar, Nery; Mullinax, J Wayne; Turner, Walter E; Wang, Xiao; Turney, Justin M; Schaefer, Henry F

    2017-10-18

    Vinyl alcohol and acetaldehyde are isoelectronic products of incomplete butanol combustion. Along with the radicals resulting from the removal of atomic hydrogen or the hydroxyl radical, these species are studied here using ab initio methods as complete as coupled cluster theory with single, double, triple, and perturbative quadruple excitations [CCSDT(Q)], with basis sets as large as cc-pV5Z. The relative energies provided herein are further refined by including corrections for relativistic effects, the frozen core approximation, and the Born-Oppenheimer approximation. The effects of anharmonic zero-point vibrational energies are also treated. The syn conformer of vinyl alcohol is predicted to be lower in energy than the anti conformer by 1.1 kcal mol -1 . The alcoholic hydrogen of syn-vinyl alcohol is found to be the easiest to remove, requiring 84.4 kcal mol -1 . Five other radicals are also carefully considered, with four conformers investigated for the 1-hydroxyvinyl radical. Beyond energetics, we have conducted an overhaul of the spectroscopic literature for these species. Our results also provide predictions for fundamental modes yet to be reported experimentally. To our knowledge, the ν 3 (3076 cm -1 ) and ν 4 (2999 cm -1 ) C-H stretches for syn-vinyl alcohol and all but one of the vibrational modes for anti-vinyl alcohol (ν 1 -ν 14 ) are yet to be observed experimentally. For the acetyl radical, ν 6 (1035 cm -1 ), ν 11 (944 cm -1 ), ν 12 (97 cm -1 ), and accounting for our changes to the assignment of the 1419.9 cm -1 experimental mode, ν 10 (1441 cm -1 ), are yet to be observed. We have predicted these unobserved fundamentals and reassigned the experimental 1419.9 cm -1 frequency in the acetyl radical to ν 4 rather than to ν 10 . Our work also strongly supports reassignment of the ν 10 and ν 11 fundamentals of the vinoxy radical. We suggest that the bands assigned to the overtones of these fundamentals were in fact combination bands. Our

  3. Mechanistic features of isomerizing alkoxycarbonylation of methyl oleate

    KAUST Repository

    Roesle, Philipp

    2012-10-24

    The weakly coordinated triflate complex [(P̂P)Pd(OTf)] +(OTf)- (1) (P̂P = 1,3-bis(di-tert- butylphosphino)propane) is a suitable reactive precursor for mechanistic studies of the isomerizing alkoxcarbonylation of methyl oleate. Addition of CH 3OH or CD3OD to 1 forms the hydride species [(P ̂P)PdH(CH3OH)]+(OTf)- (2-CH3OH) or the deuteride [(P̂P)PdD(CD 3OD)]+(OTf)- (2D-CD3OD), respectively. Further reaction with pyridine cleanly affords the stable and isolable hydride [(P̂P)PdH(pyridine)]+(OTf) - (2-pyr). This complex yields the hydride fragment free of methanol by abstraction of pyridine with BF3OEt2, and thus provides an entry to mechanistic observations including intermediates reactive toward methanol. Exposure of methyl oleate (100 equiv) to 2D-CD 3OD resulted in rapid isomerization to the thermodynamic isomer distribution, 94.3% of internal olefins, 5.5% of α,β-unsaturated ester and <0.2% of terminal olefin. Reaction of 2-pyr/BF3OEt 2 with a stoichiometric amount of 1-13C-labeled 1-octene at -80 °C yields a 50:50 mixture of the linear alkyls [(P ̂P)Pd13CH2(CH2) 6CH3]+ and [(P̂P)PdCH 2(CH2)6 13CH3] + (4a and 4b). Further reaction with 13CO yields the linear acyls [(P̂P)Pd13C(=O)12/13CH 2(CH2)6 12/13CH3(L)] + (5-L; L = solvent or 13CO). Reaction of 2-pyr/BF 3·OEt2 with a stoichiometric amount of methyl oleate at -80 °C also resulted in fast isomerization to form a linear alkyl species [(P̂P)PdCH2(CH2) 16C(=O)OCH3]+ (6) and a branched alkyl stabilized by coordination of the ester carbonyl group as a four membered chelate [(P̂P)PdCH{(CH2)15CH 3}C(=O)OCH3]+ (7). Addition of carbon monoxide (2.5 equiv) at -80 °C resulted in insertion to form the linear acyl carbonyl [(P̂P)PdC(=O)(CH2)17C(=O)OCH 3(CO)]+ (8-CO) and the five-membered chelate [(P ̂P)PdC(=O)CH{(CH2)15CH3}C(=O) OCH3]+ (9). Exposure of 8-CO and 9 to 13CO at -50 °C results in gradual incorporation of the 13C label. Reversibility of 7 + CO ⇄ 9 is also evidenced by ΔG = -2.9 kcal mol-1 and

  4. Photostriction of CH3NH3PbBr3 Perovskite Crystals

    KAUST Repository

    Wei, Tzu-Chiao

    2017-07-17

    Organic-inorganic hybrid perovskite materials exhibit a variety of physical properties. Pronounced coupling between phonon, organic cations, and the inorganic framework suggest that these materials exhibit strong light-matter interactions. The photoinduced strain of CH3 NH3 PbBr3 is investigated using high-resolution and contactless in situ Raman spectroscopy. Under illumination, the material exhibits large blue shifts in its Raman spectra that indicate significant structural deformations (i.e., photostriction). From these shifts, the photostrictive coefficient of CH3 NH3 PbBr3 is calculated as 2.08 × 10-8 m2 W-1 at room temperature under visible light illumination. The significant photostriction of CH3 NH3 PbBr3 is attributed to a combination of the photovoltaic effect and translational symmetry loss of the molecular configuration via strong translation-rotation coupling. Unlike CH3 NH3 PbI3 , it is noted that the photostriction of CH3 NH3 PbBr3 is extremely stable, demonstrating no signs of optical decay for at least 30 d. These results suggest the potential of CH3 NH3 PbBr3 for applications in next-generation optical micro-electromechanical devices.

  5. Investigation on thermal evaporated CH3NH3PbI3 thin films

    Directory of Open Access Journals (Sweden)

    Youzhen Li

    2015-09-01

    Full Text Available CH3NH3I, PbI2 and CH3NH3PbI3 films were fabricated by evaporation and characterized with X-ray Photoelectron Spectroscopy (XPS and X-ray diffraction (XRD. The XPS results indicate that the PbI2 and CH3NH3PbI3 films are more uniform and stable than the CH3NH3I film. The atomic ratio of the CH3NH3I, PbI2 and CH3NH3PbI3 films are C:N:I=1.00:1.01:0.70, Pb:I= 1.00:1.91 and C: N: Pb: I = 1.29:1.07:1.00:2.94, respectively. The atomic ratio of CH3NH3PbI3 is very close to that of the ideal perovskite. Small angle x-ray diffraction results demonstrate that the as evaporated CH3NH3PbI3 film is crystalline. The valence band maximum (VBM and work function (WF of the CH3NH3PbI3 film are about 0.85eV and 4.86eV, respectively.

  6. Lifetime Analysis of Rubber Gasket Composed of Methyl Vinyl Silicone Rubber with Low-Temperature Resistance

    Directory of Open Access Journals (Sweden)

    Young-Doo Kwon

    2015-01-01

    Full Text Available Most machines and instruments constantly require elastomeric materials like rubber for the purposes of shock absorption, noise attenuation, and sealing. The material properties and accurate lifetime prediction of rubber are closely related to the quality of machines, especially their durability and reliability. The properties of rubber-like elastomers are influenced by ambient conditions, such as temperature, environment, and mechanical load. Moreover, the initial properties of rubber gaskets must be sustained under working conditions to satisfy their required function. Because of its technical merits, as well as its low cost, the highly accelerated life test (HALT is used by many researchers to predict the long-term lifetime of rubber materials. Methyl vinyl silicone rubber (VMQ has recently been adopted to improve the lifetime of automobile radiator gaskets. A four-parameter method of determining the recovery ability of the gaskets was recently published, and two revised methods of obtaining the recovery were proposed for polyacrylate (ACM rubber. The recovery rate curves for VMQ were acquired using the successive zooming genetic algorithm (SZGA. The gasket lifetime for the target recovery (60% of a compressed gasket was computed somewhat differently depending on the selected regression model.

  7. Synthesis of methyl [(chloro-2 ethyl)-3 nitroso-3 Ureido]-3 Didesoxy-2,3 α-D-Arabino-hexopyrannoside labelled with carbon-14 or carbon-13 (CY 233 - SR 90008)

    International Nuclear Information System (INIS)

    Sion, R.; Schumer, A.; Durme, E. van; Gouyette, A.; Geslin, M.; Fournier, J.P.; Roger, P.

    1990-01-01

    CY 233 (Ecomustine or SR 90098) is a new antitumour nitrosourea: it is characterized by a 2-chloroethylnitrosourea substituent on a dideoxycarbohydrate. It has been labelled with 14 C on a) the carbonyl group of the urea in four stages starting with 14 COCl 2 , b) the second carbon of the chloroethyl group in four stages starting with [ 14 C] ethanolamine, and c) on the methyl group on the anomeric centre of the carbohydrate in three stages starting with 14 CH 3 OH. The final position was also labelled with 13 C starting with 13 CH 3 OH. These differently labelled compounds are suitable for mechanistic studies of antitumour activity. (author)

  8. Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and α-lactone recorded in gaseous reactions of CH3CO and O2

    Science.gov (United States)

    Chen, Sun-Yang; Lee, Yuan-Pern

    2010-03-01

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of CH3CO and O2; IR absorption spectra of CH3C(O)OO and α-lactone were observed. Absorption bands with origins at 1851±1, 1372±2, 1169±6, and 1102±3 cm-1 are attributed to t-CH3C(O)OO, and those at 1862±3, 1142±4, and 1078±6 cm-1 are assigned to c-CH3C(O)OO. A weak band near 1960 cm-1 is assigned to α-lactone, cyc-CH2C(O)O, a coproduct of OH. These observed rotational contours agree satisfactorily with simulated bands based on predicted rotational parameters and dipole derivatives, and observed vibrational wavenumbers agree with harmonic vibrational wavenumbers predicted with B3LYP/aug-cc-pVDZ density-functional theory. The observed relative intensities indicate that t-CH3C(O)OO is more stable than c-CH3C(O)OO by 3±2 kJ mol-1. Based on these observations, the branching ratio for the OH+α-lactone channel of the CH3CO+O2 reaction is estimated to be 0.04±0.01 under 100 Torr of O2 at 298 K. A simple kinetic model is employed to account for the decay of CH3C(O)OO.

  9. Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and alpha-lactone recorded in gaseous reactions of CH3CO and O2.

    Science.gov (United States)

    Chen, Sun-Yang; Lee, Yuan-Pern

    2010-03-21

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of CH(3)CO and O(2); IR absorption spectra of CH(3)C(O)OO and alpha-lactone were observed. Absorption bands with origins at 1851+/-1, 1372+/-2, 1169+/-6, and 1102+/-3 cm(-1) are attributed to t-CH(3)C(O)OO, and those at 1862+/-3, 1142+/-4, and 1078+/-6 cm(-1) are assigned to c-CH(3)C(O)OO. A weak band near 1960 cm(-1) is assigned to alpha-lactone, cyc-CH(2)C(=O)O, a coproduct of OH. These observed rotational contours agree satisfactorily with simulated bands based on predicted rotational parameters and dipole derivatives, and observed vibrational wavenumbers agree with harmonic vibrational wavenumbers predicted with B3LYP/aug-cc-pVDZ density-functional theory. The observed relative intensities indicate that t-CH(3)C(O)OO is more stable than c-CH(3)C(O)OO by 3+/-2 kJ mol(-1). Based on these observations, the branching ratio for the OH+alpha-lactone channel of the CH(3)CO+O(2) reaction is estimated to be 0.04+/-0.01 under 100 Torr of O(2) at 298 K. A simple kinetic model is employed to account for the decay of CH(3)C(O)OO.

  10. Synthesis of methyl ((chloro-2 ethyl)-3 nitroso-3 Ureido)-3 Didesoxy-2,3. alpha. -D-Arabino-hexopyrannoside labelled with carbon-14 or carbon-13 (CY 233 - SR 90008). Synthese du methyl ((chloro-2 ethyl)-3 nitroso-3 Ureido)-3 Didesoxy-2,3. alpha. -D-Arabino-hexopyrannoside marque au carbone-14 ou carbone-13 (CY 233 - SR 90008)

    Energy Technology Data Exchange (ETDEWEB)

    Sion, R.; Schumer, A.; Durme, E. van (Sanofi Recherche, Brussels (Belgium)); Gouyette, A. (Centre de Lutte Contre le Cancer Gustave-Roussy, 94 - Villejuif (France)); Geslin, M.; Fournier, J.P.; Roger, P. (Sanofi Recherche, Montrouge (France). Inst. Choay); Berger, Y. (Sanofi Recherche, Montpellier (France))

    1990-06-01

    CY 233 (Ecomustine or SR 90098) is a new antitumour nitrosourea: it is characterized by a 2-chloroethylnitrosourea substituent on a dideoxycarbohydrate. It has been labelled with {sup 14}C on (a) the carbonyl group of the urea in four stages starting with {sup 14}COCl{sub 2}, (b) the second carbon of the chloroethyl group in four stages starting with ({sup 14}C) ethanolamine, and (c) on the methyl group on the anomeric centre of the carbohydrate in three stages starting with {sup 14}CH{sub 3}OH. The final position was also labelled with {sup 13}C starting with {sup 13}CH{sub 3}OH. These differently labelled compounds are suitable for mechanistic studies of antitumour activity. (author).

  11. New superhindered polydentate polyphosphine ligands P(CH2CH2P(t)Bu2)3, PhP(CH2CH2P(t)Bu2)2, P(CH2CH2CH2P(t)Bu2)3, and their ruthenium(II) chloride complexes.

    Science.gov (United States)

    Gilbert-Wilson, Ryan; Field, Leslie D; Bhadbhade, Mohan M

    2012-03-05

    The synthesis and characterization of the extremely hindered phosphine ligands, P(CH(2)CH(2)P(t)Bu(2))(3) (P(2)P(3)(tBu), 1), PhP(CH(2)CH(2)P(t)Bu(2))(2) (PhP(2)P(2)(tBu), 2), and P(CH(2)CH(2)CH(2)P(t)Bu(2))(3) (P(3)P(3)(tBu), 3) are reported, along with the synthesis and characterization of ruthenium chloro complexes RuCl(2)(P(2)P(3)(tBu)) (4), RuCl(2)(PhP(2)P(2)(tBu)) (5), and RuCl(2)(P(3)P(3)(tBu)) (6). The bulky P(2)P(3)(tBu) (1) and P(3)P(3)(tBu) (3) ligands are the most sterically encumbered PP(3)-type ligands so far synthesized, and in all cases, only three phosphorus donors are able to bind to the metal center. Complexes RuCl(2)(PhP(2)P(2)(tBu)) (5) and RuCl(2)(P(3)P(3)(tBu)) (6) were characterized by crystallography. Low temperature solution and solid state (31)P{(1)H} NMR were used to demonstrate that the structure of RuCl(2)(P(2)P(3)(tBu)) (4) is probably analogous to that of RuCl(2)(PhP(2)P(2)(tBu)) (5) which had been structurally characterized.

  12. Production of gaseous radiotracers CH3I and I2 through Na123I salt

    International Nuclear Information System (INIS)

    Candeiro, R.E.M.; Pereira, W.P.

    2011-01-01

    The objective of the present work was to develop, separately, methodology for production of two gaseous tracers through the sodium iodide NaI marked with 123 I. Found in the nature in form different, the iodine has been used in diverse works in the area of the industry and health. These two forms of the gaseous iodine, the methyl iodide, CH 3 I, and molecular iodine, I 2 , are very unstable and volatile in the ambient temperature and presents different problems in clean-up and monitoring systems. The syntheses were processed with sodium iodide (NaI) 1M aqueous solution marked with 1 23I . The production of gas I 2 was realized with in chlorine acid (HCl) and sodium iodate salt (NaIO 3 ) and the CH 3 I was used, the salt of NaI and the reagent (CH 3 ) 2 SO 4 . The production of gases was initially realized through in unit in glass with an inert material and the purpose was to study the kinetic of reaction and to determine the efficiency of production. The two synthesis occurs in the reaction bottle and after of produced, the gas is stored in the collect bottle that contains a starch solution for fixed the I 2 , and in syntheses of CH 3 I contains a silver nitrate solution for your fixation. To determine the efficiency of production of gases, analytic tests were realized, where the consumption of iodide ions of the bottle of reaction are measured. The optimization of production of the each gaseous tracer was studied varying parameter as: concentration of iodide, concentration of acid and temperature. After, the syntheses of the radiotracers were realized in the compact unit, having been used as main reagent the salt radiated of sodium iodide, Na 123 I. The transportation of elementary iodine and methyl iodine was studied by a scintillation detector NaI (2 x 2)' positioned in the reaction bottle. (author)

  13. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and pipe...

  14. Analyzing velocity map images to distinguish the primary methyl photofragments from those produced upon C-Cl bond photofission in chloroacetone at 193 nm

    Science.gov (United States)

    Alligood, Bridget W.; Straus, Daniel B.; Butler, Laurie J.

    2011-07-01

    We use a combination of crossed laser-molecular beam scattering experiments and velocity map imaging experiments to investigate the three primary photodissociation channels of chloroacetone at 193 nm: C-Cl bond photofission yielding CH3C(O)CH2 radicals, C-C bond photofission yielding CH3CO and CH2Cl products, and C-CH3 bond photofission resulting in CH3 and C(O)CH2Cl products. Improved analysis of data previously reported by our group quantitatively identifies the contribution of this latter photodissociation channel. We introduce a forward convolution procedure to identify the portion of the signal, derived from the methyl image, which results from a two-step process in which C-Cl bond photofission is followed by the dissociation of the vibrationally excited CH3C(O)CH2 radicals to CH3 + COCH2. Subtracting this from the total methyl signal identifies the methyl photofragments that result from the CH3 + C(O)CH2Cl photofission channel. We find that about 89% of the chloroacetone molecules undergo C-Cl bond photofission to yield CH3C(O)CH2 and Cl products; approximately 8% result in C-C bond photofission to yield CH3CO and CH2Cl products, and the remaining 2.6% undergo C-CH3 bond photofission to yield CH3 and C(O)CH2Cl products.

  15. Dissociative electron attachment to methyl chloride: A quasi-diatomic potential curve for the fragmentation of the metastable CH3Cl- anion

    International Nuclear Information System (INIS)

    Mach, P.; Urban, J.; Staemmler, V.

    2009-01-01

    Potential energy curves have been calculated for the dissociation of the neutral CH 3 Cl molecule and its negative ion into CH 3 + Cl and CH 3 +Cl - , respectively. The neutral molecule and the anion could be treated by means of standard wave function based quantum chemical ab initio methods for C-Cl distances larger than about 2.4 A, where CH 3 Cl - is a stable anion. In the present calculation MP3 and CCSD(T) were employed. At shorter C-Cl distances the CH 3 Cl - anion is only metastable and cannot be treated by such methods. We have applied a stabilization scheme, first proposed by Nestmann and Peyerimhoff, to stabilize the metastable anion by adding extra positive charges to the molecule. By this trick it was possible to generate the resonance energy E res and width Γ as functions of the C-Cl distance in the resonance regime between 1.5 and 2.5 A. The calculated values for the threshold energy E thresh and the exothermicity ΔE 0 of the DEA (dissociative electron attachment) process are in very good agreement with experiment; the vertical attachment energy (VAE) is smaller than its experimental counterpart

  16. Pharmacokinetics of vinyl chloride in the rat

    International Nuclear Information System (INIS)

    Bolt, H.M.; Laib, R.J.; Kappus, H.; Buchter, A.

    1977-01-01

    When rats are exposed to [ 14 C]vinyl chloride in a closed system, the vinyl chloride present in the atmosphere equilibrates with the animals' organism within 15 min. The course of equilibration could be determined using rats which had been given 6-nitro-1,2,3-benzothiadiazole. This compound completely blocks metabolism of vinyl chloride. The enzymes responsible for metabolism of vinyl chloride are saturated at an atmospheric concentration of vinyl chloride of 250 ppm. Pharmacokinetic analysis shows that no significant cumulation of vinyl chloride or its major metabolites is to be expected on repeated administration of vinyl chlorides. This may be consistent with the theory that a reactive, shortly living metabolite which occurs in low concentration only, may be responsible for the toxic effects of vinyl chloride

  17. Searching for trans ethyl methyl ether in Orion KL★,★★

    Science.gov (United States)

    Tercero, B.; Cernicharo, J.; López, A.; Brouillet, N.; Kolesniková, L.; Motiyenko, R. A.; Margulès, L.; Alonso, J. L.; Guillemin, J.-C.

    2015-01-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm−2 and ≤(1.0 ± 0.2)× 1015 cm−2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion. PMID:26869726

  18. Proton location in (CH3)3N-H+-(CH3OH)n: A theoretical and infrared spectroscopic study

    International Nuclear Information System (INIS)

    Bing, Dan; Hamashima, Toru; Tsai, Chen-Wei; Fujii, Asuka; Kuo, Jer-Lai

    2013-01-01

    Highlights: • Preferential location of the excess proton in the trimethylamine-methanol clusters. • Collaboration between DFT calculations and IR spectroscopy. • The excess proton prefers the protonation to the trimethylamine moiety. - Abstract: The dependence of the preferential protonated site in (CH 3 ) 3 N-H + -(CH 3 OH) n on the cluster size was investigated using theoretical calculations and infrared spectroscopy measurements. While simple estimation from the magnitude of proton affinity suggested that the excess proton prefers the methanol site in n ⩾ 4, density functional theory calculations of the stabilization energy indicated the clear preference as protonation of the trimethylamine site, even for n = 9. Infrared spectra of the clusters were observed for n = 3–7. Spectral simulations were also performed using the quantum harmonic superposition approximation. The observed (CH 3 ) 3 N-H + -(CH 3 OH) n spectra were well interpreted by simulations of the isomers with the protonated trimethylamine ion core. It was shown that both the proton affinity and the mutual solvation energy govern the preferential location of the excess proton in binary component clusters

  19. Ultraviolet absorption spectra and kinetics of CH3S and CH2SH radicals

    DEFF Research Database (Denmark)

    Anastasi, C.; Broomfield, M.; Nielsen, O.J.

    1991-01-01

    The ultraviolet absorption spectra of CH3S and CH2SH radicals have been measured between 215 and 380 nm using the pulse-radiolysis/kinetic-absorption method. One absorption band between 250 and 300 nm and one around 215 nm have been tentatively assigned to the CH2SH and CH3S radicals, respectively....... This spectrum has been used to measure the self-reaction rates of these radicals. Rate constants of 4 x 10(-11) and 7 x 10(-11) cm3 molecule-1 s-1 have been measured at 298 K for CH3S and CH2SH recombination, respectively. The possible reaction pathways are discussed....

  20. Theoretical characterizations of novel C2H5O+ reactions

    Science.gov (United States)

    Hudson, Charles E.; McAdoo, David J.

    2004-03-01

    Assorted reactions of C2H5O+ isomers are characterized by theory, including tracing their courses by means of intrinsic reaction coordinate computations. We establish that CH3CH=OH+ eliminates methane by transferring H from oxygen to a methyl hydrogen and then to the CC bond to produce CHO++CH4. This adds to the limited knowledge of the involvement of hypervalent structures in the reactions of cations in the gas phase. Second, we characterized the course of CH3CH=OH+-->H3O++HC[triple bond; length as m-dash]CH. In this dissociation, H first migrates from the methyl to the oxygen to give O-protonated vinyl alcohol, a stable intermediate. Then the H2O swings outward to over the middle of the CC bond while one of the two hydrogens on the non-O-bearing carbon revolves to between the oxygen and the two carbons, leading to formation of a [H3O+ HC[triple bond; length as m-dash]CH] complex. This complex contains sufficient energy to dissociate its partners because a high barrier is crossed in its formation. Third, we found that methane elimination from CH3O+=CH2 involves stretching of the CH3---O bond and then rotation of the methyl so that a methyl hydrogen is pointed directly toward the oxygen. This reaction is completed by further rotation of the methyl to abstract a methylene hydrogen to the opposite side of the methyl from that initially bonded to oxygen. This clearly establishes that this dissociation takes place through an ion-neutral complex. Each of the reaction coordinates for the three preceding reactions traverses a novel bonding stage involving H, evidence that such are not unusual in gas phase ion chemistry. Finally, we showed that in the rearrangement CH3O+=CH2-->CH2=O+CH3, before Ht is transferred CH2 rotates around the C=C bond from being in the skeletal plane to being perpendicular to it, and Ht remains in the skeletal plane throughout its transfer. This pathway appears to balance avoiding an orbital symmetry-forbidden suprafacial transition state with

  1. Braked rotation of CH3 group in L-alanine monocrystals: temperature transformation of EPR spectrum

    International Nuclear Information System (INIS)

    Lemanov, V.V.; Sochava, L.S.

    2003-01-01

    EPR spectra temperature transformation of the irradiated alanine crystals is used for studying rotation of CH 3 methyl group in L-alamine monocrystals. 60 Co (2 x 10 4 Gy dose) was applied as a γ-radiation source. The simple method of experimental data processing which is reduced to obtaining the resonance lines width dependence on the temperature is used for the quantitative analysis of the spectrum temperature transformation. Temperature dependence of the CH 3 group rotation frequency is identified on the basis of these data. Activation energy U = 0.18 eV and pre-exponential multiplier ω 0 = 10 13 s -1 are determined from the EPR spectra temperature transformation which are in good agreement with values obtained earlier from the measurements of the proton spin-lattice relaxation in alanine polycrystal samples [ru

  2. [CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers.

    Science.gov (United States)

    Xu, Zhengtao; Mitzi, David B

    2003-10-20

    The organic-inorganic hybrid [CH(3)(CH(2))(11)NH(3)]SnI(3) presents a lamellar structure with a Sn-I framework isotypic to that of MoO(3). The SnI(3)(-) layer consists of edge and corner-sharing SnI(6) octahedra in which one of the six Sn-I bonds is distinctly elongated (e.g., 3.62 A), indicating lone-pair stereoactivity for the Sn(II) atom. The overall electronic character remains comparable with that of the well-studied SnI(4)(2)(-)-based perovskite semiconductors, such as [CH(3)(CH(2))(11)NH(3)](2)SnI(4), with a red-shifted and broadened exciton peak associated with the band gap, apparently due to the increased dimensionality of the Sn-I framework. The title compound offers, aside from the hybrid perovskites, a new type of solution-processable Sn-I network for potential applications in semiconductive devices.

  3. Reaction CH3 + OH studied over the 294-714 K temperature and 1-100 bar pressure ranges.

    Science.gov (United States)

    Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2012-08-30

    Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1).

  4. Synthesis and evaluation of alpha-[[(2-haloethyl)amino]methyl]-2- nitro-1H-imidazole-1-ethanols as prodrugs of alpha-[(1-aziridinyl)methyl]-2- nitro-1H-imidazole-1-ethanol (RSU-1069) and its analogues which are radiosensitizers and bioreductively activated cytotoxins

    International Nuclear Information System (INIS)

    Jenkins, T.C.; Naylor, M.A.; O'Neill, P.; Threadgill, M.D.; Cole, S.; Stratford, I.J.; Adams, G.E.; Fielden, E.M.; Suto, M.J.; Stier, M.A.

    1990-01-01

    alpha-[(1-Aziridinyl)methyl]-2-nitro-1H-imidazole-1-ethanols, of general formula ImCH2CH(OH)CH2NCR1R2CR3R4, where Im = 2-nitroimidazole and R1, R2, R3, R4 = H, Me, are radiosensitizers and selective bioreductively activated cytotoxins toward hypoxic tumor cells in vitro and in vivo. Treatment of the aziridines with hydrogen halide in acetone or aqueous acetone gave the corresponding 2-haloethylamines of general formula ImCH2CH(OH)CH2(+)-NH2CR1R2CR3R4X X-, where R1, R2, R3, R4 = H, Me, and X = F, Cl, Br, I. These 2-haloethylamines were evaluated as prodrugs of the parent aziridines. The rates of ring closure in aqueous solution at pH approximately 6 were found to increase with increasing methyl substitution and to depend on the nature of the leaving group (I approximately Br greater than Cl much greater than F). A competing reaction of ImCH2CH(OH)CH2+NH2CH2CH2X X- (X = Cl, Br) with aqueous HCO3- ions gives 3-[2-hyroxy-3-(2-nitro-1H-imidazol-1-yl)propyl]-2-oxazolidinone. The activities of these prodrugs as radiosensitizers or as bioreductively activated cytotoxins were consistent with the proportion converted to the parent aziridine during the course of the experiment. alpha-[[(2-Bromoethyl)amino]methyl]-2-nitro-1H-imidazole-1- ethanol (RB 6145, 10), the prodrug of alpha-[(1-aziridinyl)methyl]-2-nitro-1H-imidazole-1-ethanol (RSU-1069, 3), is identified as the most useful compound in terms of biological activity and rate of ring closure under physiological conditions

  5. Synthesis and characterization of copolymers from hindered amines and vinyl monomers

    Directory of Open Access Journals (Sweden)

    Marcelo Aparecido Chinelatto

    2014-01-01

    Full Text Available New copolymers from hindered amines and vinyl monomers were synthesized by radical chain polymerization. To obtain polymeric HALS, acrylamide-(1ATP and acrylate-(4ATP monomers, derivatives from 2,2,6,6-tetramethylpiperidine and 2,2,6,6-tetramethyl-4-piperidinol were synthesized. The radical chain polymerization of 1ATP with styrene (Sty using 1-butanethiol (BTN resulted in a copolymer with 95 units of Sty and 15 units of 1ATP. The radical chain polymerization of 1ATP and vinyl acetate (VAc has produced only 1ATP homopolymer. In the chain polymerization of 4ATP with Sty or VAc, the hydrogen atom bonded to the nitrogen of 4ATP is labile enough to originate another radical at this site. The steric hindrance imposed by methyl groups on this bonding site hampers its reaction with other propagating species and the formation of a copolymer or network structure will be dependent on the size of the pendent group in the vinyl monomer.

  6. Elution behavior of poly(ethylene glycol) through poly(vinyl alcohol) gel column using several solvents as eluents

    International Nuclear Information System (INIS)

    Hirayama, Chuichi; Motozato, Yoshiaki; Matsumoto, Kazuaki.

    1983-01-01

    γ-Irradiated poly(vinyl alcohol) beads, which were sufficiently allowed to swell in water, were washed with methanol, and then were packed into column. Gel chromatography was performed using methanol, benzene, esters and ketones as eluents and poly(ethylene glycol) as a sample. When the elution was carried out using methanol and benzene as eluents, elution behavior of samples was ordinary. When ethyl formate, methyl acetate and ethyl propionate were used as eluents, samples were slightly adsorbed and the elution was delayed. In the case the elution was carried out using ethyl acetate, propyl acetate, butyl acetate and ethyl methyl ketone as eluents, samples were adsorbed strongly on the bed material, and the adsorption curve was analogous to the calibration curve using methanol as an eluent. Dried poly(vinyl alcohol) gel as a packing material, showed ordinary elution behaviors for the samples. The adsorption of poly(ethylene glycol) on the present bed material was attributed to the existence of hydrated water on poly(vinyl alcohol) gel matrix. (author)

  7. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br, –CH3, –C6H4, –F2, –(CH3)2) materials

    International Nuclear Information System (INIS)

    Buragohain, Amlan; Couck, Sarah; Van Der Voort, Pascal; Denayer, Joeri F.M.; Biswas, Shyam

    2016-01-01

    Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH 3 , 4-CH 3 ; new ones with X=–C 6 H 4 , 5-C 6 H 4 ; –F 2 , 6-F 2 , –(CH 3 ) 2 , 7-(CH 3 ) 2 ) were synthesized under hydrothermal conditions. All the materials except 5-C 6 H 4 could be prepared by a general synthetic route, in which the mixtures of CrO 3 , H 2 BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144 h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C 6 H 4 , could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S BET range: 1273–2135 m 2 g −1 ). At 0 °C and 1 bar, the CO 2 adsorption capacities of the compounds fall in the 1.7–2.9 mmol g −1 range. Compounds 1-F and 6-F 2 showed enhanced CO 2 uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p 0 =0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH 3 suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N 2 , CO 2 and benzene. • Mono- and di-fluorinated Cr-MIL-101 materials showed enhanced CO 2 adsorption capacities.

  8. Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.

    Science.gov (United States)

    Zhang, Jiaxu; Xie, Jing; Hase, William L

    2015-12-17

    Direct chemical dynamics simulations, at collision energies Erel of 0.32 and 1.53 eV, were performed to obtain an atomistic understanding of the F(-) + CH3I reaction dynamics. There is only the F(-) + CH3I → CH3F + I(-) bimolecular nucleophilic substitution SN2 product channel at 0.32 eV. Increasing Erel to 1.53 eV opens the endothermic F(-) + CH3I → HF + CH2I(-) proton transfer reaction, which is less competitive than the SN2 reaction. The simulations reveal proton transfer occurs by two direct atomic-level mechanisms, rebound and stripping, and indirect mechanisms, involving formation of the F(-)···HCH2I complex and the roundabout. For the indirect trajectories all of the CH2I(-) is formed with zero-point energy (ZPE), while for the direct trajectories 50% form CH2I(-) without ZPE. Without a ZPE constraint for CH2I(-), the reaction cross sections for the rebound, stripping, and indirect mechanisms are 0.2 ± 0.1, 1.2 ± 0.4, and 0.7 ± 0.2 Å(2), respectively. Discarding trajectories that do not form CH2I(-) with ZPE reduces the rebound and stripping cross sections to 0.1 ± 0.1 and 0.7 ± 0.5 Å(2). The HF product is formed rotationally and vibrationally unexcited. The average value of J is 2.6 and with histogram binning n = 0. CH2I(-) is formed rotationally excited. The partitioning between CH2I(-) vibration and HF + CH2I(-) relative translation energy depends on the treatment of CH2I(-) ZPE. Without a CH2I(-) ZPE constraint the energy partitioning is primarily to relative translation with little CH2I(-) vibration. With a ZPE constraint, energy partitioning to CH2I(-) rotation, CH2I(-) vibration, and relative translation are statistically the same. The overall F(-) + CH3I rate constant at Erel of both 0.32 and 1.53 eV is in good agreement with experiment and negligibly affected by the treatment of CH2I(-) ZPE, since the SN2 reaction is the major contributor to the total reaction rate constant. The potential energy surface and reaction dynamics for F

  9. CH(3)NH(3)PbI(3) perovskite / silicon tandem solar cells: characterization based optical simulations.

    Science.gov (United States)

    Filipič, Miha; Löper, Philipp; Niesen, Bjoern; De Wolf, Stefaan; Krč, Janez; Ballif, Christophe; Topič, Marko

    2015-04-06

    In this study we analyze and discuss the optical properties of various tandem architectures: mechanically stacked (four-terminal) and monolithically integrated (two-terminal) tandem devices, consisting of a methyl ammonium lead triiodide (CH(3)NH(3)PbI(3)) perovskite top solar cell and a crystalline silicon bottom solar cell. We provide layer thickness optimization guidelines and give estimates of the maximum tandem efficiencies based on state-of-the-art sub cells. We use experimental complex refractive index spectra for all involved materials as input data for an in-house developed optical simulator CROWM. Our characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%. Efficiencies over 30% can also be achieved with a two-terminal monolithic integration of the sub-cells, combined with proper selection of layer thicknesses.

  10. Computational Study of Pincer Iridium Catalytic Systems: C-H, N-H, and C-C Bond Activation and C-C Coupling Reactions

    Science.gov (United States)

    Zhou, Tian

    Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the

  11. Rate Constant for the Reaction CH3 + CH3 Yields C2H6 at T = 155 K and Model Calculation of the CH3 Abundance in the Atmospheres of Saturn and Neptune

    Science.gov (United States)

    Cody, Regina J.; Romani, Paul N.; Nesbitt, Fred L.; Iannone, Mark A.; Tardy, Dwight C.; Stief, Louis J.

    2003-01-01

    The column abundances of CH3 observed by the Infrared Space Observatory (ISO) satellite on Saturn and Neptune were lower than predicted by atmospheric photochemical models, especially for Saturn. It has been suggested that the models underestimated the loss of CH3 due to poor knowledge of the rate constant k of the CH3 + CH3 self-reaction at the low temperatures and pressures of these atmospheres. Motivated by this suggestion, we undertook a combined experimental and photochemical modeling study of the CH3 + CH3 reaction and its role in determining planetary CH3 abundances. In a discharge flow-mass spectrometer system, k was measured at T = 155 K and three pressures of He. The results in units of cu cm/molecule/s are k(0.6 Torr) = 6.82 x 10(exp -11), k(1.0 Torr) = 6.98 x 10(exp -11), and k(1.5 Torr) = 6.91 x 10(exp -11). Analytical expressions for k were derived that (1) are consistent with the present laboratory data at T = 155 K, our previous data at T = 202 K and 298 K, and those of other studies in He at T = 296-298 K and (2) have some theoretical basis to provide justification for extrapolation. The derived analytical expressions were then used in atmospheric photochemical models for both Saturn and Neptune. These model results reduced the disparity with observations of Saturn, but not with observations of Neptune. However, the disparity for Neptune is much smaller. The solution to the remaining excess CH3 prediction in the models relative to the ISO observations lies, to a large extent, elsewhere in the CH3 photochemistry or transport, not in the CH3 + CH3 rate.

  12. Photostriction of CH3NH3PbBr3 Perovskite Crystals

    KAUST Repository

    Wei, Tzu-Chiao; Wang, Hsin-Ping; Li, Ting-You; Lin, Chun-Ho; Hsieh, Ying-Hui; Chu, Ying-Hao; He, Jr-Hau

    2017-01-01

    .e., photostriction). From these shifts, the photostrictive coefficient of CH3 NH3 PbBr3 is calculated as 2.08 × 10-8 m2 W-1 at room temperature under visible light illumination. The significant photostriction of CH3 NH3 PbBr3 is attributed to a combination

  13. Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K

    International Nuclear Information System (INIS)

    Wisniak, Jaime; Peralta, Rene D.; Infante, Ramiro; Cortez, Gladis

    2005-01-01

    Densities of the binary systems of 1,1-dimethylethyl methyl ether (MTBE) with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate have been measured as a function of the composition, at 298.15 and 308.15 K and atmospheric pressure, using an Anton Paar DMA 5000 oscillating U-tube densimeter. The calculated excess molar volumes were correlated with the Redlich-Kister equation and with a series of Legendre polynomials. The excess molar volumes are negative for the binaries of MTBE + methacrylates; the system MTBE with vinyl acetate presents near ideal behavior. The excess coefficient of thermal expansion is positive for all the systems studied here; the value of the coefficient for the system MTBE + allyl methacrylate is at least three times larger than that for the other systems

  14. Ion yields of laser aligned CH3I and CH3Br from multiple orbitals

    NARCIS (Netherlands)

    He, Lanhai; Pan, Yun; Yang, Yujun; Luo, Sizuo; Lu, Chunjing; Zhao, Huifang; Li, Dongxu; Song, Lele; Stolte, Steven; Ding, Dajun; Roeterdink, Wim G.

    2016-01-01

    We have measured the alignment influence on ion yields of CH3I and CH3Br molecules in the laser intensity regime from 1013 W/cm2 to 1015 W/cm2. The hexapole state-selection technique combined with laser induced alignment has been employed to obtain aligned (〈P2(cosθ)〉=0.7) and anti-aligned

  15. Presolvated Electron Reactions with Methyl Acetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-Atom Abstraction

    Directory of Open Access Journals (Sweden)

    Alex Petrovici

    2014-09-01

    Full Text Available Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3 at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-COOCH3 in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•OH-CH2-COOCH3. The ESR spectrum of CH3-C(•OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K, CH3-C(•OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT support the radical assignments.

  16. Presolvated electron reactions with methyl acetoacetate: electron localization, proton-deuteron exchange, and H-atom abstraction.

    Science.gov (United States)

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D

    2014-09-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•--CH2-COOCH3) in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-COOCH3. The ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments.

  17. Studies of the electron density in the highest occupied molecular orbitals of PH 3, PF 3 and P(CH 3) 3 by electron momentum spectroscopy and Hartree-Fock, MRSD-CI and DFT calculations

    Science.gov (United States)

    Rolke, J.; Brion, C. E.

    1996-06-01

    The spherically averaged momentum profiles for the highest occupied molecular orbitals of PF 3 and P(CH 3) 3 have been obtained by electron momentum spectroscopy. The measurements provide a stringent test of basis set effects and the quality of ab-initio methods in the description of these larger molecular systems. As in previous work on the methyl-substituted amines, intuitive arguments fail to predict the correct amount of s- and p-type contributions to the momentum profile while delocalized molecular orbital concepts provide a more adequate description of the HOMOs. The experimental momentum profiles have been compared with theoretical momentum profiles calculated at the level of the target Hartree-Fock approximation with a range of basis sets. New Hartree-Fock calculations are also presented for the HOMO of PH 3 and compared to previously published experimental and theoretical momentum profiles. The experimental momentum profiles have further been compared to calculations at the level of the target Kohn-Sham approximation using density functional theory with the local density approximation and also with gradient corrected (non-local) exchange correlation potentials. In addition, total energies and dipole moments have been calculated for all three molecules by the various theoretical methods and compared to experimental values. Calculated 'density difference maps' show the regions where the HOMO momentum and position electron densities of PF 3 and P(CH 3) 3 change relative to the corresponding HOMO density of PH 3. The results suggest that methyl groups have an electron-attracting effect (relative to H) on the HOMO charge density in trimethyl phosphines. These conclusions are supported by a consideration of dipole moments and the 31P NMR chemical shifts for PH 3, PF 3 and P(CH 3) 3.

  18. Comparison of the Fc fragment from a human IgG1 and its CH2, pFc', and tFc' subfragments. A study using reductive methylation and 13C NMR

    International Nuclear Information System (INIS)

    Jentoft, J.E.; Rayford, R.

    1989-01-01

    The Fc fragment of a human monoclonal IgG1 was compared with subfragments containing (a) the intact CH2 domain (CH2 fragment) or (b) the intact CH3 domain (pFc' and tFc' fragments). All fragments were reductively 13 C-methylated and their resulting dimethyllysyl resonances characterized in 0.1 M KCl as a function of pH by 13 C NMR spectroscopy. Seven resonances were characterized for the 18 lysine residues of the Fc fragment, eight for the 12 lysines of the CH2 fragment, and five each for the 9 lysines of the pFc' and the 6 lysines of the tFc' fragments, respectively. The multiplicity of resonances indicates that the lysine residues in each fragment exist in a variety of microenvironments and that the fragments are all highly structured. The correspondence between 6 of the 12 or 13 perturbed lysine residues in the Fc fragment and the smaller subfragments indicates that the conformation of the CH2 and CH3 domains is largely unchanged in the smaller fragments. However, in addition to three lysines at the CH2-CH3 domain interface, whose environments were known to be disrupted in the smaller fragments, three or four lysine residues have somewhat different properties in the Fc fragment and in the subfragments, indicating that some local perturbations are included in the domain structure in the subfragments

  19. In situ measurements of HCN and CH3CN over the Pacific Ocean: Sources, sinks, and budgets

    Science.gov (United States)

    Singh, H. B.; Salas, L.; Herlth, D.; Kolyer, R.; Czech, E.; Viezee, W.; Li, Q.; Jacob, D. J.; Blake, D.; Sachse, G.; Harward, C. N.; Fuelberg, H.; Kiley, C. M.; Zhao, Y.; Kondo, Y.

    2003-10-01

    We report the first in situ measurements of hydrogen cyanide (HCN) and methyl cyanide (CH3CN, acetonitrile) from the Pacific troposphere (0-12 km) obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission (February-April 2001). Mean HCN and CH3CN mixing ratios of 243 ± 118 (median 218) ppt and 149 ± 56 (median 138) ppt, respectively, were measured. These in situ observations correspond to a mean tropospheric HCN column of 4.2 × 1015 molecules cm-2 and a CH3CN column of 2.5 × 1015 molecules cm-2. This is in good agreement with the 0-12 km HCN column of 4.4 (±0.6) × 1015 molecules cm-2 derived from infrared solar spectroscopic observations over Japan. Mixing ratios of HCN and CH3CN were greatly enhanced in pollution outflow from Asia and were well correlated with each other as well as with known tracers of biomass combustion (e.g., CH3Cl, CO). Volumetric enhancement (or emission) ratios (ERs) relative to CO in free tropospheric plumes, likely originating from fires, were 0.34% for HCN and 0.17% for CH3CN. ERs with respect to CH3Cl and CO in selected biomass burning (BB) plumes in the free troposphere and in boundary layer pollution episodes are used to estimate a global BB source of 0.8 ± 0.4 Tg (N) yr-1 for HCN and 0.4 ± 0.1 Tg (N) yr-1 for CH3CN. In comparison, emissions from industry and fossil fuel combustion are quite small (atmospheric residence time of 5.0 months for HCN and 6.6 months for CH3CN is calculated. A global budget analysis shows that the sources and sinks of HCN and CH3CN are roughly in balance but large uncertainties remain in part due to a lack of observational data from the atmosphere and the oceans. Pathways leading to the oceanic (and soil) degradation of these cyanides are poorly known but are expected to be biological in nature.

  20. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction

    Science.gov (United States)

    Yamei, Wu; Ruixia, Yang; Hanmin, Tian; Shuai, Chen

    2016-05-01

    Organic-inorganic hybrid perovskite CH3NH3PbI3 film is prepared on p-type silicon substrate using the one-step solution method to form a CH3NH3PbI3/p-Si heterojunction. The film morphology and structure are characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The photoelectric properties of the CH3NH3PbI3/p-Si heterojunction are studied by testing the current-voltage (I-V) with and without illumination and capacitance-voltage (C-V) characteristics. It turns out from the I-V curve without illumination that the CH3NH3PbI3/p-Si heterojunction has a rectifier feature with the rectification ratio over 70 at the bias of ±5 V. Also, there appears a photoelectric conversion phenomenon on this heterojunction with a short circuit current (Isc) of 0.16 μA and an open circuit voltage (Voc) of about 10 mV The high frequency C-V characteristic of the Ag/CH3NH3PbI3/p-Si heterojunction turns out to be similar to that of the metal-insulator-semiconductor (MIS) structure, and a parallel translation of the C-V curve along the forward voltage axis is found. This parallel translation means the existence of defects at the CH3NH3PbI3/p-Si interface and positive fixed charges in the CH3NH3PbI3 layer. The defects at the interface of the CH3NH3PbI3/p-Si heterojunction result in the dramatic decline of the Voc. Besides, the C-V test of CH3NH3PbI3 film shows a non-linear dielectric property and the dielectric value is about 4.64 as calculated. Project supported by the Hebei Province Natural Science Foundation of China (No. F2014202184) and the Tianjin Natural Science Foundation of China (No. 15JCZDJC37800).

  1. CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4: Infrared spectra, radiative efficiencies, and global warming potentials

    International Nuclear Information System (INIS)

    Wallington, Timothy J.; Pivesso, Bruno Pasquini; Lira, Alane Moura; Anderson, James E.; Nielsen, Claus Jørgen; Andersen, Niels Højmark; Hodnebrog, Øivind

    2016-01-01

    Infrared spectra for the title compounds were measured experimentally in 700 Torr of air at 295 K and systematically modeled in B3LYP, M06-2X and MP2 calculations employing various basis sets. Calibrated infrared spectra over the wavenumber range 600–3500 cm"−"1 are reported and combined with literature data to provide spectra for use in experimental studies and radiative transfer calculations. Integrated absorption cross sections are (units of cm"−"1 molecule"−"1): CH_3Cl, 660–780 cm"−"1, (3.89±0.19)×10"−"1"8; CH_2Cl_2, 650–800 cm"−"1, (2.16±0.11)×10"−"1"7; CHCl_3, 720–810 cm"−"1, (4.08±0.20)×10"−"1"7; and CCl_4, 730–825 cm"−"1, (6.30±0.31)×10"−"1"7. CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4 have radiative efficiencies of 0.004, 0.028, 0.070, and 0.174 W m"−"2 ppb"−"1 and global warming potentials (100 year horizon) of 5, 8, 15, and 1775, respectively. Quantum chemistry calculations generally predict larger band intensities than the experimental values. The best agreement with experiments is obtained in MP2(Full) calculations employing basis sets of at least triple-zeta quality augmented by diffuse functions. The B3LYP functional is found ill-suited for calculating vibrational frequencies and infrared intensities of halocarbons. - Highlights: • Infrared spectra reported for CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4. • REs of CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4 are 0.004, 0.028, 0.070, and 0.174 W m"−"2 ppb"−"1, respectively. • GWPs of CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4 are 5, 8, 15, and 1775, respectively.

  2. Synthesis and biochemical evaluation of tritium-labeled 1-methyl-N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-1H-indazole-3-carboxa mide, a useful radioligand for 5HT3 receptors

    International Nuclear Information System (INIS)

    Robertson, D.W.; Bloomquist, W.; Cohen, M.L.; Reid, L.R.; Schenck, K.; Wong, D.T.

