Mathematical models and methods for planet Earth
Locatelli, Ugo; Ruggeri, Tommaso; Strickland, Elisabetta
2014-01-01
In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earth”, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.
Mathematical methods and models in composites
Mantic, Vladislav
2014-01-01
This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics cover
Akgün, Levent
2015-01-01
The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…
Mathematical Models and Methods for Living Systems
Chaplain, Mark; Pugliese, Andrea
2016-01-01
The aim of these lecture notes is to give an introduction to several mathematical models and methods that can be used to describe the behaviour of living systems. This emerging field of application intrinsically requires the handling of phenomena occurring at different spatial scales and hence the use of multiscale methods. Modelling and simulating the mechanisms that cells use to move, self-organise and develop in tissues is not only fundamental to an understanding of embryonic development, but is also relevant in tissue engineering and in other environmental and industrial processes involving the growth and homeostasis of biological systems. Growth and organization processes are also important in many tissue degeneration and regeneration processes, such as tumour growth, tissue vascularization, heart and muscle functionality, and cardio-vascular diseases.
Introduction to mathematical models and methods
Energy Technology Data Exchange (ETDEWEB)
Siddiqi, A. H.; Manchanda, P. [Gautam Budha University, Gautam Budh Nagar-201310 (India); Department of Mathematics, Guru Nanak Dev University, Amritsar (India)
2012-07-17
Some well known mathematical models in the form of partial differential equations representing real world systems are introduced along with fundamental concepts of Image Processing. Notions such as seismic texture, seismic attributes, core data, well logging, seismic tomography and reservoirs simulation are discussed.
Laser filamentation mathematical methods and models
Lorin, Emmanuel; Moloney, Jerome
2016-01-01
This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...
Methods and models in mathematical biology deterministic and stochastic approaches
Müller, Johannes
2015-01-01
This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.
Methods of mathematical modelling continuous systems and differential equations
Witelski, Thomas
2015-01-01
This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.
2016-01-01
This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.
Eck, Christof; Knabner, Peter
2017-01-01
Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.
Direct numerical methods of mathematical modeling in mechanical structural design
International Nuclear Information System (INIS)
Sahili, Jihad; Verchery, Georges; Ghaddar, Ahmad; Zoaeter, Mohamed
2002-01-01
Full text.Structural design and numerical methods are generally interactive; requiring optimization procedures as the structure is analyzed. This analysis leads to define some mathematical terms, as the stiffness matrix, which are resulting from the modeling and then used in numerical techniques during the dimensioning procedure. These techniques and many others involve the calculation of the generalized inverse of the stiffness matrix, called also the 'compliance matrix'. The aim of this paper is to introduce first, some different existing mathematical procedures, used to calculate the compliance matrix from the stiffness matrix, then apply direct numerical methods to solve the obtained system with the lowest computational time, and to compare the obtained results. The results show a big difference of the computational time between the different procedures
Computational mathematics models, methods, and analysis with Matlab and MPI
White, Robert E
2004-01-01
Computational Mathematics: Models, Methods, and Analysis with MATLAB and MPI explores and illustrates this process. Each section of the first six chapters is motivated by a specific application. The author applies a model, selects a numerical method, implements computer simulations, and assesses the ensuing results. These chapters include an abundance of MATLAB code. By studying the code instead of using it as a "black box, " you take the first step toward more sophisticated numerical modeling. The last four chapters focus on multiprocessing algorithms implemented using message passing interface (MPI). These chapters include Fortran 9x codes that illustrate the basic MPI subroutines and revisit the applications of the previous chapters from a parallel implementation perspective. All of the codes are available for download from www4.ncsu.edu./~white.This book is not just about math, not just about computing, and not just about applications, but about all three--in other words, computational science. Whether us...
DEFF Research Database (Denmark)
Blomhøj, Morten
2004-01-01
Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...
The Interval Market Model in Mathematical Finance : Game Theoretic Methods
Bernhard, P.; Engwerda, J.C.; Roorda, B.; Schumacher, J.M.; Kolokoltsov, V.; Saint-Pierre, P.; Aubin, J.P.
2013-01-01
Toward the late 1990s, several research groups independently began developing new, related theories in mathematical finance. These theories did away with the standard stochastic geometric diffusion “Samuelson” market model (also known as the Black-Scholes model because it is used in that most famous
Methods of mathematical modeling using polynomials of algebra of sets
Kazanskiy, Alexandr; Kochetkov, Ivan
2018-03-01
The article deals with the construction of discrete mathematical models for solving applied problems arising from the operation of building structures. Security issues in modern high-rise buildings are extremely serious and relevant, and there is no doubt that interest in them will only increase. The territory of the building is divided into zones for which it is necessary to observe. Zones can overlap and have different priorities. Such situations can be described using formulas algebra of sets. Formulas can be programmed, which makes it possible to work with them using computer models.
Using the Scientific Method to Engage Mathematical Modeling: An Investigation of pi
Archer, Lester A. C.; Ng, Karen E.
2016-01-01
The purpose of this paper is to explain how to use the scientific method as the framework to introduce mathematical model. Two interdisciplinary activities, targeted for students in grade 6 or grade 7, are explained to show the application of the scientific method while building a mathematical model to investigate the relationship between the…
Mathematic modeling of the method of measurement relative dielectric permeability
Plotnikova, I. V.; Chicherina, N. V.; Stepanov, A. B.
2018-05-01
The method of measuring relative permittivity’s and the position of the interface between layers of a liquid medium is considered in the article. An electric capacitor is a system consisting of two conductors that are separated by a dielectric layer. It is mathematically proven that at any given time it is possible to obtain the values of the relative permittivity in the layers of the liquid medium and to determine the level of the interface between the layers of the two-layer liquid. The estimation of measurement errors is made.
Modelling Of Flotation Processes By Classical Mathematical Methods - A Review
Jovanović, Ivana; Miljanović, Igor
2015-12-01
Flotation process modelling is not a simple task, mostly because of the process complexity, i.e. the presence of a large number of variables that (to a lesser or a greater extent) affect the final outcome of the mineral particles separation based on the differences in their surface properties. The attempts toward the development of the quantitative predictive model that would fully describe the operation of an industrial flotation plant started in the middle of past century and it lasts to this day. This paper gives a review of published research activities directed toward the development of flotation models based on the classical mathematical rules. The description and systematization of classical flotation models were performed according to the available references, with emphasize exclusively given to the flotation process modelling, regardless of the model application in a certain control system. In accordance with the contemporary considerations, models were classified as the empirical, probabilistic, kinetic and population balance types. Each model type is presented through the aspects of flotation modelling at the macro and micro process levels.
Justification of the concept of mathematical methods and models in making decisions on taxation
KORKUNA NATALIA MIKHAYLOVNA
2017-01-01
The paper presents the concept of the application of mathematical methods and models in making decisions on taxation in Ukraine as a phased process. Its performance result is the selection of an effective decision based on regression and optimization models.
Mathematical Modeling and Pure Mathematics
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…
Microstrip natural wave spectrum mathematical model using partial inversion method
International Nuclear Information System (INIS)
Pogarsky, S.A.; Litvinenko, L.N.; Prosvirnin, S.L.
1995-01-01
It is generally agreed that both microstrip lines itself and different discontinuities based on microstrips are the most difficult problem for accurate electrodynamic analysis. Over the last years much has been published about principles and accurate (or full wave) methods of microstrip lines investigations. The growing interest for this problem may be explained by the microstrip application in the millimeter-wave range for purpose of realizing interconnects and a variety of passive components. At these higher operating rating frequencies accurate component modeling becomes more critical. A creation, examination and experimental verification of the accurate method for planar electrodynamical structures natural wave spectrum investigations are the objects of this manuscript. The moment method with partial inversion operator method using may be considered as a basical way for solving this problem. This method is outlook for accurate analysis of different planar discontinuities in microstrip: such as step discontinuities, microstrip turns, Y- and X-junctions and etc., substrate space steps dielectric constants and other anisotropy types
MATHEMATICAL MODEL MANIPULATOR ROBOTS
Directory of Open Access Journals (Sweden)
O. N. Krakhmalev
2015-12-01
Full Text Available A mathematical model to describe the dynamics of manipulator robots. Mathematical model are the implementation of the method based on the Lagrange equation and using the transformation matrices of elastic coordinates. Mathematical model make it possible to determine the elastic deviations of manipulator robots from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. Mathematical model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by model are compared to the example of a two-link manipulator system. The considered model can be used when performing investigations of the mathematical accuracy of the manipulator robots.
Mathematical modellings and computational methods for structural analysis of LMFBR's
International Nuclear Information System (INIS)
Liu, W.K.; Lam, D.
1983-01-01
In this paper, two aspects of nuclear reactor problems are discussed, modelling techniques and computational methods for large scale linear and nonlinear analyses of LMFBRs. For nonlinear fluid-structure interaction problem with large deformation, arbitrary Lagrangian-Eulerian description is applicable. For certain linear fluid-structure interaction problem, the structural response spectrum can be found via 'added mass' approach. In a sense, the fluid inertia is accounted by a mass matrix added to the structural mass. The fluid/structural modes of certain fluid-structure problem can be uncoupled to get the reduced added mass. The advantage of this approach is that it can account for the many repeated structures of nuclear reactor. In regard to nonlinear dynamic problem, the coupled nonlinear fluid-structure equations usually have to be solved by direct time integration. The computation can be very expensive and time consuming for nonlinear problems. Thus, it is desirable to optimize the accuracy and computation effort by using implicit-explicit mixed time integration method. (orig.)
Hybrid modelling framework by using mathematics-based and information-based methods
International Nuclear Information System (INIS)
Ghaboussi, J; Kim, J; Elnashai, A
2010-01-01
Mathematics-based computational mechanics involves idealization in going from the observed behaviour of a system into mathematical equations representing the underlying mechanics of that behaviour. Idealization may lead mathematical models that exclude certain aspects of the complex behaviour that may be significant. An alternative approach is data-centric modelling that constitutes a fundamental shift from mathematical equations to data that contain the required information about the underlying mechanics. However, purely data-centric methods often fail for infrequent events and large state changes. In this article, a new hybrid modelling framework is proposed to improve accuracy in simulation of real-world systems. In the hybrid framework, a mathematical model is complemented by information-based components. The role of informational components is to model aspects which the mathematical model leaves out. The missing aspects are extracted and identified through Autoprogressive Algorithms. The proposed hybrid modelling framework has a wide range of potential applications for natural and engineered systems. The potential of the hybrid methodology is illustrated through modelling highly pinched hysteretic behaviour of beam-to-column connections in steel frames.
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.
Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V
2016-01-01
Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.
Mathematical models and methods of localized interaction theory
Bunimovich, AI
1995-01-01
The interaction of the environment with a moving body is called "localized" if it has been found or assumed that the force or/and thermal influence of the environment on each body surface point is independent and can be determined by the local geometrical and kinematical characteristics of this point as well as by the parameters of the environment and body-environment interactions which are the same for the whole surface of contact.Such models are widespread in aerodynamics and gas dynamics, covering supersonic and hypersonic flows, and rarefied gas flows. They describe the influence of light
Application of differential transformation method for solving dengue transmission mathematical model
Ndii, Meksianis Z.; Anggriani, Nursanti; Supriatna, Asep K.
2018-03-01
The differential transformation method (DTM) is a semi-analytical numerical technique which depends on Taylor series and has application in many areas including Biomathematics. The aim of this paper is to employ the differential transformation method (DTM) to solve system of non-linear differential equations for dengue transmission mathematical model. Analytical and numerical solutions are determined and the results are compared to that of Runge-Kutta method. We found a good agreement between DTM and Runge-Kutta method.
Optimal control for mathematical models of cancer therapies an application of geometric methods
Schättler, Heinz
2015-01-01
This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful.
Mathematic models for a ray tracing method and its applications in wireless optical communications.
Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan
2010-08-16
This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.
Mathematical methods for cancer evolution
Suzuki, Takashi
2017-01-01
The purpose of this monograph is to describe recent developments in mathematical modeling and mathematical analysis of certain problems arising from cell biology. Cancer cells and their growth via several stages are of particular interest. To describe these events, multi-scale models are applied, involving continuously distributed environment variables and several components related to particles. Hybrid simulations are also carried out, using discretization of environment variables and the Monte Carlo method for the principal particle variables. Rigorous mathematical foundations are the bases of these tools. The monograph is composed of four chapters. The first three chapters are concerned with modeling, while the last one is devoted to mathematical analysis. The first chapter deals with molecular dynamics occurring at the early stage of cancer invasion. A pathway network model based on a biological scenario is constructed, and then its mathematical structures are determined. In the second chapter mathematica...
Manchanda, Pammy; Bhardwaj, Rashmi
2015-01-01
The present volume contains invited talks of 11th biennial conference on “Emerging Mathematical Methods, Models and Algorithms for Science and Technology”. The main message of the book is that mathematics has a great potential to analyse and understand the challenging problems of nanotechnology, biotechnology, medical science, oil industry and financial technology. The book highlights all the features and main theme discussed in the conference. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world.
Mathematical Modeling Using MATLAB
National Research Council Canada - National Science Library
Phillips, Donovan
1998-01-01
.... Mathematical Modeling Using MA MATLAB acts as a companion resource to A First Course in Mathematical Modeling with the goal of guiding the reader to a fuller understanding of the modeling process...
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.
Directory of Open Access Journals (Sweden)
Nadia Said
Full Text Available Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.
International Nuclear Information System (INIS)
Betin, A Yu; Bobrinev, V I; Evtikhiev, N N; Zherdev, A Yu; Zlokazov, E Yu; Lushnikov, D S; Markin, V V; Odinokov, S B; Starikov, S N; Starikov, R S
2013-01-01
A method of computer generation and projection recording of microholograms for holographic memory systems is presented; the results of mathematical modelling and experimental implementation of the method are demonstrated. (holographic memory)
Mathematical modeling with multidisciplinary applications
Yang, Xin-She
2013-01-01
Features mathematical modeling techniques and real-world processes with applications in diverse fields Mathematical Modeling with Multidisciplinary Applications details the interdisciplinary nature of mathematical modeling and numerical algorithms. The book combines a variety of applications from diverse fields to illustrate how the methods can be used to model physical processes, design new products, find solutions to challenging problems, and increase competitiveness in international markets. Written by leading scholars and international experts in the field, the
System principles, mathematical models and methods to ensure high reliability of safety systems
Zaslavskyi, V.
2017-04-01
Modern safety and security systems are composed of a large number of various components designed for detection, localization, tracking, collecting, and processing of information from the systems of monitoring, telemetry, control, etc. They are required to be highly reliable in a view to correctly perform data aggregation, processing and analysis for subsequent decision making support. On design and construction phases of the manufacturing of such systems a various types of components (elements, devices, and subsystems) are considered and used to ensure high reliability of signals detection, noise isolation, and erroneous commands reduction. When generating design solutions for highly reliable systems a number of restrictions and conditions such as types of components and various constrains on resources should be considered. Various types of components perform identical functions; however, they are implemented using diverse principles, approaches and have distinct technical and economic indicators such as cost or power consumption. The systematic use of different component types increases the probability of tasks performing and eliminates the common cause failure. We consider type-variety principle as an engineering principle of system analysis, mathematical models based on this principle, and algorithms for solving optimization problems of highly reliable safety and security systems design. Mathematical models are formalized in a class of two-level discrete optimization problems of large dimension. The proposed approach, mathematical models, algorithms can be used for problem solving of optimal redundancy on the basis of a variety of methods and control devices for fault and defects detection in technical systems, telecommunication networks, and energy systems.
Mathematical methods in engineering
Machado, José
2014-01-01
This book presents a careful selection of the contributions presented at the Mathematical Methods in Engineering (MME10) International Symposium, held at the Polytechnic Institute of Coimbra- Engineering Institute of Coimbra (IPC/ISEC), Portugal, October 21-24, 2010. The volume discusses recent developments about theoretical and applied mathematics toward the solution of engineering problems, thus covering a wide range of topics, such as: Automatic Control, Autonomous Systems, Computer Science, Dynamical Systems and Control, Electronics, Finance and Economics, Fluid Mechanics and Heat Transfer, Fractional Mathematics, Fractional Transforms and Their Applications, Fuzzy Sets and Systems, Image and Signal Analysis, Image Processing, Mechanics, Mechatronics, Motor Control and Human Movement Analysis, Nonlinear Dynamics, Partial Differential Equations, Robotics, Acoustics, Vibration and Control, and Wavelets.
Strong Inference in Mathematical Modeling: A Method for Robust Science in the Twenty-First Century.
Ganusov, Vitaly V
2016-01-01
While there are many opinions on what mathematical modeling in biology is, in essence, modeling is a mathematical tool, like a microscope, which allows consequences to logically follow from a set of assumptions. Only when this tool is applied appropriately, as microscope is used to look at small items, it may allow to understand importance of specific mechanisms/assumptions in biological processes. Mathematical modeling can be less useful or even misleading if used inappropriately, for example, when a microscope is used to study stars. According to some philosophers (Oreskes et al., 1994), the best use of mathematical models is not when a model is used to confirm a hypothesis but rather when a model shows inconsistency of the model (defined by a specific set of assumptions) and data. Following the principle of strong inference for experimental sciences proposed by Platt (1964), I suggest "strong inference in mathematical modeling" as an effective and robust way of using mathematical modeling to understand mechanisms driving dynamics of biological systems. The major steps of strong inference in mathematical modeling are (1) to develop multiple alternative models for the phenomenon in question; (2) to compare the models with available experimental data and to determine which of the models are not consistent with the data; (3) to determine reasons why rejected models failed to explain the data, and (4) to suggest experiments which would allow to discriminate between remaining alternative models. The use of strong inference is likely to provide better robustness of predictions of mathematical models and it should be strongly encouraged in mathematical modeling-based publications in the Twenty-First century.
Strong inference in mathematical modeling: a method for robust science in the 21st century
Directory of Open Access Journals (Sweden)
Vitaly V. Ganusov
2016-07-01
Full Text Available While there are many opinions on what mathematical modeling in biology is, in essence, modeling is a mathematical tool, like a microscope, which allows consequences to logically follow from a set of assumptions. Only when this tool is applied appropriately, as microscope is used to look at small items, it may allow to understand importance of specific mechanisms/assumptions in biological processes. Mathematical modeling can be less useful or even misleading if used inappropriately, for example, when a microscope is used to study stars. According to some philosophers [1], the best use of mathematical models is not when a model is used to confirm a hypothesis but rather when a model shows inconsistency of the model (defined by a specific set of assumptions and data. Following the principle of strong inference for experimental sciences proposed by Platt [2], I suggest ``strong inference in mathematical modeling'' as an effective and robust way of using mathematical modeling to understand mechanisms driving dynamics of biological systems. The major steps of strong inference in mathematical modeling are 1 to develop multiple alternative models for the phenomenon in question; 2 to compare the models with available experimental data and to determine which of the models are not consistent with the data; 3 to determine reasons why rejected models failed to explain the data, and 4 to suggest experiments which would allow to discriminate between remaining alternative models. The use of strong inference is likely to provide better robustness of predictions of mathematical models and it should be strongly encouraged in mathematical modeling-based publications in the 21st century.
Strong Inference in Mathematical Modeling: A Method for Robust Science in the Twenty-First Century
Ganusov, Vitaly V.
2016-01-01
While there are many opinions on what mathematical modeling in biology is, in essence, modeling is a mathematical tool, like a microscope, which allows consequences to logically follow from a set of assumptions. Only when this tool is applied appropriately, as microscope is used to look at small items, it may allow to understand importance of specific mechanisms/assumptions in biological processes. Mathematical modeling can be less useful or even misleading if used inappropriately, for example, when a microscope is used to study stars. According to some philosophers (Oreskes et al., 1994), the best use of mathematical models is not when a model is used to confirm a hypothesis but rather when a model shows inconsistency of the model (defined by a specific set of assumptions) and data. Following the principle of strong inference for experimental sciences proposed by Platt (1964), I suggest “strong inference in mathematical modeling” as an effective and robust way of using mathematical modeling to understand mechanisms driving dynamics of biological systems. The major steps of strong inference in mathematical modeling are (1) to develop multiple alternative models for the phenomenon in question; (2) to compare the models with available experimental data and to determine which of the models are not consistent with the data; (3) to determine reasons why rejected models failed to explain the data, and (4) to suggest experiments which would allow to discriminate between remaining alternative models. The use of strong inference is likely to provide better robustness of predictions of mathematical models and it should be strongly encouraged in mathematical modeling-based publications in the Twenty-First century. PMID:27499750
METHOD OF GREEN FUNCTIONS IN MATHEMATICAL MODELLING FOR TWO-POINT BOUNDARY-VALUE PROBLEMS
Directory of Open Access Journals (Sweden)
E. V. Dikareva
2015-01-01
Full Text Available Summary. In many applied problems of control, optimization, system theory, theoretical and construction mechanics, for problems with strings and nods structures, oscillation theory, theory of elasticity and plasticity, mechanical problems connected with fracture dynamics and shock waves, the main instrument for study these problems is a theory of high order ordinary differential equations. This methodology is also applied for studying mathematical models in graph theory with different partitioning based on differential equations. Such equations are used for theoretical foundation of mathematical models but also for constructing numerical methods and computer algorithms. These models are studied with use of Green function method. In the paper first necessary theoretical information is included on Green function method for multi point boundary-value problems. The main equation is discussed, notions of multi-point boundary conditions, boundary functionals, degenerate and non-degenerate problems, fundamental matrix of solutions are introduced. In the main part the problem to study is formulated in terms of shocks and deformations in boundary conditions. After that the main results are formulated. In theorem 1 conditions for existence and uniqueness of solutions are proved. In theorem 2 conditions are proved for strict positivity and equal measureness for a pair of solutions. In theorem 3 existence and estimates are proved for the least eigenvalue, spectral properties and positivity of eigenfunctions. In theorem 4 the weighted positivity is proved for the Green function. Some possible applications are considered for a signal theory and transmutation operators.
Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship-Mathematical Modeling.
Barnes, Sean L; Kasaie, Parastu; Anderson, Deverick J; Rubin, Michael
2016-11-01
Mathematical modeling is a valuable methodology used to study healthcare epidemiology and antimicrobial stewardship, particularly when more traditional study approaches are infeasible, unethical, costly, or time consuming. We focus on 2 of the most common types of mathematical modeling, namely compartmental modeling and agent-based modeling, which provide important advantages-such as shorter developmental timelines and opportunities for extensive experimentation-over observational and experimental approaches. We summarize these advantages and disadvantages via specific examples and highlight recent advances in the methodology. A checklist is provided to serve as a guideline in the development of mathematical models in healthcare epidemiology and antimicrobial stewardship. Infect Control Hosp Epidemiol 2016;1-7.
Mathematical Modelling Approach in Mathematics Education
Arseven, Ayla
2015-01-01
The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…
Teaching Mathematical Modeling in Mathematics Education
Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant
2016-01-01
Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…
Nuclear physics mathematical methods
International Nuclear Information System (INIS)
Balian, R.; Gervois, A.; Giannoni, M.J.; Levesque, D.; Maille, M.
1984-01-01
The nuclear physics mathematical methods, applied to the collective motion theory, to the reduction of the degrees of freedom and to the order and disorder phenomena; are investigated. In the scope of the study, the following aspects are discussed: the entropy of an ensemble of collective variables; the interpretation of the dissipation, applying the information theory; the chaos and the universality; the Monte-Carlo method applied to the classical statistical mechanics and quantum mechanics; the finite elements method, and the classical ergodicity [fr
Mathematical Modelling Plant Signalling Networks
Muraro, D.; Byrne, H.M.; King, J.R.; Bennett, M.J.
2013-01-01
methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more
Mixed Methods Study Using Constructive Learning Team Model for Secondary Mathematics Teachers
Ritter, Kristy L.
2010-01-01
The constructive learning team model for secondary mathematics teachers (CLTM) was created to provide students with learning opportunities and experiences that address deficiencies in oral and written communication, logical processes and analysis, mathematical operations, independent learning, teamwork, and technology utilization. This study…
Mathematical methods to model rodent behavior in the elevated plus-maze.
Arantes, Rafael; Tejada, Julián; Bosco, Geraldine G; Morato, Silvio; Roque, Antonio C
2013-11-15
The elevated plus maze is a widely used experimental test to study anxiety-like rodent behavior. It is made of four arms, two open and two closed, connected at a central area forming a plus shaped maze. The whole apparatus is elevated 50 cm from the floor. The anxiety of the animal is usually assessed by the number of entries and duration of stay in each arm type during a 5-min period. Different mathematical methods have been proposed to model the mechanisms that control the animal behavior in the maze, such as factor analysis, statistical inference on Markov chains and computational modeling. In this review we discuss these methods and propose possible extensions of them as a direction for future research. Copyright © 2013 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Wenjie Mei
2016-01-01
Full Text Available The paper reports a tooth profile modification method of spur gear. After establishing a standardized mathematical model for optimized tooth profile and simulating meshing process with ANSYS finite element analysis, we obtained 625 groups of gear models with different modification parameters. The group with minimum transmission errors owns the optimal parameters. Genetic algorithm was adopted in the entire process for the purpose of reducing the variation of transmission errors in meshing process. The arc and parabolic modification were doing the same processing. After comparing the transmission errors fluctuation produced by the meshing process of gear of nonmodification with arc modification and parabolic modification, we found that the best modification effects of arc modification and parabolic modification were both reduced by 90%. The modification method makes the gear drive process more stable and efficient, and it is also promising in general application for gear drive.
Mathematical problems in meteorological modelling
Csomós, Petra; Faragó, István; Horányi, András; Szépszó, Gabriella
2016-01-01
This book deals with mathematical problems arising in the context of meteorological modelling. It gathers and presents some of the most interesting and important issues from the interaction of mathematics and meteorology. It is unique in that it features contributions on topics like data assimilation, ensemble prediction, numerical methods, and transport modelling, from both mathematical and meteorological perspectives. The derivation and solution of all kinds of numerical prediction models require the application of results from various mathematical fields. The present volume is divided into three parts, moving from mathematical and numerical problems through air quality modelling, to advanced applications in data assimilation and probabilistic forecasting. The book arose from the workshop “Mathematical Problems in Meteorological Modelling” held in Budapest in May 2014 and organized by the ECMI Special Interest Group on Numerical Weather Prediction. Its main objective is to highlight the beauty of the de...
Directory of Open Access Journals (Sweden)
S. P. Halutin
2014-01-01
Full Text Available Mathematical models in the electrical parameters of physico-chemical processes in lithium-ion batteries are developed. The developed model parameters (discharge mode are identified out of family of discharging curve. By using of the parameters of this model we get the numerically model of lithium-ion battery.
Developing mathematical modelling competence
DEFF Research Database (Denmark)
Blomhøj, Morten; Jensen, Tomas Højgaard
2003-01-01
In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....
Energy Technology Data Exchange (ETDEWEB)
Smorodin, F.K.; Druzhinin, G.V.
1991-01-01
A mathematical model is proposed which describes the fracture behavior of amorphous materials during laser cutting. The model, which is based on boundary layer equations, is reduced to ordinary differential equations with the corresponding boundary conditions. The reduced model is used to develop an approximate method for calculating the fracture characteristics of nonmetallic materials.
International Nuclear Information System (INIS)
Debeljkovic, D.Lj.; Stevic, D.Z.; Simeunovic, G.V.; Misic, M.A.
2015-01-01
The heat exchangers are frequently used as constructive elements in various plants and their dynamics is very important. Their operation is usually controlled by manipulating inlet fluid temperatures or mass flow rates. On the basis of the accepted and critically clarified assumptions, a linearized mathematical model of the cross-flow heat exchanger has been derived, taking into account the wall dynamics. The model is based on the fundamental law of energy conservation, covers all heat accumulation storages in the process, and leads to the set of partial differential equations (PDE), which solution is not possible in closed form. In order to overcome the solutions difficulties in this paper are analyzed different methods for modeling the heat exchanger: approach based on Laplace transformation, approximation of partial differential equations based on finite differences, the method of physical discretization and the transport approach. Specifying the input temperatures and output variables, under the constant initial conditions, the step transient responses have been simulated and presented in graphic form in order to compare these results for the four characteristic methods considered in this paper, and analyze its practical significance. (author)
Mathematical models and methods of assisting state subsidy distribution at the regional level
Bondarenko, Yu V.; Azarnova, T. V.; Kashirina, I. L.; Goroshko, I. V.
2018-03-01
One of the most common forms of state support in the world is subsidization. By providing direct financial support to businesses, local authorities get an opportunity to set certain performance targets. Successful achievement of such targets depends not only on the amount of the budgetary allocations, but also on the distribution mechanisms adopted by the regional authorities. Analysis of the existing mechanisms of subsidies distribution in Russian regions shows that in most cases the choice of subsidy calculation formula and its parameters depends on the experts’ subjective opinion. The authors offer a new approach to assisting subsidy distribution at the regional level, which is based on mathematical models and methods, allowing to evaluate the influence of subsidy distribution on the region’s social and economic development. The results of calculations were discussed with the regional administration representatives who confirmed their significance for decision-making in the sphere of state control.
An introduction to mathematical modeling
Bender, Edward A
2000-01-01
Employing a practical, ""learn by doing"" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields - including science, engineering, and operations research - to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The
Mathematical modelling techniques
Aris, Rutherford
1995-01-01
""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode
Tikhomirov, V. G.; Gudkov, A. G.; Agasieva, S. V.; Gorlacheva, E. N.; Shashurin, V. D.; Zybin, A. A.; Evseenkov, A. S.; Parnes, Y. M.
2017-11-01
The numerical impact modeling of some external effects on the CVC of biosensors based on AlGaN/GaN heterostructures (HEMT) was carried out. The mathematical model was created that allowed to predict the behavior of the drain current depending on condition changes on the heterostructure surface in the gate region and to start the process of directed construction optimization of the biosensors based on AlGaN/GaN HEMT with the aim of improving their performance. The calculation of the drain current of the biosensor construction was carried out to confirm the reliability of the developed mathematical model and obtained results.
Mathematical Modeling of Diverse Phenomena
Howard, J. C.
1979-01-01
Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.
Mathematical Methods in Tomography
Louis, Alfred; Natterer, Frank
1991-01-01
The conference was devoted to the discussion of present and future techniques in medical imaging, including 3D x-ray CT, ultrasound and diffraction tomography, and biomagnetic ima- ging. The mathematical models, their theoretical aspects and the development of algorithms were treated. The proceedings contains surveys on reconstruction in inverse obstacle scat- tering, inversion in 3D, and constrained least squares pro- blems.Research papers include besides the mentioned imaging techniques presentations on image reconstruction in Hilbert spaces, singular value decompositions, 3D cone beam recon- struction, diffuse tomography, regularization of ill-posed problems, evaluation reconstruction algorithms and applica- tions in non-medical fields. Contents: Theoretical Aspects: J.Boman: Helgason' s support theorem for Radon transforms-a newproof and a generalization -P.Maass: Singular value de- compositions for Radon transforms- W.R.Madych: Image recon- struction in Hilbert space -R.G.Mukhometov: A problem of in- teg...
Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.
2005-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
Applied impulsive mathematical models
Stamova, Ivanka
2016-01-01
Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.
Fomina, E. V.; Kozhukhova, N. I.; Sverguzova, S. V.; Fomin, A. E.
2018-05-01
In this paper, the regression equations method for design of construction material was studied. Regression and polynomial equations representing the correlation between the studied parameters were proposed. The logic design and software interface of the regression equations method focused on parameter optimization to provide the energy saving effect at the stage of autoclave aerated concrete design considering the replacement of traditionally used quartz sand by coal mining by-product such as argillite. The mathematical model represented by a quadric polynomial for the design of experiment was obtained using calculated and experimental data. This allowed the estimation of relationship between the composition and final properties of the aerated concrete. The surface response graphically presented in a nomogram allowed the estimation of concrete properties in response to variation of composition within the x-space. The optimal range of argillite content was obtained leading to a reduction of raw materials demand, development of target plastic strength of aerated concrete as well as a reduction of curing time before autoclave treatment. Generally, this method allows the design of autoclave aerated concrete with required performance without additional resource and time costs.
