WorldWideScience

Sample records for methods effective porosity

  1. On the field determination of effective porosity

    International Nuclear Information System (INIS)

    Javandel, I.

    1989-03-01

    Effective porosity of geologic materials is a very important parameter for estimating groundwater travel time and modeling contaminant transport in hydrologic systems. Determination of a representative effective porosity for nonideal systems is a problem still challenging hydrogeologists. In this paper, some of the conventional field geophysical and hydrological methods for estimating effective porosity of geologic materials are reviewed. The limitations and uncertainties associated with each method are discussed. 30 refs., 8 figs

  2. Investigation the effect of porosity on corrosion of macroporous silicon in 1.0 M sodium hydroxide solution using weight loss measurements, electrochemical methods and scanning electron microscope

    International Nuclear Information System (INIS)

    Lai, Chuan; Xiang, Zhen

    2015-01-01

    Highlights: • The dissolution of silicon wafers conforms Faraday’s laws of electrolysis. • The porosity effect on macroporous silicon corrosion was investigated. • The corrosion rate increase linearly with porosity increasing. • The porosity effect on activation parameters was obtained. - Abstract: In this study, the macroporous silicon has been fabricated by electrochemical anodization. The dissolution of n-type silicon wafers in etching solution conforms Faraday’s laws of electrolysis. The fabricated macroporous silicon with different porosity corrosion in 1.0 M NaOH was systemically investigated by weight loss measurements, electrochemical methods and scanning electron microscope. Results show that with the porosity increasing, the corrosion rate of macroporous silicon in 1.0 M NaOH increases linearly. In addition, the increase of corrosion rate of macroporous silicon with relative higher porosity was determined by the pre-exponential factor.

  3. Porosity measurements of crystalline rocks by laboratory and geophysical methods

    International Nuclear Information System (INIS)

    Alexander, J.; Hall, D.H.; Storey, B.C.

    1981-12-01

    Porosity values of igneous and metamorphic crystalline rocks have been determined from core samples taken at specific depths from Altnabreac, by a combination of laboratory and geophysical techniques. Using resaturation and mercury injection methods in three laboratories within I.G.S., porosity values have been derived and the effect of variations in the measuring techniques and results obtained have been compared. Comparison of inter-laboratory porosity values illustrates that systematic errors are present, resulting in higher porosity values for samples subjected to re-testing. This is considered to be caused by the variable nature of the initial samples combined with the inability to completely dry or resaturate samples during a second testing. Geophysical techniques for determining in situ porosity using the neutron log have been carried out in borehole ALA. The neutron log has been calibrated with laboratory derived porosity values and an empirical formula derived enabling porosity values to be ascribed throughout the logged borehole ALA. Comparison of the porosity results from Altnabreac with crystalline samples elsewhere in America, Europe and the U.K. suggest that porosities at Altnabreac are lower than average. However, very few publications concerned with water movement in crystalline areas actually state the method used. (author)

  4. Effect of the calcining temperature on the porosity of the titanium dioxide powders obtained by Polymeric Precursor Method

    International Nuclear Information System (INIS)

    Silva, D.W.; Granado, S.R.; Ciola, R.A.; Cavalheiro, A.A.

    2011-01-01

    Ceramics materials obtained by Polymeric Precursor Method exhibit mechanisms of the pore formation and elimination dependents on the decomposition kinetics of the residual organic matter of the polyester. The mechanism of pore elimination seems to occur by disrupting of the wall among the pores because it leads to the consequent pore coalescence and increasing in pore volume, which posses higher pore diameters. In this case, it was observed that the porosity decreasing occurs by pore wall moving after that the residual organic matter is eliminated from the pore inside. The pore diameter associated to the highest volume desorption occurred for the material obtained after calcining at 450°C is approximately 1,7 nm, what seems to be related to the amorphous carbon accumulated inside the pores, once that the pore volume decreases more effectively for the material obtained by calcining at 550°C, making the maximum volume situates at 2,0 nm. (author)

  5. Effect of SCM on porosity

    DEFF Research Database (Denmark)

    Canut, Mariana

    Pores are an inherent part of cement-based materials. The pores range from nm to cm varying in shape and distribution. The amount, size and distribution of pores affect the engineering properties. As a first approximation, the total porosity affects the mechanical behavior, whereas the size...... blast furnaces, fly ash from coal fired power stations, and silica fume from ferrosilicon production. Studies suggest that the improvement of the strength and durability using SCMs are governed by refinement of the pores in the cement paste. Both the chemical and physical properties of the SCMs...... and connectivity of pores affect durability. Supplementary cementitious materials (SCMs) are being increasingly used as a substitute for Portland cement in the interests of sustainability and to improve the engineering properties of concrete as strength and durability. SCMs are by-products such as slag from iron...

  6. An interlaboratory comparison of methods for measuring rock matrix porosity

    International Nuclear Information System (INIS)

    Rasilainen, K.; Hellmuth, K.H.; Kivekaes, L.; Ruskeeniemi, T.; Melamed, A.; Siitari-Kauppi, M.

    1996-09-01

    An interlaboratory comparison study was conducted for the available Finnish methods of rock matrix porosity measurements. The aim was first to compare different experimental methods for future applications, and second to obtain quality assured data for the needs of matrix diffusion modelling. Three different versions of water immersion techniques, a tracer elution method, a helium gas through-diffusion method, and a C-14-PMMA method were tested. All methods selected for this study were established experimental tools in the respective laboratories, and they had already been individually tested. Rock samples for the study were obtained from a homogeneous granitic drill core section from the natural analogue site at Palmottu. The drill core section was cut into slabs that were expected to be practically identical. The subsamples were then circulated between the different laboratories using a round robin approach. The circulation was possible because all methods were non-destructive, except the C-14-PMMA method, which was always the last method to be applied. The possible effect of drying temperature on the measured porosity was also preliminarily tested. These measurements were done in the order of increasing drying temperature. Based on the study, it can be concluded that all methods are comparable in their accuracy. The selection of methods for future applications can therefore be based on practical considerations. Drying temperature seemed to have very little effect on the measured porosity, but a more detailed study is needed for definite conclusions. (author) (4 refs.)

  7. A method for determining an effective porosity correction factor for thermal conductivity in fast reactor uranium-plutonium oxide fuel pellets

    International Nuclear Information System (INIS)

    Inoue, Masaki; Abe, Kazuyuki; Sato, Isamu

    2000-01-01

    A reliable method has been developed for determining an effective porosity correction factor for calculating a realistic thermal conductivity for fast reactor uranium-plutonium (mixed) oxide fuel pellets. By using image analysis of the ceramographs of transverse sections of mixed-oxide fuel pellets, the fuel morphology could be classified into two basic types. One is a 'two-phase' type that consists of small pores dispersed in the fuel matrix. The other is a 'three-phase' type that has large pores in addition to the small pores dispersed in the fuel matrix. The pore sizes are divided into two categories, large and small, at the 30 μm area equivalent diameter. These classifications lead to an equation for calculating an effective porosity correction factor by accounting for the small and large pore volume fractions and coefficients. This new analytical method for determining the effective porosity correction factor for calculating the realistic thermal conductivity of mixed-oxide fuel was also experimentally confirmed for high-, medium- and low-density fuel pellets

  8. Integrated design of castings: effect of porosity on mechanical performance

    International Nuclear Information System (INIS)

    Hardin, R A; Beckermann, C

    2012-01-01

    Porosity can significantly reduce the strength and durability of castings in service. An integrated design approach has been developed where casting simulation is combined with mechanical performance simulations. Predictions of the porosity distribution from the casting process simulation are transferred to and used in stress and fatigue life simulations. Thus, the effect of casting quality on service performance can be evaluated. Results of a study are presented where the measured porosity distribution in cast steel specimens is transferred to an elasto-plastic finite-element stress analysis model. Methods are developed to locally reduce the mechanical properties according to the porosity present, without having to resolve individual pores. Plastic deformation is modeled using porous metal plasticity theory. The predictions are compared to tensile measurements performed on the specimens. The complex deformations and the reductions in the ductility of the specimens due to porosity are predicted well. The predicted stresses are transferred to a fatigue analysis code that takes the porosity distribution into account as well. The measured and predicted fatigue lives are also in good agreement. Finally, the results of a case study are presented that illustrate the utility of the present integrated approach in optimizing the design of a steel casting.

  9. Method and apparatus for epithermal neutron porosity well logging

    International Nuclear Information System (INIS)

    Hertzog, R.C.; Loomis, W.A.; Wraight, P.