    1990-01-01

    The advent of potent, highly selective 5HT3 receptor antagonists has stimulated considerable interest in 5HT3 receptor mediated physiology and pharmacology. To permit detailed biochemical studies regarding interaction of the indazole class of serotonin (5HT) antagonists with 5HT3 receptors in multiple tissues, we synthesized 1-methyl-N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-1H-indazole- 3-carboxamide (LY278584, compound 9) in high specific activity, tritium-labeled form. This radioligand was selected as a synthetic target because of its potency as a 5HT3-receptor antagonist, its selectivity for this receptor viz a viz other 5HT-receptor subtypes, and the ability to readily incorporate three tritia via the indazole N-CH3 substituent. Alkylation of N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-1H-indazole-3-carboxamide (8) with sodium hydride and tritium-labeled iodomethane, followed by HPLC purification, resulted in [3H]-9 with a radiochemical purity of 99% and a specific activity of 80.5 Ci/mmol. This radioligand bound with high affinity to a single class of saturable recognition sites in membranes isolated from cerebral cortex of rat brain. The Kd was 0.69 nM and the Bmax was 16.9 fmol/mg of protein. The specific binding was excellent, and accounted for 83-93% of total binding at concentrations of 2 nM or less. The potencies of known 5HT3-receptor antagonists as inhibitors of [3H]-9 binding correlated well with their pharmacological receptor affinities as antagonists of 5HT-induced decreases in heart rate and contraction of guinea pig ileum, suggesting the central recognition site for this radioligand may be extremely similar to or identical with peripheral 5HT3 receptors

  3. Betaine Phosphate (CH3)3N+CH2COO-.H3PO4 Modification Using D2O

    International Nuclear Information System (INIS)

    Saryati; Ridwan; Deswita; Sugiantoro, Sugik

    2002-01-01

    Betaine fosfate (CH 3 ) 3 N + CH 2 COO - .H 3 PO 4 modification by using D 2 O has been studied. This modification was carried out by slowly evaporation the saturated Betaine phosphat in the D 2 O solution in the dry box at 40 o C, until the dry crystal were formed. Based on the NMR data, can be concluded that the exchange process with D has been runed well and Betaine phosphate-D (CH 3 ) 3 N + CH 2 COO - .H 3 PO 4 has been resulted. From the X-ray diffraction pattern data can be concluded that there are a deference in the crystal structure between Betaine phosphate and Betaine phosphate modification result. From the Differential Scanning Colorimeter (DSC) diagram at the range temperature from 30 o C to 250 o C, can be shown that the Betaine phosphate-H has two endothermic transition phase, at 99 o C with a very little adsorbed calor and at 221.50 o C with -26.75 cal/g. Modified Betaine phosphate has also two endothermic transition phase, at 99.86 o C with -1.94 cal/g and at 171.01 o C with -3.48 cal/g. It can be conclosed that the D atom substitution on the H atoms in Betaine phosphate, to change the crystal and the endothermic fase temperature and energy

  4. Theoretical investigation of the oxidation pathways of the Cl-initiated reaction of 2-methyl-3-buten-2-ol

    Science.gov (United States)

    Zhang, Weichao; Zhang, Dongju

    2012-12-01

    The mechanism and products of the reaction of 2-methyl-3-buten-2-ol (MBO232) with Cl atoms in the presence of O2 have been elucidated by performing high-level quantum chemistry calculations. The geometries of the reactants, intermediates, transition states, and products are optimized at the MP2(full)/6-311G(d, p) level, and their single-point energies are refined at the CCSD(T)/6-311 + G(d, p) level. The potential energy surface profiles have been constructed at the CCSD(T)/6-311 + G(d, p)//MP2(full)/6-311G(d, p) + 0.95 × ZPE level of theory, and the possible channels involved in the reaction are also discussed. The calculations indicate that the reaction predominantly proceeds via the addition of Cl atoms to the double bond rather than the direct abstraction of the H atoms in MBO232. The nascent adducts (CH3)2C(OH)CHCH2Cl (IM1) and (CH3)2C(OH)CHClCH2 (IM2) do not undergo subsequent isomerization and dissociation reactions, but rather react with O2. The theoretical results show that the major products are CH2ClCHO and CH3C(O)CH3 for the reaction of MBO232 + Cl in the presence of O2, which is in good agreement with the experimental finding.

  5. Photolysis of CH3CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH3 and HCO radicals and H atoms

    Science.gov (United States)

    Morajkar, Pranay; Bossolasco, Adriana; Schoemaecker, Coralie; Fittschen, Christa

    2014-06-01

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH3CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO2 radicals by reaction with O2. The CH3 radical yield has been determined using the same technique following their conversion into CH3O2. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO2 profiles, obtained under various O2 concentrations, to a complex model, while the CH3 yield has been determined relative to the CH3 yield from 248 nm photolysis of CH3I. Time resolved HO2 profiles under very low O2 concentrations suggest that another unknown HO2 forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O2. HO2 profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH3CHO + hν248nm → CH3CHO*, CH3CHO* → CH3 + HCO ϕ1a = 0.125 ± 0.03, CH3CHO* → CH3 + H + CO ϕ1e = 0.205 ± 0.04, CH3CHO*{to 2pc{rArrfill}}limits^{o2}CH3CO + HO2 ϕ1f = 0.07 ± 0.01. The CH3O2 quantum yield has been determined in separate experiments as φ_{CH3} = 0.33 ± 0.03 and is in excellent agreement with the CH3 yields derived from the HO2 measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH3CHO. From arithmetic considerations taking into account the HO2 and CH3 measurements we deduce a remaining quantum yield for the molecular pathway: CH3CHO* → CH4 + CO ϕ1b = 0.6. All experiments can be consistently explained with absence of the formerly considered pathway: CH3CHO* → CH3CO + H ϕ1c = 0.

  6. C-11 production with MC-50 cyclotron and synthesis of L-[11C-methyl] methionine

    International Nuclear Information System (INIS)

    Kim, Sang Wook; Hur, Min Goo; Yang, Seung Dae; Ahn, Soon Hyuk; Chun, Kweon Soo

    2003-01-01

    L-[ 11 C-methyl] methionine was prepared via no-carrier-added(nca) fast S-alkylation of L-homocysteine with [ 11 C]CH 3 I using solid support (Al 2 O 3 /KF)at room temperature in ethanol. The radiochemical yield of methylation was 90.2%. After reaction, no radiochemical impurity was detected but traces of L-homocysteine precursor were monitored by UV detector. The purification was archived by passing successively through a C 18 and alumina sep-pak. the radiochemical purity of L-[ 11 C-methyl] methionine was over 98% after purification and total elapsed time to prepare was 10min from [ 11 C]CH 3 I delivery

  7. Poly(vinyl methyl ether/maleic anhydride)-Doped PEG-PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency.

    Science.gov (United States)

    Wang, Qian; Li, Chan; Ren, Tianyang; Chen, Shizhu; Ye, Xiaoxia; Guo, Hongbo; He, Haibing; Zhang, Yu; Yin, Tian; Liang, Xing-Jie; Tang, Xing

    2017-10-02

    Bioadhesive nanoparticles based on poly(vinyl methyl ether/maleic anhydride) (PVMMA) and poly(ethylene glycol) methyl ether-b-poly(d,l-lactic acid) (mPEG-b-PLA) were produced by the emulsification solvent evaporation method. Paclitaxel was utilized as the model drug, with an encapsulation efficiency of up to 90.2 ± 4.0%. The nanoparticles were uniform and spherical in shape and exhibited a sustained drug release compared with Taxol. m-NPs also exhibited favorable bioadhesive efficiency at the same time. Coumarin 6 or DiR-loaded nanoparticles with/without PVMMA (C6-m-NPs/DiR-m-NPs or C6-p-NPs/DiR-p-NPs) were used for cellular uptake and intestinal adhesion experiments, respectively. C6-m-NPs were shown to enhance cellular uptake, and caveolae/lipid raft mediated endocytosis was the primary route for the uptake of the nanoparticles. Favorable bioadhesive efficiency led to prolonged retention in the intestine reflected by the fluorescence in isolated intestines ex vivo. In a ligated intestinal loops model, C6-m-NPs showed a clear advantage for transporting NPs across the mucus layer over C6-p-NPs and free C6. The apparent permeability coefficient (Papp) of PTX-m-NPs through Caco-2/HT29 monolayers was 1.3- and 1.6-fold higher than PTX-p-NPs and Taxol, respectively, which was consistent with the AUC 0-t of different PTX formulations after oral administration in rats. PTX-m-NPs also exhibited a more effective anticancer efficacy, with an IC 50 of 0.2 ± 1.4 μg/mL for A549 cell lines, further demonstrating the advantage of bioadhesive nanoparticles. The bioadhesive nanoparticles m-NPs demonstrated both mucus permeation and epithelial absorption, and thus, this bioadhesive drug delivery system has the potential to improve the bioavailability of drugs that are insoluble in the gastrointestinal environment.

  8. Millimeter Wave Spectrum of the Two Monosulfur Derivatives of Methyl Formate: s- and O-Methyl Thioformate, in the Ground and the First Excited Torsional States

    Science.gov (United States)

    Jabri, Atef; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.; Alekseev, E. A.; Kleiner, Isabelle; Tercero, Belén; Cernicharo, Jose

    2017-06-01

    Methyl formate CH_{3}OC(O)H is a relatively abundant component of the interstellar medium (ISM). Thus, we decided to study its sulfur derivatives as they can be reasonably proposed for detection in the ISM. In fact there is two relatively stable isomers for methyl thioformate, S-Methyl thioformate CH_{3}SC(O)H and O-Methyl thiofomate CH_{3}OC(S)H. Theoretical investigations on these molecules have been done recently by Senent et al.. Previous experimental investigations were performed only for the S-Methyl thioformate in the 10-41 GHz spectral range by Jones et al. and Caminati et al.. For the present study both isomers were synthesized and the millimeter wave spectrum was then recorded for the first time from 150 to 660 GHz with the Lille's spectrometer based on solid-state sources. The internal rotation effect on the millimeter wave spectra is not the same for these two molecules because the barrier height to internal rotation is relatively low for the S- isomer (V_{3} ≈ 140 \\wn) and rather high for the O- isomer (V_{3} ≈ 700 \\wn). Analysis of the ground and excited torsional states performed with the BELGI-C_{s} code will be presented and discussed. We will provide the search for methyl thioformate in different sources. E. Chruchwell, G. Winnewisser, A&A, 45, 229 (1975) M. L. Senent, C. Puzzarini, M. Hochlaf, R. Dominguez-Gomez, and M. Carvajal, J. Chem. Phys., 141, 104303 (2014) G. I. L. Jones, D. G. Lister, N. L. Owen, J. Mol. Spectrosc., 60, 348 (1976) W. Caminati, B. P. V. Eijck, D. G. Lister, J. Mol. Spectrosc., 90, 15 (1981) J. T. Hougen, I. Kleiner, and M. Godefroid, J. Mol. Spectrosc. 163, 559 (1994)

  9. Measurement of Activity Coefficients at Infinite Dilution for Alcohols in [BMIM][CH3SO4] using HS-SPME/GC-FID

    Directory of Open Access Journals (Sweden)

    A. M. Elias

    Full Text Available ABSTRACT The activity coefficient at infinite dilution (&IN1 and distribution ratios at infinite dilution (&IN2 were determined for alkanols (methanol, ethanol, 1-propanol, 1-butanol, 2-butanol, and 2-methyl-2-propanol in the ionic liquid (IL 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][CH3SO4] by HS-SPME (Headspace - Solid Phase Micro Extraction at four temperatures (298.15, 313.15, 333.15, and 353.15K using headspace - solid phase microextraction (SPME-HS. The results showed significant agreement with literature data. In addition, partial molar excess enthalpies at infinite dilution (&IN3, excess Gibbs energies (&IN4, and excess entropies (&IN5 were calculated from the (&IN6 values.

  10. In Utero Exposure to Dietary Methyl Nutrients and Breast Cancer Risk in Offspring

    Science.gov (United States)

    2010-09-01

    distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Lipotropes (methionine, choline, folate , and vitamin B12) are dietary methyl donors and...Lipotropes are methyl group (CH3) containing essential nutrients (methionine, choline, folate , and vitamin B12) and are important methyl donors...is highly dependent on methyl donors and cofactors (11, 17). The coenzymes necessary for DNA methylation reactions include folate , vitamin B12, and

  11. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  12. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be safely...

  13. Chloroacetone photodissociation at 193 nm and the subsequent dynamics of the CH3C(O)CH2 radical—an intermediate formed in the OH + allene reaction en route to CH3 + ketene

    Science.gov (United States)

    Alligood, Bridget W.; FitzPatrick, Benjamin L.; Szpunar, David E.; Butler, Laurie J.

    2011-02-01

    We use a combination of crossed laser-molecular beam experiments and velocity map imaging experiments to investigate the primary photofission channels of chloroacetone at 193 nm; we also probe the dissociation dynamics of the nascent CH3C(O)CH2 radicals formed from C-Cl bond fission. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence another photodissociation channel of the precursor, C-C bond fission to produce CH3CO and CH2Cl. The CH3C(O)CH2 radical formed from C-Cl bond fission is one of the intermediates in the OH + allene reaction en route to CH3 + ketene. The 193 nm photodissociation laser allows us to produce these CH3C(O)CH2 radicals with enough internal energy to span the dissociation barrier leading to the CH3 + ketene asymptote. Therefore, some of the vibrationally excited CH3C(O)CH2 radicals undergo subsequent dissociation to CH3 + ketene products; we are able to measure the velocities of these products using both the imaging and scattering apparatuses. The results rule out the presence of a significant contribution from a C-C bond photofission channel that produces CH3 and COCH2Cl fragments. The CH3C(O)CH2 radicals are formed with a considerable amount of energy partitioned into rotation; we use an impulsive model to explicitly characterize the internal energy distribution. The data are better fit by using the C-Cl bond fission transition state on the S1 surface of chloroacetone as the geometry at which the impulsive force acts, not the Franck-Condon geometry. Our data suggest that, even under atmospheric conditions, the reaction of OH with allene could produce a small branching to CH3 + ketene products, rather than solely producing inelastically stabilized adducts. This additional channel offers a different pathway for the OH-initiated oxidation of such unsaturated volatile organic compounds, those containing a C=C=C moiety, than is currently included in atmospheric models.

  14. Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in p-H2 matrices

    International Nuclear Information System (INIS)

    Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern

    2012-01-01

    Irradiation at 239 ± 20 nm of a p-H 2 matrix containing methoxysulfinyl chloride, CH 3 OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν 1 , CH 2 antisymmetric stretching), 2999.5 (ν 2 , CH 3 antisymmetric stretching), 2950.4 (ν 3 , CH 3 symmetric stretching), 1465.2 (ν 4 , CH 2 scissoring), 1452.0 (ν 5 , CH 3 deformation), 1417.8 (ν 6 , CH 3 umbrella), 1165.2 (ν 7 , CH 3 wagging), 1152.1 (ν 8 , S=O stretching mixed with CH 3 rocking), 1147.8 (ν 9 , S=O stretching mixed with CH 3 wagging), 989.7 (ν 10 , C-O stretching), and 714.5 cm -1 (ν 11 , S-O stretching) modes of syn-CH 3 OSO. When CD 3 OS(O)Cl in a p-H 2 matrix was used, lines at 2275.9 (ν 1 ), 2251.9 (ν 2 ), 2083.33 ), 1070.3 (ν 4 ), 1056.0 (ν 5 ), 1085.5 (ν 6 ), 1159.7 (ν 7 ), 920.1 (ν 8 ), 889.0 (ν 9 ), 976.9 (ν 10 ), and 688.9 (ν 11 ) cm -1 appeared and are assigned to syn-CD 3 OSO; the mode numbers correspond to those used for syn-CH 3 OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86/aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH 3 OSO near 2991, 2956, 1152, and 994 cm -1 to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD 3 OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H 2 such that the Cl atom, produced via UV photodissociation of CH 3 OS(O)Cl in situ, might escape from the original cage to yield isolated CH 3 OSO radicals.

  15. Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in p-H2 matrices.

    Science.gov (United States)

    Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern

    2012-03-28

    Irradiation at 239 ± 20 nm of a p-H(2) matrix containing methoxysulfinyl chloride, CH(3)OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν(1), CH(2) antisymmetric stretching), 2999.5 (ν(2), CH(3) antisymmetric stretching), 2950.4 (ν(3), CH(3) symmetric stretching), 1465.2 (ν(4), CH(2) scissoring), 1452.0 (ν(5), CH(3) deformation), 1417.8 (ν(6), CH(3) umbrella), 1165.2 (ν(7), CH(3) wagging), 1152.1 (ν(8), S=O stretching mixed with CH(3) rocking), 1147.8 (ν(9), S=O stretching mixed with CH(3) wagging), 989.7 (ν(10), C-O stretching), and 714.5 cm(-1) (ν(11), S-O stretching) modes of syn-CH(3)OSO. When CD(3)OS(O)Cl in a p-H(2) matrix was used, lines at 2275.9 (ν(1)), 2251.9 (ν(2)), 2083.3 (ν(3)), 1070.3 (ν(4)), 1056.0 (ν(5)), 1085.5 (ν(6)), 1159.7 (ν(7)), 920.1 (ν(8)), 889.0 (ν(9)), 976.9 (ν(10)), and 688.9 (ν(11)) cm(-1) appeared and are assigned to syn-CD(3)OSO; the mode numbers correspond to those used for syn-CH(3)OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86∕aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH(3)OSO near 2991, 2956, 1152, and 994 cm(-1) to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD(3)OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H(2) such that the Cl atom, produced via UV photodissociation of CH(3)OS(O)Cl in situ, might escape from the original cage to yield isolated CH(3)OSO radicals.

  16. Electron energy loss spectroscopy of CH3N2CH3 adsorbed on Ni(100), Ni(111), Cr(100), Cr(111)

    International Nuclear Information System (INIS)

    Schulz, M.A.

    1985-07-01

    A study of the adsorption of CH 3 N 2 CH 3 on Ni(100), Ni(111), Cr(100), and Cr(111) using high resolution electron energy loss spectroscopy (EELS) is presented. Under approximately the same conditions of coverage, the vibrational spectra of CH 3 N 2 CH 3 on these four surfaces are quite distinct from one another, implying that the CH 3 N 2 CH 3 -substrate interaction is very sensitive to the physical and electronic structure of each surface. In addition to the room temperature studies, the evolution of surface species on the Ni(100) surface in the temperature range 300 to 425 K was studied. Analysis of the Ni(100) spectra indicates that molecular adsorption, probably through the N lone pair, occurs at room temperature. Spectra taken after annealing the CH 3 N 2 CH 3 -Ni(100) surfaces indicate that CH and CN bond scission occurred at the elevated temperatures. Decomposition of CH 3 N 2 CH 3 takes place on the Ni(111), Cr(100), and Cr(111) surfaces at room temperature, as evidenced by the intensity of the carbon-metal stretch in the corresponding spectra. Possible identities of coadsorbed dissociation products are considered. The stable coverage of surface species on all four surfaces at 300 K is less than one monolayer. A general description of an electron energy loss (EEL) spectrometer is given. Followed by a more specific discussion of some recent modifications to the EEL monochromator assembly used in this laboratory. Both the previous configuration of our monochromator and the new version are briefly described, as an aid to understanding the motivation for the changes as well as the differences in operation of the two versions. For clarity, the new monochromator design is referred to as variable pass, while the previous design is referred to as double pass. A modified tuning procedure for the new monochromator is also presented. 58 refs., 11 figs

  17. Production of gaseous radiotracers CH{sub 3}I and I{sub 2} through Na{sup 123}I salt

    Energy Technology Data Exchange (ETDEWEB)

    Candeiro, R.E.M., E-mail: ricardocandeiro@cnen.gov.b [Comissao Nacional de Energia Nuclear (DIFOR/CNEN-CE), Fortaleza, CE (Brazil). Distrito de Fortaleza; Brandao, L.B. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Pereira, W.P. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2011-07-01

    The objective of the present work was to develop, separately, methodology for production of two gaseous tracers through the sodium iodide NaI marked with {sup 123}I. Found in the nature in form different, the iodine has been used in diverse works in the area of the industry and health. These two forms of the gaseous iodine, the methyl iodide, CH{sub 3}I, and molecular iodine, I{sub 2}, are very unstable and volatile in the ambient temperature and presents different problems in clean-up and monitoring systems. The syntheses were processed with sodium iodide (NaI) 1M aqueous solution marked with 1{sup 23I}. The production of gas I{sub 2} was realized with in chlorine acid (HCl) and sodium iodate salt (NaIO{sub 3}) and the CH{sub 3}I was used, the salt of NaI and the reagent (CH{sub 3}){sub 2}SO{sub 4}. The production of gases was initially realized through in unit in glass with an inert material and the purpose was to study the kinetic of reaction and to determine the efficiency of production. The two synthesis occurs in the reaction bottle and after of produced, the gas is stored in the collect bottle that contains a starch solution for fixed the I{sub 2}, and in syntheses of CH{sub 3}I contains a silver nitrate solution for your fixation. To determine the efficiency of production of gases, analytic tests were realized, where the consumption of iodide ions of the bottle of reaction are measured. The optimization of production of the each gaseous tracer was studied varying parameter as: concentration of iodide, concentration of acid and temperature. After, the syntheses of the radiotracers were realized in the compact unit, having been used as main reagent the salt radiated of sodium iodide, Na{sup 123}I. The transportation of elementary iodine and methyl iodine was studied by a scintillation detector NaI (2 x 2)' positioned in the reaction bottle. (author)

  18. Enhanced PL and EL properties of Alq3/nano-TiO2 with the modification of 8-vinyl POSS

    Science.gov (United States)

    Li, Jie; Xie, Bing; Xia, Kai; Zhao, Chunmao; Li, Yingchun; Hu, Shengliang

    2018-04-01

    In this study, tris (8-hydroxyquinoline) aluminum/nano-titanium dioxide (Alq3/nano-TiO2) composites were synthesized using a simply in-situ process with 8-vinyl polyhedral oligomeric silsesquioxane (POSS) as a modifier. The as-prepared Alq3/nano-TiO2 composites were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet visible (UV-vis) absorption spectra. The effect of modification on luminescence properties for the samples was studied by photoluminescence (PL) spectra, electroluminescence (EL) spectra and time-resolved luminescence decay curves. Organic light emitting diodes (OLEDs) with the corresponded emitting layer structure were investigated. The results show that the amphiphilicity of the 8-vinyl POSS leads to well-dispersion state of the nano-TiO2 in the Alq3. Adding a proper weight percentage of 8-vinyl POSS is beneficial for the PL and EL properties enhancement of the composites. OLED using the Alq3/nano-TiO2 with 1 wt% 8-vinyl POSS emitting layer has the low turn-on voltage (4.7 V at 1 cd/m2), high maximum luminance (7463 cd/m2 at 8.75 V), and high luminous efficiency (1.13 cd/A at 100 mA/cm2). Adding 1 wt% 8-vinyl POSS in Alq3/nano-TiO2 can increase the EL intensity by a factor of 37.1 at 8 V. These values are better than those for OLEDs using the Alq3 emitting layer. The increase in luminance and current efficiency stability can be attributed to the energy transfer process between the Alq3 and the nano-TiO2, and the suppression of the self-quenching by caged 8-vinyl POSS molecules.

  19. A methyl-coordinated Rh III ion in methylpentaamminerhodium(III)–chloropentaamminerhodium(III)–dithionate (0.73/2.27/3)

    DEFF Research Database (Denmark)

    Harris, Pernille; Kofod, Pauli

    2002-01-01

    Some disorder is seen in the crystal structure of [Rh(CH3)(NH3)5]0.73[RhCl(NH3)5]2.27(S2O6)3. It is, however, clear that the methyl group has a pronounced trans influence on the Rh-N distance, with an elongation of 0.11 Å. No trans influence is observed for the Rh-N distance due to the Cl- ion. B...

  20. Dynamics for CH3F and CD3F isolated in rare gas solids

    International Nuclear Information System (INIS)

    Jones, L.H.; Swanson, B.I.

    1982-01-01

    High resolution infrared spectra have been obtained for CH 3 F and CD 3 F in argon and krypton matrices from 3 to 39 K. Low-temperature spectra show structure indicative of two stable monomer sites. As temperature is raised, the structure collapses to give symmetric peaks for each mode. The line shapes and their broadening with temperature show large dependence on the modes, isotope, and host matrix. On the basis of the absence of rovibrational structure and the very different line shapes for the various modes, we conclude that free or hindered rotation does not contribute to the absorption lines of methyl fluoride in argon or krypton matrices below 40 K. The mode dependent line broadening with increasing temperatures has been attributed to vibrational dephasing involving low energy site local phonon modes. Implications with regard to vibrational energy relaxation, which is currently thought to be dominated by a vibration to rotation energy transfer, are discussed

  1. The Formation of Polycomplexes of Poly(Methyl Vinyl Ether-Co-Maleic Anhydride and Bovine Serum Albumin in the Presence of Copper Ions

    Directory of Open Access Journals (Sweden)

    Karahan Mesut

    2014-09-01

    Full Text Available The binary and ternary complex formations of poly(methyl vinyl ether-co-maleic anhydride (PMVEMA with copper ions and with bovine serum albumin (BSA in the presence of copper ions in phosphate buffer solution at pH = 7 were examined by the techniques of UV-visible, fluorescence, dynamic light scattering, atomic force microscopy measurements. In the formation of binary complexes of PMVEMA-Cu(II, the addition of copper ions to the solution of PMVEMA in phosphate buffer solution at pH = 7 forms homogeneous solutions when the molar ratio of Cu(II/MVEMA is 0.5. Then the formations of ternary complexes of PMVEMA-Cu(II-BSA were examined. Study analysis revealed that the toxicities of polymer-metal and polymer-metal-protein mixture solutions depend on the nature and ratio of components in mixtures.

  2. Hydrolysis of strained bridgehead bicyclic vinyl ethers and sulfides

    International Nuclear Information System (INIS)

    Chwang, W.K.; Kresge, A.J.; Wiseman, J.R.

    1979-01-01

    Rates of hydrolysis of the bridgehead bicyclic vinyl ether 9-oxabicyclo[3.3.1]non-1-ene(6) and its vinyl sulfide counterpart 9-thiabicyclo[3.3.1]non-1-ene(7), catalyzed by the hydronium ion, were measured in H 2 O and in D 2 O solution. These data give isotope effects, k/sub H//k/sub D/ = 2.4 and 1.9 respectively, which show that these reactions occur by the normal, rate-determining carbon protonation, mechanism. The vinyl ether 6 is less reactive than its olefin analogue, bicyclo[3.3.1]non-1-ene (relative rate 1:1/1400), as may have been expected for a constrained bicyclic system such as this, where stabilization of the bridgehead carbocation intermediate by conjugation with oxygen is severely impaired. The vinyl sulfide 7, however, is even less reactive than the vinyl ether (relative rates 1:1/140); this is a remarkable result in view of the fact that conjugation between the sulfur atom and the cationic center is presumably also strongly inhibited. 1 figure, 3 tables

  3. Hot filament-dissociation of (CH3)3SiH and (CH3)4Si, probed by vacuum ultra violet laser time of flight mass spectroscopy.

    Science.gov (United States)

    Sharma, Ramesh C; Koshi, Mitsuo

    2006-11-01

    The decomposition of trimethylsilane and tetramethylsilane has been investigated for the first time, using hot wire (catalytic) at various temperatures. Trimethylsilane is catalytic-dissociated in these species SiH(2), CH(3)SiH, CH(3), CH(2)Si. Time of flight mass spectroscopy signal of these species are linearly increasing with increasing catalytic-temperature. Time of flight mass spectroscopy (TOFMS) signals of (CH(3))(3)SiH and photodissociated into (CH(3))(2)SiH are decreasing with increasing hot filament temperature. TOFMS signal of (CH(3))(4)Si is decreasing with increasing hot wire temperature, but (CH(3))(3)Si signal is almost constant with increasing the temperature. We calculated activation energies of dissociated species of the parental molecules for fundamental information of reaction kinetics for the first time. Catalytic-dissociation of trimethylsilane, and tetramethylsilane single source time of flight coupled single photon VUV (118 nm) photoionization collisionless radicals at temperature range of tungsten filament 800-2360 K. The study is focused to understand the fundamental information on reaction kinetics of these molecules at hot wire temperature, and processes of catalytic-chemical vapour deposition (Cat-CVD) technique which could be implemented in amorphous and crystalline SiC semiconductors thin films.

  4. Photodissociation dynamics of the simplest alkyl peroxy radicals, CH3OO and C2H5OO, at 248 nm

    Science.gov (United States)

    Sullivan, Erin N.; Nichols, Bethan; Neumark, Daniel M.

    2018-01-01

    The photodissociation dynamics of the simplest alkyl peroxy radicals, methyl peroxy (CH3OO) and ethyl peroxy (C2H5OO), are investigated using fast beam photofragment translational spectroscopy. A fast beam of CH3OO- or C2H5OO- anions is photodetached to generate neutral radicals that are subsequently dissociated using 248 nm photons. The coincident detection of the photofragment positions and arrival times allows for the determination of mass, translational energy, and angular distributions for both two-body and three-body dissociation events. CH3OO exhibits repulsive O loss resulting in the formation of O(1D) + CH3O with high translational energy release. Minor two-body channels leading to OH + CH2O and CH3O + O(3P) formation are also detected. In addition, small amounts of H + O(3P) + CH2O are observed and attributed to O loss followed by CH3O dissociation. C2H5OO exhibits more complex dissociation dynamics, in which O loss and OH loss occur in roughly equivalent amounts with O(1D) formed as the dominant O atom electronic state via dissociation on a repulsive surface. Minor two-body channels leading to the formation of O2 + C2H5 and HO2 + C2H4 are also observed and attributed to a ground state dissociation pathway following internal conversion. Additionally, C2H5OO dissociation yields a three-body product channel, CH3 + O(3P) + CH2O, for which the proposed mechanism is repulsive O loss followed by the dissociation of C2H5O over a barrier. These results are compared to a recent study of tert-butyl peroxy (t-BuOO) in which 248 nm excitation results in three-body dissociation and ground state two-body dissociation but no O(1D) production.

  5. Kinetics of the CH3 + HCl/DCl → CH4/CH3D + Cl and CD3 + HCl/DCl → CD3H/CD4 + Cl reactions: An experimental H atom tunneling investigation

    International Nuclear Information System (INIS)

    Eskola, Arkke J.; Seetula, Jorma A.; Timonen, Raimo S.

    2006-01-01

    The kinetics of the radical reactions of CH 3 with HCl or DCl and CD 3 with HCl or DCl have been investigated in a temperature controlled tubular reactor coupled to a photoionization mass spectrometer. The CH 3 (or CD 3 ) radical, R, was produced homogeneously in the reactor by a pulsed 193 nm exciplex laser photolysis of CH 3 COCH 3 (or CD 3 COCD 3 ). The decay of CH 3 /CD 3 was monitored as a function of HCl/DCl concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature, typically from 188 to 500 K. The rate constants of the CH 3 and CD 3 reactions with HCl had strong non-Arrhenius behavior at low temperatures. The rate constants were fitted to a modified Arrhenius expression k = QA exp (-E a /RT) (error limits stated are 1σ + Students t values, units in cm 3 molecule -1 s -1 ): k(CH 3 + HCl) = [1.004 + 85.64 exp (-0.02438 x T/K)] x (3.3 ± 1.3) x 10 -13 exp [-(4.8 ± 0.6) kJ mol -1 /RT] and k(CD 3 + HCl) = [1.002 + 73.31 exp (-0.02505 x T/K)] x (2.7 ± 1.2) x 10 -13 exp [-(3.5 ± 0.5) kJ mol -1 /RT]. The radical reactions with DCl were studied separately over a wide ranges of temperatures and in these temperature ranges the rate constants determined were fitted to a conventional Arrhenius expression k = A exp (-E a /RT) (error limits stated are 1σ + Students t values, units in cm 3 molecule -1 s -1 ): k(CH 3 + DCl) = (2.4 ± 1.6) x 10 -13 exp [-(7.8 ± 1.4) kJ mol -1 /RT] and k(CD 3 + DCl) = (1.2 ± 0.4) x 10 -13 exp [-(5.2 ± 0.2) kJ mol -1 /RT] cm 3 molecule -1 s -1 . Curvature in the Arrhenius plots of the H-atom abstraction reactions at low temperatures was analyzed by considering H-atom tunneling through the reaction barrier and primary kinetic isotope effect. Contribution of tunneling in it was concluded to be negligible. In addition, secondary isotope effect was measured

  6. Vinyl Record

    DEFF Research Database (Denmark)

    Bartmanski, Dominik; Woodward, Ian

    2018-01-01

    . This relational process means that both the material affordances and entanglements of vinyl allow us to feel, handle, experience, project, and share its iconicity. The materially mediated meanings of vinyl enabled it to retain currency in independent and collector’s markets and thus resist the planned......In this paper, we use the case of the vinyl record to show that iconic objects become meaningful via a dual process. First, they offer immersive engagements which structure user interpretations through various material experiences of handling, use, and extension. Second, they always work via...

  7. Interaction parameters of poly(vinyl methyl ether) in 2-propanol-water mixture as determined by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Takada, Masako; Kurita, Kimio; Okano, Koji; Furusaka, Michihiro.

    1994-01-01

    The small-angle neutron scattering from semidilute solutions of poly(vinyl methyl ether)(PVME) in a 2-propanol-water mixture has been measured, the volume concentration of 2-propanol in the aqueous solvent being 10%, in the temperature range just below the lower critical solution temperature(LCST). The binary and ternary cluster integrals of polymer segments were determined from the concentration dependence of the correlation length at each temperature. We have calculated the contribution of segment-segment interaction to the entropy, S int and enthalpy, U int from the measured temperature dependences of these interaction parameters and found that both values are positive in accordance with the previously measured PVME-water system and PVME-(water+methanol) system. However, the value of S int for PVME-(water+2-propanol) system is larger than that for PVME-(water+methanol) system having the same alcohol concentration, and it is even larger than that for PVME-water system. This anomalous behavior is explained as due to the preferential solvation of 2-propanol molecules to the segments of PVME. (author)

  8. Structural and Kinetic Evidence for an Extended Hydrogen-Bonding Network in Catalysis of Methyl Group Transfer

    International Nuclear Information System (INIS)

    Doukov, T.; Hemmi, H.; Drennan, C.; Ragsdale, S.

    2007-01-01

    The methyltetrahydrofolate (CH 3 -H 4 folate) corrinoid-ironsulfur protein (CFeSP) methyltransferase (MeTr) catalyzes transfer of the methyl group of CH3-H4folate to cob(I)amide. This key step in anaerobic CO and CO 2 fixation is similar to the first half-reaction in the mechanisms of other cobalamin-dependent methyltransferases. Methyl transfer requires electrophilic activation of the methyl group of CH 3 -H 4 folate, which includes proton transfer to the N5 group of the pterin ring and poises the methyl group for reaction with the Co(I) nucleophile. The structure of the binary CH 3 -H 4 folate/MeTr complex (revealed here) lacks any obvious proton donor near the N5 group. Instead, an Asn residue and water molecules are found within H-bonding distance of N5. Structural and kinetic experiments described here are consistent with the involvement of an extended H-bonding network in proton transfer to N5 of the folate that includes an Asn (Asn-199 in MeTr), a conserved Asp (Asp-160), and a water molecule. This situation is reminiscent of purine nucleoside phosphorylase, which involves protonation of the purine N7 in the transition state and is accomplished by an extended H-bond network that includes water molecules, a Glu residue, and an Asn residue (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Shi, W., Fedorov, A., Lewandowicz, A., Cahill, S. M., Almo, S. C., and Schramm, V. L. (2002) Biochemistry 41, 14489-14498). In MeTr, the Asn residue swings from a distant position to within H-bonding distance of the N5 atom upon CH 3 -H 4 folate binding. An N199A variant exhibits only ∼20-fold weakened affinity for CH 3 -H 4 folate but a much more marked 20,000-40,000-fold effect on catalysis, suggesting that Asn-199 plays an important role in stabilizing a transition state or high energy intermediate for methyl transfer

  9. Direct 13C-1H coupling constants in the vinyl group of 1-vinylpyrazoles

    International Nuclear Information System (INIS)

    Afonin, A.V.; Voronov, V.K.; Es'kova, L.A.; Domnina, E.S.; Petrova, E.V.; Zasyad'ko, O.V.

    1987-01-01

    In a continuation of a study of the rotational isomerism of 1-vinylpyrazoles, they studied the direct 13 C- 1 H coupling constants in the vinyl group of 1-vinylpyrazole, 1-vinyl-4-bromopyrazole, 1-vinyl-3-methylpyrazole, 1-vinyl-5-methylpyrazole, 1-vinyl-3,5-dimethylpyrazole, and 1-vinyl-4-nitro-3,5-dimethylpyrazole. The 13 C- 1 H direct coupling constants in the vinyl group of 1-vinylpyrazoles are stereo-specific and vary with change in the conformer ratio

  10. CH3NH3Pb1-xMgxI3 perovskites as environmentally friendly photovoltaic materials

    Science.gov (United States)

    Zhang, Y. D.; Feng, J.

    2018-01-01

    In an effort to reduce the toxicity of Pb in perovskite solar cells, the band structures, electron and hole effective masses, and electronic and optical properties of the novel perovskites CH3NH3Pb1-xMgxI3 were predicted using density functional theory with the scalar relativistic generalized gradient approximation. The calculation results indicated that the introduction of the Mg component caused the band gaps of the CH3NH3Pb1-xMgxI3 compounds to exceed that of CH3NH3PbI3. The calculated absorption coefficients of the CH3NH3PbI3 and CH3NH3Pb1-xMgxI3 perovskites revealed that substituting 12.5 mol % of the Pb in CH3NH3PbI3 with Mg had little effect on the absorption ability. Surprisingly, it was also found that CH3NH3Pb0.75Mg0.25I3 retained up to 83% of the absorption performance relative to CH3NH3PbI3. This indicates that the amount of toxic Pb used in perovskite solar cells could be reduced by a quarter while retaining over 80% of the light-absorbing ability. In general, these novel CH3NH3Pb1-xMgxI3 (x ≤ 0.25) perovskites represent promising candidates for environmentally friendly light-harvesting materials for use in solar cells.

  11. Gamma radiolysis and vinyl esters

    International Nuclear Information System (INIS)

    De Bruyn, H.; Balic, R.; Gilbert, R.G.

    1998-01-01

    The principle behind γ relaxation of free-radical polymerizations is that the source of initiating radicals can be switched off 'instantaneously'. In the absence of initiating radicals the only kinetic events remaining are propagation, transfer and termination. For monomers whose propagation rate coefficients have been determined, relaxation behaviour can be interpreted to determine radical-loss rate coefficients and test models of loss mechanisms. This technique has been employed successfully on styrene and MMA emulsion polymerizations. In the present study, vinyl acetate and vinyl neo-decanoate (a ten-carbon-branched homologue of vinyl acetate) were studied, with the propagation rate coefficients for both monomers being established by pulsed-laser polymerization. Both were found to exhibit rapid γ relaxation rates in emulsion polymerization. This is a surprising result because mechanisms for rapid relaxation in emulsion polymerizations require that chain transfer to monomer (which is rapid for both monomers) is followed by exit from the particle into the aqueous phase with subsequent re-entry into a radical-containing particle leading to bimolecular termination. It is not unreasonable to suppose that this may be possible for vinyl acetate which is fairly water soluble (∼0.3 M). However, vinyl neo-decanoate is virtually insoluble (∼0.00004 M) and hence desorption is extremely unlikely. The most likely explanation for the observed rapid relaxations is that some of the radicals produced by γ radiolysis are slow to initiate vinyl esters and hence act as radical traps. As vinyl esters are known to be particularly unreactive monomers. it is feasible that this experimental artifact affects them to a much greater extent than some of the monomers studied successfully with this technique in the past

  12. Optical monitoring of CH3NH3PbI3 thin films upon atmospheric exposure

    International Nuclear Information System (INIS)

    Ghimire, Kiran; Zhao, Dewei; Cimaroli, Alex; Ke, Weijun; Yan, Yanfa; Podraza, Nikolas J

    2016-01-01

    CH 3 NH 3 PbI 3 perovskite films of interest for photovoltaic (PV) devices have been prepared by (i) vapor deposition and (ii) solution processing. Complex dielectric function ( ε   =   ε 1   +  i ε 2 ) spectra and structural parameters of the films have been extracted using near infrared to ultraviolet spectroscopic ellipsometry. In situ real time spectroscopic ellipsometry (RTSE) over a 48 h period has been performed on vapor deposited CH 3 NH 3 PbI 3 after the deposition in normal atmospheric laboratory ambient conditions. Analysis of RTSE data for vapor deposited CH 3 NH 3 PbI 3 film prepared under un-optimized conditions identifies phase segregated PbI 2 and CH 3 NH 3 I at the substrate/film interface and unreacted PbI 2 and CH 3 NH 3 I on the film surface. This analysis also provides the time dependence of the effective thicknesses of perovskite film, unreacted components, and phase segregated layers to track CH 3 NH 3 PbI 3 decomposition. (paper)

  13. Methanesulfonates of high-valent metals. Syntheses and structural features of MoO{sub 2}(CH{sub 3}SO{sub 3}){sub 2}, UO{sub 2}(CH{sub 3}SO{sub 3}){sub 2}, ReO{sub 3}(CH{sub 3}SO{sub 3}), VO(CH{sub 3}SO{sub 3}){sub 2}, and V{sub 2}O{sub 3}(CH{sub 3}SO{sub 3}){sub 4} and their thermal decomposition under N{sub 2} and O{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Betke, Ulf; Neuschulz, Kai; Wickleder, Mathias S. [Carl von Ossietzky University of Oldenburg, Institute of Pure and Applied Chemistry (Germany)

    2011-11-04

    Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO{sub 3}, UO{sub 2}(CH{sub 3}COO){sub 2}.2 H{sub 2}O, Re{sub 2}O{sub 7}(H{sub 2}O){sub 2}, and V{sub 2}O{sub 5} with CH{sub 3}SO{sub 3}H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO{sub 2}(CH{sub 3}SO{sub 3}){sub 2} (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm{sup 3}, Z=8) contains [MoO{sub 2}] moieties connected by [CH{sub 3}SO{sub 3}] ions to form layers parallel to (100). UO{sub 2}(CH{sub 3}SO{sub 3}){sub 2} (P2{sub 1}/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1) {sup circle}, V=1.8937(3) nm{sup 3}, Z=8) consists of linear UO{sub 2}{sup 2+} ions coordinated by five [CH{sub 3}SO{sub 3}] ions, forming a layer structure. VO(CH{sub 3}SO{sub 3}){sub 2} (P2{sub 1}/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1) {sup circle}, V=0.8290(2) nm{sup 3}, Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO{sub 3}(CH{sub 3}SO{sub 3}) (P anti 1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2) {sup circle}, V=1.1523(4) nm{sup 3}, Z=8) a chain structure exhibiting infinite O-[ReO{sub 2}]-O-[ReO{sub 2}]-O chains is formed. Each [ReO{sub 2}]-O-[ReO{sub 2}] unit is coordinated by two bidentate [CH{sub 3}SO{sub 3}] ions. V{sub 2}O{sub 3}(CH{sub 3}SO{sub 3}){sub 4} (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm{sup 3}, Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH{sub 3}SO{sub 3}] ligands. Additional methanesulfonate ions connect the [V{sub 2}O{sub 3}] groups along [001]. Thermal decomposition of the compounds was monitored under N{sub 2} and O{sub 2} atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N{sub 2} the decomposition proceeds

  14. Effects of solvents on the radiation grafting reaction of vinyl compounds on poly (3-hydroxybutyrate)

    International Nuclear Information System (INIS)

    Torres, Maykel González; Talavera, José Rogelio Rodríguez; Muñoz, Susana Vargas; Pérez, Manuel González; Castro, Ma. Pilar. Carreón.; Cortes, Jorge Cerna

    2015-01-01

    Vinyl Acetate was grafted onto poly (3-hydroxybutyrate) by the simultaneous gamma irradiation method using different types of solvents and in bulk (solvent free), at 10 kGy and 1.62 kGy/h dose and dose rate respectively. Subsequent complete hydrolysis allowed the conversion of grafted chains from poly (vinyl acetate) to poly (vinyl alcohol). The aim of this study is to determine the effect of solvent through the estimation of the dependence of the degree of grafting with the choice of solvent, the calculation of the degree of crystallinity, and to study the biodegradation of the products. The results showed a greater degree of grafting in bulk, while the more suitable solvent was hexane. Characterization of the grafted copolymer indicated that crystallinity percentage decreased by an increase in grafting, while the biodegradability was promoted by the increment in poly (vinyl alcohol) grafted. - Highlights: • PHB was indirectly grafted with PVA, by complete hydrolysis of grafted PVAc. • The effect of solvents on the grafting, crystallinity and biodegradation was studied. • The characterizations of the products were obtained by SEM, TGA, and DSC

  15. ALMA Spectroscopy of Titan's Atmosphere: First Detections of Vinyl Cyanide and Acetonitrile Isotopologues

    Science.gov (United States)

    Cordiner, Martin; Y Palmer, Maureen; Nixon, Conor A.; Charnley, Steven B.; Mumma, Michael J.; Irwin, Pat G. J.; Teanby, Nick A.; Kisiel, Zbigniew; Serigano, Joseph

    2015-11-01

    Studies of Titan's atmospheric chemistry provide a unique opportunity to explore the origin and evolution of complex organic matter in primitive planetary atmospheres. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new telescope, well suited to the study of molecular emission from Titan's stratosphere and mesosphere. Here we present early results from our ongoing study to exploit the large volume of Titan data taken using ALMA in Early Science Mode (during the period 2012-2014). Combining data from multiple ALMA Band 6 observations, we obtained high-resolution mm-wave spectra with unprecedented sensitivity, enabling the first detection of vinyl cyanide (C2H3CN) in Titan's atmosphere. Initial estimates indicate a mesospheric abundance ratio with respect to ethyl cyanide (C2H5CN) of [C2H3CN]/[C2H5CN] = 0.31. In addition, we report the first detections on Titan of the 13C and 15N-substituted isotopologues of acetonitrile (13CH3CN and CH3C15N). Radiative transfer models and possible chemical formation pathways for these molecules will be discussed.

  16. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    Science.gov (United States)

    Shirahata, Yasuhiro; Oku, Takeo

    2017-01-01

    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.

  17. Atmospheric chemistry of 4 : 2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH): Products and mechanism of Cl atom initiated oxidation

    DEFF Research Database (Denmark)

    Hurley, MD; Ball, JC; Wallington, TJ

    2004-01-01

    Smog chamber/FTIR techniques were used to study the products and mechanism of the Cl atom initiated oxidation of 4:2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH) in 700 Torr of N-2/O-2 diluent at 296 K. CF3(CF2)(3)CH2CHO is the sole primary oxidation product. CF3(CF2)(3)CHO, CF3(CF2)(3)CH2COOH...... respectively. Using relative rate techniques, a value of k(Cl + CF3(CF2)(3)CH2CHO) = (1.84 +/- 0.30) x 10(-11) cm(3) molecule(-1) s(-1) was determined. The yield of the perfluorinated acid, CF3(CF2)(3)COOH, from the 4:2 fluorotelomer alcohol increased with the diluent gas oxygen concentration......, and CF3(CF2)(3)CH2C(O)OOH are secondary oxidation products. Further irradiation results in the formation of CF3(CF2)(3)COOH, COF2, and CF3OH. CF3(CF2)(3)CHO, CF3(CF2)(3)CH2COOH, and CF3(CF2)(3)CH2C(O)OOH are formed from CF3(CF2)(3)CH2CHO oxidation in yields of 46 27 and less than or equal to 27...

  18. THE PECULIAR DISTRIBUTION OF CH{sub 3}CN IN IRC +10216 SEEN BY ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, M.; Cernicharo, J.; Quintana-Lacaci, G.; Prieto, L. Velilla [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco (Spain); Castro-Carrizo, A.; Guélin, M. [Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, F-38406 St. Martin d’Héres (France); Marcelino, N. [INAF, Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy)

    2015-12-01

    IRC +10216 is a circumstellar envelope around a carbon-rich evolved star which contains a large variety of molecules. According to interferometric observations, molecules are distributed either concentrated around the central star or as a hollow shell with a radius of ∼15″. We present ALMA Cycle 0 band 6 observations of the J = 14 – 13 rotational transition of CH{sub 3}CN in IRC +10216, obtained with an angular resolution of 0.″76 × 0.″61. The bulk of the emission is distributed as a hollow shell located at just ∼2″ from the star, with a void of emission in the central region up to a radius of ∼1″. This spatial distribution is markedly different from those found to date in this source for other molecules. Our analysis indicates that methyl cyanide is not formed in either the stellar photosphere or far in the outer envelope, but at radial distances as short as 1″–2″, reaching a maximum abundance of ∼0.02 molecules cm{sup −3} at 2″ from the star. Standard chemical models of IRC +10216 predict that the bulk of CH{sub 3}CN molecules should be present at a radius of ∼15″ where other species such as polyyne radicals and cyanopolyynes are observed, with an additional inner component within 1″ from the star. The non-uniform structure of the circumstellar envelope and grain surface processes are discussed as possible causes of the peculiar distribution of methyl cyanide in IRC +10216.