Directory of Open Access Journals (Sweden)
Yu. A. Ezrokhi
2017-01-01
Full Text Available The paper considers methodological approaches to the mathematical models (MM of various levels, dedicated to estimate an impact of the entrance flow heterogeneity on the main parameters and performances of the aviation GTE and it units. By an example of calculation of a twin-shaft turbofan engine in cruiser mode, demonstrates engineering mathematical model capabilities to define the impact of the total pressure field distortion on engine trust and air flow parameters, and also gas dynamic stability margin of the both compressors.It is shown that the presented first level mathematical model allows us to estimate sufficiently the impact of entrance total pressure heterogeneity on the engine parameters. Here reliability of calculations is proved to be true by their comparison with the results, obtained owing to well fulfilled 2D & 3D mathematical models of the engine, which have been repeatedly identified by the results of experiments.It is shown that received results including those on decreasing values of stability margin of both compressors can be used for tentative estimates when choosing a desirable stability margin, providing steady operation of compressors and engine in an entire range of its operating modes. Carrying out a definitive testing calculation using the specialized engine MM of a higher level will not only confirm the results obtained, but also reduce their expected error with regard to the real values reached as a result of tests.
Mathematical methods for physicists
Arfken, George B
2005-01-01
This best-selling title provides in one handy volume the essential mathematical tools and techniques used to solve problems in physics. It is a vital addition to the bookshelf of any serious student of physics or research professional in the field. The authors have put considerable effort into revamping this new edition.* Updates the leading graduate-level text in mathematical physics* Provides comprehensive coverage of the mathematics necessary for advanced study in physics and engineering* Focuses on problem-solving skills and offers a vast array of exercises * Clearly illustrates and proves mathematical relationsNew in the Sixth Edition:* Updated content throughout, based on users'' feedback * More advanced sections, including differential forms and the elegant forms of Maxwell''s equations* A new chapter on probability and statistics* More elementary sections have been deleted
Handbook of mathematical methods in imaging
2015-01-01
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. This expanded and revised second edition contains updates to existing chapters and 16 additional entries on important mathematical methods such as graph cuts, morphology, discrete geometry, PDEs, conformal methods, to name a few. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 200 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and com...
Sriyudthsak, Kansuporn; Iwata, Michio; Hirai, Masami Yokota; Shiraishi, Fumihide
2014-06-01
The availability of large-scale datasets has led to more effort being made to understand characteristics of metabolic reaction networks. However, because the large-scale data are semi-quantitative, and may contain biological variations and/or analytical errors, it remains a challenge to construct a mathematical model with precise parameters using only these data. The present work proposes a simple method, referred to as PENDISC (Parameter Estimation in a N on- DImensionalized S-system with Constraints), to assist the complex process of parameter estimation in the construction of a mathematical model for a given metabolic reaction system. The PENDISC method was evaluated using two simple mathematical models: a linear metabolic pathway model with inhibition and a branched metabolic pathway model with inhibition and activation. The results indicate that a smaller number of data points and rate constant parameters enhances the agreement between calculated values and time-series data of metabolite concentrations, and leads to faster convergence when the same initial estimates are used for the fitting. This method is also shown to be applicable to noisy time-series data and to unmeasurable metabolite concentrations in a network, and to have a potential to handle metabolome data of a relatively large-scale metabolic reaction system. Furthermore, it was applied to aspartate-derived amino acid biosynthesis in Arabidopsis thaliana plant. The result provides confirmation that the mathematical model constructed satisfactorily agrees with the time-series datasets of seven metabolite concentrations.
Zhang, Yuncheng
The mathematical pointing model is establishment of the visual tracking theodolite for satellites in two kinds of observation methods at Yunnan Observatory, which is related to the digitalisation reform and the optical-electronic technique reform, is introduced respectively in this paper.
One possible method of mathematical modeling of turbulent transport processes in plasma
International Nuclear Information System (INIS)
Skvortsova, Nina N.; Batanov, German M.; Petrov, Alexander E.; Pshenichnikov, Anton A.; Sarksyan, Karen A.; Kharchev, Nikolay K.; Bening, Vladimir E.; Korolev, Victor Yu.
2003-01-01
It is proposed to use the mathematical modeling of the increments of fluctuating plasma variables to analyzing the probability characteristics of turbulent transport processes in plasma. It is shown that, in plasma of the L-2M stellarator and the TAU-1 linear device, the increments of the process of local fluctuating particle flux are stochastic in nature and their distribution is a scale mixture of Gaussians. (author)
Mathematical modelling of metabolism
DEFF Research Database (Denmark)
Gombert, Andreas Karoly; Nielsen, Jens
2000-01-01
Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...
Mathematical methods in neutronics
International Nuclear Information System (INIS)
Planchard, J.
1995-01-01
This book presents the mathematical theory of nuclear reactors. It applies to engineers in neutronics and applied mathematicians. After a recall of the elementary notions of neutronics and of diffusion-type partial derivative equations, the theory of reactors criticality calculation is described. (J.S.)
Allergenic weed pollen forecast under the mathematical modeling method implementation in ukraine.
Motruk, Irina I; Antomonov, Michael Yu; Rodinkova, Victoria V; Aleksandrova, Olena E; Yermishev, Oleh V
2018-01-01
Introduction: Allergies are the most common reason of the chronic diseases in developed countries and represent an important medical, social and economic issue, the relevance of which is growing both in these countries and in Ukraine. The most famous of these allergens group is the pollen of ambrosia and pollen of poaceae, which are ubiquitously distributed in the subtropical and temperate climate. The aim: The objective of our study was to develop the mathematical models, which will be able to indicate the probability of the pollen circulation, and thus these models can simplify the forecast of symptoms risk and improve the prophylaxis of pollinosis. Materials and methods: The research was conducted on the basis of the research center of National Pirogov Memorial Medical University, Vinnytsia in the years 2012-2014. A volumetric sampler of the Hirst type was used for the air sampling. The observation was conducted from the first of April to the thirty-first of October. For the initial preparation of the tables and intermediate calculations, Excel software package was used. The software STATISTICA 10.0 was applied to calculate the average coefficients values and their statistical characteristics (beta-values, errors of the mean values, Student's t-test, veracity and the factors percentage contribution into the function variation). Results: Statistically significant correlation between pollen concentrations of herbaceous plants and individual meteorological factors was found; classificational functions were designed by which it is possible to calculate the probability of presence or absence of Artemisia pollen in the atmosphere; the risks of increasing of the Artemisia pollen concentration are determined under exceeding of the critical temperature of 18°С, relative humidity of 67% and atmospheric pressure of 980 Pa. Conclusions. The results of the research can be used to predict the emission of potentially hazardous concentrations of weed pollen grains in the
Principles of mathematical modeling
Dym, Clive
2004-01-01
Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, an...
Mathematical models in radiogeochronology
International Nuclear Information System (INIS)
Abril, J.M.; Garcia Leon, M.
1991-01-01
The study of activity vs. depth profiles in sediment cores of some man-made and natural ocurring radionuclides have shown to be a poweful tool for dating purposes. Nevertheless, in most cases, an adecuate interpretation of such profiles requires mathematical models. In this paper, by considering the sediment as a continuum, a general equation for diffusion of radionuclides through it is obtained. Consequentely, some previously published dating models are found to be particular solutions of such general advenction-diffusion problem. Special emphasis is given to the mathematical treatment of compactation effect and time dependent problems. (author)
Concepts of mathematical modeling
Meyer, Walter J
2004-01-01
Appropriate for undergraduate and graduate students, this text features independent sections that illustrate the most important principles of mathematical modeling, a variety of applications, and classic models. Students with a solid background in calculus and some knowledge of probability and matrix theory will find the material entirely accessible. The range of subjects includes topics from the physical, biological, and social sciences, as well as those of operations research. Discussions cover related mathematical tools and the historical eras from which the applications are drawn. Each sec
Methods of applied mathematics
Hildebrand, Francis B
1992-01-01
This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.
Mathematical Modeling: A Structured Process
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2015-01-01
Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…
Mathematical models of hysteresis
International Nuclear Information System (INIS)
1998-01-01
The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above
Mathematical models of hysteresis
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-08-01
The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.
Mathematical methods for hydrodynamic limits
Masi, Anna
1991-01-01
Entropy inequalities, correlation functions, couplings between stochastic processes are powerful techniques which have been extensively used to give arigorous foundation to the theory of complex, many component systems and to its many applications in a variety of fields as physics, biology, population dynamics, economics, ... The purpose of the book is to make theseand other mathematical methods accessible to readers with a limited background in probability and physics by examining in detail a few models where the techniques emerge clearly, while extra difficulties arekept to a minimum. Lanford's method and its extension to the hierarchy of equations for the truncated correlation functions, the v-functions, are presented and applied to prove the validity of macroscopic equations forstochastic particle systems which are perturbations of the independent and of the symmetric simple exclusion processes. Entropy inequalities are discussed in the frame of the Guo-Papanicolaou-Varadhan technique and of theKipnis-Oll...
Mathematical modelling in economic processes.
Directory of Open Access Journals (Sweden)
L.V. Kravtsova
2008-06-01
Full Text Available In article are considered a number of methods of mathematical modelling of economic processes and opportunities of use of spreadsheets Excel for reception of the optimum decision of tasks or calculation of financial operations with the help of the built-in functions.
Eremin, Yu. A.; Sveshnikov, A. G.
2018-04-01
The discrete source method is used to develop and implement a mathematical model for solving the problem of scattering electromagnetic waves by a three-dimensional plasmonic scatterer with nonlocal effects taken into account. Numerical results are presented whereby the features of the scattering properties of plasmonic particles with allowance for nonlocal effects are demonstrated depending on the direction and polarization of the incident wave.
Mathematical methods in systems biology.
Kashdan, Eugene; Duncan, Dominique; Parnell, Andrew; Schattler, Heinz
2016-12-01
The editors of this Special Issue of Mathematical Biosciences and Engineering were the organizers for the Third International Workshop "Mathematical Methods in System Biology" that took place on June 15-18, 2015 at the University College Dublin in Ireland. As stated in the workshop goals, we managed to attract a good mix of mathematicians and statisticians working on biological and medical applications with biologists and clinicians interested in presenting their challenging problems and looking to find mathematical and statistical tools for their solutions.
Finite mathematics models and applications
Morris, Carla C
2015-01-01
Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.
Mathematical methods for elastic plates
Constanda, Christian
2014-01-01
Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one. The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions. The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...
Authenticity of Mathematical Modeling
Tran, Dung; Dougherty, Barbara J.
2014-01-01
Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…
Computational and mathematical methods in brain atlasing.
Nowinski, Wieslaw L
2017-12-01
Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.
Directory of Open Access Journals (Sweden)
Carolina M. Sánchez-Sáenz
2015-12-01
Full Text Available ABSTRACT Mathematical modeling enables dimensioning of dryers, optimization of drying conditions and the evaluation of process performance. The aim of this research was to describe the behavior of orange bagasse drying using Page's and Fick's second law models, and to assess activation energy (using Arrhenius equation, moisture content, water activity and bulk density of product at the end of the process. The drying experimental assays were performed in 2011 with convective air temperature between 36 and 64 ºC and infrared radiation application time in the range from 23 to 277 s in accordance with the experimental central composite rotatable design. Analysis of variance and F-test were applied to results. At the end of the drying process, moisture content was about 0.09 to 0.87 db and water activity was between 0.25 and 0.87. Bulk density did not vary under studied conditions. Empirical Page's model demonstrated better representation of experimental data than the Fick's model for spheres. Activation energy values were about 18.491; 14.975 and 11.421 kJ mol-1 for infrared application times of 60; 150 e 244 s, respectively.
Mumcu, Hayal Yavuz
2016-01-01
The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…
Methods of mathematical optimization
Vanderplaats, G. N.
The fundamental principles of numerical optimization methods are reviewed, with an emphasis on potential engineering applications. The basic optimization process is described; unconstrained and constrained minimization problems are defined; a general approach to the design of optimization software programs is outlined; and drawings and diagrams are shown for examples involving (1) the conceptual design of an aircraft, (2) the aerodynamic optimization of an airfoil, (3) the design of an automotive-engine connecting rod, and (4) the optimization of a 'ski-jump' to assist aircraft in taking off from a very short ship deck.
A Primer for Mathematical Modeling
Sole, Marla
2013-01-01
With the implementation of the National Council of Teachers of Mathematics recommendations and the adoption of the Common Core State Standards for Mathematics, modeling has moved to the forefront of K-12 education. Modeling activities not only reinforce purposeful problem-solving skills, they also connect the mathematics students learn in school…
A. Mirzazadeh
2011-01-01
The inventory models, generally, are derived with considering two methods: (1) minimizing the average annual cost or (2) minimizing the discounted cost. This paper compares the optimal ordering policies determined by these methods under uncertain inflationary situations. The inventory and shortages behavior have been analyzed with using the differential equations. The numerical examples are used to illustrate the theoretical results. A detailed analysis on the models parameters has been perfo...
Tartakovskiy, B. D.; Dubner, A. B.
1973-01-01
A method is proposed for determining vibroacoustic characteristics from the results of measurements of the distribution of vibrational energy in a structure. The method is based on an energy model of a structure studied earlier. Equations are written to describe the distribution of vibrational energy in a hypothetical diffuse energy state in structural elements.
International Nuclear Information System (INIS)
Castillo M, J.A.; Pimentel P, A.E.
2000-01-01
This work presents the results to define the adult egg viability behavior (VHA) of two species, Drosophila melanogaster and D. simulans obtained with the mathematical model proposed, as well as the respective curves. The data are the VHA result of both species coming from the vicinity of the Laguna Verde Nuclear Power plant (CNLV) comprise a 10 years collect period starting from 1987 until 1997. Each collect includes four series of data which are the VHA result obtained after treatment with 0, 4, 6 and 8 Gy of gamma rays. (Author)
Mathematical methods in biology and neurobiology
Jost, Jürgen
2014-01-01
Mathematical models can be used to meet many of the challenges and opportunities offered by modern biology. The description of biological phenomena requires a range of mathematical theories. This is the case particularly for the emerging field of systems biology. Mathematical Methods in Biology and Neurobiology introduces and develops these mathematical structures and methods in a systematic manner. It studies: • discrete structures and graph theory • stochastic processes • dynamical systems and partial differential equations • optimization and the calculus of variations. The biological applications range from molecular to evolutionary and ecological levels, for example: • cellular reaction kinetics and gene regulation • biological pattern formation and chemotaxis • the biophysics and dynamics of neurons • the coding of information in neuronal systems • phylogenetic tree reconstruction • branching processes and population genetics • optimal resource allocation • sexual recombi...
Mathematical methods for diffusion MRI processing
International Nuclear Information System (INIS)
Lenglet, C.; Lenglet, C.; Sapiro, G.; Campbell, J.S.W.; Pike, G.B.; Campbell, J.S.W.; Siddiqi, K.; Descoteaux, M.; Haro, G.; Wassermann, D.; Deriche, R.; Wassermann, D.; Anwander, A.; Thompson, P.M.
2009-01-01
In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI). (authors)
Mathematical modelling in solid mechanics
Sofonea, Mircea; Steigmann, David
2017-01-01
This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling a...
Directory of Open Access Journals (Sweden)
Roman Anatolyevich Yaskevich
2017-12-01
Full Text Available The purpose of the study. Studying the possibility of using mathematical modeling methods for predicting the clinical course of arterial hypertension in women. Materials and methods. 84 women aged 20–60 years (mean age 45,3 years were examined. The survey included clinical, instrumental and laboratory methods of investigation. As a mathematical basis, we used a technique for structuring and analyzing heterogeneous statistical data under conditions of nonparametric uncertainty. Results. In the course of the conducted research on the results of mathematical modeling, using the pattern recognition technique, an individual set of signs (risk factors was formed from the list of indicators that predetermined the risk of development of the predicted state (complicated course of hypertension, which made it possible to construct forecast nomograms, medium and high risk of adverse course of AH in women, which will not only allow us to calculate the degree of risk, but also to determine the parameters of the required change of the level of managed risk factors that determine the presence in a high-risk zone, and, by influencing them to carry out preventive measures. It was found that the clinical course of hypertension in women is influenced by an increase in insulinemia, fasting and postprandial glycemia, BMI, OXC, and blood pressure, that is, a simtomocomplex of the metabolic syndrome. The conclusion. The use of the method of restructuring and analysis of heterogeneous statistical data in conditions of non-parametric uncertainty makes it possible to predict and evaluate the severity of the clinical course of AH in women. The most significant factors affecting the severity of the clinical course of hypertension in men are the indicators of insulinemia, glycemia, BMI, OXC, blood pressure levels.
Mathematical methods for mechanics a handbook with Matlab experiments
Gekeler, Eckart W
2008-01-01
This book introduces all the mathematical tools necessary for solving complex problems in the field of mechanics. It also contains various applications of mathematical and numerical methods for modeling comprehensive mechanical-technical practical problems.
Directory of Open Access Journals (Sweden)
Maksim BARABANOV
2017-12-01
Full Text Available In order to overcome the drawbacks in artificial horizon indicator (HI of inside-in type (a view from an aircraft (A/C, where pilots produce mistakes in maintenance of attitude orientation most of all, the authors offer a novel training method. The method is based on the hypothesis that the manipulative ability of a human visual system can be trained. A mathematical model for the data accumulation during the corresponding training procedure has been proposed. Construction, design and results of the model evaluation are presented in the article. The experimental results revealed the increase of the probability of faultless operation by the test group of up to 0,892, whereas the faultless operation probability of a control group was 0,726. Thus, the trainee-students have statistically increased the reliability for the maintenance of attitude orientation thanks to the proposed method, and the hypothesis was confirmed.
Adam rumbalifar; I. g. n. Agung; Burhanuddin tola.
2018-01-01
This research aims to study the influence of the assessment model and method toward the science learning achievement by controlling the students? previous knowledge of mathematics. This study was conducted at SMP East Seram district with the population of 295 students. This study applied a quasi-experimental method with 2 X 2 factorial design using the ANCOVA model. The findings after controlling the students\\' previous knowledge of mathematics show that the science learning achievement of th...
Experimental and mathematical modeling methods for the investigation of toxicological interactions
International Nuclear Information System (INIS)
El-Masri, Hisham A.
2007-01-01
While procedures have been developed and used for many years to assess risk and determine acceptable exposure levels to individual chemicals, most cases of environmental contamination can result in concurrent or sequential exposure to more than one chemical. Toxicological predictions of such combinations must be based on an understanding of the mechanisms of action and interaction of the components of the mixtures. Statistical and experimental methods test the existence of toxicological interactions in a mixture. However, these methods are limited to experimental data ranges for which they are derived, in addition to limitations caused by response differences from experimental animals to humans. Empirical methods such as isobolograms, median-effect principle and response surface methodology (RSM) are based on statistical experimental design and regression of data. For that reason, the predicted response surfaces can be used for extrapolation across dose regions where interaction mechanisms are not anticipated to change. In general, using these methods for predictions can be problematic without including biologically based mechanistic descriptions that can account for dose and species differences. Mechanistically based models, such as physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models, include explicit descriptions of interaction mechanisms which are related to target tissues levels. These models include dose-dependent mechanistic hypotheses of toxicological interactions which can be tested by model-directed experimental design and used to identify dose regions where interactions are not significant
Vibration test of spherical shell structure and replacing method into mathematical model
International Nuclear Information System (INIS)
Takayanagi, M.; Suzuki, S.; Okamura, T.; Haas, E.E.; Krutzik, N.J.
1989-01-01
To verify the beam-type and oval-type vibratory characteristics of a spherical shell structure, two test specimens were made and vibration tests were carried out. Results of these tests are compared with results of detailed analyses using 3-D FEM and 2-D axisymmetric FEM models. The analytical results of overall vibratory characteristics are in good agreement with the test results, has been found that the effect of the attached mass should be considered in evaluating local vibration. The replacing method into equivalent beam model is proposed
Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches
Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem
2014-01-01
Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…
Methods of modern mathematical physics
Reed, Michael
1980-01-01
This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations.
Mathematical Modeling and Simulation of SWRO Process Based on Simultaneous Method
Directory of Open Access Journals (Sweden)
Aipeng Jiang
2014-01-01
Full Text Available Reverse osmosis (RO technique is one of the most efficient ways for seawater desalination to solve the shortage of freshwater. For prediction and analysis of the performance of seawater reverse osmosis (SWRO process, an accurate and detailed model based on the solution-diffusion and mass transfer theory is established. Since the accurate formulation of the model includes many differential equations and strong nonlinear equations (differential and algebraic equations, DAEs, to solve the problem efficiently, the simultaneous method through orthogonal collocation on finite elements and large scale solver were used to obtain the solutions. The model was fully discretized into NLP (nonlinear programming with large scale variables and equations, and then the NLP was solved by large scale solver of IPOPT. Validation of the formulated model and solution method is verified by case study on a SWRO plant. Then simulation and analysis are carried out to demonstrate the performance of reverse osmosis process; operational conditions such as feed pressure and feed flow rate as well as feed temperature are also analyzed. This work is of significant meaning for the detailed understanding of RO process and future energy saving through operational optimization.
Mathematical Modelling of Predatory Prokaryotes
Wilkinson, Michael H.F.
2006-01-01
Predator–prey models have a long history in mathematical modelling of ecosystem dynamics and evolution. In this chapter an introduction to the methodology of mathematical modelling is given, with emphasis on microbial predator–prey systems, followed by a description of variants of the basic
Nararidh, Niti
2013-11-01
Choanoflagellates are unicellular organisms whose intriguing morphology includes a set of collars/microvilli emanating from the cell body, surrounding the beating flagellum. We investigated the role of the microvilli in the feeding and swimming behavior of the organism using a three-dimensional model based on the method of regularized Stokeslets. This model allows us to examine the velocity generated around the feeding organism tethered in place, as well as to predict the paths of surrounding free flowing particles. In particular, we can depict the effective capture of nutritional particles and bacteria in the fluid, showing the hydrodynamic cooperation between the cell, flagellum, and microvilli of the organism. Funding Source: Murchison Undergraduate Research Fellowship.
International Nuclear Information System (INIS)
Tavakkoli-Moghaddam, R.
1999-01-01
This paper present unequal-sized facilities layout solutions generated by a genetic search program. named Layout Design using a Genetic Algorithm) 9. The generalized quadratic assignment problem requiring pre-determined distance and material flow matrices as the input data and the continuous plane model employing a dynamic distance measure and a material flow matrix are discussed. Computational results on test problems are reported as compared with layout solutions generated by the branch - and bound algorithm a hybrid method merging simulated annealing and local search techniques, and an optimization process of an enveloped block
Wang, L; Qin, X C; Lin, H C; Deng, K F; Luo, Y W; Sun, Q R; Du, Q X; Wang, Z Y; Tuo, Y; Sun, J H
2018-02-01
To analyse the relationship between Fourier transform infrared （FTIR） spectrum of rat's spleen tissue and postmortem interval （PMI） for PMI estimation using FTIR spectroscopy combined with data mining method. Rats were sacrificed by cervical dislocation, and the cadavers were placed at 20 ℃. The FTIR spectrum data of rats' spleen tissues were taken and measured at different time points. After pretreatment, the data was analysed by data mining method. The absorption peak intensity of rat's spleen tissue spectrum changed with the PMI, while the absorption peak position was unchanged. The results of principal component analysis （PCA） showed that the cumulative contribution rate of the first three principal components was 96%. There was an obvious clustering tendency for the spectrum sample at each time point. The methods of partial least squares discriminant analysis （PLS-DA） and support vector machine classification （SVMC） effectively divided the spectrum samples with different PMI into four categories （0-24 h, 48-72 h, 96-120 h and 144-168 h）. The determination coefficient （ R ²） of the PMI estimation model established by PLS regression analysis was 0.96, and the root mean square error of calibration （RMSEC） and root mean square error of cross validation （RMSECV） were 9.90 h and 11.39 h respectively. In prediction set, the R ² was 0.97, and the root mean square error of prediction （RMSEP） was 10.49 h. The FTIR spectrum of the rat's spleen tissue can be effectively analyzed qualitatively and quantitatively by the combination of FTIR spectroscopy and data mining method, and the classification and PLS regression models can be established for PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Mathematical Modeling and Computational Thinking
Sanford, John F.; Naidu, Jaideep T.
2017-01-01
The paper argues that mathematical modeling is the essence of computational thinking. Learning a computer language is a valuable assistance in learning logical thinking but of less assistance when learning problem-solving skills. The paper is third in a series and presents some examples of mathematical modeling using spreadsheets at an advanced…
Explorations in Elementary Mathematical Modeling
Shahin, Mazen
2010-01-01
In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and…
Mathematical Modelling of Intraretinal Oxygen Partial Pressure
African Journals Online (AJOL)
Erah
The system of non-linear differential equations was solved numerically using Runge-kutta. Nystroms method. ... artery occlusion. Keywords: Mathematical modeling, Intraretinal oxygen pressure, Retinal capillaries, Oxygen ..... Mass transfer,.
Mathematical method to build an empirical model for inhaled anesthetic agent wash-in
Directory of Open Access Journals (Sweden)
Grouls René EJ
2011-06-01
Full Text Available Abstract Background The wide range of fresh gas flow - vaporizer setting (FGF - FD combinations used by different anesthesiologists during the wash-in period of inhaled anesthetics indicates that the selection of FGF and FD is based on habit and personal experience. An empirical model could rationalize FGF - FD selection during wash-in. Methods During model derivation, 50 ASA PS I-II patients received desflurane in O2 with an ADU® anesthesia machine with a random combination of a fixed FGF - FD setting. The resulting course of the end-expired desflurane concentration (FA was modeled with Excel Solver, with patient age, height, and weight as covariates; NONMEM was used to check for parsimony. The resulting equation was solved for FD, and prospectively tested by having the formula calculate FD to be used by the anesthesiologist after randomly selecting a FGF, a target FA (FAt, and a specified time interval (1 - 5 min after turning on the vaporizer after which FAt had to be reached. The following targets were tested: desflurane FAt 3.5% after 3.5 min (n = 40, 5% after 5 min (n = 37, and 6% after 4.5 min (n = 37. Results Solving the equation derived during model development for FD yields FD=-(e(-FGF*-0.23+FGF*0.24*(e(FGF*-0.23*FAt*Ht*0.1-e(FGF*-0.23*FGF*2.55+40.46-e(FGF*-0.23*40.46+e(FGF*-0.23+Time/-4.08*40.46-e(Time/-4.08*40.46/((-1+e(FGF*0.24*(-1+e(Time/-4.08*39.29. Only height (Ht could be withheld as a significant covariate. Median performance error and median absolute performance error were -2.9 and 7.0% in the 3.5% after 3.5 min group, -3.4 and 11.4% in the 5% after 5 min group, and -16.2 and 16.2% in the 6% after 4.5 min groups, respectively. Conclusions An empirical model can be used to predict the FGF - FD combinations that attain a target end-expired anesthetic agent concentration with clinically acceptable accuracy within the first 5 min of the start of administration. The sequences are easily calculated in an Excel file and simple to
International Nuclear Information System (INIS)
Klepikov, V.F.; Prokhorenko, E.M.; Lytvynenko, V.V.; Zakharchenko, A.A.; Nazhmuradov, M.A.
2016-01-01
Radiation safety features of polystyrene steel composite materials were found by means of mathematical modeling techniques. We determined the attenuation of the gamma quantum flux passing through a solid protective layer compared with those attenuation for the bulk protective layer. Change of fractional attenuation of the dose absorbed by 10 and 50 mm thick composites is calculated. Dependence between protective properties of composite and its blend composition was studied. Modifications of technical process of composite materials production were performed. Rotation speed of agitator system was found. It was defined that heating time of polystyrene steel mix is longer than heating time of polystyrene tungstic one. Degree of mix heating and integrity of thermic field on its surface was controlled with the help of IR radiometry methods.
Mathematical modeling of laser lipolysis
Directory of Open Access Journals (Sweden)
Reynaud Jean
2008-02-01
Full Text Available Abstract Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s give similar skin surface temperature (max: 41°C. These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction
Mathematical Modelling Plant Signalling Networks
Muraro, D.
2013-01-01
During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.
Vibratory gyroscopes : identification of mathematical model from test data
CSIR Research Space (South Africa)
Shatalov, MY
2007-05-01
Full Text Available Simple mathematical model of vibratory gyroscopes imperfections is formulated, which includes anisotropic damping and variation of mass-stiffness parameters and their harmonics. The method of identification of parameters of the mathematical model...
Applied mathematical methods in nuclear thermal hydraulics
International Nuclear Information System (INIS)
Ransom, V.H.; Trapp, J.A.
1983-01-01
Applied mathematical methods are used extensively in modeling of nuclear reactor thermal-hydraulic behavior. This application has required significant extension to the state-of-the-art. The problems encountered in modeling of two-phase fluid transients and the development of associated numerical solution methods are reviewed and quantified using results from a numerical study of an analogous linear system of differential equations. In particular, some possible approaches for formulating a well-posed numerical problem for an ill-posed differential model are investigated and discussed. The need for closer attention to numerical fidelity is indicated
DEFF Research Database (Denmark)
Ganji, S. S.; Barari, Amin; Ibsen, Lars Bo
2010-01-01
. In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...
DEFF Research Database (Denmark)
Ganji, S.; Barari, Amin; Ibsen, Lars Bo
2012-01-01
. In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...
Mathematical modelling of membrane separation
DEFF Research Database (Denmark)
Vinther, Frank
This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...
Vasilyev, Y. M.; Lagunov, L. F.
1973-01-01
The schematic diagram of a noise measuring device is presented that uses pulse expansion modeling according to the peak or any other measured values, to obtain instrument readings at a very low noise error.
Directory of Open Access Journals (Sweden)
Carlos Morcillo-Herrera
2015-01-01
Full Text Available This paper presents a practical method for calculating the electrical energy generated by a PV panel (kWhr through MATLAB simulations based on the mathematical model of the cell, which obtains the “Mean Maximum Power Point” (MMPP in the characteristic V-P curve, in response to evaluating historical climate data at specific location. This five-step method calculates through MMPP per day, per month, or per year, the power yield by unit area, then electrical energy generated by PV panel, and its real conversion efficiency. To validate the method, it was applied to Sewage Treatment Plant for a Group of Drinking Water and Sewerage of Yucatan (JAPAY, México, testing 250 Wp photovoltaic panels of five different manufacturers. As a result, the performance, the real conversion efficiency, and the electricity generated by five different PV panels in evaluation were obtained and show the best technical-economic option to develop the PV generation project.
Mathematical methods for physical and analytical chemistry
Goodson, David Z
2011-01-01
Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical
Routes to chaos in continuous mechanical systems. Part 1: Mathematical models and solution methods
International Nuclear Information System (INIS)
Awrejcewicz, J.; Krysko, V.A.; Papkova, I.V.; Krysko, A.V.
2012-01-01
In this work chaotic dynamics of continuous mechanical systems such as flexible plates and shallow shells is studied. Namely, a wide class of the mentioned objects is analyzed including flexible plates and cylinder-like panels of infinite length, rectangular spherical and cylindrical shells, closed cylindrical shells, axially symmetric plates, as well as spherical and conical shells. The considered problems are solved by the Bubnov–Galerkin and higher approximation Ritz methods. Convergence and validation of those methods are studied. The Cauchy problems are solved mainly by the fourth Runge-Kutta method, although all variants of the Runge-Kutta methods are considered. New scenarios of transition from regular to chaotic orbits are detected, analyzed and discussed. First part of the paper is devoted to the validation of results obtained. This is why the same infinite length problem is reduced to that of a finite dimension through the FDM (Finite Difference Method) with the approximation order of O(c 2 ), BGM (Bubnov–Galerkin Method) or RM (Ritz Method) with higher approximations. We pay attention not only to convergence of the mentioned methods regarding the number of partitions of the interval [0, 1] in the FDM or regarding the number of terms in the series applied either in the BGM or RM methods, but we also compare the results obtained via the mentioned different approaches. Furthermore, a so called practical convergence of different Runge-Kutta type methods are tested starting from the second and ending with the eighth order. Second part of the work is devoted to a study of routes to chaos in the so far mentioned mechanical objects. For this purpose the so-called “dynamical charts” are constructed versus control parameters {q 0 , ω p }, where q 0 denotes the loading amplitude, and ω p is the loading frequency. The charts are constructed through analyses of frequency power spectra and the largest Lyapunov exponent (LE). Analysis of the mentioned charts
Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.
Suppes, Patrick
This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…
The Spectrum of Mathematical Models.
Karplus, Walter J.
1983-01-01
Mathematical modeling problems encountered in many disciplines are discussed in terms of the modeling process and applications of models. The models are classified according to three types of abstraction: continuous-space-continuous-time, discrete-space-continuous-time, and discrete-space-discrete-time. Limitations in different kinds of modeling…
Mathematical modelling of fracture hydrology
International Nuclear Information System (INIS)
Herbert, A.W.; Hodgkinson, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.