    1991-01-01

    This patent describes a method for investigating the porosity of a subsurface earth formation surrounding a borehole. It comprises repetitively irradiating the borehole and earth formation with discrete bursts of high energy neutrons from a neutron source, which neutrons interact with nuclei of the materials in the borehole and the formation to produce therein populations of epithermal neutrons; detecting the populations of epithermal neutrons at near and far locations in the borehole spaced apart longitudinally by different distances from the neutron source; generating count signals indicative of the magnitudes of the detected epithermal neutron populations at the respective near and far locations; detecting the decay of the epithermal neutron populations following the neutron bursts at least at one location in the borehole and generating signals representative thereof; deriving from the decay signals a signal indicative of the slowing down time of epithermal neutrons in the formation of the at least one location; and deriving from the near and far count signals and the slowing down time signal a measurement signal representative of the porosity of the formation surrounding the borehole inherently compensated for the effects of tool standoff on the responses of the logging tool

  10. Porosity effects during a severe accident

    International Nuclear Information System (INIS)

    Cazares R, R. I.; Espinosa P, G.; Vazquez R, A.

    2015-09-01

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  11. Porosity effects during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Posgrado en Energia y Medio Ambiente, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Espinosa P, G.; Vazquez R, A., E-mail: ricardo-cazares@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  12. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  13. Mechanistic Effects of Porosity on Structural Composite Materials

    Science.gov (United States)

    Siver, Andrew

    As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.

  14. Effects of Sintering Temperature on the Density And Porosity of ...

    African Journals Online (AJOL)

    Effects of sintering temperature on the density and porosity of sodium chloride preforms for alu- minium foam manufacturing have been investigated. Cold pressed salt preforms were sintered at 30, 760 and 790 and di erent times ranging between 6- 18 hours in a carbolite furnace at a heating rate of 5/minute. The Results of ...

  15. Determination of reservoir effective porosity using nuclear magnetic logging data

    International Nuclear Information System (INIS)

    Aksel'rod, S.M.; Danevich, V.I.; Sadykov, D.M.

    1979-01-01

    In connection with the development of nuclear magnetic logging (NML) the possibility has occurred to determine the effective porosity coefficient for rocks directly under the conditions of their occurrence. The initial amplitude of a signal of free precession of NML is proportional to the quantity of free fluid in the rock volume, which is determined by the index of free fluid (IFF). On the basis of the laboratory studies it is shown that the relation between IFF and free water content is always linear and doesn't depend on lithological characteristics of rocks, porous dimensions and distribution. Using this relation it's possible to estimate bound water content. While filling the reservoir with weakly mineralized water the IFF value coincides numerically with the effective porosity coefficient. Otherwise the content of hydrogen nuclei in a volume unit is much less; while calculating the effective porosity coefficient this fact is recorded by the index of the amplitude decrease which depends on temperature and increases with its growth (for oils). In strata containing intercalations of reservoirs and non-reservoirs the averaged according to stratum IFF value determines the mean-weighted values of effective porosity

  16. The Effect of Volumetric Porosity on Roughness Element Drag

    Science.gov (United States)

    Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken

    2016-04-01

    Much attention has been given to understanding how the porosity of two dimensional structures affects the drag force exerted by boundary-layer flow on these flow obstructions. Porous structures such as wind breaks and fences are typically used to control the sedimentation of sand and snow particles or create micro-habitats in their lee. Vegetation in drylands also exerts control on sediment transport by wind due to aerodynamic effects and interaction with particles in transport. Recent research has also demonstrated that large spatial arrays of solid three dimensional roughness elements can be used to reduce sand transport to specified targets for control of wind erosion through the effect of drag partitioning and interaction of the moving sand with the large (>0.3 m high) roughness elements, but porous elements may improve the effectiveness of this approach. A thorough understanding of the role porosity plays in affecting the drag force on three-dimensional forms is lacking. To provide basic understanding of the relationship between the porosity of roughness elements and the force of drag exerted on them by fluid flow, we undertook a wind tunnel study that systematically altered the porosity of roughness elements of defined geometry (cubes, rectangular cylinders, and round cylinders) and measured the associated change in the drag force on the elements under similar Reynolds number conditions. The elements tested were of four basic forms: 1) same sized cubes with tubes of known diameter milled through them creating three volumetric porosity values and increasing connectivity between the tubes, 2) cubes and rectangular cylinders constructed of brass screen that nested within each other, and 3) round cylinders constructed of brass screen that nested within each other. The two-dimensional porosity, defined as the ratio of total surface area of the empty space to the solid surface area of the side of the element presented to the fluid flow was conserved at 0.519 for

  17. Effect of Different Manufacturing Methods on the Conflict between Porosity and Mechanical Properties of Spiral and Porous Polyethylene Terephthalate/Sodium Alginate Bone Scaffolds

    Directory of Open Access Journals (Sweden)

    Ching-Wen Lou

    2015-12-01

    Full Text Available In order to solve the incompatibility between high porosity and mechanical properties, this study fabricates bone scaffolds by combining braids and sodium alginate (SA membranes. Polyethylene terephthalate (PET plied yarns are braided into hollow, porous three dimensional (3D PET braids, which are then immersed in SA solution, followed by cross-linking with calcium chloride (CaCl2 and drying, to form PET bone scaffolds. Next, SA membranes are rolled and then inserted into the braids to form the spiral and porous PET/SA bone scaffolds. Samples are finally evaluated for surface observation, porosity, water contact angle, compressive strength, and MTT assay. The test results show that the PET bone scaffolds and PET/SA bone scaffolds both have good hydrophilicity. An increasing number of layers and an increasing CaCl2 concentration cause the messy, loose surface structure to become neat and compact, which, in turn, decreases the porosity and increases the compressive strength. The MTT assay results show that the cell viability of differing SA membranes is beyond 100%, indicating that the PET/SA bone scaffolds containing SA membranes are biocompatible for cell attachment and proliferation.

  18. Porosity of spacer-filled channels in spiral-wound membrane systems: Quantification methods and impact on hydraulic characterization

    KAUST Repository

    Siddiqui, Amber

    2017-04-13

    The porosity of spacer-filled feed channels influences the hydrodynamics of spiral-wound membrane systems and impacts the overall performance of the system. Therefore, an exact measurement and a detailed understanding of the impact of the feed channel porosity is required to understand and improve the hydrodynamics of spiral-wound membrane systems applied for desalination and wastewater reuse. The objectives of this study were to assess the accuracy of porosity measurement techniques for feed spacers differing in geometry and thickness and the consequences of using an inaccurate method on hydrodynamic predictions, which may affect permeate production. Six techniques were applied to measure the porosity namely, three volumetric calculations based on spacer strand count together with cuboidal (SC), cylindrical (VCC) and ellipsoidal volume calculation (VCE) and three independent techniques based on volume displacement (VD), weight and density (WD) and computed tomography scanning (CT). The CT method was introduced as an alternative for the other five already existing and applied methods in practice.Six feed spacers used for the porosity measurement differed in filament thickness, angle between the filaments and mesh-size. The results of the studies showed differences between the porosities, measured by the six methods. The results of the microscopic techniques SC, VCC and VCE deviated significantly from measurements by VD, WD and CT, which showed similar porosity values for all spacer types.Depending on the maximum deviation of the porosity measurement techniques from –6% to +6%, (i) the linear velocity deviations were −5.6% and +6.4% respectively and (ii) the pressure drop deviations were –31% and +43% respectively, illustrating the importance of an accurate porosity measurement. Because of the accuracy and standard deviation, the VD and WD method should be applied for the porosity determination of spacer-filled channels, while the CT method is recommended for

  19. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029 (Finland); Malo, M. K. H., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Liukkonen, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211 (Finland); Karjalainen, J. P., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211 (Finland)

    2016-05-15

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated

  20. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    International Nuclear Information System (INIS)

    Eneh, C. T. M.; Töyräs, J.; Jurvelin, J. S.; Malo, M. K. H.; Liukkonen, J.; Karjalainen, J. P.

    2016-01-01

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R"2 ≥ 0.493, p < 0.01 and R"2 ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated in vivo

  1. Porosity, Bulk Density, and Volume Reduction During Drying: Review of Measurement Methods and Coefficient Determinations

    NARCIS (Netherlands)

    Qiu, J.; Khalloufi, S.; Martynenko, A.; Dalen, van G.; Schutyser, M.A.I.; Almeida-Rivera, C.

    2015-01-01

    Several experimental methods for measuring porosity, bulk density and volume reduction during drying of foodstuff are available. These methods include among others geometric dimension, volume displacement, mercury porosimeter, micro-CT, and NMR. However, data on their accuracy, sensitivity, and

  2. Effect of the calcining temperature on the porosity of the titanium dioxide powders obtained by Polymeric Precursor Method; Efeito da temperatura de calcinacao na porosidade de pos de dioxido de titanio obtidos pelo Metodo dos Precursores Polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, D.W.; Granado, S.R.; Ciola, R.A.; Cavalheiro, A.A., E-mail: douglas_levis@hotmail.com [Universidade Estadual de Mato Grosso do Sul (CPTREN/UEMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais

    2011-07-01

    Ceramics materials obtained by Polymeric Precursor Method exhibit mechanisms of the pore formation and elimination dependents on the decomposition kinetics of the residual organic matter of the polyester. The mechanism of pore elimination seems to occur by disrupting of the wall among the pores because it leads to the consequent pore coalescence and increasing in pore volume, which posses higher pore diameters. In this case, it was observed that the porosity decreasing occurs by pore wall moving after that the residual organic matter is eliminated from the pore inside. The pore diameter associated to the highest volume desorption occurred for the material obtained after calcining at 450°C is approximately 1,7 nm, what seems to be related to the amorphous carbon accumulated inside the pores, once that the pore volume decreases more effectively for the material obtained by calcining at 550°C, making the maximum volume situates at 2,0 nm. (author)

  3. A comparison of estimated and calculated effective porosity

    Science.gov (United States)

    Stephens, Daniel B.; Hsu, Kuo-Chin; Prieksat, Mark A.; Ankeny, Mark D.; Blandford, Neil; Roth, Tracy L.; Kelsey, James A.; Whitworth, Julia R.