  19. On the growth of CH3NH3PbI3-xClx single crystal and characterization

    Science.gov (United States)

    Su, J.; Wang, W. F.; Lei, Y.; Zhang, L.; Xu, L. H.; Wang, D.; Lu, D.; Bai, Y.

    2018-05-01

    In this paper, CH3NH3PbI3-xClx crystal was grown by solution cooling method with CH3NH3I and PbCl2 as raw materials. Lead compounds and CH3NH3PbI3-xClx crystal with size about 6 mm × 4 mm × 2 mm were obtained. The chemical reactions with different CH3NH3I/PbCl2 ratios were analyzed. XPS shows the content of chlorine in CH3NH3PbI3-xClx is about 0.91%. PXRD, FT-IR, Raman and absorbance spectra were used to study the structure and optical properties of CH3NH3PbI3-xClx by comparing with CH3NH3PbI3 crystal. The CH3NH3PbI3-xClx crystal grown is of tetragonal structure with the lattice constants a = b = 8.8165 Å, c = 12.7920 Å and the bandgap value of 1.57 eV.

  20. The surface chemistry of nanocrystalline MgO catalysts for FAME production: An in situ XPS study of H2O, CH3OH and CH3OAc adsorption

    Science.gov (United States)

    Montero, J. M.; Isaacs, M. A.; Lee, A. F.; Lynam, J. M.; Wilson, K.

    2016-04-01

    An in situ XPS study of water, methanol and methyl acetate adsorption over as-synthesised and calcined MgO nanocatalysts is reported with a view to gaining insight into the surface adsorption of key components relevant to fatty acid methyl esters (biodiesel) production during the transesterification of triglycerides with methanol. High temperature calcined NanoMgO-700 adsorbed all three species more readily than the parent material due to the higher density of electron-rich (111) and (110) facets exposed over the larger crystallites. Water and methanol chemisorb over the NanoMgO-700 through the conversion of surface O2 - sites to OH- and coincident creation of Mg-OH or Mg-OCH3 moieties respectively. A model is proposed in which the dissociative chemisorption of methanol occurs preferentially over defect and edge sites of NanoMgO-700, with higher methanol coverages resulting in physisorption over weakly basic (100) facets. Methyl acetate undergoes more complex surface chemistry over NanoMgO-700, with C-H dissociation and ester cleavage forming surface hydroxyl and acetate species even at extremely low coverages, indicative of preferential adsorption at defects. Comparison of C 1s spectra with spent catalysts from tributyrin transesterification suggest that ester hydrolysis plays a key factor in the deactivation of MgO catalysts for biodiesel production.

  1. Methyl vinyl ketone, a toxic ingredient in cigarette smoke extract, modifies glutathione in mouse melanoma cells.

    Science.gov (United States)

    Horiyama, Shizuyo; Takahashi, Yuta; Hatai, Mayuko; Honda, Chie; Suwa, Kiyoko; Ichikawa, Atsushi; Yoshikawa, Noriko; Nakamura, Kazuki; Kunitomo, Masaru; Date, Sachiko; Masujima, Tsutomu; Takayama, Mitsuo

    2014-01-01

    Cigarette smoke contains many harmful chemicals, which contribute to the pathogenesis of smoking-related diseases such as chronic obstructive pulmonary disease, cancer and cardiovascular disease. The cytotoxicity of cigarette smoke is well documented, but the definitive mechanism behind its toxicity remains unknown. Ingredients in cigarette smoke are known to deplete intracellular glutathione (GSH), the most abundant cellular thiol antioxidant, and to cause oxidative stress. In the present study, we investigated the mechanism of cigarette smoke extract (CSE)-induced cytotoxicity in B16-BL6 mouse melanoma (B16-BL6) cells using liquid chromatography-tandem mass spectrometry. CSE and ingredients in cigarette smoke, methyl vinyl ketone (MVK) and crotonaldehyde (CA), reduced cell viability in a concentration-dependent manner. Also, CSE and the ingredients (m/z 70, each) irreversibly reacted with GSH (m/z 308) to form GSH adducts (m/z 378) in cells and considerably decreased cellular GSH levels at concentrations that do not cause cell death. Mass spectral data showed that the major product formed in cells exposed to CSE was the GSH-MVK adduct via Michael-addition and was not the GSH-CA adduct. These results indicate that MVK included in CSE reacts with GSH in cells to form the GSH-MVK adduct, and thus a possible reason for CSE-induced cytotoxicity is a decrease in intracellular GSH levels.

  2. Poly(vinyl acetate-Based Block Copolymer/Clay Nanocomposites Prepared by In Situ Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    M.A. Semsarzadeh

    2009-12-01

    Full Text Available Atom transfer radical polymerization of styrene (St and methyl methacrylate (MMA was performed at 90oC in the absence and presence of nanoclay (Cloisite 30B. Trichloromethyl-terminated poly(vinyl acetate telomerand CuCl/ PMDETA were used as a macroinitiator and catalyst system, respectively. The experimental results showed that the atom transfer radical polymerization of St and MMA in the absence or presence of nanoclay proceeds via a controlled/living mode. It was observed that nanoclay significantly enhances the homopolymerization rate of MMA, which was attributed to the activated conjugated C=C bond of MMA monomer via interaction between the carbonyl group of MMA monomer and the hydroxyl moiety (Al-O-H of nanoclay as well as the effect of nanoclay on the dynamic equilibrium between the active (macro radicals and dormant species.Homopolymerization rate of St (a non-coordinative monomer with nanoclay decreased slightly in the presence of nanoclay. This could be explained by insertion of a portion of macroinitiator into the clay galleries, where no sufficient St monomer exists due to the low compatibility or interaction of St monomer with nanoclay to react with the macroinitiator. The results obtained from XRD, TEM and TGA analyses were fully in agreement with the kinetic data. Structure of the poly(vinyl acetate-bpolystyrene nanocomposite was found to be a combination of stacking layers and exfoliated structures while poly(vinyl acetate-b-poly(methyl methacryale nanocomposite had an exfoliated structure. This difference in the structure of nanocomposites was attributed to the different capability of the monomers (styrene and methyl methacrylate to react with the hydroxyl moiety (Al-O-H of nanoclay.

  3. Beta-Phosphinoethylboranes as Ambiphilic Ligands in Nickel-Methyl Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Fischbach, Andreas; Bazinet, Patrick R.; Waterman, Rory; Tilley, T. Don

    2007-10-28

    The ambiphilic {beta}-phosphinoethylboranes Ph{sub 2}PCH{sub 2}CH{sub 2}BR{sub 2} (BR{sub 2} = BCy{sub 2} (1a), BBN (1b)), which feature a ethano spacer CH{sub 2}CH{sub 2} between the Lewis acidic boryl and Lewis basic phosphino groups, were synthesized in nearly quantitative yields via the hydroboration of vinyldiphenylphosphine. Compounds 1a and 1b were fully characterized by elemental analysis, and by NMR and IR spectroscopy. X-ray crystallographic studies of compound 1b revealed infinite helical chains of the molecules connected through P{hor_ellipsis}B donor-acceptor interactions. The ability of these ambiphilic ligands to concurrently act as donors and acceptors was highlighted by their reactions with (dmpe)NiMe{sub 2}. Zwitterionic complexes (dmpe)NiMe(Ph{sub 2}PCH{sub 2}CH{sub 2}BCy{sub 2}Me) (2a) and (dmpe)NiMe(Ph{sub 2}PCH{sub 2}CH{sub 2}[BBN]Me) (2b) were generated via the abstraction of one of the methyl groups, forming a borate, and intramolecular coordination of the phosphine moiety to the resulting cationic metal center. Compound 2b was characterized by X-ray crystallography. Furthermore, B(C{sub 6}F{sub 5}){sub 3} abstracts the methyl group of a coordinated borate ligand to generate a free, 3-coordinate borane center in [(dmpe)NiMe(1a)]{sup +}[MeB(C{sub 6}F{sub 5}){sub 3}]{sup -} (3).

  4. Non-Covalent Interactions in Hydrogen Storage Materials LiN(CH32BH3 and KN(CH32BH3

    Directory of Open Access Journals (Sweden)

    Filip Sagan

    2016-03-01

    Full Text Available In the present work, an in-depth, qualitative and quantitative description of non-covalent interactions in the hydrogen storage materials LiN(CH32BH3 and KN(CH32BH3 was performed by means of the charge and energy decomposition method (ETS-NOCV as well as the Interacting Quantum Atoms (IQA approach. It was determined that both crystals are stabilized by electrostatically dominated intra- and intermolecular M∙∙∙H–B interactions (M = Li, K. For LiN(CH32BH3 the intramolecular charge transfer appeared (B–H→Li to be more pronounced compared with the corresponding intermolecular contribution. We clarified for the first time, based on the ETS-NOCV and IQA methods, that homopolar BH∙∙∙HB interactions in LiN(CH32BH3 can be considered as destabilizing (due to the dominance of repulsion caused by negatively charged borane units, despite the fact that some charge delocalization within BH∙∙∙HB contacts is enforced (which explains H∙∙∙H bond critical points found from the QTAIM method. Interestingly, quite similar (to BH∙∙∙HB intermolecular homopolar dihydrogen bonds CH∙∙∙HC appared to significantly stabilize both crystals—the ETS-NOCV scheme allowed us to conclude that CH∙∙∙HC interactions are dispersion dominated, however, the electrostatic and σ/σ*(C–H charge transfer contributions are also important. These interactions appeared to be more pronounced in KN(CH32BH3 compared with LiN(CH32BH3.

  5. Gamma-ray radiolysis of methyl iodide in air, in presence of water vapor

    International Nuclear Information System (INIS)

    Aubert, F.

    2002-03-01

    This work aims at modelling the processes involved in gamma-radiolysis of methyl iodide diluted in air in presence of steam. It is to determine quantitative and qualitative information, to quantify the importance of the organic iodides destruction in case of a nuclear reactor accident. The main data for radiochemistry and iodine compounds (I x O y and INO x ) formation were reviewed and analysed. Literature data about air products radiolysis reactivity towards I 2 and CH 3 I were used to develop a mechanistic model for methyl iodide destruction in the gas phase under gamma irradiation. An ab initio study was realised for a better understanding of atomic nitrogen ( 4 S and 2 D) reactivity towards CH 3 I. The model was tested on the available experimental data and constitute a way to investigate the main processus involved in methyl iodide destruction. For the low CH 3 I concentrations, about 10 -7 - 10 -8 mol.dm -3 , N and e - are mainly responsible for the destruction. I 2 O 4 (highest iodine oxide in the model) and IONO 2 are the main resulting iodinated' compounds. (author)

  6. CH3NH3PbI3 based solar cell: Modified by antisolvent treatment

    Science.gov (United States)

    Nandi, Pronoy; Giri, Chandan; Bansode, Umesh; Topwal, D.

    2017-05-01

    Solar cells based on new class of organic inorganic hybrid perovskite CH3NH3PbI3 were prepared by Ethyl acetate (EA); antisolvent treatment for the first time. This treatment results in new morphology for CH3NH3PbI3 thin film. FESEM image shows microrod type structures of CH3NH3PbI3 after EA antisolvent treatment. Energy band diagram was constructed using photoluminescence and photoemission studies. A better power conversion efficiency was achieved in EA treated film compare to without EA treated film.

  7. Effects of Boreal Lake Wetlands on Atmospheric 13CH3D and 12CH2D2

    Science.gov (United States)

    Haghnegahdar, M. A.; Kohl, I. E.; Schauble, E. A.; Walter Anthony, K. M.; Young, E. D.

    2017-12-01

    Recently, we developed a theoretical model to investigate the potential use of 13CH3D and 12CH2D2 as tools for tracking atmospheric methane budget. We used electronic structure methods to estimate kinetic isotope fractionations associated with the major sink reactions of CH4 in air (reactions with •OH and Cl•), and literature data with reconnaissance measurements of the relative abundances of 13CH3D and 12CH2D2 to estimate the compositions of the largest atmospheric sources. Here we present new methane rare isotopologue data from boreal wetlands, comprising one of the most important sources, in order to evaluate the robustness of the model. Boreal wetlands (>55° N) account for more than half of the wetland area in the Northern hemisphere. We analyzed methane samples from high latitude lakes representing different geographical regions, geological and ecological contexts, methane fluxes, and isotopic signatures. Using clumped isotopes of CH4 we are able to determine the likely production mechanism for natural CH4 samples. So far, all of our analyzed samples except one plot in the microbial pure-culture methanogenesis field (Young et al. 2017) with ranges of -0.2‰ to +1.2‰ for Δ13CH3D, and -29.6‰ to -18.2‰ for Δ12CH2D2. These compositions are far from equilibrium. The one exception, from Lake Doughnut, Alaska, exhibits Δ13CH3D and Δ12CH2D2 values of +5.2‰ and +18.7‰, respectively, which fall near ambient thermodynamic equilibrium values. This may be an effect of methanotrophy. Mean Δ13CH3D and Δ12CH2D2 for all lake samples are +1.7‰ and -15.4‰ respectively, compared to our original estimate of +6.1‰ and +21.2‰ for the wetland methane source based on an assumption of equilibrium. If we assume that these samples are representative of the overall wetland source, Δ13CH3D decreases by 0.8‰ and Δ12CH2D2 decreases by 0.6‰ in our model of bulk atmospheric methane. Δ13CH3D and Δ12CH2D2 values of air (including •OH and Cl• sink

  8. Solvated copper(I) hexafluorosilicate π-complexes based on [Cu2(amtd)2]2+ (amtd = 2-allylamino-5-methyl-1,3,4-thiadiazole) dimer

    OpenAIRE

    Goreshnik, E.A.; Veryasov, G.; Morozov, Dmitry; Slyvka, Yu.; Ardan, B.; Mys'kiv, M.G.

    2016-01-01

    [Cu2(amdt)2]SiF6·C6H6 and [Cu2(amdt)2(H2O)2]SiF6·CH3CN·2H2O (amdt = 2-allylamino-5- methyl-1,3,4-thiadiazole) were obtained by alternating-current electrochemical synthesis, starting from water–acetonitrile–benzene mixtures containing 2-allylamino-5-methyl-1,3,4- thiadiazole and CuSiF6·4H2O. The electrochemical reduction of the saturated copper hexafluorosilicate water solution beneath the neatly poured layer of acetonitrile-benzene amdt solution resulted in the formation of cr...

  9. Thermal decomposition of FC(O)OCH3 and FC(O)OCH2CH3.

    Science.gov (United States)

    Berasategui, M; Argüello, G A; Burgos Paci, M A

    2018-05-09

    The thermal decomposition of methyl and ethyl formates has been extensively studied due to their importance in the oxidation of several fuels, pesticidal properties and their presence in interstellar space. We hitherto present the study of the thermal decomposition of methyl and ethyl fluoroformates, which could help in the elucidation of the reaction mechanisms. The reaction mechanisms were studied using FTIR spectroscopy in the temperature range of 453-733 K in the presence of different pressures of N2 as bath gas. For FC(O)OCH3 two different channels were observed; the unimolecular decomposition which is favored at higher temperatures and has a rate constant kFC(O)OCH3 = (5.3 ± 0.5) × 1015 exp[-(246 ± 10 kJ mol-1/RT)] (in units of s-1) and a bimolecular channel with a rate constant kFC(O)OCH3 = (1.6 ± 0.5) × 1011 exp[-(148 ± 10 kJ mol-1/RT)] (in units of s-1 (mol L)-1). However for ethyl formate, only direct elimination of CO2, HF and ethylene operates. The rate constants of the homogeneous first-order process fit the Arrhenius equation kFC(O)OCH2CH3 = (2.06 ± 0.09) × 1013 exp[-(169 ± 6 kJ mol-1/RT)] (in units of s-1). The difference between the mechanisms of the two fluoroformates relies on the stabilization of a six-centered transition state that only exists for ethyl formate. First principles calculations for the different channels were carried out to understand the dynamics of the decomposition.

  10. CH3NH3Pb1−xMgxI3 perovskites as environmentally friendly photovoltaic materials

    Directory of Open Access Journals (Sweden)

    Y. D. Zhang

    2018-01-01

    Full Text Available In an effort to reduce the toxicity of Pb in perovskite solar cells, the band structures, electron and hole effective masses, and electronic and optical properties of the novel perovskites CH3NH3Pb1−xMgxI3 were predicted using density functional theory with the scalar relativistic generalized gradient approximation. The calculation results indicated that the introduction of the Mg component caused the band gaps of the CH3NH3Pb1−xMgxI3 compounds to exceed that of CH3NH3PbI3. The calculated absorption coefficients of the CH3NH3PbI3 and CH3NH3Pb1−xMgxI3 perovskites revealed that substituting 12.5 mol % of the Pb in CH3NH3PbI3 with Mg had little effect on the absorption ability. Surprisingly, it was also found that CH3NH3Pb0.75Mg0.25I3 retained up to 83% of the absorption performance relative to CH3NH3PbI3. This indicates that the amount of toxic Pb used in perovskite solar cells could be reduced by a quarter while retaining over 80% of the light-absorbing ability. In general, these novel CH3NH3Pb1−xMgxI3 (x ≤ 0.25 perovskites represent promising candidates for environmentally friendly light-harvesting materials for use in solar cells.

  11. Dependence of Acetate-Based Antisolvents for High Humidity Fabrication of CH3NH3PbI3 Perovskite Devices in Ambient Atmosphere.

    Science.gov (United States)

    Yang, Fu; Kapil, Gaurav; Zhang, Putao; Hu, Zhaosheng; Kamarudin, Muhammad Akmal; Ma, Tingli; Hayase, Shuzi

    2018-05-16

    High-efficiency perovskite solar cells (PSCs) need to be fabricated in the nitrogen-filled glovebox by the atmosphere-controlled crystallization process. However, the use of the glovebox process is of great concern for mass level production of PSCs. In this work, notable efficient CH 3 NH 3 PbI 3 solar cells can be obtained in high humidity ambient atmosphere (60-70% relative humidity) by using acetate as the antisolvent, in which dependence of methyl, ethyl, propyl, and butyl acetate on the crystal growth mechanism is discussed. It is explored that acetate screens the sensitive perovskite intermediate phases from water molecules during perovskite film formation and annealing. It is revealed that relatively high vapor pressure and high water solubility of methyl acetate (MA) leads to the formation of highly dense and pinhole free perovskite films guiding to the best power conversion efficiency (PCE) of 16.3% with a reduced hysteresis. The devices prepared using MA showed remarkable shelf life stability of more than 80% for 360 h in ambient air condition, when compared to the devices fabricated using other antisolvents with low vapor pressure and low water solubility. Moreover, the PCE was still kept at 15.6% even though 2 vol % deionized water was added in the MA for preparing the perovskite layer.

  12. Synthesis and reactivity ratios of regioisomeric vinyl-1,2,3-triazoles with styrene

    NARCIS (Netherlands)

    Lartey, M; Gillissen, M.A.J.; Adzima, B.J.; Takizawa, K.; Luebke, D.R.; Nulwala, H.B.

    2013-01-01

    The free radical reactivity ratios between styrene and different vinyl-1,2,3-triazole regioisomeric monomers in 1,4-dioxane at 65 degrees C have been established using nonlinear least square method. The results obtained for the reactivity ratio between regioisomers show exceptionally different

  13. The inhibition mechanisms of quinones and phenols present in wood for the vinyl polymerization

    International Nuclear Information System (INIS)

    Nobashi, Kenzo; Yokota, Tokuo

    1977-01-01

    The inhibitory effects and mechanisms of the quinones and phenols present in wood for the vinyl polymerization initiated with γ-rays and other initiation systems were investigated. The results obtained are summarized as follows; (1) Although phenolic compounds like isotaxiresinol inhibit the γ-ray initiated polymerization of methyl methacrylate (MMA) under the presence of air, they have no inhibitory effects in vacuo. On the other hand, o-benzoquinone and mansonones show strong inhibitory or retarding effects in vacuo. These facts indicate that oxygen may be important for the phenols to inhibit the vinyl polymerization. (2) It is shown qualitatively that there is a relationship between the strength of inhibitory action of quinones and their normal redox potentials. (3) PMMA produced under the presence of o-benzoquinone is found to include the fraction having extremely large chain length based on gel permeation chromatogram. (4) Based on the reaction products of orthoquinones and azobisisobutyronitrile, which was assumed as a model of polymer radicals, the inhibition reaction with polymer chain radical is concluded to take place upon the oxygen atoms of the quinones. (auth.)

  14. Direct observation of unimolecular decay of CH{sub 3}CH{sub 2}CHOO Criegee intermediates to OH radical products

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yi; Liu, Fang; Lester, Marsha I., E-mail: milester@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Klippenstein, Stephen J. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-07-28

    The unimolecular decay of carbonyl oxide intermediates, known as Criegee intermediates, produced in alkene ozonolysis is a significant source of OH radicals in the troposphere. Here, the rate of appearance of OH radical products is examined directly in the time-domain for a prototypical alkyl-substituted Criegee intermediate, CH{sub 3}CH{sub 2}CHOO, following vibrational activation under collision-free conditions. Complementary statistical Rice–Ramsperger–Kassel–Marcus calculations of the microcanonical unimolecular decay rate for CH{sub 3}CH{sub 2}CHOO are also carried out at energies in the vicinity of the barrier for 1,4 hydrogen atom transfer that leads to OH products. Tunneling through the barrier, derived from high level electronic structure calculations, contributes significantly to the decay rate. Infrared transitions of CH{sub 3}CH{sub 2}CHOO are identified in the CH stretch overtone region, which are detected by ultraviolet laser-induced fluorescence of the resultant OH products. The features observed are attributed to CH vibrational excitations and conformational forms utilizing insights from theory. Both experiment and theory yield unimolecular decay rates for CH{sub 3}CH{sub 2}CHOO of ca. 10{sup 7} s{sup −1}, which are slower than those obtained for syn-CH{sub 3}CHOO or (CH{sub 3}){sub 2}COO reported previously [Fang et al., J. Chem. Phys. 144, 061102 (2016)] at similar energies. Master equation modeling is also utilized to predict the thermal decay rate of CH{sub 3}CH{sub 2}CHOO under atmospheric conditions, giving a rate of 279 s{sup −1} at 298 K.

  15. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate).

    Science.gov (United States)

    Arellanes-Lozada, Paulina; Olivares-Xometl, Octavio; Guzmán-Lucero, Diego; Likhanova, Natalya V; Domínguez-Aguilar, Marco A; Lijanova, Irina V; Arce-Estrada, Elsa

    2014-08-07

    Compounds of poly(ionic liquid)s (PILs), derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium) (PImC 12 ), poly(1-vinyl-3-octylimidazolium) (PImC₈) and poly(1-vinyl-3-butylimidazolium) (PImC₄) hexafluorophosphate) were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1-1 M H₂SO₄) by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir's isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC 12 > PImC₈ > PImC₄) to reach 61% for PImC 12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs' partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  16. Fragmentation characteristics of the unstable [CH3 CO][radical sign] radicals generated by neutralization of [CH3CO]+ cations

    Science.gov (United States)

    Hop, C. E. C. A.; Holmes, J. L.

    1991-03-01

    The stability and fragmentation characteristics of [CH3 CO][radical sign] radicals, generated by vertical charge exchange between acetyl cations and permanent gases or metal vapours (He, Xe, NO, Cd, Na and K), were examined mass spectrometrically. Two dissociation reactions were observed, the losses of CH[radical sign]3 and H[radical sign]. The H[radical sign] loss reaction, the higher energy dissociation, became of greater importance as the exothermicity of the charge exchange was increased. Based on the analysis of the kinetic energy releases it was concluded that these decompositions arose from the population of two excited states of the [CH3 CO][radical sign] radical.

  17. Dissociative electron attachment to methylhalides in 3-methylhexane glassy matrix

    International Nuclear Information System (INIS)

    Harada, K.; Irie, M.; Yoshida, H.

    1976-01-01

    Dissociative electron attachment reaction to CH 3 I, CH 3 Cl and CH 3 F in a 3-methylhexane glassy matrix was studied by determining the yield of trapped electrons and that of methyl radicals immediately after γ irradiation at 77 K as a function of the scavenger concentration. The efficiency of conversion from the trapped electrons to the methyl radicals was also studied by photobleaching the trapped electrons. The results obtained are (1) the dissociative electron attachment occurs to CH 3 F, for which the gas phase data indicate that the reaction is endothermic by 1.2 eV, during either the γ irradiation or the photobleaching, and (2) CH 3 F is relatively less efficient in scavenging photo-liberated electrons than in scavenging the electrons during the γ irradiation, whereas CH 3 I and CH 3 Cl are efficient scavengers for both the electrons. The dependence of the yields of the trapped electrons and the methyl radicals is discussed in terms of the electron-tunnelling mechanism and the epithermal electron-scavenging mechanism. (author)

  18. The energy level alignment at the CH_3NH_3PbI_3/pentacene interface

    International Nuclear Information System (INIS)

    Ji, Gengwu; Zhao, Bin; Song, Fei; Zheng, Guanhaojie; Zhang, Xiaonan; Shen, Kongchao; Yang, Yingguo; Chen, Shi; Gao, Xingyu

    2017-01-01

    Highlights: • The Energy Level Alignment at the CH_3NH_3PbI_3/Pentacene Interface was resolved experimentally. • The downward band bending and the dipole found at the pentacene side would favorably drive holes away from the interface into pentacene. • A ∼0.7 eV offset between pentacene HOMO and CH_3NH_3PbI_3 VBM would be in favor of hole transfer whereas a ∼1.35 eV offset between pentacene LUMO and CH_3NH_3PbI_3 CBM should efficiently block the unwanted electron transfer from perovskite to pentacene. • Pentacene could be a viable hole transfer material candidate on perovskite to be explored in perovskite devices. - Abstract: Pentacene thin film on CH_3NH_3PbI_3 was studied by in-situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy to determine their interfacial energy level alignment. A 0.2 eV downward band bending together with a 0.1 eV interfacial dipole was found at the pentacene side, whereas there was no band bending found at the CH_3NH_3PbI_3 side. The offset between CH_3NH_3PbI_3 Valance Band Maximum (VBM) and pentacene Highest Occupied Molecular Orbital (HOMO) and that between CH_3NH_3PbI_3 Conduction Band Minimum (CBM) and pentacene Lowest Unoccupied Molecular Orbital (LUMO) was determined to be 0.7 and 1.35 eV, respectively. The band alignment at this interface is favor of efficient hole transfer, which suggests pentacene as a viable HTL candidate to be explored in perovskite solar cells.

  19. Statistical analysis of nitrogen-containing vinyl copolymers: radiation-induced copolymerization of vinyl acetate and N-vinyl-2-pyrrolidone

    International Nuclear Information System (INIS)

    Peppas, N.A.; Gehr, T.W.B.

    1979-01-01

    Radiation-induced copolymerization of vinyl acetate and N-vinyl-2-pyrrolidone was carried out at 5 0 C using γ-irradiation of 1450 rads/min. Copolymers prepared at conversions lower than 5% were analyzed by a saponification technique. Various linear and nonlinear statistical analysis techniques were used to determine the reactivity ratios of this system as r 1 = 0.348 and r 2 = 3.108. These data were examined and analyzed in relation to problems of elemental analysis involving nitrogen-containing copolymers and to discrepancies in the reactivity ratios obtained by previous investigators. The presence of oxygen and a higher dose rate did not affect the copolymer composition within statistical error. Hydrolyzed copolymers prepared by this method have potential applications as biocompatible materials

  20. G331.512–0.103: An Interstellar Laboratory for Molecular Synthesis. I. The Ortho-to-para Ratios for CH3OH and CH3CN

    Science.gov (United States)

    Mendoza, Edgar; Bronfman, Leonardo; Duronea, Nicolas U.; Lépine, Jacques R. D.; Finger, Ricardo; Merello, Manuel; Hervías-Caimapo, Carlos; Gama, Diana R. G.; Reyes, Nicolas; Åke-Nyman, Lars

    2018-02-01

    Spectral line surveys reveal rich molecular reservoirs in G331.512–0.103, a compact radio source in the center of an energetic molecular outflow. In this first work, we analyze the physical conditions of the source by means of CH3OH and CH3CN. The observations were performed with the APEX Telescope. Six different system configurations were defined to cover most of the band within (292–356) GHz as a consequence, we detected a forest of lines toward the central core. A total of 70 lines of A/E–CH3OH and A/E–CH3CN were analyzed, including torsionally excited transitions of CH3OH ({ν }t=1). In a search for all the isotopologues, we identified transitions of 13CH3OH. The physical conditions were derived considering collisional and radiative processes. We found common temperatures for each A and E symmetry of CH3OH and CH3CN; the derived column densities indicate an A/E equilibrated ratio for both tracers. The results reveal that CH3CN and CH3OH trace a hot and cold component with {T}k∼ 141 K and {T}k∼ 74 K, respectively. In agreement with previous ALMA observations, the models show that the emission region is compact (≲ 5\\buildrel{\\prime\\prime}\\over{.} 5) with gas density n(H2) = (0.7–1)×107 cm‑3. The CH3OH/CH3CN abundance ratio and the evidences for prebiotic and complex organic molecules suggest a rich and active chemistry toward G331.512–0.103.

  1. A two-state computational investigation of methane C--H and ethane C--C oxidative addition to [CpM(PH3)]n+ (M = Co, Rh, Ir; n = 0, 1).

    Science.gov (United States)

    Petit, Alban; Richard, Philippe; Cacelli, Ivo; Poli, Rinaldo

    2006-01-11

    Reductive elimination of methane from methyl hydride half-sandwich phosphane complexes of the Group 9 metals has been investigated by DFT calculations on the model system [CpM(PH(3))(CH(3))(H)] (M = Co, Rh, Ir). For each metal, the unsaturated product has a triplet ground state; thus, spin crossover occurs during the reaction. All relevant stationary points on the two potential energy surfaces (PES) and the minimum energy crossing point (MECP) were optimized. Spin crossover occurs very near the sigma-CH(4) complex local minimum for the Co system, whereas the heavier Rh and Ir systems remain in the singlet state until the CH(4) molecule is almost completely expelled from the metal coordination sphere. No local sigma-CH(4) minimum was found for the Ir system. The energetic profiles agree with the nonexistence of the Co(III) methyl hydride complex and with the greater thermal stability of the Ir complex relative to the Rh complex. Reductive elimination of methane from the related oxidized complexes [CpM(PH(3))(CH(3))(H)](+) (M = Rh, Ir) proceeds entirely on the spin doublet PES, because the 15-electron [CpM(PH(3))](+) products have a doublet ground state. This process is thermodynamically favored by about 25 kcal mol(-1) relative to the corresponding neutral system. It is essentially barrierless for the Rh system and has a relatively small barrier (ca. 7.5 kcal mol(-1)) for the Ir system. In both cases, the reaction involves a sigma-CH(4) intermediate. Reductive elimination of ethane from [CpM(PH(3))(CH(3))(2)](+) (M = Rh, Ir) shows a similar thermodynamic profile, but is kinetically quite different from methane elimination from [CpM(PH(3))(CH(3))(H)](+): the reductive elimination barrier is much greater and does not involve a sigma-complex intermediate. The large difference in the calculated activation barriers (ca. 12.0 and ca. 30.5 kcal mol(-1) for the Rh and Ir systems, respectively) agrees with the experimental observation, for related systems, of oxidatively

  2. Robust Crosslinked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization

    KAUST Repository

    Vidal, Fernando

    2016-07-07

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust crosslinked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site controlled propagation mechanism. Post-functionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible crosslinked thin film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Crosslinking of such complexes afforded robust crosslinked stereocomplexes that are solvent resistant and also exhibit considerably enhanced thermal and mechanical properties as compared to the uncrosslinked stereocompexes.

  3. Robust Crosslinked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization

    KAUST Repository

    Vidal, Fernando; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y.-X.

    2016-01-01

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust crosslinked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site controlled propagation mechanism. Post-functionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible crosslinked thin film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Crosslinking of such complexes afforded robust crosslinked stereocomplexes that are solvent resistant and also exhibit considerably enhanced thermal and mechanical properties as compared to the uncrosslinked stereocompexes.

  4. Iodine-catalyzed sp³ C-H bond activation by selenium dioxide: synthesis of diindolylmethanes and di(3-indolyl)selanides.

    Science.gov (United States)

    Naidu, P Seetham; Majumder, Swarup; Bhuyan, Pulak J

    2015-11-01

    An efficient reaction protocol was developed for the synthesis of several diindolylmethane derivatives via the [Formula: see text] C-H bond activation of aryl methyl ketones by [Formula: see text] and indoles in the presence of catalytic amounts of [Formula: see text] at 80 [Formula: see text] using dioxane as solvent. Unexpectedly, an interesting class of di(3-indolyl)selenide compounds was isolated when the reaction was carried out at room temperature.

  5. Electrical Resistance of Ag-TS-S(CH2)(n-1)CH3//Ga2O3/EGaln Tunneling Junctions

    NARCIS (Netherlands)

    Cademartiri, Ludovico; Thuo, Martin M.; Nijhuis, Christian A.; Reus, William F.; Tricard, Simon; Barber, Jabulani R.; Sodhi, Rana N. S.; Brodersen, Peter; Kim, Choongik; Chiechi, Ryan C.; Whitesides, George M.

    2012-01-01

    Tunneling junctions having the structure Ag-TS-S(CH2)(n-1)CH3//Ga2O3/EGaIn allow physical-organic studies of charge transport across self-assembled monolayers (SAMs). In ambient conditions, the surface of the liquid metal electrode (EGaIn, 75.5 wt % Ga, 24.5 wt % In, mp 15.7 degrees C) oxidizes and

  6. Atmospheric chemistry of Z- and E-CF3CH=CHCF3

    DEFF Research Database (Denmark)

    Østerstrøm, Freja From; Andersen, Simone Thirstrup; Sølling, Theis Ivan

    2017-01-01

    radicals. The atmospheric lifetimes of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 are estimated as 27 and 67 days, respectively. IR absorption cross sections are reported and the global warming potentials (GWPs) of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 for the 100 year time horizon...

  7. Prolonged Hypocalcemic Effect by Pulmonary Delivery of Calcitonin Loaded Poly(Methyl Vinyl Ether Maleic Acid Bioadhesive Nanoparticles

    Directory of Open Access Journals (Sweden)

    J. Varshosaz

    2014-01-01

    Full Text Available The purpose of the present study was to design a pulmonary controlled release system of salmon calcitonin (sCT. Therefore, poly(methyl vinyl ether maleic acid [P(MVEMA] nanoparticles were prepared by ionic cross-linking method using Fe2+ and Zn2+ ions. Physicochemical properties of nanoparticles were studied in vitro. The stability of sCT in the optimized nanoparticles was studied by electrophoretic gel method. Plasma calcium levels until 48 h were determined in rats as pulmonary-free sCT solution or nanoparticles (25 μg·kg−1, iv solution of sCT (5 μg·kg−1, and pulmonary blank nanoparticles. The drug remained stable during fabrication and tests on nanoparticles. The optimized nanoparticles showed proper physicochemical properties. Normalized reduction of plasma calcium levels was at least 2.76 times higher in pulmonary sCT nanoparticles compared to free solution. The duration of hypocalcemic effect of pulmonary sCT nanoparticles was 24 h, while it was just 1 h for the iv solution. There was not any significant difference between normalized blood calcium levels reduction in pulmonary drug solution and iv injection. Pharmacological activity of nanoparticles after pulmonary delivery was 65% of the iv route. Pulmonary delivery of P(MVEMA nanoparticles of sCT enhanced and prolonged the hypocalcemic effect of the drug significantly.

  8. Inorganic and organic structures as interleavers among [bis(1-methyl-3-(p-carboxylatephenyl)triazenide 1-oxide)Ni(II)] complexes to form supramolecular arrangements

    Science.gov (United States)

    Santos, Aline Joana Rolina Wohlmuth Alves; dos Santos Hackbart, Helen Cristina; Giacomini, Gabriela Xavier; Bersch, Patrícia; Paraginski, Gustavo Luiz; Hörner, Manfredo

    2016-12-01

    Alternative compounds to capture metal ions are triazenes 1-oxide since they are basic compounds O(N) with negative charge in the deprotonated form. The proximity of both coordination sites (O and N) enables these compounds to have good chelating ability and a tendency to stabilize in the formation of rings with soft and hard transition metal ions. The structure analysis by single crystal X-ray diffraction of compounds (1) and (2) demonstrate the formation of 3D supramolecular arrangements through ion-ion, ion-dipolo and dipolo-dipolo interactions. In one of them, there are [(H2O)2(CH3CH3SO)K2]2+ as linkers of polymerization and, in another complex, there are [(H2O)(CH3CH3SO)Ni(H2O)6]2+ as a linker of polymerization. These linkers act in the polymerization of the novel mononuclear complex [bis(1-methyl (p-carboxylatephenyl) triazenide 1-oxide) NiII] (3). The crystallography analysis of (1) and (2) showed distorted quadratic geometry for Ni (II), thus, there are two axial positions available in Ni (II) to be used in catalysis studies and as sensor or biosensor. In addition, this study shows the support of this novel mononuclear complex of Ni (II) (3) on protonated chitosan chains (4). The compounds (3) and (4) were characterized by spectroscopic analysis, infrared (IR) and energy dispersive X-ray detector (EDS), and by differential scanning calorimetry analysis (DSC). The specificity of ligand 1-methyl (p-carboxyphenyl) triazene 1-oxide to capture potassium and nickel ions will be tested at different pH values, as well as the capacity of the triazenide 1-oxide of Ni (II) complex, supported on chitosan polymer, or not, to act as a catalyst for organic reactions and biomimetic organic reactions.

  9. Synthesis of racemic [methyl-d3]-labeled cis- and trans-3'-hydroxycotinine

    International Nuclear Information System (INIS)

    Ravard, A.; Crooks, P.A.

    1994-01-01

    A method is described for the synthesis of the racemic [methyl-d 3 ] forms of the nicotine metabolites cis-3'-hydroxycotinine and trans-3'-hydroxycotinine. The key intermediate was [methyl-d 3 ]-N-methylhydroxylamine, obtained from a selective hydrogenation of d 3 -nitro-methane. This intermediate was converted to [methyl-d 3 ]-α-3-pyridyl-N-methylnitrone, which was condensed with methyl acrylate to give a mixture of isomeric isoxazolidines. The hydrogenolysis of this mixture afforded a 70:30 mixture of [methyl-d 3 ] cis- and trans-3'-hydroxycotinine, from which the pure cis-isomer could be isolated by recrystallization from acetone. [Methyl-d 3 ]-trans-3'-hydroxycotinine could be prepared in high yield from the cis-isomer via chiral inversion utilizing a Mitsunobu reaction, or by chromatographic separation from a mixture of the cis- and trans-3'-benzoyloxycotinine, followed by O-debenzoylation in methanolic NaOH. (author)

  10. Tissue distribution of 1,2-14C-vinyl chloride in rats

    International Nuclear Information System (INIS)

    Buchter, A.; Bolt, H.M.; Kappus, H.; Bolt, W.

    1977-01-01

    Rats have been pretreatet with 6-nitro-1.2.3-benzothiadiazole which completely blocks the metabolism of vinyl chloride. If the animals are exposed to atmospheric vinyl chloride, the formation of an equilibrium between the compound in the gas phase and in the animal's organism is observed. Unmetabolized vinyl chloride is accumulated in the adipose tissue. The distribution pattern of vinyl in different organs of the rat is constant over the concentration range of 25-10,000 ppm of vinyl chloride in the exposure atmosphere. The distribution of metabolites of vinyl chloride contrasts to that of the original compound; metabolites primarily are concentrated in liver and in kidneys. (orig.) [de

  11. Performance Improvement of CH3NH3PbI3 Perovskite Solar Cell by CH3SH Doping

    Directory of Open Access Journals (Sweden)

    Hong Li

    2016-03-01

    Full Text Available Organometal halide perovskites have recently emerged as an appealing candidate in photovoltaic devices due to their excellent properties. Therefore, intense efforts have been devoted to find the ideal organics for perovskite solar cells. In response, we investigate the doping effect of CH3SH organic on the structure and related performance of a CH3NH3PbI3 perovskite solar cell, via in situ synchrotron- based grazing incidence X-ray diffraction (GIXRD, together with scanning electron microscopy (SEM. In situ GIXRD investigations clearly illustrated the transformation and modification of the perovskite structure induced by the organic dopant, which subsequently led to the enhance‐ ment of the power conversion efficiency of fabricated solar cells. Notably, nanoporous morphology and nanocrystal‐ line structures were discovered in the perovskite film by SEM; they were also confirmed by the increase in broad‐ ening peaks/features in the GIXRD measurements. Overall, our study may ultimately result in an attractive strategy for the fabrication of high performance perovskite solar cells.

  12. Simultaneous FT-NIR and ESR analysis to study of the kinetics of photo induced polymerization of vinyl radical polymers

    International Nuclear Information System (INIS)

    Le, T.T.; Hill, D.J.T.; Pomery, P.J.

    2000-01-01

    Full text:The rate parameters for free vinyl radical polymerizations are difficult to determine accurately over the whole range of conversion. For systems which polymerize rapidly and for networks, this is a particular problem, because small differences in polymerization conditions, e.g., temperature, initiator concentration, photon flux, etc., can cause a large change in the time evolution of the concentration of carbon double bonds and radicals if these are monitored in separate experiments. The IUPAC Working Party on the Modeling of kinetics and processes of polymerization has the role of recommending the 'best' values for the kinetic parameters, using pulsed-laser polymerization (PLP) in conjunction with molar mass distribution (MMD) to determine k p as a function of temperature (T deg C) for bulk free-radical polymerization of methyl methacrylate at low conversions and ambient temperature. The vinyl radical polymers used in this study were methyl methacrylate and ethylene glycol dimethacrylate. In the past kinetic studies of vinyl photo-polymerization required the time dependence of the monomer and radical concentrations to be monitored separately by using FT-NIR spectroscopy and ESR spectroscopy, respectively. For the systems which polymerize rapidly, small differences in the conditions for two measurements, e.g. temperature and light intensity, can introduce significant errors. Hyphenated experiments involving in-situ ESR and FT-NIR spectroscopies using fibre optic, can overcome these problems. In this paper, the radical and monomer concentrations were measured under the same experimental conditions using the above techniques. The results obtained were used to evaluate the kinetic parameters for free radical vinyl polymerizations

  13. Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air

    International Nuclear Information System (INIS)

    Shirayama, Masaki; Kato, Masato; Fujiseki, Takemasa; Hara, Shota; Kadowaki, Hideyuki; Murata, Daisuke; Fujiwara, Hiroyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Chikamatsu, Masayuki

    2016-01-01

    Low stability of organic-inorganic perovskite (CH 3 NH 3 PbI 3 ) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH 3 NH 3 PbI 3 layers prepared by a laser evaporation technique is studied. We present evidence that the CH 3 NH 3 PbI 3 degradation in humid air proceeds by two competing reactions of (i) the PbI 2 formation by the desorption of CH 3 NH 3 I species and (ii) the generation of a CH 3 NH 3 PbI 3 hydrate phase by H 2 O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH 3 NH 3 PbI 3 layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH 3 NH 3 PbI 3 layer is converted completely to hexagonal platelet PbI 2 /hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH 3 NH 3 PbI 3 in humid air.

  14. Mesoscopic CH 3 NH 3 PbI 3 /TiO 2 Heterojunction Solar Cells

    KAUST Repository

    Etgar, Lioz

    2012-10-24

    We report for the first time on a hole conductor-free mesoscopic methylammonium lead iodide (CH 3NH 3PbI 3) perovskite/TiO 2 heterojunction solar cell, produced by deposition of perovskite nanoparticles from a solution of CH 3NH 3I and PbI 2 in γ-butyrolactone on a 400 nm thick film of TiO 2 (anatase) nanosheets exposing (001) facets. A gold film was evaporated on top of the CH 3NH 3PbI 3 as a back contact. Importantly, the CH 3NH 3PbI 3 nanoparticles assume here simultaneously the roles of both light harvester and hole conductor, rendering superfluous the use of an additional hole transporting material. The simple mesoscopic CH 3NH 3PbI 3/TiO 2 heterojunction solar cell shows impressive photovoltaic performance, with short-circuit photocurrent J sc= 16.1 mA/cm 2, open-circuit photovoltage V oc = 0.631 V, and a fill factor FF = 0.57, corresponding to a light to electric power conversion efficiency (PCE) of 5.5% under standard AM 1.5 solar light of 1000 W/m 2 intensity. At a lower light intensity of 100W/m 2, a PCE of 7.3% was measured. The advent of such simple solution-processed mesoscopic heterojunction solar cells paves the way to realize low-cost, high-efficiency solar cells. © 2012 American Chemical Society.

  15. Preparation of Thermoplastic Poly (vinyl Alcohol), Ethylene Vinyl Acetate and Vinyl Acetate Versatic Ester Blends for Exterior Masonry Coating

    International Nuclear Information System (INIS)

    EL-Nahas, H.H.; Gad, Y.H.; Magida, M.M.

    2013-01-01

    Blend systems including ethylene vinyl acetate (EVA), poly (vinyl alcohol) (PVA) and vinyl acetate versatic copolymer latex (VAcVe) were prepared and used as exterior coatings. Mechanical and thermal properties of the blends were investigated using a testo meter, shore hardness tester, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The water resistance of the samples was measured. Effect of ionizing irradiation on gel content, tensile strength and surface hardness were also followed. The blend offers binder base for exterior masonry coating systems having superior water resistant and mechanical properties

  16. Probing interfacial electronic properties of graphene/CH3NH3PbI3 heterojunctions: A theoretical study

    Science.gov (United States)

    Hu, Jisong; Ji, Gepeng; Ma, Xinguo; He, Hua; Huang, Chuyun

    2018-05-01

    Interfacial interactions and electronic properties of graphene/CH3NH3PbI3 heterojunctions were investigated by first-principles calculations incorporating semiempirical dispersion-correction scheme to describe van der Waals interactions. Two lattice match configurations between graphene and CH3NH3PbI3(0 0 1) slab were constructed in parallel contact and both of them were verified to form remarkable van der Waals heterojunctions with similar work functions. Our calculated energy band structures show that the Dirac-cone of graphene and the direct band gap of CH3NH3PbI3 are still preserved in the heterojunctions, thus graphene can be a promising candidate either as a capping or supporting layer for encapsulating CH3NH3PbI3 layer. It is identified that the Schottky barrier of graphene/CH3NH3PbI3 heterojunctions can be controlled by the interlayer distance and affected by the stacking pattern of graphene and CH3NH3PbI3. The 3D charge density differences present the build-in internal electric field from graphene to CH3NH3PbI3 after interface equilibrium and thus, a low n-type Schottky barrier is needed for high efficient charge transferring in the interface. The possible mechanism of the band edge modulations in the heterojunctions and corresponding photoinduced charge transfer processes are also described.

  17. Detection of experimentally produced acute pulmonary arterial occlusion by methyl iodide-131 inhalation imaging

    International Nuclear Information System (INIS)

    Grossman, Z.D.; McAfee, J.G.; Subramanian, G.

    1981-01-01

    Methyl iodide-131 (CH 3 I-131) is described as an agent for detection of acute experimentally produced pulmonary arterial occlusion in dogs. When gaseous CH 3 I-131 is inhaled, radioactivity passes instantaneously from the alveoli to the lung capillary bed. Where pulmonary blood flow exists, activity is washed out into the systemic circulation, but in areas of blood stasis, a transient pulmonary hot spot remains. CH 3 I-131 is easily produced and inexpensive, but administration is awkward and strict radiation safety precautions are mandatory

  18. Torsional energy levels of CH3OH+/CH3OD+/CD3OD+ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations

    International Nuclear Information System (INIS)

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-01-01

    The torsional energy levels of CH 3 OH + , CH 3 OD + , and CD 3 OD + have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH 3 OH, CH 3 OD, and CD 3 OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm −1 , which is about half of that of the neutral (340 cm −1 ). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C–O stretch vibrational energy level for CD 3 OD + has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C–O stretch vibration indicate a strong torsion-vibration coupling

  19. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate

    Directory of Open Access Journals (Sweden)

    Paulina Arellanes-Lozada

    2014-08-01

    Full Text Available Compounds of poly(ionic liquids (PILs, derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium (PImC12, poly(1-vinyl-3-octylimidazolium (PImC8 and poly(1-vinyl-3-butylimidazolium (PImC4 hexafluorophosphate were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1–1 M H2SO4 by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir’s isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC12 > PImC8 > PImC4 to reach 61% for PImC12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs’ partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  20. Iron(II) complexes of new hexadentate 1,1,1-tris-(iminomethyl)ethane podands, and their 7-methyl-1,3,5-triazaadamantane rearrangement products.

    Science.gov (United States)

    Diener, Sara A; Santoro, Amedeo; Kilner, Colin A; Loughrey, Jonathan J; Halcrow, Malcolm A

    2012-04-07

    New iron(II) podand complexes have been prepared, by condensation of 2-(aminomethyl)-2-methyl-1,3-diaminopropane with 3 equiv of a heterocyclic aldehyde in the presence of hydrated Fe[BF(4)](2) or Fe[ClO(4)](2) as templates. The 2-(aminomethyl)-2-methyl-1,3-diaminopropane is prepared in situ by deprotonation of its trihydrochloride salt. The chloride must be removed from these reactions by precipitation with silver, to avoid the formation of the alternative 2,4,6-trisubstituted-7-methyl-1,3,5-triazaadamantane condensation products, or their FeCl(2) adducts. The crystal structures of two 2,4,6-tri(pyridyl)-7-methyl-1,3,5-triazaadamantane-containing species are presented, and contain two different geometric isomers of this tricyclic ring with three equatorial, or two equatorial and one axial, pyridyl substituents. Both structures feature strong C-HX (X = Cl or F) hydrogen bonding from the aminal C-H groups in the triazaadamantane ring. Five iron(II) podand complexes were successfully obtained, all of which contain low-spin iron centres.