1985-06-01
This report summarises the work performed between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology', under the following headings: 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments and 5) Analysis of field experiments. (author)
Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics
Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.
2016-01-01
Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…
Mathematical Modelling of Intraretinal Oxygen Partial Pressure ...
African Journals Online (AJOL)
Purpose: The aim of our present work is to develop a simple steady state model for intraretinal oxygen partial pressure distribution and to investigate the effect of various model parameters on the partial pressure distribution under adapted conditions of light and darkness.. Method: A simple eight-layered mathematical model ...
Mathematical modeling and optimization of complex structures
Repin, Sergey; Tuovinen, Tero
2016-01-01
This volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include: * Computer simulation methods in mechanics, physics, and biology; * Variational problems and methods; minimiz...
Mathematical modelling of two-phase flows
International Nuclear Information System (INIS)
Komen, E.M.J.; Stoop, P.M.
1992-11-01
A gradual shift from methods based on experimental correlations to methods based on mathematical models to study 2-phase flows can be observed. The latter can be used to predict dynamical behaviour of 2-phase flows. This report discusses various mathematical models for the description of 2-phase flows. An important application of these models can be found in thermal-hydraulic computer codes used for analysis of the thermal-hydraulic behaviour of water cooled nuclear power plants. (author). 17 refs., 7 figs., 6 tabs
Mathematical model in economic environmental problems
Energy Technology Data Exchange (ETDEWEB)
Nahorski, Z. [Polish Academy of Sciences, Systems Research Inst. (Poland); Ravn, H.F. [Risoe National Lab. (Denmark)
1996-12-31
The report contains a review of basic models and mathematical tools used in economic regulation problems. It starts with presentation of basic models of capital accumulation, resource depletion, pollution accumulation, and population growth, as well as construction of utility functions. Then the one-state variable model is discussed in details. The basic mathematical methods used consist of application of the maximum principle and phase plane analysis of the differential equations obtained as the necessary conditions of optimality. A summary of basic results connected with these methods is given in appendices. (au) 13 ills.; 17 refs.
Mathematical Modeling: Challenging the Figured Worlds of Elementary Mathematics
Wickstrom, Megan H.
2017-01-01
This article is a report on a teacher study group that focused on three elementary teachers' perceptions of mathematical modeling in contrast to typical mathematics instruction. Through the theoretical lens of figured worlds, I discuss how mathematics instruction was conceptualized across the classrooms in terms of artifacts, discourse, and…
Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape
Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.
2014-01-01
This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…
Directory of Open Access Journals (Sweden)
Hoxha Gezim
2017-11-01
Full Text Available The paper addresses the problem to vehicle speed calculation at road accidents. To determine the speed are used the PC Crash software and Virtual Crash. With both methods are analysed concrete cases of road accidents. Calculation methods and comparing results are present for analyse. These methods consider several factors such are: the front part of the vehicle, the technical feature of the vehicle, car angle, remote relocation after the crash, road conditions etc. Expected results with PC Crash software and Virtual Crash are shown in tabular graphics and compared in mathematical methods.
Using Covariation Reasoning to Support Mathematical Modeling
Jacobson, Erik
2014-01-01
For many students, making connections between mathematical ideas and the real world is one of the most intriguing and rewarding aspects of the study of mathematics. In the Common Core State Standards for Mathematics (CCSSI 2010), mathematical modeling is highlighted as a mathematical practice standard for all grades. To engage in mathematical…
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
Mathematical models in biology bringing mathematics to life
Ferraro, Maria; Guarracino, Mario
2015-01-01
This book presents an exciting collection of contributions based on the workshop “Bringing Maths to Life” held October 27-29, 2014 in Naples, Italy. The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content...
Authentic Teaching Experiences in Secondary Mathematics Methods
Stickles, Paula R.
2015-01-01
Often secondary mathematics methods courses include classroom peer teaching, but many pre-service teachers find it challenging to teach their classmate peers as there are no discipline issues and little mathematical discourse as the "students" know the content. We will share a recent change in our methods course where pre-service…
The 24-Hour Mathematical Modeling Challenge
Galluzzo, Benjamin J.; Wendt, Theodore J.
2015-01-01
Across the mathematics curriculum there is a renewed emphasis on applications of mathematics and on mathematical modeling. Providing students with modeling experiences beyond the ordinary classroom setting remains a challenge, however. In this article, we describe the 24-hour Mathematical Modeling Challenge, an extracurricular event that exposes…
Mathematical Modeling: A Bridge to STEM Education
Kertil, Mahmut; Gurel, Cem
2016-01-01
The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…
Mathematical methods of electromagnetic theory
Friedrichs, Kurt O
2014-01-01
This text provides a mathematically precise but intuitive introduction to classical electromagnetic theory and wave propagation, with a brief introduction to special relativity. While written in a distinctive, modern style, Friedrichs manages to convey the physical intuition and 19th century basis of the equations, with an emphasis on conservation laws. Particularly striking features of the book include: (a) a mathematically rigorous derivation of the interaction of electromagnetic waves with matter, (b) a straightforward explanation of how to use variational principles to solve problems in el
Mathematical methods of classical physics
Cortés, Vicente
2017-01-01
This short primer, geared towards students with a strong interest in mathematically rigorous approaches, introduces the essentials of classical physics, briefly points out its place in the history of physics and its relation to modern physics, and explains what benefits can be gained from a mathematical perspective. As a starting point, Newtonian mechanics is introduced and its limitations are discussed. This leads to and motivates the study of different formulations of classical mechanics, such as Lagrangian and Hamiltonian mechanics, which are the subjects of later chapters. In the second part, a chapter on classical field theories introduces more advanced material. Numerous exercises are collected in the appendix.
Mathematical modelling of fracture hydrology
International Nuclear Information System (INIS)
Herbert, A.W.; Hodgkindon, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.
1985-01-01
This report reviews work carried out between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology' which forms part of the CEC Mirage project (CEC 1984. Come 1985. Bourke et. al. 1983). It describes the development and use of a variety of mathematical models for the flow of water and transport of radionuclides in flowing groundwater. These models have an important role to play in assessing the long-term safety of radioactive waste burial, and in the planning and interpretation of associated experiments. The work is reported under five headings, namely 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments, 5) Analysis of field experiments
Innovative methods in teaching mathematics
Чепелева, Т. И.
2013-01-01
The report outlines the main directions of innovation in the teaching of higher mathematics at the university. The basic technological approach is suggested when creating lecture presentations such as their color characteristics of fonts, the amount of information on a slide, etc., which is based on teaching experience and is suitable for development of other educational presentations.
An introduction to mathematical modeling of infectious diseases
Li, Michael Y
2018-01-01
This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies. The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis. Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases. Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.
Mathematical Modeling in the Undergraduate Curriculum
Toews, Carl
2012-01-01
Mathematical modeling occupies an unusual space in the undergraduate mathematics curriculum: typically an "advanced" course, it nonetheless has little to do with formal proof, the usual hallmark of advanced mathematics. Mathematics departments are thus forced to decide what role they want the modeling course to play, both as a component of the…
Teachers' Conceptions of Mathematical Modeling
Gould, Heather
2013-01-01
The release of the "Common Core State Standards for Mathematics" in 2010 resulted in a new focus on mathematical modeling in United States curricula. Mathematical modeling represents a way of doing and understanding mathematics new to most teachers. The purpose of this study was to determine the conceptions and misconceptions held by…
Keystone Method: A Learning Paradigm in Mathematics
Siadat, M. Vali; Musial, Paul M.; Sagher, Yoram
2008-01-01
This study reports the effects of an integrated instructional program (the Keystone Method) on the students' performance in mathematics and reading, and tracks students' persistence and retention. The subject of the study was a large group of students in remedial mathematics classes at the college, willing to learn but lacking basic educational…
Mathematical modeling of biological processes
Friedman, Avner
2014-01-01
This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.
Xu, Lei; Zheng, Xiaoxiang; Zhang, Hengyi; Yu, Yajun
1998-09-01
Accurate edge detection of retinal vessels is a prerequisite for quantitative analysis of subtle morphological changes of retinal vessels under different pathological conditions. A novel method for edge detection of retinal vessels is presented in this paper. Methods: (1) Wavelet-based image preprocessing. (2) The signed edge detection algorithm and mathematical morphological operation are applied to get the approximate regions that contain retinal vessels. (3) By convolving the preprocessed image with a LoG operator only on the detected approximate regions of retinal vessels, followed by edges refining, clear edge maps of the retinal vessels are fast obtained. Results: A detailed performance evaluation together with the existing techniques is given to demonstrate the strong features of our method. Conclusions: True edge locations of retinal vessels can be fast detected with continuous structures of retinal vessels, less non- vessel segments left and insensitivity to noise. The method is also suitable for other application fields such as road edge detection.
Modeling interdisciplinary activities involving Mathematics
DEFF Research Database (Denmark)
Iversen, Steffen Møllegaard
2006-01-01
In this paper a didactical model is presented. The goal of the model is to work as a didactical tool, or conceptual frame, for developing, carrying through and evaluating interdisciplinary activities involving the subject of mathematics and philosophy in the high schools. Through the terms...... of Horizontal Intertwining, Vertical Structuring and Horizontal Propagation the model consists of three phases, each considering different aspects of the nature of interdisciplinary activities. The theoretical modelling is inspired by work which focuses on the students abilities to concept formation in expanded...... domains (Michelsen, 2001, 2005a, 2005b). Furthermore the theoretical description rest on a series of qualitative interviews with teachers from the Danish high school (grades 9-11) conducted recently. The special case of concrete interdisciplinary activities between mathematics and philosophy is also...
Mathematical methods in geometrization of coal field
Shurygin, D. N.; Kalinchenko, V. M.; Tkachev, V. A.; Tretyak, A. Ya
2017-10-01
In the work, the approach to increase overall performance of collieries on the basis of an increase in accuracy of geometrization of coal thicknesses is considered. The sequence of stages of mathematical modelling of spatial placing of indicators of a deposit taking into account allocation of homogeneous sites of thickness and an establishment of quantitative interrelations between mountain-geological indicators of coal layers is offered. As a uniform mathematical method for modelling of various interrelations, it is offered to use a method of the group accounting of arguments (MGUA), one of versions of the regressive analysis. This approach can find application during delimitation between geological homogeneous sites of coal thicknesses in the form of a linear discriminant function. By an example of division into districts of a mine field in the conditions of mine “Sadkinsky” (East Donbass), the use of the complex approach for forecasting of zones of the small amplitude of disturbance of a coal layer on the basis of the discriminant analysis and MGUA is shown.
Some mathematical methods of physics
Goertzel, Gerald
2014-01-01
This well-rounded, thorough treatment for advanced undergraduates and graduate students introduces basic concepts of mathematical physics involved in the study of linear systems. The text emphasizes eigenvalues, eigenfunctions, and Green's functions. Prerequisites include differential equations and a first course in theoretical physics.The three-part presentation begins with an exploration of systems with a finite number of degrees of freedom (described by matrices). In part two, the concepts developed for discrete systems in previous chapters are extended to continuous systems. New concepts u
Exploring Yellowstone National Park with Mathematical Modeling
Wickstrom, Megan H.; Carr, Ruth; Lackey, Dacia
2017-01-01
Mathematical modeling, a practice standard in the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010), is a process by which students develop and use mathematics as a tool to make sense of the world around them. Students investigate a real-world situation by asking mathematical questions; along the way, they need to decide how to use…
Strategies to Support Students' Mathematical Modeling
Jung, Hyunyi
2015-01-01
An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…
Mathematical Modeling in the High School Curriculum
Hernández, Maria L.; Levy, Rachel; Felton-Koestler, Mathew D.; Zbiek, Rose Mary
2016-01-01
In 2015, mathematics leaders and instructors from the Society for Industrial and Applied Mathematics (SIAM) and the Consortium for Mathematics and Its Applications (COMAP), with input from NCTM, came together to write the "Guidelines for Assessment and Instruction in Mathematical Modeling Education" (GAIMME) report as a resource for…
Mathematical methods for physicists a comprehensive guide
Arfken, George B; Harris, Frank E
2012-01-01
Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus w
Mathematical optics classical, quantum, and computational methods
Lakshminarayanan, Vasudevan
2012-01-01
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical wave
Mathematical analysis and numerical methods for science and technology
Dautray, Robert
These 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which ...
Mathematical methods in elasticity imaging
Ammari, Habib; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul
2015-01-01
This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic...
A course in mathematical methods for physicists
Herman, Russell L
2014-01-01
Based on the author’s junior-level undergraduate course, this introductory textbook is designed for a course in mathematical physics. Focusing on the physics of oscillations and waves, A Course in Mathematical Methods for Physicists helps students understand the mathematical techniques needed for their future studies in physics. It takes a bottom-up approach that emphasizes physical applications of the mathematics. The book offers: •A quick review of mathematical prerequisites, proceeding to applications of differential equations and linear algebra •Classroom-tested explanations of complex and Fourier analysis for trigonometric and special functions •Coverage of vector analysis and curvilinear coordinates for solving higher dimensional problems •Sections on nonlinear dynamics, variational calculus, numerical solutions of differential equations, and Green's functions
Opinions of Secondary School Mathematics Teachers on Mathematical Modelling
Tutak, Tayfun; Güder, Yunus
2013-01-01
The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…
Mathematical Model of Age Aggression
Golovinski, P. A.
2013-01-01
We formulate a mathematical model of competition for resources between representatives of different age groups. A nonlinear kinetic integral-differential equation of the age aggression describes the process of redistribution of resources. It is shown that the equation of the age aggression has a stationary solution, in the absence of age-dependency in the interaction of different age groups. A numerical simulation of the evolution of resources for different initial distributions has done. It ...
Mathematical models for therapeutic approaches to control HIV disease transmission
Roy, Priti Kumar
2015-01-01
The book discusses different therapeutic approaches based on different mathematical models to control the HIV/AIDS disease transmission. It uses clinical data, collected from different cited sources, to formulate the deterministic as well as stochastic mathematical models of HIV/AIDS. It provides complementary approaches, from deterministic and stochastic points of view, to optimal control strategy with perfect drug adherence and also tries to seek viewpoints of the same issue from different angles with various mathematical models to computer simulations. The book presents essential methods and techniques for students who are interested in designing epidemiological models on HIV/AIDS. It also guides research scientists, working in the periphery of mathematical modeling, and helps them to explore a hypothetical method by examining its consequences in the form of a mathematical modelling and making some scientific predictions. The model equations, mathematical analysis and several numerical simulations that are...
Mathematical modeling of cancer metabolism.
Medina, Miguel Ángel
2018-04-01
Systemic approaches are needed and useful for the study of the very complex issue of cancer. Modeling has a central position in these systemic approaches. Metabolic reprogramming is nowadays acknowledged as an essential hallmark of cancer. Mathematical modeling could contribute to a better understanding of cancer metabolic reprogramming and to identify new potential ways of therapeutic intervention. Herein, I review several alternative approaches to metabolic modeling and their current and future impact in oncology. Copyright © 2018 Elsevier B.V. All rights reserved.
Mathematical models of granular matter
Mariano, Paolo; Giovine, Pasquale
2008-01-01
Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.
Mathematical model of compact type evaporator
Borovička, Martin; Hyhlík, Tomáš
2018-06-01
In this paper, development of the mathematical model for evaporator used in heat pump circuits is covered, with focus on air dehumidification application. Main target of this ad-hoc numerical model is to simulate heat and mass transfer in evaporator for prescribed inlet conditions and different geometrical parameters. Simplified 2D mathematical model is developed in MATLAB SW. Solvers for multiple heat and mass transfer problems - plate surface temperature, condensate film temperature, local heat and mass transfer coefficients, refrigerant temperature distribution, humid air enthalpy change are included as subprocedures of this model. An automatic procedure of data transfer is developed in order to use results of MATLAB model in more complex simulation within commercial CFD code. In the end, Proper Orthogonal Decomposition (POD) method is introduced and implemented into MATLAB model.
Summer Camp of Mathematical Modeling in China
Tian, Xiaoxi; Xie, Jinxing
2013-01-01
The Summer Camp of Mathematical Modeling in China is a recently created experience designed to further Chinese students' academic pursuits in mathematical modeling. Students are given more than three months to research on a mathematical modeling project. Researchers and teams with outstanding projects are invited to the Summer Camp to present…
Continuum mechanics the birthplace of mathematical models
Allen, Myron B
2015-01-01
Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer. This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe
Mathematics for natural scientists II advanced methods
Kantorovich, Lev
2016-01-01
This book covers the advanced mathematical techniques useful for physics and engineering students, presented in a form accessible to physics students, avoiding precise mathematical jargon and laborious proofs. Instead, all proofs are given in a simplified form that is clear and convincing for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each chapter. Mathematics for Natural Scientists II: Advanced Methods is the second of two volumes. It follows the first volume on Fundamentals and Basics.
Energy Technology Data Exchange (ETDEWEB)
Fajkos, A.; Klimek, M.
1980-01-01
A possibility of using a mathematical-logical modeling to improve the quality of mine shaft operation planning in Czechloslovakia based on the example of the Sverma mine in Ostrova with complex mining-geological conditions is studied. For the basic criteria we assumed: extraction plant, number of shifts in the long walls, time period for beginning and ending long wall operation, processing of reserves with consideration of existing conditions, output and dip angle of a formation, quality of extracted coal, and also: time intervals for processing separate formations, limitation of extraction load in a long wall in connection with gas emission, timbering, the necessity of insuring normal operating conditions, concentration of extraction, time relationship of preparatory and extraction operations.
Structured Mathematical Modeling of Industrial Boiler
Aziz, Abdullah Nur; Nazaruddin, Yul Yunazwin; Siregar, Parsaulian; Bindar, Yazid
2014-01-01
As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. T...
Mathematical modelling of the decomposition of explosives
International Nuclear Information System (INIS)
Smirnov, Lev P
2010-01-01
Studies on mathematical modelling of the molecular and supramolecular structures of explosives and the elementary steps and overall processes of their decomposition are analyzed. Investigations on the modelling of combustion and detonation taking into account the decomposition of explosives are also considered. It is shown that solution of problems related to the decomposition kinetics of explosives requires the use of a complex strategy based on the methods and concepts of chemical physics, solid state physics and theoretical chemistry instead of empirical approach.
Mathematical methods for physicists and engineers
Collins, Royal Eugene
2011-01-01
This practical, highly readable text provides physics and engineering students with the essential mathematical tools for thorough comprehension of their disciplines. Featuring all the necessary topics in applied mathematics in the form of programmed instruction, the text can be understood by advanced undergraduates and beginning graduate students without any assistance from the instructor. Topics include elementary vector calculus, matrix algebra, and linear vector operations; the many and varied methods of solving linear boundary value problems, including the more common special functions o
Mathematical Modeling of Loop Heat Pipes
Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.
1998-01-01
The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.
Mathematical Modeling in Combustion Science
Takeno, Tadao
1988-01-01
An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.
Terleev, V.; Ginevsky, R.; Lazarev, V.; Nikonorov, A.; Togo, I.; Topaj, A.; Moiseev, K.; Abakumov, E.; Melnichuk, A.; Dunaieva, I.
2017-10-01
A mathematical model of the hysteresis of the water-retention capacity of the soil is proposed. The parameters of the model are interpreted within the framework of physical concepts of the structure and capillary properties of soil pores. On the basis of the model, a computer program with an interface that allows for dialogue with the user is developed. The program has some of options: visualization of experimental data; identification of the model parameters with use of measured data by means of an optimizing algorithm; graphical presentation of the hysteresis loop with application of the assigned parameters. Using the program, computational experiments were carried out, which consisted in verifying the identifiability of the model parameters from data on the main branches, and also in testing the ability to predict the scanning branches of the hysteresis loop. For the experiments, literature data on two sandy soils were used. The absence of an “artificial pump effect” is proved. A sufficiently high accuracy of the prediction of the scanning branches of the hysteresis loop has been achieved in comparison with the three models of the precursors. The practical importance of the proposed model and computer program, which is developed on its basis, is to ensure the calculation of precision irrigation rates. The application of such rates in irrigation farming will help to prevent excess moisture from flowing beyond the root layer of the soil and, thus, minimize the unproductive loss of irrigation water and agrochemicals, as well as reduce the risk of groundwater contamination and natural water eutrophication.
Modeling life the mathematics of biological systems
Garfinkel, Alan; Guo, Yina
2017-01-01
From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. This book develops the mathematical tools essential for students in the life sciences to describe these interacting systems and to understand and predict their behavior. Complex feedback relations and counter-intuitive responses are common in dynamical systems in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models ...
Mathematical models of natural gas consumption
International Nuclear Information System (INIS)
Sabo, Kristian; Scitovski, Rudolf; Vazler, Ivan; Zekic-Susac, Marijana
2011-01-01
In this paper we consider the problem of natural gas consumption hourly forecast on the basis of hourly movement of temperature and natural gas consumption in the preceding period. There are various methods and approaches for solving this problem in the literature. Some mathematical models with linear and nonlinear model functions relating to natural gas consumption forecast with the past natural gas consumption data, temperature data and temperature forecast data are mentioned. The methods are tested on concrete examples referring to temperature and natural gas consumption for the area of the city of Osijek (Croatia) from the beginning of the year 2008. The results show that most acceptable forecast is provided by mathematical models in which natural gas consumption and temperature are related explicitly.
Teaching Mathematical Modelling for Earth Sciences via Case Studies
Yang, Xin-She
2010-05-01
Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).
Mathematical models of bipolar disorder
Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.
2009-07-01
We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.
mathematical models for estimating radio channels utilization
African Journals Online (AJOL)
2017-08-08
Aug 8, 2017 ... Mathematical models for radio channels utilization assessment by real-time flows transfer in ... data transmission networks application having dynamic topology ..... Journal of Applied Mathematics and Statistics, 56(2): 85–90.
Mathematical models in medicine: Diseases and epidemics
International Nuclear Information System (INIS)
Witten, M.
1987-01-01
This volume presents the numerous applications of mathematics in the life sciences and medicine, and demonstrates how mathematics and computers have taken root in these fields. The work covers a variety of techniques and applications including mathematical and modelling methodology, modelling/simulation technology, and philosophical issues in model formulation, leading to speciality medical modelling, artificial intelligence, psychiatric models, medical decision making, and molecular modelling
Danylov, Iu V; Motkov, K V; Shevchenko, T I
2014-01-01
The morphometric estimation of parenchyma and stroma condition included the determination of 25 parameters in a prostate gland at 27 persons. The mathematical model of morphogenesis of prostate gland was created by Bayes' method. The method of differential diagnosis of a prostate gland tissues' changes conditioned by the influence of the Chernobyl factor and/or unfavorable terms of the work in underground coal mines have been worked out. Its practical use provides exactness and reliability of the diagnosis (not less than 95%), independence from the level of the qualification and personal experience of the doctor, allows us to unify, optimize and individualize the diagnostic algorithms, answer the requirements of evidential medicine.
Danylov, Iu V; Motkov, K V; Shevchenko, T I
2014-01-01
The morphometric estimation of parenchyma and stroma condition included the determination of 29 parameters in testicles at 27 persons. The mathematical model of morphogenesis of testicles was created by Bayes' method. The method of differential diagnosis of testicles tissues' changes conditioned by the influence of the Chernobyl factor and/or unfavorable terms of the work in underground coal mines have been worked out. Its practical use provides exactness and reliability of the diagnosis (not less than 95%), independence from the level of the qualification and personal experience of the doctor, allows us to unify, optimize and individualize the diagnostic algorithms, answer the requirements of evidential medicine.
Constraint theory multidimensional mathematical model management
Friedman, George J
2017-01-01
Packed with new material and research, this second edition of George Friedman’s bestselling Constraint Theory remains an invaluable reference for all engineers, mathematicians, and managers concerned with modeling. As in the first edition, this text analyzes the way Constraint Theory employs bipartite graphs and presents the process of locating the “kernel of constraint” trillions of times faster than brute-force approaches, determining model consistency and computational allowability. Unique in its abundance of topological pictures of the material, this book balances left- and right-brain perceptions to provide a thorough explanation of multidimensional mathematical models. Much of the extended material in this new edition also comes from Phan Phan’s PhD dissertation in 2011, titled “Expanding Constraint Theory to Determine Well-Posedness of Large Mathematical Models.” Praise for the first edition: "Dr. George Friedman is indisputably the father of the very powerful methods of constraint theory...
Structured Mathematical Modeling of Industrial Boiler
Directory of Open Access Journals (Sweden)
Abdullah Nur Aziz
2014-04-01
Full Text Available As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. The model describes the temperature dynamics of the boiler subsystems such as economizer, steam drum, desuperheater, and superheater. The mathematical model was examined using industrial boiler performance test data.It can be used to build a boiler simulator or help operators run a boiler effectively.
Mathematical modeling of reciprocating pump
International Nuclear Information System (INIS)
Lee, Jong Kyeom; Jung, Jun Ki; Chai, Jang Bom; Lee, Jin Woo
2015-01-01
A new mathematical model is presented for the analysis and diagnosis of a high-pressure reciprocating pump system with three cylinders. The kinematic and hydrodynamic behaviors of the pump system are represented by the piston displacements, volume flow rates and pressures in its components, which are expressed as functions of the crankshaft angle. The flow interaction among the three cylinders, which was overlooked in the previous models, is considered in this model and its effect on the cylinder pressure profiles is investigated. The tuning parameters in the mathematical model are selected, and their values are adjusted to match the simulated and measured cylinder pressure profiles in each cylinder in a normal state. The damage parameter is selected in an abnormal state, and its value is adjusted to match the simulated and ensured pressure profiles under the condition of leakage in a valve. The value of the damage parameter over 300 cycles is calculated, and its probability density function is obtained for diagnosis and prognosis on the basis of the probabilistic feature of valve leakage.
Explorations in Elementary Mathematical Modeling
Directory of Open Access Journals (Sweden)
Mazen Shahin
2010-06-01
Full Text Available In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and cooperative learning into this inquiry-based learning course where students work in small groups on carefully designed activities and utilize available software to support problem solving and understanding of real life situations. We emphasize the use of graphical and numerical techniques, rather than theoretical techniques, to investigate and analyze the behavior of the solutions of the difference equations.As an illustration of our approach, we will show a nontraditional and efficient way of introducing models from finance and economics. We will also present an interesting model of supply and demand with a lag time, which is called the cobweb theorem in economics. We introduce a sample of a research project on a technique of removing chaotic behavior from a chaotic system.
Ingenious mathematical problems and methods
Graham, Louis A
2013-01-01
Collection of 100 of the best submissions to a math puzzle column features problems in engineering situations, logic, number theory, and geometry. Most solutions include details of several different methods.
Mathematical modeling models, analysis and applications
Banerjee, Sandip
2014-01-01
""…the reader may find quite a few interesting examples illustrating several important methods used in applied mathematics. … it may be well used as a valuable source of interesting examples as well as complementary reading in a number of courses.""-Svitlana P. Rogovchenko, Zentralblatt MATH 1298
Reflexion and control mathematical models
Novikov, Dmitry A
2014-01-01
This book is dedicated to modern approaches to mathematical modeling of reflexive processes in control. The authors consider reflexive games that describe the gametheoretical interaction of agents making decisions based on a hierarchy of beliefs regarding (1) essential parameters (informational reflexion), (2) decision principles used by opponents (strategic reflexion), (3) beliefs about beliefs, and so on. Informational and reflexive equilibria in reflexive games generalize a series of well-known equilibrium concepts in noncooperative games and models of collective behavior. These models allow posing and solving the problems of informational and reflexive control in organizational, economic, social and other systems, in military applications, etc. (the interested reader will find in the book over 30 examples of possible applications in these fields) and describing uniformly many psychological/sociological phenomena connected with reflexion, viz., implicit control, informational control via the mass media, re...
SOME TRENDS IN MATHEMATICAL MODELING FOR BIOTECHNOLOGY
Directory of Open Access Journals (Sweden)
O. M. Klyuchko
2018-02-01
Full Text Available The purpose of present research is to demonstrate some trends of development of modeling methods for biotechnology according to contemporary achievements in science and technique. At the beginning the general approaches are outlined, some types of classifications of modeling methods are observed. The role of mathematic methods modeling for biotechnology in present époque of information computer technologies intensive development is studied and appropriate scheme of interrelation of all these spheres is proposed. Further case studies are suggested: some mathematic models in three different spaces (1D, 2D, 3D models are described for processes in living objects of different levels of hierarchic organization. In course of this the main attention was paid to some processes modeling in neurons as well as in their aggregates of different forms, including glioma cell masses (1D, 2D, 3D brain processes models. Starting from the models that have only theoretical importance for today, we describe at the end a model which application may be important for the practice. The work was done after the analysis of approximately 250 current publications in fields of biotechnology, including the authors’ original works.
Karpušenkaitė, Aistė; Ruzgas, Tomas; Denafas, Gintaras
2018-05-01
The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts. Developed models' abilities to forecast short- and mid-term forecasts were tested using prediction horizon.
Soni, T G; Desai, J U; Nagda, C D; Gandhi, T R; Chotai, N P
2008-01-01
The US Food and Drug Administration's (FDA's) guidance for industry on dissolution testing of immediate-release solid oral dosage forms describes that drug dissolution may be the rate limiting step for drug absorption in the case of low solubility/high permeability drugs (BCS class II drugs). US FDA Guidance describes the model-independent mathematical approach proposed by Moore and Flanner for calculating a similarity factor (f2) of dissolution across a suitable time interval. In the present study, the similarity factor was calculated on dissolution data of two marketed aceclofenac tablets (a BCS class II drug) using various weighing approaches proposed by Gohel et al. The proposed approaches were compared with a conventional approach (W = 1). On the basis of consideration of variability, preference is given in the order of approach 3 > approach 2 > approach 1 as approach 3 considers batch-to-batch as well as within-samples variability and shows best similarity profile. Approach 2 considers batch-to batch variability with higher specificity than approach 1.
Mathematics in Nature Modeling Patterns in the Natural World
Adam, John A
2011-01-01
From rainbows, river meanders, and shadows to spider webs, honeycombs, and the markings on animal coats, the visible world is full of patterns that can be described mathematically. Examining such readily observable phenomena, this book introduces readers to the beauty of nature as revealed by mathematics and the beauty of mathematics as revealed in nature.Generously illustrated, written in an informal style, and replete with examples from everyday life, Mathematics in Nature is an excellent and undaunting introduction to the ideas and methods of mathematical modeling. It illustrates how mathem
Mathematical models in biological discovery
Walter, Charles
1977-01-01
When I was asked to help organize an American Association for the Advancement of Science symposium about how mathematical models have con tributed to biology, I agreed immediately. The subject is of immense importance and wide-spread interest. However, too often it is discussed in biologically sterile environments by "mutual admiration society" groups of "theoreticians", many of whom have never seen, and most of whom have never done, an original scientific experiment with the biolog ical materials they attempt to describe in abstract (and often prejudiced) terms. The opportunity to address the topic during an annual meeting of the AAAS was irresistable. In order to try to maintain the integrity ;,f the original intent of the symposium, it was entitled, "Contributions of Mathematical Models to Biological Discovery". This symposium was organized by Daniel Solomon and myself, held during the 141st annual meeting of the AAAS in New York during January, 1975, sponsored by sections G and N (Biological and Medic...
Mathematical models of viscous friction
Buttà, Paolo; Marchioro, Carlo
2015-01-01
In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...
Mathematical study of mixing models
International Nuclear Information System (INIS)
Lagoutiere, F.; Despres, B.