    Effective porosity in solute-transport analyses is usually estimated rather than calculated from tracer tests in the field or laboratory. Calculated values of effective porosity in the laboratory on three different textured samples were compared to estimates derived from particle-size distributions and soil-water characteristic curves. The agreement was poor and it seems that no clear relationships exist between effective porosity calculated from laboratory tracer tests and effective porosity estimated from particle-size distributions and soil-water characteristic curves. A field tracer test in a sand-and-gravel aquifer produced a calculated effective porosity of approximately 0.17. By comparison, estimates of effective porosity from textural data, moisture retention, and published values were approximately 50-90% greater than the field calibrated value. Thus, estimation of effective porosity for chemical transport is highly dependent on the chosen transport model and is best obtained by laboratory or field tracer tests. Résumé La porosité effective dans les analyses de transport de soluté est habituellement estimée, plutôt que calculée à partir d'expériences de traçage sur le terrain ou au laboratoire. Les valeurs calculées de la porosité effective au laboratoire sur trois échantillons de textures différentes ont été comparées aux estimations provenant de distributions de taille de particules et de courbes caractéristiques sol-eau. La concordance était plutôt faible et il semble qu'il n'existe aucune relation claire entre la porosité effective calculée à partir des expériences de traçage au laboratoire et la porosité effective estimée à partir des distributions de taille de particules et de courbes caractéristiques sol-eau. Une expérience de traçage de terrain dans un aquifère de sables et de graviers a fourni une porosité effective calculée d'environ 0,17. En comparaison, les estimations de porosité effective de données de

  4. Effective porosity and pore-throat sizes of Conasauga Group mudrock: Application, test and evaluation of petrophysical techniques

    International Nuclear Information System (INIS)

    Dorsch, J.; Katsube, T.J.; Sanford, W.E.; Univ. of Tennessee, Knoxville, TN; Dugan, B.E.; Tourkow, L.M.

    1996-04-01

    Effective porosity (specifically referring to the interconnected pore space) was recently recognized as being essential in determining the effectiveness and extent of matrix diffusion as a transport mechanism within fractured low-permeability rock formations. The research presented in this report was performed to test the applicability of several petrophysical techniques for the determination of effective porosity of fine-grained siliciclastic rocks. In addition, the aim was to gather quantitative data on the effective porosity of Conasauga Group mudrock from the Oak Ridge Reservation (ORR). The quantitative data reported here include not only effective porosities based on diverse measurement techniques, but also data on the sizes of pore throats and their distribution, and specimen bulk and grain densities. The petrophysical techniques employed include the immersion-saturation method, mercury and helium porosimetry, and the radial diffusion-cell method

  5. Effect of ageing on porosity of hot mix asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, M.F.A.S. [Dept. de Estradas de Rodagem de Minas Gerais (DER/MG), Belo Horizonte, MG (Brazil); Lins, V.F.C. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil). Dept. de Engenharia Quimica], e-mail: vlins@deq.ufmg.br; Pasa, V.M.D. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil). Dept. de Quimica

    2011-01-15

    Asphalt ageing due to the action of solar radiation must be considered in the study of the performance of asphalt pavement, especially in Brazil because of its geographical characteristics. The aim of this work is to study asphalt ageing caused by the effect of xenon radiation, by using weathering tests. Sample degradation was evaluated by using Fourier transform infrared spectroscopy (FTIR). The results of FTIR indicated an oxidation process of the material, which occurred during exposure in the xenon arc chamber. The area ratio related to the bands of the aliphatic CH/OH and CH/C=O groups and those of the Si-O-Si/OH groups of bitumen decreased after exposure to xenon radiation. The samples were analyzed by using X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The porosity of the samples before and after ageing was measured by using the SEM micrographs and the image software Quantikov. (author)

  6. Analysis of solar radiation transfer: A method to estimate the porosity of a plastic shading net

    International Nuclear Information System (INIS)

    Abdel-Ghany, A.M.; Al-Helal, I.M.

    2011-01-01

    Plastic nets with opaque threads are frequently used for shading agricultural structures under high solar radiation conditions. A parameter that is often used to define a net is the net porosity (Π). Value of Π is usually estimated by one of three methods: image processing, direct beam transmittance, or solar radiation balance (hereafter radiation balance). Image processing is a rather slow process because it requires scanning the net sample at high resolution. The direct beam transmittance and radiation balance methods greatly overestimate Π because some of the solar radiation incident on the thread surfaces is forward scattered and add a considerable amount of radiation to that transmitted from the net pores directly. In this study, the radiation balance method was modified to estimate Π precisely. The amount of solar radiation scattered forward on the thread surfaces was estimated separately. Thus, the un-scattered solar radiation transmitted from the net pores directly, which describes the net porosity, Π could be estimated. This method, in addition to the image processing and the direct beam transmittance methods were used to estimate Π for different types of nets that are commonly used for shading structures in summer. Values of Π estimated by using the proposed method were in good accordance with those measured by the image processing method at a resolution of 4800 dpi. The direct beam transmittance and the radiation balance methods resulted in overestimation errors in the values of Π. This error strongly depends on the color of the net. The estimated errors were +14% for a green net and +37% for a white net when using the radiation balance method, and were +16% and +38%, respectively, when using the direct beam transmittance method. In the image processing method, a resolution of 2400 dpi is sufficient to estimate Π precisely and the higher resolutions showed no significant effect on the value of Π.

  7. Investigations of effective porosity of till by means of a combined soil-moisture/density gauge

    International Nuclear Information System (INIS)

    Nordberg, L.; Modig, S.

    1974-01-01

    Effective porosity and processes of saturation and dewatering in till have been investigated. The study was performed in undisturbed till columns, surrounded by ring-shaped excavations filled with sand. The procedure allowed for a raising and lowering of an artificial groundwater level in the till under controlled conditions, which in turn made possible controlled processes of saturation and dewatering. A combined gamma-neutron soil moisture /density gauge was used. The water content was recorded during a period in which water was added to a specially prepared, undisturbed in-situ soil column until a state of saturation was reached. This was followed by a period of induced dewatering by gravity drainage. The drainage was recorded until a steady state> approximately equalling field capacity, was approached (5-16 d). Water contents at saturation are assumed approximately to equal total porosity, having a range of 17.9-32.0% in the investigated till. The intensity of drainage was highest on the first day of dewatering and then diminished with time. A perfectly steady state was never reached. Therefore field capacity is used with indices, indicating the length of time of drainage. Consequently, effective porosity is qualified by the corresponding indices. After 15-16 days of gravity drainage, effective porosity was calculated to be on the average 7.4% at one test plot and 3.4% at another. The difference has been attributed to a corresponding difference in depth to the natural groundwater level; because of the method used a higher groundwater level and capillary fringe may have hampered the complete drainage, resulting in a relatively low value of effective porosity. The investigation is most likely to be applicable in water balance studies, groundwater discharge predictions and various construction and waste-water projects in moraine terrain. (author)

  8. Quality-assured evaluation of effective porosity using fit-for-purpose estimates of clay-mineral volume fraction

    Science.gov (United States)

    Worthington, Paul F.

    2010-05-01

    Reservoirs that contain dispersed clay minerals traditionally have been evaluated petrophysically using either the effective or the total porosity system. The major weakness of the former is its reliance on "shale" volume fraction ( Vsh) as a clay-mineral indicator in the determination of effective porosity from well logs. Downhole clay-mineral indicators have usually delivered overestimates of fractional clay-mineral volume ( Vcm) because they use as a reference nearby shale beds that are often assumed to comprise clay minerals exclusively, whereas those beds also include quartzitic silts and other detritus. For this reason, effective porosity is often underestimated significantly, and this shortfall transmits to computed hydrocarbons in place and thence to estimates of ultimate recovery. The problem is overcome here by using, as proxy groundtruths, core porosities that have been upscaled to match the spatial resolutions of porosity logs. Matrix and fluid properties are established over clean intervals in the usual way. Log-derived values of Vsh are tuned so that, on average, the resulting log-derived porosities match the corresponding core porosities over an evaluation interval. In this way, Vsh is rendered fit for purpose as an indicator of clay-mineral content Vcm for purposes of evaluating effective porosity. The method is conditioned to deliver a value of effective porosity that shows overall agreement with core porosity to within the limits of uncertainty of the laboratory measurements. This is achieved through function-, reservoir- and tool-specific Vsh reduction factors that can be applied to downhole estimates of clay-mineral content over uncored intervals of similar reservoir character. As expected, the reduction factors can also vary for different measurement conditions. The reduction factors lie in the range of 0.29-0.80, which means that in its raw form, log-derived Vsh can overestimate the clay-mineral content by more than a factor of three. This

  9. Method and apparatus for producing a porosity log of a subsurface formation corrected for detector standoff

    International Nuclear Information System (INIS)

    Allen, L.S.; Mills, W.R.; Stromswold, D.C.