  1. 21 CFR 177.1970 - Vinyl chloride-lauryl vinyl ether copolymers.

    Science.gov (United States)

    2010-04-01

    ... in powder form having a particle size such that 100 percent will pass through a U.S. Standard Sieve No. 40 and such that not more than 10 percent will pass through a U.S. Standard Sieve No. 200. (1... analysis. (e) Other specifications and limitations. The vinyl chloride-lauryl vinyl ether copolymers...

  2. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br, –CH{sub 3}, –C{sub 6}H{sub 4}, –F{sub 2}, –(CH{sub 3}){sub 2}) materials

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Amlan [Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam (India); Couck, Sarah [Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Van Der Voort, Pascal [Department of Inorganic and Physical Chemistry, Ghent University, COMOC – Center for Ordered Materials, Organometallics and Catalysis, Krijgslaan 281-S3, 9000 Ghent (Belgium); Denayer, Joeri F.M. [Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Biswas, Shyam, E-mail: sbiswas@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam (India)

    2016-06-15

    Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH{sub 3}, 4-CH{sub 3}; new ones with X=–C{sub 6}H{sub 4}, 5-C{sub 6}H{sub 4}; –F{sub 2}, 6-F{sub 2}, –(CH{sub 3}){sub 2}, 7-(CH{sub 3}){sub 2}) were synthesized under hydrothermal conditions. All the materials except 5-C{sub 6}H{sub 4} could be prepared by a general synthetic route, in which the mixtures of CrO{sub 3}, H{sub 2}BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144 h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C{sub 6}H{sub 4}, could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S{sub BET} range: 1273–2135 m{sup 2} g{sup −1}). At 0 °C and 1 bar, the CO{sub 2} adsorption capacities of the compounds fall in the 1.7–2.9 mmol g{sup −1} range. Compounds 1-F and 6-F{sub 2} showed enhanced CO{sub 2} uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p{sub 0}=0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH{sub 3} suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N{sub 2

  3. Atmospheric chemistry of CH3O(CF2CF2O)(n)CH3 (n=1-3): Kinetics and mechanism of oxidation initiated by Cl atoms and OH radicals, IR spectra, and global warmin potentials

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Hurley, MD; Wallington, TJ

    2004-01-01

    Smog chambers equipped with FTIR spectrometers were used to study the Cl atom and OH radical initiated oxidation of CH3O(CF2CF2O)(n)CH3 (n = 1-3) in 720 +/- 20 Torr of air at 296 +/- 3 K. Relative rate techniques were used to measure k(Cl + CH3O(CF2CF2O)(n)CH3) (3.7 +/- 10.7) x 10(-13) and k......(OH + CH3O(CF2CF2O)(n)CH3) = (2.9 +/- 0.5) x 10(-11) cm(3) molecule(-1) s(-1) leading to an estimated atmospheric lifetime of 2 years for CH3O(CF2CF2O),CH3. The Cl initiated oxidation of CH3O(CF2CF2O),CH3 in air diluent gives CH3O(CF2CF2O)(n)C(O)H in a yield which is indistinguishable from 100 Further...... oxidation leads to the diformate, H(O)CO(CF2CF2O)(n)C(O)H. A rate constant of k(Cl + CH3O(CF2CF2O)(n)CHO) = (1.81 +/- 0.36) x 10(-13) cm(3) molecule(-1) s-1 was determined. Quantitative infrared spectra for CH3O(CF2CF2O)(n)CH3 (n = 1-3) were recorded and used to estimate halocarbon global warming potentials...

  4. Cobalt-catalyzed C-H olefination of aromatics with unactivated alkenes.

    Science.gov (United States)

    Manoharan, Ramasamy; Sivakumar, Ganesan; Jeganmohan, Masilamani

    2016-08-18

    A cobalt-catalyzed C-H olefination of aromatic and heteroaromatic amides with unactivated alkenes, allyl acetates and allyl alcohols is described. This method offers an efficient route for the synthesis of vinyl and allyl benzamides in a highly stereoselective manner. It is observed that the ortho substituent on the benzamide moiety is crucial for the observation of allylated products in unactivated alkenes.

  5. Infrared absorption of CH{sub 3}OSO and CD{sub 3}OSO radicals produced upon photolysis of CH{sub 3}OS(O)Cl and CD{sub 3}OS(O)Cl in p-H{sub 2} matrices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu-Fang; Kong, Lin-Jun [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan (China); Lee, Yuan-Pern [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2012-03-28

    Irradiation at 239 {+-} 20 nm of a p-H{sub 2} matrix containing methoxysulfinyl chloride, CH{sub 3}OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to {nu}{sub 1}, CH{sub 2} antisymmetric stretching), 2999.5 ({nu}{sub 2}, CH{sub 3} antisymmetric stretching), 2950.4 ({nu}{sub 3}, CH{sub 3} symmetric stretching), 1465.2 ({nu}{sub 4}, CH{sub 2} scissoring), 1452.0 ({nu}{sub 5}, CH{sub 3} deformation), 1417.8 ({nu}{sub 6}, CH{sub 3} umbrella), 1165.2 ({nu}{sub 7}, CH{sub 3} wagging), 1152.1 ({nu}{sub 8}, S=O stretching mixed with CH{sub 3} rocking), 1147.8 ({nu}{sub 9}, S=O stretching mixed with CH{sub 3} wagging), 989.7 ({nu}{sub 10}, C-O stretching), and 714.5 cm{sup -1} ({nu}{sub 11}, S-O stretching) modes of syn-CH{sub 3}OSO. When CD{sub 3}OS(O)Cl in a p-H{sub 2} matrix was used, lines at 2275.9 ({nu}{sub 1}), 2251.9 ({nu}{sub 2}), 2083.3 ({nu}{sub 3}), 1070.3 ({nu}{sub 4}), 1056.0 ({nu}{sub 5}), 1085.5 ({nu}{sub 6}), 1159.7 ({nu}{sub 7}), 920.1 ({nu}{sub 8}), 889.0 ({nu}{sub 9}), 976.9 ({nu}{sub 10}), and 688.9 ({nu}{sub 11}) cm{sup -1} appeared and are assigned to syn-CD{sub 3}OSO; the mode numbers correspond to those used for syn-CH{sub 3}OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86/aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH{sub 3}OSO near 2991, 2956, 1152, and 994 cm{sup -1} to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD{sub 3}OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H{sub 2} such that the Cl atom, produced via UV photodissociation of CH{sub 3}OS(O)Cl in situ, might escape from the original cage to yield isolated CH{sub 3}OSO

  6. Synthesis of Ethylene or Propylene/1,3-Butadiene Copolymers Possessing Pendant Vinyl Groups with Virtually No Internal Olefins

    OpenAIRE

    Kenji Michiue; Makoto Mitani; Terunori Fujita

    2015-01-01

    In general, ethylene/1,3-butadiene copolymerizations provides copolymers possessing both pendant vinyls and vinylenes as olefinic moieties. We, at MCI, studied the substituent effects of C2-symmetric zirconocene complexes, rac-[Me2Si(Indenyl’)2]ZrCl2 (Indenyl’ = generic substituted indenyl), after activation on the ratio of the pendant vinyls and vinylenes of the resultant copolymers. Complexes examined in this study were rac-dimethylsilylbis (1-indenyl)zirconium dichloride (1), rac-dimethyls...

  7. Thermochemistry and kinetics for 2-butanone-1-yl radical (CH2·C(═O)CH2CH3) reactions with O2.

    Science.gov (United States)

    Sebbar, N; Bozzelli, J W; Bockhorn, H

    2014-01-09

    Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(═O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(═O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol(-1) excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice-Ramsperger-Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.

  8. Atmospheric chemistry of CH3CHF2 (R-152a): mechanism of the CH3CF2O2+HO2 reaction

    DEFF Research Database (Denmark)

    Hashikawa, Y; Kawasaki, M; Andersen, Mads Peter Sulbæk

    2004-01-01

    FTIR smog chamber techniques have been used to investigate the mechanism of the reaction of CH3CF2O2 with HO2 radicals in 100-700 Torr of synthetic air at 296 K. The reaction gives CH3CF2OOH and COF2 in molar yields of 0.53 +/- 0.05 and 0.47 +/- 0.05, respectively. Results are discussed with resp......FTIR smog chamber techniques have been used to investigate the mechanism of the reaction of CH3CF2O2 with HO2 radicals in 100-700 Torr of synthetic air at 296 K. The reaction gives CH3CF2OOH and COF2 in molar yields of 0.53 +/- 0.05 and 0.47 +/- 0.05, respectively. Results are discussed...

  9. [1+1+3] Annulation of Diazoenals and Vinyl Azides: Direct Synthesis of Functionalized 1-Pyrrolines through Olefination.

    Science.gov (United States)

    Kanchupalli, Vinaykumar; Katukojvala, Sreenivas

    2018-05-04

    A dirhodium carboxylate catalyzed [1+1+3] annulation reaction of diazoenals and vinyl azides that gives synthetically important enal-functionalized 1-pyrroline derivatives was developed. The reaction involves a novel rhodium-catalyzed olefination of diazoenals with vinyl azides via electrophilic enal carbenoids, resulting in a new class of enal acrylates. The annulation reaction was used for the direct synthesis of valuable deuterated 1-pyrrolines. Structural diversification of the enal-functionalized 1-pyrrolines resulted in the biologically important pyrrolidine-fused oxaziridine, amino acid derivatives, and a 6-azabicyclo[3.2.1]octane motif present in polycyclic alkaloids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 2-甲基-3-丁烯-2-醇+直链一元醇二元体系的过量摩尔体积和表观摩尔体积298.15 K)%Excess Molar Volume and Apparent Molar Volume of Binary Mixtures of 2-Methyl-3-buten-2-ol with 1-Alcohol at 298.15 K

    Institute of Scientific and Technical Information of China (English)

    刘迪霞; 李浩然; 邓东顺; 韩世钧

    2002-01-01

    Excess molar volumes (VEm) of binary mixtures of 2-methyl-3-buten-2-ol [CH3C(OH)(CH3)CHCH2]with four 1-alcohols: methanol, ethanol, 1-propanol and 1-butanol at 298.15 K and atmospheric pressure are derived from density measurements with a vibrating-tube densimeter. All the excess volumes are negative in the systems over the entire composition range. The results are correlated with the Redlich-Kister equation. The effects of chain length of 1-alcohols on VmE are discussed. The apparent molar volumes of 2-methyl-3-buten-2-ol and 1-alcohols are calculated respectively.

  11. Methane Provenance Determined by CH2D2 and 13CH3D Abundances

    Science.gov (United States)

    Kohl, I. E.; Giunta, T.; Warr, O.; Ash, J. L.; Ruffine, L.; Sherwood Lollar, B.; Young, E. D.

    2017-12-01

    Determining the provenance of naturally occurring methane gases is of major interest to energy companies and atmospheric climate modelers, among others. Bulk isotopic compositions and other geochemical tracers sometimes fail to provide definitive determinations of sources of methane due to complications from mixing and complicated chemical pathways of origin. Recent measurements of doubly-substituted isotopologues of methane, CH2D2 (UCLA) and 13CH3D (UCLA, CalTech, and MIT) have allowed for major improvements in sourcing natural methane gases. Early work has focused on formation temperatures obtained when the relative abundances of both doubly-substituted mass-18 species are consistent with internal equilibrium. When methane gases do not plot on the thermodynamic equilibrium curve in D12CH2D2 vs D13CH3D space, temperatures determined from D13CH3D values alone are usually spurious, even when appearing reasonable. We find that the equilibrium case is actually rare and almost exclusive to thermogenic gases produced at temperatures exceeding 100°C. All other relevant methane production processes appear to generate gases that are not in isotopologue-temperature equilibrium. When gases show departures from equilibrium as determined by the relationship between CH2D2 and 13CH3D abundances, data fall within empirically defined fields representing formation pathways. These fields are thus far consistent between different geological settings and and between lab experiments and natural samples. We have now defined fields for thermogenic gas production, microbial methanogenesis, low temperature abiotic (Sabatier) synthesis and higher temperature FTT synthesis. The majority of our natural methane data can be explained by mixing between end members originating within these production fields. Mixing can appear complex, resulting in both hyper-clumped and anti-clumped isotopologue abundances. In systems where mixtures dominate and end-members are difficult to sample, mixing models

  12. The millimeter wave spectrum of methyl cyanate: a laboratory study and astronomical search in space ⋆,⋆⋆

    Science.gov (United States)

    Kolesniková, L.; Alonso, J. L.; Bermúdez, C.; Alonso, E. R.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.

    2016-01-01

    Aims The recent discovery of methyl isocyanate (CH3NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH3OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. Methods The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A-E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. Results The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J″ = 10 – 35 and Ka″=0−13 and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty. Spectral features of methyl cyanate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methyl cyanate are provided. PMID:27721514

  13. Methodological considerations regarding the use of inorganic 197Hg(II) radiotracer to assess mercury methylation potential rates in lake sediment

    International Nuclear Information System (INIS)

    Perez Catan, Soledad; Guevara, Sergio Ribeiro; Marvin-DiPasquale, Mark; Magnavacca, Cecilia; Cohen, Isaac Marcos; Arribere, Maria

    2007-01-01

    Methodological considerations on the determination of benthic methyl-mercury (CH 3 Hg) production potentials were investigated on lake sediment, using 197 Hg radiotracer. Three methods to arrest bacterial activity were compared: flash freezing, thermal sterilization, and γ-irradiation. Flash freezing showed similar CH 3 Hg recoveries as thermal sterilization, which was both 50% higher than the recoveries obtained with γ-ray irradiation. No additional radiolabel was recovered in kill-control samples after an additional 24 or 65 h of incubation, suggesting that all treatments were effective at arresting Hg(II)-methylating bacterial activity, and that the initial recoveries are likely due to non-methylated 197 Hg(II) carry-over in the organic extraction and/or [ 197 Hg]CH 3 Hg produced via abiotic reactions. Two CH 3 Hg extraction methods from sediment were compared: (a) direct extraction into toluene after sediment leaching with CuSO 4 and HCl and (b) the same extraction with an additional back-extraction step to thiosulphate. Similar information was obtained with both methods, but the low efficiency observed and the extra work associated with the back-extraction procedure represent significant disadvantages, even tough the direct extraction involves higher Hg(II) carry over

  14. A comparative study of the chemical kinetics of methyl and ethyl propanoate

    KAUST Repository

    Farooq, Aamir

    2014-10-01

    High temperature pyrolysis of methyl propanoate (CH3CH 2C(O)OCH3) and ethyl propanoate (CH3CH 2C(O)OCH2CH3) was studied behind reflected shock waves at temperatures of 1250-1750 K and pressure of 1.5 atm. Species time-histories were recorded for CO, CO2, C2H4, and H2O using laser absorption methods over a test time of 1 ms. Pyrolysis of methyl propanoate (MP) appears to be faster than that of ethyl propanoate (EP) under the present experimental conditions, where CO and CO 2 reach their plateau values faster for MP at a specific temperature and fuel concentration. Higher plateau values are reached for CO in case of MP while the CO2 levels are similar for the two ester fuels. Ethylene production is larger for EP due to the presence of six-centered ring elimination reaction that produces ethylene and propanoic acid. Very little H2O is produced during MP pyrolysis in contrast with appreciable H2O production from EP. Sensitivity and rate-of-production analyses were carried out to identify key reactions that affect the measured species profiles. Previous kinetic mechanisms of Yang et al. (2011) [1,2] and Metcalf et al. (2009, 2007) [3,4] were used as base models and then refined to propose a new MP/EP pyrolysis mechanism. © 2014 Elsevier Ltd. All rights reserved.

  15. A comparative study of the chemical kinetics of methyl and ethyl propanoate

    KAUST Repository

    Farooq, Aamir; Davidson, D.F.; Hanson, R.K.; Westbrook, C.K.

    2014-01-01

    High temperature pyrolysis of methyl propanoate (CH3CH 2C(O)OCH3) and ethyl propanoate (CH3CH 2C(O)OCH2CH3) was studied behind reflected shock waves at temperatures of 1250-1750 K and pressure of 1.5 atm. Species time-histories were recorded for CO, CO2, C2H4, and H2O using laser absorption methods over a test time of 1 ms. Pyrolysis of methyl propanoate (MP) appears to be faster than that of ethyl propanoate (EP) under the present experimental conditions, where CO and CO 2 reach their plateau values faster for MP at a specific temperature and fuel concentration. Higher plateau values are reached for CO in case of MP while the CO2 levels are similar for the two ester fuels. Ethylene production is larger for EP due to the presence of six-centered ring elimination reaction that produces ethylene and propanoic acid. Very little H2O is produced during MP pyrolysis in contrast with appreciable H2O production from EP. Sensitivity and rate-of-production analyses were carried out to identify key reactions that affect the measured species profiles. Previous kinetic mechanisms of Yang et al. (2011) [1,2] and Metcalf et al. (2009, 2007) [3,4] were used as base models and then refined to propose a new MP/EP pyrolysis mechanism. © 2014 Elsevier Ltd. All rights reserved.

  16. Accurate ab initio vibrational energies of methyl chloride

    International Nuclear Information System (INIS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-01-01

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH 3 35 Cl and CH 3 37 Cl. The respective PESs, CBS-35  HL , and CBS-37  HL , are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3 Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35  HL and CBS-37  HL PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm −1 , respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH 3 Cl without empirical refinement of the respective PESs

  17. Mapping the dynamics of ligand reorganization via {sup 13}CH{sub 3} and {sup 13}CH{sub 2} relaxation dispersion at natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jeffrey W., E-mail: jpeng@nd.edu; Wilson, Brian D.; Namanja, Andrew T. [University of Notre Dame, Department of Chemistry and Biochemistry (United States)

    2009-09-15

    Flexible ligands pose challenges to standard structure-activity studies since they frequently reorganize their conformations upon protein binding and catalysis. Here, we demonstrate the utility of side chain {sup 13}C relaxation dispersion measurements to identify and quantify the conformational dynamics that drive this reorganization. The dispersion measurements probe methylene {sup 13}CH{sub 2} and methyl {sup 13}CH{sub 3} groups; the latter are highly prevalent side chain moieties in known drugs. Combining these side chain studies with existing backbone dispersion studies enables a comprehensive investigation of {mu}s-ms conformational dynamics related to binding and catalysis. We perform these measurements at natural {sup 13}C abundance, in congruence with common pharmaceutical research settings. We illustrate these methods through a study of the interaction of a phosphopeptide ligand with the peptidyl-prolyl isomerase, Pin1. The results illuminate the side-chain moieties that undergo conformational readjustments upon complex formation. In particular, we find evidence that multiple exchange processes influence the side chain dispersion profiles. Collectively, our studies illustrate how side-chain relaxation dispersion can shed light on ligand conformational transitions required for activity, and thereby suggest strategies for its optimization.

  18. Study on radiation effect of poly (vinyl alcohol) films irradiated by tritium decay

    International Nuclear Information System (INIS)

    Li Hairong; Peng Shuming; Zhou Xiaosong; Yu Mingming; Xia Lidong; Chen Xiaohua; Liang Jianhua

    2014-01-01

    The radiation effect of poly(vinyl alcohol) films used as a kind of gas-barrier material for inertial confinement fusion (ICF) targets was studied under the different conditions of β-ray from tritium decay. The changes of physical and chemical properties of the irradiated material samples were analyzed by FTIR, XRD and AFM. The tritium-hydrogen isotopic exchange reaction of the irradiated samples mainly occurs at C-H bond and the IR absorption peak of C-T bond obviously increases with the irradiation dose. For strong hydrogen bonding interaction, the isotopic exchange reaction doesn't occur at O-H bond. The crystallinity degree and surface morphology of the irradiated samples were changed. The tensile properties of irradiated poly(vinyl alcohol) films were measured by universal material testing machine. The results show that the change trend of mechanical properties is in accordance with the microstructures of the irradiated samples. (authors)

  19. Fabrication of CH3NH3PbI3/PVP Composite Fibers via Electrospinning and Deposition

    Science.gov (United States)

    Chao, Li-Min; Tai, Ting-Yu; Chen, Yueh-Ying; Lin, Pei-Ying; Fu, Yaw-Shyan

    2015-01-01

    In our study, one-dimensional PbI2/polyvinylpyrrolidone (PVP) composition fibers have been prepared by using PbI2 and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH3NH3I solution changed its color, indicating the formation of CH3NH3PbI3, to obtain CH3NH3PbI3/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy. PMID:28793517

  20. Fabrication of CH3NH3PbI3/PVP Composite Fibers via Electrospinning and Deposition

    Directory of Open Access Journals (Sweden)

    Li-Min Chao

    2015-08-01

    Full Text Available In our study, one-dimensional PbI2/polyvinylpyrrolidone (PVP composition fibers have been prepared by using PbI2 and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH3NH3I solution changed its color, indicating the formation of CH3NH3PbI3, to obtain CH3NH3PbI3/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy.

  1. Methods for measuring specific rates of mercury methylation and degradation and their use in determining factors controlling net rates of mercury methylation

    International Nuclear Information System (INIS)

    Ramlal, P.S.; Rudd, J.W.M.; Hecky, R.E.

    1986-01-01

    A method was developed to estimate specific rates of demethylation of methyl mercury in aquatic samples by measuring the volatile 14 C end products of 14 CH 3 HgI demethylation. This method was used in conjuction with a 203 Hg 2+ radiochemical method which determines specific rates of mercury methylation. Together, these methods enabled us to examine some factors controlling the net rate of mercury methylation. The methodologies were field tested, using lake sediment samples from a recently flooded reservoir in the Southern Indian Lake system which had developed a mercury contamination problem in fish. Ratios of the specific rates of methylation/demethylation were calculated. The highest ratios of methylation/demethylation were calculated. The highest ratios of methylation/demethylation occurred in the flooded shorelines of Southern Indian Lake. These results provide an explanation for the observed increases in the methyl mercury concentrations in fish after flooding

  2. Factors influencing optical 3D scanning of vinyl polysiloxane impression materials.

    Science.gov (United States)

    DeLong, R; Pintado, M R; Ko, C C; Hodges, J S; Douglas, W H

    2001-06-01

    Future growth in dental practice lies in digital imaging enhancing many chairside procedures and functions. This revolution requires the fast, accurate, and 3D digitizing of clinical records. One such clinical record is the chairside impression. This study investigated how surface angle and surface roughness affect the digitizing of vinyl polysiloxane impression materials. Seventeen vinyl polysiloxane impression materials were digitized with a white light optical digitizing system. Each sample was digitized at 3 different angles: 0 degrees, 22.5 degrees, and 45 degrees, and 2 digitizer camera f-stops. The digitized images were rendered on a computer monitor using custom software developed under NIH/NIDCR grant DE12225. All the 3D images were rotated to the 0 degrees position, cropped using Corel Photo-Paint 8 (Corel Corp, Ottawa, Ontario, Canada), then saved in the TIFF file format. The impression material area that was successfully digitized was calculated as a percentage of the total sample area, using Optimas 5.22 image processing software (Media Cybernetics, LP, Silver Spring, MD). The dependent variable was a Performance Value calculated for each material by averaging the percentage of area that digitized over the 3 angles. New samples with smooth and rough surfaces were made using the 7 impression materials with the largest Performance Values. These samples were tested as before, but with the additional angle of 60 degrees. Silky-Rock die stone (Whip Mix Corp, Louisville, KY) was used as a control. The Performance Values for the 17 impression materials ranged from 0% to 100%. The Performance Values for the 7 best materials were equivalent to the control at f/11 out to a surface angle of 45 degrees; however, only Examix impression material (GC America Inc, Alsip, IL) was equivalent to the control at f/11/\\16. At the 60 degrees surface angle with f/11/\\16, the Performance Values were 0% for all the impression materials, whereas that for the control was 90

  3. Kinetics of the Br2-CH3CHO Photochemical Chain Reaction

    Science.gov (United States)

    Nicovich, J. M.; Shackelford, C. J.; Wine, P. H.

    1997-01-01

    Time-resolved resonance fluorescence spectroscopy was employed in conjunction with laser flash photolysis of Br2 to study the kinetics of the two elementary steps in the photochemical chain reaction nBr2 + nCH3CHO + hv yields nCH3CBrO + nHBr. In the temperature range 255-400 K, the rate coefficient for the reaction Br((sup 2)P(sub 3/2)) + CH3CHO yields CH3CO + HBr is given by the Arrhenius expression k(sub 6)(T) = (1.51 +/- 0.20) x 10(exp -11) exp(-(364 +/- 41)/T)cu cm/(molecule.s). At 298 K, the reaction CH3CO + Br2 yields CH3CBrO + Br proceeds at a near gas kinetic rate, k(sub 7)(298 K) = (1.08 +/- 0.38) x 10(exp -10)cu cm/(molecule.s).

  4. Copolymerization of poly (ethylene oxide) and poly (methyl methacrylate) initiated by ceric ammonium nitrate

    International Nuclear Information System (INIS)

    Gomes, A.S.; Ferreira, A.A.; Coutinho, F.M.B.; Marinho, J.R.D.

    1984-01-01

    Cerium (IV) salts such as the ceric ammonium nitrate and ceric ammonium sulfate in aqueous acid solution with reducing agents such as alcohols, thiols, glycols, aldehydes and amines are well known initiators of vinyl polymerization. In this work, the polymerization of methyl methacrylate initiated by ceric ammonium nitrate/HNO 3 -poly(ethylene oxide) with hydroxyl end group system was studied in aqueous solution at 25 0 C to obtain block copolymers. (Author) [pt

  5. Ligand-based photooxidations of dithiomaltolato complexes of Ru(II) and Zn(II): photolytic CH activation and evidence of singlet oxygen generation and quenching.

    Science.gov (United States)

    Bruner, Britain; Walker, Malin Backlund; Ghimire, Mukunda M; Zhang, Dong; Selke, Matthias; Klausmeyer, Kevin K; Omary, Mohammad A; Farmer, Patrick J

    2014-08-14

    The complex [Ru(bpy)2(ttma)](+) (bpy = 2,2'-bipyridine; ttma = 3-hydroxy-2-methyl-thiopyran-4-thionate, 1, has previously been shown to undergo an unusual C-H activation of the dithiomaltolato ligand upon outer-sphere oxidation. The reaction generated alcohol and aldehyde products 2 and 3 from C-H oxidation of the pendant methyl group. In this report, we demonstrate that the same products are formed upon photolysis of 1 in presence of mild oxidants such as methyl viologen, [Ru(NH3)6](3+) and [Co(NH3)5Cl](2+), which do not oxidize 1 in the dark. This reactivity is engendered only upon excitation into an absorption band attributed to the ttma ligand. Analogous experiments with the homoleptic Zn(ttma)2, 4, also result in reduction of electron acceptors upon excitation of the ttma absorption band. Complexes 1 and 4 exhibit short-lived visible fluorescence and long-lived near-infrared phosphorescence bands. Singlet oxygen is both generated and quenched during aerobic excitation of 1 or 4, but is not involved in the C-H activation process.

  6. Communication: Photodissociation of CH3CHO at 308 nm: Observation of H-roaming, CH3-roaming, and transition state pathways together along the ground state surface

    Science.gov (United States)

    Li, Hou-Kuan; Tsai, Po-Yu; Hung, Kai-Chan; Kasai, Toshio; Lin, King-Chuen

    2015-01-01

    Following photodissociation of acetaldehyde (CH3CHO) at 308 nm, the CO(v = 1-4) fragment is acquired using time-resolved Fourier-transform infrared emission spectroscopy. The CO(v = 1) rotational distribution shows a bimodal feature; the low- and high-J components result from H-roaming around CH3CO core and CH3-roaming around CHO radical, respectively, in consistency with a recent assignment by Kable and co-workers (Lee et al., Chem. Sci. 5, 4633 (2014)). The H-roaming pathway disappears at the CO(v ≥ 2) states, because of insufficient available energy following bond-breaking of H + CH3CO. By analyzing the CH4 emission spectrum, we obtained a bimodal vibrational distribution; the low-energy component is ascribed to the transition state (TS) pathway, consistent with prediction by quasiclassical trajectory calculations, while the high-energy component results from H- and CH3-roamings. A branching fraction of H-roaming/CH3-roaming/TS contribution is evaluated to be (8% ± 3%)/(68% ± 10%)/(25% ± 5%), in which the TS pathway was observed for the first time. The three pathways proceed concomitantly along the electronic ground state surface.

  7. Growth and characterization of an organic single crystal: 2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide

    Science.gov (United States)

    Senthil, K.; Kalainathan, S.; Ruban Kumar, A.

    Optically transparent crystal of the organic salt DEASI (2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide) has been synthesized by using knoevenagel condensation reaction method. The synthesized material has been purified by successfully recrystallization process. Single crystals of DEASI have been grown by slow evaporation technique at room temperature. The solubility of the title material has been determined at different temperature in acetonitrile/methanol mixture. The cell parameters and crystallinity of the title crystal were determined by single crystal XRD. The powder diffraction was carried out to study the reflection plane of the grown crystal and diffraction peaks were indexed. The presence of different functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) analysis. 1H NMR spectrum was recorded to confirm the presence of hydrogen nuclei in the synthesized material. The optical property of the title crystal was studied by UV-Vis-NIR spectroscopic analysis. The melting point and thermal property of DEASI were studied using TGA/DSC technique. The Vicker’s hardness (Hv) was carried out to know the category. The dielectric constant and dielectric loss of the compound decreases with an increase in frequencies. Chemical etching studies showed that the DEASI grows in the two dimensional growth mechanisms. The Kurtz-Perry powder second harmonic generation (SHG) test has done for title crystal.

  8. Growth and characterization of an organic single crystal: 2-[2-(4-diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide.

    Science.gov (United States)

    Senthil, K; Kalainathan, S; Ruban Kumar, A

    2014-05-05

    Optically transparent crystal of the organic salt DEASI (2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide) has been synthesized by using knoevenagel condensation reaction method. The synthesized material has been purified by successfully recrystallization process. Single crystals of DEASI have been grown by slow evaporation technique at room temperature. The solubility of the title material has been determined at different temperature in acetonitrile/methanol mixture. The cell parameters and crystallinity of the title crystal were determined by single crystal XRD. The powder diffraction was carried out to study the reflection plane of the grown crystal and diffraction peaks were indexed. The presence of different functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) analysis. (1)H NMR spectrum was recorded to confirm the presence of hydrogen nuclei in the synthesized material. The optical property of the title crystal was studied by UV-Vis-NIR spectroscopic analysis. The melting point and thermal property of DEASI were studied using TGA/DSC technique. The Vicker's hardness (Hv) was carried out to know the category. The dielectric constant and dielectric loss of the compound decreases with an increase in frequencies. Chemical etching studies showed that the DEASI grows in the two dimensional growth mechanisms. The Kurtz-Perry powder second harmonic generation (SHG) test has done for title crystal. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. One-electron reduction of 2- and 6-methyl-1,4-naphthoquinone bioreductive alkylating agents

    International Nuclear Information System (INIS)

    Wilson, I.; Wardman, P.; Lin, T.S.; Sartorelli, A.C.

    1986-01-01

    The semiquinones, Q.-, of derivatives of 2- and 6-methyl-1,4-naphthoquinones, some incorporating leaving groups with substituents such as CH 2 Br or CH 2 OCONHCH 3 , have been produced by radiolytic reduction of Q by (CH 3 )2COH radicals. The absorption spectra and decay kinetics of Q.- were all closely similar to that produced from 2-methyl-1,4-naphthoquinone, with no evidence for unimolecular elimination of a leaving group in the semiquinone form, but immediate loss of leaving group upon two-electron reduction of Q to the hydroquinone. The redox equilibria between Q/Q.- and O2/O2.- were characterized, and reduction potentials of the couples Q/Q.- in water at pH 7.6 were calculated. The implications of these observations for the use of these compounds as bioreductive alkylating agents or as radiosensitizers with potential selective activity toward hypoxic cells are discussed

  10. Kinetics of the CH{sub 3} + HCl/DCl {sup {yields}} CH{sub 4}/CH{sub 3}D + Cl and CD{sub 3} + HCl/DCl {sup {yields}} CD{sub 3}H/CD{sub 4} + Cl reactions: An experimental H atom tunneling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Eskola, Arkke J. [Laboratory of Physical Chemistry, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014, University of Helsinki, Helsinki (Finland); Seetula, Jorma A. [Laboratory of Physical Chemistry, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014, University of Helsinki, Helsinki (Finland)], E-mail: seetula@csc.fi; Timonen, Raimo S. [Laboratory of Physical Chemistry, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014, University of Helsinki, Helsinki (Finland)

    2006-12-11

    The kinetics of the radical reactions of CH{sub 3} with HCl or DCl and CD{sub 3} with HCl or DCl have been investigated in a temperature controlled tubular reactor coupled to a photoionization mass spectrometer. The CH{sub 3} (or CD{sub 3}) radical, R, was produced homogeneously in the reactor by a pulsed 193 nm exciplex laser photolysis of CH{sub 3}COCH{sub 3} (or CD{sub 3}COCD{sub 3}). The decay of CH{sub 3}/CD{sub 3} was monitored as a function of HCl/DCl concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature, typically from 188 to 500 K. The rate constants of the CH{sub 3} and CD{sub 3} reactions with HCl had strong non-Arrhenius behavior at low temperatures. The rate constants were fitted to a modified Arrhenius expression k = QA exp (-E {sub a}/RT) (error limits stated are 1{sigma} + Students t values, units in cm{sup 3} molecule{sup -1} s{sup -1}): k(CH{sub 3} + HCl) = [1.004 + 85.64 exp (-0.02438 x T/K)] x (3.3 {+-} 1.3) x 10{sup -13} exp [-(4.8 {+-} 0.6) kJ mol{sup -1}/RT] and k(CD{sub 3} + HCl) = [1.002 + 73.31 exp (-0.02505 x T/K)] x (2.7 {+-} 1.2) x 10{sup -13} exp [-(3.5 {+-} 0.5) kJ mol{sup -1}/RT]. The radical reactions with DCl were studied separately over a wide ranges of temperatures and in these temperature ranges the rate constants determined were fitted to a conventional Arrhenius expression k = A exp (-E {sub a}/RT) (error limits stated are 1{sigma} + Students t values, units in cm{sup 3} molecule{sup -1} s{sup -1}): k(CH{sub 3} + DCl) = (2.4 {+-} 1.6) x 10{sup -13} exp [-(7.8 {+-} 1.4) kJ mol{sup -1}/RT] and k(CD{sub 3} + DCl) = (1.2 {+-} 0.4) x 10{sup -13} exp [-(5.2 {+-} 0.2) kJ mol{sup -1}/RT] cm{sup 3} molecule{sup -1} s{sup -1}. Curvature in the Arrhenius plots of the H-atom abstraction reactions at low temperatures was analyzed by considering H-atom tunneling through the reaction barrier and primary kinetic isotope effect. Contribution of tunneling in it was concluded to be

  11. Photochemical versus biological production of methyl iodide during Meteor 55

    Science.gov (United States)

    Richter, U.; Wallace, D.

    2003-04-01

    The flux of methyl iodide from sea to air represents the largest flux of iodine from the ocean to the atmosphere. Surface water concentrations and hence fluxes are particularly high in tropical regions. This flux may be responsible for the enrichment of iodine in the marine aerosol and may contribute to important processes in the marine boundary layer, including particle formation. Methyl iodide is commonly referred to as a biogenic gas, with both macroalgae and phytoplankton identified as important sources. On the other hand experimental and field data have shown the importance of photochemical production that is not necessarily associated directly with biological activity. During the Meteor cruise 55 along 11°N in the tropical Atlantic Ocean, a series of experiments were conducted to examine the biological vs. photochemical production of methyl iodide. A total of eight separate experiments were conducted. Production of CH3I in quartz glass flasks during 24 hour incubations (dark and natural sunlight) was measured under three experimental treatments: untreated seawater, filtered seawater (0.1 um pore size filter to exclude most phytoplankton and bacteria), and seawater that was poisoned with mercuric chloride. There were two clear findings from these experiments: (1) methyl iodide production was significantly higher in all the incubations that were exposed to the light than in the dark incubations; (2) there was no significant difference between CH3I production under the three experimental treatments. These results argue very strongly for the primary importance of photochemical production of CH3I as opposed to biogenic production at least for the tropical open ocean surface waters. Further experiments are required to investigate the reactants involved, their sources, the wavelength and depth dependence of production, etc. as well as (possibly related) sink processes.

  12. Kinetics of the R + HBr ↔ RH + Br (CH3CHBr, CHBr2 or CDBr2) equilibrium. Thermochemistry of the CH3CHBr and CHBr2 radicals

    International Nuclear Information System (INIS)

    Seetula, Jorma A.; Eskola, Arkke J.

    2008-01-01

    The kinetics of the reaction of the CH 3 CHBr, CHBr 2 or CDBr 2 radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH 3 CHBr (or CHBr 2 or CDBr 2 ) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH 3 CHBr 2 (or CHBr 3 or CDBr 3 ). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH 3 CHBr + HBr) and from 288 to 477 K (CHBr 2 + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ + Student's t values, units in cm 3 molecule -1 s -1 , no error limits for the third reaction): k(CH 3 CHBr + HBr) = (1.7 ± 1.2) x 10 -13 exp[+ (5.1 ± 1.9) kJ mol -1 /RT], k(CHBr 2 + HBr) = (2.5 ± 1.2) x 10 -13 exp[-(4.04 ± 1.14) kJ mol -1 /RT] and k(CDBr 2 + HBr) = 1.6 x 10 -13 exp(-2.1 kJ mol -1 /RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH 3 CHBr and CHBr 2 radicals and an experimental entropy value at 298 K for the CH 3 CHBr radical were obtained using a second-law method. The result for the entropy value for the CH 3 CHBr radical is 305 ± 9 J K -1 mol -1 . The results for the enthalpy of formation values at 298 K are (in kJ mol -1 ): 133.4 ± 3.4 (CH 3 CHBr) and 199.1 ± 2.7 (CHBr 2 ), and for α-C-H bond dissociation energies of analogous compounds are (in kJ mol -1 ): 415.0 ± 2.7 (CH 3 CH 2 Br) and 412.6 ± 2.7 (CH 2 Br 2 ), respectively

  13. Pressure dependent photolysis quantum yields for CH3C(O)CH3 at 300 and 308 nm and at 298 and 228 K.

    Science.gov (United States)

    Khamaganov, V G; Crowley, J N

    2013-07-07

    The quantum yield of formation of CH3 and CH3CO in the pulsed laser photo-excitation of acetone at 300 and 308 nm was investigated at several pressures (60 to 740 Torr) and at either 298 or 228 K. The organic radicals generated were monitored indirectly following conversion (by reaction with Br2) to Br atoms, which were detected by resonance fluorescence. The photolysis of Cl2 in back-to-back experiments at the same wavelength and under identical experimental conditions served as chemical actinometer. The pressure and temperature dependent quantum yields obtained with this method are in good agreement with previous literature values and are reproduced using the parameterisation developed by Blitz et al. The Br formation kinetics deviated from that expected from reactions of CH3 and CH3CO alone and Br atoms were still observed at high yield even when the quantum yield of formation of CH3 and CH3CO was low. This is explained by the reactive quenching of thermalized triplet acetone (T1) by Br2. High yields of T1 (>80%) at the highest pressure in this study indicate that any dissociation from the first excited singlet state (S1) occurs in competition with intersystem crossing, and that physical quenching of S1 to the electronic ground (S0) is not a major process at these wavelengths. The rate coefficient for reaction of T1 with Br2 was found to be ∼3 × 10(-10) cm(3) molecule(-1) s(-1), independent of pressure or temperature.

  14. Shape-Evolution Control of hybrid perovskite CH3NH3PbI3 crystals via solvothermal synthesis

    Science.gov (United States)

    Zhang, Baohua; Guo, Fuqiang; Yang, Lianhong; Jia, Xiuling; Liu, Bin; Xie, Zili; Chen, Dunjun; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2017-02-01

    We systematically synthesized CH3NH3PbI3 crystals using solvothermal process, and the reaction conditions such as concentration of the precursor, temperature, time, and lead source have been comprehensively investigated to obtain shape-controlled CH3NH3PbI3 crystals. The results showed that the CH3NH3PbI3 crystals exhibit tetragonal phase and the crystals change from nanoparticles to hopper-faced cuboids. Photoluminescence spectra of the crystals obtained with different lead sources show a blue shift due to the presence of defects in the crystals, and the peak intensity is very sensitive to the lead sources. Moreover, impurities (undesirable byproducts and excess components like HI or CH3NH2) presented during crystal growth can result in hopper growth.

  15. Transparent CH{sub 3}NH{sub 3}SnCl{sub 3}/Al-ZnO p-n heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sunil, E-mail: skbgudha@gmail.com; Ansari, Mohd Zubair; Khare, Neeraj [Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi, Delhi-110016 (India)

    2016-05-23

    A p-type Organic inorganic tin chloride (CH{sub 3}NH{sub 3}SnCl{sub 3}) perovskite thin film has been synthesized by solution method. An n-type 1% Al doped ZnO (AZO) film has been deposited on FTO substrate by ultrasonic assisted chemical vapor deposition technique. A transparent CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction diode has been fabricated by spin coating technique. CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction shows 75% transparency in the visible region. I-V characteristic of CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction shows rectifying behavior of the diode. The diode parameters calculated as ideality factor η=2.754 and barrier height Φ= 0.76 eV. The result demonstrates the potentiality of CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction for transparent electronics.

  16. Fabrication and characterization of perovskite solar cells added with MnCl2, YCl3 or poly(methyl methacrylate)

    Science.gov (United States)

    Taguchi, Masaya; Suzuki, Atsushi; Tanaka, Hiroki; Oku, Takeo

    2018-01-01

    Perovskite-type CH3NH3PbI3-based photovoltaic devices were fabricated and characterized. Effects of manganese (Mn), yttrium (Y) compounds addition into the perovskite crystal on the photovoltaic properties were investigated. Also, the effects of poly(methyl methacrylate) (PMMA) addition on perovskite layer on the photovoltaic properties were investigated. When 3 % MnCl2 was added, the short circuit current density and conversion efficiency were improved by promoting the crystal growth of perovskite phase. The photoelectric conversion efficiency for 0.9 mg mL-1 PMMA added was 7.36 %. Open circuit voltage and fill factor were improved by 5 % YCl3 addition.

  17. Ethanol oxidation reactions catalyzed by water molecules: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2)

    Science.gov (United States)

    Takahashi, H.; Hisaoka, S.; Nitta, T.

    2002-09-01

    Ab initio density functional theory calculations have been performed to investigate the catalytic role of water molecules in the oxidation reaction of ethanol: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2) . The results show that the potential energy barrier for the reaction is 88.0 kcal/mol in case of n=0, while it is reduced by ˜34 kcal/mol when two water molecules are involved ( n=2) in the reaction. As a result, the rate constant increases to 3.31×10 -4 s-1, which shows a significant catalytic role of water molecules in the ethanol oxidation reactions.

  18. Neutralization of methyl cation via chemical reactions in low-energy ion-surface collisions with fluorocarbon and hydrocarbon self-assembled monolayer films.

    Science.gov (United States)

    Somogyi, Arpád; Smith, Darrin L; Wysocki, Vicki H; Colorado, Ramon; Lee, T Randall

    2002-10-01

    Low-energy ion-surface collisions of methyl cation at hydrocarbon and fluorocarbon self-assembled monolayer (SAM) surfaces produce extensive neutralization of CH3+. These experimental observations are reported together with the results obtained for ion-surface collisions with the molecular ions of benzene, styrene, 3-fluorobenzonitrile, 1,3,5-triazine, and ammonia on the same surfaces. For comparison, low-energy gas-phase collisions of CD3+ and 3-fluorobenzonitrile molecular ions with neutral n-butane reagent gas were conducted in a triple quadrupole (QQQ) instrument. Relevant MP2 6-31G*//MP2 6-31G* ab initio and thermochemical calculations provide further insight in the neutralization mechanisms of methyl cation. The data suggest that neutralization of methyl cation with hydrocarbon and fluorocarbon SAMs occurs by concerted chemical reactions, i.e., that neutralization of the projectile occurs not only by a direct electron transfer from the surface but also by formation of a neutral molecule. The calculations indicate that the following products can be formed by exothermic processes and without appreciable activation energy: CH4 (formal hydride ion addition) and C2H6 (formal methyl anion addition) from a hydrocarbon surface and CH3F (formal fluoride addition) from a fluorocarbon surface. The results also demonstrate that, in some cases, simple thermochemical calculations cannot be used to predict the energy profiles because relatively large activation energies can be associated with exothermic reactions, as was found for the formation of CH3CF3 (formal addition of trifluoromethyl anion).

  19. {sup 13}C-METHYL FORMATE: OBSERVATIONS OF A SAMPLE OF HIGH-MASS STAR-FORMING REGIONS INCLUDING ORION-KL AND SPECTROSCOPIC CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Favre, Cécile; Bergin, Edwin A.; Crockett, Nathan R.; Neill, Justin L. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Carvajal, Miguel [Dpto. Física Aplicada, Unidad Asociada CSIC, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva (Spain); Field, David [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Jørgensen, Jes K.; Bisschop, Suzanne E. [Centre for Star and Planet Formation, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Brouillet, Nathalie; Despois, Didier; Baudry, Alain [Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac (France); Kleiner, Isabelle [Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS, UMR 7583, Université de Paris-Est et Paris Diderot, 61, Av. du Général de Gaulle, F-94010 Créteil Cedex (France); Margulès, Laurent; Huet, Thérèse R.; Demaison, Jean, E-mail: cfavre@umich.edu, E-mail: miguel.carvajal@dfa.uhu.es [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille I, F-59655 Villeneuve d' Ascq Cedex (France)

    2015-01-01

    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic center for methyl formate, HCOOCH{sub 3}, and its isotopologues H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the {sup 13}C-methyl formate isotopologue HCOO{sup 13}CH{sub 3} toward the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2, and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection of the {sup 13}C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the {sup 12}C/{sup 13}C isotope ratio in methyl formate toward the Orion-KL Compact Ridge and Hot Core-SW components (68.4 ± 10.1 and 71.4 ± 7.8, respectively) are, for both the {sup 13}C-methyl formate isotopologues, commensurate with the average {sup 12}C/{sup 13}C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the {sup 12}C/{sup 13}C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3} species. New spectroscopic data for both isotopomers H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}, presented in this study, have made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.

  20. Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite

    Directory of Open Access Journals (Sweden)

    Shiqiang Luo

    2016-02-01

    Full Text Available Inorganic-organic hydride perovskites bring the hope for fabricating low-cost and large-scale solar cells. At the beginning of the research, two open questions were raised: the hysteresis effect and the role of chloride. The presence of chloride significantly improves the crystallization and charge transfer property of the perovskite. However, though the long held debate over of the existence of chloride in the perovskite seems to have now come to a conclusion, no prior work has been carried out focusing on the role of chloride on the electronic performance and the crystallization of the perovskite. Furthermore, current reports on the crystal structure of the perovskite are rather confusing. This article analyzes the role of chloride in CH3NH3PbI3-xClx on the crystal orientation and provides a new explanation about the (110-oriented growth of CH3NH3PbI3 and CH3NH3PbI3-xClx.

  1. Alanine/epr pellet dosimeter using poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) copolymer as a binder for radiation dosimetry

    International Nuclear Information System (INIS)

    Beshir, W.B.; Ezz El-Din, H.M.; Abdel-fatth, A.A.; Ebraheem, S.

    2005-01-01

    A new alanine pellet dosimeter was developed for gamma and electron beam radiation dosimetry. Alanine powder was mixed with a new binding material, poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) copolymer. Pellets were prepared by pressing fine powder alanine with 60% copolymer binder by using hydraulic press and a specially designed pressing die. The radiation-formed stable free radicals were analysed by using electron paramagnetic resonance (EPR) spectroscopy. The useful dose range of these pellets was found to ranges from 1 to 80 kGy. The stability of the radiation- induced response was also studied

  2. CH3Cl self-broadening coefficients and their temperature dependence

    International Nuclear Information System (INIS)

    Dudaryonok, A.S.; Lavrentieva, N.N.; Buldyreva, J.V.