1999-01-01
This report presents the construction and the study of a class of models that describe the behavior of compressible and non-reactive Eulerian fluid mixtures. Mixture models can have two different applications. Either they are used to describe physical mixtures, in the case of a true zone of extensive mixing (but then this modelization is incomplete and must be considered only as a point of departure for the elaboration of models of mixtures actually relevant). Either they are used to solve the problem of the numerical mixture. This problem appears during the discretization of an interface which separates fluids having laws of different state: the zone of numerical mixing is the set of meshes which cover the interface. The attention is focused on numerical mixtures, for which the hypothesis of non-miscibility (physics) will bring two equations (the sixth and the eighth of the system). It is important to emphasize that even in the case of the only numerical mixture, the presence in one and same place (same mesh) of several fluids have to be taken into account. This will be formalized by the possibility for mass fractions to take all values between 0 and 1. This is not at odds with the equations that derive from the hypothesis of non-miscibility. One way of looking at things is to consider that there are two scales of observation: the physical scale at which one observes the separation of fluids, and the numerical scale, given by the fineness of the mesh, to which a mixture appears. In this work, mixtures are considered from the mathematical angle (both in the elaboration phase and during their study). In particular, Chapter 5 shows a result of model degeneration for a non-extended mixing zone (case of an interface): this justifies the use of models in the case of numerical mixing. All these models are based on the classical model of non-viscous compressible fluids recalled in Chapter 2. In Chapter 3, the central point of the elaboration of the class of models is
Infinitesimal methods of mathematical analysis
Pinto, J S
2004-01-01
This modern introduction to infinitesimal methods is a translation of the book Métodos Infinitesimais de Análise Matemática by José Sousa Pinto of the University of Aveiro, Portugal and is aimed at final year or graduate level students with a background in calculus. Surveying modern reformulations of the infinitesimal concept with a thoroughly comprehensive exposition of important and influential hyperreal numbers, the book includes previously unpublished material on the development of hyperfinite theory of Schwartz distributions and its application to generalised Fourier transforms and harmon
Mathematical modeling courses for Media technology students
DEFF Research Database (Denmark)
Timcenko, Olga
2009-01-01
This paper addresses curriculum development for Mathematical Modeling course at Medialogy education. Medialogy as a study line was established in 2002 at Faculty for Engineering and Natural Sciences at Aalborg University, and mathematics curriculum has already been revised three times, Mathematic...
Dynamics of mathematical models in biology bringing mathematics to life
Zazzu, Valeria; Guarracino, Mario
2016-01-01
This volume focuses on contributions from both the mathematics and life science community surrounding the concepts of time and dynamicity of nature, two significant elements which are often overlooked in modeling process to avoid exponential computations. The book is divided into three distinct parts: dynamics of genomes and genetic variation, dynamics of motifs, and dynamics of biological networks. Chapters included in dynamics of genomes and genetic variation analyze the molecular mechanisms and evolutionary processes that shape the structure and function of genomes and those that govern genome dynamics. The dynamics of motifs portion of the volume provides an overview of current methods for motif searching in DNA, RNA and proteins, a key process to discover emergent properties of cells, tissues, and organisms. The part devoted to the dynamics of biological networks covers networks aptly discusses networks in complex biological functions and activities that interpret processes in cells. Moreover, chapters i...
Specific Type of Knowledge Map: Mathematical Model
Milan, Houška; Martina, Beránková
2005-01-01
The article deals with relationships between mathematical models and knowledge maps. The goal of the article is to suggest how to use the mathematical model as a knowledge map and/or as a part (esp. the inference mechanism) of the knowledge system. The results are demonstrated on the case study, when the knowledge from a story is expressed by mathematical model. The model is used for both knowledge warehousing and inferencing new artificially derived knowledge.
Digital image processing mathematical and computational methods
Blackledge, J M
2005-01-01
This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research
Energy Technology Data Exchange (ETDEWEB)
Velickovic, Lj [Institut za nuklearne nauke ' Boris Kidric' , Vinca, Belgrade (Yugoslavia)
1966-07-01
The developed theoretical model is concerned with BF{sub 3} counter placed in the core of a low power reactor (a few MW) where statistical neutron effects are most evident. Our experiments were somewhat different. The detector used was and ionization chamber with double sampling, in ADC and in the time analyzer. The objective of this model was not to obtain precise numerical calculations, but to explain the method and the essentials of the correlation. Introducing all the six groups of delayed neutrons and possibly photoneutrons the model could be improved to obtained more realistic results.
Mathematical modeling of drug dissolution.
Siepmann, J; Siepmann, F
2013-08-30
The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Norhasimah Mahiddin
2014-01-01
Full Text Available The modified decomposition method (MDM and homotopy perturbation method (HPM are applied to obtain the approximate solution of the nonlinear model of tumour invasion and metastasis. The study highlights the significant features of the employed methods and their ability to handle nonlinear partial differential equations. The methods do not need linearization and weak nonlinearity assumptions. Although the main difference between MDM and Adomian decomposition method (ADM is a slight variation in the definition of the initial condition, modification eliminates massive computation work. The approximate analytical solution obtained by MDM logically contains the solution obtained by HPM. It shows that HPM does not involve the Adomian polynomials when dealing with nonlinear problems.
Mathematical modeling and visualization of functional neuroimages
DEFF Research Database (Denmark)
Rasmussen, Peter Mondrup
This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular within the neuroimaging community. Such methods attempt...... sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative influence...... be carefully selected, so that the model and its visualization enhance our ability to interpret the brain. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...
Mathematical modeling and visualization of functional neuroimages
DEFF Research Database (Denmark)
Rasmussen, Peter Mondrup
This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular analysis tools within the neuroimaging community. Such methods...... neuroimaging data sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative...... be carefully selected, so that the model and its visualization enhance our ability to interpret brain function. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...
Ocular hemodynamics and glaucoma: the role of mathematical modeling.
Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A
2013-01-01
To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.
Mathematical models for plant-herbivore interactions
Feng, Zhilan; DeAngelis, Donald L.
2017-01-01
Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.
Surface EXAFS - A mathematical model
International Nuclear Information System (INIS)
Bateman, J.E.
2002-01-01
Extended X-ray absorption fine structure (EXAFS) studies are a powerful technique for studying the chemical environment of specific atoms in a molecular or solid matrix. The study of the surface layers of 'thick' materials introduces special problems due to the different escape depths of the various primary and secondary emission products which follow X-ray absorption. The processes are governed by the properties of the emitted fluorescent photons or electrons and of the material. Their interactions can easily destroy the linear relation between the detected signal and the absorption cross-section. Also affected are the probe depth within the surface and the background superimposed on the detected emission signal. A general mathematical model of the escape processes is developed which permits the optimisation of the detection modality (X-rays or electrons) and the experimental variables to suit the composition of any given surface under study
Mathematical models of human behavior
DEFF Research Database (Denmark)
Møllgaard, Anders Edsberg
at the Technical University of Denmark. The data set includes face-to-face interaction (Bluetooth), communication (calls and texts), mobility (GPS), social network (Facebook), and general background information including a psychological profile (questionnaire). This thesis presents my work on the Social Fabric...... data set, along with work on other behavioral data. The overall goal is to contribute to a quantitative understanding of human behavior using big data and mathematical models. Central to the thesis is the determination of the predictability of different human activities. Upper limits are derived....... Evidence is provided, which implies that the asymmetry is caused by a self-enhancement in the initiation dynamics. These results have implications for the formation of social networks and the dynamics of the links. It is shown that the Big Five Inventory (BFI) representing a psychological profile only...
Mathematical methods in time series analysis and digital image processing
Kurths, J; Maass, P; Timmer, J
2008-01-01
The aim of this volume is to bring together research directions in theoretical signal and imaging processing developed rather independently in electrical engineering, theoretical physics, mathematics and the computer sciences. In particular, mathematically justified algorithms and methods, the mathematical analysis of these algorithms, and methods as well as the investigation of connections between methods from time series analysis and image processing are reviewed. An interdisciplinary comparison of these methods, drawing upon common sets of test problems from medicine and geophysical/enviromental sciences, is also addressed. This volume coherently summarizes work carried out in the field of theoretical signal and image processing. It focuses on non-linear and non-parametric models for time series as well as on adaptive methods in image processing.
A Mathematical Model, Implementation and Study of a Swarm System
Varghese, Blesson; McKee, Gerard
2013-01-01
The work reported in this paper is motivated towards the development of a mathematical model for swarm systems based on macroscopic primitives. A pattern formation and transformation model is proposed. The pattern transformation model comprises two general methods for pattern transformation, namely a macroscopic transformation and mathematical transformation method. The problem of transformation is formally expressed and four special cases of transformation are considered. Simulations to conf...
Mathematical model on Alzheimer's disease.
Hao, Wenrui; Friedman, Avner
2016-11-18
Alzheimer disease (AD) is a progressive neurodegenerative disease that destroys memory and cognitive skills. AD is characterized by the presence of two types of neuropathological hallmarks: extracellular plaques consisting of amyloid β-peptides and intracellular neurofibrillary tangles of hyperphosphorylated tau proteins. The disease affects 5 million people in the United States and 44 million world-wide. Currently there is no drug that can cure, stop or even slow the progression of the disease. If no cure is found, by 2050 the number of alzheimer's patients in the U.S. will reach 15 million and the cost of caring for them will exceed $ 1 trillion annually. The present paper develops a mathematical model of AD that includes neurons, astrocytes, microglias and peripheral macrophages, as well as amyloid β aggregation and hyperphosphorylated tau proteins. The model is represented by a system of partial differential equations. The model is used to simulate the effect of drugs that either failed in clinical trials, or are currently in clinical trials. Based on these simulations it is suggested that combined therapy with TNF- α inhibitor and anti amyloid β could yield significant efficacy in slowing the progression of AD.
Technological geological and mathematical models of petroleum stratum
International Nuclear Information System (INIS)
Zhumagulov, B.T.; Monakhov, V.N.
1997-01-01
The comparative analysis of different mathematical methods of petroleum stratum, the limit of their applicability and hydrodynamical analysis of numerical calculation's results is carried out. The problem of adaptation of the mathematical models and the identification of petroleum stratum parameters are considered. (author)
Leading Undergraduate Research Projects in Mathematical Modeling
Seshaiyer, Padmanabhan
2017-01-01
In this article, we provide some useful perspectives and experiences in mentoring students in undergraduate research (UR) in mathematical modeling using differential equations. To engage students in this topic, we present a systematic approach to the creation of rich problems from real-world phenomena; present mathematical models that are derived…
Scaffolding Mathematical Modelling with a Solution Plan
Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner
2015-01-01
In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…
Modelling and Optimizing Mathematics Learning in Children
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus
2013-01-01
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
Mathematical Modelling as a Professional Task
Frejd, Peter; Bergsten, Christer
2016-01-01
Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…
International Nuclear Information System (INIS)
Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.
1986-11-01
COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods
Mathematics of epidemics on networks from exact to approximate models
Kiss, István Z; Simon, Péter L
2017-01-01
This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate...
Mathematical models of thermohydraulic disturbance sources in the NPP circuits
International Nuclear Information System (INIS)
Proskuryakov, K.N.
1999-01-01
Methods and means of diagnostics of equipment and processes at NPPs allowing one to substantially increase safety and economic efficiency of nuclear power plant operation are considered. Development of mathematical models, describing the occurrence and propagation of violations is conducted
Students’ mathematical learning in modelling activities
DEFF Research Database (Denmark)
Kjeldsen, Tinne Hoff; Blomhøj, Morten
2013-01-01
Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts i...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....
Rival approaches to mathematical modelling in immunology
Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.
2007-08-01
In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.
2012-01-01
D.Ed. The aim of this theses is to find out whether there is any relationship between learners' attitudes and learning difficulties in mathematics: To investigate whether learning difficulties in mathematics are associated with learners' gender. To establish the nature of teachers' perceptions of the learning problem areas in the mathematics curriculum. To find out about the teachers' views on the methods of teaching mathematics, resources, learning of mathematics, extra curricular activit...
MATHEMATICAL MODEL OF GRAIN MICRONIZATION
Directory of Open Access Journals (Sweden)
V. A. Afanas’ev
2014-01-01
Full Text Available Summary. During micronisation grain moisture evaporates mainly in decreasing drying rate period. Grain layer located on the surface of the conveyor micronisers will be regarded as horizontal plate. Due to the fact that the micronisation process the surface of the grain evaporates little moisture (within 2-7 % is assumed constant plate thickness. Because in the process of micronization grain structure is changing, in order to achieve an exact solution of the equations necessary to take into account changes thermophysical, optical and others. Equation of heat transfer is necessary to add a term that is responsible for the infrared heating. Because of the small thickness of the grain, neglecting the processes occurring at the edge of the grain, that is actually consider the problem of an infinite plate. To check the adequacy of the mathematical model of the process of micronisation of wheat grain moisture content must be comparable to the function of time, obtained by solving the system of equations with the measured experimental data of experience. Numerical solution of a system of equations for the period of decreasing drying rate is feasible with the help of the Maple 14, substituting the values of the constants in the system. Calculation of the average relative error does not exceed 7- 10 %, and shows a good agreement between the calculated data and the experimental values.
Fasni, N.; Turmudi, T.; Kusnandi, K.
2017-09-01
This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.
Mathematical methods in quantum and statistical mechanics
International Nuclear Information System (INIS)
Fishman, L.
1977-01-01
The mathematical structure and closed-form solutions pertaining to several physical problems in quantum and statistical mechanics are examined in some detail. The J-matrix method, introduced previously for s-wave scattering and based upon well-established Hilbert Space theory and related generalized integral transformation techniques, is extended to treat the lth partial wave kinetic energy and Coulomb Hamiltonians within the context of square integrable (L 2 ), Laguerre (Slater), and oscillator (Gaussian) basis sets. The theory of relaxation in statistical mechanics within the context of the theory of linear integro-differential equations of the Master Equation type and their corresponding Markov processes is examined. Several topics of a mathematical nature concerning various computational aspects of the L 2 approach to quantum scattering theory are discussed
The prediction of epidemics through mathematical modeling.
Schaus, Catherine
2014-01-01
Mathematical models may be resorted to in an endeavor to predict the development of epidemics. The SIR model is one of the applications. Still too approximate, the use of statistics awaits more data in order to come closer to reality.
A mathematical model for iodine kinetics
International Nuclear Information System (INIS)
Silva, E.A.T. da.
1976-01-01
A mathematical model for the iodine kinetics in thyroid is presented followed by its analytical solution. An eletroanalogical model is also developed for a simplified stage and another is proposed for the main case [pt
Mathematical Modeling Applied to Maritime Security
Center for Homeland Defense and Security
2010-01-01
Center for Homeland Defense and Security, OUT OF THE CLASSROOM Download the paper: Layered Defense: Modeling Terrorist Transfer Threat Networks and Optimizing Network Risk Reduction” Students in Ted Lewis’ Critical Infrastructure Protection course are taught how mathematic modeling can provide...
Lowe, James; Carter, Merilyn; Cooper, Tom
2018-01-01
Mathematical models are conceptual processes that use mathematics to describe, explain, and/or predict the behaviour of complex systems. This article is written for teachers of mathematics in the junior secondary years (including out-of-field teachers of mathematics) who may be unfamiliar with mathematical modelling, to explain the steps involved…
Handayani, I.; Januar, R. L.; Purwanto, S. E.
2018-01-01
This research aims to know the influence of Missouri Mathematics Project Learning Model to Mathematical Problem-solving Ability of Students at Junior High School. This research is a quantitative research and uses experimental research method of Quasi Experimental Design. The research population includes all student of grade VII of Junior High School who are enrolled in the even semester of the academic year 2016/2017. The Sample studied are 76 students from experimental and control groups. The sampling technique being used is cluster sampling method. The instrument is consisted of 7 essay questions whose validity, reliability, difficulty level and discriminating power have been tested. Before analyzing the data by using t-test, the data has fulfilled the requirement for normality and homogeneity. The result of data shows that there is the influence of Missouri mathematics project learning model to mathematical problem-solving ability of students at junior high school with medium effect.
A practical course in differential equations and mathematical modeling
Ibragimov , Nail H
2009-01-01
A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame
Mathematical modeling and computational intelligence in engineering applications
Silva Neto, Antônio José da; Silva, Geraldo Nunes
2016-01-01
This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.
Mathematical modelling of scour: A review
DEFF Research Database (Denmark)
Sumer, B. Mutlu
2007-01-01
A review is presented of mathematical modelling of scour around hydraulic and marine structures. Principal ideas, general features and procedures are given. The paper is organized in three sections: the first two sections deal with the mathematical modelling of scour around piers....../piles and pipelines, respectively, the two benchmark cases, while the third section deals with the mathematical modelling of scour around other structures such as groins, breakwaters and sea walls. A section is also added to discuss potential future research areas. Over one hundred references are included...
Mathematical modeling a chemical engineer's perspective
Rutherford, Aris
1999-01-01
Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus
Mathematical modeling of alcohol distillation columns
Directory of Open Access Journals (Sweden)
Ones Osney Pérez
2011-04-01
Full Text Available New evaluation modules are proposed to extend the scope of a modular simulator oriented to the sugar cane industry, called STA 4.0, in a way that it can be used to carry out x calculation and analysis in ethanol distilleries. Calculation modules were developed for the simulation of the columns that are combined in the distillation area. Mathematical models were supported on materials and energy balances, equilibrium relations and thermodynamic properties of the ethanol-water system. Ponchon-Savarit method was used for the evaluation of the theoretical stages in the columns. A comparison between the results using Ponchon- Savarit method and those obtained applying McCabe-Thiele method was done for a distillation column. These calculation modules for ethanol distilleries were applied to a real case for validation.
Current Mathematical Methods Used in QSAR/QSPR Studies
Directory of Open Access Journals (Sweden)
Peixun Liu
2009-04-01
Full Text Available This paper gives an overview of the mathematical methods currently used in quantitative structure-activity/property relationship (QASR/QSPR studies. Recently, the mathematical methods applied to the regression of QASR/QSPR models are developing very fast, and new methods, such as Gene Expression Programming (GEP, Project Pursuit Regression (PPR and Local Lazy Regression (LLR have appeared on the QASR/QSPR stage. At the same time, the earlier methods, including Multiple Linear Regression (MLR, Partial Least Squares (PLS, Neural Networks (NN, Support Vector Machine (SVM and so on, are being upgraded to improve their performance in QASR/QSPR studies. These new and upgraded methods and algorithms are described in detail, and their advantages and disadvantages are evaluated and discussed, to show their application potential in QASR/QSPR studies in the future.
MATHEMATICAL MODELLING OF AIRCRAFT PILOTING PROSSESS UNDER SPECIFIED FLIGHT PATH
Directory of Open Access Journals (Sweden)
И. Кузнецов
2012-04-01
Full Text Available The author suggests mathematical model of pilot’s activity as follow up system and mathematical methods of pilot’s activity description. The main idea of the model is flight path forming and aircraft stabilization on it during instrument flight. Input of given follow up system is offered to be aircraft deflection from given path observed by pilot by means of sight and output is offered to be pilot’s regulating actions for aircraft stabilization on flight path.
Mathematical Modelling for Micropiles Embedded in Salt Rock
Directory of Open Access Journals (Sweden)
Rădan (Toader Georgiana
2016-03-01
Full Text Available This study presents the results of the mathematical modelling for the micropiles foundation of an investement objective located in Slanic, Prahova county. Three computing models were created and analyzed with software, based on Finite Element Method. With Plaxis 2D model was analyzed the isolated micropile and the three-dimensional analysis was made with Plaxis 3D model, for group of micropiles. For the micropiles foundation was used Midas GTS-NX model. The mathematical models were calibrated based with the in-situ tests results for axially loaded micropiles, embedded in salt rock. The paper presents the results obtained with the three software, the calibration and validation models.
A mathematical model for camera calibration based on straight lines
Directory of Open Access Journals (Sweden)
Antonio M. G. Tommaselli
2005-12-01
Full Text Available In other to facilitate the automation of camera calibration process, a mathematical model using straight lines was developed, which is based on the equivalent planes mathematical model. Parameter estimation of the developed model is achieved by the Least Squares Method with Conditions and Observations. The same method of adjustment was used to implement camera calibration with bundles, which is based on points. Experiments using simulated and real data have shown that the developed model based on straight lines gives results comparable to the conventional method with points. Details concerning the mathematical development of the model and experiments with simulated and real data will be presented and the results with both methods of camera calibration, with straight lines and with points, will be compared.
Teaching mathematical modelling through project work
DEFF Research Database (Denmark)
Blomhøj, Morten; Kjeldsen, Tinne Hoff
2006-01-01
are reported in manners suitable for internet publication for colleagues. The reports and the related discussions reveal interesting dilemmas concerning the teaching of mathematical modelling and how to cope with these through “setting the scene” for the students modelling projects and through dialogues......The paper presents and analyses experiences from developing and running an in-service course in project work and mathematical modelling for mathematics teachers in the Danish gymnasium, e.g. upper secondary level, grade 10-12. The course objective is to support the teachers to develop, try out...... in their own classes, evaluate and report a project based problem oriented course in mathematical modelling. The in-service course runs over one semester and includes three seminars of 3, 1 and 2 days. Experiences show that the course objectives in general are fulfilled and that the course projects...
Cooking Potatoes: Experimentation and Mathematical Modeling.
Chen, Xiao Dong
2002-01-01
Describes a laboratory activity involving a mathematical model of cooking potatoes that can be solved analytically. Highlights the microstructure aspects of the experiment. Provides the key aspects of the results, detailed background readings, laboratory procedures and data analyses. (MM)
А mathematical model study of suspended monorail
Viktor GUTAREVYCH
2012-01-01
The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.
А mathematical model study of suspended monorail
Directory of Open Access Journals (Sweden)
Viktor GUTAREVYCH
2012-01-01
Full Text Available The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.
Mathematical Modeling of Circadian/Performance Countermeasures
National Aeronautics and Space Administration — We developed and refined our current mathematical model of circadian rhythms to incorporate melatonin as a marker rhythm. We used an existing physiologically based...
short communication mathematical modelling for magnetite
African Journals Online (AJOL)
Preferred Customer
The present research focuses to develop mathematical model for the ..... Staler, M.J. The Principle of Ion Exchange Technology, Butterworth-Heinemann: Boston; ... Don, W.G. Perry's Chemical Engineering Hand Book, 7th ed., McGraw-Hill:.
Hoxha Gezim; Shala Ahmet; Likaj Rame
2017-01-01
The paper addresses the problem to vehicle speed calculation at road accidents. To determine the speed are used the PC Crash software and Virtual Crash. With both methods are analysed concrete cases of road accidents. Calculation methods and comparing results are present for analyse. These methods consider several factors such are: the front part of the vehicle, the technical feature of the vehicle, car angle, remote relocation after the crash, road conditions etc. Expected results with PC Cr...
Mathematical Modeling Approaches in Plant Metabolomics.
Fürtauer, Lisa; Weiszmann, Jakob; Weckwerth, Wolfram; Nägele, Thomas
2018-01-01
The experimental analysis of a plant metabolome typically results in a comprehensive and multidimensional data set. To interpret metabolomics data in the context of biochemical regulation and environmental fluctuation, various approaches of mathematical modeling have been developed and have proven useful. In this chapter, a general introduction to mathematical modeling is presented and discussed in context of plant metabolism. A particular focus is laid on the suitability of mathematical approaches to functionally integrate plant metabolomics data in a metabolic network and combine it with other biochemical or physiological parameters.
Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat
2017-01-01
This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…
Koestler, Courtney
2010-01-01
In this dissertation, I present my attempts at designing an elementary mathematics methods course to support prospective teachers in developing an understanding of how to teach all students in learning powerful mathematics. To do this, I introduced them to teaching mathematics for equity and social justice by discussing ways to support students'…
Analysis of mathematical modelling on potentiometric biosensors.
Mehala, N; Rajendran, L
2014-01-01
A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.
Linear models in the mathematics of uncertainty
Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A
2013-01-01
The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data is difficult to measure and an assumption of randomness and/or statistical validity is questionable. We apply our methods to real world issues in international relations such as nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...
Modelling Mathematical Reasoning in Physics Education
Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche
2012-04-01
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.
International Nuclear Information System (INIS)
Todo, A.S.
1980-01-01
Presently, the estimates of specific absorbed fractions in various organs of a heterogeneous phantom are based on Monte Carlo calculation for monoenergetic photons uniformly distributed in the organs of an adult phantom. But, it is known that the kidney and some other organs (for example the skeleton) do not retain the radionuclides in an uniform manner in its internal region. So, we developed a model for the kidney including the cortex, medulla and collecting region. This model was utilized to estimate the specific absorbed fractions, for monoenergetic photons or electrons, in various organs of a heterogeneous phantom, when sources were uniformly distributed in each region of the kidney. All results obtained in this work were compared with those using a homogeneous model for the kidney as presented in ORNL-5000. (Author) [pt
Mathematical and numerical models for eddy currents and magnetostatics with selected applications
Rappaz, Jacques
2013-01-01
This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem
Introduction to mathematical physics methods and concepts
Wong, Chun Wa
2013-01-01
Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages...
Mathematical Modelling of Unmanned Aerial Vehicles with Four Rotors
Directory of Open Access Journals (Sweden)
Zoran Benić
2016-01-01
Full Text Available Mathematical model of an unmanned aerial vehicle with four propulsors (quadcopter is indispensable in quadcopter movement simulation and later modelling of the control algorithm. Mathematical model is, at the same time, the first step in comprehending the mathematical principles and physical laws which are applied to the quadcopter system. The objective is to define the mathematical model which will describe the quadcopter behavior with satisfactory accuracy and which can be, with certain modifications, applicable for the similar configurations of multirotor aerial vehicles. At the beginning of mathematical model derivation, coordinate systems are defined and explained. By using those coordinate systems, relations between parameters defined in the earth coordinate system and in the body coordinate system are defined. Further, the quadcopter kinematic is described which enables setting those relations. Also, quadcopter dynamics is used to introduce forces and torques to the model through usage of Newton-Euler method. Final derived equation is Newton’s second law in the matrix notation. For the sake of model simplification, hybrid coordinate system is defined, and quadcopter dynamic equations derived with the respect to it. Those equations are implemented in the simulation. Results of behavior of quadcopter mathematical model are graphically shown for four cases. For each of the cases the propellers revolutions per minute (RPM are set in a way that results in the occurrence of the controllable variables which causes one of four basic quadcopter movements in space.
Czocher, Jennifer A.
2016-01-01
This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…
Problems of Mathematical Finance by Stochastic Control Methods
Stettner, Łukasz
The purpose of this paper is to present main ideas of mathematics of finance using the stochastic control methods. There is an interplay between stochastic control and mathematics of finance. On the one hand stochastic control is a powerful tool to study financial problems. On the other hand financial applications have stimulated development in several research subareas of stochastic control in the last two decades. We start with pricing of financial derivatives and modeling of asset prices, studying the conditions for the absence of arbitrage. Then we consider pricing of defaultable contingent claims. Investments in bonds lead us to the term structure modeling problems. Special attention is devoted to historical static portfolio analysis called Markowitz theory. We also briefly sketch dynamic portfolio problems using viscosity solutions to Hamilton-Jacobi-Bellman equation, martingale-convex analysis method or stochastic maximum principle together with backward stochastic differential equation. Finally, long time portfolio analysis for both risk neutral and risk sensitive functionals is introduced.
Mathematical Modeling of Hybrid Electrical Engineering Systems
Directory of Open Access Journals (Sweden)
A. A. Lobaty
2016-01-01
Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the
Mathematical modelling and numerical simulation of oil pollution problems
2015-01-01
Written by outstanding experts in the fields of marine engineering, atmospheric physics and chemistry, fluid dynamics and applied mathematics, the contributions in this book cover a wide range of subjects, from pure mathematics to real-world applications in the oil spill engineering business. Offering a truly interdisciplinary approach, the authors present both mathematical models and state-of-the-art numerical methods for adequately solving the partial differential equations involved, as well as highly practical experiments involving actual cases of ocean oil pollution. It is indispensable that different disciplines of mathematics, like analysis and numerics, together with physics, biology, fluid dynamics, environmental engineering and marine science, join forces to solve today’s oil pollution problems. The book will be of great interest to researchers and graduate students in the environmental sciences, mathematics and physics, showing the broad range of techniques needed in order to solve these poll...
An Investigation of Mathematical Modeling with Pre-Service Secondary Mathematics Teachers
Thrasher, Emily Plunkett
2016-01-01
The goal of this thesis was to investigate and enhance our understanding of what occurs while pre-service mathematics teachers engage in a mathematical modeling unit that is broadly based upon mathematical modeling as defined by the Common Core State Standards for Mathematics (National Governors Association Center for Best Practices & Council…
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
Zbiek, Rose Mary; Conner, Annamarie
2006-01-01
Views of mathematical modeling in empirical, expository, and curricular references typically capture a relationship between real-world phenomena and mathematical ideas from the perspective that competence in mathematical modeling is a clear goal of the mathematics curriculum. However, we work within a curricular context in which mathematical…
2013-04-03
... procedure acceptable to the NRC staff for providing summary details of mathematical modeling methods used in... NUCLEAR REGULATORY COMMISSION [NRC-2013-0062] Reporting Procedure for Mathematical Models Selected... Regulatory Guide (RG) 4.4, ``Reporting Procedure for Mathematical Models Selected to Predict Heated Effluent...
Mathematical methods in electro-magneto-elasticity
Bardzokas, DI; Filshtinsky, LA
2007-01-01
The mechanics of Coupled Fields is a discipline at the edge of modern research connecting Continuum Mechanics with Solid State Physics. It integrates the Mechanics of Continuous Media, Heat Conductivity and the theory of Electromagnetism that are usually studied separately. For an accurate description of the influence of static and dynamic loadings, high temperatures and strong electromagnetic fields in elastic media and constructive installations, a new approach is required; an approach that has the potential to establish a synergism between the above mentioned fields. Throughout the book a vast number of problems are considered: two-dimensional problems of electro-magneto-elasticity as well as static and dynamical problems for piecewise homogenous compound piezoelectric plates weakened by cracks and openings. The boundary conditions, the constructive equations and the mathematical methods for their solution are thoroughly presented, so that the reader can get a clear quantitative and qualitative understandi...
Saran, Rupam; Gujarati, Joan
2013-01-01
This article explores how preservice elementary teachers change their negative beliefs toward mathematics into positive ones after taking a mathematics methods course that follows the Concrete-Pictorial-Abstract (CPA) instructional method. Also explored is the relationship between those beliefs and sociomathematical authority. By administering…
The possibilities of a modelling perspective for school mathematics
Directory of Open Access Journals (Sweden)
Dirk Wessels
2009-09-01
Full Text Available The ﬁndings of the international TIMSS investigations of a few years ago into the position and application of problem solving strategies in school mathematics in about 50 countries caused serious concern globally. During each survey South Africa was found to be among the poorest performers of the participating countries. The main problem was that the majority of school learners in South Africa do not have the ability to solve mathematical problems; in fact, it would appear that they lack the total spectrum of mathematical problem solving competencies. The present school system does not develop their mathematical abilities or competencies. While Outcomes-based education, which became very popular in the Western world, has the ability to improve participants’ affective values of mathematics, it proved to be inadequate in improving the quality of their mathematical performances. Mathematics teachers are unsuccessful in teaching in a manner that will make a difference with respect to the way learners do, learn or perform in mathematics. The pedagogical and mathematics content knowledge of the teachers are lacking in conceptual depth, clarity and connectedness (integration. The language proﬁciency of the learners is poor, which means that they do not understand what they should do with a problem and how to interpret, present and verify their ﬁndings. Learners still do not know how to handle mathematics and how to utilise mathematics in order to solve problems. They seriously lack the ability to approach problems in a meaningful and constructive way. Real-life and open-ended problems are being perceived as huge obstacles to most learners. Teachers are not trained and educated to assist their learners in bridging this gap. The teaching methodology that will make a difference in the classroom falls in the broad category of problem solving. The day-to-day teaching method should be the problem-centred teaching and learning approach. This rather
A mathematical model for postirradiation immunity
International Nuclear Information System (INIS)
Smirnova, O.A.
1988-01-01
A mathematical model of autoimmune processes in exposed mammals was developed. In terms of this model a study was made of the dependence of the autoimmunity kinetics on radiation dose and radiosensitivity of autologous tissues. The model simulates the experimentally observed dynamics of autoimmune diseases
Mathematical model of three winding auto transformer
International Nuclear Information System (INIS)
Volcko, V.; Eleschova, Z.; Belan, A.; Janiga, P.
2012-01-01
This article deals with the design of mathematical model of three-winding auto transformer for steady state analyses. The article is focused on model simplicity for the purposes of the use in complex transmission systems and authenticity of the model taking into account different types of step-voltage regulator. (Authors)
Potential of mathematical modeling in fruit quality
African Journals Online (AJOL)
ONOS
2010-01-18
Jan 18, 2010 ... successful mathematical model, the modeler needs to chose what .... equations. In the SUCROS models, the rate of CO2 assimilation is .... insect ecology. ... García y García A, Ingram KT, Hatch U, Hoogenboom G, Jones JW,.
Mathematical models and accuracy of radioisotope gauges
International Nuclear Information System (INIS)
Urbanski, P.