    1991-01-01

    This paper describes a method and apparatus for producing a porosity log of a substance formation corrected for detector stand of. It includes: lowering a logging tool having a neutron source and a neutron detector into the borehole, irradiating the subsurface formation with neutrons from the neutron source as the logging tool is traversed along the subsurface formation, recording die-away signals representing the die-away of nuclear radiation in the subsurface formation as detected by the neutron detector, producing intensity signals representing the variations in intensity of the die-away signals, producing a model of the die-away of nuclear radiation in the subsurface formation having terms varying exponentially in response to borehole, formation and background effects on the die-away of nuclear radiation as detected by the detector

  10. Support vector regression to predict porosity and permeability: Effect of sample size

    Science.gov (United States)

    Al-Anazi, A. F.; Gates, I. D.

    2012-02-01

    Porosity and permeability are key petrophysical parameters obtained from laboratory core analysis. Cores, obtained from drilled wells, are often few in number for most oil and gas fields. Porosity and permeability correlations based on conventional techniques such as linear regression or neural networks trained with core and geophysical logs suffer poor generalization to wells with only geophysical logs. The generalization problem of correlation models often becomes pronounced when the training sample size is small. This is attributed to the underlying assumption that conventional techniques employing the empirical risk minimization (ERM) inductive principle converge asymptotically to the true risk values as the number of samples increases. In small sample size estimation problems, the available training samples must span the complexity of the parameter space so that the model is able both to match the available training samples reasonably well and to generalize to new data. This is achieved using the structural risk minimization (SRM) inductive principle by matching the capability of the model to the available training data. One method that uses SRM is support vector regression (SVR) network. In this research, the capability of SVR to predict porosity and permeability in a heterogeneous sandstone reservoir under the effect of small sample size is evaluated. Particularly, the impact of Vapnik's ɛ-insensitivity loss function and least-modulus loss function on generalization performance was empirically investigated. The results are compared to the multilayer perception (MLP) neural network, a widely used regression method, which operates under the ERM principle. The mean square error and correlation coefficients were used to measure the quality of predictions. The results demonstrate that SVR yields consistently better predictions of the porosity and permeability with small sample size than the MLP method. Also, the performance of SVR depends on both kernel function

  11. Effect of shelter porosity on downwind flow characteristics

    Czech Academy of Sciences Publication Activity Database

    Nosek, Štěpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk; Chaloupecká, Hana; Jakubcová, Michala

    2016-01-01

    Roč. 114, March (2016), 02084-02084 ISSN 2100-014X. [Experimental Fluid Mechanics 2015 /10./. Praha, 17.11.2015-20.11.2015] R&D Projects: GA ČR GA15-18964S Institutional support: RVO:61388998 Keywords : atmospehric boundary layer * porosity * coherent structures * wind tunnel Subject RIV: BK - Fluid Dynamics

  12. Effect of porosity on the tensile properties of low ductility aluminum alloys

    Directory of Open Access Journals (Sweden)

    Gustavo Waldemar Mugica

    2004-06-01

    Full Text Available The literature contains reports of several studies correlating the porosity and mechanical properties of aluminum alloys. Most of these studies determine this correlation based on the parameter of global volumetric porosity. These reports, however, fail to separate the effects of microstructural features and porosity on alloys, though recognizing the influence of the latter on their mechanical properties. Thus, when the decrease in tensile strength due to the porosity effect is taken into account, the findings are highly contradictory. An analysis was made of the correlation between mechanical properties and global volumetric porosity and volumetric porosity in the fracture, as well as of the beta-Al5FeSi phase present in 380 aluminum alloy. Our findings indicate that mechanical properties in tension relating to global volumetric porosity lead to overestimations of the porosity effect in detriment to the mechanical properties. Moreover, the proposed models that take into account the effects of particles, both Si and beta-Al5FeSi, are unapplicable to low ductility alloys.

  13. A Method Based on Semi-Solid Forming for Eliminating Coarse Dendrites and Shrinkage Porosity of H13 Tool Steel

    Directory of Open Access Journals (Sweden)

    Yifeng Guo

    2018-04-01

    Full Text Available A method called forging solidifying metal (FSM, which is applied for eliminating coarse dendrites and shrinkage porosity defects of ferrous alloys was proposed based on semi-solid forming technology (SSF. To verify its feasibility, the effects of liquid fraction (FL on the microstructure of the deformed H13 steel were investigated experimentally. The coarse dendrites structure still existed and cracks appeared when the 0.1/s 50% FSM method was carried out at ~20% FL. What is significantly different from that is, the elimination of the coarse dendrites structure and shrinkage porosity defects became more significant, when this method was conducted at the end of solidification (FL < 10%. The microstructure of H13 steel was significantly refined and also became dense in such condition.

  14. Effect of static porosity fluctuations on reactive transport in a porous medium

    Science.gov (United States)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  15. A Porosity Method to Describe Complex 3D-Structures Theory and Application to an Explosion

    Directory of Open Access Journals (Sweden)

    M.-F. Robbe

    2006-01-01

    Full Text Available A theoretical method was developed to be able to describe the influence of structures of complex shape on a transient fluid flow without meshing the structures. Structures are considered as solid pores inside the fluid and act as an obstacle for the flow. The method was specifically adapted to fast transient cases.The porosity method was applied to the simulation of a Hypothetical Core Disruptive Accident in a small-scale replica of a Liquid Metal Fast Breeder Reactor. A 2D-axisymmetrical simulation of the MARS test was performed with the EUROPLEXUS code. Whereas the central internal structures of the mock-up could be described with a classical shell model, the influence of the 3D peripheral structures was taken into account with the porosity method

  16. Method and apparatus for dual-spaced fast/epithermal neutron porosity measurements

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.

    1986-01-01

    A method is described for determining the porosity of earth formations in the vicinity of a well borehole, comprising: (a) irradiating the earth formations in the vicinity of the well borehole with a continuous chemical type source of fast neutrons, (b) detecting the fast neutron population at a first shorter spaced distance from the neutron source in the borehole and generating signals representative thereof, (c) detecting the epithermal neutron population at a second space distance from the neutron source in the borehole and generating signals representative thereof, the second spaced distance being greater than the first spaced distance from the neutron source, (d) forming a ratio of the signals representing the fast and epithermal neutron populations to derive a measurement signal functionally related to the porosity of the earth formations in the vicinity of the borehole, and (e) calibrating the measurement signal according to a predetermined functional relationship to derive a porosity signal quantitatively representative of the porosity of the earth formations in the vicinity of the borehole

  17. Porosity determination from 2-D resistivity method in studying the slope failures

    Science.gov (United States)

    Maslinda, Umi; Nordiana, M. M.; Bery, A. A.

    2017-07-01

    Slope failures have become the main focus for infrastructures development on hilly areas in Malaysia especially the development of tourism and residential. Lack of understanding and information of the subsoil conditions and geotechnical issues are the main cause of the slope failures. The failures happened are due to a combination of few factors such as topography, climate, geology and land use. 2-D resistivity method was conducted at the collapsed area in Selangor. The 2-D resistivity was done to study the instability of the area. The collapsed occurred because of the subsurface materials was unstable. Pole-dipole array was used with 5 m minimum electrode spacing for the 2-D resistivity method. The data was processed using Res2Dinv software and the porosity was calculated using Archie's law equation. The results show that the saturated zone (1-100 Ωm), alluvium or highly weathered rock (100-1000 Ωm), boulders (1600-7000 Ωm) and granitic bedrock (>7000 Ωm). Generally, the slope failures or landslides occur during the wet season or after rainfall. It is because of the water infiltrate to the slope and cause the saturation of the slope which can lead to landslides. Then, the porosity of saturated zone is usually high because of the water content. The area of alluvium or highly weathered rock and saturated zone have high porosity (>20%) and the high porosity also dominated at almost all the collapsed area which means that the materials with porosity >20% is potential to be saturated, unstable and might trigger slope failures.

  18. Electromagnetic methods for rapidly characterizing porosity distributions in the upper part of the Biscayne aquifer, southern Florida

    Science.gov (United States)

    Mount, G. J.; Comas, X.; Cunningham, K. J.