    2013-01-01

    CH 3 35 Cl self-broadening coefficients at various temperatures of atmospheric interest are computed by a semi-empirical method particularly suitable for molecular systems with strong dipole–dipole interactions. In order to probe the dependence on the rotational number K, the model parameters are adjusted on extensive room-temperature measurements for K≤7 and allow reproducing fine features of J-dependences observed for K≤3; for higher K up to 20, the fitting is performed on specially calculated semi-classical values. The temperature exponents for the standard power law are extracted and validated by calculation of low-temperature self-broadening coefficients comparing very favorably with available experimental data. An extensive line-list of self-broadening coefficients at the reference temperature 296 K and associated temperature exponents for 0≤J≤70, 0≤K≤20 is provided as Supplementary material for their use in atmospheric applications and spectroscopic databases. -- Highlights: • We calculated methyl chloride self-broadening coefficients using two methods. • Rotational quantum numbers were J from 0 till 70 and K from 0 till 20. • The temperature exponents were calculated for every mentioned line

  3. Accurate ab initio vibrational energies of methyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Alec, E-mail: owens@mpi-muelheim.mpg.de [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Thiel, Walter [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  4. Microbial reductive dehalogenation of vinyl chloride

    Science.gov (United States)

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Nannhein, DE; Meshulam-Simon, Galit [Los Altos, CA; McCarty, Perry L [Stanford, CA

    2011-11-22

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  5. On the feasibility of chemi-ion formation in the system CH2CH(ã 4A″)+O(3P)

    Science.gov (United States)

    Metropoulos, Aristophanes

    2003-12-01

    We have investigated theoretically the possibility that the CH2CH(ã 4A″) radical can generate the CH2CHO+(X1A') ion upon collisions with O(3P). We have concluded that this is very unlikely because the minimum of the ground-state potential-energy surface of the ion is at about the same level as the potential energy of the asymptotic CH2CH(ã 4A″)+O(3P) fragments. In addition the Franck-Condon factors should not be favorable because of a drastic change in the geometry of the ion.

  6. High levels of glucose induce "metabolic memory" in cardiomyocyte via epigenetic histone H3 lysine 9 methylation.

    Science.gov (United States)

    Yu, Xi-Yong; Geng, Yong-Jian; Liang, Jia-Liang; Zhang, Saidan; Lei, He-Ping; Zhong, Shi-Long; Lin, Qiu-Xiong; Shan, Zhi-Xin; Lin, Shu-Guang; Li, Yangxin

    2012-09-01

    Diabetic patients continue to develop inflammation and cardiovascular complication even after achieving glycemic control, suggesting a "metabolic memory". Metabolic memory is a major challenge in the treatment of diabetic complication, and the mechanisms underlying metabolic memory are not clear. Recent studies suggest a link between chromatin histone methylation and metabolic memory. In this study, we tested whether histone 3 lysine-9 tri-methylation (H3K9me3), a key epigenetic chromatin marker, was involved in high glucose (HG)-induced inflammation and metabolic memory. Incubating cardiomyocyte cells in HG resulted in increased levels of inflammatory cytokine IL-6 mRNA when compared with myocytes incubated in normal culture media, whereas mannitol (osmotic control) has no effect. Chromatin immunoprecipitation (ChIP) assays showed that H3K9me3 levels were significantly decreased at the promoters of IL-6. Immunoblotting demonstrated that protein levels of the H3K9me3 methyltransferase, Suv39h1, were also reduced after HG treatment. HG-induced apoptosis, mitochondrial dysfunction and cytochrome-c release were reversible. However, the effects of HG on the expression of IL-6 and the levels of H3K9me3 were irreversible after the removal of HG from the culture. These results suggest that HG-induced sustained inflammatory phenotype and epigenetic histone modification, rather than HG-induced mitochondrial dysfunction and apoptosis, are main mechanisms responsible for metabolic memory. In conclusion, our data demonstrate that HG increases expression of inflammatory cytokine and decreases the levels of histone-3 methylation at the cytokine promoter, and suggest that modulating histone 3 methylation and inflammatory cytokine expression may be a useful strategy to prevent metabolic memory and cardiomyopathy in diabetic patients.

  7. Kinetic modeling of methyl butanoate in shock tube.

    Science.gov (United States)

    Huynh, Lam K; Lin, Kuang C; Violi, Angela

    2008-12-25

    An increased necessity for energy independence and heightened concern about the effects of rising carbon dioxide levels have intensified the search for renewable fuels that could reduce our current consumption of petrol and diesel. One such fuel is biodiesel, which consists of the methyl esters of fatty acids. Methyl butanoate (MB) contains the essential chemical structure of the long-chain fatty acids and a shorter, but similar, alkyl chain. This paper reports on a detailed kinetic mechanism for MB that is assembled using theoretical approaches. Thirteen pathways that include fuel decomposition, isomerization, and propagation steps were computed using ab initio calculations [J. Org. Chem. 2008, 73, 94]. Rate constants from first principles for important reactions in CO(2) formation, namely CH(3)OCO=CH(3) + CO(2) (R1) and CH(3)OCO=CH(3)O + CO (R2) reactions, are computed at high levels of theory and implemented in the mechanism. Using the G3B3 potential energy surface together with the B3LYP/6-31G(d) gradient, Hessian and geometries, the rate constants for reactions R1 and R2 are calculated using the Rice-Ramsperger-Kassel-Marcus theory with corrections from treatments for tunneling, hindered rotation, and variational effects. The calculated rate constants of reaction R1 differ from the data present in the literature by at most 20%, while those of reaction R2 are about a factor of 4 lower than the available values. The new kinetic model derived from ab initio simulations is combined with the kinetic mechanism presented by Fisher et al. [Proc. Combust. Inst. 2000, 28, 1579] together with the addition of the newly found six-centered unimolecular elimination reaction that yields ethylene and methyl acetate, MB = C(2)H(4) + CH(3)COOCH(3). This latter pathway requires the inclusion of the CH(3)COOCH(3) decomposition model suggested by Westbrook et al. [Proc. Combust. Inst. 2008, accepted]. The newly composed kinetic mechanism for MB is used to study the CO(2) formation

  8. Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space

    Science.gov (United States)

    2001-10-01

    new light on how certain highly complex species form in space, the final answer is still not in hand. "Although vinyl alcohol and its isomeric partners may well have formed on grains," said Turner "another important possibility has been found. The grain evaporative processes near star formation appear to release copious amounts of somewhat simpler molecules such as formaldehyde (H2CO) and methanol (CH3OH), which may be reacting in the gas phase to produce detectable amounts of vinyl alcohol and its isomers." A program to search for other families of isomers is planned, which the astronomers believe could distinguish between these two possibilities. The astronomers used 2- and 3-mm band radio frequencies to make their observations with the 12 Meter Telescope. This telescope was taken off-line by the NRAO to make way for the Atacama Large Millimeter Array, and is now operated by the Steward Observatory of the University of Arizona. Built in 1967, the telescope has had a long and productive history in detecting molecules in space. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  9. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices

    DEFF Research Database (Denmark)

    Genina, Natalja; Hollander, Jenny; Jukarainen, Harri

    2016-01-01

    The main purpose of this work was to investigate the printability of different grades of ethylene vinyl acetate (EVA) copolymers as new feedstock material for fused-deposition modeling (FDM™)-based 3D printing technology in fabrication of custom-made T-shaped intrauterine systems (IUS......) and subcutaneous rods (SR). The goal was to select an EVA grade with optimal properties, namely vinyl acetate content, melting index, flexural modulus, for 3D printing of implantable prototypes with the drug incorporated within the entire matrix of the medical devices. Indomethacin was used as a model drug...... affected the drug release profiles from the filaments and printed prototype products: faster release from the prototypes over 30 days in the in vitro tests. To conclude, this study indicates that certain grades of EVA were applicable feedstock material for 3D printing to produce drug-loaded implantable...

  10. Controlled synthesis of novel 3D dendritic Bi2S3 /cross-linked poly(vinyl alcohol) nanocomposites

    International Nuclear Information System (INIS)

    Wu, W-T; Shi Lei; Pang Wenmin; Wang Yusong; Zhu Qingren; Xu Guoyong

    2006-01-01

    Novel spherical three-dimensional (3D) dendritic Bi 2 S 3 /cross-linked poly(vinyl alcohol) (PVA) nanocomposites were successfully synthesized in aqueous solution of amphiphilic polyvinylacetone (PVKA) (ketalization degree D H = 0.549), via one-step in situ decomposition of the complex [Bi(Tu) x ] 3+ under γ-ray irradiation, utilizing the controllable hydrolysis property of PVKA in acidic solution. Herein, PVA chains are obtained from the hydrolysed PVKA. These uniform 3D spherical nanocomposites have a structure similar to that found in the natural lotus leaf, where every microscale papilla on the leaf surface is covered by nanoscale papillae

  11. Electron pairing analysis of the Fischer-type chromium-carbene complexes (CO){sub 5}Cr=C(X)R (X=H, OH, OCH{sub 3}, NH{sub 2}, NHCH{sub 3} and R=H, CH{sub 3}, CH=CH{sub 2}, Ph, C-CH )

    Energy Technology Data Exchange (ETDEWEB)

    Poater, Jordi; Cases, Montserrat; Fradera, Xavier; Duran, Miquel; Sola, Miquel

    2003-10-15

    The electron-pair density distributions of a series of 25 Fischer carbene complexes of the type (CO){sub 5}Cr=C(X)R (X=H, OH, OCH{sub 3}, NH{sub 2}, NHCH{sub 3} and R=H, CH{sub 3}, CH=CH{sub 2}, Ph, C-CH) are analyzed using the Atoms in Molecules theory. Localization and delocalization indices are used to characterize the electron pairing taking place in the Cr=C---X moiety in these complexes. Electron delocalization between the Cr and C atoms and between the C atom and the X group are related to the {pi}-donor strength of the X group and the degree of back-donation between the chromium pentacarbonyl and the carbene fragments. The results obtained with the Atoms in Molecules theory complement those obtained in a previous study by means of energy and charge decomposition analyses. Electron delocalization between the Cr atom and the X group is consistent with the hypothesis of a weak 3-center 4-electron bonding interaction in the Cr=C-X group of atoms. Except for X=H, {delta}(Cr,X) increases with the decrease of the {pi}-donor character of the X group.

  12. Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters.

    Science.gov (United States)

    Ni, Chengsheng; Hedley, Gordon; Payne, Julia; Svrcek, Vladimir; McDonald, Calum; Jagadamma, Lethy Krishnan; Edwards, Paul; Martin, Robert; Jain, Gunisha; Carolan, Darragh; Mariotti, Davide; Maguire, Paul; Samuel, Ifor; Irvine, John

    2017-08-01

    A metal-organic hybrid perovskite (CH 3 NH 3 PbI 3 ) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal-organic hybrid materials, a highly orientated film of (CH 3 NH 3 ) 3 Bi 2 I 9 with nanometre-sized core clusters of Bi 2 I 9 3- surrounded by insulating CH 3 NH 3 + was prepared via solution processing. The (CH 3 NH 3 ) 3 Bi 2 I 9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Understanding the confinement and transport of excitons in low dimensional systems will aid the development of next generation photovoltaics. Via photophysical studies Ni et al. observe 'quantum cutting' in 0D metal-organic hybrid materials based on methylammonium bismuth halide (CH 3 NH 3 )3Bi 2 I 9 .

  13. Methyl halide fluxes from tropical plants under controlled radiation and temperature regimes

    Science.gov (United States)

    Blei, Emanuel; Yokouchi, Yoko; Saito, Takuya; Nozoe, Susumu

    2015-04-01

    Methyl halides (CH3Cl, CH3Br, CH3I) contribute significantly to the halogen burden of the atmosphere and have the potential to influence the stratospheric ozone layer through their catalytic effect in the Chapman cycle. As such they have been studied over the years, and many plants and biota have been examined for their potential to act as a source of these gases. One of the potentially largest terrestrial sources identified was tropical vegetation such as tropical ferns and Dipterocarp trees. Most of these studies concentrated on the identification and quantification of such fluxes rather than their characteristics and often the chambers used in these studies were either opaque or only partially transparent to the full solar spectrum. Therefore it is not certain to which degree emissions of methyl halides are innate to the plants and how much they might vary due to radiation or temperature conditions inside the enclosures. In a separate development it had been proposed that UV-radiation could cause live plant materials to be become emitters of methane even under non-anoxic conditions. As methane is chemically very similar to methyl halides and had been proposed to be produced from methyl-groups ubiquitously found in plant cell material there is a relatively good chance that such a production mechanism would also apply to methyl halides. To test whether radiation can affect elevated emissions of methyl halides from plant materials and to distinguish this from temperature effects caused by heat build-up in chambers a set of controlled laboratory chamber enclosures under various radiation and temperature regimes was conducted on four different tropical plant species (Magnolia grandiflora, Cinnamonum camphora, Cyathea lepifera, Angiopteris lygodiifolia), the latter two of which had previously been identified as strong methyl halide emitters. Abscised leaf samples of these species were subjected to radiation treatments such UV-B, UV-A and broad spectrum radiation

  14. Methodological considerations regarding the use of inorganic {sup 197}Hg(II) radiotracer to assess mercury methylation potential rates in lake sediment

    Energy Technology Data Exchange (ETDEWEB)

    Perez Catan, Soledad [Laboratorio de Analisis por Activacion Neutronica, Comision Nacional de Energia Atomica, Centro Atomico Bariloche, 8400 Bariloche (Argentina); Guevara, Sergio Ribeiro [Laboratorio de Analisis por Activacion Neutronica, Comision Nacional de Energia Atomica, Centro Atomico Bariloche, 8400 Bariloche (Argentina)], E-mail: ribeiro@cab.cnea.gov.ar; Marvin-DiPasquale, Mark [US Geological Survey, 345 Middlefield Rd./MS 480, Menlo Park, CA 94025 (United States); Magnavacca, Cecilia [Centro Atomico Ezeiza, Comision Nacional de Energia Atomica, Presbitero Gonzalez y Aragon No. 15, B1802AYA, Ezeiza, Buenos Aires (Argentina); Cohen, Isaac Marcos [Departamento de Ingenieria Quimica, Facultad Regional Buenos Aires, Universidad Tecnologica Nacional, Medrano 951 (C1179AAQ) Buenos Aires (Argentina); Arribere, Maria [Laboratorio de Analisis por Activacion Neutronica, Comision Nacional de Energia Atomica, Centro Atomico Bariloche, 8400 Bariloche (Argentina)

    2007-09-15

    Methodological considerations on the determination of benthic methyl-mercury (CH{sub 3}Hg) production potentials were investigated on lake sediment, using {sup 197}Hg radiotracer. Three methods to arrest bacterial activity were compared: flash freezing, thermal sterilization, and {gamma}-irradiation. Flash freezing showed similar CH{sub 3}Hg recoveries as thermal sterilization, which was both 50% higher than the recoveries obtained with {gamma}-ray irradiation. No additional radiolabel was recovered in kill-control samples after an additional 24 or 65 h of incubation, suggesting that all treatments were effective at arresting Hg(II)-methylating bacterial activity, and that the initial recoveries are likely due to non-methylated {sup 197}Hg(II) carry-over in the organic extraction and/or [{sup 197}Hg]CH{sub 3}Hg produced via abiotic reactions. Two CH{sub 3}Hg extraction methods from sediment were compared: (a) direct extraction into toluene after sediment leaching with CuSO{sub 4} and HCl and (b) the same extraction with an additional back-extraction step to thiosulphate. Similar information was obtained with both methods, but the low efficiency observed and the extra work associated with the back-extraction procedure represent significant disadvantages, even tough the direct extraction involves higher Hg(II) carry over.

  15. Methyl chloride and other chlorocarbons in polluted air during INDOEX

    NARCIS (Netherlands)

    Scheeren, HA; Lelieveld, J; de Gouw, JA; van der Veen, C; Fischer, H

    2002-01-01

    [1] Methyl chloride (CH3Cl) is the most abundant, natural, chlorine-containing gas in the atmosphere, with oceans and biomass burning as major identified sources. Estimates of global emissions suffer from large uncertainties, mostly for the tropics, partly due to a lack of measurements. We present

  16. Radiation-induced cationic curing of vinyl ethers

    International Nuclear Information System (INIS)

    Lapin, S.C.

    1992-01-01

    Recently there has been an increasing interest in nonacrylate radiation-curable coatings. Vinyl ethers are particularly reactive under cationic polymerization reaction conditions. The high efficiency of the photoacid initiators combined with the high reactivity of vinyl ether monomers makes this a potentially very useful system. This chapter discusses the preparation of vinyl ethers, introduces vinyl ether-functional monomers and oligomers, describes radiation-induced cationic polymerization of vinyl ethers, and discusses various coating systems. Throughout the chapter, an emphasis is placed on radiation-curable coating applications. 64 refs., 5 figs., 11 tabs

  17. Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite under Ambient Conditions

    KAUST Repository

    Huang, Weixin; Manser, Joseph S.; Kamat, Prashant V.; Ptasinska, Sylwia

    2016-01-01

    © 2015 American Chemical Society. The surface composition and morphology of CH3NH3PbI3 perovskite films stored for several days under ambient conditions were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction techniques. Chemical analysis revealed the loss of CH3NH3 + and I- species from CH3NH3PbI3 and its subsequent decomposition into lead carbonate, lead hydroxide, and lead oxide. After long-term storage under ambient conditions, morphological analysis revealed the transformation of randomly distributed defects and cracks, initially present in the densely packed crystalline structure, into relatively small grains. In contrast to PbI2 powder, CH3NH3PbI3 exhibited a different degradation trend under ambient conditions. Therefore, we propose a plausible CH3NH3PbI3 decomposition pathway that explains the changes in the chemical composition of CH3NH3PbI3 under ambient conditions. In addition, films stored under such conditions were incorporated into photovoltaic cells, and their performances were examined. The chemical changes in the decomposed films were found to cause a significant decrease in the photovoltaic efficiency of CH3NH3PbI3.

  18. Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite under Ambient Conditions

    KAUST Repository

    Huang, Weixin

    2016-01-12

    © 2015 American Chemical Society. The surface composition and morphology of CH3NH3PbI3 perovskite films stored for several days under ambient conditions were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction techniques. Chemical analysis revealed the loss of CH3NH3 + and I- species from CH3NH3PbI3 and its subsequent decomposition into lead carbonate, lead hydroxide, and lead oxide. After long-term storage under ambient conditions, morphological analysis revealed the transformation of randomly distributed defects and cracks, initially present in the densely packed crystalline structure, into relatively small grains. In contrast to PbI2 powder, CH3NH3PbI3 exhibited a different degradation trend under ambient conditions. Therefore, we propose a plausible CH3NH3PbI3 decomposition pathway that explains the changes in the chemical composition of CH3NH3PbI3 under ambient conditions. In addition, films stored under such conditions were incorporated into photovoltaic cells, and their performances were examined. The chemical changes in the decomposed films were found to cause a significant decrease in the photovoltaic efficiency of CH3NH3PbI3.

  19. Thermogravimetric analysis of the polymer acrylate-vinyl ether mixture cured by radiation

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    1998-01-01

    An experiment on thermal stability of the polymer acrylate-vinyl ether mixture cured by radiation have been done using thermogravimetric analysis. Three kinds of acrylic oligomers i.e., epoxy acrylate, urethane acrylate, and polypropylene glycol diacrylate, and vinyl ether monomers i.e., triethylene glycol divinyl ether (DVE-3), 1,4-cyclohexane dimethanol divinyl ether (CHVE), and butanediol monovinyl ether (HBVE) were used in the experiment. Reaction was taken via radical and cationic polymerisation. In case of cationic polymerisation, diphenyliodonium hexafluorophosphate fotoinisiator was used in the formulation. Thermogravimetric analysis was conducted in a nitrogen atmosphere at a flow rate of 40 ml/minute with a constant heating rate 10 o C and evaluation range were done from 25 to 500 o C. The results of thermogravimetric analysis showed that acrylate and DVE-3 mixture produced the polymer films with higher thermal stability than the mixture of acrylate with CHVE or HBVE. The composition of acrylate-vinyl ether mixture and degree of unsaturation of vinyl ether monomers influenced the thermal stability of polymer. The mixture of epoxy acrylate-vinyl ether and polypropylene glycol diacrylate-vinyl ether have 1 initial decomposition temperature whereas the urethane acrylate-vinyl ether mixture has 2 initial decomposition temperatures. (authors)

  20. Seeing the sink beneath the source: an improved stable isotope tracer method for measuring highly variable gross fluxes of methyl halides

    Science.gov (United States)

    Rhew, R. C.

    2011-12-01

    Measuring methyl bromide (CH3Br) and methyl chloride (CH3Cl) fluxes in terrestrial ecosystems is complicated by the presence of simultaneous production (typically associated with plants and/or fungi) and consumption (typically associated with soils). Thus, specific sites within an ecosystem can act as either a net source or net sink, depending on season, soil conditions, or vegetative cover. To interpret the highly variable net fluxes found in many of these ecosystems, a stable isotope tracer technique has been developed to measure gross fluxes of CH3Br and CH3Cl. This method entails adding small amounts of 13CH3Br and 13CH3Cl to an incubation chamber, monitoring the headspace concentration changes of both 13C and 13C isotopologues, and applying a box model to simultaneously solve for gross production and consumption. Over the last decade, this technique has been successfully applied to laboratory soil incubations and field studies from a variety of ecosystems, including boreal forest, annual grasslands, shortgrass steppe, oak-savanna woodland, and Arctic tundra. These studies demonstrate that gross uptake rates are strongly affected by soil moisture within ecosystems but are on average much lower than previously estimated, and that gross production rates are highly dependent on plant species enclosed, with minor production within the soils as well. Measuring gross uptake rates is more challenging in ecosystems with large net emissions of methyl halides, such as coastal salt marshes, rice fields and certain grassland sites. Using the tallgrass prairie of Kansas as a case study, four slightly different models to calculate gross fluxes are compared. These models are largely in agreement except at sites with large emissions (i.e., sites with Amorpha shrubs), where one of the models most robustly quantifies gross consumption. This improved stable isotope tracer method is used to track the separate responses of gross production and gross consumption of methyl halides

  1. General working principles of CH3NH3PbX3 perovskite solar cells.

    Science.gov (United States)

    Gonzalez-Pedro, Victoria; Juarez-Perez, Emilio J; Arsyad, Waode-Sukmawati; Barea, Eva M; Fabregat-Santiago, Francisco; Mora-Sero, Ivan; Bisquert, Juan

    2014-02-12

    Organometal halide perovskite-based solar cells have recently realized large conversion efficiency over 15% showing great promise for a new large scale cost-competitive photovoltaic technology. Using impedance spectroscopy measurements we are able to separate the physical parameters of carrier transport and recombination in working devices of the two principal morphologies and compositions of perovskite solar cells, viz. compact thin films of CH3NH3PbI(3-x)Clx and CH3NH3PbI3 infiltrated on nanostructured TiO2. The results show nearly identical spectral characteristics indicating a unique photovoltaic operating mechanism that provides long diffusion lengths (1 μm). Carrier conductivity in both devices is closely matched, so that the most significant differences in performance are attributed to recombination rates. These results highlight the central role of the CH3NH3PbX3 semiconductor absorber in carrier collection and provide a new tool for improved optimization of perovskite solar cells. We report for the first time a measurement of the diffusion length in a nanostructured perovskite solar cell.

  2. Solid state luminescence of CuI and CuNCS complexes with phenanthrolines and a new tris (aminomethyl) phosphine derived from N-methyl-2-phenylethanamine

    International Nuclear Information System (INIS)

    Starosta, Radosław; Komarnicka, Urszula K.; Puchalska, Małgorzata

    2014-01-01

    A new tris (aminomethyl) phosphine derived from N-methyl-2-phenylethanamine P(CH 2 N(CH 3 )CH 2 CH 2 Ph) 3 (1) has been synthesized and characterized by the NMR spectra. Also, three new copper(I) iodide or isothiocyanate complexes with 1 1,10-phenanthroline (phen) and 2,9-dimethyl-1,10-phenanthroline (dmp) [CuI(phen)P(CH 2 N(CH 3 )CH 2 CH 2 Ph) 3 ] (1P) CuI(dmp)P(CH 2 N(CH 3 )CH 2 CH 2 Ph) 3 ] (1I) and [CuNCS(dmp)P(CH 2 N(CH 3 )CH 2 CH 2 Ph) 3 ] (1T), have been synthesized and characterized by elemental analysis as well as studied by NMR, UV–vis, IR and luminescence spectroscopies. An X-ray structure of 1P complex revealed that the geometry around Cu(I) center in this complex is distorted pseudo-tetrahedral. Investigated complexes exhibit orange, rather weak photoluminescence in the solid state. This relatively low intensity may be related to the high flattening deformations of the molecular geometries in the excited triplet states On the basis of TDDFT calculations we confirmed that the absorbance and luminescence bands of (MX,MPR 3 )LCT as well as of (MX)LCT types result mainly from the transitions from the copper–iodine (or isothiocyanate) bonds and a small admixture of copper–phosphine bonds to antibonding orbitals of phen or dmp diimines. -- Highlights: • A novel tris(aminomethyl)phosphine is obtained from N-methyl-2-phenylethanamine. • Three new CuI and CuNCS complexes with phen or dmp and a novel phosphine are presented. • The obtained complexes are luminescent in the solid state. • Main absorbance and luminescence bands are of (MX,MPR 3 )LCT as well as (MX)LCT types

  3. Anion exchange separation of the light lanthanoids with nitric acid-methyl alcohol mixed media at elevated temperature

    International Nuclear Information System (INIS)

    Usuda, S.; Magara, M.

    1987-01-01

    Anion exchange chromatography with nitric acid-methyl alcohol mixed media at elevated temperature was applied to mutual separation of the light lanthanoids, La, Ce, Pr, Nd and Pm. The individual elements could be effectively separated from each other, main fission products and actinoids with 0.01M HNO 3 -90% CH 3 OH or 0.5M HNO 3 -80% CH 3 OH eluent at 90 deg C. (author) 14 refs.; 3 tables

  4. Fabrication of 3D interconnected porous TiO{sub 2} nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Joo Hwan; Koh, Jong Kwan; Seo, Jin Ah; Kim, Jong Hak [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shin, Jong-Shik, E-mail: jonghak@yonsei.ac.kr [Department of Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2011-09-07

    Porous TiO{sub 2} nanotube arrays with three-dimensional (3D) interconnectivity were prepared using a sol-gel process assisted by poly(vinyl chloride-graft-4-vinyl pyridine), PVC-g-P4VP graft copolymer and a ZnO nanorod template. A 7 {mu}m long ZnO nanorod array was grown from the fluorine-doped tin oxide (FTO) glass via a liquid phase deposition method. The TiO{sub 2} sol-gel solution templated by the PVC-g-P4VP graft copolymer produced a random 3D interconnection between the adjacent ZnO nanorods during spin coating. Upon etching of ZnO, TiO{sub 2} nanotubes consisting of 10-15 nm nanoparticles were generated, as confirmed by wide-angle x-ray scattering (WAXS), energy-filtering transmission electron microscopy (EF-TEM) and field-emission scanning electron microscopy (FE-SEM). The ordered and interconnected nanotube architecture showed an enhanced light scattering effect and increased penetration of polymer electrolytes in dye-sensitized solar cells (DSSC). The energy conversion efficiency reached 1.82% for liquid electrolyte, and 1.46% for low molecular weight (M{sub w}) and 0.74% for high M{sub w} polymer electrolytes.

  5. The energy level alignment at the CH{sub 3}NH{sub 3}PbI{sub 3}/pentacene interface

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Gengwu [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); University of Chinese Academy of Science, Beijing 100049 (China); Zhao, Bin; Song, Fei [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Zheng, Guanhaojie; Zhang, Xiaonan [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); University of Chinese Academy of Science, Beijing 100049 (China); Shen, Kongchao [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Yang, Yingguo [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Chen, Shi, E-mail: ChenShi@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Gao, Xingyu, E-mail: gaoxingyu@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2017-01-30

    Highlights: • The Energy Level Alignment at the CH{sub 3}NH{sub 3}PbI{sub 3}/Pentacene Interface was resolved experimentally. • The downward band bending and the dipole found at the pentacene side would favorably drive holes away from the interface into pentacene. • A ∼0.7 eV offset between pentacene HOMO and CH{sub 3}NH{sub 3}PbI{sub 3} VBM would be in favor of hole transfer whereas a ∼1.35 eV offset between pentacene LUMO and CH{sub 3}NH{sub 3}PbI{sub 3} CBM should efficiently block the unwanted electron transfer from perovskite to pentacene. • Pentacene could be a viable hole transfer material candidate on perovskite to be explored in perovskite devices. - Abstract: Pentacene thin film on CH{sub 3}NH{sub 3}PbI{sub 3} was studied by in-situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy to determine their interfacial energy level alignment. A 0.2 eV downward band bending together with a 0.1 eV interfacial dipole was found at the pentacene side, whereas there was no band bending found at the CH{sub 3}NH{sub 3}PbI{sub 3} side. The offset between CH{sub 3}NH{sub 3}PbI{sub 3} Valance Band Maximum (VBM) and pentacene Highest Occupied Molecular Orbital (HOMO) and that between CH{sub 3}NH{sub 3}PbI{sub 3} Conduction Band Minimum (CBM) and pentacene Lowest Unoccupied Molecular Orbital (LUMO) was determined to be 0.7 and 1.35 eV, respectively. The band alignment at this interface is favor of efficient hole transfer, which suggests pentacene as a viable HTL candidate to be explored in perovskite solar cells.

  6. Study of the structural phase transitions of (CH 3NH 3) 3Sb 2Cl 9 (MACA) and (CH 3NH 3) 3Bi 2Cl 9 (MACB) by infrared spectroscopy

    Science.gov (United States)

    Bator, G.; Jakubas, R.; Malarski, Z.

    1991-06-01

    Infrared spectra of polycrystalline (CH 3NH 3) 3Sb 2Cl 9 and (CH 3NH 3) 3Bi 2Cl 9 have been studied in the temperature range 90-300 K. A systematic temperature dependence study of the internal modes has been carried out. We discuss the effects of the dynamic state of methylammonium (MA) cations on their vibrational spectra. The results show that the dynamics of MA cations in both compounds is similar in higher (about 300 K) and lower temperature (in the vicinity of 100 K) regions. Substantial differences are revealed in the intermediate temperature interval. The results are in good agreement with earlier dielectric, calorimetric and 1H NMR studies.

  7. Colorful and transparent poly(vinyl alcohol) composite films filled with layered zinc hydroxide salts, intercalated with anionic orange azo dyes (methyl orange and orange II)

    International Nuclear Information System (INIS)

    Neves da Silva, Marlon Luiz; Marangoni, Rafael; Cursino, Ana Cristina Trindade; Schreiner, Wido Herwig; Wypych, Fernando

    2012-01-01

    Highlights: ► Zinc hydroxide salts were successfully intercalated with anionic orange azo dyes. ► The anionic dye was co-intercalated with hydrated chloride anions. ► The orange materials were used as fillers for poly(vinyl alcohol). ► Transparent, homogeneous, colorful PVA films were obtained by wet casting. ► Some composites stored at lower humidity exhibited improved mechanical properties. - Abstract: Layered zinc hydroxide salts (zinc LHS) were intercalated with anionic orange azo dyes, namely methyl orange (MO) and orange II (OII), and co-intercalated with hydrated chloride anions. After characterization by X-ray diffraction (XRD), thermal analysis (TGA/DTA), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), the materials were used as fillers for poly(vinyl alcohol) (PVA). Colorful transparent films were obtained by wet casting, revealing good dispersion of the material into the polymer. In the case of zinc LHS/OII, PVA was intercalated between the zinc LHS layers. Evaluation of the mechanical properties of the PVA composite films revealed that the layered colorful materials were able to increase the mechanical properties of the PVA films only when the films were stored under lower relative humidity. As expected, films with higher water content displayed reduced tensile strength and modulus because of the plasticizing effect of water. As for the films stored at 43% relative humidity, more pronounced improvement of modulus was observed for 1 and 4% zinc LHS/OII, and enhanced tensile strength was achieved for 0.5 and 1% zinc LHS/OII. This effect can be attributed to better dispersion of the layered filler and its better adhesion to the PVA matrix.

  8. Chemical Properties of Dialkyl Halonium Ions (R2Hal+) and Their Neutral Analogues, Methyl Carboranes, CH3-(CHB11Hal11), Where Hal = F, Cl.

    Science.gov (United States)

    Stoyanov, Evgenii S

    2017-04-20

    Chloronium cations in their salts (C n H 2n+1 ) 2 Cl + {CHB 11 Cl 11 - }, with n = 1 to 3 and exceptionally stable carborane anions, are stable at ambient and elevated temperatures. The temperature at which they decompose to carbocations with HCl elimination (below 150 °C) decreases with the increasing n from 1 to 3 because of increasing ionicity of C-Cl bonds in the C-Cl + -C bridge. At room temperature, the salts of cations with n ≥ 4 [starting from t-Bu 2 Cl + or (cyclo-C 5 H 11 ) 2 Cl + ] are unstable and decompose. With decreasing chloronium ion stability, their ability to interact with chloroalkanes to form oligomeric cations increases. It was shown indirectly that unstable salt of fluoronium ions (CH 3 ) 2 F + (CHB 11 F 11 - ) must exist at low temperatures. The proposed (CH 3 ) 2 F + cation is much more reactive than the corresponding chloronium, showing at room temperature chemical properties expected of (CH 3 ) 2 Cl + at elevated temperatures.

  9. UV action spectroscopy of protonated PAH derivatives. Methyl substituted quinolines

    DEFF Research Database (Denmark)

    Klærke, Benedikte; Holm, Anne; Andersen, Lars Henrik

    2011-01-01

    using the electrostatic storage ring ELISA, an electrospray ion source and 3 ns UV laser pulses. Results. It is shown that the absorption profile is both redshifted and broadened when moving the methyl group from the heterocycle containing nitrogen to the homoatomic ring. The absorption profiles......Aims. We investigate the production of molecular photofragments upon UV excitation of PAH derivatives, relevant for the interstellar medium. Methods. The action absorption spectra of protonated gas-phase methyl-substituted quinolines (CH3−C9H7NH+) have been recorded in the 215–338 nm spectral range...

  10. Methyl-perfluoroheptene-ethers (CH3OC7F13): measured OH radical reaction rate coefficients for several isomers and enantiomers and their atmospheric lifetimes and global warming potentials.

    Science.gov (United States)

    Jubb, Aaron M; Gierczak, Tomasz; Baasandorj, Munkhbayar; Waterland, Robert L; Burkholder, James B

    2014-05-06

    Mixtures of methyl-perfluoroheptene-ethers (CH3OC7F13, MPHEs) are currently in use as replacements for perfluorinated alkanes (PFCs) and poly-ether heat transfer fluids, which are persistent greenhouse gases with lifetimes >1000 years. At present, the atmospheric processing and environmental impact from the use of MPHEs is unknown. In this work, rate coefficients at 296 K for the gas-phase reaction of the OH radical with six key isomers (including stereoisomers and enantiomers) of MPHEs used commercially were measured using a relative rate method. Rate coefficients for the six MPHE isomers ranged from ∼ 0.1 to 2.9 × 10(-12) cm(3) molecule(-1) s(-1) with a strong stereoisomer and -OCH3 group position dependence; the (E)-stereoisomers with the -OCH3 group in an α- position relative to the double bond had the greatest reactivity. Rate coefficients measured for the d3-MPHE isomer analogues showed decreased reactivity consistent with a minor contribution of H atom abstraction from the -OCH3 group to the overall reactivity. Estimated atmospheric lifetimes for the MPHE isomers range from days to months. Atmospheric lifetimes, radiative efficiencies, and global warming potentials for these short-lived MPHE isomers were estimated based on the measured OH rate coefficients along with measured and theoretically calculated MPHE infrared absorption spectra. Our results highlight the importance of quantifying the atmospheric impact of individual components in an isomeric mixture.

  11. Observation of lower defect density in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cells by admittance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Minlin; Lan, Fei; Tao, Quan; Li, Guangyong, E-mail: gaod@pitt.edu, E-mail: gul6@pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Zhao, Bingxin [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Wu, Jiamin; Gao, Di, E-mail: gaod@pitt.edu, E-mail: gul6@pitt.edu [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States)

    2016-06-13

    The introduction of Cl into CH{sub 3}NH{sub 3}PbI{sub 3} precursors is reported to enhance the performance of CH{sub 3}NH{sub 3}PbI{sub 3} solar cell, which is attributed to the significantly increased diffusion lengths of carriers in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell. It has been assumed but never experimentally approved that the defect density in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell should be reduced according to the higher carrier lifetime observed from photoluminescence (PL) measurement. We have fabricated CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell by adding a small amount of Cl source into CH{sub 3}NH{sub 3}PbI{sub 3} precursor. The performance of CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell is significantly improved from 15.39% to 18.60%. Results from scanning electron microscopy and X-ray diffraction indicate that the morphologies and crystal structures of CH{sub 3}NH{sub 3}PbI{sub 3} and CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} thin films remain unchanged. Open circuit voltage decay and admittance spectroscopy characterization jointly approve that Cl plays an extremely important role in suppressing the formation of defects in perovskite solar cells.

  12. Stable bromine isotopic composition of methyl bromide released from plant matter

    Science.gov (United States)

    Horst, Axel; Holmstrand, Henry; Andersson, Per; Thornton, Brett F.; Wishkerman, Asher; Keppler, Frank; Gustafsson, Örjan

    2014-01-01

    Methyl bromide (CH3Br) emitted from plants constitutes a natural source of bromine to the atmosphere, and is a component in the currently unbalanced global CH3Br budget. In the stratosphere, CH3Br contributes to ozone loss processes. Studies of stable isotope composition may reduce uncertainties in the atmospheric CH3Br budget, but require well-constrained isotope fingerprints of the source end members. Here we report the first measurements of stable bromine isotopes (δ81Br) in CH3Br from abiotic plant emissions. Incubations of both KBr-fortified pectin, a ubiquitous cell-stabilizing macromolecule, and of a natural halophyte (Salicornia fruticosa), yielded an enrichment factor (ε) of -2.00 ± 0.23‰ (1σ, n = 8) for pectin and -1.82 ± 0.02‰ (1σ, n = 4) for Salicornia (the relative amount of the heavier 81Br was decreased in CH3Br compared to the substrate salt). For short incubations, and up to 10% consumption of the salt substrate, this isotope effect was similar for temperatures from 30 up to 300 °C. For longer incubations of up to 90 h at 180 °C the δ81Br values increased from -2‰ to 0‰ for pectin and to -1‰ for Salicornia. These δ81Br source signatures of CH3Br formation from plant matter combine with similar data for carbon isotopes to facilitate multidimensional isotope diagnostics of the CH3Br budget.

  13. The Preparation of Graphene Reinforced Poly(vinyl alcohol Antibacterial Nanocomposite Thin Film

    Directory of Open Access Journals (Sweden)

    Yuan-Cheng Cao

    2015-01-01

    Full Text Available Methylated melamine grafted polyvinyl benzylchloride (mm-g-PvBCl was prepared which was used as additive in poly(vinyl alcohol (PVA and graphene nanosheets (GNs were used to reinforce the mechanical strength. Using casting method, antimicrobial nanocomposite films were prepared with the polymeric biocide loading lever of 1 wt%, 5 wt%, and 10 wt%. Thermogravimetric analysis (TGA characterization revealed the 2.0 wt% of graphene content in resultant nanocomposites films. XRD showed that the resultant GNs 2 theta was changed from 16.6 degree to 23.3 degree. Using Japanese Industry Standard test methods, the antimicrobial efficiency for the loading lever of 1 wt%, 5 wt%, and 10 wt% was 92.0%, 95.8%, and 97.1%, respectively, against gram negative bacteria E. coli and 92.3%, 99.6%, and 99.7%, respectively, against the gram positive S. aureus. These results indicate the prepared nanocomposite films are the promising materials for the food and drink package applications.

  14. Methyl bromide residues in fumigated cocoa beans with particular reference to inorganic bromide

    International Nuclear Information System (INIS)

    Adomako, D.

    1976-01-01

    Inorganic bromide residues and 14 C-labelled methylated products (expressed as CH 3 Br equivalent) in cocoa beans fumigated with [ 14 C]-methyl bromide have been determined by radiometric and chemical methods. Determination of 14 C by direct combustion in an oxygen chamber followed by liquid scintillation counting confirmed previous findings with respect to the magnitude, distribution and chemical nature of the residues. Although recovery of added bromide was good, the values of total bromide obtained by the chemical method were only half of those estimated from the total residual 14 C-activity. This is attributed to loss of organic (presumably, protein-bound) bromide. In agreement with the total 14 C-labelled residue contents, total bromide in shells was 20 times greater than that in nibs. The low levels of residues in the nib (12ppm as CH 3 Br equivalent, 10ppm Br) and the further reduction of organic residues by roasting suggest that no toxicological and nutritional hazards may be expected from fumigation of cocoa beans with methyl bromide. (author)

  15. Synthesis of [11C]-labelled methyl esters: transesterification of enol esters versus BF3 etherate catalysed esterification - a comparative study

    International Nuclear Information System (INIS)

    Ackermann, U.; Falzon, C.; Issa, W.; Tochon-Danguy, H.J.; Sachinidis, J.I.; Blanc, P.; White, J.; Scott, A.M.

    2005-01-01

    An important issue in Positron Emission Tomography (PET) is the development of labelling techniques to incorporate positron emitting radionuclides into biologically active compounds. When labelling with 11C, the short 20 minutes half-life of the radionuclide significantly limits the number of synthetic protocols available to the radiochemist. C-l synthons such as [HCJ-methyl iodide (1) or methyl triflate (2) are readily available and are frequently used as alkylating agents for the preparation of radiopharmaceuticals. However, the use of these alkylating agents often makes it necessary to introduce protecting groups in order to prevent labelling at unwanted sites on the molecule. Since the removal of protecting groups is a time-consuming process, a more direct synthesis strategy is desirable. This has prompted us to investigate the esterification of carboxylic acids using [1 lC]-mcthanol and BF3 etherate as Lewis acid catalyst. Our results have demonstrated that the reaction conditions necessary to promote the esterification can cleave functional groups such as ethers. We have therefore shifted our attention towards the irreversible transesterification of enol esters using [HCl-methanol and a tin catalyst as an alternative strategy to [HC]-methyl ester formation. We have prepared a series of 5 aromatic ethoxy vinyl esters bearing various functional groups. The transesterification (radiolabelling) was carried out in DMSO at 150 Degrees C for 7 minutes in the presence of [HQMeOH and 1.3-dichlo-rotetrabutyldistannoxane as catalyst. We have found that the transesterification of enol esters is a mild and efficient labelling method for the formation of [HCl-methyl esters. The reaction proceeds smoothly and leaves functional groups intact. It requires only one synthesis step compared to two steps for the conventional method, and gives a radiochemical yields of 25%

  16. Dissociation of acetone radical cation (CH3COCH3(+*) --> CH3CO(+) + CH3(*)): an ab initio direct classical trajectory study of the energy dependence of the branching ratio.

    Science.gov (United States)

    Zhou, Jia; Schlegel, H Bernhard

    2008-12-18

    The nonstatistical dissociation of acetone radical cation has been studied by ab initio direct classical trajectory calculations at the MP2/6-31G(d) level of theory. A bond additivity correction has been used to improve the MP2 potential energy surface (BAC-MP2). The energy dependence of the branching ratio, dissociation kinetics, and translational energy distribution for the two types of methyl groups have been investigated using microcanonical ensembles and specific mode excitation. In each case, the dissociation favors the loss of the newly formed methyl group, in agreement with the experiments. For microcanonical ensembles, the branching ratios for methyl loss are calculated to be 1.43, 1.88, 1.70, and 1.50 for 1, 2, 10, and 18 kcal/mol of excess energy, respectively. The energy dependence of the branching ratio is seen more dramatically in the excitation of individual modes involving C-C-O bending. For modes 3 and 6, the branching ratio rises to 1.6 and 1.8-2.3 when 1 or 2 kcal/mol are added, respectively, but falls off when more energy is added. For mode 8, the branching ratio continues to rise monotonically from 1.5 to 2.76 when 1-8 kcal/mol of excess energy are added.

  17. Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production.

    Science.gov (United States)

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Yasui, Masaki; Yoneda, Masahiro; Shimazaki, Yoshihiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2012-01-01

    Both hydrogen sulfide (H2S) and methyl mercaptan (CH(3)SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH(3)SH/H(2)S ratios (high H(2)S but low CH(3)SH concentrations, n 5 14; high CH(3)SH but low H2S concentrations, n 5 16) and 13 subjects without malodor, using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis with the UniFrac distance metric revealed a distinct bacterial community structure in each malodor group. The H2S group showed higher proportions of the genera Neisseria, Fusobacterium, Porphyromonas and SR1 than the other two groups, whereas the CH(3)SH group had higher proportions of the genera Prevotella, Veillonella,Atopobium, Megasphaera, and Selenomonas. Our results suggested that distinct bacterial populations in the oral microbiota are involved in production of high levels of H2S and CH3SH in the oral cavity.

  18. Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model

    Directory of Open Access Journals (Sweden)

    X. Xiao

    2010-06-01

    Full Text Available Methyl chloride (CH3Cl is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion. Large uncertainties in estimates of its source and sink magnitudes and temporal and spatial variations currently exist. GEIA inventories and other bottom-up emission estimates are used to construct a priori maps of the surface fluxes of CH3Cl. The Model of Atmospheric Transport and Chemistry (MATCH, driven by NCEP interannually varying meteorological data, is then used to simulate CH3Cl mole fractions and quantify the time series of sensitivities of the mole fractions at each measurement site to the surface fluxes of various regional and global sources and sinks. We then implement the Kalman filter (with the unit pulse response method to estimate the surface fluxes on regional/global scales with monthly resolution from January 2000 to December 2004. High frequency observations from the AGAGE, SOGE, NIES, and NOAA/ESRL HATS in situ networks and low frequency observations from the NOAA/ESRL HATS flask network are used to constrain the source and sink magnitudes. The inversion results indicate global total emissions around 4100 ± 470 Gg yr−1 with very large emissions of 2200 ± 390 Gg yr−1 from tropical plants, which turn out to be the largest single source in the CH3Cl budget. Relative to their a priori annual estimates, the inversion increases global annual fungal and tropical emissions, and reduces the global oceanic source. The inversion implies greater seasonal and interannual oscillations of the natural sources and sink of CH3Cl compared to the a priori. The inversion also reflects the strong effects of the 2002/2003 globally widespread heat waves and droughts on global emissions from tropical plants, biomass burning and salt marshes, and on the soil sink.

  19. Preparation of Syndiotactic Poly(vinyl alcohol)/Poly(vinyl pivalate/vinyl acetate) Microspheres with Radiopacity Using Suspension Copolymerization and Saponification

    Science.gov (United States)

    Seok Lyoo, Won; Wook Cha, Jin; Young Kwak, Kun; Jae Lee, Young; Yong Jeon, Han; Sik Chung, Yong; Kyun Noh, Seok

    2010-06-01

    To prepare Poly(vinyl pivalate/vinyl acetate) [P(VPi/VAc)] microspheres with radiopacity, the suspension copolymerization approach in the presence of aqueous radiopaque nanoparticles was used. After, The P(VPi/VAc) microspheres with radiopacity were saponified in heterogeneous system, and then P(VPi/VAc) microspheres without aggregates were converted to s-PVA/P(VPi/VAc) microspheres of skin/core structure through the heterogeneous surface saponification. Radiopacity of microspheres was confirmed with Computed tomography (CT).

  20. Practical experiences with the synthesis of [11C]CH3I through gas phase iodination reaction using a TRACERlabFXC synthesis module

    International Nuclear Information System (INIS)

    Kniess, Torsten; Rode, Katrin; Wuest, Frank

    2008-01-01

    The results of [ 11 C]CH 3 I synthesis through hydrogen gas reduction of [ 11 C]CO 2 on different nickel catalysts (HARSHAW-nickel, SHIMALITE-nickel, nickel on silica/alumina, nickel nanosize 99.99%) followed by gas phase iodination using a TRACERlab FX C synthesis unit are reported. Further reaction parameters such as furnace temperatures, flow rate of hydrogen gas and reduction time were optimized. It was found that reduction of [ 11 C]CO 2 proceeded in 28-83% yield depending on the nickel catalyst and temperature. The gas phase iodination (methane conversion) gave 31-62% of [ 11 C]CH 3 I depending on temperature and amount of iodine in the iodine furnace. [ 11 C]CH 3 I was used for heteroatom methylation reactions exemplified by a piperazine and a phenol (1 and 3). The specific activity of the 11 C-labelled products 2 and 4 was determined after HPLC purification and solid-phase extraction. Compounds 2 and 4 were obtained in 8-14% radiochemical yield (decay-corrected, based upon trapped [ 11 C]CH 4 ) within 30 min. The specific activity was determined to be in the range of 20-30 GBq/μmol at the end-of-synthesis. Nickel catalyst nanosize was found to be superior compared with other Ni catalysts tested. The relatively low specific activity may be mainly due to carbon contaminations originating from the long copper tubing (500 m) between the cyclotron and the radiochemistry facility

  1. Enzymatic methylation of band 3 anion transporter in intact human erythrocytes

    International Nuclear Information System (INIS)

    Lou, L.L.; Clarke, S.