1989-01-01
Mathematical expressions relating the variance and mean value of the intrinsic error with the parameters of one and multi-dimensional mathematical models of radioisotope gauges are given. Variance of the intrinsic error at the model's output is considered as a sum of the variances of the random error which is created in the first stages of the measuring chain and the random error of calibration procedure. The mean value of the intrinsic error (systematic error) appears always for nonlinear models. It was found that the optimal model of calibration procedure not always corresponds to the minimal value of the intrinsic error. The derived expressions are applied for the assessment of the mathematical models of some of the existing gauges (radioisotope belt weigher, XRF analyzer and coating thickness gauge). 7 refs., 5 figs., 1 tab. (author)
Mathematical Models of Issue Voting
小林, 良彰
2009-01-01
1. Introduction2. An Examination of the Expected Utility Model3. An Examination of the Minimax Regret Model4. An Examination of the Diametros Model5. An Examination of the Revised Diametros Model6. An Examination of the Party Coalition Model7. The Construction and Examination of the Diametros ll Model8. Conclusion
Models and structures: mathematical physics
International Nuclear Information System (INIS)
2003-01-01
This document gathers research activities along 5 main directions. 1) Quantum chaos and dynamical systems. Recent results concern the extension of the exact WKB method that has led to a host of new results on the spectrum and wave functions. Progress have also been made in the description of the wave functions of chaotic quantum systems. Renormalization has been applied to the analysis of dynamical systems. 2) Combinatorial statistical physics. We see the emergence of new techniques applied to various such combinatorial problems, from random walks to random lattices. 3) Integrability: from structures to applications. Techniques of conformal field theory and integrable model systems have been developed. Progress is still made in particular for open systems with boundary conditions, in connection to strings and branes physics. Noticeable links between integrability and exact WKB quantization to 2-dimensional disordered systems have been highlighted. New correlations of eigenvalues and better connections to integrability have been formulated for random matrices. 4) Gravities and string theories. We have developed aspects of 2-dimensional string theory with a particular emphasis on its connection to matrix models as well as non-perturbative properties of M-theory. We have also followed an alternative path known as loop quantum gravity. 5) Quantum field theory. The results obtained lately concern its foundations, in flat or curved spaces, but also applications to second-order phase transitions in statistical systems
Mathematical Models of Tuberculosis Reactivation and Relapse
Directory of Open Access Journals (Sweden)
Robert Steven Wallis
2016-05-01
Full Text Available The natural history of human infection with Mycobacterium tuberculosis (Mtb is highly variable, as is the response to treatment of active tuberculosis. There is presently no direct means to identify individuals in whom Mtb infection has been eradicated, whether by a bactericidal immune response or sterilizing antimicrobial chemotherapy. Mathematical models can assist in such circumstances by measuring or predicting events that cannot be directly observed. The 3 models discussed in this review illustrate instances in which mathematical models were used to identify individuals with innate resistance to Mtb infection, determine the etiology of tuberculosis in patients treated with tumor necrosis factor antagonists, and predict the risk of relapse in persons undergoing tuberculosis treatment. These examples illustrate the power of various types of mathematic models to increase knowledge and thereby inform interventions in the present global tuberculosis epidemic.
Interfacial Fluid Mechanics A Mathematical Modeling Approach
Ajaev, Vladimir S
2012-01-01
Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail. Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also: Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...
Quantum Gravity Mathematical Models and Experimental Bounds
Fauser, Bertfried; Zeidler, Eberhard
2007-01-01
The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...
Mathematical modeling plasma transport in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Quiang, Ji [Univ. of Illinois, Urbana-Champaign, IL (United States)
1997-01-01
In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10^{20}/m^{3} with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.
Mathematical modeling plasma transport in tokamaks
International Nuclear Information System (INIS)
Quiang, Ji
1995-01-01
In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%
Outlooks for mathematical modelling of the glass melting process
Energy Technology Data Exchange (ETDEWEB)
Waal, H. de [TNO Institute of Applied Physics, Delft (Netherlands)
1997-12-31
Mathematical modelling is nowadays a standard tool for major producers of float glass, T.V. glass and fiberglass. Also for container glass furnaces, glass tank modelling proves to be a valuable method to optimize process conditions. Mathematical modelling is no longer just a way to visualize the flow patterns and to provide data on heat transfer. It can also predict glass quality in relation to process parameters, because all chemical and physical phenomena are included in the latest generation of models, based on experimental and theoretical research on these phenomena.
Mathematical and Statistical Methods for Actuarial Sciences and Finance
Legros, Florence; Perna, Cira; Sibillo, Marilena
2017-01-01
This volume gathers selected peer-reviewed papers presented at the international conference "MAF 2016 – Mathematical and Statistical Methods for Actuarial Sciences and Finance”, held in Paris (France) at the Université Paris-Dauphine from March 30 to April 1, 2016. The contributions highlight new ideas on mathematical and statistical methods in actuarial sciences and finance. The cooperation between mathematicians and statisticians working in insurance and finance is a very fruitful field, one that yields unique theoretical models and practical applications, as well as new insights in the discussion of problems of national and international interest. This volume is addressed to academicians, researchers, Ph.D. students and professionals.
Mathematical model for temperature change of a journal bearing
Directory of Open Access Journals (Sweden)
Antunović Ranko
2018-01-01
Full Text Available In this work, a representative mathematical model has been developed, which reliably describes the heating and cooling of a journal bearing as a result of its malfunctioning, and the model has been further confirmed on a test bench. The bearing model was validated by using analytical modeling methods, i. e. the experimental results were compared to the data obtained by analytical calculations. The regression and variance analysis techniques were applied to process the recorded data, to test the mathematical model and to define mathematical functions for the heating/cooling of the journal bearing. This investigation shows that a representative model may reliably indicate the change in the thermal field, which may be a consequence of journal bearing damage.
Mathematical Methods of Game and Economic Theory
Aubin, J-P
1982-01-01
This book presents a unified treatment of optimization theory, game theory and a general equilibrium theory in economics in the framework of nonlinear functional analysis. It not only provides powerful and versatile tools for solving specific problems in economics and the social sciences but also serves as a unifying theme in the mathematical theory of these subjects as well as in pure mathematics itself.
Mathematical Modeling: Are Prior Experiences Important?
Czocher, Jennifer A.; Moss, Diana L.
2017-01-01
Why are math modeling problems the source of such frustration for students and teachers? The conceptual understanding that students have when engaging with a math modeling problem varies greatly. They need opportunities to make their own assumptions and design the mathematics to fit these assumptions (CCSSI 2010). Making these assumptions is part…
Uncertainty and Complexity in Mathematical Modeling
Cannon, Susan O.; Sanders, Mark
2017-01-01
Modeling is an effective tool to help students access mathematical concepts. Finding a math teacher who has not drawn a fraction bar or pie chart on the board would be difficult, as would finding students who have not been asked to draw models and represent numbers in different ways. In this article, the authors will discuss: (1) the properties of…
Parallel Boltzmann machines : a mathematical model
Zwietering, P.J.; Aarts, E.H.L.
1991-01-01
A mathematical model is presented for the description of parallel Boltzmann machines. The framework is based on the theory of Markov chains and combines a number of previously known results into one generic model. It is argued that parallel Boltzmann machines maximize a function consisting of a
A mathematical model of embodied consciousness
Rudrauf, D.; Bennequin, D.; Granic, I.; Landini, G.; Friston, K.; Williford, K.
2017-01-01
We introduce a mathematical model of embodied consciousness, the Projective Consciousness Model (PCM), which is based on the hypothesis that the spatial field of consciousness (FoC) is structured by a projective geometry and under the control of a process of active inference. The FoC in the PCM
Mathematical model of the reactor coolant pump
International Nuclear Information System (INIS)
Kozuh, M.
1989-01-01
The mathematical model of reactor coolant pump is described in this paper. It is based on correlations for centrifugal reactor coolant pumps. This code is one of the elements needed for the simulation of the whole NPP primary system. In subroutine developed according to this model we tried in every possible detail to incorporate plant specific data for Krsko NPP. (author)
A mathematical model of forgetting and amnesia
Murre, J.M.J.; Chessa, A.G.; Meeter, M.
2013-01-01
We describe a mathematical model of learning and memory and apply it to the dynamics of forgetting and amnesia. The model is based on the hypothesis that the neural systems involved in memory at different time scales share two fundamental properties: (1) representations in a store decline in
Mathematical human body modelling for impact loading
Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.
1999-01-01
Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models
Mathematical Properties Relevant to Geomagnetic Field Modeling
DEFF Research Database (Denmark)
Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils
2010-01-01
be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers.......The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...
Mathematical Properties Relevant to Geomagnetic Field Modeling
DEFF Research Database (Denmark)
Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils
2014-01-01
be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focused. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers....... The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...
Mathematical models of information and stochastic systems
Kornreich, Philipp
2008-01-01
From ancient soothsayers and astrologists to today's pollsters and economists, probability theory has long been used to predict the future on the basis of past and present knowledge. Mathematical Models of Information and Stochastic Systems shows that the amount of knowledge about a system plays an important role in the mathematical models used to foretell the future of the system. It explains how this known quantity of information is used to derive a system's probabilistic properties. After an introduction, the book presents several basic principles that are employed in the remainder of the t
On the mathematical modeling of memristors
Radwan, Ahmed G.
2012-10-06
Since the fourth fundamental element (Memristor) became a reality by HP labs, and due to its huge potential, its mathematical models became a necessity. In this paper, we provide a simple mathematical model of Memristors characterized by linear dopant drift for sinusoidal input voltage, showing a high matching with the nonlinear SPICE simulations. The frequency response of the Memristor\\'s resistance and its bounding conditions are derived. The fundamentals of the pinched i-v hysteresis, such as the critical resistances, the hysteresis power and the maximum operating current, are derived for the first time.
Nurmakanova, А. Е.; Ivashkina, Elena Nikolaevna; Ivanchina, Emilia Dmitrievna; Dolganov, I. A.; Boychenko, S. S.
2015-01-01
The article provides the results of applied mathematical model of isobutane alkylation with olefins catalyzed by sulfuric acid to predict yield and hydrocarbon composition of alkylate caused by the changes in the feedstock composition and process parameters. It is shown that the alkylate produced from feedstock with less mass fraction of isobutane has lower octane value. Wherein the difference in composition of the feedstock contributes to antiknock index by the amount of 1.0-2.0 points.
FEMME, a flexible environment for mathematically modelling the environment
Soetaert, K.E.R.; DeClippele, V.; Herman, P.M.J.
2002-01-01
A new, FORTRAN-based, simulation environment called FEMME (Flexible Environment for Mathematically Modelling the Environment), designed for implementing, solving and analysing mathematical models in ecology is presented. Three separate phases in ecological modelling are distinguished: (1) the model
Mathematical Modelling of Unmanned Aerial Vehicles
Directory of Open Access Journals (Sweden)
Saeed Sarwar
2013-04-01
Full Text Available UAVs (Unmanned Arial Vehicleis UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard autopilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an autopilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design autopilot for UAV
Mathematical modelling of unmanned aerial vehicles
International Nuclear Information System (INIS)
Sarwar, S.; Rehman, S.U.
2013-01-01
UAVs (Unmanned Aerial Vehicles) UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard auto pilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an auto pilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom) equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design auto pilot for UAV. (author)
Applied Mathematics, Modelling and Computational Science
Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan
2015-01-01
The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...
Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling
Karali, Diren; Durmus, Soner
2015-01-01
The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…
Mathematical modeling of physiological systems: an essential tool for discovery.
Glynn, Patric; Unudurthi, Sathya D; Hund, Thomas J
2014-08-28
Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?" Copyright © 2014 Elsevier Inc. All rights reserved.
Manual on mathematical models in isotope hydrogeology
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-10-01
Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs.
Manual on mathematical models in isotope hydrogeology
International Nuclear Information System (INIS)
1996-10-01
Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs
Research methods in indigenous mathematical Knowledge: An ...
African Journals Online (AJOL)
Indigenous games are an integral component of indigenous knowledge systems. ... and national activities; mathematical concepts associated with the games; possibilities and implications for general classroom ... AJOL African Journals Online.
Mathematical modelling a case studies approach
Illner, Reinhard; McCollum, Samantha; Roode, Thea van
2004-01-01
Mathematical modelling is a subject without boundaries. It is the means by which mathematics becomes useful to virtually any subject. Moreover, modelling has been and continues to be a driving force for the development of mathematics itself. This book explains the process of modelling real situations to obtain mathematical problems that can be analyzed, thus solving the original problem. The presentation is in the form of case studies, which are developed much as they would be in true applications. In many cases, an initial model is created, then modified along the way. Some cases are familiar, such as the evaluation of an annuity. Others are unique, such as the fascinating situation in which an engineer, armed only with a slide rule, had 24 hours to compute whether a valve would hold when a temporary rock plug was removed from a water tunnel. Each chapter ends with a set of exercises and some suggestions for class projects. Some projects are extensive, as with the explorations of the predator-prey model; oth...
The (Mathematical) Modeling Process in Biosciences.
Torres, Nestor V; Santos, Guido
2015-01-01
In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology.
Genetic demographic networks: Mathematical model and applications.
Kimmel, Marek; Wojdyła, Tomasz
2016-10-01
Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise
On the mathematical modeling of aeolian saltation
DEFF Research Database (Denmark)
Jensen, Jens Ledet; Sørensen, Michael
1983-01-01
The development of a mathematical model for aeolian saltation is a promising way of obtaining further progress in the field of wind-blown sand. Interesting quantities can be calculated from a model defined in general terms, and a specific model is defined and compared to previously published data...... on aeolian saltation. This comparison points out the necessity of discriminating between pure and real saltation. -Authors...
Mathematical and statistical methods for actuarial sciences and finance
Sibillo, Marilena
2014-01-01
The interaction between mathematicians and statisticians working in the actuarial and financial fields is producing numerous meaningful scientific results. This volume, comprising a series of four-page papers, gathers new ideas relating to mathematical and statistical methods in the actuarial sciences and finance. The book covers a variety of topics of interest from both theoretical and applied perspectives, including: actuarial models; alternative testing approaches; behavioral finance; clustering techniques; coherent and non-coherent risk measures; credit-scoring approaches; data envelopment analysis; dynamic stochastic programming; financial contagion models; financial ratios; intelligent financial trading systems; mixture normality approaches; Monte Carlo-based methodologies; multicriteria methods; nonlinear parameter estimation techniques; nonlinear threshold models; particle swarm optimization; performance measures; portfolio optimization; pricing methods for structured and non-structured derivatives; r...
Effectiveness of discovery learning model on mathematical problem solving
Herdiana, Yunita; Wahyudin, Sispiyati, Ririn
2017-08-01
This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.
Mathematical modelling and numerical simulation of forces in milling process
Turai, Bhanu Murthy; Satish, Cherukuvada; Prakash Marimuthu, K.
2018-04-01
Machining of the material by milling induces forces, which act on the work piece material, tool and which in turn act on the machining tool. The forces involved in milling process can be quantified, mathematical models help to predict these forces. A lot of research has been carried out in this area in the past few decades. The current research aims at developing a mathematical model to predict forces at different levels which arise machining of Aluminium6061 alloy. Finite element analysis was used to develop a FE model to predict the cutting forces. Simulation was done for varying cutting conditions. Different experiments was designed using Taguchi method. A L9 orthogonal array was designed and the output was measure for the different experiments. The same was used to develop the mathematical model.
Mathematical and physical models and radiobiology
International Nuclear Information System (INIS)
Lokajicek, M.
1980-01-01
The hit theory of the mechanism of biological radiation effects in the cell is discussed with respect to radiotherapy. The mechanisms of biological effects and of intracellular recovery, the cumulative radiation effect and the cumulative biological effect in fractionated irradiation are described. The benefit is shown of consistent application of mathematical and physical models in radiobiology and radiotherapy. (J.P.)
Mathematical Modeling Projects: Success for All Students
Shelton, Therese
2018-01-01
Mathematical modeling allows flexibility for a project-based experience. We share details of our regular capstone course, successful for virtually 100% of our math majors for almost two decades. Our research-like approach in this course accommodates a variety of student backgrounds and interests, and has produced some award-winning student…
ECONOMIC AND MATHEMATICAL MODELING INNOVATION SYSTEMS
Directory of Open Access Journals (Sweden)
D.V. Makarov
2014-06-01
Full Text Available The paper presents one of the mathematical tools for modeling innovation processes. With the help of Kondratieff long waves can define innovation cycles. However, complexity of the innovation system implies a qualitative description. The article describes the problems of this area of research.
Mathematical modeling of optical glazing performance
Nijnatten, van P.A.; Wittwer, V.; Granqvist, C.G.; Lampert, C.M.
1994-01-01
Mathematical modelling can be a powerful tool in the design and optimalization of glazing. By calculation, the specifications of a glazing design and the optimal design parameters can be predicted without building costly prototypes first. Furthermore, properties which are difficult to measure, like
Description of a comprehensive mathematical model
DEFF Research Database (Denmark)
Li, Xiyan; Yin, Chungen
2017-01-01
Biomass gasification is still a promising technology after over 30 years’ research and development and has success only in a few niche markets. In this paper, a comprehensive mathematical model for biomass particle gasification is developed within a generic particle framework, assuming the feed...
Optimization and mathematical modeling in computer architecture
Sankaralingam, Karu; Nowatzki, Tony
2013-01-01
In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms t
Improved methods for the mathematically controlled comparison of biochemical systems
Directory of Open Access Journals (Sweden)
Schwacke John H
2004-06-01
Full Text Available Abstract The method of mathematically controlled comparison provides a structured approach for the comparison of alternative biochemical pathways with respect to selected functional effectiveness measures. Under this approach, alternative implementations of a biochemical pathway are modeled mathematically, forced to be equivalent through the application of selected constraints, and compared with respect to selected functional effectiveness measures. While the method has been applied successfully in a variety of studies, we offer recommendations for improvements to the method that (1 relax requirements for definition of constraints sufficient to remove all degrees of freedom in forming the equivalent alternative, (2 facilitate generalization of the results thus avoiding the need to condition those findings on the selected constraints, and (3 provide additional insights into the effect of selected constraints on the functional effectiveness measures. We present improvements to the method and related statistical models, apply the method to a previously conducted comparison of network regulation in the immune system, and compare our results to those previously reported.
MATHEMATICAL MODEL OF TRIAXIAL MULTIMODE ATTITUDE AND HEADING REFERENCE SYSTEM
Directory of Open Access Journals (Sweden)
Olha Sushchenko
2017-07-01
Full Text Available Purpose: The paper deals with the mathematical description of the gimballed attitude and heading reference systems, which can be applied in design of strategic precision navigation systems. The main goal is to created mathematical description taking into consideration the necessity to use different navigations operating modes of this class of navigation systems. To provide the high accuracy the indirect control is used when the position of the gimballed platform is controlled by signals of gyroscopic devices, which are corrected using accelerometer’s signals. Methods: To solve the given problem the methods of the classical theoretical mechanics, gyro theory, and inertial navigation are used. Results: The full mathematical model of the gimballed attitude and heading reference system is derived including descriptions of different operating modes. The mathematical models of the system Expressions for control and correction moments in the different modes are represented. The simulation results are given. Conclusions: The represented results prove efficiency of the proposed models. Developed mathematical models can be useful for design of navigation systems of the wide class of moving vehicles.
Eringen, A Cemal
2013-01-01
Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th
Mathematical model insights into arsenic detoxification
Directory of Open Access Journals (Sweden)
Nijhout H Frederik
2011-08-01
Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic
Mathematical modeling of the flash converting process
Energy Technology Data Exchange (ETDEWEB)
Sohn, H.Y.; Perez-Tello, M.; Riihilahti, K.M. [Utah Univ., Salt Lake City, UT (United States)
1996-12-31
An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)
Mathematical modeling of the flash converting process
Energy Technology Data Exchange (ETDEWEB)
Sohn, H Y; Perez-Tello, M; Riihilahti, K M [Utah Univ., Salt Lake City, UT (United States)
1997-12-31
An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)
Mathematical modelling of fracture hydrology
International Nuclear Information System (INIS)
Rae, J.; Hodgkinson, D.P.; Robinson, P.C.; Herbert, A.W.
1984-04-01
This progress report contains notes on three aspects of hydrological modelling. Work on hydrodynamic dispersion in fractured media has been extended to transverse dispersion. Further work has been done on diffusion into the rock matrix and its effect on solute transport. The program NAMSOL has been used for the MIRAGE code comparison exercise being organised by Atkins R and D. (author)
Applied Mathematical Methods in Theoretical Physics
Masujima, Michio
2005-04-01
All there is to know about functional analysis, integral equations and calculus of variations in a single volume. This advanced textbook is divided into two parts: The first on integral equations and the second on the calculus of variations. It begins with a short introduction to functional analysis, including a short review of complex analysis, before continuing a systematic discussion of different types of equations, such as Volterra integral equations, singular integral equations of Cauchy type, integral equations of the Fredholm type, with a special emphasis on Wiener-Hopf integral equations and Wiener-Hopf sum equations. After a few remarks on the historical development, the second part starts with an introduction to the calculus of variations and the relationship between integral equations and applications of the calculus of variations. It further covers applications of the calculus of variations developed in the second half of the 20th century in the fields of quantum mechanics, quantum statistical mechanics and quantum field theory. Throughout the book, the author presents over 150 problems and exercises -- many from such branches of physics as quantum mechanics, quantum statistical mechanics, and quantum field theory -- together with outlines of the solutions in each case. Detailed solutions are given, supplementing the materials discussed in the main text, allowing problems to be solved making direct use of the method illustrated. The original references are given for difficult problems. The result is complete coverage of the mathematical tools and techniques used by physicists and applied mathematicians Intended for senior undergraduates and first-year graduates in science and engineering, this is equally useful as a reference and self-study guide.
Mathematical Models of Breast and Ovarian Cancers
Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron
2016-01-01
Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, since answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible, in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. PMID:27259061
A mathematical model of brain glucose homeostasis
Directory of Open Access Journals (Sweden)
Kimura Hidenori
2009-11-01
Full Text Available Abstract Background The physiological fact that a stable level of brain glucose is more important than that of blood glucose suggests that the ultimate goal of the glucose-insulin-glucagon (GIG regulatory system may be homeostasis of glucose concentration in the brain rather than in the circulation. Methods In order to demonstrate the relationship between brain glucose homeostasis and blood hyperglycemia in diabetes, a brain-oriented mathematical model was developed by considering the brain as the controlled object while the remaining body as the actuator. After approximating the body compartmentally, the concentration dynamics of glucose, as well as those of insulin and glucagon, are described in each compartment. The brain-endocrine crosstalk, which regulates blood glucose level for brain glucose homeostasis together with the peripheral interactions among glucose, insulin and glucagon, is modeled as a proportional feedback control of brain glucose. Correlated to the brain, long-term effects of psychological stress and effects of blood-brain-barrier (BBB adaptation to dysglycemia on the generation of hyperglycemia are also taken into account in the model. Results It is shown that simulation profiles obtained from the model are qualitatively or partially quantitatively consistent with clinical data, concerning the GIG regulatory system responses to bolus glucose, stepwise and continuous glucose infusion. Simulations also revealed that both stress and BBB adaptation contribute to the generation of hyperglycemia. Conclusion Simulations of the model of a healthy person under long-term severe stress demonstrated that feedback control of brain glucose concentration results in elevation of blood glucose level. In this paper, we try to suggest that hyperglycemia in diabetes may be a normal outcome of brain glucose homeostasis.
MATHEMATICAL MODEL FOR RIVERBOAT DYNAMICS
Directory of Open Access Journals (Sweden)
Aleksander Grm
2017-01-01
Full Text Available Present work describes a simple dynamical model for riverboat motion based on the square drag law. Air and water interactions with the boat are determined from aerodynamic coefficients. CFX simulations were performed with fully developed turbulent flow to determine boat aerodynamic coefficients for an arbitrary angle of attack for the air and water portions separately. The effect of wave resistance is negligible compared to other forces. Boat movement analysis considers only two-dimensional motion, therefore only six aerodynamics coefficients are required. The proposed model is solved and used to determine the critical environmental parameters (wind and current under which river navigation can be conducted safely. Boat simulator was tested in a single area on the Ljubljanica river and estimated critical wind velocity.
Mathematical modelling of flooding at Magela Creek
International Nuclear Information System (INIS)
Vardavas, I.
1989-01-01
The extent and frequency of the flooding at Magela Creek can be predicted from a mathematical/computer model describing the hydrological phases of surface runoff. Surface runoff involves complex water transfer processes over very inhomogeneous terrain. A simple mathematical model of these has been developed which includes the interception of rainfall by the plant canopy, evapotranspiration, infiltration of surface water into the soil, the storage of water in surface depressions, and overland and subsurface water flow. The rainfall-runoff model has then been incorporated into a more complex computer model to predict the amount of water that enters and leaves the Magela Creek flood plain, downstream of the mine. 2 figs., ills
Causal Bayes Model of Mathematical Competence in Kindergarten
Directory of Open Access Journals (Sweden)
Božidar Tepeš
2016-06-01
Full Text Available In this paper authors define mathematical competences in the kindergarten. The basic objective was to measure the mathematical competences or mathematical knowledge, skills and abilities in mathematical education. Mathematical competences were grouped in the following areas: Arithmetic and Geometry. Statistical set consisted of 59 children, 65 to 85 months of age, from the Kindergarten Milan Sachs from Zagreb. The authors describe 13 variables for measuring mathematical competences. Five measuring variables were described for the geometry, and eight measuring variables for the arithmetic. Measuring variables are tasks which children solved with the evaluated results. By measuring mathematical competences the authors make causal Bayes model using free software Tetrad 5.2.1-3. Software makes many causal Bayes models and authors as experts chose the model of the mathematical competences in the kindergarten. Causal Bayes model describes five levels for mathematical competences. At the end of the modeling authors use Bayes estimator. In the results, authors describe by causal Bayes model of mathematical competences, causal effect mathematical competences or how intervention on some competences cause other competences. Authors measure mathematical competences with their expectation as random variables. When expectation of competences was greater, competences improved. Mathematical competences can be improved with intervention on causal competences. Levels of mathematical competences and the result of intervention on mathematical competences can help mathematical teachers.
Mathematical Model of the Emissions of a selected vehicle
Directory of Open Access Journals (Sweden)
Matušů Radim
2014-10-01
Full Text Available The article addresses the quantification of exhaust emissions from gasoline engines during transient operation. The main targeted emissions are carbon monoxide and carbon dioxide. The result is a mathematical model describing the production of individual emissions components in all modes (static and dynamic. It also describes the procedure for the determination of emissions from the engine’s operating parameters. The result is compared with other possible methods of measuring emissions. The methodology is validated using the data from an on-road measurement. The mathematical model was created on the first route and validated on the second route.
Mathematical Modeling of Neuro-Vascular Coupling in Rat Cerebellum
DEFF Research Database (Denmark)
Rasmussen, Tina
Activity in the neurons called climbing fibers causes blood flow changes. But the physiological mechanisms which mediate the coupling are not well understood. This PhD thesis investigates the mechanisms of neuro-vascular coupling by means of mathematical methods. In experiments, the extracellularly...... measured field potential is used as an indicator of neuronal activity, and the cortical blood flow is measured by means of laser-Doppler flowmetry. Using system identification methods, these measurements have been used to construct and validate parametric mathematical models of the neuro-vascular system...
Klein, Cornel; Rumpe, Bernhard; Broy, Manfred
2014-01-01
In the SysLab project we develop a software engineering method based on a mathematical foundation. The SysLab system model serves as an abstract mathematical model for information systems and their components. It is used to formalize the semantics of all used description techniques such as object diagrams state automata sequence charts or data-flow diagrams. Based on the requirements for such a reference model, we define the system model including its different views and their relationships.
Directory of Open Access Journals (Sweden)
Vladimir I. Troitsky
2018-01-01
Full Text Available The article describes the results of the numerical experiments on the mathematical model of the correlation-extreme navigation system (CESN of the aircraft (LA using microwave radiation of the earth's cover. The aim of the numerical experiments was the analysis of the influence of the main parameters (characteristics of the radiometer and antenna, a means of reviewing the space, parameters of the current image and the reference image, methods for image processing (algorithms for image correlation, conditions of the equipment operation (the speed and altitude of aircraft, the evolution of media on the efficiency of CESN. The experiments were carried out with the fields of the underlying surface of three types-with an artificially synthesized map (CLAIM containing several objects of different thermal contrast; with a homogeneous random field (OSP, with fragments of a digital map object structure (TSKOS of real surface area of the earth. As a result of numerical experiments the author studied the influence on exactness characteristics of CESN navigation parameters (bank angles, pitch, yaw, flight altitude and speed, the noise of the radiometer, the pattern width, the width of the review sector, mis-scaling and angular misalignment of the current and reference images. Comparison of different methods of surface scanning was made based on the simulation results. During the experiments, the variation of one of the parameters with respect to the base variants of the parameters was carried out and the values and variances of errors of the CESN were estimated. All three main methods of beam scanning (longitudinal with a multi-beam radiometer, conical and transverse were considered. The operation of the maximum search was made up of two procedures: searching for the global maximum area of the correlation matrix by enumerating all matrix entries and refining the location of the true maximum point by quadratic interpolation of the function. The
Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J
2016-01-01
Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...
Toyozumi, Kenichi; Yamada, Naoya; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Mase, Kenji; Takahashi, Tomoichi
2004-01-01
Symbol segmentation is very important in handwritten mathematical formula recognition, since it is the very first portion of the recognition, since it is the very first portion of the recognition process. This paper proposes a new symbol segmentation method using mathematical structure information. The base technique of symbol segmentation employed in theexisting methods is dynamic programming which optimizes the overall results of individual symbol recognition. The new method we propose here...
Mathematical Methods in Survival Analysis, Reliability and Quality of Life
Huber, Catherine; Mesbah, Mounir
2008-01-01
Reliability and survival analysis are important applications of stochastic mathematics (probability, statistics and stochastic processes) that are usually covered separately in spite of the similarity of the involved mathematical theory. This title aims to redress this situation: it includes 21 chapters divided into four parts: Survival analysis, Reliability, Quality of life, and Related topics. Many of these chapters were presented at the European Seminar on Mathematical Methods for Survival Analysis, Reliability and Quality of Life in 2006.
Wind tunnel modeling of roadways: Comparison with mathematical models
International Nuclear Information System (INIS)
Heidorn, K.; Davies, A.E.; Murphy, M.C.
1991-01-01
The assessment of air quality impacts from roadways is a major concern to urban planners. In order to assess future road and building configurations, a number of techniques have been developed including mathematical models, which simulate traffic emissions and atmospheric dispersion through a series of mathematical relationships and physical models. The latter models simulate emissions and dispersion through scaling of these processes in a wind tunnel. Two roadway mathematical models, HIWAY-2 and CALINE-4, were applied to a proposed development in a large urban area. Physical modeling procedures developed by Rowan Williams Davies and Irwin Inc. (RWDI) in the form of line source simulators were also applied, and the resulting carbon monoxide concentrations were compared. The results indicated a factor of two agreement between the mathematical and physical models. The physical model, however, reacted to change in building massing and configuration. The mathematical models did not, since no provision for such changes was included in the mathematical models. In general, the RWDI model resulted in higher concentrations than either HIWAY-2 or CALINE-4. Where there was underprediction, it was often due to shielding of the receptor by surrounding buildings. Comparison of these three models with the CALTRANS Tracer Dispersion Experiment showed good results although concentrations were consistently underpredicted
Antioxidant Capacity: Experimental Determination by EPR Spectroscopy and Mathematical Modeling.
Polak, Justyna; Bartoszek, Mariola; Chorążewski, Mirosław
2015-07-22
A new method of determining antioxidant capacity based on a mathematical model is presented in this paper. The model was fitted to 1000 data points of electron paramagnetic resonance (EPR) spectroscopy measurements of various food product samples such as tea, wine, juice, and herbs with Trolox equivalent antioxidant capacity (TEAC) values from 20 to 2000 μmol TE/100 mL. The proposed mathematical equation allows for a determination of TEAC of food products based on a single EPR spectroscopy measurement. The model was tested on the basis of 80 EPR spectroscopy measurements of herbs, tea, coffee, and juice samples. The proposed model works for both strong and weak antioxidants (TEAC values from 21 to 2347 μmol TE/100 mL). The determination coefficient between TEAC values obtained experimentally and TEAC values calculated with proposed mathematical equation was found to be R(2) = 0.98. Therefore, the proposed new method of TEAC determination based on a mathematical model is a good alternative to the standard EPR method due to its being fast, accurate, inexpensive, and simple to perform.