    2010-12-01

    Gregory J. Mount1, Xavier Comas1, and Kevin J. Cunningham2 1Department of Geosciences, Florida Atlantic University, Boca Raton, Florida 33431 2U.S. Geological Survey, 3110 SW 9th Avenue, Fort Lauderdale, Florida 33315 Although conventional hydrological techniques of aquifer characterization, which rely on data obtained from boreholes and wells can provide very valuable direct information about porosity, storativity and transmissivity, they are invasive and can often become time consuming and relatively expensive. Near-surface electromagnetic techniques, such as ground penetrating radar (GPR), provide indirect measurements of aquifer properties that complement traditional point measurements and provide a laterally continuous subsurface image in an efficient and cost effective manner with a minimal impact on the environment. We investigated the carbonate rocks of the uppermost part (3-5 meters) of the Biscayne aquifer in Everglades National Park to better understand the distribution of karst features that can create concentrated flow of groundwater, nutrients, and contaminants. As the Biscayne aquifer is the primary source of drinking water for millions of people in southern Palm Beach, Broward, and Miami-Dade counties, knowledge about these features could create a more complete understanding of a critical natural resource. These macroporous elements contribute to the overall storage, permeability, and transmissivity of the aquifer and for that reason, delineation of their distribution and areal extent should aid in the development of more accurate groundwater flow models. The macroporous elements create numerous hyperbolic diffractions in GPR common offset profiles, and these diffractions are used directly used to estimate two-dimensional (2D) models of electromagnetic (EM) wave velocity in the subsurface. Such models are further contrasted with one-dimensional (1D) velocity models using GPR common mid-point surveys at selected locations. In order to estimate

  19. Alternative methods for determination of composition and porosity in abradable materials

    International Nuclear Information System (INIS)

    Matejicek, Jiri; Kolman, Blahoslav; Dubsky, Jiri; Neufuss, Karel; Hopkins, Noel; Zwick, Jochen

    2006-01-01

    Materials properties and performance are governed by their composition and structure. These are commonly characterized using materialography and image analysis. However, in abradable materials, obtaining a reliable and representative sample (polished section) for this widespread technique is complicated by their abradable nature and heterogeneity. Therefore, alternative methods are also considered in this paper. They are namely X-ray diffraction and electron probe microanalysis to determine the composition, and mercury intrusion porosimetry, Archimedean porosimetry and helium pycnometry to determine the porosity. These methods, including materialography, were applied on representative abradable materials produced by plasma spraying; their results are compared and the advantages and drawbacks of each method are discussed

  20. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  1. The effects of porosity in friction performance of brake pad using waste tire dust

    Directory of Open Access Journals (Sweden)

    İbrahim Mutlu

    2015-10-01

    Full Text Available Abstract This research is focused on the effect of porosity on the friction-wear properties of automotive brake pads. Waste Tire Dust (WTD was used as a new friction material in brake pads. Newly formulated brake pad materials with five different components have been produced by conventional techniques. In the experimental studies, the change of the friction coefficient, the temperature of the friction surface, the specific wear rate, and the hardness, density and porosity were measured. In addition, the micro-structural characterizations of brake pads are determined using Scanning Electron Microscopy (SEM. The mean coefficient of friction, porosity and specific wear are increased due to a WTD rate increases, on the other hand, hardness and density are decreased. As a result, WTD can be considered as an alternative to revalorize this kind of waste products in the brake pads and the amount of porosity of the brake pad affected the friction coefficient and wear behavior of the pad.

  2. Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J. [Purdue University

    2013-04-27

    Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a sub-porosity within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The sub-porosity may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in

  3. Effect of Matrix-Wellbore Flow and Porosity on Pressure Transient Response in Shale Formation Modeling by Dual Porosity and Dual Permeability System

    Directory of Open Access Journals (Sweden)

    Daolun Li

    2015-01-01

    Full Text Available A mathematical dual porosity and dual permeability numerical model based on perpendicular bisection (PEBI grid is developed to describe gas flow behaviors in shale-gas reservoirs by incorporating slippage corrected permeability and adsorbed gas effect. Parametric studies are conducted for a horizontal well with multiple infinite conductivity hydraulic fractures in shale-gas reservoir to investigate effect of matrix-wellbore flow, natural fracture porosity, and matrix porosity. We find that the ratio of fracture permeability to matrix permeability approximately decides the bottom hole pressure (BHP error caused by omitting the flow between matrix and wellbore and that the effect of matrix porosity on BHP is related to adsorption gas content. When adsorbed gas accounts for large proportion of the total gas storage in shale formation, matrix porosity only has a very small effect on BHP. Otherwise, it has obvious influence. This paper can help us understand the complex pressure transient response due to existence of the adsorbed gas and help petroleum engineers to interpret the field data better.

  4. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media

    International Nuclear Information System (INIS)

    Tan, Xiao-Hua; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Fan, Zhou

    2015-01-01

    Flow in porous media under stress is very important in various scientific and engineering fields. It has been shown that stress plays an important role in effect of permeability and porosity of porous media. In this work, novel predictive models for permeability and porosity of porous media considering stress sensitivity are developed based on the fractal theory and mechanics of materials. Every parameter in the proposed models has clear physical meaning. The proposed models are evaluated using previously published data for permeability and porosity measured in various natural materials. The predictions of permeability and porosity show good agreement with those obtained by the available experimental data and illustrate that the proposed models can be used to characterize the flow in porous media under stress accurately. - Highlights: • Predictive models for permeability and porosity of porous media considering stress sensitivity are developed. • The fractal theory and mechanics of materials are used in these models. • The predictions of permeability and porosity show good agreement with those obtained by the available experimental data. • The proposed models can be used to characterize the flow in porous media under stress accurately

  5. The effect of porosity on energetic porous silicon solid propellant micro-propulsion

    International Nuclear Information System (INIS)

    Churaman, Wayne A; Morris, Christopher J; Ramachandran, Raghav; Bergbreiter, Sarah

    2015-01-01

    Energetic porous silicon is investigated as an actuator for micro-propulsion based on thrust and impulse measurements for a variety of porous silicon porosity conditions. Porosity of 2 mm diameter, porous silicon microthruster devices was varied by changing the concentration of hydrofluoric acid and ethanol in an etch solution, by changing porous silicon etch depth, and by changing the resistivity of silicon wafers used for the etch process. The porosity varied from 30% to 75% for these experiments. The highest mean thrust and impulse values measured with a calibrated Kistler 9215 force sensor were 674 mN and 271 μN s, respectively, with a 73% porosity, 2 mm diameter porous silicon device etched in a 3 : 1 etch solution on a 3.6 Ω cm wafer to a target etch depth of 30 μm. As a result of changing porosity, a 23×  increase in thrust performance and a 36×  increase in impulse performance was demonstrated. Impulse values were also validated using a pendulum experiment in which the porous silicon microthruster was unconstrained, but several non-linearities in the pendulum experimental setup resulted in less consistent data than when measured by the force sensor for microthrusters at this size scale. These thrust and impulse results complement previous work in determining the effect of porosity on other porous silicon reaction metrics such as flame speed. (paper)

  6. Effects of porosity and temperature on oxidation behavior in air of selected nuclear graphites

    International Nuclear Information System (INIS)

    Chen Dongyue; Li Zhengcao; Miao Wei; Zhang Zhengjun

    2012-01-01

    Nuclear graphite endures gas oxidation in High Temperature Gas-cooled Reactor (HTGR), which may threaten the safety of reactor. To study the oxidation behavior of nuclear graphite, weight loss curve is usually measured through Thermo Gravimetric Analysis (TGA) method. In this work, three brands of nuclear graphite for HTGR (i.e., HSM-SC, IG-11, and NBG-18) are oxidized under 873 and 1073 K in open air, and their weight loss curves are obtained. The acceleration of oxidizing rate is observed for both HSM-SC and IG-11, and is attributed to the large porosity increase during oxidation process. For HSM-SC, the porosity increase comes from preferential binder oxidation, and thus its binder quality shall be improved to obtain better oxidation resistance. Temperature effects on oxidation for HSM-SC are also studied, which shows that oxidizing gas tends to be exhausted at graphite surface at high temperature instead of penetrate into the interior of bulk. (author)

  7. Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Nabovati, Aydin; Hinebaugh, James; Bazylak, Aimy; Amon, Cristina H.

    2014-02-01

    In this paper, we study the effect of porosity heterogeneity on the bulk hydrodynamic properties (permeability and tortuosity) of simulated gas diffusion layers (GDLs). The porosity distributions of the heterogeneous reconstructed samples are similar to those previously reported in the literature for Toray TGP-H 120™ GDLs. We use the lattice Boltzmann method to perform pore-level flow simulations in the reconstructed GDL samples. Using the results of pore-level simulations, the effect of porosity distribution is characterized on the predicted in- and cross-plane permeability and tortuosity. It was found that porosity heterogeneity causes a higher in-plane permeability and lower in-plane tortuosity, while the effect is opposite in the cross-plane direction, that is a lower cross-plane permeability and a higher cross-plane tortuosity. We further investigate the effect of adding poly-tetra-fluoro-ethylene (PTFE) & binder material to the reconstructed GDL samples. Three fiber volume percentages of 50, 75, and 100% are considered. Overall, increasing the fiber volume percentage reduces the predicted in- and cross-plane permeability and tortuosity values. A previously reported relationship for permeability of fibrous materials is fitted to the predicted permeability values, and the magnitude of the fitting parameter is reported as a function of fiber volume percentage.