    1987-01-01

    Band 3, the anion transport protein of erythrocyte membranes, is a major methyl-accepting substrate of the intracellular erythrocyte protein carboxyl methyltransferase (S-adenosyl-L-methionine: protein-D-aspartate O-methyltransferase; EC 2.1.1.77). The localization of methylation sites in intact cells by analysis of proteolytic fragments indicated that sites were present in the cytoplasmic N-terminal domain as well as the membranous C-terminal portion of the polypeptide. The amino acid residues that serve as carboxyl methylation sites of the erythrocyte anion transporter were also investigated. 3 H-Methylated band 3 was purified from intact erythrocytes incubated with L-[methyl- 3 H]methionine and from trypsinized and lysed erythrocytes incubated with S-adenosyl-L-[methyl- 3 H]methionine. After proteolytic digestion with carboxypeptidase Y, D-aspartic acid beta-[ 3 H]methyl ester was isolated in low yields (9% and 1%, respectively) from each preparation. The bulk of the radioactivity was recovered as [ 3 H]methanol, and the amino acid residue(s) originally associated with these methyl groups could not be determined. No L-aspartic acid beta-[ 3 H]methyl ester or glutamyl gamma-[ 3 H]methyl ester was detected. The formation of D-aspartic acid beta-[ 3 H]methyl esters in this protein in intact cells resulted from protein carboxyl methyltransferase activity since it was inhibited by adenosine and homocysteine thiolactone, which increases the intracellular concentration of the potent product inhibitor S-adenosylhomocysteine, and cycloleucine, which prevents the formation of the substrate S-adenosyl-L-[methyl- 3 H]methionine

  2. Bimetallic ruthenium complexes bridged by divinylphenylene bearing oligo(ethylene glycol)methylether: synthesis, (spectro)electrochemistry and the lithium cation effect.

    Science.gov (United States)

    Tian, Li Yan; Liu, Yuan Mei; Tian, Guang-Xuan; Wu, Xiang Hua; Li, Zhen; Kou, Jun-Feng; Ou, Ya-Ping; Liu, Sheng Hua; Fu, Wen-Fu

    2014-03-14

    A series of 1,4-disubstituted ruthenium-vinyl complexes, (E,E)-[{(PMe3)3(CO)ClRu}2(μ-HC=CH-Ar-CH=CH)], in which the 1,4-diethenylphenylene bridge bears two oligo(ethylene glycol)methyl ether side chains at different positions (2,5- and 2,3-positions), were prepared. The respective products were characterized by elemental analyses and NMR spectroscopy. The structures of complexes 1b and 1e were established by X-ray crystallography. The electronic properties of the complexes were investigated by cyclic voltammetry, and IR and UV-vis/NIR spectroscopies. Electrochemical studies showed that the 2,5-substituents better stabilized the mixed-valence states; the electrochemical behavior was greatly affected by lithium cations, especially complex 1g with 2,3-substituents, which was further supported by IR and UV-vis/NIR spectra changes. Spectroelectrochemical studies showed that the redox chemistry was dominated by the non-innocent character of the bridging fragment.

  3. Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG.

    Science.gov (United States)

    Chen, Chunyan; Wang, Jie; Chen, Zhan

    2004-11-09

    Surface structures of several different poly(dimethylsiloxane) (PDMS) materials, tetraethoxysilane-cured hydroxy-terminated PDMS (TEOS-PDMS), platinum-cured vinyl-terminated PDMS (Pt-PDMS), platinum-cured vinyl-terminated poly(diphenylsiloxane)-co-poly(dimethylsiloxane) (PDPS-co-PDMS), and PDMS-co-polystyrene (PDMS-co-PS) copolymer in air and water have been investigated by sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra collected from all PDMS surfaces in both air and water are dominated by methyl group stretches, indicating that all the surfaces are mainly covered by methyl groups. Other than surface-dominating methyl groups, some -Si-CH2-CH2- moieties on the Pt-PDMS surface have also been detected in air, which are present at cross-linking points. Information about the average orientation angle and angle distribution of the methyl groups on the PDMS surface has been evaluated. Surface restructuring of the methyl groups has been observed for all PDMS surfaces in water. Upon contacting water, the methyl groups on all PDMS surfaces tilt more toward the surface. The detailed restructuring behaviors of several PDMS surfaces in water and the effects of molecular weight on restructuring behaviors have been investigated. For comparison, in addition to air and water, surface structures of PDMS materials mentioned above in a nonpolar solvent, FC-75, have also been studied. By comparing the different response of phenyl groups to water on both PDPS-co-PDMS and PS-co-PDMS surfaces, we have demonstrated how the restructuring behaviors of surface phenyl groups are affected by the structural flexibility of the molecular chains where they are attached.

  4. Photodissociation of acetone from 266 to 312 nm: Dynamics of CH3 + CH3CO channels on the S0 and T1 states

    Science.gov (United States)

    Lee, Kin Long Kelvin; Nauta, Klaas; Kable, Scott H.

    2017-01-01

    The photodissociation dynamics of acetone (CH3)2CO, cooled in a molecular beam, have been explored over the wavelength range 266-312 nm. Nascent CH3 fragments were detected by resonance-enhanced multiphoton ionization, followed by mass-selected ion imaging. For photolysis at λ = 306 nm, the image shows a sharp ring, which, when converted to a translational energy distribution, reveals a narrow Gaussian peak with a maximum at 90% of the available energy. As the photolysis energy is increased, the distribution slowly broadens and shifts to higher recoil translational energy. The fraction of available energy in translation energy decreases in favour of internal energy of the CH3CO fragment. These observations are consistent with a dynamical model in which the energy of the exit channel barrier on the T1 surface evolves mostly into relative translational energy. Energy in excess of the barrier is partitioned statistically into all degrees of freedom. No evidence was found for any other dynamical pathway producing CH3 fragments, including reaction on S0 or S1, for dissociation between 306 and 266 nm. For λ > 306 nm, a diffuse, slow recoil component to the image appears. The translational energy distribution for this component is fit well by a statistical prior distribution of energy. We attribute this component to dissociation on the S0, ground state surface; to our knowledge, this is the first direct observation of this channel. The appearance of S0 dynamics and the disappearance of the T1 component are consistent with previously inferred barrier height on T1 for the production of CH3CO + CH3. The possible atmospheric implications of our findings are discussed.

  5. Photo-fragmentation behavior of methyl- and methoxy-substituted derivatives of hexa-peri-hexabenzocoronene (HBC) cations

    Science.gov (United States)

    Zhen, Junfeng; Castellanos, Pablo; Linnartz, Harold; Tielens, Alexander G. G. M.

    2016-11-01

    A systematic study, using ion trap time-of-flight mass spectrometry, is presented for the photo-fragmentation of methyl- and methoxy-substituted derivatives of HBC cations, (OCH3)6HBC+ and (CH3)4(OCH3)2HBC+. Both substituted HBC cations fragment through sequential loss of CH3CO units upon laser (595nm) irradiation, resulting in a PAH-like derivative C36H12+ and a methyl-substituted PAH derivative C44H24+ , respectively. Upon ongoing irradiation, these species further fragment. For lower laser energy C44H24+ dehydrogenates and photo-fragments through CH3 and CHCH2 unit losses; for higher laser energy isomerization takes place, yielding a regular PAH-like configuration, and both stepwise dehydrogenation and C2/C2H2 loss pathways are found. C36H12+ follows largely this latter fragmentation scheme upon irradiation. It is concluded that the photo-dissociation mechanism of the substituted PAH cations studied here is site selective in the substituted subunit. This work also shows experimental evidence that photo-fragmentation of substituted PAHs may contribute to the formation in space of smaller species that are normally considered to form by merging atoms and molecules.

  6. Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry

    KAUST Repository

    Alias, Mohd Sharizal

    2016-07-14

    The lack of optical constants information for hybrid perovskite of CH3NH3PbBr3 in thin films form can delay the progress of efficient LED or laser demonstration. Here, we report on the optical constants (complex refractive index and dielectric function) of CH3NH3PbBr3 perovskite thin films using spectroscopic ellipsometry. Due to the existence of voids, the refractive index of the thin films is around 8% less than the single crystals counterpart. The energy bandgap is around 2.309 eV as obtained from photoluminescence and spectrophotometry spectra, and calculated from the SE analysis. The precise measurement of optical constants will be useful in designing optical devices using CH3NH3PbBr3 thin films.

  7. Degradation mechanism of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite materials upon exposure to humid air

    Energy Technology Data Exchange (ETDEWEB)

    Shirayama, Masaki; Kato, Masato; Fujiseki, Takemasa; Hara, Shota; Kadowaki, Hideyuki; Murata, Daisuke; Fujiwara, Hiroyuki, E-mail: fujiwara@gifu-u.ac.jp [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Miyadera, Tetsuhiko; Sugita, Takeshi; Chikamatsu, Masayuki [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-03-21

    Low stability of organic-inorganic perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH{sub 3}NH{sub 3}PbI{sub 3} layers prepared by a laser evaporation technique is studied. We present evidence that the CH{sub 3}NH{sub 3}PbI{sub 3} degradation in humid air proceeds by two competing reactions of (i) the PbI{sub 2} formation by the desorption of CH{sub 3}NH{sub 3}I species and (ii) the generation of a CH{sub 3}NH{sub 3}PbI{sub 3} hydrate phase by H{sub 2}O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH{sub 3}NH{sub 3}PbI{sub 3} layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH{sub 3}NH{sub 3}PbI{sub 3} layer is converted completely to hexagonal platelet PbI{sub 2}/hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH{sub 3}NH{sub 3}PbI{sub 3} in humid air.

  8. IGFBP3 Promoter Methylation in Colorectal Cancer: Relationship with Microsatellite Instability, CpG Island Methylator Phenotype, p53

    Directory of Open Access Journals (Sweden)

    Takako Kawasaki

    2007-12-01

    Full Text Available Insulin-like growth factor binding protein 3 (IGFBP3, which is induced by wild-type p53, regulates IGF and interacts with the TGF-β pathway. IGFBP3 promoter methylation may occur in colorectal cancer with or without the CpG island methylator phenotype (CIMP, which is associated with microsatellite instability (MSI and TGFBR2 mutation. We examined the relationship between IGFBP3 methylation, p53 expression, CIMP and MSI in 902 population-based colorectal cancers. Utilizing real-time PCR (MethyLight, we quantified promoter methylation in IGFBP3 and eight other CIMP-high-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1. IGFBP3 methylation was far more frequent in non-MSI-high CIMP-high tumors (85% = 35/41 than in MSI-high CIMPhigh (49% = 44/90, P < .0001, MSI-high non-CIMP-high (17% = 6/36, P < .0001, non-MSI-high non-CIMP-high tumors (22% = 152/680, P < .0001. Among CIMPhigh tumors, the inverse relationship between MSI and IGFBP3 methylation persisted in p53-negative tumors (P < .0001, but not in p53-positive tumors. IGFBP3 methylation was associated inversely with TGFBR2 mutation in MSI-high non-CIMP-high tumors (P = .02. In conclusion, IGFBP3 methylation is inversely associated with MSI in CIMP-high colorectal cancers, this relationship is limited to p53-negative tumors. Our data suggest complex relationship between global genomic/epigenomic phenomena (such as MSI/ CIMP, single molecular events (e.g., IGFBP3 methylation, TP53 mutation, TGFBR2 mutation, the related pathways.

  9. Genome-wide DNA methylation maps in follicular lymphoma cells determined by methylation-enriched bisulfite sequencing.

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeon Choi

    Full Text Available BACKGROUND: Follicular lymphoma (FL is a form of non-Hodgkin's lymphoma (NHL that arises from germinal center (GC B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL. METHODOLOGY/PRINCIPAL FINDINGS: We performed methylation-enriched genome-wide bisulfite sequencing of FL cells and normal CD19(+ B-cells using 454 sequencing technology. The methylated DNA fragments were enriched with methyl-binding proteins, treated with bisulfite, and sequenced using the Roche-454 GS FLX sequencer. The total number of bases covered in the human genome was 18.2 and 49.3 million including 726,003 and 1.3 million CpGs in FL and CD19(+ B-cells, respectively. 11,971 and 7,882 methylated regions of interest (MRIs were identified respectively. The genome-wide distribution of these MRIs displayed significant differences between FL and normal B-cells. A reverse trend in the distribution of MRIs between the promoter and the gene body was observed in FL and CD19(+ B-cells. The MRIs identified in FL cells also correlated well with transcriptomic data and ChIP-on-Chip analyses of genome-wide histone modifications such as tri-methyl-H3K27, and tri-methyl-H3K4, indicating a concerted epigenetic alteration in FL cells. CONCLUSIONS/SIGNIFICANCE: This study is the first to provide a large scale and comprehensive analysis of the DNA methylation sequence composition and distribution in the FL epigenome. These integrated approaches have led to the discovery of novel and frequent targets of aberrant epigenetic alterations. The genome-wide bisulfite sequencing approach developed here can be a useful tool for profiling DNA methylation in clinical samples.

  10. (E-3-Methyl-6-(3-oxo-3-(thiophen-2-yl-1-propenyl-2(3H-benzothiazolone

    Directory of Open Access Journals (Sweden)

    Yordanka Ivanova

    2016-04-01

    Full Text Available The title compound, (E-3-methyl-6-(3-oxo-3-(thiophen-2-yl-1-propenyl-2(3H-benzothiazolone, was synthesized by Claisen-Schmidt condensation of 3-methyl-2(3H-benzothiazolone-6-carbaldehyde with 2-acetylthiophene in 94% yield. The structure of the target compound was confirmed using 1H-NMR, 13C-NMR, IR, MS, and elemental analysis.

  11. Near room temperature approaches for the preparation of air-stable and crystalline CH{sub 3}NH{sub 3}PbI{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gujarathi, Yogini D.; Haram, Santosh K., E-mail: haram@chem.unipune.ac.in

    2016-04-15

    This work demonstrates an exotic role of CH{sub 2}Cl{sub 2} in a formation of stable phase of highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} perovskite, on a bulk scale. In the first method, a partially-reacted product obtained after co-grinding of precursors viz. CH{sub 3}NH{sub 3}I and PbI{sub 2}was sonicated in CH{sub 2}Cl{sub 2} to form pure phase of CH{sub 3}NH{sub 3}PbI{sub 3}. In second method, the precursors in γ-Butyrolactone were treated with CH{sub 2}Cl{sub 2} to form crystalline and phase-pure CH{sub 3}NH{sub 3}PbI{sub 3}. X-ray Diffraction analysis confirmed the formation of stable and highly crystalline tetragonal phase of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite having space group I4cm. Well-defined rhombo-hexagonal dodecahedron crystals were seen in SEM and TEM images. Exceptional air stability of CH{sub 3}NH{sub 3}PbI{sub 3} so forms are attributed to adsorption of CH{sub 2}Cl{sub 2}. Optical band gaps obtained from the diffused reflectance spectra (Kubelka–Munk analysis), matched very well with the one estimated from Cyclic Voltammetry (CV). Valence band and conduction band edge positions estimated from the CV analysis are in good agreement with the one reported from UV photoelectron spectroscopy. Both the samples gave steady state fluorescence at ca. 750 nm with quantum yields in the range 15–35.5%. - Highlights: • A role of CH{sub 2}Cl{sub 2} is brought out in formation of stable CH{sub 3}NH{sub 3}PbI{sub 3} perovskite. • Cyclic voltammetry has been used to estimate the band edge positions. • Excellent fluorescence quantum yield, underlines the minimal structural defects.

  12. Effect of antisymmetric C–H stretching excitation on the dynamics of O({sup 1}D) + CH{sub 4} → OH + CH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Huilin; Yang, Jiayue; Zhang, Dong; Shuai, Quan; Jiang, Bo [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Dai, Dongxu; Wu, Guorong, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Yang, Xueming, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-04-21

    The effect of antisymmetric C–H stretching excitation of CH{sub 4} on the dynamics and reactivity of the O({sup 1}D) + CH{sub 4} → OH + CD{sub 3} reaction at the collision energy of 6.10 kcal/mol has been investigated using the crossed-beam and time-sliced velocity map imaging techniques. The antisymmetric C–H stretching mode excited CH{sub 4} molecule was prepared by direct infrared excitation. From the measured images of the CH{sub 3} products with the infrared laser on and off, the product translational energy and angular distributions were derived for both the ground and vibrationally excited reactions. Experimental results show that the vibrational energy of the antisymmetric stretching excited CH{sub 4} reagent is channeled exclusively into the vibrational energy of the OH co-products and, hence, the OH products from the excited-state reaction are about one vibrational quantum hotter than those from the ground-state reaction, and the product angular distributions are barely affected by the vibrational excitation of the CH{sub 4} reagent. The reactivity was found to be suppressed by the antisymmetric stretching excitation of CH{sub 4} for all observed CH{sub 3} vibrational states. The degree of suppression is different for different CH{sub 3} vibrational states: the suppression is about 40%–60% for the ground state and the umbrella mode excited CH{sub 3} products, while for the CH{sub 3} products with one quantum symmetric stretching mode excitation, the suppression is much less pronounced. In consequence, the vibrational state distribution of the CH{sub 3} product from the excited-state reaction is considerably different from that of the ground-state reaction.

  13. Dentritic Carbosilanes Containing Silicon-Bonded 1-[C6H2(CH2NMe2)2-3,5-Li-4] or 1-[C6H3(CH2NMe2)-4-Li-3] Mono-and Bis(amino)aryllithium End Groups: Structure of {[CH2SiMe2C6H3(CH2NMe2)-4-Li-3]2}2

    NARCIS (Netherlands)

    Koten, G. van; Kleij, A.W.; Kleijn, H.; Jastrzebski, J.T.B.H.; Smeets, W.J.J.; Spek, A.L.

    1999-01-01

    A useful synthetic procedure for the incorporation of the potentially multidentate monoanionic 1-[C6H2(CH2NMe2)2-3,5]- (=NCN) and 1-[C6H3(CH2NMe2)-4]- (=CN) ligands via the para-position on the periphery of carbosilane (CS) dendrimers has been developed. Lithiation of suitable brominated precursors

  14. Mapping Vinyl Cyanide and Other Nitriles in Titan’s Atmosphere Using ALMA

    Science.gov (United States)

    Lai, J. C.-Y.; Cordiner, M. A.; Nixon, C. A.; Achterberg, R. K.; Molter, E. M.; Teanby, N. A.; Palmer, M. Y.; Charnley, S. B.; Lindberg, J. E.; Kisiel, Z.; Mumma, M. J.; Irwin, P. G. J.

    2017-11-01

    Vinyl cyanide (C2H3CN) is theorized to form in Titan’s atmosphere via high-altitude photochemistry and is of interest regarding the astrobiology of cold planetary surfaces due to its predicted ability to form cell membrane-like structures (azotosomes) in liquid methane. In this work, we follow up on the initial spectroscopic detection of C2H3CN on Titan by Palmer et al. with the detection of three new C2H3CN rotational emission lines at submillimeter frequencies. These new, high-resolution detections have allowed for the first spatial distribution mapping of C2H3CN on Titan. We present simultaneous observations of C2H5CN, HC3N, and CH3CN emission, and obtain the first (tentative) detection of C3H8 (propane) at radio wavelengths. We present disk-averaged vertical abundance profiles, two-dimensional spatial maps, and latitudinal flux profiles for the observed nitriles. Similarly to HC3N and C2H5CN, which are theorized to be short-lived in Titan’s atmosphere, C2H3CN is most abundant over the southern (winter) pole, whereas the longer-lived CH3CN is more concentrated in the north. This abundance pattern is consistent with the combined effects of high-altitude photochemical production, poleward advection, and the subsequent reversal of Titan’s atmospheric circulation system following the recent transition from northern to southern winter. We confirm that C2H3CN and C2H5CN are most abundant at altitudes above 200 km. Using a 300 km step model, the average abundance of C2H3CN is found to be 3.03 ± 0.29 ppb, with a C2H5CN/C2H3CN abundance ratio of 2.43 ± 0.26. Our HC3N and CH3CN spectra can be accurately modeled using abundance gradients above the tropopause, with fractional scale-heights of 2.05 ± 0.16 and 1.63 ± 0.02, respectively.

  15. Atmospheric chemistry of CH3CHF2 (HFC-152a)

    DEFF Research Database (Denmark)

    Taketani, Fumikazu; Nakayama, Tomoki; Takahashi, Kenshi

    2005-01-01

    Smog chamber/Fourier transform infrared (FTIR) and laser-induced fluorescence (LIF) spectroscopic techniques were used to study the atmospheric degradation of CH3CHF2. The kinetics and products of the Cl(2P(3/2)) (denoted Cl) atom- and the OH radical-initiated oxidation of CH3CHF2 in 700 Torr of ...

  16. MECHANICAL PROPERTIES OF BLENDS OF PAMAM DENDRIMERS WITH POLY(VINYL CHLORIDE) AND POLY(VINYL ACETATE)

    Science.gov (United States)

    Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...

  17. Mercury methylation and reduction potentials in marine water: An improved methodology using {sup 197}Hg radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Koron, Neza [National Institute of Biology, Marine Biology Station, Fornace 41, 6330 Piran (Slovenia); Bratkic, Arne [Department of Environmental Sciences, ' Jozef Stefan' Institute, Jamova 39, 1000 Ljubljana (Slovenia); Ribeiro Guevara, Sergio, E-mail: ribeiro@cab.cnea.gov.ar [Laboratorio de Analisis por Activacion Neutronica, Centro Atomico Bariloche, Av. Bustillo km 9.5, 8400 Bariloche (Argentina); Vahcic, Mitja; Horvat, Milena [Department of Environmental Sciences, ' Jozef Stefan' Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2012-01-15

    A highly sensitive laboratory methodology for simultaneous determination of methylation and reduction of spiked inorganic mercury (Hg{sup 2+}) in marine water labelled with high specific activity radiotracer ({sup 197}Hg prepared from enriched {sup 196}Hg stable isotope) was developed. A conventional extraction protocol for methylmercury (CH{sub 3}Hg{sup +}) was modified in order to significantly reduce the partitioning of interfering labelled Hg{sup 2+} into the final extract, thus allowing the detection of as little as 0.1% of the Hg{sup 2+} spike transformed to labelled CH{sub 3}Hg{sup +}. The efficiency of the modified CH{sub 3}Hg{sup +} extraction procedure was assessed by radiolabelled CH{sub 3}Hg{sup +} spikes corresponding to concentrations of methylmercury between 0.05 and 4 ng L{sup -1}. The recoveries were 73.0{+-}6.0% and 77.5{+-}3.9% for marine and MilliQ water, respectively. The reduction potential was assessed by purging and trapping the radiolabelled elemental Hg in a permanganate solution. The method allows detection of the reduction of as little as 0.001% of labelled Hg{sup 2+} spiked to natural waters. To our knowledge, the optimised methodology is among the most sensitive available to study the Hg methylation and reduction potential, therefore allowing experiments to be done at spikes close to natural levels (1-10 ng L{sup -1}). - Highlights: Black-Right-Pointing-Pointer Inorganic mercury methylation and reduction in marine water were studied. Black-Right-Pointing-Pointer High specific activity {sup 197}Hg was used to label Hg{sup 2+} spikes at natural levels. Black-Right-Pointing-Pointer Methylmercury extraction had 73% efficiency for 0.05-4 ng L{sup -1} levels. Black-Right-Pointing-Pointer High sensibility to assess methylation potentials, below 0.1% of the spike. Black-Right-Pointing-Pointer High sensibility also for reduction potentials, as low as 0.001% of the spike.

  18. Photovoltaic performance and the energy landscape of CH3NH3PbI3.

    Science.gov (United States)

    Zhou, Yecheng; Huang, Fuzhi; Cheng, Yi-Bing; Gray-Weale, Angus

    2015-09-21

    Photovoltaic cells with absorbing layers of certain perovskites have power conversion efficiencies up to 20%. Among these materials, CH3NH3PbI3 is widely used. Here we use density-functional theory to calculate the energies and rotational energy barriers of a methylammonium ion in the α or β phase of CH3NH3PbI3 with differently oriented neighbouring methylammonium ions. Our results suggest the methylammonium ions in CH3NH3PbI3 prefer to rotate collectively, and to be parallel to their neighbours. Changes in polarization on rotation of methylammonium ions are two to three times larger than those on relaxation of the lead ion from the centre of its coordination shell. The preferences for parallel configuration and concerted rotation, with the polarisation changes, are consistent with ferroelectricity in the material, and indicate that this polarisation is governed by methylammonium orientational correlations. We show that the field due to this polarisation is strong enough to screen the field hindering charge transport, and find this screening field in agreement with experiment. We examine two possible mechanisms for the effect of methylammonium ion rotation on photovoltaic performance. One is that rearrangement of methylammoniums promotes the creation and transport of charge carriers. Some effective masses change greatly, but changes in band structure with methylammonium rotation are not large enough to explain current-voltage hysteresis behaviour. The second possible mechanism is that polarization screens the hindering electric field, which arises from charge accumulation in the transport layers. Polarization changes on methylammonium rotation favour this second mechanism, suggesting that collective reorientation of methylammonium ions in the bulk crystal are in significant part responsible for the hysteresis and power conversion characteristics of CH3NH3PbI3 photovoltaic cells.

  19. Synthesis of no-carrier-added alpha-[11C]methyl-L-tryptophan

    International Nuclear Information System (INIS)

    Chaly, T.; Diksic, M.

    1988-01-01

    Described here is a synthesis of no-carrier-added alpha-[ 11 C]methyl-L-tryptophan based on alkylation with 11 CH 3 I of an anion generated by reacting the Schiff base of L-tryptophan methyl ester with di-isopropylamine. The synthesis requires approximately 30 min after the end of 11 CO 2 collection and gives alpha-[ 11 C]methyl-L-tryptophan in a 20-25% radiochemical yield calculated at the end of the synthesis and without correction for radioactive decay. The specific activity of the final radiopharmaceutical, measured at the end of the synthesis, was around 2000 Ci/mmol. Data confirming the stereospecificity of the synthesis are also presented

  20. Selective sp3 C-H alkylation via polarity-match-based cross-coupling.

    Science.gov (United States)

    Le, Chip; Liang, Yufan; Evans, Ryan W; Li, Ximing; MacMillan, David W C

    2017-07-06

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp 3 )-C(sp 2 ) coupling, there is a growing demand for C-H alkylation reactions, wherein sp 3 C-H bonds are replaced with sp 3 C-alkyl groups. Here we describe a polarity-match-based selective sp 3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp 3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  1. Selective sp3 C-H alkylation via polarity-match-based cross-coupling

    Science.gov (United States)

    Le, Chip; Liang, Yufan; Evans, Ryan W.; Li, Ximing; MacMillan, David W. C.

    2017-07-01

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp3)-C(sp2) coupling, there is a growing demand for C-H alkylation reactions, wherein sp3 C-H bonds are replaced with sp3 C-alkyl groups. Here we describe a polarity-match-based selective sp3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  2. Photoelectron and Auger-electron spectra of Cl{sub 3}SiSi(CH{sub 3}){sub 3} obtained by using monochromatized synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shin-ichi, E-mail: nagaoka@ehime-u.ac.jp [Department of Chemistry, Faculty of Science and Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Endo, Hikaru; Nagai, Kanae [Department of Chemistry, Faculty of Science and Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Takahashi, Osamu [Institute for Sustainable Sciences and Development, Hiroshima University, Higashi-Hiroshima 739-8511 (Japan); Tamenori, Yusuke [Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5198 (Japan); Suzuki, Isao H. [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Advanced Institute of Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568 (Japan)

    2014-08-15

    Highlights: • Various photo- and Auger-electron spectra of Cl{sub 3}SiSi(CH{sub 3}){sub 3} vapor were measured. • The measured spectra were interpreted with the aid of some calculations. • The spectra showed profiles close to those expected from SiCl{sub 4} and Si(CH{sub 3}){sub 4}. • These results were discussed in conjunction with site-specific fragmentation. - Abstract: A variety of photoelectron and Auger-electron spectra of 1,1,1-trimethyltrichlorodisilane vapor (Cl{sub 3}SiSi(CH{sub 3}){sub 3}) were measured by using monochromatized synchrotron radiation and a hemispherical electron energy analyzer. The measured spectra were interpreted with the aid of some calculations by means of the outer valence Green's function (OVGF) method or the density-functional-theory (DFT) method. Since Cl{sub 3}SiSi(CH{sub 3}){sub 3} consists of -SiCl{sub 3} and -Si(CH{sub 3}){sub 3} moieties, the experimental core-electron binding-energies were compared with those of tetrachlorosilane and tetramethylsilane (SiCl{sub 4} and Si(CH{sub 3}){sub 4}, respectively). This comparison showed that electronic properties of Cl{sub 3}SiSi(CH{sub 3}){sub 3} hold a close correlation with those of SiCl{sub 4} and Si(CH{sub 3}){sub 4}. Si:L{sub 23}VV, Cl:L{sub 23}VV and C:KVV Auger-electron spectra of Cl{sub 3}SiSi(CH{sub 3}){sub 3} also showed profiles close to those expected from the spectra of SiCl{sub 4} and Si(CH{sub 3}){sub 4}. The results obtained here were discussed in conjunction with electronic relaxation leading to site-specific fragmentation.

  3. A Survey of CH3CN and HC3N in Protoplanetary Disks

    Science.gov (United States)

    Bergner, Jennifer B.; Guzmán, Viviana G.; Öberg, Karin I.; Loomis, Ryan A.; Pegues, Jamila

    2018-04-01

    The organic content of protoplanetary disks sets the initial compositions of planets and comets, thereby influencing subsequent chemistry that is possible in nascent planetary systems. We present observations of the complex nitrile-bearing species CH3CN and HC3N toward the disks around the T Tauri stars AS 209, IM Lup, LkCa 15, and V4046 Sgr as well as the Herbig Ae stars MWC 480 and HD 163296. HC3N is detected toward all disks except IM Lup, and CH3CN is detected toward V4046 Sgr, MWC 480, and HD 163296. Rotational temperatures derived for disks with multiple detected lines range from 29 to 73 K, indicating emission from the temperate molecular layer of the disk. V4046 Sgr and MWC 480 radial abundance profiles are constrained using a parametric model; the gas-phase CH3CN and HC3N abundances with respect to HCN are a few to tens of percent in the inner 100 au of the disk, signifying a rich nitrile chemistry at planet- and comet-forming disk radii. We find consistent relative abundances of CH3CN, HC3N, and HCN between our disk sample, protostellar envelopes, and solar system comets; this is suggestive of a robust nitrile chemistry with similar outcomes under a wide range of physical conditions.

  4. The electronic and optical properties of CH3NH3MoI3 perovskite

    Science.gov (United States)

    Kansara, Shivam; Sonvane, Yogesh; Gupta, Sanjeev K.

    2018-05-01

    In this work, a first-principles theoretical study of hybrid perovskite CH3NH3MoI3 is performed using PBE exchange-correlation approximations in density functional theory. The results of electronic band structure are 0.90 eV (M-point: Direct) and 0.60 eV (R-X point: Indirect), respectively. We have also calculated the dielectric properties such as real, imaginary, extension coefficient (K) and reflectivity (R) properties of hybrid perovskite CH3NH3MoI3. The low-bandgap molecules are used to absorb near-IR range and typically having a bandgap smaller than 1.6 eV. This is particularly attractive in organic photovoltaics (OPV), photodetectors (PDs), and ambipolar field-effect transistors (FETs).

  5. Resonance Raman assignment and evidence for noncoupling of individual 2- and 4-vinyl vibrational modes in a monomeric cyanomethemoglobin

    International Nuclear Information System (INIS)

    Gersonde, K.; Yu, N.T.; Lin, S.H.; Smith, K.M.; Parish, D.W.

    1989-01-01

    We have investigated the resonance Raman spectra of monomeric insect cyanomethemoglobins (CTT III and CTT IV) reconstituted with (1) protohemes IX selectively deuterated at the 4-vinyl as well as the 2,4-divinyls, (2) monovinyl-truncated hemes such as pemptoheme (2-hydrogen, 4-vinyl) and isopemptoheme (2-vinyl, 4-hydrogen), (3) symmetric hemes such as protoheme III (with 2- and 3-vinyls) and protoheme XIII (with 1- and 4-vinyls), and (4) hemes without 2- and 4-vinyls such as mesoheme IX, deuteroheme IX, 2,4-dimethyldeuteroheme IX, and 2,4-dibromodeuteroheme IX. Evidence is presented that the highly localized vinyl C = C stretching vibrations at the 2- and 4-positions of the heme in these cyanomet CTT hemoglobins are noncoupled and inequivalent; i.e., the 1631- and 1624-cm-1 lines have been assigned to 2-vinyl and 4-vinyl, respectively. The elimination of the 2-vinyl (in pemptoheme) or the 4-vinyl (in isopemptoheme) does not affect the C = C stretching frequency of the remaining vinyl. Furthermore, two low-frequency vinyl bending modes at 412 and 591 cm-1 exhibit greatly different resonance Raman intensities between 2-vinyl and 4-vinyl. The observed intensity at 412 cm-1 is primarily derived from 4-vinyl, whereas the 591-cm-1 line results exclusively from the 2-vinyl. Again, there is no significant coupling between 2-vinyl and 4-vinyl for these two bending modes

  6. On the complexing of phosphoric acid vinyl esters with praseodymium (3) and europium (3) nitrates in acetonitrile

    International Nuclear Information System (INIS)

    Goryushko, A.G.; Gololobov, Yu.G.; Boldeskul, A.E.; Oganesyan, A.S.; Yartsev, V.G.

    1990-01-01

    By the methods of electron, IR and PMR spectroscopy interaction of vinyl esters of phosphoric acid with praseodymium (3) and europium (3) nitrates in acetonitrile solutions has been studied. It is shown that the character of metal-ligand interaction is determined by chemical nature of the ligands: for a compound of ionic structure partially covalent bond is formed, and for a compound of betaine structure the interaction has mainly dipole character. Addition of molecule with betaine structure to praseodymium nitrate causes a change in geometry of Pr 3+ close surrounding and increase in its coordination number. The possibility of formation of the complex with metal-ligand ratio equal to 1:3 is shown

  7. (Phosphinoalkyl)silanes. 4.(1) Hydrozirconation as a Non-Photochemical Route to (Phosphinopropyl)silanes: Facile Assembly of the Bis(3-(diphenylphosphino)propyl)silyl ("biPSi") Ligand Framework. Access to the Related Poly(3-(dimethylsilyl)propyl)phosphines R(n)()P(CH(2)CH(2)CH(2)SiMe(2)H)(3)(-)(n)() (n = 1, R = Ph; n = 0).

    Science.gov (United States)

    Zhou, Xiaobing; Stobart, Stephen R.; Gossage, Robert A.

    1997-08-13

    Treatment of SiEt(3)(CH=CH(2)) with ZrCp(2)HCl (Schwartz's reagent) followed by reaction with PPh(2)Cl provides a high-yield (75%) route to Ph(2)PCH(2)CH(2)SiEt(3), and accordingly hydrozirconation of CH(2)=CHCH(2)SiHMe(2) affords the intermediate ZrCp(2)(CH(2)CH(2)CH(2)SiHMe(2))Cl (2). The latter, which is very sensitive to hydrolysis and reacts with HCl forming SiHMe(2)Pr(n)() and with NBS or I(2) affording SiHMe(2)CH(2)CH(2)CH(2)X (X = Br (3), I (4)), behaves similarly with PPh(2)Cl, PPhCl(2), or PBr(3) undergoing cleavage to the known Ph(2)PCH(2)CH(2)CH(2)SiMe(2)H (i.e. chelH, A) and the novel bis- and tris(silylpropyl)phosphines PhP(CH(2)CH(2)CH(2)SiMe(2)H)(2) (5) and P(CH(2)CH(2)CH(2)SiMe(2)H)(3) (6), respectively, with concomitant formation of ZrCp(2)Cl(2). Corresponding hydroboration of allylsilanes is facile, but subsequent phosphine halide cleavage yields (phosphinoalkyl)silanes only as constituents of intractable mixtures. Hydrozirconation followed by phosphination with PPh(2)Cl also converts SiHMe(CH(2)CH=CH(2))(2) to SiHMe(CH(2)CH(2)CH(2)PPh(2))(2) (i.e. biPSiH, B) together with a propyl analogue Ph(2)PCH(2)CH(2)CH(2)SiMe(Pr(n)())H (7) of A (ca. 2:1 ratio), as well as SiH(CH(2)CH=CH(2))(3) to a mixture (ca. 5:2:1 ratio) of SiH(CH(2)CH(2)CH(2)PPh(2))(3) (i.e. triPSiH, C), a new analogue SiH(Pr(n)())(CH(2)CH(2)CH(2)PPh(2))(2) (8) of B, and a further analogue Ph(2)PCH(2)CH(2)CH(2)SiHPr(n)()(2) (9) of A. A further analogue SiH(2)(CH(2)CH(2)CH(2)PPh(2))(2) (10) of biPSiH (B) is obtained similarly starting from SiH(2)(CH(2)CH=CH(2))(2). Steric control of silylalkyl cleavage from 2 is indicated by the fact that, like PPh(2)Cl (which forms B), two further biPSiH analogues SiH(Me)[CH(2)CH(2)CH(2)P(n-hex)(2)](2) (11) and SiH(Me)(CH(2)CH(2)CH(2)PPhBz)(2) (12) were obtained using P(n-hex)(2)Cl (i.e. n-hex = CH(3)(CH(2))(4)CH(2)-) or PPhBzCl (i.e. Bz = -CH(2)C(6)H(5)), respectively, whereas neither PPr(i)(2)Cl nor PBu(t)(2)Cl led to (phosphinoalkyl)silane formation

  8. An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies

    Science.gov (United States)

    2012-01-01

    Background The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate. Results We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures. Conclusion T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In

  9. Silicon nitride and silicon etching by CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams

    Energy Technology Data Exchange (ETDEWEB)

    Kaler, Sanbir S.; Lou, Qiaowei; Donnelly, Vincent M., E-mail: vmdonnelly@uh.edu; Economou, Demetre J., E-mail: economou@uh.edu [Department of Chemical and Biomolecular Engineering, Plasma Processing Laboratory, University of Houston, Houston, Texas 77204 (United States)

    2016-07-15

    Silicon nitride (SiN, where Si:N ≠ 1:1) films low pressure-chemical vapor deposited on Si substrates, Si films on Ge on Si substrates, and p-Si samples were exposed to plasma beams emanating from CH{sub 3}F/O{sub 2} or CH{sub 3}F/CO{sub 2} inductively coupled plasmas. Conditions within the plasma beam source were maintained at power of 300 W (1.9 W/cm{sup 3}), pressure of 10 mTorr, and total gas flow rate of 10 sccm. X-ray photoelectron spectroscopy was used to determine the thicknesses of Si/Ge in addition to hydrofluorocarbon polymer films formed at low %O{sub 2} or %CO{sub 2} addition on p-Si and SiN. Polymer film thickness decreased sharply as a function of increasing %O{sub 2} or %CO{sub 2} addition and dropped to monolayer thickness above the transition point (∼48% O{sub 2} or ∼75% CO{sub 2}) at which the polymer etchants (O and F) number densities in the plasma increased abruptly. The C(1s) spectra for the polymer films deposited on p-Si substrates appeared similar to those on SiN. Spectroscopic ellipsometry was used to measure the thickness of SiN films etched using the CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams. SiN etching rates peaked near 50% O{sub 2} addition and 73% CO{sub 2} addition. Faster etching rates were measured in CH{sub 3}F/CO{sub 2} than CH{sub 3}F/O{sub 2} plasmas above 70% O{sub 2} or CO{sub 2} addition. The etching of Si stopped after a loss of ∼3 nm, regardless of beam exposure time and %O{sub 2} or %CO{sub 2} addition, apparently due to plasma assisted oxidation of Si. An additional GeO{sub x}F{sub y} peak was observed at 32.5 eV in the Ge(3d) region, suggesting deep penetration of F into Si, under the conditions investigated.

  10. Decoration of a Poly(methyl vinyl ether-co-maleic anhydride)-Shelled Selol Nanocapsule with Folic Acid Increases Its Activity Against Different Cancer Cell Lines In Vitro.

    Science.gov (United States)

    Ganassin, Rayane; Souza, Ludmilla Regina de; Py-Daniel, Karen Rapp; Longo, João Paulo Figueiró; Coelho, Janaína Moreira; Rodrigues, Mosar Correa; Jiang, Cheng-Shi; Gu, Jinsong; Morais, Paulo César de; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; Báo, Sônia Nair; Azevedo, Ricardo Bentes; Muehlmann, Luis Alexandre

    2018-01-01

    Due to the low therapeutic index of different chemotherapeutic drugs used for cancer treatment, the development of new anticancer drugs remains an intense field of research. A recently developed mixture of selenitetriacylglycerides, selol, was shown to be active against different cancer cells in vitro. As this compound is highly hydrophobic, it was encapsulated, in a previous study, into poly(methyl vinyl ether-co-maleic anhydride)-shelled nanocapsules in order to improve its dispersibility in aqueous media. Following this line of research, the present report aimed at enhancing the In Vitro activity of the selol nanocapsules against cancerous cells by decorating their surface with folic acid. It is known that several cancer cells overexpress folate receptors. Stable folic acid-decorated selol nanocapsules (SNP-FA) were obtained, which showed to be spherical, with a hydro-dynamic diameter of 364 nm, and zeta potential of -24 mV. In comparison to non-decorated selol nanocapsules, SNP-FA presented higher activity against 4T1, MCF-7 and HeLa cells. Moreover, the decoration of the nanocapsules did not alter their toxicity towards fibroblasts, NIH-3T3 cells. These results show that the decoration with folic acid increased the toxicity of selol nanocapsules to cancer cells. These nanocapsules, besides enabling to disperse selol in an aqueous medium, increased the toxicity of this drug In Vitro, and may be useful to treat cancer in vivo, potentially increasing the specificity of selol towards cancer cells.

  11. Compliant gel polymer electrolyte based on poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) for flexible lithium-ion batteries

    International Nuclear Information System (INIS)

    Ma, Xianguo; Huang, Xinglan; Gao, Jiandong; Zhang, Shu; Deng, Zhenghua; Suo, Jishuan

    2014-01-01

    Highlights: •Compliant gel polymer electrolyte based on P(MA-co-AN)/PVA is facilely prepared for flexible lithium-ion batteries. •The compliant gel polymer electrolyte displays high ionic conductivity, self-standing and mechanical flexible. •The compliant gel polymer electrolyte exhibits excellent chemical and electrochemical performances. -- Abstract: In this report, mechanically compliant gel polymer electrolyte (GPE) for flexible lithium-ion batteries is facilely fabricated. The GPE that based on the poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) (P(MA-co-AN)/PVA) was prepared via emulsion polymerization. Herein, the P(MA-co-AN) copolymer is anticipated to exert beneficial for the bendability of the GPE, as well as swollen with the liquid electrolyte to provide a facile pathway for ion movement. The PVA serves as a stabilizer during the emulsion polymerization and a mechanical framework for the compliant polymer membrane. Performance benefits of the mechanically compliant membrane are elucidated in terms of mechanical behavior, thermostability and ionic conductivity. The GPE is still self-standing and mechanical flexible after swollen with liquid electrolyte. The GPE displays a conductivity of 0.98 mS cm −1 with the uptake electrolyte up to 150% of its own weight at 30 °C, excellent electrochemical stability window (5.2 V vs. Li/Li + ) and favorable interfacial characteristics. When used in flexible lithium-ion batteries, such a GPE demonstrates satisfactory compatibility with LiCoO 2 and graphite electrodes

  12. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.

    Science.gov (United States)

    Anbar, A D; Yung, Y L; Chavez, F P

    1996-03-01

    The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small

  13. Mechanistic and kinetic study of the CH3CO+O2 reaction

    Science.gov (United States)

    Hou, Hua; Li, Aixiao; Hu, Hongyi; Li, Yuzhen; Li, Hui; Wang, Baoshan

    2005-06-01

    Potential-energy surface of the CH3CO+O2 reaction has been calculated by ab initio quantum chemistry methods. The geometries were optimized using the second-order Moller-Plesset theory (MP2) with the 6-311G(d,p) basis set and the coupled-cluster theory with single and double excitations (CCSD) with the correlation consistent polarized valence double zeta (cc-pVDZ) basis set. The relative energies were calculated using the Gaussian-3 second-order Moller-Plesset theory with the CCSD/cc-pVDZ geometries. Multireference self-consistent-field and MP2 methods were also employed using the 6-311G(d,p) and 6-311++G(3df,2p) basis sets. Both addition/elimination and direct abstraction mechanisms have been investigated. It was revealed that acetylperoxy radical [CH3C(O)OO] is the initial adduct and the formation of OH and α-lactone [CH2CO2(A'1)] is the only energetically accessible decomposition channel. The other channels, e.g., abstraction, HO2+CH2CO, O +CH3CO2, CO +CH3O2, and CO2+CH3O, are negligible. Multichannel Rice-Ramsperger-Kassel-Marcus theory and transition state theory (E-resolved) were employed to calculate the overall and individual rate coefficients and the temperature and pressure dependences. Fairly good agreement between theory and experiments has been obtained without any adjustable parameters. It was concluded that at pressures below 3 Torr, OH and CH2CO2(A'1) are the major nascent products of the oxidation of acetyl radials, although CH2CO2(A'1) might either undergo unimolecular decomposition to form the final products of CH2O+CO or react with OH and Cl to generate H2O and HCl. The acetylperoxy radicals formed by collisional stabilization are the major products at the elevated pressures. In atmosphere, the yield of acetylperoxy is nearly unity and the contribution of OH is only marginal.

  14. The Effects of Reaction Variables on Solution Polymerization of Vinyl Acetate and Molecular Weight of Poly(vinyl alcohol Using Taguchi Experimental Design

    Directory of Open Access Journals (Sweden)

    M.H. Navarchian

    2009-12-01

    Full Text Available Poly(vinyl acetate is synthesized via solution polymerization, and then it is converted to poly(vinyl alcohol by alkaline alcoholysis. The aim of the work study was to investigate statistically the  influence of reaction variables in vinyl acetate polymerization, the conversion of this monomer to polymer, degree of branching of acetyl group in poly(vinyl acetate, as well as the molecular weight of poly(vinyl alcohol, using Taguchi experimental design approach. The reaction variables were polymerization time, molar ratio of initiator to monomer, and volume ratio of monomer to solvent. The statistical analysis of variance of the results revealed that all factors have significantly influenced the conversion and degree of branching. Volume ratio of monomer to solvent is the only factor affecting the molecular weight of poly(vinyl alcohol, and has the greatest influence on all responses. By increasing this ratio, the conversion, degree of branching of acetyl group in poly(vinyl acetate, and molecular weight of poly(vinyl alcohol were increased.

  15. Rietveld refinement of the crystal structure of perovskite solar cells using CH3NH3PbI3 and other compounds

    Science.gov (United States)

    Ando, Yuji; Ohishi, Yuya; Suzuki, Kohei; Suzuki, Atsushi; Oku, Takeo

    2018-01-01

    The crystal structures of perovskite thin films including CH3NH3PbI3, CH3NH3Pb1-xSbxI3, and CH3NH3PbI3-yCly in the solar cell configuration were studied by using Rietveld refinement. For the CH3NH3PbI3 and CH3NH3Pb1-xSbxI3 samples, satisfactory agreement with the measured profiles was obtained with a weighted profile R-factor (Rwp) of as low as 3%. It was shown that the site occupancy of methylammonium (MA) was decreased in the antimonized cell due to the compensation effect of an increased positive charge brought about by replacing Pb2+ with Sb3+. Photovoltaic measurements showed that the power conversion efficiency was enhanced by adding a small amount of Sb to the CH3NH3PbI3 cell, but it was monotonically decreased as the mole fraction of Sb exceeded 0.03. This variation of the conversion efficiency was considered as a result of suppressed crystallization of PbI2 and carrier recombination via MA vacancies in the antimonized cells. In the case of CH3NH3PbI2.88Cl0.12 sample, the agreement with the measured profile with an Rwp of as high as 7% suggested the co-existence of cubic and tetragonal phases in the chlorinated cell.

  16. CH{sub 3} and CD{sub 3} radicals isolated in argon: high resolution ESR spectra and analysis by three-dimensional quantum rotor model. A case study of low temperature quantum effects on radicals

    Energy Technology Data Exchange (ETDEWEB)

    Shiotani, Masaru; Yamada, Tomoya; Komaguchi, Kenji [Hiroshima Univ., Higashi-Hiroshima (Japan). Faculty of Engineering; Benetis, N.P.; Lund, A.; Soernes, A.R.

    1998-10-01

    The present study deals with high resolution isotropic ESR spectra of the CH{sub 3} and CD{sub 3} radicals isolated in solid argon matrix at low temperature from 4 K to 40 K. Argon gases mixed with methane (Ar/methane {approx_equal} 500 mole ratio) were condensed at the end of Suprasile ESR tube at 4.2 K. Methyl radicals were generated by X-ray irradiation at 4 K and subjected to an ESR study. The 6.0 K ESR spectrum of the CH{sub 4}/Ar system is shown in Fig. 1. For CH{sub 3} radical the {sup 1}H hyperfine (hf) quartet was observed with an equal intensity (A-lines). The E-lines were absent at 4 K, but became visible at m{sub F} = {+-}1/2 positions above 12 K increased with temperature. The CD{sub 3} gave a peculiar spectrum at 4 K with an abnormally strong central singlet superimposed on a much weaker seven line spectrum of a freely rotating CD{sub 3}. The temperature dependent spectra showed clear quantum effects due to three-dimensional spin-rotation couplings. The spectra were analyzed with the following assumptions: (a) a planar D{sub 3} geometry, (b) a free and three-dimensional quantum rotation and (c) a thermally isolated radical. Application of the Pauli principle in combination to the D{sub 3} point group resulted in interesting selections for ESR-transitions for both the CH{sub 3} and CD{sub 3} spectra. That is, the {sup 1}H hf quartet of CH{sub 3} radical (A-lines) was attributed to the rotational ground state, J=0, with totally symmetric A{sub 1} nuclear states. The central strong singlet of CD{sub 3} was attributed to one spin-rotation state with A{sub 2} antisymmetric nuclear states at the lowest rotational level of J=0. (author)

  17. A practical and improved synthesis of (3S,5S)-3-[(tert-butyloxycarbonyl)methyl]- 5-[(methanesulfonyloxy)methyl]-2- pyrrolidinone.