MATHEMATICAL MODELING OF AC ELECTRIC POINT MOTOR
Directory of Open Access Journals (Sweden)
S. YU. Buryak
2014-03-01
Full Text Available Purpose. In order to ensure reliability, security, and the most important the continuity of the transportation process, it is necessary to develop, implement, and then improve the automated methods of diagnostic mechanisms, devices and rail transport systems. Only systems that operate in real time mode and transmit data on the instantaneous state of the control objects can timely detect any faults and thus provide additional time for their correction by railway employees. Turnouts are one of the most important and responsible components, and therefore require the development and implementation of such diagnostics system.Methodology. Achieving the goal of monitoring and control of railway automation objects in real time is possible only with the use of an automated process of the objects state diagnosing. For this we need to know the diagnostic features of a control object, which determine its state at any given time. The most rational way of remote diagnostics is the shape and current spectrum analysis that flows in the power circuits of railway automatics. Turnouts include electric motors, which are powered by electric circuits, and the shape of the current curve depends on both the condition of the electric motor, and the conditions of the turnout maintenance. Findings. For the research and analysis of AC electric point motor it was developed its mathematical model. The calculation of parameters and interdependencies between the main factors affecting the operation of the asynchronous machine was conducted. The results of the model operation in the form of time dependences of the waveform curves of current on the load on engine shaft were obtained. Originality. During simulation the model of AC electric point motor, which satisfies the conditions of adequacy was built. Practical value. On the basis of the constructed model we can study the AC motor in various mode of operation, record and analyze current curve, as a response to various changes
mathematical modelling of atmospheric dispersion of pollutants
International Nuclear Information System (INIS)
Mohamed, M.E.
2002-01-01
the main objectives of this thesis are dealing with environmental problems adopting mathematical techniques. in this respect, atmospheric dispersion processes have been investigated by improving the analytical models to realize the realistic physical phenomena. to achieve these aims, the skeleton of this work contained both mathematical and environmental topics,performed in six chapters. in chapter one we presented a comprehensive review study of most important informations related to our work such as thermal stability , plume rise, inversion, advection , dispersion of pollutants, gaussian plume models dealing with both radioactive and industrial contaminants. chapter two deals with estimating the decay distance as well as the decay time of either industrial or radioactive airborne pollutant. further, highly turbulent atmosphere has been investigated as a special case in the three main thermal stability classes namely, neutral, stable, and unstable atmosphere. chapter three is concerned with obtaining maximum ground level concentration of air pollutant. the variable effective height of pollutants has been considered throughout the mathematical treatment. as a special case the constancy of effective height has been derived mathematically and the maximum ground level concentration as well as its location have been established
IMPROVEMENT OF MATHEMATICAL MODELS FOR ESTIMATION OF TRAIN DYNAMICS
Directory of Open Access Journals (Sweden)
L. V. Ursulyak
2017-12-01
Full Text Available Purpose. Using scientific publications the paper analyzes the mathematical models developed in Ukraine, CIS countries and abroad for theoretical studies of train dynamics and also shows the urgency of their further improvement. Methodology. Information base of the research was official full-text and abstract databases, scientific works of domestic and foreign scientists, professional periodicals, materials of scientific and practical conferences, methodological materials of ministries and departments. Analysis of publications on existing mathematical models used to solve a wide range of problems associated with the train dynamics study shows the expediency of their application. Findings. The results of these studies were used in: 1 design of new types of draft gears and air distributors; 2 development of methods for controlling the movement of conventional and connected trains; 3 creation of appropriate process flow diagrams; 4 development of energy-saving methods of train driving; 5 revision of the Construction Codes and Regulations (SNiP ΙΙ-39.76; 6 when selecting the parameters of the autonomous automatic control system, created in DNURT, for an auxiliary locomotive that is part of a connected train; 7 when creating computer simulators for the training of locomotive drivers; 8 assessment of the vehicle dynamic indices characterizing traffic safety. Scientists around the world conduct numerical experiments related to estimation of train dynamics using mathematical models that need to be constantly improved. Originality. The authors presented the main theoretical postulates that allowed them to develop the existing mathematical models for solving problems related to the train dynamics. The analysis of scientific articles published in Ukraine, CIS countries and abroad allows us to determine the most relevant areas of application of mathematical models. Practicalvalue. The practical value of the results obtained lies in the scientific validity
The Multiple Intelligences Teaching Method and Mathematics ...
African Journals Online (AJOL)
The Multiple Intelligences teaching approach has evolved and been embraced widely especially in the United States. The approach has been found to be very effective in changing situations for the better, in the teaching and learning of any subject especially mathematics. Multiple Intelligences teaching approach proposes ...
Electrorheological fluids modeling and mathematical theory
Růžička, Michael
2000-01-01
This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of the book is devoted to a mathematical investigation of a model possessing shear-dependent viscosities, proving the existence and uniqueness of weak and strong solutions for the steady and the unsteady case. The PDS systems investigated possess so-called non-standard growth conditions. Existence results for elliptic systems with non-standard growth conditions and with a nontrivial nonlinear r.h.s. and the first ever results for parabolic systems with a non-standard growth conditions are given for the first time. Written for advanced graduate students, as well as for researchers in the field, the discussion of both the modeling and the mathematics is self-contained.
Explorative methods in linear models
DEFF Research Database (Denmark)
Høskuldsson, Agnar
2004-01-01
The author has developed the H-method of mathematical modeling that builds up the model by parts, where each part is optimized with respect to prediction. Besides providing with better predictions than traditional methods, these methods provide with graphic procedures for analyzing different feat...... features in data. These graphic methods extend the well-known methods and results of Principal Component Analysis to any linear model. Here the graphic procedures are applied to linear regression and Ridge Regression....
A Mathematical Model of the Thermo-Anemometric Flowmeter.
Korobiichuk, Igor; Bezvesilna, Olena; Ilchenko, Andriі; Shadura, Valentina; Nowicki, Michał; Szewczyk, Roman
2015-09-11
A thermo-anemometric flowmeter design and the principles of its work are presented in the article. A mathematical model of the temperature field in a stream of biofuel is proposed. This model allows one to determine the fuel consumption with high accuracy. Numerical modeling of the heater heat balance in the fuel flow of a thermo-anemometric flowmeter is conducted and the results are analyzed. Methods for increasing the measurement speed and accuracy of a thermo-anemometric flowmeter are proposed.
An upper limb mathematical model of an oil palm harvester
Tumit, N. P.; Rambely, A. S.; BMT, Shamsul; Shahriman A., B.; Ng Y., G.; Deros, B. M.; Zailina, H.; Goh, Y. M.; Arumugam, Manohar; Ismail, I. A.; Abdul Hafiz A., R.
2014-09-01
The main purpose of this article is to develop a mathematical model of human body during harvesting via Kane's method. In this paper, a 2-D closed-kinematic biomechanical model that represents a harvesting movement is developed. The model of six segments consisted of upper right arm, right forearm, harvesting equipment, left forearm, upper left arm, and upper part of trunk. Finally, the inverse dynamic equations are represented in matrix form.
Mathematical modelling of the laser processing of compose materials
International Nuclear Information System (INIS)
Gromyko, G.F.; Matsuka, N.P.
2009-01-01
Expansion of the protective coating scope led to the necessity to work out lower priced methods of treatment of machine elements. Making of an adequate, agreed with process features, mathematical model and development of effective methods of its solving are promising directions in this fields. In this paper the mathematical model of high-temperature laser treatment via moving source of pre-sprayed with composite powder padding is developed. Presented model describes accurately enough the heat processes taking place by laser processing of machine elements. Varying input parameters of model (laser power, temperature and composition of environment, characteristics and quantitative composition of using materials, etc.) one can get a cheap tool of preliminary estimates for wide range of similar problems. Difference method, based on process physical features and taking into account main process-dependent parameters had been developed for solving of the built system of nonlinear equations. (authors)
Mathematical modeling of microbial growth in milk
Directory of Open Access Journals (Sweden)
Jhony Tiago Teleken
2011-12-01
Full Text Available A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.
Selecting and Using Mathematics Methods Texts: Nontrivial Tasks
Harkness, Shelly Sheats; Brass, Amy
2017-01-01
Mathematics methods textbooks/texts are important components of many courses for preservice teachers. Researchers should explore how these texts are selected and used. Within this paper we report the findings of a survey administered electronically to 132 members of the Association of Mathematics Teacher Educators (AMTE) in order to answer the…
Сontrol systems using mathematical models of technological objects ...
African Journals Online (AJOL)
Сontrol systems using mathematical models of technological objects in the control loop. ... Journal of Fundamental and Applied Sciences ... Such mathematical models make it possible to specify the optimal operating modes of the considered ...
Building Mathematical Models of Simple Harmonic and Damped Motion.
Edwards, Thomas
1995-01-01
By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)
Mathematical Modelling of Surfactant Self-assembly at Interfaces
Morgan, C. E.; Breward, C. J. W.; Griffiths, I. M.; Howell, P. D.
2015-01-01
© 2015 Society for Industrial and Applied Mathematics. We present a mathematical model to describe the distribution of surfactant pairs in a multilayer structure beneath an adsorbed monolayer. A mesoscopic model comprising a set of ordinary
International Workshop on Mathematical Modeling of Tumor-Immune Dynamics
Kim, Peter; Mallet, Dann
2014-01-01
This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction betwe...
Mathematical models for photovoltaic solar panel simulation
Energy Technology Data Exchange (ETDEWEB)
Santos, Jose Airton A. dos; Gnoatto, Estor; Fischborn, Marcos; Kavanagh, Edward [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: airton@utfpr.edu.br, gnoatto@utfpr.edu.br, fisch@utfpr.edu.br, kavanagh@utfpr.edu.br
2008-07-01
A photovoltaic generator is subject to several variations of solar intensity, ambient temperature or load, that change your point of operation. This way, your behavior should be analyzed by such alterations, to optimize your operation. The present work sought to simulate a photovoltaic generator, of polycrystalline silicon, by characteristics supplied by the manufacturer, and to compare the results of two mathematical models with obtained values of field, in the city of Cascavel, for a period of one year. (author)
Mathematical modelling of the process of quality control of construction products
Directory of Open Access Journals (Sweden)
Pogorelov Vadim
2017-01-01
Full Text Available The study presents the results of years of research in the field of quality management of industrial production construction production, based on mathematical modelling techniques, process and results of implementing the developed programme of monitoring and quality control in the production process of the enterprise. The aim of this work is the presentation of scientific community of the practical results of mathematical modelling in application programs. In the course of the research addressed the description of the applied mathematical models, views, practical results of its application in the applied field to assess quality control. The authors used this mathematical model in practice. The article presents the results of applying this model. The authors developed the experimental software management and quality assessment by using mathematical modeling methods. The authors continue research in this direction to improve the diagnostic systems and quality management systems based on mathematical modeling methods prognostic and diagnostic processes.
Numerical methods of mathematical optimization with Algol and Fortran programs
Künzi, Hans P; Zehnder, C A; Rheinboldt, Werner
1971-01-01
Numerical Methods of Mathematical Optimization: With ALGOL and FORTRAN Programs reviews the theory and the practical application of the numerical methods of mathematical optimization. An ALGOL and a FORTRAN program was developed for each one of the algorithms described in the theoretical section. This should result in easy access to the application of the different optimization methods.Comprised of four chapters, this volume begins with a discussion on the theory of linear and nonlinear optimization, with the main stress on an easily understood, mathematically precise presentation. In addition
Nonconvex Model of Material Growth: Mathematical Theory
Ganghoffer, J. F.; Plotnikov, P. I.; Sokolowski, J.
2018-06-01
The model of volumetric material growth is introduced in the framework of finite elasticity. The new results obtained for the model are presented with complete proofs. The state variables include the deformations, temperature and the growth factor matrix function. The existence of global in time solutions for the quasistatic deformations boundary value problem coupled with the energy balance and the evolution of the growth factor is shown. The mathematical results can be applied to a wide class of growth models in mechanics and biology.
Khusna, H.; Heryaningsih, N. Y.
2018-01-01
The aim of this research was to examine mathematical modeling ability who learn mathematics by using SAVI approach. This research was a quasi-experimental research with non-equivalent control group designed by using purposive sampling technique. The population of this research was the state junior high school students in Lembang while the sample consisted of two class at 8th grade. The instrument used in this research was mathematical modeling ability. Data analysis of this research was conducted by using SPSS 20 by Windows. The result showed that students’ ability of mathematical modeling who learn mathematics by using SAVI approach was better than students’ ability of mathematical modeling who learn mathematics using conventional learning.
Model answers in pure mathematics for a-level students
Pratt, GA; Schofield, C W
1967-01-01
Model Answers in Pure Mathematics for A-Level Students provides a set of solutions that indicate what is required and expected in an Advanced Level examination in Pure Mathematics. This book serves as a guide to the length of answer required, layout of the solution, and methods of selecting the best approach to any particular type of math problem. This compilation intends to supplement, not replace, the normal textbook and provides a varied selection of questions for practice in addition to the worked solutions. The subjects covered in this text include algebra, trigonometry, coordinate geomet
The many faces of the mathematical modeling cycle
Perrenet, J.C.; Zwaneveld, B.
2012-01-01
In literature about mathematical modeling a diversity can be seen in ways of presenting the modeling cycle. Every year, students in the Bachelor’s program Applied Mathematics of the Eindhoven University of Technology, after having completed a series of mathematical modeling projects, have been
Simple mathematical models of symmetry breaking. Application to particle physics
International Nuclear Information System (INIS)
Michel, L.
1976-01-01
Some mathematical facts relevant to symmetry breaking are presented. A first mathematical model deals with the smooth action of compact Lie groups on real manifolds, a second model considers linear action of any group on real or complex finite dimensional vector spaces. Application of the mathematical models to particle physics is considered. (B.R.H.)
Silent method for mathematics instruction: An overview of teaching subsets
Sugiman, Apino, Ezi
2017-05-01
Generally, teachers use oral communication for teaching mathematics. Taking an opposite perspective, this paper describes how instructional practices for mathematics can be carried out namely a silent method. Silent method uses body language, written, and oral communication for classroom interaction. This research uses a design research approach consisting of four phases: preliminary, prototyping and developing the instruction, and assessment. There are four stages of silent method. The first stage is conditioning stage in which the teacher introduces the method and makes agreement about the `rule of the game'. It is followed by the second one, elaborating stage, where students guess and explore alternative answers. The third stage is developing mathematical thinking by structuring and symbolizing. Finally, the method is ended by reinforcing stage which aims at strengthening and reflecting student's understanding. In this paper, every stage is described on the basis of practical experiences in a real mathematics classroom setting.
Literature Review of Applying Visual Method to Understand Mathematics
Directory of Open Access Journals (Sweden)
Yu Xiaojuan
2015-01-01
Full Text Available As a new method to understand mathematics, visualization offers a new way of understanding mathematical principles and phenomena via image thinking and geometric explanation. It aims to deepen the understanding of the nature of concepts or phenomena and enhance the cognitive ability of learners. This paper collates and summarizes the application of this visual method in the understanding of mathematics. It also makes a literature review of the existing research, especially with a visual demonstration of Euler’s formula, introduces the application of this method in solving relevant mathematical problems, and points out the differences and similarities between the visualization method and the numerical-graphic combination method, as well as matters needing attention for its application.
Tracer kinetic modelling of receptor data with mathematical metabolite correction
International Nuclear Information System (INIS)
Burger, C.; Buck, A.
1996-01-01
Quantitation of metabolic processes with dynamic positron emission tomography (PET) and tracer kinetic modelling relies on the time course of authentic ligand in plasma, i.e. the input curve. The determination of the latter often requires the measurement of labelled metabilites, a laborious procedure. In this study we examined the possibility of mathematical metabolite correction, which might obviate the need for actual metabolite measurements. Mathematical metabilite correction was implemented by estimating the input curve together with kinetic tissue parameters. The general feasibility of the approach was evaluated in a Monte Carlo simulation using a two tissue compartment model. The method was then applied to a series of five human carbon-11 iomazenil PET studies. The measured cerebral tissue time-activity curves were fitted with a single tissue compartment model. For mathematical metabolite correction the input curve following the peak was approximated by a sum of three decaying exponentials, the amplitudes and characteristic half-times of which were then estimated by the fitting routine. In the simulation study the parameters used to generate synthetic tissue time-activity curves (K 1 -k 4 ) were refitted with reasonable identifiability when using mathematical metabolite correciton. Absolute quantitation of distribution volumes was found to be possible provided that the metabolite and the kinetic models are adequate. If the kinetic model is oversimplified, the linearity of the correlation between true and estimated distribution volumes is still maintained, although the linear regression becomes dependent on the input curve. These simulation results were confirmed when applying mathematical metabolite correction to the 11 C iomazenil study. Estimates of the distribution volume calculated with a measured input curve were linearly related to the estimates calculated using mathematical metabolite correction with correlation coefficients >0.990. (orig./MG)
Nonlinear dynamics mathematical models for rigid bodies with a liquid
Lukovsky, Ivan A
2015-01-01
This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.
Mathematical methods in physics and engineering
Dettman, John W
2011-01-01
Intended for college-level physics, engineering, or mathematics students, this volume offers an algebraically based approach to various topics in applied math. It is accessible to undergraduates with a good course in calculus which includes infinite series and uniform convergence. Exercises follow each chapter to test the student's grasp of the material; however, the author has also included exercises that extend the results to new situations and lay the groundwork for new concepts to be introduced later. A list of references for further reading will be found at the end of each chapter. For t
Mathematical methods in the theory of queuing
Khinchin, A Y; Quenouille, M H
2013-01-01
Written by a prominent Russian mathematician, this concise monograph examines aspects of queuing theory as an application of probability. The three-part treatment begins with a study of the stream of incoming demands (or ""calls,"" in the author's terminology). Subsequent sections explore systems with losses and systems allowing delay. Prerequisites include a familiarity with the theory of probability and mathematical analysis. A. Y. Khinchin made significant contributions to probability theory, statistical physics, and several other fields. His elegant, groundbreaking work will prove of subs
Thermoregulation in premature infants: A mathematical model.
Pereira, Carina Barbosa; Heimann, Konrad; Czaplik, Michael; Blazek, Vladimir; Venema, Boudewijn; Leonhardt, Steffen
2016-12-01
In 2010, approximately 14.9 million babies (11.1%) were born preterm. Because preterm infants suffer from an immature thermoregulatory system they have difficulty maintaining their core body temperature at a constant level. Therefore, it is essential to maintain their temperature at, ideally, around 37°C. For this, mathematical models can provide detailed insight into heat transfer processes and body-environment interactions for clinical applications. A new multi-node mathematical model of the thermoregulatory system of newborn infants is presented. It comprises seven compartments, one spherical and six cylindrical, which represent the head, thorax, abdomen, arms and legs, respectively. The model is customizable, i.e. it meets individual characteristics of the neonate (e.g. gestational age, postnatal age, weight and length) which play an important role in heat transfer mechanisms. The model was validated during thermal neutrality and in a transient thermal environment. During thermal neutrality the model accurately predicted skin and core temperatures. The difference in mean core temperature between measurements and simulations averaged 0.25±0.21°C and that of skin temperature averaged 0.36±0.36°C. During transient thermal conditions, our approach simulated the thermoregulatory dynamics/responses. Here, for all infants, the mean absolute error between core temperatures averaged 0.12±0.11°C and that of skin temperatures hovered around 0.30°C. The mathematical model appears able to predict core and skin temperatures during thermal neutrality and in case of a transient thermal conditions. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
Molecular modeling: An open invitation for applied mathematics
Mezey, Paul G.
2013-10-01
Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.
Mathematical modelling of tissue formation in chondrocyte filter cultures.
Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J
2011-12-17
In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.
Mathematical models for atmospheric pollutants. Final report
International Nuclear Information System (INIS)
Drake, R.L.; Barrager, S.M.
1979-08-01
The present and likely future roles of mathematical modeling in air quality decisions are described. The discussion emphasizes models and air pathway processes rather than the chemical and physical behavior of specific anthropogenic emissions. Summarized are the characteristics of various types of models used in the decision-making processes. Specific model subclasses are recommended for use in making air quality decisions that have site-specific, regional, national, or global impacts. The types of exposure and damage models that are currently used to predict the effects of air pollutants on humans, other animals, plants, ecosystems, property, and materials are described. The aesthetic effects of odor and visibility and the impact of pollutants on weather and climate are also addressed. Technical details of air pollution meteorology, chemical and physical properties of air pollutants, solution techniques, and air quality models are discussed in four appendices bound in separate volumes
Mathematical modeling of CANDU-PHWR
Energy Technology Data Exchange (ETDEWEB)
Gaber, F.A.; Aly, R.A.; El-Shal, A.O. [Atomic Energy Authority, Cairo (Egypt)
2003-07-01
The paper deals with the transient studies of CANDU 600 pressurized Heavy Water Reactor (PHWR). This study involved mathematical modeling of CANDU-PHWR to study its thermodynamic performances. Modeling of CANDU-PHWR was based on lumped parameter technique. The reactor model includes the neutronic, reactivity, and fuel channel heat transfer. The nuclear reactor power was modelled using the point kinetics equations with six groups of delayed neutrons and the reactivity feed back due to the changes in the fuel temperature and coolant temperature. The CANDU-PHWR model was coded in FORTRAN language and solved by using a standard numerical technique. The adequacy of the model was tested by assessing the physical plausibility of the obtained results. (author)
Correlation of spacecraft thermal mathematical models to reference data
Torralbo, Ignacio; Perez-Grande, Isabel; Sanz-Andres, Angel; Piqueras, Javier
2018-03-01
Model-to-test correlation is a frequent problem in spacecraft-thermal control design. The idea is to determine the values of the parameters of the thermal mathematical model (TMM) that allows reaching a good fit between the TMM results and test data, in order to reduce the uncertainty of the mathematical model. Quite often, this task is performed manually, mainly because a good engineering knowledge and experience is needed to reach a successful compromise, but the use of a mathematical tool could facilitate this work. The correlation process can be considered as the minimization of the error of the model results with regard to the reference data. In this paper, a simple method is presented suitable to solve the TMM-to-test correlation problem, using Jacobian matrix formulation and Moore-Penrose pseudo-inverse, generalized to include several load cases. Aside, in simple cases, this method also allows for analytical solutions to be obtained, which helps to analyze some problems that appear when the Jacobian matrix is singular. To show the implementation of the method, two problems have been considered, one more academic, and the other one the TMM of an electronic box of PHI instrument of ESA Solar Orbiter mission, to be flown in 2019. The use of singular value decomposition of the Jacobian matrix to analyze and reduce these models is also shown. The error in parameter space is used to assess the quality of the correlation results in both models.
A mathematical model of aerosol holding chambers
DEFF Research Database (Denmark)
Zak, M; Madsen, J; Berg, E
1999-01-01
A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...
A mathematical model of 'Pride and Prejudice'.
Rinaldi, Sergio; Rossa, Fabio Della; Landi, Pietro
2014-04-01
A mathematical model is proposed for interpreting the love story between Elizabeth and Darcy portrayed by Jane Austen in the popular novel Pride and Prejudice. The analysis shows that the story is characterized by a sudden explosion of sentimental involvements, revealed by the existence of a saddle-node bifurcation in the model. The paper is interesting not only because it deals for the first time with catastrophic bifurcations in romantic relation-ships, but also because it enriches the list of examples in which love stories are described through ordinary differential equations.
Chancroid transmission dynamics: a mathematical modeling approach.
Bhunu, C P; Mushayabasa, S
2011-12-01
Mathematical models have long been used to better understand disease transmission dynamics and how to effectively control them. Here, a chancroid infection model is presented and analyzed. The disease-free equilibrium is shown to be globally asymptotically stable when the reproduction number is less than unity. High levels of treatment are shown to reduce the reproduction number suggesting that treatment has the potential to control chancroid infections in any given community. This result is also supported by numerical simulations which show a decline in chancroid cases whenever the reproduction number is less than unity.
Lin, Z; Gehring, R; Mochel, J P; Lavé, T; Riviere, J E
2016-10-01
This review provides a tutorial for individuals interested in quantitative veterinary pharmacology and toxicology and offers a basis for establishing guidelines for physiologically based pharmacokinetic (PBPK) model development and application in veterinary medicine. This is important as the application of PBPK modeling in veterinary medicine has evolved over the past two decades. PBPK models can be used to predict drug tissue residues and withdrawal times in food-producing animals, to estimate chemical concentrations at the site of action and target organ toxicity to aid risk assessment of environmental contaminants and/or drugs in both domestic animals and wildlife, as well as to help design therapeutic regimens for veterinary drugs. This review provides a comprehensive summary of PBPK modeling principles, model development methodology, and the current applications in veterinary medicine, with a focus on predictions of drug tissue residues and withdrawal times in food-producing animals. The advantages and disadvantages of PBPK modeling compared to other pharmacokinetic modeling approaches (i.e., classical compartmental/noncompartmental modeling, nonlinear mixed-effects modeling, and interspecies allometric scaling) are further presented. The review finally discusses contemporary challenges and our perspectives on model documentation, evaluation criteria, quality improvement, and offers solutions to increase model acceptance and applications in veterinary pharmacology and toxicology. © 2016 John Wiley & Sons Ltd.
Scattering theory in quantum mechanics. Physical principles and mathematical methods
International Nuclear Information System (INIS)
Amrein, W.O.; Jauch, J.M.; Sinha, K.B.
1977-01-01
A contemporary approach is given to the classical topics of physics. The purpose is to explain the basic physical concepts of quantum scattering theory, to develop the necessary mathematical tools for their description, to display the interrelation between the three methods (the Schroedinger equation solutions, stationary scattering theory, and time dependence) to derive the properties of various quantities of physical interest with mathematically rigorous methods
Mathematical Model of Nicholson’s Experiment
Directory of Open Access Journals (Sweden)
Sergey D. Glyzin
2017-01-01
Full Text Available Considered is a mathematical model of insects population dynamics, and an attempt is made to explain classical experimental results of Nicholson with its help. In the first section of the paper Nicholson’s experiment is described and dynamic equations for its modeling are chosen. A priori estimates for model parameters can be made more precise by means of local analysis of the dynamical system, that is carried out in the second section. For parameter values found there the stability loss of the problem equilibrium of the leads to the bifurcation of a stable two-dimensional torus. Numerical simulations based on the estimates from the second section allows to explain the classical Nicholson’s experiment, whose detailed theoretical substantiation is given in the last section. There for an atrractor of the system the largest Lyapunov exponent is computed. The nature of this exponent change allows to additionally narrow the area of model parameters search. Justification of this experiment was made possible only due to the combination of analytical and numerical methods in studying equations of insects population dynamics. At the same time, the analytical approach made it possible to perform numerical analysis in a rather narrow region of the parameter space. It is not possible to get into this area, based only on general considerations.
Mathematical Modeling of Column-Base Connections under Monotonic Loading
Directory of Open Access Journals (Sweden)
Gholamreza Abdollahzadeh
2014-12-01
Full Text Available Some considerable damage to steel structures during the Hyogo-ken Nanbu Earthquake occurred. Among them, many exposed-type column bases failed in several consistent patterns, such as brittle base plate fracture, excessive bolt elongation, unexpected early bolt failure, and inferior construction work, etc. The lessons from these phenomena led to the need for improved understanding of column base behavior. Joint behavior must be modeled when analyzing semi-rigid frames, which is associated with a mathematical model of the moment–rotation curve. The most accurate model uses continuous nonlinear functions. This article presents three areas of steel joint research: (1 analysis methods of semi-rigid joints; (2 prediction methods for the mechanical behavior of joints; (3 mathematical representations of the moment–rotation curve. In the current study, a new exponential model to depict the moment–rotation relationship of column base connection is proposed. The proposed nonlinear model represents an approach to the prediction of M–θ curves, taking into account the possible failure modes and the deformation characteristics of the connection elements. The new model has three physical parameters, along with two curve-fitted factors. These physical parameters are generated from dimensional details of the connection, as well as the material properties. The M–θ curves obtained by the model are compared with published connection tests and 3D FEM research. The proposed mathematical model adequately comes close to characterizing M–θ behavior through the full range of loading/rotations. As a result, modeling of column base connections using the proposed mathematical model can give crucial beforehand information, and overcome the disadvantages of time consuming workmanship and cost of experimental studies.
Mathematical models in cell biology and cancer chemotherapy
Eisen, Martin
1979-01-01
The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...
Mathematical modeling and hydrodynamics of Electrochemical deburring process
Prabhu, Satisha; Abhishek Kumar, K., Dr
2018-04-01
The electrochemical deburring (ECD) is a variation of electrochemical machining is considered as one of the efficient methods for deburring of intersecting features and internal parts. Since manual deburring costs are comparatively high one can potentially use this method in both batch production and flow production. The other advantage of this process is that time of deburring as is on the order of seconds as compared to other methods. In this paper, the mathematical modeling of Electrochemical deburring is analysed from its deburring time and base metal removal point of view. Simultaneously material removal rate is affected by electrolyte temperature and bubble formation. The mathematical model and hydrodynamics of the process throw limelight upon optimum velocity calculations which can be theoretically determined. The analysis can be the powerful tool for prediction of the above-mentioned parameters by experimentation.
Three dimensional mathematical model of tooth for finite element analysis
Directory of Open Access Journals (Sweden)
Puškar Tatjana
2010-01-01
Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Fermentation process diagnosis using a mathematical model
Energy Technology Data Exchange (ETDEWEB)
Yerushalmi, L; Volesky, B; Votruba, J
1988-09-01
Intriguing physiology of a solvent-producing strain of Clostridium acetobutylicum led to the synthesis of a mathematical model of the acetone-butanol fermentation process. The model presented is capable of describing the process dynamics and the culture behavior during a standard and a substandard acetone-butanol fermentation. In addition to the process kinetic parameters, the model includes the culture physiological parameters, such as the cellular membrane permeability and the number of membrane sites for active transport of sugar. Computer process simulation studies for different culture conditions used the model, and quantitatively pointed out the importance of selected culture parameters that characterize the cell membrane behaviour and play an important role in the control of solvent synthesis by the cell. The theoretical predictions by the new model were confirmed by experimental determination of the cellular membrane permeability.
A mathematical model on Acquired Immunodeficiency Syndrome
Directory of Open Access Journals (Sweden)
Buddhadeo Mahato
2014-10-01
Full Text Available A mathematical model SEIA (susceptible-exposed-infectious-AIDS infected with vertical transmission of AIDS epidemic is formulated. AIDS is one of the largest health problems, the world is currently facing. Even with anti-retroviral therapies (ART, many resource-constrained countries are unable to meet the treatment needs of their infected populations. We consider a function of number of AIDS cases in a community with an inverse relation. A stated theorem with proof and an example to illustrate it, is given to find the equilibrium points of the model. The disease-free equilibrium of the model is investigated by finding next generation matrix and basic reproduction number R0 of the model. The disease-free equilibrium of the AIDS model system is locally asymptotically stable if R0⩽1 and unstable if R0>1. Finally, numerical simulations are presented to illustrate the results.
Assessment of Primary 5 Students' Mathematical Modelling Competencies
Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia
2012-01-01
Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…
Development of a Multidisciplinary Middle School Mathematics Infusion Model
Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura
2011-01-01
The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…
Exploring the Relationship between Mathematical Modelling and Classroom Discourse
Redmond, Trevor; Sheehy, Joanne; Brown, Raymond
2010-01-01
This paper explores the notion that the discourse of the mathematics classroom impacts on the practices that students engage when modelling mathematics. Using excerpts of a Year 12 student's report on modelling Newton's law of cooling, this paper argues that when students engage with the discourse of their mathematics classroom in a manner that…
Mathematical Model for the Control of measles 1*PETER, OJ ...
African Journals Online (AJOL)
PROF HORSFALL
2018-04-16
Apr 16, 2018 ... 5Department of Mathematics/Statistics, Federal University of Technology, Minna, Nigeria ... ABSTRACT: We proposed a mathematical model of measles disease dynamics with vaccination by ...... Equation with application.
Mathematical Modeling in Population Dynamics: The Case of Single ...
African Journals Online (AJOL)
kofimereku
Department of Mathematics, Kwame Nkrumah University of Science and Technology,. Kumasi, Ghana ... The trust of this paper is the application of mathematical models in helping to ..... Statistics and Computing, New York: Wiley. Cox, C.B and ...
Mathematical modelling in radionuclide diagnosis of physiologic systems state
International Nuclear Information System (INIS)
Narkevich, B.Ya.