  8. The effect of limestone aggregate porosity and saturation degree on the interfacial zone

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Le Saout, G.; Devillers, P.; Garcia-Diaz, E.

    2015-01-01

    The recycling of concrete wastes concerns the nuclear industry as many nuclear facilities will have to be dismantled and the reduction and reuse of the decommissioning concrete wastes in order to minimize the total waste volume is a key issue. The recycled aggregates have the potential to replace natural resources however it is necessary to assess the effect of recycled aggregates on the final concrete. One important issue to be addressed to achieve the required mechanical properties is the water absorption of the recycled aggregates. As a first step, we have used in this study limestone aggregates with different porosities (total porosity from 2 to 20 %) and have investigated the influence of the porosity and the initial saturation degree of these aggregates on the porosity of the interfacial transition zone (ITZ) using scanning electron microscope. The equation of Feret for the strength-porosity relationship of our mortars was applied σ = K(100-p) 2 where σ is the compressive strength in MPa, p is the capillary pore volume in % and K a constant. Aggregates with lower porosity follow the same law characterized by a K value higher than the value for the more porous aggregate law. The K parameter is not dependent of the humidity degree of the aggregate: for a given aggregate, family mortars made with dry and wet aggregate follow the same law. But for porous aggregates as the meso-porosity of the ITZ for a given time of hydration is higher for mortars made with wet aggregates, the compressive strength of these mortars is less than those of mortars made with dry aggregates. Contrary to the low porous aggregate, it was not possible for porous limestone aggregates, and with a calculation based on the saturated surface dry state as reference state to obtain the same net water to cement ratio with wet and dry aggregates. This study reflects the difficulty to control the amount of efficient water in concrete when using porous aggregates and its influence on compressive

  9. Investigation of porosity and pore structure adjacent to fractures by PMMA method. Samples taken from drill cores at Olkiluoto

    International Nuclear Information System (INIS)

    Siitari-Kauppi, M.; Ikonen, J.; Kauppi, L.; Lindberg, A.

    2010-10-01

    The porosity, pore structure and micro fracturing of 18 rock cores from drill holes OLKR4, OL-KR11, OL-KR13, OL-KR14, OL-KR15, OL-KR20 and OL-KR25. The porosity was investigated by the C-14-PMMA autoradiographic method. The main focus was to analyse the changes in porosity and mineralogy adjacent to the typical fractures in the bedrock of Olkiluoto as a mean of porosity profiles. The method makes it possible to study the spatial distribution of the pore space in rock, and the heterogeneity of rock matrices is revealed at the sub micrometre to the centimetre scale. Subsequent autoradiography and digital image analysis make it possible to analyse features limited in size by the range of C-14 beta radiation. The description of the method was given in Posiva working report 2009-03. The samples for this work were chosen in April 2008. The C-14-PMMA method involves the impregnation of centimetre-scale rock cores with C-14 labelled methylmethacrylate (C-14-MMA) in a vacuum, irradiation polymerisation, autoradiography and optical densitometry using digital image-processing techniques. Impregnation with C-14-MMA, a labelled low-molecular-weight and lowviscosity monomer which wets the silicate surfaces well and which can be fixed by polymerisation provides information about the accessible pore space in crystalline rock that cannot be obtained using other methods. The microscopy analyses for mineral identification were done for every PMMA impregnated sample in Geological Survey of Finland. The total porosities of the studied rock cores varied between 0.1 % and 8 %. However, spatially the porosities of 30 - 40 % were determined for the minerals that were strongly altered. The porosity changes were observed adjacent to the fracture surfaces forming from a few to several millimetres porous zones. The heterogeneity of the porosity patterns adjacent to the fracture surfaces was abundant due to mineral alteration. (orig.)

  10. OBSERVATION AND ANALYSIS OF A PRONOUNCED PERMEABILITY AND POROSITY SCALE-EFFECT IN UNSATURATED FRACTURED TUFF

    Energy Technology Data Exchange (ETDEWEB)

    V. VESSELINOV; ET AL

    2001-01-01

    Over 270 single-hole (Guzman et al., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-hole tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nominal support scale of about 1 m. The corresponding log permeability data exhibit spatial behavior characteristic of a random fractal and yield a kriged estimate of how these 1-m scale log permeabilities vary in three-dimensional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a three-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure records from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach amounts to three-dimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock volume

  11. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    Energy Technology Data Exchange (ETDEWEB)

    Aghion, E., E-mail: egyon@bgu.ac.il; Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  12. Effect of radiation and porosity parameter on hydromagnetic flow ...

    African Journals Online (AJOL)

    The aim of this paper is to study the momentum and the heat transfer characteristics in incompressible electrically conducting boundary layer flow over an exponentially stretching sheet under the effect of magnetic field with thermal radiation through porous medium. The governing boundary layer equations are converted ...

  13. The effects of porosity and angle of inclination on the deflection of ...

    African Journals Online (AJOL)

    The effects of porosity and angle of inclination on the deflection of fluid flow in porous media. ... a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  14. Effect of porosity and pore morphology on the low-frequency ...

    Indian Academy of Sciences (India)

    Effect of porosity and pore size distribution on the low-frequency dielectric response, in the range 0.01-100 kHz, in sintered ZrO2-8 mol% Y2O3 ceramic compacts have been investigated. Small-angle neutron scattering (SANS) technique has been employed to obtain the pore characteristics like pore size distribution, ...

  15. Porosity effects in the neutron total cross section of graphite

    International Nuclear Information System (INIS)

    Santisteban, J. R; Dawidowski, J; Petriw, S. N

    2009-01-01

    Graphite has been used in nuclear reactors since the birth of the nuclear industry due to its good performance as a neutron moderator material. Graphite is still an option as moderator for generation IV reactors due to its good mechanical and thermal properties at high operation temperatures. So, there has been renewed interest in a revision of the computer libraries used to describe the neutron cross section of graphite. For sub-thermal neutron energies, polycrystalline graphite shows a larger total cross section (between 4 and 8 barns) than predicted by existing theoretical models (0.2 barns). In order to investigate the origin of this discrepancy we measured the total cross section of graphite samples of three different origins, in the energy range from 0.001 eV to 10 eV. Different experimental arrangements and sample treatments were explored, to identify the effect of various experimental parameters on the total cross section measurement. The experiments showed that the increase in total cross section is due to neutrons scattered around the forward direction. We associate these small-angle scattered neutrons (SANS) to the porous structure of graphite, and formulate a very simple model to compute its contribution to the total cross section of the material. This results in an analytic expression that explicitly depends on the density and mean size of the pores, which can be easily incorporated in nuclear library codes. [es

  16. Effect of keyhole characteristics on porosity formation during pulsed laser-GTA hybrid welding of AZ31B magnesium alloy

    Science.gov (United States)

    Chen, Minghua; Xu, Jiannan; Xin, Lijun; Zhao, Zuofu; Wu, Fufa; Ma, Shengnan; Zhang, Yue

    2017-06-01

    This paper experimentally investigates the relationship between laser keyhole characteristics on the porosity formation during pulsed laser-GTA welding of magnesium alloy. Based on direct observations during welding process, the influences of laser keyhole state on the porosity formation were studied. Results show that the porosities in the joint are always at the bottom of fusion zone of the joint, which is closely related to the keyhole behavior. A large depth to wide ratio always leads to the increase of porosity generation chance. Keeping the keyhole outlet open for a longer time benefits the porosity restriction. Overlap of adjacent laser keyhole can effectively decrease the porosity generation, due to the cutting effect between adjacent laser keyholes. There are threshold overlap rate values for laser keyholes in different state.

  17. Modeling the effectiveness of U(VI) biomineralization in dual-porosity porous media

    Science.gov (United States)

    Rotter, B. E.; Barry, D. A.; Gerhard, J. I.; Small, J. S.

    2011-05-01

    SummaryUranium contamination is a serious environmental concern worldwide. Recent attention has focused on the in situ immobilization of uranium by stimulation of dissimilatory metal-reducing bacteria (DMRB). The objective of this work was to investigate the effectiveness of this approach in heterogeneous and structured porous media, since such media may significantly affect the geochemical and microbial processes taking place in contaminated sites, impacting remediation efficiency during biostimulation. A biogeochemical reactive transport model was developed for uranium remediation by immobile-region-resident DMRB in two-region porous media. Simulations were used to investigate the parameter sensitivities of the system over wide-ranging geochemical, microbial and groundwater transport conditions. The results suggest that optimal biomineralization is generally likely to occur when the regional mass transfer timescale is less than one-thirtieth the value of the volumetric flux timescale, and/or the organic carbon fermentation timescale is less than one-thirtieth the value of the advective timescale, and/or the mobile region porosity ranges between equal to and four times the immobile region porosity. Simulations including U(VI) surface complexation to Fe oxides additionally suggest that, while systems exhibiting U(VI) surface complexation may be successfully remediated, they are likely to display different degrees of remediation efficiency over varying microbial efficiency, mobile-immobile mass transfer, and porosity ratios. Such information may aid experimental and field designs, allowing for optimized remediation in dual-porosity (two-region) biostimulated DMRB U(VI) remediation schemes.