    Science.gov (United States)

    Yee, Nathan K; Dong, Yong; Kapadia, Suresh R; Song, Jinhua J

    2002-11-29

    A practical and improved synthesis of (3S,5S)-3-[(tert-butyloxycarbonyl)methyl]-5-[(methanesulfonyloxy)methyl]-2-pyrrolidinone (1) is described. The key transformations involve a highly efficient reaction sequence consisting of ethoxycarbonylation, alkylation, hydrolysis, and decarboxylation to produce compound 10. The process described herein is practical, robust, and cost-effective, and it has been successfully implemented in a pilot plant to produce a multikilogram quantity of mesylate 1.

  18. Preparation of poly (vinyl alcohol) membranes grafted with n-vinyl pyridine/ acrylic acid binary monomers

    International Nuclear Information System (INIS)

    Ajji, A.; Ali, A.

    2014-03-01

    Poly(vinyl alcohol) films were grafted with two monomers using gamma radiation, acrylic acid and N-vinyl pyridine. The influence of different parameters on the grafting yield was investigated as: the comonomer concentration and composition, and irradiation dose. The suitable conditions of the process had been determined to prepare PVA membranes have both properties of the two monomers, acrylic acid and vinyl pyridine as comonomer concentration and composition, and irradiation dose. Some properties of the membranes had been investigated as maximum swelling and grafting. Also the ability of the grafted films to adsorb some heavy metals and dyes was elaborated and discussed.(author)

  19. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.

    OpenAIRE

    Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D

    1996-01-01

    We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...

  20. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar

    2012-01-01

    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.

  1. Method of modifying a vinyl chloride resin by utilizing radiation cross-linking polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kagiya, T; Fujimoto, T; Hosoi, F; Tsuneta, K; Atogawa, M

    1970-08-26

    The polyvinyl chloride is improved in its mechanical, thermal and chemical properties, with particular advantages gained in dimensional stability at temperatures higher than the plasticizing temperature. The process comprises irradiating a vinyl chloride resin with ionizing radiations in the presence of a vinyl acetate monomer. In this process, the irradiation of vinyl acetate effects cross-linking and the polymerization of the monomer simultaneously. The vinyl chloride resin may be a copolymer along with another monomer, a polyvinyl chloride derivative, a graft polymer of polyvinyl chloride, a mixture of vinyl chloride with another resin and a graft copolymer of vinyl chloride on another resin in any form. The addition of the vinyl acetate monomer to the vinyl chloride is not limited to any particular procedure. The vinyl acetate monomer may be added to the polyvinyl chloride in a quantity ranging from a trace to 200% by weight. The radiation dose may be 10/sup 2/ to 10/sup 9/, but preferably 10/sup 3/ roentgen. In one example, 36 parts by weight of market available vinyl acetate monomer immersed in 100 parts by weight of hard vinyl tube were placed in a stainless reacting vessel. After the replacement of inner air with nitrogen, the vessel was exposed to ..gamma.. beams of 4.8 x 10 roentgen from a Co-60 source. After dipping the exposed samples in boiled tetrahydrofuran for 48 hours, the insoluble substance in the samjle was 78.9% by weight. In addition, after heating at 180/sup 0/C for 30 minutes, the sample did not show any deformation.

  2. [6-chloro-3-pyridylmethyl-3H]neonicotinoids as high-affinity radioligands for the nicotinic acetylcholine receptor: preparation using NaB3H4 and LiB3H4

    International Nuclear Information System (INIS)

    Latli, Bachir; Casida, J.E.

    1996-01-01

    NaB 3 H 4 and LiB 3 H 4 at 78% and 97% isotopic enrichments, respectively, were used in the synthesis of 3 H-labeled 1-(6-chloro-3-pyridyl)-methyl-2-nitromethyleneimidazolidine (CH-IMI) and N'-[(6-chloro-3-pyridyl)methyl]-n''-cyano-n'-methylacetamidine (acetamiprid) (two very potent insecticides) and of 1-(6-chloro-3-pyridyl)methyl-2-iminoimidazolidine (desnitro-IMI) (a metabolite of the commercial insecticides imidacloprid). 6-Chloronicotinoyl chloride was treated with either NaB 3 H 4 in methanol or LiB 3 H 4 in tetrahydrofuran and the resulting alcohol transformed to 2-chloro-5-chloromethylpyridine, which was then coupled to N-cyano-N'-methylacetamidine to give [ 3 H] acetamiprid (45 Ci/mmol). 2-Chloro-5-chloro[ 3 H]methylpyridine was also reacted with ethylenediamine and the product was either refluxed in absolute ethanol with 1,1-bis(methylthio)-2-nitro-ethylene to provide [ 3 H]CH-IMI or reacted in toluene with a solution of cyanogen bromide to produce [ 3 H] desnitro-IMI (each 55 Ci/mmol. (author)

  3. Chemical Complexity in Local Diffuse and Translucent Clouds: Ubiquitous Linear C3H and CH3CN, a Detection of HC3N and an Upper Limit on the Abundance of CH2CN

    Science.gov (United States)

    Liszt, Harvey; Gerin, Maryvonne; Beasley, Anthony; Pety, Jerome

    2018-04-01

    We present Jansky Very Large Array observations of 20–37 GHz absorption lines from nearby Galactic diffuse molecular gas seen against four cosmologically distant compact radio continuum sources. The main new observational results are that l-C3H and CH3CN are ubiqitous in the local diffuse molecular interstellar medium at {\\text{}}{A}{{V}} ≲ 1, while HC3N was seen only toward B0415 at {\\text{}}{A}{{V}} > 4 mag. The linear/cyclic ratio is much larger in C3H than in C3H2 and the ratio CH3CN/HCN is enhanced compared to TMC-1, although not as much as toward the Horsehead Nebula. More consequentially, this work completes a long-term program assessing the abundances of small hydrocarbons (CH, C2H, linear and cyclic C3H and C3 {{{H}}}2, and C4H and C4H‑) and the CN-bearing species (CN, HCN, HNC, HC3N, HC5N, and CH3CN): their systematics in diffuse molecular gas are presented in detail here. We also observed but did not strongly constrain the abundances of a few oxygen-bearing species, most prominently HNCO. We set limits on the column density of CH2CN, such that the anion CH2CN‑ is only viable as a carrier of diffuse interstellar bands if the N(CH2CN)/N(CH2CN‑) abundance ratio is much smaller in this species than in any others for which the anion has been observed. We argue that complex organic molecules (COMS) are not present in clouds meeting a reasonable definition of diffuse molecular gas, i.e., {\\text{}}{A}{{V}} ≲ 1 mag. Based on observations obtained with the NRAO Jansky Very Large Array (VLA).

  4. Radiation-chemical preparation of poly(vinyl alcohol) hydrogels

    International Nuclear Information System (INIS)

    Duflot, Anastasia V.; Kitaeva, Natalia K.; Duflot, Vladimir R.

    2015-01-01

    This work reports the usage of method of radiation-chemical synthesis to prepare cross-linked hydrogels from poly(vinyl alcohol) modified with glycidyl methacrylate. Synthesis kinetics of modified poly(vinyl alcohol) and properties of hydrogels were studied. The gel fraction, swelling, mechanical properties, and water content of the hydrogels were measured. It was found that gel fraction increases with increasing radiation dose, concentration of modified poly(vinyl alcohol), and reaches 60%. It was established by differential scanning calorimetry that a fraction of the “bound” water in hydrogels is 50–70% and independent of gel fraction content. In addition to “bound” and “free” states, water in hydrogels is also present in the intermediate state. - Highlights: • The synthesis and the properties of poly(vinyl alcohol) hydrogels were studied. • PVA was modified by glycidyl methacrylate before gamma cross-linking. • The modification results in decreasing of PVA cross-linking dose by 3 orders lower. • The gel fraction and water content of the hydrogels were measured. • A fraction of the “bound” water in hydrogels is independent of gel fraction content

  5. Inactivation of γ-aminobutyric acid aminotransferase by γ-ethynyl- and γ-vinyl GABA

    International Nuclear Information System (INIS)

    Silverman, R.B.; Burke, J.R.; Nanavati, S.M.

    1989-01-01

    γ-Ethynyl- and γ-vinyl GABA (vigabatrin) are anticonvulsant agents that have been shown to be mechanism-based inactivators of γ-aminobutyric acid aminotransferase (GABA-T). The inactivation mechanisms of these compounds have been investigated. Inactivation of GABA-T by [ 3 H]γ-ethynyl GABA led to the incorporation of 1.0 equiv of 3 H into the enzyme which is not released by enzyme denaturation. Inactivation by γ-ethynyl GABA of GABA-T reconstituted with [ 3 H]PLP followed by denaturation resulted in release of 3 H as PLP. Eight different possible adducts are consistent with that result. Experiments have been carried out to differentiate these possibilities. Similar studies have been carried out with γ-vinyl GABA. Inactivation by [ 14 C]γ-vinyl GABA resulted in the incorporation of 1.0 equiv of 14 C per active site. Unlike the case with γ-ethynyl GABA, γ-vinyl GABA inactivation of GABA-T reconstituted with [ 3 H]PLP followed by denaturation resulted in release of 3 H as PMP

  6. Synthesis of Fischer carbene complexes of iridium by C-H bond activation of methyl and cyclic ethers: Evidence for reversible {alpha}-hydrogen migration

    Energy Technology Data Exchange (ETDEWEB)

    Luecke, H.F.; Arndtsen, B.A.; Burger, P.; Bergman, R.G. [Lawrence Berkeley Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)

    1996-03-13

    We report here a mild and versatile route to Fischer carbene complexes of iridium via the activation of C-H bonds of methyl and cyclic ethers, along with our preliminary studies of this rare family of carbene complexes. Theoretical studies suggest that {alpha}-hydrogen migrations can be kinetically favorable if a coordinatively unsaturated species can be accessed. Thus, the lability of the triflate ligand presumably facilitates this process. Further evidence for the rapidity, as well as reversibility, of this rearrangement was obtained by NMR analysis. 20 refs.

  7. Distribution of radiolabeled 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride in rat brain tumor: intraarterial versus intravenous administration

    International Nuclear Information System (INIS)

    Yamada, K.; Ushio, Y.; Hayakawa, T.; Arita, N.; Huang, T.Y.; Nagatani, M.; Yamada, N.; Mogami, H.

    1987-01-01

    To assess the rationale of intraarterial (i.a.) 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea chemotherapy, distribution of 14 C-labeled 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea in rat glioma was studied after i.a. or i.v. infusion. Immediately after infusion, the tumor located in the hemisphere of intracarotid infusion received 4.6-fold higher radioactivity than the tumor located contralaterally to intracarotid infusion and 2.8-fold higher radioactivity than i.v. infusion. The difference was kept up to 30 min after i.a. infusion. Autoradiographic observation indicated rather uniform distribution of the tracer in the central portion of i.a. infusion. However, in the periphery of i.a. infusion, distribution of the tracer was nonhomogenous. The results indicate that i.a. 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea chemotherapy is useful when the tumor has high blood flow and is located in the center of an infused area

  8. Enhanced photovoltaic performance of CH3NH3PbBrXI3-X-based perovskite solar cells via anti-solvent extraction

    Science.gov (United States)

    Jiang, Zhaoyi; Zhang, Weijia; Lu, Chaoqun; Ma, Denghao; Liu, Haixu; Yu, Wei; Zhang, Yu; Ma, Qiang; Zhang, Yulong

    2018-06-01

    In this paper, the two-step sequential deposition method was used to prepare the CH3NH3PbBrXI3-X films by introducing CH3NH3Br in the precursors. The surface morphology of the PbI2 films was controlled by anti-solvent extraction (ASE) to improve the microstructure and photo-physical properties of the perovskite films. It was noteworthy that, compared to the compact PbI2 films, the porous PbI2 films facilitated the growth of crystals and bromine incorporation in films, and the prepared perovskite films exhibited enlarged grain size, increased light absorption, enhanced Br incorporation and prolonged carrier lifetime, which resulted in excellent photo-electrical properties of the CH3NH3PbBrXI3-X films. With porous PbI2 templates, the inverted planar perovskite solar cells based on films with appropriate Br incorporation (CH3NH3Br/CH3NH3I mole ratio = 3/7) showed a photovoltaic conversion efficiency (PCE) of 14.9%, and the stability of the devices in air was elevated. Consequently, the high-quality CH3NH3PbBrXI3-X films can be obtained with porous PbI2 templates for improving the performance of the perovskite solar cells.

  9. The complete, temperature resolved experimental spectrum of methanol (CH{sub 3}OH) between 560 and 654 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C., E-mail: fcd@mps.ohio-state.edu [Department of Physics, Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210 (United States)

    2014-02-20

    The complete spectrum of methanol (CH{sub 3}OH) has been characterized over a range of astrophysically significant temperatures in the 560.4-654.0 GHz spectral region. Absolute intensity calibration and analysis of 166 experimental spectra recorded over a slow 248-398 K temperature ramp provide a means for the simulation of the complete spectrum of methanol as a function of temperature. These results include contributions from v{sub t} = 3 and other higher states that are difficult to model via quantum mechanical (QM) techniques. They also contain contributions from the {sup 13}C isotopologue in terrestrial abundance. In contrast to our earlier work on semi-rigid species, such as ethyl cyanide and vinyl cyanide, significant intensity differences between these experimental values and those calculated by QM methods were found for many of the lines. Analysis of these differences shows the difficulty of the calculation of dipole matrix elements in the context of the internal rotation of the methanol molecule. These results are used to both provide catalogs in the usual line frequency, linestrength, and lower state energy format, as well as in a frequency point-by-point catalog that is particularly well suited for the characterization of blended lines.

  10. Dynamics and disorder of methyl group in the different phases of 2,6-dimethyl pyrazine, 4-methyl pyridine and 4-methyl pyridine N-oxide; Dynamique et desordre du groupe methyle dans les differentes phases de la 2,6-dimethyl pyrazine, 4-methyl pyridine et 4-methyl pyridine N-oxyde

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser Morris, E

    1997-12-22

    The thermal and mechanical properties of organic compounds are well known to be strongly correlated with the orientational freedom of its molecules or its molecular groups such as NH{sub 3}, CH{sub 3}, CH{sub 4}... For this reason, the study of the rotational behaviour of methyl groups in the solid state as a function of temperature is of great interest. With decreasing temperature, the rotations change from classical hoping to processes where quantum mechanical rotations become important. By quantum mechanical rotations, we mean the low-temperature counterpart, for with tunneling is the dominant mode of motion. However, the interpretation of tunnelling lines is critical when it is not straightforward to relate them to specific vibrational modes and particularly so when the molecule contains crystallographically inequivalent groups. The aim of this work is to interpret such spectra (obtained from inelastic neutron scattering) from structural data. The lack of structural knowledge at low temperatures, makes therefore a limited interpretation of the spectra obtained from polycrystalline samples. In a first step it is essential to solve crystalline structure of compounds by single crystal X-rays and neutron diffraction. Indeed X-ray diffraction is necessary to locate the skeleton (C, N, O and localised H atoms). Moreover neutron diffraction is the unique tool to precise the position of H atoms of methyl groups. The exam of the nuclear density of these protons the Fourier maps allows us to evaluate the crystal potential experienced by this rotor. Inelastic neutron scattering allows on single crystals allows the complete characterizations of quantum excitations (author) 75 refs.

  11. Facile And Reversible Co Insertion Into The Ir-ch3 Bond Of [ir4(ch3)(co)8(μ4- η3-ph2pccph)(μ-pph2)

    OpenAIRE

    Vargas M.D.; Pereira R.M.S.; Braga D.; Grepioni F.

    1993-01-01

    Reaction of [Ir4H(CO)10(mu-PPh2)) with BuLi, Ph2PC=CPh and then Mel gives [Ir4(CH3)(CO)8(mu4-eta3-Ph2PCCPh)(mu-PPh2)], which undergoes a reversible two-step CO insertion under extremely mild conditions to yield Ir4{(CH3C(O)}(CO)8-(mu4:eta3-Ph2PCCPh)(mu-PPh2)] as the final product; the structures of both species have been established by X-ray diffraction studies.

  12. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    Energy Technology Data Exchange (ETDEWEB)

    Hund, Zachary M.; Nihill, Kevin J.; Sibener, S. J., E-mail: s-sibener@uchicago.edu [The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57" t" h Street, Chicago, Illinois 60637 (United States); Campi, Davide; Bernasconi, M. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Wong, Keith T.; Lewis, Nathan S. [Division of Chemistry and Chemical Engineering, Beckman Institute and Kavli Nanoscience Institute, California Institute of Technology, 210 Noyes Laboratory, 127-72, Pasadena, California 91125 (United States); Benedek, G. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Donostia International Physics Center (DIPC), Universidad del País Vasco (EHU), 20018 Donostia/San Sebastian (Spain)

    2015-09-28

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD{sub 3}-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH{sub 3}-Ge(111) and CH{sub 3}-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers.

  13. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    International Nuclear Information System (INIS)

    th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Hund, Zachary M.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Nihill, Kevin J.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Sibener, S. J.; Campi, Davide; Bernasconi, M.; Wong, Keith T.; Lewis, Nathan S.; Benedek, G.

    2015-01-01

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD 3 -Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH 3 -Ge(111) and CH 3 -Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers

  14. Methyl 3-(Quinolin-2-ylindolizine-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Roumaissa Belguedj

    2015-12-01

    Full Text Available A novel compound, methyl 3-(quinolin-2-ylindolizine-1-carboxylate (2 has been synthesized by cycloaddition reaction of 1-(quinolin-2-ylmethylpyridinium ylide (1 with methyl propiolate in presence of sodium hydride in THF. The structure of this compound was established by IR, 1H-NMR, 13C-NMR and MS data

  15. Field-effect transistors with high mobility and small hysteresis of transfer characteristics based on CH3NH3PbBr3 films

    Science.gov (United States)

    Aleshin, A. N.; Shcherbakov, I. P.; Trapeznikova, I. N.; Petrov, V. N.

    2017-12-01

    Field-effect transistor (FET) structures based on soluble organometallic perovskites, CH3NH3PbBr3, were obtained and their electrical properties were studied. FETs made of CH3NH3PbBr3 films possess current- voltage characteristics (IVs) typical for ambipolar FETs with saturation regime. The transfer characteristics of FETs based on CH3NH3PbBr3 have an insignificant hysteresis and slightly depend on voltage at the source-drain. Mobilities of charge carriers (holes) calculated from IVs of FETs based on CH3NH3PbBr3 at 300 K in saturation and weak field regimes were 5 and 2 cm2/V s, respectively, whereas electron mobility is 3 cm2/V s, which exceeds the mobility value 1 cm2/V s obtained earlier for FETs based on CH3NH3PbI3.

  16. 11C-labelling of the analgesic Tramadol and its major metabolites by selective O- and N-methylation

    International Nuclear Information System (INIS)

    Gail, R.; Coenen, H.H.; Hamacher, K.; Stoecklin, G.

    1992-01-01

    For in vivo pharmacokinetic studies with PET, the analgesic Tramadol(1-(3-methoxyphenyl)-2-dimethylaminomethyl-cyclohexan-1-ol) and its major O- and N-desmethylated metabolites M1 and M2 were labelled with carbon-11. Starting with the corresponding desmethyl precursors, [O-methyl- 11 C]Tramadol and racemic[N-methyl- 11 C]Tramadol were prepared by methylation with n.c.a. [ 11 C]methyl iodide in DMSO with radiochemical yields of 85 and 90%, respectively. Specific n.c.a. N-methylation of bis-desmethyl-Tramadol (M5) was achieved with 90% radiochemical yield. However, a selective O-methylation of M5 was not possible even with an excess of NaOH, and only 70% of [O-methyl- 11 C]M2 was obtained. Quaternization of Tramadol or M1 was >15 times slower than O-methylation, and was only observed in the presence of added CH 3 I carrier. (author)

  17. CO Reduction to CH3OSiMe3: Electrophile-Promoted Hydride Migration at a Single Fe Site.

    Science.gov (United States)

    Deegan, Meaghan M; Peters, Jonas C

    2017-02-22

    One of the major challenges associated with developing molecular Fischer-Tropsch catalysts is the design of systems that promote the formation of C-H bonds from H 2 and CO while also facilitating the release of the resulting CO-derived organic products. To this end, we describe the synthesis of reduced iron-hydride/carbonyl complexes that enable an electrophile-promoted hydride migration process, resulting in the reduction of coordinated CO to a siloxymethyl (L n Fe-CH 2 OSiMe 3 ) group. Intramolecular hydride-to-CO migrations are extremely rare, and to our knowledge the system described herein is the first example where such a process can be accessed from a thermally stable M(CO)(H) complex. Further addition of H 2 to L n Fe-CH 2 OSiMe 3 releases CH 3 OSiMe 3 , demonstrating net four-electron reduction of CO to CH 3 OSiMe 3 at a single Fe site.

  18. Adsorption of poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) polymers on zinc, zinc oxide, iron, and iron oxide surfaces.

    Science.gov (United States)

    Seifert, Susan; Simon, Frank; Baumann, Giesela; Hietschold, Michael; Seifert, Andreas; Spange, Stefan

    2011-12-06

    The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions. © 2011 American Chemical Society

  19. Thermal and dynamic mechanical properties of grafted kenaf filled poly (vinyl chloride)/ethylene vinyl acetate composites

    International Nuclear Information System (INIS)

    Bakar, Nurfatimah Abu; Chee, Ching Yern; Abdullah, Luqman Chuah; Ratnam, Chantara Thevy; Ibrahim, Nor Azowa

    2015-01-01

    Highlights: • Study on thermal and dynamic mechanical properties of PVC/EVA/PMMA grafted kenaf fiber. • PMMA grafted kenaf fiber showed good interaction with PVC/EVA blends. • Thermal stability of the composites increase upon PMMA grafting on kenaf fiber. • The crystallinity of the composites decrease upon PMMA grafting on kenaf fiber. • PMMA grafted fiber provides more reinforcement on PVC/EVA/grafted PMMA composite. - Abstract: The effects of kenaf and poly (methyl methacrylate grafted kenaf on the thermal and dynamic mechanical properties of poly (vinyl chloride), PVC and ethylene vinyl acetate, EVA blends were investigated. The PVC/EVA/kenaf composites were prepared by mixing the grafted and ungrafted kenaf fiber and PVC/EVA blend using HAAKE Rheomixer at a temperature of 150 °C and the rotor speed at 50 rpm for 20 min. The composites were subjected to Differential Scanning Calorimetric (DSC), Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), Fourier transform infrared (FTIR) and Scanning Electron Microscopy (SEM) studies. The DSC data revealed that the crystallinity of the EVA decreased with the addition of 30% grafted and ungrafted kenaf fibers. TGA and derivative thermogravimetric (DTG) curves displayed an increase in the thermal stability of the composites upon grafting of the fiber. Studies on DMA indicate that the T g of the PVC and EVA in the PVC/EVA/kenaf composites has been shifted to higher temperature with the addition of the kenaf fiber. The presence of PMMA on the surface of grafted kenaf fiber was further confirmed by the analytical results from FTIR. The morphology of fractured surfaces of the composites, which was examined by a scanning electron microscope, showed the adhesion between the kenaf fiber and the PVC/EVA matrix was improved upon grafting of the kenaf fiber

  20. Infrared absorption of CH3OSO detected with time-resolved Fourier-transform spectroscopy.

    Science.gov (United States)

    Chen, Jin-Dah; Lee, Yuan-Pern

    2011-03-07

    A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to detect temporally resolved infrared absorption spectra of CH(3)OSO produced upon irradiation of a flowing gaseous mixture of CH(3)OS(O)Cl in N(2) or CO(2) at 248 nm. Two intense transient features with origins near 1152 and 994 cm(-1) are assigned to syn-CH(3)OSO; the former is attributed to overlapping bands at 1154 ± 3 and 1151 ± 3 cm(-1), assigned to the S=O stretching mixed with CH(3) rocking (ν(8)) and the S=O stretching mixed with CH(3) wagging (ν(9)) modes, respectively, and the latter to the C-O stretching (ν(10)) mode at 994 ± 6 cm(-1). Two weak bands at 2991 ± 6 and 2956 ± 3 cm(-1) are assigned as the CH(3) antisymmetric stretching (ν(2)) and symmetric stretching (ν(3)) modes, respectively. Observed vibrational transition wavenumbers agree satisfactorily with those predicted with quantum-chemical calculations at level B3P86∕aug-cc-pVTZ. Based on rotational parameters predicted at that level, the simulated rotational contours of these bands agree satisfactorily with experimental results. The simulation indicates that the S=O stretching mode of anti-CH(3)OSO near 1164 cm(-1) likely makes a small contribution to the observed band near 1152 cm(-1). A simple kinetic model of self-reaction is employed to account for the decay of CH(3)OSO and yields a second-order rate coefficient k=(4 ± 2)×10(-10) cm(3)molecule(-1)s(-1). © 2011 American Institute of Physics.

  1. [Specific features of 2-methyl hydroxybenzene and 3-methyl hydroxybenzene distribution in the organism of warm-blooded animals].

    Science.gov (United States)

    Shormanov, B K; Grishenko, V K; Astashkina, A P; Elizarova, M K

    2013-01-01

    The present work was designed to study the specific features of 2-methyl hydroxybezene and 3-methyl hydroxybenzene distribution after intragastric administration of these toxicants to warm-blooded animals (rats). They were detected in the unmetabolized form in the internal organs and blood of the animals. The levels of 2-methyl hydroxybezene were especially high in the stomach and blood whereas the maximum content of 3-methyl hydroxybenzene was found in brain, blood, small intestines of the poisoned rats.

  2. Radiative association of CH3(+) and H2

    International Nuclear Information System (INIS)

    Bates, D.R.

    1985-01-01

    The temperature variation of the rate coefficient for k(1) for CH3(+) + H2 yields CH5(+) + hv is computed treating the para and ortho forms of H2 separately, taking account of nuclear spin and using an accurate theory of the kinetics of association. The results are made absolute with the aid of the measurement at 13 K by Barlow et al. (1984). By combining this measurement with the CH5(+) vibrational frequencies obtained by Pople (1984) from a quantal study, it is deduced that the probability of the stabilizing radiative transition is 5400/s. The rate coefficients k(1) (T, para) and k(1) (T, ortho) are given at 13 K, 30 K, and 80 K. 23 references

  3. Crystallographic Investigations into Properties of Acentric Hybrid Perovskite Single Crystals NH(CH3)3SnX3(X = Cl, Br)

    KAUST Repository

    Dang, Yangyang

    2016-10-11

    The hybrid perovskites with special optoelectronic properties have attracted more attention to the scientific and industrial applications. However, because of the toxicity and instability of lead complexes, there is interest in finding a nontoxic substitute for the lead in the halides perovskites and solving the ambiguous crystal structures and phase transition of NH(CH3)3SnX3 (X = Cl, Br). Here, we report the bulk crystal growths and different crystal morphologies of orthorhombic hybrid perovskites NH(CH3)3SnX3 (X = Cl, Br) in an ambient atmosphere by bottom-seeded solution growth (BSSG) method. More importantly, detailed structural determination and refinements, phase transition, band gap, band structure calculations, nonlinear optical (NLO) properties, XPS, thermal properties, and stability of NH(CH3)3SnX3 (X = Cl, Br) single crystals are demonstrated. NH(CH3)3SnCl3 single crystal undergoes reversible structural transformation from orthorhombic space group Cmc21 (no. 36) to monoclinic space group Cc (no. 9) and NH(CH3)3SnBr3 belongs to the orthorhombic space group Pna21 (no. 33) by DSC, single-crystal X-ray diffraction and temperature-dependent SHG measurements, which clarify the former results. These results should pave the way for further studies of these materials in optoelectronics.

  4. (E-3-Methyl-6-(3-oxo-3-(3,4,5-trimethoxyphenylprop-1-en-1-yl-2(3H-benzothiazolone

    Directory of Open Access Journals (Sweden)

    Yordanka Ivanova

    2016-09-01

    Full Text Available The title compound, (E-3-methyl-6-(3-oxo-3-(3,4,5-trimethoxyphenylprop-1-en-1-yl-2(3H-benzothiazolone, was synthesized by both an acid- and base-catalyzed aldol condensation of 3-methyl-6-acetyl-2(3H-benzothiazolone and 3,4,5-trimethoxyacetophenone. The structure of the target compound was confirmed using 1H-NMR, 13C-NMR, IR, MS, and elemental analysis.

  5. DNA methylation and gene expression of HIF3A

    DEFF Research Database (Denmark)

    Main, Ailsa Maria; Gillberg, Linn; Jacobsen, Anna Louisa

    2016-01-01

    from 48 families, from whom we had SAT and muscle biopsies. DNA methylation of four CpG sites in the HIF3A promoter was analyzed in the blood and SAT by pyrosequencing, and HIF3A gene expression was analyzed in SAT and muscle by qPCR. An index of whole-body insulin sensitivity was estimated from oral...... individuals, and whether HIF3A gene expression in SAT and skeletal muscle biopsies showed associations with BMI and insulin resistance. Furthermore, we aimed to investigate gender specificity and heritability of these traits. METHODS: We studied 137 first-degree relatives of type 2 diabetes (T2D) patients...... glucose tolerance tests. RESULTS: BMI was associated with HIF3A methylation at one CpG site in the blood, and there was a positive association between the blood and SAT methylation levels at a different CpG site within the individuals. The SAT methylation level did not correlate with HIF3A gene expression...

  6. Photodissociation dynamics of the methyl perthiyl radical at 248 and 193 nm using fast-beam photofragment translational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Aaron W.; Ryazanov, Mikhail; Sullivan, Erin N.; Neumark, Daniel M., E-mail: dneumark@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-07-14

    The photodissociation dynamics of the methyl perthiyl radical (CH{sub 3}SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH{sub 3}SS{sup −} anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH{sub 3}S and S fragments, indicating that the dissociation occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S{sub 2} loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S{sub 2} and S atom products in several excited electronic states.

  7. Water-stable diblock polystyrene-block-poly(2-vinyl pyridine) and diblock polystyrene-block-poly(methyl methacrylate) cylindrical patterned surfaces inhibit settlement of zoospores of the green alga Ulva.

    Science.gov (United States)

    Grozea, Claudia M; Gunari, Nikhil; Finlay, John A; Grozea, Daniel; Callow, Maureen E; Callow, James A; Lu, Zheng-Hong; Walker, Gilbert C

    2009-04-13

    Nanopatterned surfaces with hydrophobic and hydrophilic domains were produced using the diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). The PS-b-P2VP diblock copolymer, mixed with the cross-linker benzophenone and spin-coated onto silicon wafers, showed self-assembled cylindrical structures, which were retained after UV treatment for cross-linking. The thin films displayed cylindrical domains after immersion in water. This study shows that pattern retention in water is possible for a long period of time, at least for two weeks in pure water and three weeks in artificial seawater. The PS-b-PMMA diblock showed self-assembled cylindrical structures. PS-b-P2VP and PS-b-PMMA cylindrical patterned surfaces showed reduced settlement of zoospores of the green alga Ulva compared to unpatterned surfaces. The copolymers were investigated using atomic force microscopy and X-ray photoelectron spectroscopy.

  8. Hydrogen-bonding behavior of various conformations of the HNO3…(CH3OH)2 ternary system.

    Science.gov (United States)

    Özsoy, Hasan; Uras-Aytemiz, Nevin; Balcı, F Mine

    2017-12-21

    Nine minima were found on the intermolecular potential energy surface for the ternary system HNO 3 (CH 3 OH) 2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO 3 …(CH 3 OH) 2 . The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO 3 …(CH 3 OH) 2 , meaning that it cannot be neglected in simulations in which the pair-additive potential is applied. Graphical abstract The H-bonding behavior of various conformations of the HNO 3 (CH 3 OH) 2 trimer was investigated.

  9. Methyl 3,4-bis(cyclopropylmethoxybenzoate

    Directory of Open Access Journals (Sweden)

    Xian-Chao Cheng

    2011-05-01

    Full Text Available The title compound, C16H20O4, was obtained unintentionally as the byproduct of an attempted synthesis of methyl 3-(cyclopropylmethoxy-4-hydroxybenzoate. In the crystal, the molecules are linked by intermolecular C—H...O interactions.

  10. The dissociation of vibrationally excited CH3OSO radicals and their photolytic precursor, methoxysulfinyl chloride.

    Science.gov (United States)

    Alligood, Bridget W; Womack, Caroline C; Straus, Daniel B; Blase, Frances R; Butler, Laurie J

    2011-05-21

    The dissociation dynamics of methoxysulfinyl radicals generated from the photodissociation of CH(3)OS(O)Cl at 248 nm is investigated using both a crossed laser-molecular beam scattering apparatus and a velocity map imaging apparatus. There is evidence of only a single photodissociation channel of the precursor: S-Cl fission to produce Cl atoms and CH(3)OSO radicals. Some of the vibrationally excited CH(3)OSO radicals undergo subsequent dissociation to CH(3) + SO(2). The velocities of the detected CH(3) and SO(2) products show that the dissociation occurs via a transition state having a substantial barrier beyond the endoergicity; appropriately, the distribution of velocities imparted to these momentum-matched products is fit by a broad recoil kinetic energy distribution extending out to 24 kcal/mol in translational energy. Using 200 eV electron bombardment detection, we also detect the CH(3)OSO radicals that have too little internal energy to dissociate. These radicals are observed both at the parent CH(3)OSO(+) ion as well as at the CH(3)(+) and SO(2)(+) daughter ions; they are distinguished by virtue of the velocity imparted in the original photolytic step. The detected velocities of the stable radicals are roughly consistent with the calculated barriers (both at the CCSD(T) and G3B3 levels of theory) for the dissociation of CH(3)OSO to CH(3) + SO(2) when we account for the partitioning of internal energy between rotation and vibration as the CH(3)OSOCl precursor dissociates. © 2011 American Institute of Physics.

  11. [(CH3)3NCH2CH2NH3]SnI4: a layered perovskite with quaternary/primary ammonium dications and short interlayer iodine-iodine contacts.

    Science.gov (United States)

    Xu, Zhengtao; Mitzi, David B; Medeiros, David R

    2003-03-10

    The organic-inorganic hybrid [(CH(3))(3)NCH(2)CH(2)NH(3)]SnI(4) presents a layered perovskite structure, templated by an organic dication containing both a primary and a quaternary ammonium group. Due to the high charge density and small size of the organic cation, the separation of the perovskite layers is small and short iodine-iodine contacts of 4.19 A are formed between the layers. Optical thin-film measurements on this compound indicate a significant red shift of the exciton peak (630 nm) associated with the band gap, as compared with other SnI(4)(2)(-)-based layered perovskite structures.

  12. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2

    KAUST Repository

    Santoro, Orlando

    2015-09-30

    The N-methylation of amines using CO2 and PhSiH3 as source of CH3 was efficiently performed using a N-heterocyclic carbene copper(I) complex. The methodology was found compatible with aromatic and aliphatic primary and secondary amines. Synthetic and computational studies have been carried out to support the proposed reaction mechanism for this transformation.

  13. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2

    KAUST Repository

    Santoro, Orlando; Lazreg, Faï ma; Minenkov, Yury; Cavallo, Luigi; Cazin, Catherine S. J.

    2015-01-01

    The N-methylation of amines using CO2 and PhSiH3 as source of CH3 was efficiently performed using a N-heterocyclic carbene copper(I) complex. The methodology was found compatible with aromatic and aliphatic primary and secondary amines. Synthetic and computational studies have been carried out to support the proposed reaction mechanism for this transformation.

  14. The Gas-Phase Formation of Methyl Formate in Hot Molecular Cores

    Science.gov (United States)

    Horn, Anne; Møllendal, Harald; Sekiguchi, Osamu; Uggerud, Einar; Roberts, Helen; Herbst, Eric; Viggiano, A. A.; Fridgen, Travis D.

    2004-08-01

    Methyl formate, HCOOCH3, is a well-known interstellar molecule prominent in the spectra of hot molecular cores. The current view of its formation is that it occurs in the gas phase from precursor methanol, which is synthesized on the surfaces of grain mantles during a previous colder era and evaporates while temperatures increase during the process of high-mass star formation. The specific reaction sequence thought to form methyl formate, the ion-molecule reaction between protonated methanol and formaldehyde followed by dissociative recombination of the protonated ion [HCO(H)OCH3]+, has not been studied in detail in the laboratory. We present here the results of both a quantum chemical study of the ion-molecule reaction between [CH3OH2]+ and H2CO as well as new experimental work on the system. In addition, we report theoretical and experimental studies for a variety of other possible gas-phase reactions leading to ion precursors of methyl formate. The studied chemical processes leading to methyl formate are included in a chemical model of hot cores. Our results show that none of these gas-phase processes produces enough methyl formate to explain its observed abundance.

  15. Candida Rugosa Lipase-catalyzed Kinetic Resolution of 3-(Isobutyryloxy)methyl 4-[2-(Difluoromethoxy)phenyl]-2-methyl-5,5-dioxo-1,4-dihydrobenzothieno[3,2-b]pyridine-3-carboxylate

    NARCIS (Netherlands)

    Sobolev, A.; Zhalubovskis, R.; Franssen, M.C.R.; Vigante, B.; Chekavichus, B.; Duburs, G.; Groot, de Æ.

    2004-01-01

    The lipase-catalyzed kinetic resolution of 3-(isobutyryloxy)methyl 4-[2-(difluoromethoxy)phenyl]-2-methyl-5,5-dioxo-1,4-dihydrobenzothieno[3,2-b]pyridine-3-carboxylate has been performed. The most enantioselective reaction (E = 28) was transesterification with n-butanol in water-saturated toluene at

  16. 1-O-vinyl glycosides via Tebbe olefination, their use as chiral auxiliaries and monomers.

    Science.gov (United States)

    Yuan, Jialong; Lindner, Kristof; Frauenrath, Holger

    2006-07-21

    A series of anomerically pure 1-O-formyl glycosides 1 was prepared and converted into the corresponding 1-O-vinyl glycosides 2 by Tebbe olefination. The unsubstituted vinyl glycosides were obtained as anomerically pure compounds in good yields, and the method of preparation was compatible with the presence of a variety of functional groups. Remarkably, the anomeric formate group was regioselectively converted into the corresponding olefin in the presence of acetate and benzoate protecting groups. With the perspective to use the 1-O-vinyl glycosides as monomers for the preparation of glycosylated poly(vinyl alcohol) derivatives with controlled tacticity, their scope as chiral auxiliaries for a stereodifferentiation in addition reactions to the olefin function was investigated by using the [2+2] cycloaddition to dichloroketene as a model reaction. In particular, vinyl 2,3,4,6-tetra-O-benzoyl-alpha-d-mannopyranoside (2i) exhibited excellent diastereoselectivity. Finally, the 1-O-vinyl glycosides were successfully subjected to radical homopolymerization in bulk or used as electron-rich comonomers in radical copolymerizations with maleic anhydride, yielding alternating, glycosylated poly(vinyl alcohol-alt-maleic anhydride).

  17. CH-TRU Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2005-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  18. CH-TRU Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-10-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  19. Chemical reaction surface vibrational frequencies evaluated in curvilinear internal coordinates: Application to H + CH(4) H(2) + CH(3).

    Science.gov (United States)

    Banks, Simon T; Clary, David C

    2009-01-14

    We consider the general problem of vibrational analysis at nonglobally optimized points on a reduced dimensional reaction surface. We discuss the importance of the use of curvilinear internal coordinates to describe molecular motion and derive a curvilinear projection operator to remove the contribution of nonzero gradients from the Hessian matrix. Our projection scheme is tested in the context of a two-dimensional quantum scattering calculation for the reaction H + CH(4) --> H(2) + CH(3) and its reverse H(2) + CH(3) --> H + CH(4). Using zero-point energies calculated via rectilinear and curvilinear projections we construct two two-dimensional, adiabatically corrected, ab initio reaction surfaces for this system. It is shown that the use of curvilinear coordinates removes unphysical imaginary frequencies observed with rectilinear projection and leads to significantly improved thermal rate constants for both the forward and reverse reactions.

  20. A theoretical study of CH4 dissociation on pure and gold-alloyed Ni(111) surfaces

    DEFF Research Database (Denmark)

    Kratzer, P.; Hammer, Bjørk; Nørskov, Jens Kehlet

    1996-01-01

    We present a density functional theory study of the first step of CH4 adsorption on the Ni(111) surface, dissociation into adsorbed CH3 and H. The rupture of the C-H bond occurs preferentially on top of a Ni atom, with a dissociation barrier of about 100 kJ/mol (including zero point corrections......). The transition state involves considerable internal excitation of the molecule. The active C-H bond is both stretched to 1.6 Angstrom and tilted relative to the methyl group. A normal mode analysis shows that the reaction coordinate is mainly a C-H stretch, while the orientation of the C-H bond relative...... to the surface is responsible for the highest real mode. Alloying the surface with gold also affects the reactivity of the Ni atoms on adjacent surface sites. The dissociation barrier is increased by 16 and 38 kJ/mol for a Ni atom with one or two gold neighbors, respectively. We attribute these changes...

  1. NMR Spectroscopic Characterization of Methylcobalt(III) Compounds with Classical Ligands. Crystal Structures of [Co(NH(3))(5)(CH(3))]S(2)O(6), trans-[Co(en)(2)(NH(3))(CH(3))]S(2)O(6) (en = 1,2-Ethanediamine), and [Co(NH(3))(6)]-mer,trans-[Co(NO(2))(3)(NH(

    DEFF Research Database (Denmark)

    Kofod, Pauli; Harris, Pernille; Larsen, Sine

    1997-01-01

    magnetic resonance spectroscopy and by absorption spectroscopy. Single-crystal X-ray structure determinations at 122.0(5) K were performed on [Co(NH(3))(5)(CH(3))]S(2)O(6) (1), trans-[Co(en)(2)(NH(3))(CH(3))]S(2)O(6) (2), and [Co(NH(3))(6)]-mer,trans-[Co(NO(2))(3)(NH(3))(2)(CH(3))](2)-trans-[Co(NO(2...

  2. 29 CFR 1910.1017 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... employee exposure to vinyl chloride (chloroethene), Chemical Abstracts Service Registry No. 75014. (2) This section applies to the manufacture, reaction, packaging, repackaging, storage, handling or use of vinyl... this section by engineering, work practice, and personal protective controls as follows: (1) Feasible...

  3. CF3CH(ONO)CF3: Synthesis, IR spectrum, and use as OH radical source for kinetic and mechanistic studies

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Hurley, MD; Ball, JC

    2003-01-01

    The synthesis, IR spectrum, and first-principles characterization of CF3CH(ONO)CF3 as well as its use as an OH radical source in kinetic and mechanistic studies are reported. CF3CH(ONO)CF3 exists in two conformers corresponding to rotation about the RCO-NO bond. The more prevalent trans conformer......C(O)CF3 and, by implication, OH radicals in 100% yield. CF3CH(ONO)CF3 photolysis is a convenient source of OH radicals in the studies of the yields of CO, CO2, HCHO, and HC(O)OH products which can be difficult to measure using more conventional OH radical sources (e.g., CH3ONO photolysis). CF3CH...

  4. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up

    International Nuclear Information System (INIS)

    Sasipriya, K.; Suriyaprabha, R.; Prabu, P.; Rajendran, V.

    2013-01-01

    Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol fibers were characterized by Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infra red spectroscopy (FTIR). According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol) fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up. (author)

  5. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up

    Energy Technology Data Exchange (ETDEWEB)

    Sasipriya, K.; Suriyaprabha, R.; Prabu, P.; Rajendran, V., E-mail: veerajendran@gmail.com [Centre for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tamil Nadu (India)

    2013-11-01

    Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol fibers were characterized by Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infra red spectroscopy (FTIR). According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol) fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up. (author)

  6. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol and poly (vinyl alcohol/silica using indigenous electrospinning set up

    Directory of Open Access Journals (Sweden)

    K. Sasipriya

    2013-01-01

    Full Text Available Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol and poly (vinyl alcohol/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol and poly (vinyl alcohol/silica sol fibers were characterized by Scanning electron microscopy (SEM, Atomic force microscopy (AFM and Fourier transform infra red spectroscopy (FTIR. According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up.

  7. Mapping Vinyl Cyanide and Other Nitriles in Titan’s Atmosphere Using ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Lai, J. C.-Y.; Cordiner, M. A.; Nixon, C. A.; Achterberg, R. K.; Molter, E. M.; Palmer, M. Y.; Charnley, S. B.; Lindberg, J. E.; Mumma, M. J. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Teanby, N. A. [School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ (United Kingdom); Kisiel, Z. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikøw 32/46, 02-668 Warszawa (Poland); Irwin, P. G. J., E-mail: martin.cordiner@nasa.gov [Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom)

    2017-11-01

    Vinyl cyanide (C{sub 2}H{sub 3}CN) is theorized to form in Titan’s atmosphere via high-altitude photochemistry and is of interest regarding the astrobiology of cold planetary surfaces due to its predicted ability to form cell membrane-like structures (azotosomes) in liquid methane. In this work, we follow up on the initial spectroscopic detection of C{sub 2}H{sub 3}CN on Titan by Palmer et al. with the detection of three new C{sub 2}H{sub 3}CN rotational emission lines at submillimeter frequencies. These new, high-resolution detections have allowed for the first spatial distribution mapping of C{sub 2}H{sub 3}CN on Titan. We present simultaneous observations of C{sub 2}H{sub 5}CN, HC{sub 3}N, and CH{sub 3}CN emission, and obtain the first (tentative) detection of C{sub 3}H{sub 8} (propane) at radio wavelengths. We present disk-averaged vertical abundance profiles, two-dimensional spatial maps, and latitudinal flux profiles for the observed nitriles. Similarly to HC{sub 3}N and C{sub 2}H{sub 5}CN, which are theorized to be short-lived in Titan’s atmosphere, C{sub 2}H{sub 3}CN is most abundant over the southern (winter) pole, whereas the longer-lived CH{sub 3}CN is more concentrated in the north. This abundance pattern is consistent with the combined effects of high-altitude photochemical production, poleward advection, and the subsequent reversal of Titan’s atmospheric circulation system following the recent transition from northern to southern winter. We confirm that C{sub 2}H{sub 3}CN and C{sub 2}H{sub 5}CN are most abundant at altitudes above 200 km. Using a 300 km step model, the average abundance of C{sub 2}H{sub 3}CN is found to be 3.03 ± 0.29 ppb, with a C{sub 2}H{sub 5}CN/C{sub 2}H{sub 3}CN abundance ratio of 2.43 ± 0.26. Our HC{sub 3}N and CH{sub 3}CN spectra can be accurately modeled using abundance gradients above the tropopause, with fractional scale-heights of 2.05 ± 0.16 and 1.63 ± 0.02, respectively.

  8. An investigation of the atmospheric sources and sinks of methyl bromide

    International Nuclear Information System (INIS)

    Singh, H.B.; Kanakidou, M.

    1993-01-01

    Methyl Bromide (CH 3 Br) is a ubiquitous component of the atmosphere and has been implicated as an important player in the depletion of stratospheric ozone. Atmospheric CH 3 Br abundances, interhemispheric gradients, oceanic concentrations, man-made emissions, and removal processes have been analyzed and interpreted with the help of a simple box model and a 2-D global photochemical model. Its calculated atmospheric lifetime (T) of 1.7-1.9 years, based on reaction with OH radicals, is consistent with a global source of 90-110 Gg (10 9 g)/year. Consequences of a much shorter lifetime of 1.2 years, due to possible deposition/hydrolysis losses, are also considered. Available data are used to estimate a CH 3 Br source that is 35% (20-50%) man-made and 65% (80-50%) natural. Oceans are substantially supersaturated and provide the most important natural source of ∼60 (40-80) Gg/year. Within the oceans 200-300 Gg/year of CH 3 Br may be produced. Indirect emissions from automobile exhaust and biomass burning can not be well quantified (1-10 Gg/year). A global trend of 0.1-0.2 ppt/year is predicted. Model results show significant vertical and seasonal variations in the atmospheric abundances and interhemispheric gradients of CH 3 Br. Substantial uncertainties in calibrations, source estimates, and deposition processes are present. 12 refs., 3 figs., 2 tabs

  9. From 1D to 3D: A new route to fabricate tridimensional structures via photo-generation of silver networks

    NARCIS (Netherlands)

    Wang, Zhanhua; Shen, Huaizhong; Wu, Yuxin; Fang, Liping; Ye, Shunsheng; Wang, Zhaoyi; Liu, Wendong; Cheng, Zhongkai; Zhang, Junhu; Yang, Bai

    2015-01-01

    A rapid and cost effective method has been developed to fabricate 3 dimensional (3D) ordered structures by photo-generating silver networks inside a 1D layered heterogeneous laminate composed of poly(vinyl alcohol) (PVA) and poly(methyl methacrylate) (PMMA). By designing the photo-mask meticulously,

  10. Thermal stability of homo- and copolymers of vinyl fluoride

    International Nuclear Information System (INIS)

    Raucher, D.; Levy, M.