1981-01-01
It is shown that the development of software for radionuclide functional diagnostics should be carried out in two directions: 1) increasing the accuracy of radiographic measurements proper; 2) increasing clinical and diagnostic informativeness in the interpretation of the results of measurements. The realization of the first problem is reduced to a mathematical model of the measurement process and the computerized selection of optimum radiography parameters and regimes. The second problem is not solved in the general form, as the interpretation of measurement results depends on the specific clinical and diagnostic aim of investigation, indicator type and the way of its administration in the organism, etc. The lecture gives the classification of the mathematical models of indicator transport, techniques of identification of model parameters. Methods promoting the increase in the accuracy of model identification are presented [ru
Physical and mathematical modeling of antimicrobial photodynamic therapy
Bürgermeister, Lisa; López, Fernando Romero; Schulz, Wolfgang
2014-07-01
Antimicrobial photodynamic therapy (aPDT) is a promising method to treat local bacterial infections. The therapy is painless and does not cause bacterial resistances. However, there are gaps in understanding the dynamics of the processes, especially in periodontal treatment. This work describes the advances in fundamental physical and mathematical modeling of aPDT used for interpretation of experimental evidence. The result is a two-dimensional model of aPDT in a dental pocket phantom model. In this model, the propagation of laser light and the kinetics of the chemical reactions are described as coupled processes. The laser light induces the chemical processes depending on its intensity. As a consequence of the chemical processes, the local optical properties and distribution of laser light change as well as the reaction rates. The mathematical description of these coupled processes will help to develop treatment protocols and is the first step toward an inline feedback system for aPDT users.
Mathematical Modelling of Involute Spur Gears Manufactured by Rack Cutter
Directory of Open Access Journals (Sweden)
Tufan Gürkan YILMAZ
2016-05-01
Full Text Available In this study, mathematical modelling of asymmetric involute spur gears was situated in by Litvin approach. In this context, firstly, mathematical expressions of rack cutter which manufacture asymmetric involute spur gear, then mathematical expression of asymmetric involute spur gear were obtained by using differential geometry, coordinate transformation and gear theory. Mathematical expressions were modelled in MATLAB and output files including points of involute spur gear’s teeth were designed automatically thanks to macros.
Mathematical Modeling of Extinction of Inhomogeneous Populations
Karev, G.P.; Kareva, I.
2016-01-01
Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the “unobserved heterogeneity”, i.e. the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of “internal population time” is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117
Mathematical methods in medicine: neuroscience, cardiology and pathology.
Amigó, José M; Small, Michael
2017-06-28
The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'. © 2017 The Author(s).
Mathematical methods in medicine: neuroscience, cardiology and pathology
Amigó, José M.
2017-01-01
The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507240
A Mathematical Model of Cardiovascular Response to Dynamic Exercise
National Research Council Canada - National Science Library
Magosso, E
2001-01-01
A mathematical model of cardiovascular response to dynamic exercise is presented, The model includes the pulsating heart, the systemic and pulmonary, circulation, a functional description of muscle...
Mathematical model of the Amazon Stirling engine
Energy Technology Data Exchange (ETDEWEB)
Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br
2010-07-01
The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)
Mathematical Methods of System Analysis in Construction Materials
Garkina, Irina; Danilov, Alexander
2017-10-01
modules and their levels (the mathematical description, a decision algorithm) are defined. Adequacy is established (compliance of results of modelling to experimental data; is defined by the level of knowledge of process and validity of the accepted assumptions). The global criterion of quality of material is considered as a set of private criteria (properties). Synthesis of material is carried out on the basis of one-criteria optimization on each of the chosen private criteria. Results of one-criteria optimization are used at multicriteria optimization. The methods of developing materials as single-purpose, multi-purpose, including contradictory, systems are indicated. The scheme of synthesis of composite materials as difficult systems is developed. The specified system approach effectively was used in case of synthesis of composite materials with special properties.
Dialogue in mathematics classrooms: Beyond question-and- answer methods
Directory of Open Access Journals (Sweden)
Karin Brodie
2007-10-01
Full Text Available This paper explores different kinds of interaction observed in South African mathematics classrooms in order to unpack the notion of participation in mathematics learning. It argues that conventional question-and-answer methods do not promote the kind of interaction that the new South African curriculum calls for. It presents more appropriate kinds of interactions, where teachers maintain high task demands, respond to genuine learner questions and support conversations among learners. The paper argues that combinations of different kinds of interaction are most likely to support learner participation and mathematical thinking in classrooms.
Mathematical modelling of the growth of human fetus anatomical structures.
Dudek, Krzysztof; Kędzia, Wojciech; Kędzia, Emilia; Kędzia, Alicja; Derkowski, Wojciech
2017-09-01
The goal of this study was to present a procedure that would enable mathematical analysis of the increase of linear sizes of human anatomical structures, estimate mathematical model parameters and evaluate their adequacy. Section material consisted of 67 foetuses-rectus abdominis muscle and 75 foetuses- biceps femoris muscle. The following methods were incorporated to the study: preparation and anthropologic methods, image digital acquisition, Image J computer system measurements and statistical analysis method. We used an anthropologic method based on age determination with the use of crown-rump length-CRL (V-TUB) by Scammon and Calkins. The choice of mathematical function should be based on a real course of the curve presenting growth of anatomical structure linear size Ύ in subsequent weeks t of pregnancy. Size changes can be described with a segmental-linear model or one-function model with accuracy adequate enough for clinical purposes. The interdependence of size-age is described with many functions. However, the following functions are most often considered: linear, polynomial, spline, logarithmic, power, exponential, power-exponential, log-logistic I and II, Gompertz's I and II and von Bertalanffy's function. With the use of the procedures described above, mathematical models parameters were assessed for V-PL (the total length of body) and CRL body length increases, rectus abdominis total length h, its segments hI, hII, hIII, hIV, as well as biceps femoris length and width of long head (LHL and LHW) and of short head (SHL and SHW). The best adjustments to measurement results were observed in the exponential and Gompertz's models.
Biological-Mathematical Modeling of Chronic Toxicity.
1981-07-22
34Mathematical Model of Uptake and Distribution," Uptake and Distribution of Anesthetic Agents, E. M. Papper and R. J. Kitz (Editors, McGraw-Hill Book Co., Inc...distribution, In: Papper , E.M. and Kltz, R.J.(eds.) Uptake and distribution of anesthetic agents, McGraw- Hill, New York, p. 72 3. Plpleson, W.W...1963) Quantitative prediction of anesthetic concentrations. In: Papper , E.M. and Kitz, R.J. (eds.) Uptake and distribution of anesthetic agents, McGraw
Mathematical Modeling of Diaphragm Pneumatic Motors
Directory of Open Access Journals (Sweden)
Fojtášek Kamil
2014-03-01
Full Text Available Pneumatic diaphragm motors belong to the group of motors with elastic working parts. This part is usually made of rubber with a textile insert and it is deformed under the pressure of a compressed air or from the external mass load. This is resulting in a final working effect. In this type of motors are in contact two different elastic environments – the compressed air and the esaltic part. These motors are mainly the low-stroke and working with relatively large forces. This paper presents mathematical modeling static properties of diaphragm motors.
A mathematical model of Chagas disease transmission
Hidayat, Dayat; Nugraha, Edwin Setiawan; Nuraini, Nuning
2018-03-01
Chagas disease is a parasitic infection caused by protozoan Trypanosoma cruzi which is transmitted to human by insects of the subfamily Triatominae, including Rhodnius prolixus. This disease is a major problem in several countries of Latin America. A mathematical model of Chagas disease with separate vector reservoir and a neighboring human resident is constructed. The basic reproductive ratio is obtained and stability analysis of the equilibria is shown. We also performed sensitivity populations dynamics of infected humans and infected insects based on migration rate, carrying capacity, and infection rate parameters. Our findings showed that the dynamics of the infected human and insect is mostly affected by carrying capacity insect in the settlement.
Modellus: Learning Physics with Mathematical Modelling
Teodoro, Vitor
Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations
Mathematical methods of many-body quantum field theory
Lehmann, Detlef
2004-01-01
Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and wh...
Melnik, Roderick
2015-01-01
Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-the-art achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas,
Mathematical modeling of infectious disease dynamics
Siettos, Constantinos I.; Russo, Lucia
2013-01-01
Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814
Mathematical modeling of tornadoes and squall storms
Directory of Open Access Journals (Sweden)
Sergey A. Arsen’yev
2011-04-01
Full Text Available Recent advances in modeling of tornadoes and twisters consist of significant achievements in mathematical calculation of occurrence and evolution of a violent F5-class tornado on the Fujita scale, and four-dimensional mathematical modeling of a tornado with the fourth coordinate time multiplied by its characteristic velocity. Such a tornado can arise in a thunderstorm supercell filled with turbulent whirlwinds. A theory of the squall storms is proposed. The squall storm is modeled by running perturbation of the temperature inversion on the lower boundary of cloudiness. This perturbation is induced by the action of strong, hurricane winds in the upper and middle troposphere, and looks like a running solitary wave (soliton; which is developed also in a field of pressure and velocity of a wind. If a soliton of a squall storm gets into the thunderstorm supercell then this soliton is captured by supercell. It leads to additional pressure fall of air inside a storm supercell and stimulate amplification of wind velocity here. As a result, a cyclostrophic balance inside a storm supercell generates a tornado. Comparison of the radial distribution of wind velocity inside a tornado calculated by using the new formulas and equations with radar observations of the wind velocity inside Texas Tornado Dummit in 1995 and inside the 3 May 1999 Oklahoma City Tornado shows good correspondence.
Models and methods in thermoluminescence
International Nuclear Information System (INIS)
Furetta, C.
2005-01-01
This work contains a conference that was treated about the principles of the luminescence phenomena, the mathematical treatment concerning the thermoluminescent emission of light as well as the Randall-Wilkins model, the Garlick-Gibson model, the Adirovitch model, the May-Partridge model, the Braunlich-Scharman model, the mixed first and second order kinetics, the methods for evaluating the kinetics parameters such as the initial rise method, the various heating rates method, the isothermal decay method and those methods based on the analysis of the glow curve shape. (Author)
Models and methods in thermoluminescence
Energy Technology Data Exchange (ETDEWEB)
Furetta, C. [ICN, UNAM, A.P. 70-543, Mexico D.F. (Mexico)
2005-07-01
This work contains a conference that was treated about the principles of the luminescence phenomena, the mathematical treatment concerning the thermoluminescent emission of light as well as the Randall-Wilkins model, the Garlick-Gibson model, the Adirovitch model, the May-Partridge model, the Braunlich-Scharman model, the mixed first and second order kinetics, the methods for evaluating the kinetics parameters such as the initial rise method, the various heating rates method, the isothermal decay method and those methods based on the analysis of the glow curve shape. (Author)
Mathematical modeling and numerical simulation of Czochralski Crystal Growth
Energy Technology Data Exchange (ETDEWEB)
Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)
1996-12-31
A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)
Mathematical modeling and numerical simulation of Czochralski Crystal Growth
Energy Technology Data Exchange (ETDEWEB)
Jaervinen, J; Nieminen, R [Center for Scientific Computing, Espoo (Finland)
1997-12-31
A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)
Mathematical methods linear algebra normed spaces distributions integration
Korevaar, Jacob
1968-01-01
Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector
Comparison of Different Mathematical Models of Cavitation
Directory of Open Access Journals (Sweden)
Dorota HOMA
2014-12-01
Full Text Available Cavitation occurs during the flow when local pressure drops to the saturation pressure according to the temperature of the flow. It includes both evaporation and condensation of the vapor bubbles, which occur alternately with high frequency. Cavitation can be very dangerous, especially for pumps, because it leads to break of flow continuity, noise, vibration, erosion of blades and change in pump’s characteristics. Therefore it is very important for pump designers and users to avoid working in cavitation conditions. Simulation of flow can be very useful in that and can indicate if there is risk of cavitating flow occurrence. As this is a multiphase flow and quite complicated phenomena, there are a few mathematical models describing it. The aim of this paper is to make a short review of them and describe their approach to model cavitation. It is desirable to know differences between them to model this phenomenon properly.
A new mathematical model for coal flotation kinetics
Guerrero-Pérez, Juan Sebastián; Barraza-Burgos, Juan Manuel
2017-01-01
Abstract This study describes the development and formulation of a novel mathematical model for coal flotation kinetic. The flotation rate was considered as a function of chemical, operating and petrographic parameters for a global flotation order n. The equation for flotation rate was obtained by dimensional analysis using the Rayleigh method. It shows the dependency of flotation kinetic on operating parameters, such as air velocity and particle size; chemical parameters, such as reagents do...
Aspects of Mathematical Modelling of Pressure Retarded Osmosis
Anissimov, Yuri G.
2016-01-01
In power generating terms, a pressure retarded osmosis (PRO) energy generating plant, on a river entering a sea or ocean, is equivalent to a hydroelectric dam with a height of about 60 meters. Therefore, PRO can add significantly to existing renewable power generation capacity if economical constrains of the method are resolved. PRO energy generation relies on a semipermeable membrane that is permeable to water and impermeable to salt. Mathematical modelling plays an important part in understanding flows of water and salt near and across semipermeable membranes and helps to optimize PRO energy generation. Therefore, the modelling can help realizing PRO energy generation potential. In this work, a few aspects of mathematical modelling of the PRO process are reviewed and discussed. PMID:26848696
Mathematical modeling of earth's dynamical systems a primer
Slingerland, Rudy
2011-01-01
Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be f...
Mathematical modeling of the Phoenix Rising pathway.
Directory of Open Access Journals (Sweden)
Chad Liu
2014-02-01
Full Text Available Apoptosis is a tightly controlled process in mammalian cells. It is important for embryogenesis, tissue homoeostasis, and cancer treatment. Apoptosis not only induces cell death, but also leads to the release of signals that promote rapid proliferation of surrounding cells through the Phoenix Rising (PR pathway. To quantitatively understand the kinetics of interactions of different molecules in this pathway, we developed a mathematical model to simulate the effects of various changes in the PR pathway on the secretion of prostaglandin E2 (PGE2, a key factor for promoting cell proliferation. These changes include activation of caspase 3 (C3, caspase 7 (C7, and nuclear factor κB (NFκB. In addition, we simulated the effects of cyclooxygenase-2 (COX2 inhibition and C3 knockout on the level of secreted PGE2. The model predictions on PGE2 in MEF and 4T1 cells at 48 hours after 10-Gray radiation were quantitatively consistent with the experimental data in the literature. Compared to C7, the model predicted that C3 activation was more critical for PGE2 production. The model also predicted that PGE2 production could be significantly reduced when COX2 expression was blocked via either NFκB inactivation or treatment of cells with exogenous COX2 inhibitors, which led to a decrease in the rate of conversion from arachidonic acid to prostaglandin H2 in the PR pathway. In conclusion, the mathematical model developed in this study yielded new insights into the process of tissue regrowth stimulated by signals from apoptotic cells. In future studies, the model can be used for experimental data analysis and assisting development of novel strategies/drugs for improving cancer treatment or normal tissue regeneration.
Directory of Open Access Journals (Sweden)
Y. A. Perminov
2014-01-01
Full Text Available The paper substantiates the need for profile training in mathematical modeling for pedagogical students, caused by the total penetration of mathematics into different sciences, including the humanities; fast development of the information communications technologies; and growing importance of mathematical modeling, combining the informal scientific and formal mathematical languages with the unique opportunities of computer programming. The author singles out the reasons for mastering and using the mathematical apparatus by teaches in every discipline. Indeed, among all the modern mathematical methods and ideas, mathematical modeling retains its priority in all professional spheres. Therefore, the discipline of “Mathematical Modeling” can play an important role in integrating different components of specialists training in various profiles. By mastering the basics of mathematical modeling, students acquire skills of methodological thinking; learn the principles of analysis, synthesis, generalization of ideas and methods in different disciplines and scientific spheres; and achieve general culture competences. In conclusion, the author recommends incorporating the “Methods of Profile Training in Mathematical Modeling” into the pedagogical magistracy curricula.
Mathematical modeling of CANDU-PHWR
Energy Technology Data Exchange (ETDEWEB)
Gaber, F.A.; Aly, R.A.; El-Shal, A.O. [Atomic Energy Authority, Cairo (Egypt)
2001-07-01
The paper deals with the transient studies of CANDU 600 pressurized Heavy Water Reactor (PHWR) system. This study involved mathematical modeling of CANDU PHWR major system components and the developments of software to study the thermodynamic performances. Modeling of CANDU-PHWR was based on lumped parameter technique.The integrated CANDU-PHWR model includes the neutronic, reactivity, fuel channel heat transfer, piping and the preheater type U-tube steam generator (PUTSG). The nuclear reactor power was modelled using the point kinetics equations with six groups of delayed neutrons and reactivity feed back due to the changes in fuel temperature and coolant temperature. The complex operation of the preheater type U-tube steam generator (PUTSG) is represented by a non-linear dynamic model using a state variable, moving boundary and lumped parameter techniques. The secondary side of the PUTSG model has six separate lumps including a preheater region, a lower boiling section, a mixing region, a riser, a chimmeny section, and a down-corner. The tube side of PUTSG has three main thermal zones. The PUTSG model is based on conservation of mass, energy and momentum relation-ships. The CANDU-PHWR integrated model are coded in FORTRAN language and solved by using a standard numerical technique. The adequacy of the model was tested by assessing the physical plausibility of the obtained results. (author)
Directory of Open Access Journals (Sweden)
Markushevich M.V.
2016-10-01
Full Text Available the article details the use of such modern method of training as computer simulation applied to modelling of various kinds of mechanical motion of a material point in the free spreadsheet OpenOffice.org Calc while designing physics and computer science lessons in primary and secondary schools. Particular attention is paid to the application of computer modeling integrated with other modern teaching methods.
Dalla Vecchia, Rodrigo
2015-01-01
This study discusses aspects of the association between Mathematical Modeling (MM) and Big Data in the scope of mathematical education. We present an example of an activity to discuss two ontological factors that involve MM. The first is linked to the modeling stages. The second involves the idea of pedagogical objectives. The main findings…
Introduction to mathematical and informatics methods in Nuclear Medicine
International Nuclear Information System (INIS)
Martin, J.; Monot, C.; Legras, B.
1975-01-01
Mathematical and statistical methods are widely used in nuclear medicine because of the abundance and precision of the data obtained during morphological and dynamic explorations, and the number and complexity of the calculations involved has led to the use of informatics. Very elaborate techniques may be employed with the help of the computer. In spite of its cost it is closely associated with exploration techniques, especially in conjunction with the scintillation camera. To keep the machine in full-time use and ensure its profitability it is employed in other capacities, for an service management in particular. Each subject is dealt with from its fundamental aspect: nuclear medicine and biomathematics, statistics, informatics; compartment models in nuclear medicine (interpretation of dynamic examinations); quantitive image processing; special computer services (connections with apparatus, service and records management problems) [fr
Healy, Richard W.; Scanlon, Bridget R.
2010-01-01
Simulation models are widely used in all types of hydrologic studies, and many of these models can be used to estimate recharge. Models can provide important insight into the functioning of hydrologic systems by identifying factors that influence recharge. The predictive capability of models can be used to evaluate how changes in climate, water use, land use, and other factors may affect recharge rates. Most hydrological simulation models, including watershed models and groundwater-flow models, are based on some form of water-budget equation, so the material in this chapter is closely linked to that in Chapter 2. Empirical models that are not based on a water-budget equation have also been used for estimating recharge; these models generally take the form of simple estimation equations that define annual recharge as a function of precipitation and possibly other climatic data or watershed characteristics.Model complexity varies greatly. Some models are simple accounting models; others attempt to accurately represent the physics of water movement through each compartment of the hydrologic system. Some models provide estimates of recharge explicitly; for example, a model based on the Richards equation can simulate water movement from the soil surface through the unsaturated zone to the water table. Recharge estimates can be obtained indirectly from other models. For example, recharge is a parameter in groundwater-flow models that solve for hydraulic head (i.e. groundwater level). Recharge estimates can be obtained through a model calibration process in which recharge and other model parameter values are adjusted so that simulated water levels agree with measured water levels. The simulation that provides the closest agreement is called the best fit, and the recharge value used in that simulation is the model-generated estimate of recharge.
Mathematical model of highways network optimization
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.
A novel mathematical model for controllable near-field electrospinning
International Nuclear Information System (INIS)
Ru, Changhai; Chen, Jie; Shao, Zhushuai; Pang, Ming; Luo, Jun
2014-01-01
Near-field electrospinning (NFES) had better controllability than conventional electrospinning. However, due to the lack of guidance of theoretical model, precise deposition of micro/nano fibers could only accomplished by experience. To analyze the behavior of charged jet in NFES using mathematical model, the momentum balance equation was simplified and a new expression between jet cross-sectional radius and axial position was derived. Using this new expression and mass conservation equation, expressions for jet cross-sectional radius and velocity were derived in terms of axial position and initial jet acceleration in the form of exponential functions. Based on Slender-body theory and Giesekus model, a quadratic equation for initial jet acceleration was acquired. With the proposed model, it was able to accurately predict the diameter and velocity of polymer fibers in NFES, and mathematical analysis rather than experimental methods could be applied to study the effects of the process parameters in NFES. Moreover, the movement velocity of the collector stage can be regulated by mathematical model rather than experience. Therefore, the model proposed in this paper had important guiding significance to precise deposition of polymer fibers
A novel mathematical model for controllable near-field electrospinning
Ru, Changhai; Chen, Jie; Shao, Zhushuai; Pang, Ming; Luo, Jun
2014-01-01
Near-field electrospinning (NFES) had better controllability than conventional electrospinning. However, due to the lack of guidance of theoretical model, precise deposition of micro/nano fibers could only accomplished by experience. To analyze the behavior of charged jet in NFES using mathematical model, the momentum balance equation was simplified and a new expression between jet cross-sectional radius and axial position was derived. Using this new expression and mass conservation equation, expressions for jet cross-sectional radius and velocity were derived in terms of axial position and initial jet acceleration in the form of exponential functions. Based on Slender-body theory and Giesekus model, a quadratic equation for initial jet acceleration was acquired. With the proposed model, it was able to accurately predict the diameter and velocity of polymer fibers in NFES, and mathematical analysis rather than experimental methods could be applied to study the effects of the process parameters in NFES. Moreover, the movement velocity of the collector stage can be regulated by mathematical model rather than experience. Therefore, the model proposed in this paper had important guiding significance to precise deposition of polymer fibers.
A novel mathematical model for controllable near-field electrospinning
Energy Technology Data Exchange (ETDEWEB)
Ru, Changhai, E-mail: rchhai@gmail.com, E-mail: luojun@shu.edu.cn [College of Automation, Harbin Engineering University, Harbin 150001 (China); Robotics and Microsystems Center, Soochow University, Suzhou 215021 (China); Chen, Jie; Shao, Zhushuai [Robotics and Microsystems Center, Soochow University, Suzhou 215021 (China); Pang, Ming [College of Automation, Harbin Engineering University, Harbin 150001 (China); Luo, Jun, E-mail: rchhai@gmail.com, E-mail: luojun@shu.edu.cn [School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072 (China)
2014-01-15
Near-field electrospinning (NFES) had better controllability than conventional electrospinning. However, due to the lack of guidance of theoretical model, precise deposition of micro/nano fibers could only accomplished by experience. To analyze the behavior of charged jet in NFES using mathematical model, the momentum balance equation was simplified and a new expression between jet cross-sectional radius and axial position was derived. Using this new expression and mass conservation equation, expressions for jet cross-sectional radius and velocity were derived in terms of axial position and initial jet acceleration in the form of exponential functions. Based on Slender-body theory and Giesekus model, a quadratic equation for initial jet acceleration was acquired. With the proposed model, it was able to accurately predict the diameter and velocity of polymer fibers in NFES, and mathematical analysis rather than experimental methods could be applied to study the effects of the process parameters in NFES. Moreover, the movement velocity of the collector stage can be regulated by mathematical model rather than experience. Therefore, the model proposed in this paper had important guiding significance to precise deposition of polymer fibers.
Modelling as a foundation for academic forming in mathematics education
Perrenet, J.C.; Morsche, ter H.G.
2004-01-01
The Bachelor curriculum of Applied Mathematics in Eindhoven includes a series of modelling projects where pairs of students solve mathematical problems posed in non-mathematical language. Communication skills training is integrated with this track. Recently a new course has been added. The students
Correlation Educational Model in Primary Education Curriculum of Mathematics and Computer Science
Macinko Kovac, Maja; Eret, Lidija
2012-01-01
This article gives insight into methodical correlation model of teaching mathematics and computer science. The model shows the way in which the related areas of computer science and mathematics can be supplemented, if it transforms the way of teaching and creates a "joint" lessons. Various didactic materials are designed, in which all…
Methods of contemporary mathematical statistical physics
2009-01-01
This volume presents a collection of courses introducing the reader to the recent progress with attention being paid to laying solid grounds and developing various basic tools. An introductory chapter on lattice spin models is useful as a background for other lectures of the collection. The topics include new results on phase transitions for gradient lattice models (with introduction to the techniques of the reflection positivity), stochastic geometry reformulation of classical and quantum Ising models, the localization/delocalization transition for directed polymers. A general rigorous framework for theory of metastability is presented and particular applications in the context of Glauber and Kawasaki dynamics of lattice models are discussed. A pedagogical account of several recently discussed topics in nonequilibrium statistical mechanics with an emphasis on general principles is followed by a discussion of kinetically constrained spin models that are reflecting important peculiar features of glassy dynamic...
Mathematical modeling of a thermovoltaic cell
White, Ralph E.; Kawanami, Makoto
1992-01-01
A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.
Description of mathematical models and computer programs
International Nuclear Information System (INIS)
1977-01-01
The paper gives a description of mathematical models and computer programs for analysing possible strategies for spent fuel management, with emphasis on economic analysis. The computer programs developed, describe the material flows, facility construction schedules, capital investment schedules and operating costs for the facilities used in managing the spent fuel. The computer programs use a combination of simulation and optimization procedures for the economic analyses. Many of the fuel cycle steps (such as spent fuel discharges, storage at the reactor, and transport to the RFCC) are described in physical and economic terms through simulation modeling, while others (such as reprocessing plant size and commissioning schedules, interim storage facility commissioning schedules etc.) are subjected to economic optimization procedures to determine the approximate lowest-cost plans from among the available feasible alternatives
Mathematical Model of Cytomegalovirus (CMV) Disease
Sriningsih, R.; Subhan, M.; Nasution, M. L.
2018-04-01
The article formed the mathematical model of cytomegalovirus (CMV) disease. Cytomegalovirus (CMV) is a type of herpes virus. This virus is actually not dangerous, but if the body's immune weakens the virus can cause serious problems for health and even can cause death. This virus is also susceptible to infect pregnant women. In addition, the baby may also be infected through the placenta. If this is experienced early in pregnancy, it will increase the risk of miscarriage. If the baby is born, it can cause disability in the baby. The model is formed by determining its variables and parameters based on assumptions. The goal is to analyze the dynamics of cytomegalovirus (CMV) disease spread.
Laser interaction with biological material mathematical modeling
Kulikov, Kirill
2014-01-01
This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.
Missing the Promise of Mathematical Modeling
Meyer, Dan
2015-01-01
The Common Core State Standards for Mathematics (CCSSM) have exerted enormous pressure on every participant in a child's education. Students are struggling to meet new standards for mathematics learning, and parents are struggling to understand how to help them. Teachers are growing in their capacity to develop new mathematical competencies, and…
Mathematics Teacher Education: A Model from Crimea.
Ferrucci, Beverly J.; Evans, Richard C.
1993-01-01
Reports on the mathematics teacher preparation program at Simferopol State University, the largest institution of higher education in the Crimea. The article notes the value of investigating what other countries consider essential in mathematics teacher education to improve the mathematical competence of students in the United States. (SM)
Common Mathematical Model of Fatigue Characteristics
Directory of Open Access Journals (Sweden)
Z. Maléř
2004-01-01
Full Text Available This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R + B(R ∙ log Sawhere A(R = AR2 + BR + C and B(R = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics.
A Mathematical Model for Cisplatin Cellular Pharmacodynamics
Directory of Open Access Journals (Sweden)
Ardith W. El-Kareh
2003-03-01
Full Text Available A simple theoretical model for the cellular pharmacodynamics of cisplatin is presented. The model, which takes into account the kinetics of cisplatin uptake by cells and the intracellular binding of the drug, can be used to predict the dependence of survival (relative to controls on the time course of extracellular exposure. Cellular pharmacokinetic parameters are derived from uptake data for human ovarian and head and neck cancer cell lines. Survival relative to controls is assumed to depend on the peak concentration of DNA-bound intracellular platinum. Model predictions agree well with published data on cisplatin cytotoxicity for three different cancer cell lines, over a wide range of exposure times. In comparison with previously published mathematical models for anticancer drug pharmacodynamics, the present model provides a better fit to experimental data sets including long exposure times (∼100 hours. The model provides a possible explanation for the fact that cell kill correlates well with area under the extracellular concentration-time curve in some data sets, but not in others. The model may be useful for optimizing delivery schedules and for the dosing of cisplatin for cancer therapy.
Rudolph, Lee
2012-01-01
In this book Lee Rudolph brings together international contributors who combine psychological and mathematical perspectives to analyse how qualitative mathematics can be used to create models of social and psychological processes. Bridging the gap between the fields with an imaginative and stimulating collection of contributed chapters, the volume updates the current research on the subject, which until now has been rather limited, focussing largely on the use of statistics. Qualitative Mathematics for the Social Sciences contains a variety of useful illustrative figures, in
Mathematical modeling of acid-base physiology.
Occhipinti, Rossana; Boron, Walter F
2015-01-01
pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3(-), [Formula: see text] ) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cells-which to our knowledge is the first one capable of handling a multitude of buffer reactions-that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3(-) influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mathematical modelling of steam generator and design of temperature regulator
Energy Technology Data Exchange (ETDEWEB)
Bogdanovic, S.S. [EE Institute Nikola Tesla, Belgrade (Yugoslavia)
1999-07-01
The paper considers mathematical modelling of once-through power station boiler and numerical algorithm for simulation of the model. Fast and numerically stable algorithm based on the linearisation of model equations and on the simultaneous solving of differential and algebraic equations is proposed. The paper also presents the design of steam temperature regulator by using the method of projective controls. Dynamic behaviour of the system closed with optimal linear quadratic regulator is taken as the reference system. The desired proprieties of the reference system are retained and solutions for superheated steam temperature regulator are determined. (author)
Directory of Open Access Journals (Sweden)
Jennifer M. Suh
2017-06-01
Full Text Available This paper examines the experiences of two elementary teachers’ implementation of mathematical modeling in their classrooms and how the enactment by the teachers and the engagement by students exhibited their creativity, critical thinking, collaboration and communication skills. In particular, we explore the questions: (1 How can phases of mathematical modeling as a process serve as a venue for exhibiting students’ critical 21st century skills? (2 What were some effective pedagogical practices teachers used as they implemented mathematical modeling with elementary students and how did these promote students’ 21st century skills? We propose that mathematical modeling provides space for teachers and students to have a collective experience through the iterative process of making sense of and building knowledge of important mathematical ideas while engaging in the critical 21st century skills necessary in our complex modern world.
Mathematical foundation of the optimization-based fluid animation method
DEFF Research Database (Denmark)
Erleben, Kenny; Misztal, Marek Krzysztof; Bærentzen, Jakob Andreas
2011-01-01
We present the mathematical foundation of a fluid animation method for unstructured meshes. Key contributions not previously treated are the extension to include diffusion forces and higher order terms of non-linear force approximations. In our discretization we apply a fractional step method to ...
Preferences of Teaching Methods and Techniques in Mathematics with Reasons
Ünal, Menderes
2017-01-01
In this descriptive study, the goal was to determine teachers' preferred pedagogical methods and techniques in mathematics. Qualitative research methods were employed, primarily case studies. 40 teachers were randomly chosen from various secondary schools in Kirsehir during the 2015-2016 educational terms, and data were gathered via…
How Preservice Teachers Make Meaning of Mathematics Methods Texts
Harkness, Shelly Sheats; Brass, Amy
2017-01-01
Mathematics methods texts are important resources for supporting preservice teachers' learning. Methods instructors routinely assign readings from texts. Yet, anecdotally and also based on reading compliance literature, many students report that they do not read assigned readings. Within this paper we briefly describe the findings from a survey of…
Experimentally supported mathematical modeling of continuous baking processes
DEFF Research Database (Denmark)
Stenby Andresen, Mette
and temperature) and control the process (air flow, temperature, and humidity) are therefore emphasized. The oven is furthermore designed to work outside the range of standard tunnel ovens, making it interesting for manufacturers of both baking products and baking equipment. A mathematical model describing......The scope of the PhD project was to increase knowledge on the process-to-product interactions in continuous tunnel ovens. The work has focused on five main objectives. These objectives cover development of new experimental equipment for pilot plant baking experiments, mathematical modeling of heat...... and mass transfer in a butter cookie product, and evaluation of quality assessment methods. The pilot plant oven is a special batch oven designed to emulate continuous convection tunnel oven baking. The design, construction, and validation of the oven has been part of the project and is described...