  18. Gamma-Ray Attenuation to Evaluate Soil Porosity: An Analysis of Methods

    Science.gov (United States)

    Pires, Luiz F.; Pereira, André B.

    2014-01-01

    Soil porosity (ϕ) is of a great deal for environmental studies due to the fact that water infiltrates and suffers redistribution in the soil pore space. Many physical and biochemical processes related to environmental quality occur in the soil porous system. Representative determinations of ϕ are necessary due to the importance of this physical property in several fields of natural sciences. In the current work, two methods to evaluate ϕ were analyzed by means of gamma-ray attenuation technique. The first method uses the soil attenuation approach through dry soil and saturated samples, whereas the second one utilizes the same approach but taking into account dry soil samples to assess soil bulk density and soil particle density to determine ϕ. The results obtained point out a good correlation between both methods. However, when ϕ is obtained through soil water content at saturation and a 4 mm collimator is used to collimate the gamma-ray beam the first method also shows good correlations with the traditional one. PMID:24616640

  19. Defect detection method in digital radiography for porosity in magnesium castings

    International Nuclear Information System (INIS)

    Rebuffel, V.; Sood, S.; Blakeley, B.

    2006-01-01

    European project MAGCAST has been devoted to X-rays inspection of magnesium components of complex shapes, as used in spatial, aeronautics, or automotive industries. Porosity affects seriously casting quality, and is critical for safety parts. A radiographic system has been designed, and optimised considering the specific requirements, defect size, and component characteristics. It is composed of a stable mini-focus generator, a direct-conversion detector, and software. In this paper we focus on the numerical method ensuring the automatic detection from the obtained radiographs. The principle consists in a subtraction of a reference image, then a defect extraction on the resulting flattened image. We propose an original algorithm to built off-line a reference image from a set of radiographs acquired using different components. The purpose is to get a completely defect-free reference image, associated to a confidence map. After subtraction of this reference image to the on-line acquired radiograph, an extraction step is performed, taken into account the residual errors due to non-perfect previous steps within the framework of a bayesian segmentation method. Characteristics on defect are also computed, to allow a later classification. Experimental validation of the method on industrial castings is discussed. (orig.)

  20. A Binder Viscosity Effect on the Wet-Wounded Composite Porosity in the Impregnating Bath

    Directory of Open Access Journals (Sweden)

    M. A. Komkov

    2014-01-01

    Full Text Available The aim of this work is to define experimentally an impregnation rate of VM-1 glass fibers and CBM aramid bundles with the epoxy binder EDB-10 using wet method of winding. During the impregnation process of the fibrous fillers by the liquid binder, air is displaced from the interfiber space of fiber and bundle. With the composite product winding a fiber impregnation process is short. That is why gas inclusions or pores are formed in the polymer-fiber compositeThe impregnation rate or porosity of wound material will depend directly on the binder viscosity. To reduce an epoxy binder viscosity temporarily is possible by two ways. The first is to heat a liquid epoxy composition EDB-10 to the maximum possible temperature during the winding process of the product. The second method is to dilute the binder by a solvent, such as acetone or alcohol. However, the solvent reduces its strength.The paper presents experimental data to show the volumetric content of pores in the wound composite affected only by the viscosity of the epoxy binder. Heating a binder allowed us to regulate a changing conditional viscosity of the binder in the impregnating bath for the normal conditions of impregnation. Other impacts on the impregnation and filament-winding processes, such as filler kinks, squeeze, vacuuming binder, highly tensioned winding, and others were not used.Experimentally obtained dependences of the porosity value of wound composite on the conditional viscosity of binder are nonlinear and can be used to design heaters for impregnating devices of winders. The research technique and results can be used in development of technological processes to manufacture composite structures by winding from the other reinforcing fibrous fillers and thermo-active binders.The results show that the volumetric content of pores can significantly vary within 8 - 14 % of material volume. Therefore, to reduce the number of pores in the wound composite to 1-2 %, auxiliary

  1. Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Eyndhoven, G., E-mail: geert.vaneyndhoven@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Kurttepeli, M. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Oers, C.J.; Cool, P. [Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica, Science Park 123, NL-1090 GB Amsterdam (Netherlands); Mathematical Institute, Universiteit Leiden, Niels Bohrweg 1, NL-2333 CA Leiden (Netherlands); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2015-01-15

    Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm “POre REconstruction and Segmentation” is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials. - Highlights: • An electron tomography reconstruction/segmentation method for nanoporous materials. • The method exploits the porous nature of the scanned material. • Validated extensively on both simulation and real data experiments. • Results in increased image resolution and improved porosity quantification.

  2. Influence of shrinkage porosity on fatigue performance of iron castings and life estimation method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface (SPAFS and alternating stress intensity factor (ASIF were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.

  3. Effect of uniaxially pressing ordinary Portland cement pastes containing metal hydroxides on porosity, density, and leaching

    International Nuclear Information System (INIS)

    Cheeseman, C.R.; Asavapisit, S.; Knight, J.

    1998-01-01

    Synthetic metal hydroxide wastes containing Zn and Pb have been mixed with partially hydrated cement and uniaxially pressed. The effect on porosity, pore size distribution, and bulk and skeletal densities has been characterized using mercury intrusion porosimetry. Ca(OH) 2 formation has been determined using differential thermal analysis and metal leaching has been assessed in a series of static leach tests completed on monolithic samples. Pressed solidified materials have increased density, reduced porosity, and reduced Ca(OH) 2 . They exhibit increased resistance to acid attack in terms of sample weight loss during leaching due to reduced release of alkalis. Leaching of Zn and Pb is primarily determined by pH. A peak observed in Zn leaching from pressed samples is due to the effect of changing leachate pH on the dominant Zn species present

  4. High Structural Stability of Textile Implants Prevents Pore Collapse and Preserves Effective Porosity at Strain

    Directory of Open Access Journals (Sweden)

    Uwe Klinge

    2015-01-01

    Full Text Available Reinforcement of tissues by use of textiles is encouraged by the reduced rate of recurrent tissue dehiscence but for the price of an inflammatory and fibrotic tissue reaction to the implant. The latter mainly is affected by the size of the pores, whereas only sufficiently large pores are effective in preventing a complete scar entrapment. Comparing two different sling implants (TVT and SIS, which are used for the treatment of urinary incontinence, we can demonstrate that the measurement of the effective porosity reveals considerable differences in the textile construction. Furthermore the changes of porosity after application of a tensile load can indicate a structural instability, favouring pore collapse at stress and questioning the use for purposes that are not “tension-free.”

  5. Review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials

    International Nuclear Information System (INIS)

    Roth, D.J.; Swickard, S.M.; Stang, D.B.; Deguire, M.R.

    1990-03-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties

  6. Effect of porosity and tortuosity of electrodes on carbon polymer soft actuators

    Science.gov (United States)

    S, Sunjai Nakshatharan; Punning, Andres; Johanson, Urmas; Aabloo, Alvo

    2018-01-01

    This work presents an electro-mechanical model and simulation of ionic electroactive polymer soft actuators with a porous carbon electrode, polymer membrane, and ionic liquid electrolyte. An attempt is made to understand the effects of specific properties of the porous electrodes such as porosity and tortuosity on the charge dynamics and mechanical performance of the actuator. The model uses porous electrode theory to study the electrochemical response of the system. The mechanical response of the whole laminate is attributed to the evolution of local stresses caused by diffusion of ions (diffusion-induced stresses or chemical stresses). The model indicates that in actuators with porous electrode, the diffusion coefficient of ions, conductivity of the electrodes, and ionic conductivity in both electrodes and separator are altered significantly. In addition, the model leads to an obvious deduction that the ions that are highly active in terms of mobility will dominate the whole system in terms of resulting mechanical deformation direction and rate of deformation. Finally, to validate the model, simulations are conducted using the finite element method, and the outcomes are compared with the experimental data. Significant effort has been put forward to experimentally measure the key parameters essential for the validation of the model. The results show that the model developed is able to well predict the behavior of the actuator, providing a comprehensive understanding of charge dynamics in ionic polymer actuator with porous electrodes.

  7. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    Science.gov (United States)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  8. Porosity Effect on Thermal Properties of Al-12 wt % Si/Graphite Composites

    Directory of Open Access Journals (Sweden)

    José-Miguel Molina

    2017-02-01

    Full Text Available The effect of porosity on the thermal conductivity and the coefficient of thermal expansion of composites obtained by infiltration of Al-12 wt % Si alloy into graphite particulate preforms has been determined. Highly irregular graphite particles were used to fabricate the preforms. The thermal conductivity of these composites gradually increases with the applied infiltration pressure given the inherent reduction in porosity. A simple application of the Hasselman-Johnson model in a two-step procedure (that accounts for the presence of both graphite particles and voids randomly dispersed in a metallic matrix offers a good estimation of the experimental results. As concerns the coefficient of thermal expansion, the results show a slight increase with saturation being approximately in the range 14.6–15.2 × 10−6 K−1 for a saturation varying from 86% up to 100%. Results lie within the standard Hashin-Strikman bounds.