    1979-01-01

    The thermal stability of poly(vinyl fluoride)(PVF) was studied by thermal gravimetry and mass spectrometry (TGA and TGA-MS). In low-molecular-weight polymers a two-step decomposition pattern was observed. It consisted of the dehydrofluorination to a polyene chain followed by decomposition of the resulting polyene at higher temperatures. Copolymers of vinyl fluoride-vinyl acetate (VF-VAc) and vinyl fluoride-vinyl chloride (VF-VCl) showed a simultaneous evolution of hydrofluoric acid and acetic acid and hydrofluoric acid and hydrochloric acid, respectively. This suggests that after the elimination of the weakest link a spontaneous elimination of neighboring HF molecules takes place

  11. Reaction mechanism for radiation-induced degradation of poly(methyl methacrylate) as studied by ESR and ESE

    International Nuclear Information System (INIS)

    Yoshida, H.; Ichikawa, T.

    1991-01-01

    Reaction mechanism for the radiation-induced degradation of poly(methyl methacrylate) has been studied based on the ESR and electron spin echo observations of the free radicals in the polymer irradiated with γ-rays. It is indicated that the side-chain radical, -CH 2 -CCH 3 (COOC-radicalH 2 )-, is the precursor for the main-chain scission. This radical transforms into the propagating-type radical, a fingerprint of the main-chain scission, without loss of the total radical concentration. UV illumination converts the side-chain radical into the acyl-type radical, -CH 2 -CCH 3 (-C-radical=O)-, which thermally transforms into the propagating-type radical. The radical of the type, -CH 2 -C-radicalCH 3 -CH 2 -, is suggested as a common, immediate precursor for the main-chain scission with and without the UV illumination, though it has not been detected because of its short life-time. (author) 7 refs.; 2 figs

  12. Synthesis of all eight L-glycopyranosyl donors using C-H activation

    DEFF Research Database (Denmark)

    Frihed, Tobias; Pedersen, Christian Marcus; Bols, Mikael

    2014-01-01

    by an intramolecular C-H activation of the methyl group in g-position; both steps were catalyzed by iridium. The following Fleming-Tamao oxidation and acetylation gave the suitably protected L-hexoses. This is the first general method for the preparation of all eight L-hexoses as their thioglycosyl donors ready...... for glycosylation and the first example of an iridium-catalyzed C(sp3)-H activation on sulfide-containing compounds....

  13. Reanalysis of Rate Data for the Reaction CH3 + CH3 → C2H6 Using Revised Cross Sections and a Linearized Second-Order Master Equation.

    Science.gov (United States)

    Blitz, M A; Green, N J B; Shannon, R J; Pilling, M J; Seakins, P W; Western, C M; Robertson, S H

    2015-07-16

    Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300-900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988 , 92 , 2455 - 2462 ). These corrections necessitated the development of a detailed model of the B̃(2)A1' (3s)-X̃(2)A2″ transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k∞(T); it was used to fit the experimental rate coefficients using the Levenberg-Marquardt algorithm to minimize χ(2) calculated from the differences between experimental and calculated rate coefficients. Parameters for both k∞(T) and for energy transfer ⟨ΔE⟩down(T) were varied and optimized in the fitting procedure. A wide range of experimental data were fitted, covering the temperature range 300-2000 K. A high pressure limit of k∞(T) = 5.76 × 10(-11)(T/298 K)(-0.34) cm(3) molecule(-1) s(-1) was obtained, which agrees well with the best available theoretical expression.

  14. Dynamics and disorder of methyl group in the different phases of 2,6-dimethyl pyrazine, 4-methyl pyridine and 4-methyl pyridine N-oxide

    International Nuclear Information System (INIS)

    Kaiser Morris, E.

    1997-01-01

    The thermal and mechanical properties of organic compounds are well known to be strongly correlated with the orientational freedom of its molecules or its molecular groups such as NH 3 , CH 3 , CH 4 ... For this reason, the study of the rotational behaviour of methyl groups in the solid state as a function of temperature is of great interest. With decreasing temperature, the rotations change from classical hoping to processes where quantum mechanical rotations become important. By quantum mechanical rotations, we mean the low-temperature counterpart, for with tunneling is the dominant mode of motion. However, the interpretation of tunnelling lines is critical when it is not straightforward to relate them to specific vibrational modes and particularly so when the molecule contains crystallographically inequivalent groups. The aim of this work is to interpret such spectra (obtained from inelastic neutron scattering) from structural data. The lack of structural knowledge at low temperatures, makes therefore a limited interpretation of the spectra obtained from polycrystalline samples. In a first step it is essential to solve crystalline structure of compounds by single crystal X-rays and neutron diffraction. Indeed X-ray diffraction is necessary to locate the skeleton (C, N, O and localised H atoms). Moreover neutron diffraction is the unique tool to precise the position of H atoms of methyl groups. The exam of the nuclear density of these protons the Fourier maps allows us to evaluate the crystal potential experienced by this rotor. Inelastic neutron scattering allows on single crystals allows the complete characterizations of quantum excitations (author)

  15. CH3NH3PbI3 grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition

    Science.gov (United States)

    Yao, Zhibo; Wang, Wenli; Shen, Heping; Zhang, Ye; Luo, Qiang; Yin, Xuewen; Dai, Xuezeng; Li, Jianbao; Lin, Hong

    2017-12-01

    Although the two-step deposition (TSD) method is widely adopted for the high performance perovskite solar cells (PSCs), the CH3NH3PbI3 perovskite crystal growth mechanism during the TSD process and the photo-generated charge recombination dynamics in the mesoporous-TiO2 (mp-TiO2)/CH3NH3PbI3/hole transporting material (HTM) system remains unexploited. Herein, we modified the concentration of PbI2 (C(PbI2)) solution to control the perovskite crystal properties, and observed an abnormal CH3NH3PbI3 grain growth phenomenon atop mesoporous TiO2 film. To illustrate this abnormal grain growth mechanism, we propose that a grain ripening process is taking place during the transformation from PbI2 to CH3NH3PbI3, and discuss the PbI2 nuclei morphology, perovskite grain growing stage, as well as Pb:I atomic ratio difference among CH3NH3PbI3 grains with different morphology. These C(PbI2)-dependent perovskite morphologies resulted in varied charge carrier transfer properties throughout the mp-TiO2/CH3NH3PbI3/HTM hybrid, as illustrated by photoluminescence measurement. Furthermore, the effect of CH3NH3PbI3 morphology on light absorption and interfacial properties is investigated and correlated with the photovoltaic performance of PSCs.

  16. 29 CFR 1915.1017 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Vinyl chloride. 1915.1017 Section 1915.1017 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1017 Vinyl chloride. Note: The requirements applicable to shipyard employment under this section...

  17. Kinetics of the gas-phase reactions of chlorine atoms with CH2F2, CH3CCl3 and CF3CFH2 over the temperature range 253 – 551 K

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Johnson, Matthew Stanley; Nielsen, Ole John

    2009-01-01

    Relative rate techniques were used to study the title reactions in 930–1200 mbar of N2 diluent. The reaction rate coefficients measured in the present work are summarized by the expressions k(Cl+CH2F2) = 1.19×10-17 T 2 exp(-1023/T ) cm3 molecule-1 s-1 (253– 553 K), k(Cl+CH3CCl3) = 2.41×10-12 exp(...

  18. Kinetics of the R + HBr {r_reversible} RH + Br (CH{sub 3}CHBr, CHBr{sub 2} or CDBr{sub 2}) equilibrium. Thermochemistry of the CH{sub 3}CHBr and CHBr{sub 2} radicals

    Energy Technology Data Exchange (ETDEWEB)

    Seetula, Jorma A. [Laboratory of Physical Chemistry, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 University of Helsinki, Helsinki (Finland)], E-mail: j.seetula@kolumbus.fi; Eskola, Arkke J. [Laboratory of Physical Chemistry, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 University of Helsinki, Helsinki (Finland)

    2008-07-03

    The kinetics of the reaction of the CH{sub 3}CHBr, CHBr{sub 2} or CDBr{sub 2} radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH{sub 3}CHBr (or CHBr{sub 2} or CDBr{sub 2}) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH{sub 3}CHBr{sub 2} (or CHBr{sub 3} or CDBr{sub 3}). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH{sub 3}CHBr + HBr) and from 288 to 477 K (CHBr{sub 2} + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1{sigma} + Student's t values, units in cm{sup 3} molecule{sup -1} s{sup -1}, no error limits for the third reaction): k(CH{sub 3}CHBr + HBr) = (1.7 {+-} 1.2) x 10{sup -13} exp[+ (5.1 {+-} 1.9) kJ mol{sup -1}/RT], k(CHBr{sub 2} + HBr) = (2.5 {+-} 1.2) x 10{sup -13} exp[-(4.04 {+-} 1.14) kJ mol{sup -1}/RT] and k(CDBr{sub 2} + HBr) = 1.6 x 10{sup -13} exp(-2.1 kJ mol{sup -1}/RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH{sub 3}CHBr and CHBr{sub 2} radicals and an experimental entropy value at 298 K for the CH{sub 3}CHBr radical were obtained using a second-law method. The result for the entropy value for the CH{sub 3}CHBr radical is 305 {+-} 9 J K{sup -1} mol{sup -1}. The results for the enthalpy of formation values at 298 K are (in kJ mol{sup -1}): 133.4 {+-} 3.4 (CH{sub 3}CHBr) and 199.1 {+-} 2.7 (CHBr{sub 2}), and for {alpha}-C-H bond dissociation energies of analogous compounds are (in kJ mol{sup -1}): 415.0 {+-} 2.7 (CH{sub 3}CH{sub 2}Br) and 412.6 {+-} 2.7 (CH{sub 2}Br{sub 2}), respectively.

  19. Interfacial Charge-Carrier Trapping in CH3NH3PbI3-Based Heterolayered Structures Revealed by Time-Resolved Photoluminescence Spectroscopy.

    Science.gov (United States)

    Yamada, Yasuhiro; Yamada, Takumi; Shimazaki, Ai; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-06-02

    The fast-decaying component of photoluminescence (PL) under very weak pulse photoexcitation is dominated by the rapid relaxation of the photoexcited carriers into a small number of carrier-trapping defect states. Here, we report the subnanosecond decay of the PL under excitation weaker than 1 nJ/cm(2) both in CH3NH3PbI3-based heterostructures and bare thin films. The trap-site density at the interface was evaluated on the basis of the fluence-dependent PL decay profiles. It was found that high-density defects determining the PL decay dynamics are formed near the interface between CH3NH3PbI3 and the hole-transporting Spiro-OMeTAD but not at the CH3NH3PbI3/TiO2 interface and the interior regions of CH3NH3PbI3 films. This finding can aid the fabrication of high-quality heterointerfaces, which are required improving the photoconversion efficiency of perovskite-based solar cells.

  20. Improvement of photovoltaic performance of the inverted planar perovskite solar cells by using CH3NH3PbI3-xBrx films with solvent annealing

    Science.gov (United States)

    Wang, Shan; Zhang, Weijia; Ma, Denghao; Jiang, Zhaoyi; Fan, Zhiqiang; Ma, Qiang; Xi, Yilian

    2018-01-01

    In this paper, the CH3NH3PbI3-xBrx films with various Br-doping contents were successfully prepared by solution processed deposition and followed by annealing process. This method simultaneously modified the morphology and composition of the CH3NH3PbI3 film. The effects of annealing treatment of CH3NH3PbI3-xBrx films under N2 and DMSO conditions on the microstructure of films and photoelectric properties of the solar cells were systematically investigated. The relationship of the component ratio of RBr/I= CH3NH3PbI3-xBrx/CH3NH3PbI3 in the resulting perovskite versus CH3NH3Br concentration also was explored. The results revealed that the CH3NH3PbI3-xBrx films annealed under DMSO exhibited increased grain sizes, enhanced crystallinity, enlarged bandgap and reduced defect density compared with that of the N2 annealing. It also was found that the RBr/I linearly increased in the resulting perovskite with the increased of CH3NH3Br concentration in the methylammonium halide mixture solutions. Furthermore, the photovoltaic performances of devices fabricated using DMSO precursor solvent were worse than that of DMF under N2 annealing atmosphere. When CH3NH3Br concentration was 7.5 mg ml-1, the planar perovskite solar cell based on CH3NH3PbI3-xBrx annealed under DMSO showed the best efficiency of 13.7%.

  1. Development, characterization and biocompatibility of chondroitin sulfate/poly(vinyl alcohol)/bovine bone powder porous biocomposite.

    Science.gov (United States)

    da Silva, Gabriela T; Voss, Guilherme T; Kaplum, Vanessa; Nakamura, Celso V; Wilhelm, Ethel A; Luchese, Cristiane; Fajardo, André R

    2017-03-01

    Chondroitin sulfate (ChS), a sulfated glycosaminoglycan, poly(vinyl alcohol) (PVA) and bovine bone powder (BBP) were blended to form a novel eco-friendly biocomposite through cyclic freeze-thawing under mild conditions. The systematic investigation reveals that the content of BBP has a remarkable effect on the pore size, porosity, mechanical and liquid uptake properties and biodegradability. At 10wt.% BBP the biocomposite exhibited enhanced mechanical properties and biodegradability rate as compared to the pristine sample. Further, different properties of the biocomposite can be tailored according to the content of BBP. In vitro assays showed that ChS/PVA-BBP does not exert cytotoxicity against healthy cells. In vivo and ex vivo experiments revealed that ChS/PVA-BBP biocomposites are biocompatibility materials without exert pro-inflammatory responses. The biocomposite was completely biodegraded and bioresorbed after 15days of treatment. Taken together, BBP is a low-cost source of hydroxyapatite and collagen, which are insurance. All these results suggest that the biocomposite designed in this study is a promising biomaterial for potential skin tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Interfacial electronic structures revealed at the rubrene/CH3NH3PbI3 interface.

    Science.gov (United States)

    Ji, Gengwu; Zheng, Guanhaojie; Zhao, Bin; Song, Fei; Zhang, Xiaonan; Shen, Kongchao; Yang, Yingguo; Xiong, Yimin; Gao, Xingyu; Cao, Liang; Qi, Dong-Chen

    2017-03-01

    The electronic structures of rubrene films deposited on CH 3 NH 3 PbI 3 perovskite have been investigated using in situ ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). It was found that rubrene molecules interacted weakly with the perovskite substrate. Due to charge redistribution at their interface, a downward 'band bending'-like energy shift of ∼0.3 eV and an upward band bending of ∼0.1 eV were identified at the upper rubrene side and the CH 3 NH 3 PbI 3 substrate side, respectively. After the energy level alignment was established at the rubrene/CH 3 NH 3 PbI 3 interface, its highest occupied molecular orbital (HOMO)-valence band maximum (VBM) offset was found to be as low as ∼0.1 eV favoring the hole extraction with its lowest unoccupied molecular orbital (LUMO)-conduction band minimum (CBM) offset as large as ∼1.4 eV effectively blocking the undesired electron transfer from perovskite to rubrene. As a demonstration, simple inverted planar solar cell devices incorporating rubrene and rubrene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layers (HTLs) were fabricated in this work and yielded a champion power conversion efficiency of 8.76% and 13.52%, respectively. Thus, the present work suggests that a rubrene thin film could serve as a promising hole transport layer for efficient perovskite-based solar cells.

  3. Kinetic and Mechanistic Studies for the Gas-phase Reaction of Ozone with 2, 3-Dimethyl-2-Butene and 1, 3-Butadiene

    Directory of Open Access Journals (Sweden)

    Ismael Abdulsatar AL Mulla

    2017-09-01

    Full Text Available The reactions of ozone with 2,3-Dimethyl-2-Butene (CH32C=C(CH32 and 1,3-Butadiene CH2=CHCH=CH2 have been investigated under atmospheric conditions at 298±3K in air using both relative and absolute rate techniques, and the measured rate coefficients are found to be in good agreement in both techniques used. The obtained results show the addition of ozone to the double bond in these compounds and how it acts as function of the methyl group substituent situated on the double bond. The yields of all the main products have been determined using FTIR and GC-FID and the product studies of these reactions establish a very good idea for the decomposition pathways for the primary formed compounds (ozonides and give a good information for the effect of the methyl group on the degradation pathways. The results have been discussed from the view point of their importance in the atmospheric oxidation of these pollutants.

  4. Rhodium/Silver-Cocatalyzed Transannulation of N-Sulfonyl-1,2,3-triazoles with Vinyl Azides: Divergent Synthesis of Pyrroles and 2 H-Pyrazines.

    Science.gov (United States)

    Zhang, Lin; Sun, Ge; Bi, Xihe

    2016-11-07

    The first cyclization reaction between vinyl azides and N-sulfonyl-1,2,3-triazoles is reported. A Rh/Ag binary metal catalyst system proved to be necessary for the successful cyclization. By varying the structure of vinyl azides, such reaction allows the divergent synthesis of pyrroles and 2H-pyrazines. The cyclization reactions feature a broad substrate scope, good functional group tolerance, high reaction efficiency, and good to high product yields. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers

    Science.gov (United States)

    Gao, Yisheng; Wang, Shuai; Huang, Can; Yi, Ningbo; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2017-03-01

    Hybrid lead halide perovskites have made great strides in next-generation light-harvesting and light emitting devices. Recently, they have also shown great potentials in nonlinear optical materials. Two-photon absorption and two-photon light emission have been thoroughly studied in past two years. However, the three-photon processes are rarely explored, especially for the laser emissions. Here we synthesized high quality CH3NH3PbBr3 perovskite microstructures with solution processed precipitation method and studied their optical properties. When the microstructures are pumped with intense 1240 nm lasers, we have observed clear optical limit effect and the band-to-band photoluminescence at 540 nm. By increasing the pumping density, whispering-gallery-mode based microlasers have been achieved from CH3NH3PbBr3 perovskite microplate and microrod for the first time. This work demonstrates the potentials of hybrid lead halide perovskites in nonlinear photonic devices.

  6. Synthesis of two S-(methyl-3H)-labelled enkephalins and S-(methyl-14C) substance P

    International Nuclear Information System (INIS)

    Naegren, K.; Laangstroem, B.; Franzen, H.M.; Ragnarsson, U.

    1988-01-01

    The synthesis of 3 H-labelled Met-enkephalin and Tyr-D-Ala-Gly-Phe-Met-NH 2 (DALA) and 14 C-labelled Substance P (SP) from previously described, fully protected intermediates is reported. The labelled peptides were prepared by methylation with ( 3 H)- or ( 14 C)methyl iodide of the sulphide anions formed on deprotection of the corresponding S-benzyl-homocysteine precursors with sodium in liquid ammonia. After purification by LC, the labelled peptides were obtained in radiochemical yields in the range of 9 to 24% with a radiochemical purity higher than 97%. The specific radioactivities of the 3 H- and 14 C- labelled products, corresponding to the labelled methyl iodides used, were 80 mCi/μmol and 60 μCi/μmol, respectively. (author)

  7. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1.

    Science.gov (United States)

    Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B

    2016-09-06

    The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance.

  8. A computational study of the addition of ReO3L (L = Cl(-), CH3, OCH3 and Cp) to ethenone.

    Science.gov (United States)

    Aniagyei, Albert; Tia, Richard; Adei, Evans

    2016-01-01

    The periselectivity and chemoselectivity of the addition of transition metal oxides of the type ReO3L (L = Cl, CH3, OCH3 and Cp) to ethenone have been explored at the MO6 and B3LYP/LACVP* levels of theory. The activation barriers and reaction energies for the stepwise and concerted addition pathways involving multiple spin states have been computed. In the reaction of ReO3L (L = Cl(-), OCH3, CH3 and Cp) with ethenone, the concerted [2 + 2] addition of the metal oxide across the C=C and C=O double bond to form either metalla-2-oxetane-3-one or metalla-2,4-dioxolane is the most kinetically favored over the formation of metalla-2,5-dioxolane-3-one from the direct [3 + 2] addition pathway. The trends in activation and reaction energies for the formation of metalla-2-oxetane-3-one and metalla-2,4-dioxolane are Cp Cp Cp Cp Cp. The direct [2 + 2] addition pathways leading to the formations of metalla-2-oxetane-3-one and metalla-2,4-dioxolane is thermodynamically the most favored for the ligands L = OCH3 and Cl(-). The difference between the calculated [2 + 2] activation barriers for the addition of the metal oxide LReO3 across the C=C and C=O functionalities of ethenone are small except for the case of L = Cl(-) and OCH3. The rearrangement of the metalla-2-oxetane-3-one-metalla-2,5-dioxolane-3-one even though feasible, are unfavorable due to high activation energies of their rate-determining steps. For the rearrangement of the metalla-2-oxetane-3-one to metalla-2,5-dioxolane-3-one, the trends in activation barriers is found to follow the order OCH3 Cp. The trends in the activation energies for the most favorable [2 + 2] addition pathways for the LReO3-ethenone system is CH3 > CH3O(-) > Cl(-) > Cp. For the analogous ethylene-LReO3 system, the trends in activation and reaction energies for the most favorable [3 + 2] addition pathway is CH3 > CH3O(-) > Cl(-) > Cp [10]. Even though the most favored pathway in the ethylene-LReO3 system is

  9. Radiation fixation of vinyl chloride in an insecticide aerosol container

    International Nuclear Information System (INIS)

    Kagiya, V.T.; Takemoto, K.

    1975-01-01

    Recently, a large quantity of vinyl chloride has been used as spraying additive for insecticide aerosols. Since January 1974 when the Food and Drug Administration of the United States of America announced that vinyl chloride causes liver cancer, it has been forbidden in Japan and the United States of America to market insecticide aerosol containers containing vinyl chloride. In Japan, following a government order, about 20 million insecticide aerosol containers have been collected and put into storage. A report is given on the radiation fixation of vinyl chloride as polyvinylchloride powder by gamma-ray-induced polymerization in the aerosol container. Insecticide aerosol containers containing vinyl chloride were irradiated by gamma rays from 60 Co at room temperature. Vinyl chloride polymerized to form powdered polymer in the container. Polymerization conversion increased with the irradiation dose, and after 10 Mrad irradiation, vinyl chloride was not found in the sprayed gas. This establishes that vinyl chloride can be fixed by gamma-ray irradiation in the aerosol container. To accelerate the reaction rate, the effect of various additives on the reaction was investigated. It was found that halogenated hydrocarbons, such as chloroform and carbon tetrachloride, accelerated the initiation of the polymerization, and that a vinyl monomer such as vinyl acetate accelerated the reaction rate due to the promotion of the initiation and the high reactivity of the polyvinylacetate radical to vinyl chloride. Consequently, the required irradiation dose for the fixation of vinyl chloride was decreased to less than 5 Mrad by the addition of various kinds of additives. Following the request of the Ministry of Public Welfare, various technical problems for large-scale treatment are being studied with the co-operation of the Federation of Insecticide Aerosols. (author)

  10. Methyl 3-[3',4'-(methylenedioxy)phenyl]-2-methyl glycidate: an ecstasy precursor seized in Sydney, Australia.

    Science.gov (United States)

    Collins, Michael; Heagney, Aaron; Cordaro, Frank; Odgers, David; Tarrant, Gregory; Stewart, Samantha

    2007-07-01

    Five 44 gallon drums labeled as glycidyl methacrylate were seized by the Australian Customs Service and the Australian Federal Police at Port Botany, Sydney, Australia, in December 2004. Each drum contained a white, semisolid substance that was initially suspected to be 3,4-methylenedioxymethylamphetamine (MDMA). Gas chromatography-mass spectroscopy (GC/MS) analysis demonstrated that the material was neither glycidyl methacrylate nor MDMA. Because intelligence sources employed by federal agents indicated that this material was in some way connected to MDMA production, suspicion fell on the various MDMA precursor chemicals. Using a number of techniques including proton nuclear magnetic resonance spectroscopy ((1)H NMR), carbon nuclear magnetic resonance spectroscopy ((13)C NMR), GC/MS, infrared spectroscopy, and total synthesis, the unknown substance was eventually identified as methyl 3-[3',4'(methylenedioxy)phenyl]-2-methyl glycidate. The substance was also subjected to a published hydrolysis and decarboxylation procedure and gave a high yield of the MDMA precursor chemical, 3,4-methylenedioxyphenyl-2-propanone, thereby establishing this material as a "precursor to a precursor."

  11. Intermolecular interactions involving C-H bonds, 3, Structure and energetics of the interaction between CH{sub 4} and CN{sup {minus}}

    Energy Technology Data Exchange (ETDEWEB)

    Novoa, J.J.; Whangbo, Myung-Hwan [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemistry; Williams, J.M. [Argonne National Lab., IL (United States)

    1991-12-31

    On the basis of SCF and single reference MP2 calculations, the full potential energy surface of the interaction between CH{sub 4} and CN{sup {minus}} was studied using extended basis sets of up to near Hartree-Fock limit quality. Colinear arrangements C-N{sup {minus}}{hor_ellipsis}H-CH{sub 3} and N-C{sup {minus}}{hor_ellipsis}H-CH{sub 3} are found to be the only two energy minima. The binding energies of these two structures are calculated to be 2.5 and 2.1 kcal/mol, respectively, at the MP2 level. The full vibrational analyses of two structures show a red shift of about 30 cm{sup {minus}1} for the v{sub s} C-H stretching.

  12. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polymer modifiers in semirigid and rigid vinyl...: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3790 Polymer modifiers in semirigid and rigid vinyl chloride plastics. The polymers identified in paragraph (a) of this...

  13. Relative rate study of the kinetic isotope effect in the 13CH3D + Cl reaction

    DEFF Research Database (Denmark)

    Joelsson, Lars Magnus Torvald; Forecast, Roslyn; Schmidt, Johan Albrecht

    2014-01-01

    The 13CH3D/12CH4kinetic isotope effect, α13CH3D, of CH4 + Cl is determined for the first time, using the relative rate technique and Fourier transform infrared (FTIR) spectroscopy. α13CH3D is found to be 1.60 ± 0.04. In addition, a quantum chemistry/transition state theory model with tunneling...

  14. Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass

    DEFF Research Database (Denmark)

    Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid

    2018-01-01

    . In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4......Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride...... in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale....

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2007-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2006-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2005-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2004-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2008-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  1. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-05-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-01-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2004-10-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-03-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  13. CH-TRU Waste Content Codes (CH TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2004-12-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-11-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-12-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-01-30

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  19. Quantum Dynamics Study of the Isotopic Effect on Capture Reactions: HD, D2 + CH3

    Science.gov (United States)

    Wang, Dunyou; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Time-dependent wave-packet-propagation calculations are reported for the isotopic reactions, HD + CH3 and D2 + CH3, in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probabilities for different initial rotational-vibrational states are presented in this study. This study shows that excitations of the HD(D2) enhances the reactivities; whereas the excitations of the CH3 umbrella mode have the opposite effects. This is consistent with the reaction of H2 + CH3. The comparison of these three isotopic reactions also shows the isotopic effects in the initial-state-selected reaction probabilities. The cumulative reaction probabilities (CRP) are obtained by summing over initial-state-selected reaction probabilities. The energy-shift approximation to account for the contribution of degrees of freedom missing in the six dimensionality calculation is employed to obtain approximate full-dimensional CRPs. The rate constant comparison shows H2 + CH3 reaction has the biggest reactivity, then HD + CH3, and D2 + CH3 has the smallest.

  20. Effects of CsBr addition on the performance of CH3NH3PbI3-xClx-based solar cells

    Science.gov (United States)

    Ueoka, Naoki; Oku, Takeo; Ohishi, Yuya; Tanaka, Hiroki; Suzuki, Atsushi; Sakamoto, Hiroki; Yamada, Masahiro; Minami, Satoshi; Tsukada, Shinichiro

    2018-01-01

    Perovskite-type photovoltaic devices were prepared by a spin-coating method using a precursor solution of CH3NH3I and lead(II) chloride in N,N-dimethylformamide. Effects of cesium bromide (CsBr) addition on the photovoltaic properties and microstructures of the perovskite phase were investigated. The fill factor was increased by adding the CsBr to the CH3NH3PbI3-xClx precursor solution, which resulted in increase of the conversion efficiency. The crystallinity of the CH3NH3PbI3-xClx perovskite phase was also improved by adding the CsBr to the H3NH3PbI3-xClx precursor solution.

  1. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation

    International Nuclear Information System (INIS)

    Zhou Xue; Li Qin; Arita, Adriana; Sun Hong; Costa, Max

    2009-01-01

    Occupational exposure to nickel (Ni), chromium (Cr), and arsenic (As) containing compounds has been associated with lung cancer and other adverse health effects. Their carcinogenic properties may be attributable in part, to activation and/or repression of gene expression induced by changes in the DNA methylation status and histone tail post-translational modifications. Here we show that individual treatment with nickel, chromate, and arsenite all affect the gene activating mark H3K4 methylation. We found that nickel (1 mM), chromate (10 μM), and arsenite (1 μM) significantly increase tri-methyl H3K4 after 24 h exposure in human lung carcinoma A549 cells. Seven days of exposure to lower levels of nickel (50 and 100 μM), chromate (0.5 and 1 μM) or arsenite (0.1, 0.5 and 1 μM) also increased tri-methylated H3K4 in A549 cells. This mark still remained elevated and inherited through cell division 7 days following removal of 1 μM arsenite. We also demonstrate by dual staining immunofluorescence microscopy that both H3K4 tri-methyl and H3K9 di-methyl marks increase globally after 24 h exposure to each metal treatment in A549 cells. However, the tri-methyl H3K4 and di-methyl H3K9 marks localize in different regions in the nucleus of the cell. Thus, our study provides further evidence that a mechanism(s) of carcinogenicity of nickel, chromate, and arsenite metal compounds may involve alterations of various histone tail modifications that may in turn affect the expression of genes that may cause transformation

  2. Surface study of platinum decorated graphene towards adsorption of NH_3 and CH_4

    International Nuclear Information System (INIS)

    Rad, Ali Shokuhi; Pazoki, Hossein; Mohseni, Soheil; Zareyee, Daryoush; Peyravi, Majid

    2016-01-01

    To distinguish the potential of graphene sensors, there is a need to recognize the interaction between graphene sheet and adsorbing molecules. We used density functional theory (DFT) calculations to study the properties of pristine as well as Pt-decorated graphene sheet upon adsorption of NH_3 and CH_4 on its surface to exploit its potential to be as gas sensors for them. We found much higher adsorption, higher charge transfer, lower intermolecular distance, and higher orbital hybridizing upon adsorption of NH_3 and CH_4 gas molecules on Pt-decorated graphene compared to pristine graphene. Also our calculations reveal that the adsorption energies on Pt-decorated graphene sheet are in order of NH_3 >CH_4 which could be corresponded to the order of their sensitivity on this modified surface. We used orbital analysis including density of states as well as frontier molecular orbital study for all analyte-surface systems to more understanding the kind of interaction (physisorption or chemisorption). Consequently, the Pt-decorated graphene can transform the existence of NH_3 and CH_4 molecules into electrical signal and it may be potentially used as an ideal sensor for detection of NH_3 and CH_4 in ambient situation. - Highlights: • Pt-decorated graphene was investigated as an adsorbent for NH_3 and CH_4. • Much higher adsorption of NH_3 and CH_4 on Pt-decorated graphene than pristine graphene. • Higher adsorption of NH_3 compared to CH_4 on Pt-decorated graphene. • Pt influences the electronic structure of graphene.

  3. Clinical Significance of IGFBP-3 Methylation in Patients with Early Stage Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Seung Tae Kim

    2015-08-01

    Full Text Available BACKGROUND: IGFBP-3 is a multifunctional protein that inhibits growth and induces apoptosis of cancer cells. Hypermethylation of the promoter represses expression of the IGFBP-3 gene. We undertook this study to assess the impact of IGFBP-3 methylation on survival of early stage gastric cancer patients. METHODS: Of the 482 tissue samples from gastric cancer patients who underwent curative surgery, IGFBP-3 methylation was tested in 138 patients with stage IB/II gastric cancer. We also analyzed IGFBP-3 methylation in 26 gastric cancer cell lines. IGFBP-3 methylation was evaluated by methylation-specific polymerase chain reaction (MethyLight. Statistical analyses, all two-sided, were performed to investigate the prognostic effects of methylation status of the IGFBP-3 promoter on various clinical parameters. RESULTS: Hypermethylation of IGFBP-3 was observed in 26 (19% of the 138 stage IB/II gastric cancer patients. Clinicopathological factors such as age, Lauren classification, sex, tumor infiltration, lymph node metastasis, and histologic grade did not show a statistically significant association with the methylation status of the IGFBP-3 promoter. Patients with a hypermethylated IGFBP-3 promoter had similar 8-year disease-free survival compared with those without a hypermethylated IGFBP-3 promoter (73% vs 75%, P = .78. In subgroup analyses, females, but not males, seemed to have poorer prognosis for DFS and OS in the subset of patients with IGFBP-3 methylation as compared with those without IGFBP-3 methylation (8-year DFS: 55.6% vs 71.6%, P = .3694 and 8-year overall survival: 55.6% vs 68.4%, P = .491, respectively even with no statistical significance. CONCLUSIONS: The status of IGFBP-3 methylation as measured by methylation-specific polymerase chain reaction proposed the modest role for predicting survival in specific subgroups of patients with early-stage gastric cancer who undergo curative surgery. However, this needs further investigation.

  4. Measuring the Distribution and Excitation of Cometary CH3OH Using ALMA

    Science.gov (United States)

    Cordiner, M. A.; Charnley, S. B.; Mumma, M. J.; Bockelée-Morvan, D.; Biver, N.; Villanueva, G.; Paganini, L.; Milam, S. N.; Remijan, A. J.; Lis, D. C.; Crovisier, J.; Boissier, J.; Kuan, Y.-J.; Coulson, I. M.

    2016-10-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) was used to obtain measurements of spatially and spectrally resolved CH3OH emission from comet C/2012 K1 (PanSTARRS) on 28-29 June 2014. Detection of 12-14 emission lines of CH3OH on each day permitted the derivation of spatially-resolved rotational temperature profiles (averaged along the line of sight), for the innermost 5000 km of the coma. On each day, the CH3OH distribution was centrally peaked and approximately consistent with spherically symmetric, uniform outflow. The azimuthally-averaged CH3OH rotational temperature (T rot) as a function of sky-projected nucleocentric distance (ρ), fell by about 40 K between ρ= 0 and 2500 km on 28 June, whereas on 29 June, T rot fell by about 50 K between ρ =0 km and 1500 km. A remarkable (~50 K) rise in T rot at ρ = 1500-2500 km on 29 June was not present on 28 June. The observed variations in CH3OH rotational temperature are interpreted primarily as a result of variations in the coma kinetic temperature due to adiabatic cooling, and heating through Solar irradiation, but collisional and radiative non-LTE excitation processes also play a role.

  5. Rate constant for the reaction of OH with CH3CCl2F (HCFC-141b) determined by relative rate measurements with CH4 and CH3CCl3

    Science.gov (United States)

    Huder, Karin; Demore, William B.

    1993-01-01

    Determination of accurate rate constants for OH abstraction is of great importance for the calculation of lifetimes for HCFCs and their impact on the atmosphere. For HCFC-141b there has been some disagreement in the literature for absolute measurements of this rate constant. In the present work rate constant ratios for HCFC-141b were measured at atmospheric pressure in the temperature range of 298-358 K, with CH4 and CH3CCl3 as reference gases. Ozone was photolyzed at 254 nm in the presence of water vapor to produce OH radicals. Relative depletions of 141b and the reference gases were measured by FTIR. Arrhenius expressions for 141b were derived from each reference gas and found to be in good agreement with each other. The combined expression for HCFC-141b which we recommend is 1.4 x 10 exp -12 exp(-1630/T) with k at 298 K being 5.9 x 10 exp -15 cu cm/molec-s. This value is in excellent agreement with the JPL 92-20 recommendation.

  6. Methylation of Mercury in Earthworms and the Effect of Mercury on the Associated Bacterial Communities

    OpenAIRE

    Rieder, Stephan Raphael; Brunner, Ivano; Daniel, Otto; Liu, Bian; Frey, Beat

    2013-01-01

    Methylmercury compounds are very toxic for most organisms. Here, we investigated the potential of earthworms to methylate inorganic-Hg. We hypothesized that the anaerobic and nutrient-rich conditions in the digestive tracts of earthworm's promote the methylation of Hg through the action of their gut bacteria. Earthworms were either grown in sterile soils treated with an inorganic (HgCl2) or organic (CH3HgCl) Hg source, or were left untreated. After 30 days of incubation, the total-Hg and meth...

  7. Dissociation of metastable CH3CO radicals studied by time-resolved photofragment imaging

    Science.gov (United States)

    Suzuki, Toshinori; Shibata, Takeshi; Li, Haiyang

    1998-05-01

    A novel experimental technique to measure the energy- dependent unimolecular dissociation rate k(E) of radical species is presented. Internally excited CH3CO radicals were formed by ultraviolet photodissociation of CH3COCl, and the subsequent decay of these radicals was detected by subpicosecond time-clocked photofragment imaging. The CH3CO radicals with different internal energies were dispersed in space by their recoil velocities, and their decay rates were measured for each internal energy.

  8. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Li Jiaxin; Waters, Stephen B.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav; Thomas, David J.

    2005-01-01

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  9. Sorption of water vapor in partially hydrolyzed poly(vinyl acetate)

    International Nuclear Information System (INIS)

    Spencer, H.G.; Honeycutt, S.C.

    1973-01-01

    The sorption kinetics of H 2 O and D 2 O in copolymers of partially hydrolyzed poly(vinyl acetate) were studied and compared with the sorption kinetics of vinyl acetate--vinyl alcohol copolymers, and poly(vinyl alcohol). The special measurement problems presented by transient-state sorption studies in water vapor--polymer systems and their effects on the results are discussed

  10. Vinyl acetate polymerization by ionizing radiation

    International Nuclear Information System (INIS)

    Mesquita, Andrea Cercan

    2002-01-01

    The aim of this work is the synthesis and characterization of the poly(vinyl acetate) using the ionizing radiation. Six polymerizations of vinyl acetate were carried out using three techniques of polymerization: in bulk, emulsion and solution. In the technique of solution polymerization were used two solvents, the alcohol ethyl and the methylethylketone, in two proportions 1:0.5 and 1:1 related to the monomer. The solutions were irradiated with gamma rays from a 60 Co source, with dose rate between 5.25 kGy/h and 6.26 kGy/h. The polymers obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The glass transition temperature (Tg) was investigated by Differential Scanning Calorimeter (DSC). The molecular weight was analyzed by the technique of Gel Permeation Chromatography (GPC). Tests of density, hardness and Vicat softening temperature were carried out. The infrared spectroscopy and others results confirmed that the polymers obtained by polymerization of vinyl acetate in bulk, emulsion and solution, using ionizing radiation, really correspond at poly(vinyl acetate). (author)

  11. Radiochromic film containing methyl viologen for radiation dosimetry

    DEFF Research Database (Denmark)

    Lavalle, M.; Corda, U.; Fuochi, P.G.

    2007-01-01

    Poly(vinyl alcohol) (PVA) films containing methyl viologen (MV2+) that colours blue upon exposure to ionizing radiation were investigated as possible dosimeters for use in radiation processing applications. In order to find the most suitable composition of the PVA-MV2+ film, different......, humidity and temperature on the response of the PVA-MV2+ dosimeter film have been studied under laboratory conditions. We conclude that the PVA film containing MV2+ is a promising tool for the absorbed dose measurements in several industrial applications of ionizing radiations. (C) 2007 Elsevier Ltd. All...

  12. Role of d and f orbitals in the geometries of low-valent actinide compounds. Ab initio studies of U(CH3)3, Np(CH3)3, and Pu(CH3)3

    International Nuclear Information System (INIS)

    Ortiz, J.V.; Hay, P.J.; Martin, R.L.

    1992-01-01

    While organoactinide compounds are traditionally characterized by high oxidation states and coordination numbers, the synthesis, chemistry, and electronic properties of low-valent actinide complexes have been receiving greater attention in recent years. Specific examples of complexes in the AnL family are represented by U[N(SiMe 3 ) 2 ] 3 , U[CH(SiMe 3 ) 2 ] 3 , and Np and Pu analogues, for which cases the ligands adopt a pyramidal arrangement around the actinide. In this communication, the authors report the results of one of the first studies of such low-valent complexes to be carried out using ab initio electronic structure techniques. Related molecules include lanthanide species of the form LnX 3 , which also adopt pyramidal geometries and which have been the subject of semi-empirical theoretical investigations. Transition metal MX 3 species, by contrast, can exhibit either planar or pyramidal forms, depending on the nature of the metal and the ligand. 12 refs., 1 fig., 1 tab

  13. Optical Reading and Playing of Sound Signals from Vinyl Records

    OpenAIRE

    Hensman, Arnold; Casey, Kevin

    2007-01-01

    While advanced digital music systems such as compact disk players and MP3 have become the standard in sound reproduction technology, critics claim that conversion to digital often results in a loss of sound quality and richness. For this reason, vinyl records remain the medium of choice for many audiophiles involved in specialist areas. The waveform cut into a vinyl record is an exact replica of the analogue version from the original source. However, while some perceive this media as reproduc...

  14. [6-chloro-3-pyridylmethyl-{sup 3}H]neonicotinoids as high-affinity radioligands for the nicotinic acetylcholine receptor: preparation using NaB{sup 3}H{sub 4} and LiB{sup 3}H{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Latli, Bachir; Casida, J.E. [California Univ., Berkeley, CA (United States). Dept. of Environmental Science Policy and Management; Chit Than; Morimoto, Hiromi; Williams, P.G. [Lawrence Berkeley National Lab., CA (United States)

    1996-11-01

    NaB{sup 3}H{sub 4} and LiB{sup 3}H{sub 4} at 78% and 97% isotopic enrichments, respectively, were used in the synthesis of {sup 3}H-labeled 1-(6-chloro-3-pyridyl)-methyl-2-nitromethyleneimidazolidine (CH-IMI) and N`-[(6-chloro-3-pyridyl)methyl]-n``-cyano-n`-methylacetamidine (acetamiprid) (two very potent insecticides) and of 1-(6-chloro-3-pyridyl)methyl-2-iminoimidazolidine (desnitro-IMI) (a metabolite of the commercial insecticides imidacloprid). 6-Chloronicotinoyl chloride was treated with either NaB{sup 3}H{sub 4} in methanol or LiB{sup 3}H{sub 4} in tetrahydrofuran and the resulting alcohol transformed to 2-chloro-5-chloromethylpyridine, which was then coupled to N-cyano-N`-methylacetamidine to give [{sup 3}H] acetamiprid (45 Ci/mmol). 2-Chloro-5-chloro[{sup 3}H]methylpyridine was also reacted with ethylenediamine and the product was either refluxed in absolute ethanol with 1,1-bis(methylthio)-2-nitro-ethylene to provide [{sup 3}H]CH-IMI or reacted in toluene with a solution of cyanogen bromide to produce [{sup 3}H] desnitro-IMI (each 55 Ci/mmol). (author).

  15. Synthesis and luminescence properties of tris(bipyridine)ruthenium(II)-containing vinyl polymers

    International Nuclear Information System (INIS)

    Furue, Masaoki; Sumi, Katsuhiro; Nozakura, Shun-ichi

    1981-01-01

    The luminescence properties of poly[Ru(bpy) 2 (6-vinyl-bpy)-co-6-vinyl-bpy], (I) were compared with those of Ru(bpy) 3 2+ at 77 - 298 K. A larger depletion of luminescence intensity and lifetime was observed in I in fluid solution. The dynamic quenching processes were suggested to be the dominant factor for the energy dissipation in I. (author)

  16. Hydrotelluration of alkynes: a unique route to Z-vinyl organometallics

    Directory of Open Access Journals (Sweden)

    Vieira Maurício L.

    2001-01-01

    Full Text Available The hydrotelluration reaction of alkynes is reviewed. The transformation of vinylic tellurides into reactive vinyl organometallics and the coupling reactions of vinylic tellurides with alkynes and organometallics are presented.

  17. Fabrication and EMI shielding effectiveness of Ag-decorated highly porous poly(vinyl alcohol)/Fe2O3 nanofibrous composites

    International Nuclear Information System (INIS)

    Kim, Hae-Rim; Kim, Byoung-Suhk; Kim, Ick-Soo

    2012-01-01

    The Ag-decorated poly(vinyl alcohol) (PVA) composite nanofibrous webs incorporating Fe 2 O 3 nanoparticles were fabricated by electrospinning and metal-deposition methods for electromagnetic interference (EMI) shielding applications. The Ag-decorated PVA/Fe 2 O 3 composite nanofiber webs with various Ag thicknesses and different amounts of Fe 2 O 3 nanoparticles were prepared and used for EMI shielding measurement. For the EMI SE measurement, a near-field antenna measurement system was used. The measurement of EMI SE was carried out at the frequency range from 0.5 to 18 GHz, and the electromagnetic parameters were measured. The morphologies and microstructures of the resultant PVA/Fe 2 O 3 composite nanofiber webs were characterized using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM), respectively. The effects of surface morphologies and Fe 2 O 3 nanoparticles on the EMI shielding effectiveness of Ag-decorated PVA/Fe 2 O 3 composite nanofiber webs were investigated. -- Highlights: ► We prepare Ag-decorated poly(vinyl alcohol) nanowebs incorporating Fe 2 O 3 nanoparticles. ► Solvents will affect the fiber morphologies and Fe 2 O 3 nanoparticles dispersion. ► EMI shielding effectiveness depends on the metal thickness and Fe 2 O 3 nanoparticles dispersion.

  18. An optimized protocol for isolating primary epithelial cell chromatin for ChIP.

    Directory of Open Access Journals (Sweden)

    James A Browne

    Full Text Available A critical part of generating robust chromatin immunoprecipitation (ChIP data is the optimization of chromatin purification and size selection. This is particularly important when ChIP is combined with next-generation sequencing (ChIP-seq to identify targets of DNA-binding proteins, genome-wide. Current protocols refined by the ENCODE consortium generally use a two-step cell lysis procedure that is applicable to a wide variety of cell types. However, the isolation and size selection of chromatin from primary human epithelial cells may often be particularly challenging. These cells tend to form sheets of formaldehyde cross-linked material in which cells are resistant to membrane lysis, nuclei are not released and subsequent sonication produces extensive high molecular weight contamination. Here we describe an optimized protocol to prepare high quality ChIP-grade chromatin from primary human bronchial epithelial cells. The ENCODE protocol was used as a starting point to which we added the following key steps to separate the sheets of formaldehyde-fixed cells prior to lysis. (1 Incubation of the formaldehyde-fixed adherent cells in Trypsin-EDTA (0.25% room temperature for no longer than 5 min. (2 Equilibration of the fixed cells in detergent-free lysis buffers prior to each lysis step. (3 The addition of 0.5% Triton X-100 to the complete cell membrane lysis buffer. (4 Passing the cell suspension (in complete cell membrane lysis buffer through a 25-gauge needle followed by continuous agitation on ice for 35 min. Each step of the modified protocol was documented by light microscopy using the Methyl Green-Pyronin dual dye, which stains cytoplasm red (Pyronin and the nuclei grey-blue (Methyl green. This modified method is reproducibly effective at producing high quality sheared chromatin for ChIP and is equally applicable to other epithelial cell types.

  19. Improvement of CH3NH3PbI3 thin film using the additive 1,8-diiodooctane for planar heterojunction perovskite cells

    Science.gov (United States)

    Abdulrahman, Solh; Wang, Chunhua; Cao, Chenghao; Zhang, Chujun; Yang, Junliang; Jiang, Li

    2017-10-01

    The thin-film quality is critical for obtaining high-performance perovskite solar cells (PSCs). The additive 1,8-diiodooctane (DIO) was used to control the morphology and structure of CH3NH3PbI3 perovskite thin films, and planar heterojunction (PHJ) PSCs with an architecture of ITO/PEDOT: PSS/CH3NH3PbI3/PCBM/Al was fabricated. It was found that the DIO played an important role on CH3NH3PbI3 thin-film quality and the performance of PHJ-PSCs. With the optimal volume ratio of 2%, the compact and uniform high-quality CH3NH3PbI3 thin films with enhanced crystallinity and less roughness were achieved, resulting in the great improvement of power conversion efficiency (PCE) from about 4.5% to over 9.0%. The research results indicate that the additive DIO is a simple and effective method to produce high-quality perovskite thin film and accordingly develop high-performance PHJ-PSCs.

  20. First principles investigation of half-metallicity and spin gapless semiconductor in CH3NH3Cr x Pb1- x I3 mixed perovskites

    Science.gov (United States)

    Huang, H. M.; Zhu, Z. W.; Zhang, C. K.; He, Z. D.; Luo, S. J.

    2018-04-01

    The structural, electronic and magnetic properties of organic-inorganic hybrid mixed perovskites CH3NH3Cr x Pb1- x I3 ( x = 0.25, 0.50, 0.75, 1.00) in cubic, tetragonal and orthorhombic phases have been investigated by first-principles calculation. The results indicate that the tetragonal CH3NH3Cr0.75Pb0.25I3 is a spin gapless semiconductor with Curie temperature of 663 K estimated using mean field approximation. All other CH3NH3Cr x Pb1- x I3 mixed perovskites are half-metallic ferromagnets together with 100% spin polarization, and their total magnetic moment are 4.00, 8.00, 12.00 and 16.00 µB per unit cell for x = 0.25, 0.50, 0.75 and 1.00, respectively. The effect of , and orientation of organic cation CH3NH3 + on the electronic properties of CH3NH3Cr0.50Pb0.50I3 was investigated. The results show that the CH3NH3 + in different orientations have a slight effect on the lattice constants, the energy gap in minority-spin states, half-metallic gap, local magnetic moment, and Curie temperature.