MATHEMATICAL MODELING OF UNSTEADY HEAT EXCHANGE IN A PASSENGER CAR
Directory of Open Access Journals (Sweden)
I. Yu. Khomenko
2013-07-01
Full Text Available Purpose.Existing mathematicalmodelsofunsteadyheatexchangeinapassengercardonotsatisfytheneedofthedifferentconstructivedecisionsofthelifesupportsystemefficiencyestimation. They also don’t allow comparing new and old life support system constructions influence on the inner environment conditions. Moreoverquite frequently unsteady heat exchange processes were studied at the initial car motion stage. Due to the new competitive engineering decisionsof the lifesupportsystemthe need of a new mathematical instrument that would satisfy the mentioned features and their influence on the unsteadyheatexchangeprocesses during the whole time of the road appeared. The purpose of this work is creation of the mathematicalmodel ofunsteadyheatexchangeinapassengercarthatcan satisfythe above-listed requirements. Methodology. Fortheassigned task realizationsystemofdifferentialequationsthatcharacterizesunsteadyheatexchangeprocessesinapassengercarwascomposed; forthesystemof equationssolution elementary balance method was used. Findings. Computational algorithm was developed andcomputer program for modeling transitional heat processes in the car was designed. It allows comparing different life support system constructions influence on the inner environment conditionsand unsteady heat exchange processes can be studied at every car motion stage. Originality.Mathematicalmodelofunsteadyheatexchangeinapassengercarwasimproved. That is why it can be used for the heat engineering studying of the inner car state under various conditions and for the operation of the different life support systems of passenger cars comparison. Mathematicalmodelingofunsteadyheatexchangeinapassengercarwas made by the elementary balance method. Practical value. Created mathematical model gives the possibility to simulate temperature changes in passenger car on unsteady thermal conditions with enough accuracy and to introduce and remove additional elements to the designed model. Thus different
Mathematical problems in modeling artificial heart
Directory of Open Access Journals (Sweden)
Ahmed N. U.
1995-01-01
Full Text Available In this paper we discuss some problems arising in mathematical modeling of artificial hearts. The hydrodynamics of blood flow in an artificial heart chamber is governed by the Navier-Stokes equation, coupled with an equation of hyperbolic type subject to moving boundary conditions. The flow is induced by the motion of a diaphragm (membrane inside the heart chamber attached to a part of the boundary and driven by a compressor (pusher plate. On one side of the diaphragm is the blood and on the other side is the compressor fluid. For a complete mathematical model it is necessary to write the equation of motion of the diaphragm and all the dynamic couplings that exist between its position, velocity and the blood flow in the heart chamber. This gives rise to a system of coupled nonlinear partial differential equations; the Navier-Stokes equation being of parabolic type and the equation for the membrane being of hyperbolic type. The system is completed by introducing all the necessary static and dynamic boundary conditions. The ultimate objective is to control the flow pattern so as to minimize hemolysis (damage to red blood cells by optimal choice of geometry, and by optimal control of the membrane for a given geometry. The other clinical problems, such as compatibility of the material used in the construction of the heart chamber, and the membrane, are not considered in this paper. Also the dynamics of the valve is not considered here, though it is also an important element in the overall design of an artificial heart. We hope to model the valve dynamics in later paper.
The use of mathematical models in teaching wastewater treatment engineering
DEFF Research Database (Denmark)
Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.
2002-01-01
Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....
A Guided Tour of Mathematical Methods - 2nd Edition
Snieder, Roel
2004-09-01
Mathematical methods are essential tools for all physical scientists. This second edition provides a comprehensive tour of the mathematical knowledge and techniques that are needed by students in this area. In contrast to more traditional textbooks, all the material is presented in the form of problems. Within these problems the basic mathematical theory and its physical applications are well integrated. The mathematical insights that the student acquires are therefore driven by their physical insight. Topics that are covered include vector calculus, linear algebra, Fourier analysis, scale analysis, complex integration, Green's functions, normal modes, tensor calculus, and perturbation theory. The second edition contains new chapters on dimensional analysis, variational calculus, and the asymptotic evaluation of integrals. This book can be used by undergraduates, and lower-level graduate students in the physical sciences. It can serve as a stand-alone text, or as a source of problems and examples to complement other textbooks. All the material is presented in the form of problems Mathematical insights are gained by getting the reader to develop answers themselves Many applications of the mathematics are given
Mathematical modeling of wiped-film evaporators
International Nuclear Information System (INIS)
Sommerfeld, J.T.
1976-05-01
A mathematical model and associated computer program were developed to simulate the steady-state operation of wiped-film evaporators for the concentration of typical waste solutions produced at the Savannah River Plant. In this model, which treats either a horizontal or a vertical wiped-film evaporator as a plug-flow device with no backmixing, three fundamental phenomena are described: sensible heating of the waste solution, vaporization of water, and crystallization of solids from solution. Physical property data were coded into the computer program, which performs the calculations of this model. Physical properties of typical waste solutions and of the heating steam, generally as analytical functions of temperature, were obtained from published data or derived by regression analysis of tabulated or graphical data. Preliminary results from tests of the Savannah River Laboratory semiworks wiped-film evaporators were used to select a correlation for the inside film heat transfer coefficient. This model should be a useful aid in the specification, operation, and control of the full-scale wiped-film evaporators proposed for application under plant conditions. In particular, it should be of value in the development and analysis of feed-forward control schemes for the plant units. Also, this model can be readily adapted, with only minor changes, to simulate the operation of wiped-film evaporators for other conceivable applications, such as the concentration of acid wastes
Mathematical modeling of diphtheria transmission in Thailand.
Sornbundit, Kan; Triampo, Wannapong; Modchang, Charin
2017-08-01
In this work, a mathematical model for describing diphtheria transmission in Thailand is proposed. Based on the course of diphtheria infection, the population is divided into 8 epidemiological classes, namely, susceptible, symptomatic infectious, asymptomatic infectious, carrier with full natural-acquired immunity, carrier with partial natural-acquired immunity, individual with full vaccine-induced immunity, and individual with partial vaccine-induced immunity. Parameter values in the model were either directly obtained from the literature, estimated from available data, or estimated by means of sensitivity analysis. Numerical solutions show that our model can correctly describe the decreasing trend of diphtheria cases in Thailand during the years 1977-2014. Furthermore, despite Thailand having high DTP vaccine coverage, our model predicts that there will be diphtheria outbreaks after the year 2014 due to waning immunity. Our model also suggests that providing booster doses to some susceptible individuals and those with partial immunity every 10 years is a potential way to inhibit future diphtheria outbreaks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mathematical models for indoor radon prediction
International Nuclear Information System (INIS)
Malanca, A.; Pessina, V.; Dallara, G.
1995-01-01
It is known that the indoor radon (Rn) concentration can be predicted by means of mathematical models. The simplest model relies on two variables only: the Rn source strength and the air exchange rate. In the Lawrence Berkeley Laboratory (LBL) model several environmental parameters are combined into a complex equation; besides, a correlation between the ventilation rate and the Rn entry rate from the soil is admitted. The measurements were carried out using activated carbon canisters. Seventy-five measurements of Rn concentrations were made inside two rooms placed on the second floor of a building block. One of the rooms had a single-glazed window whereas the other room had a double pane window. During three different experimental protocols, the mean Rn concentration was always higher into the room with a double-glazed window. That behavior can be accounted for by the simplest model. A further set of 450 Rn measurements was collected inside a ground-floor room with a grounding well in it. This trend maybe accounted for by the LBL model
Methods of small parameter in mathematical biology
Banasiak, Jacek
2014-01-01
This monograph presents new tools for modeling multiscale biological processes. Natural processes are usually driven by mechanisms widely differing from each other in the time or space scale at which they operate and thus should be described by appropriate multiscale models. However, looking at all such scales simultaneously is often infeasible, costly, and provides information that is redundant for a particular application. Hence, there has been a growing interest in providing a more focused description of multiscale processes by aggregating variables in a way that is relevant and preserves the salient features of the dynamics. The aim of this book is to present a systematic way of deriving the so-called limit equations for such aggregated variables and ensuring that the coefficients of these equations encapsulate the relevant information from the discarded levels of description. Since any approximation is only valid if an estimate of the incurred error is available, the tools described allow for proving tha...
Mathematical foundations of the dendritic growth models.
Villacorta, José A; Castro, Jorge; Negredo, Pilar; Avendaño, Carlos
2007-11-01
At present two growth models describe successfully the distribution of size and topological complexity in populations of dendritic trees with considerable accuracy and simplicity, the BE model (Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997) and the S model (Van Pelt and Verwer in Bull. Math. Biol. 48:197-211, 1986). This paper discusses the mathematical basis of these models and analyzes quantitatively the relationship between the BE model and the S model assumed in the literature by developing a new explicit equation describing the BES model (a dendritic growth model integrating the features of both preceding models; Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997). In numerous studies it is implicitly presupposed that the S model is conditionally linked to the BE model (Granato and Van Pelt in Brain Res. Dev. Brain Res. 142:223-227, 2003; Uylings and Van Pelt in Network 13:397-414, 2002; Van Pelt, Dityatev and Uylings in J. Comp. Neurol. 387:325-340, 1997; Van Pelt and Schierwagen in Math. Biosci. 188:147-155, 2004; Van Pelt and Uylings in Network. 13:261-281, 2002; Van Pelt, Van Ooyen and Uylings in Modeling Dendritic Geometry and the Development of Nerve Connections, pp 179, 2000). In this paper we prove the non-exactness of this assumption, quantify involved errors and determine the conditions under which the BE and S models can be separately used instead of the BES model, which is more exact but considerably more difficult to apply. This study leads to a novel expression describing the BE model in an analytical closed form, much more efficient than the traditional iterative equation (Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997) in many neuronal classes. Finally we propose a new algorithm in order to obtain the values of the parameters of the BE model when this growth model is matched to experimental data, and discuss its advantages and improvements over the more commonly used procedures.
Mathematical Modeling of the Origins of Life
Pohorille, Andrew
2006-01-01
The emergence of early metabolism - a network of catalyzed chemical reactions that supported self-maintenance, growth, reproduction and evolution of the ancestors of contemporary cells (protocells) was a critical, but still very poorly understood step on the path from inanimate to animate matter. Here, it is proposed and tested through mathematical modeling of biochemically plausible systems that the emergence of metabolism and its initial evolution towards higher complexity preceded the emergence of a genome. Even though the formation of protocellular metabolism was driven by non-genomic, highly stochastic processes the outcome was largely deterministic, strongly constrained by laws of chemistry. It is shown that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution, also held in the absence of a genome.
Mathematical modeling in mechanics of heterogeneous media
International Nuclear Information System (INIS)
Fedorov, A.V.; Fomin, V.M.
1991-01-01
The paper reviews the work carried out at the Department of Multi-Phase Media Mechanics of the Institute of Theoretical and Applied Mechanics of the Siberian Division of the USSR Academy of Sciences. It deals with mathematical models for the flow of gas mixtures and solid particles that account for phase transitions and chemical reactions. This work is concerned with the problems of construction of laws of conservation, determination of the type of equations of heterogeneous media mechanics, structure of shock waves, and combined discontinuities in mixtures. The theory of ideal and nonideal detonation in suspension of matter in gases is discussed. Self-similar flows of gas mixtures and responding particles, as well as the problem of breakup of discontinuity for suspension of matter in gases, is studied. 42 refs
Mathematics Models in Chemistry--An Innovation for Non-Mathematics and Non-Science Majors
Rash, Agnes M.; Zurbach, E. Peter
2004-01-01
The intention of this article is to present a year-long interdisciplinary course, Mathematical Models in Chemistry. The course is comprised of eleven units, each of which has both a mathematical and a chemical component. A syllabus of the course is given and the format of the class is explained. The interaction of the professors and the content is…
Energy Technology Data Exchange (ETDEWEB)
M Ali, M. K., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Ruslan, M. H., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Muthuvalu, M. S., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my; Wong, J., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my [Unit Penyelidikan Rumpai Laut (UPRL), Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia); Sulaiman, J., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my; Yasir, S. Md., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my [Program Matematik dengan Ekonomi, Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia)
2014-06-19
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m{sup 2} and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R{sup 2}), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.
International Nuclear Information System (INIS)
M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.
2014-01-01
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m 2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R 2 ), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested
M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.
2014-06-01
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R2), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.
Noise in restaurants: levels and mathematical model.
To, Wai Ming; Chung, Andy
2014-01-01
Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (L(eq,1-h)) was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.
Noise in restaurants: Levels and mathematical model
Directory of Open Access Journals (Sweden)
Wai Ming To
2014-01-01
Full Text Available Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (Leq,1-h was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.
Directory of Open Access Journals (Sweden)
Tan Chan Sin
2015-01-01
Full Text Available Productivity rate (Q or production rate is one of the important indicator criteria for industrial engineer to improve the system and finish good output in production or assembly line. Mathematical and statistical analysis method is required to be applied for productivity rate in industry visual overviews of the failure factors and further improvement within the production line especially for automated flow line since it is complicated. Mathematical model of productivity rate in linear arrangement serial structure automated flow line with different failure rate and bottleneck machining time parameters becomes the basic model for this productivity analysis. This paper presents the engineering mathematical analysis method which is applied in an automotive company which possesses automated flow assembly line in final assembly line to produce motorcycle in Malaysia. DCAS engineering and mathematical analysis method that consists of four stages known as data collection, calculation and comparison, analysis, and sustainable improvement is used to analyze productivity in automated flow assembly line based on particular mathematical model. Variety of failure rate that causes loss of productivity and bottleneck machining time is shown specifically in mathematic figure and presents the sustainable solution for productivity improvement for this final assembly automated flow line.
Developing Understanding of Mathematical Modeling in Secondary Teacher Preparation
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2016-01-01
This study examines the evolution of 11 prospective teachers' understanding of mathematical modeling through the implementation of a modeling module within a curriculum course in a secondary teacher preparation program. While the prospective teachers had not previously taken a course on mathematical modeling, they will be expected to include…
Cocaine addiction and personality: a mathematical model.
Caselles, Antonio; Micó, Joan C; Amigó, Salvador
2010-05-01
The existence of a close relation between personality and drug consumption is recognized, but the corresponding causal connection is not well known. Neither is it well known whether personality exercises an influence predominantly at the beginning and development of addiction, nor whether drug consumption produces changes in personality. This paper presents a dynamic mathematical model of personality and addiction based on the unique personality trait theory (UPTT) and the general modelling methodology. This model attempts to integrate personality, the acute effect of drugs, and addiction. The UPTT states the existence of a unique trait of personality called extraversion, understood as a dimension that ranges from impulsive behaviour and sensation-seeking (extravert pole) to fearful and anxious behaviour (introvert pole). As a consequence of drug consumption, the model provides the main patterns of extraversion dynamics through a system of five coupled differential equations. It combines genetic extraversion, as a steady state, and dynamic extraversion in a unique variable measured on the hedonic scale. The dynamics of this variable describes the effects of stimulant drugs on a short-term time scale (typical of the acute effect); while its mean time value describes the effects of stimulant drugs on a long-term time scale (typical of the addiction effect). This understanding may help to develop programmes of prevention and intervention in drug misuse.
Customers’ classification by the using mathematics methods
Directory of Open Access Journals (Sweden)
Mária Režňáková
2010-01-01
Full Text Available Companies, as well as financial institutions, deal with the same problem – verification of credibility of and enterprise. How can they identify enterprises with real threat of insolvency? One of the ways are various scoring models oriented on evaluation of the failure probability. This possibility is, however, very demanding on information about financial behaviour of a given subject. Our article discusses the utilisation of cluster analysis to identify similarities of companies and their distribution into groups. The aim of this contribution is to show what possibility are hidden in utilization of the cluster analysis and test by using of cophenetic correlation coefficient. The firms’ distribution in the class may be used to determine strategy for granting trade credits.
Mathematical methods in engineering and physics
Felder, Gary N
2016-01-01
This text is intended for the undergraduate course in math methods, with an audience of physics and engineering majors. As a required course in most departments, the text relies heavily on explained examples, real-world applications and student engagement. Supporting the use of active learning, a strong focus is placed upon physical motivation combined with a versatile coverage of topics that can be used as a reference after students complete the course. Each chapter begins with an overview that includes a list of prerequisite knowledge, a list of skills that will be covered in the chapter, and an outline of the sections. Next comes the motivating exercise, which steps the students through a real-world physical problem that requires the techniques taught in each chapter.
Mathematical models in Slowpoke reactor internal irradiation site
International Nuclear Information System (INIS)
Raza, J.
2007-01-01
The main objective is to build representative mathematical models of neutron activation analysis in a Slowpoke internal irradiation site. Another significant objective is to correct various elements neutron activation analysis measured mass using these models. The neutron flux perturbation is responsible for the measured under-estimation of real masses. We supposed that neutron flux perturbation measurements taken during the Ecole Polytechnique de Montreal Slowpoke reactor first fuel loading were still valid after the second fuelling. .We also supposed that the thermal neutrons spatial and kinetic energies distributions as well as the absorption microscopic cross section dependence on the neutrons kinetic energies were important factors to satisfactorily represent neutron activation analysis results. In addition, we assumed that the neutron flux is isotropic in the laboratory system. We used experimental results from the Slowpoke reactor internal irradiation sites, in order to validate our mathematical models. Our models results are in close agreement with these experimental results..We established an accurate global mathematical correlation of the neutron flux perturbation in function of samples volumes and macroscopic neutron absorption cross sections. It is applicable to sample volumes ranging from 0,1 to 1,3 ml and macroscopic neutron absorption cross section up to 5 moles-b for seven (7) elements with atomic numbers (Z) ranging from 5 to 79. We first came up with a heuristic neutron transport mathematical semi-analytical model, in order to better understand neutrons behaviour in presence of one of several different nuclei samples volumes and mass. In order to well represent the neutron flux perturbation, we combined a neutron transport solution obtained from the spherical harmonics method of a finite cylinder and a mathematical expression combining two cylindrical harmonic functions..With the help of this model and the least squares method, we made extensive
Mathematical model of kinetostatithic calculation of flat lever mechanisms
Directory of Open Access Journals (Sweden)
A. S. Sidorenko
2016-01-01
Full Text Available Currently widely used graphical-analytical methods of analysis largely obsolete, replaced by various analytical methods using computer technology. Therefore, of particular interest is the development of a mathematical model kinetostatical calculation mechanisms in the form of library procedures of calculation for all powered two groups Assyrians (GA and primary level. Before resorting to the appropriate procedure that computes all the forces in the kinematic pairs, you need to compute inertial forces, moments of forces of inertia and all external forces and moments acting on this GA. To this end shows the design diagram of the power analysis for each species GA of the second class, as well as the initial link. Finding reactions in the internal and external kinematic pairs based on equilibrium conditions with the account of forces of inertia and moments of inertia forces (Dalembert principle. Thus obtained equations of kinetostatical for their versatility have been solved by the Cramer rule. Thus, for each GA of the second class were found all 6 unknowns: the forces in the kinematic pairs, the directions of these forces as well as forces the shoulders. If we study kinetostatic mechanism with parallel consolidation of two GA in the initial link, in this case, power is the geometric sum of the forces acting on the primary link from the discarded GA. Thus, the obtained mathematical model kinetostatical calculation mechanisms in the form of libraries of mathematical procedures for determining reactions of all GA of the second class. The mathematical model kinetostatical calculation makes it relatively simple to implement its software implementation.
An introduction to mathematical modeling a course in mechanics
Oden, Tinsley J
2011-01-01
A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equation...
Mathematical model of one-man air revitalization system
1976-01-01
A mathematical model was developed for simulating the steady state performance in electrochemical CO2 concentrators which utilize (NMe4)2 CO3 (aq.) electrolyte. This electrolyte, which accommodates a wide range of air relative humidity, is most suitable for one-man air revitalization systems. The model is based on the solution of coupled nonlinear ordinary differential equations derived from mass transport and rate equations for the processes which take place in the cell. The boundary conditions are obtained by solving the mass and energy transport equations. A shooting method is used to solve the differential equations.
Rock Burst Mechanics: Insight from Physical and Mathematical Modelling
Directory of Open Access Journals (Sweden)
J. Vacek
2008-01-01
Full Text Available Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the potential to release this energy. Such materials may be brittle, or the rock burst may arise at the interfacial zones of two parts of the rock, which have principally different material properties (e.g. in the Poíbram uranium mines.The solution is based on experimental and mathematical modelling. These two methods have to allow the problem to be studied on the basis of three presumptions:· the solution must be time dependent,· the solution must allow the creation of cracks in the rock mass,· the solution must allow an extrusion of rock into an open space (bump effect.
Garcia-Santillán, Arturo; Moreno-Garcia, Elena; Escalera-Chávez, Milka E.; Rojas-Kramer, Carlos A.; Pozos-Texon, Felipe
2016-01-01
Most mathematics students show a definite tendency toward an attitudinal deficiency, which can be primarily understood as intolerance to the matter, affecting their scholar performance adversely. In addition, information and communication technologies have been gradually included within the process of teaching mathematics. Such adoption of…
Use of mathematical modelling in electron beam processing: A guidebook
International Nuclear Information System (INIS)
2010-01-01
The use of electron beam irradiation for industrial applications, like the sterilization of medical devices or cross-linking of polymers, has a long and successful track record and has proven itself to be a key technology. Emerging fields, including environmental applications of ionizing radiation, the sterilization of complex medical and pharmaceutical products or advanced material treatment, require the design and control of even more complex irradiators and irradiation processes. Mathematical models can aid the design process, for example by calculating absorbed dose distributions in a product, long before any prototype is built. They support process qualification through impact assessment of process variable uncertainties, and can be an indispensable teaching tool for technologists in training in the use of radiation processing. The IAEA, through various mechanisms, including its technical cooperation programme, coordinated research projects, technical meetings, guidelines and training materials, is promoting the use of radiation technologies to minimize the effects of harmful contaminants and develop value added products originating from low cost natural and human made raw materials. The need to publish a guidebook on the use of mathematical modelling for design processes in the electron beam treatment of materials was identified through the increased interest of radiation processing laboratories in Member States and as a result of recommendations from several IAEA expert meetings. In response, the IAEA has prepared this report using the services of an expert in the field. This publication should serve as both a guidebook and introductory tutorial for the use of mathematical modelling (using mostly Monte Carlo methods) in electron beam processing. The emphasis of this guide is on industrial irradiation methodologies with a strong reference to existing literature and applicable standards. Its target audience is readers who have a basic understanding of electron
On Mathematical Modeling Of Quantum Systems
International Nuclear Information System (INIS)
Achuthan, P.; Narayanankutty, Karuppath
2009-01-01
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
Mathematical Models of Cardiac Pacemaking Function
Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak
2013-10-01
Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.
Mathematical Models of Cardiac Pacemaking Function
Directory of Open Access Journals (Sweden)
Pan eLi
2013-10-01
Full Text Available Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.
Czech Academy of Sciences Publication Activity Database
Zhao, N.; Oozeerally, R.; Degirmenci, V.; Wagner, Zdeněk; Bendová, Magdalena; Jacquemin, J.
2016-01-01
Roč. 61, č. 111 (2016), s. 3908-3921 ISSN 0021-9568 Grant - others:CEAR(GB) 4600261677/P6E3; EPSRC(GB) EP/M021785/1 Institutional support: RVO:67985858 Keywords : ionic liquids * mathematical gnostics * UNIFAC-VISCO Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.323, year: 2016
Directory of Open Access Journals (Sweden)
Melike TURAL SÖNMEZ
2017-12-01
Full Text Available The purpose of this study is to examine the construction of mathematical modelling problems process in the content of financial literacy. It is also aimed to create design proposals for construction of mathematical modelling problems. A design based research method was used in this study. The participants were three seventh grade students, six finance experts and nine mathematics education experts. Data collection tools were transcription of video and tapes group discussions, presentations and worksheets during mathematical modelling activities, and participant experts’ feedback form about mathematical modelling problems. There were three stages in this study. First stage was application of preliminary study. This stage gave information about convenience of problems to grade level, students’ timing for solution of problems, clarity of problems and students’ background about content. In second stage, finance experts commented on convenience of mathematical modelling problems to financial literacy standards. In third stage, mathematics education experts commented on convenience of problems to students’ grade level, mathematical modelling principles and seventh grade mathematics lesson objectives. They also gave suggestion on progress. The frequency value of theme in feedback forms was calculated and experts’ expressions were given as citation. It was given suggestion about stages and application of the design guide
Prevalence of Mixed Methods Research in Mathematics Education
Ross, Amanda A.; Onwuegbuzie, Anthony J.
2012-01-01
In wake of federal legislation such as the No Child Left Behind Act of 2001 that have called for "scientifically based research in education," this study examined the possible trends in mixed methods research articles published in 2 peer-reviewed mathematics education journals (n = 87) from 2002 to 2006. The study also illustrates how…
Mathematical modeling and signal processing in speech and hearing sciences
Xin, Jack
2014-01-01
The aim of the book is to give an accessible introduction of mathematical models and signal processing methods in speech and hearing sciences for senior undergraduate and beginning graduate students with basic knowledge of linear algebra, differential equations, numerical analysis, and probability. Speech and hearing sciences are fundamental to numerous technological advances of the digital world in the past decade, from music compression in MP3 to digital hearing aids, from network based voice enabled services to speech interaction with mobile phones. Mathematics and computation are intimately related to these leaps and bounds. On the other hand, speech and hearing are strongly interdisciplinary areas where dissimilar scientific and engineering publications and approaches often coexist and make it difficult for newcomers to enter.
Climate of mathematics through English instruction (CLIL method
Directory of Open Access Journals (Sweden)
Helena Binterová
2012-03-01
Full Text Available The paper presents a case study focusing on the climate of the teaching of mathematics in a concrete school. The quantitative characteristics of the climate are based on questionnaires and interviews. The study presents research results conducted in connection with implementation of the teaching of mathematics in a foreign language. After analyzing interviews with teachers and pupils together with the analysis of the questionnaires, the paper describes changes of the climate of the mathematics teaching in a diff erent language than the mother tongue from the teachers' as well as the pupils' point of view. At the same time, the paper identifies possible causes of the changes and describes in detail teaching methods and characteristics of the teaching and learning environment.
Exercises and problems in mathematical methods of physics
Cicogna, Giampaolo
2018-01-01
This book presents exercises and problems in the mathematical methods of physics with the aim of offering undergraduate students an alternative way to explore and fully understand the mathematical notions on which modern physics is based. The exercises and problems are proposed not in a random order but rather in a sequence that maximizes their educational value. Each section and subsection starts with exercises based on first definitions, followed by groups of problems devoted to intermediate and, subsequently, more elaborate situations. Some of the problems are unavoidably "routine", but others bring to the forenontrivial properties that are often omitted or barely mentioned in textbooks. There are also problems where the reader is guided to obtain important results that are usually stated in textbooks without complete proofs. In all, some 350 solved problems covering all mathematical notions useful to physics are included. While the book is intended primarily for undergraduate students of physics, students...
Logistics of Mathematical Modeling-Focused Projects
Harwood, R. Corban
2018-01-01
This article addresses the logistics of implementing projects in an undergraduate mathematics class and is intended both for new instructors and for instructors who have had negative experiences implementing projects in the past. Project implementation is given for both lower- and upper-division mathematics courses with an emphasis on mathematical…
Modelling Mathematical Argumentation: The Importance of Qualification
Inglis, Matthew; Mejia-Ramos, Juan; Simpson, Adrian
2007-01-01
In recent years several mathematics education researchers have attempted to analyse students' arguments using a restricted form of Toulmina's ["The Uses of Argument," Cambridge University Press, UK, 1958] argumentation scheme. In this paper we report data from task-based interviews conducted with highly talented postgraduate mathematics students,…
A mathematical model of crevice and pitting corrosion
International Nuclear Information System (INIS)
Sharland, S.M.; Tasker, P.W.
1985-09-01
A predictive and self-consistent mathematical model incorporating the electrochemical, chemical and ionic migration processes characterising crevice and pitting corrosion is described. The model predicts full details of the steady-state solution chemistry and electrode kinetics (and hence metal penetration rates) within the corrosion cavities as functions of the many parameters on which these depend such as external electrode potential and crevice dimensions. The crevice is modelled as a parallel-sided slot filled with a dilute sodium chloride solution. Corrosion in both one and two directions is considered. The model includes a solid hydroxide precipitation reaction and assesses the effect on the corrosion rates of consequent changes in the chemical and physical environment within the crevice. A time stepping method is developed for the study of the progression of the corrosion with a precipitation reaction included and is applied to a restricted range of parameters. The applicability of this method is justified in relation to the physical and mathematical approximations made during the construction of the model. (author)
Mathematical Modeling of Tuberculosis Granuloma Activation
Directory of Open Access Journals (Sweden)
Steve M. Ruggiero
2017-12-01
Full Text Available Tuberculosis (TB is one of the most common infectious diseases worldwide. It is estimated that one-third of the world’s population is infected with TB. Most have the latent stage of the disease that can later transition to active TB disease. TB is spread by aerosol droplets containing Mycobacterium tuberculosis (Mtb. Mtb bacteria enter through the respiratory system and are attacked by the immune system in the lungs. The bacteria are clustered and contained by macrophages into cellular aggregates called granulomas. These granulomas can hold the bacteria dormant for long periods of time in latent TB. The bacteria can be perturbed from latency to active TB disease in a process called granuloma activation when the granulomas are compromised by other immune response events in a host, such as HIV, cancer, or aging. Dysregulation of matrix metalloproteinase 1 (MMP-1 has been recently implicated in granuloma activation through experimental studies, but the mechanism is not well understood. Animal and human studies currently cannot probe the dynamics of activation, so a computational model is developed to fill this gap. This dynamic mathematical model focuses specifically on the latent to active transition after the initial immune response has successfully formed a granuloma. Bacterial leakage from latent granulomas is successfully simulated in response to the MMP-1 dynamics under several scenarios for granuloma activation.
A mathematical model of forgetting and amnesia
Directory of Open Access Journals (Sweden)
Jaap M. J. Murre
2013-02-01
Full Text Available We describe a mathematical model of learning and memory and apply it to the dynamics of forgetting and amnesia. The model is based on the hypothesis that the neural systems involved in memory at different time-scales share two fundamental properties: (1 representations in a store decline in strength (2 while trying to induce new representations in higher-level more permanent stores. This paper addresses several types of experimental and clinical phenomena: (i the temporal gradient of retrograde amnesia (Ribot's Law, (ii forgetting curves with and without anterograde amnesia, and (iii learning and forgetting curves with impaired cortical plasticity. Results are in the form of closed-form expressions that are applied to studies with mice, rats, and monkeys. In order to analyze human data in a quantitative manner, we also derive a relative measure of retrograde amnesia that removes the effects of non-equal item difficulty for different time periods commonly found with clinical retrograde amnesia tests. Using these analytical tools, we review studies of temporal gradients in the memory of patients with Korsakoff's Disease, Alzheimer's Dementia, Huntington's Disease, and other disorders.
Simple mathematical models of gene regulatory dynamics
Mackey, Michael C; Tyran-Kamińska, Marta; Zeron, Eduardo S
2016-01-01
This is a short and self-contained introduction to the field of mathematical modeling of gene-networks in bacteria. As an entry point to the field, we focus on the analysis of simple gene-network dynamics. The notes commence with an introduction to the deterministic modeling of gene-networks, with extensive reference to applicable results coming from dynamical systems theory. The second part of the notes treats extensively several approaches to the study of gene-network dynamics in the presence of noise—either arising from low numbers of molecules involved, or due to noise external to the regulatory process. The third and final part of the notes gives a detailed treatment of three well studied and concrete examples of gene-network dynamics by considering the lactose operon, the tryptophan operon, and the lysis-lysogeny switch. The notes contain an index for easy location of particular topics as well as an extensive bibliography of the current literature. The target audience of these notes are mainly graduat...