  9. Porosity Effect on Thermal Properties of Al-12 wt % Si/Graphite Composites.

    Science.gov (United States)

    Molina, José-Miguel; Rodríguez-Guerrero, Alejandro; Louis, Enrique; Rodríguez-Reinoso, Francisco; Narciso, Javier

    2017-02-14

    The effect of porosity on the thermal conductivity and the coefficient of thermal expansion of composites obtained by infiltration of Al-12 wt % Si alloy into graphite particulate preforms has been determined. Highly irregular graphite particles were used to fabricate the preforms. The thermal conductivity of these composites gradually increases with the applied infiltration pressure given the inherent reduction in porosity. A simple application of the Hasselman-Johnson model in a two-step procedure (that accounts for the presence of both graphite particles and voids randomly dispersed in a metallic matrix) offers a good estimation of the experimental results. As concerns the coefficient of thermal expansion, the results show a slight increase with saturation being approximately in the range 14.6-15.2 × 10 -6 K -1 for a saturation varying from 86% up to 100%. Results lie within the standard Hashin-Strikman bounds.

  10. The porosity effect on properties of sintered materials as their conductivity and Youngs modulus of elasticity

    International Nuclear Information System (INIS)

    Ondracek, G.; Thuemmler, F.

    1979-01-01

    A set of equations derived demonstrates quantitatively the influence of closed pores on the conductivity as well as on Youngsmodulus of elasticity of sintered materials. There are three microstructural parameters following from the theoretical derivation controlling the porosity effect on the properties, which are the total porosity, the form factor and the orientation factor of the pores. By quantitative microstructure analysis these factors become available providing together with the equations the tool - to calculate the conductivity and Youngs modulus of elasticity from microstructural quantities of sintered materials thus substituting direct property measurements by quantitative microstructure analysis if desired - to endeaver technologically optimum microstructures to obtain theoretically predicted special property values and to precalculate property alterations by microstructure variations ('taylor-made-materials') - to supplement the conventional microstructural quality control by calculated property data. (orig.) [de

  11. Porosity and thickness effect of porous silicon layer on photoluminescence spectra

    Science.gov (United States)

    Husairi, F. S.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.

    2018-05-01

    The porous silicon nanostructures was prepared by electrochemical etching of p-type silicon wafer. Porous silicon prepared by using different current density and fix etching time with assistance of halogen lamp. The physical structure of porous silicon measured by the parameters used which know as experimental factor. In this work, we select one of those factors to correlate which optical properties of porous silicon. We investigated the surface morphology by using Surface Profiler (SP) and photoluminescence using Photoluminescence (PL) spectrometer. Different physical characteristics of porous silicon produced when current density varied. Surface profiler used to measure the thickness of porous and the porosity calculated using mass different of silicon. Photoluminescence characteristics of porous silicon depend on their morphology because the size and distribution of pore its self will effect to their exciton energy level. At J=30 mA/cm2 the shorter wavelength produced and it followed the trend of porosity with current density applied.

  12. Effects of thermally induced porosity on an as-HIP powder metallurgy superalloy

    Science.gov (United States)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    The effect of thermally induced porosity on the mechanical properties of an as-hot-isostatically pressed and heat-treated pressing made from low carbon Astroloy is examined. Tensile, stress-rupture, creep, and low cycle fatigue tests were performed and the results were compared with industrial acceptance criteria. It is shown that the porous pressing has a porosity gradient from the rim to the bore with the bore having 1-1/2% greater porosity. Mechanical properties of the test ring below acceptance level are tensile reduction in area at room temperature and 538 C and time for 0.1% creep at 704 C. It is also found that the strength, ductility, and rupture life of the rim are slightly inferior to those of the rim of the sound pressings, while those of the bore are generally below the acceptable level. At strain ranges typical of commercial aircraft engines, the low cycle fatigue life of the rim of the porous pressings is slightly lower than that of the sound pressings.

  13. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.

    Science.gov (United States)

    Lin, Cheng Yu; Kikuchi, Noboru; Hollister, Scott J

    2004-05-01

    An often-proposed tissue engineering design hypothesis is that the scaffold should provide a biomimetic mechanical environment for initial function and appropriate remodeling of regenerating tissue while concurrently providing sufficient porosity for cell migration and cell/gene delivery. To provide a systematic study of this hypothesis, the ability to precisely design and manufacture biomaterial scaffolds is needed. Traditional methods for scaffold design and fabrication cannot provide the control over scaffold architecture design to achieve specified properties within fixed limits on porosity. The purpose of this paper was to develop a general design optimization scheme for 3D internal scaffold architecture to match desired elastic properties and porosity simultaneously, by introducing the homogenization-based topology optimization algorithm (also known as general layout optimization). With an initial target for bone tissue engineering, we demonstrate that the method can produce highly porous structures that match human trabecular bone anisotropic stiffness using accepted biomaterials. In addition, we show that anisotropic bone stiffness may be matched with scaffolds of widely different porosity. Finally, we also demonstrate that prototypes of the designed structures can be fabricated using solid free-form fabrication (SFF) techniques.

  14. Alternative methods for determination of composition and porosity in abradable materials

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Kolman, Blahoslav Jan; Dubský, Jiří; Neufuss, Karel; Hopkins, N.; Zwick, J.

    2006-01-01

    Roč. 57, č. 2 (2006), s. 17-29 ISSN 1044-5803 Grant - others:Evropská unie GRD1-2001-40124 “SEALCOAT” (EU) Institutional research plan: CEZ:AV0Z20430508 Keywords : abradable coatings * plasma spraying * structure * porosity * composition Subject RIV: JI - Composite Materials Impact factor: 0.741, year: 2006

  15. Quantifying the effect of squirt flow dispersion from compliant clay porosity in clay bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2013-01-01

    Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...... sandstones....

  16. The effect of porosity on the mechanical properties of porous titanium scaffolds: comparative study on experimental and analytical values

    Science.gov (United States)

    Khodaei, Mohammad; Fathi, Mohammadhossein; Meratian, Mahmood; Savabi, Omid

    2018-05-01

    Reducing the elastic modulus and also improving biological fixation to the bone is possible by using porous scaffolds. In the present study, porous titanium scaffolds containing different porosities were fabricated using the space holder method. Pore distribution, formed phases and mechanical properties of titanium scaffolds were studied by Scanning Electron Microscope (SEM), x-ray diffraction (XRD) and cold compression test. Then the results of compression test were compared to the Gibson-Ashby model. Both experimentally measured and analytically calculated elastic modulus of porous titanium scaffolds decreased by porosity increment. The compliance between experimentally measured and analytically calculated elastic modulus of titanium scaffolds are also increased by porosity increment.

  17. Multi-Scale-Porosity TiO2 scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics

    Science.gov (United States)

    Sanzaro, Salvatore; Smecca, Emanuele; Mannino, Giovanni; Bongiorno, Corrado; Pellegrino, Giovanna; Neri, Fortunato; Malandrino, Graziella; Catalano, Maria Rita; Condorelli, Guglielmo Guido; Iacobellis, Rosabianca; De Marco, Luisa; Spinella, Corrado; La Magna, Antonino; Alberti, Alessandra

    2016-12-01

    We propose an up-scalable, reliable, contamination-free, rod-like TiO2 material grown by a new method based on sputtering deposition concepts which offers a multi-scale porosity, namely: an intra-rods nano-porosity (1-5 nm) arising from the Thornton’s conditions and an extra-rods meso-porosity (10-50 nm) originating from the spatial separation of the Titanium and Oxygen sources combined with a grazing Ti flux. The procedure is simple, since it does not require any template layer to trigger the nano-structuring, and versatile, since porosity and layer thickness can be easily tuned; it is empowered by the lack of contaminations/solvents and by the structural stability of the material (at least) up to 500 °C. Our material gains porosity, stability and infiltration capability superior if compared to conventionally sputtered TiO2 layers. Its competition level with chemically synthesized reference counterparts is doubly demonstrated: in Dye Sensitized Solar Cells, by the infiltration and chemisorption of N-719 dye (˜1 × 1020 molecules/cm3); and in Perovskite Solar Cells, by the capillary infiltration of solution processed CH3NH3PbI3 which allowed reaching efficiency of 11.7%. Based on the demonstrated attitude of the material to be functionalized, its surface activity could be differently tailored on other molecules or gas species or liquids to enlarge the range of application in different fields.

  18. Effect of porosity on dielectric properties and microstructure of porous PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B. Praveen [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kumar, H.H. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kharat, D.K. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India)]. E-mail: dkkharat@rediffmail.com

    2006-02-25

    Porous piezoelectric materials are of great interest because of their high hydrostatic figure of merit and low sound velocity, which results in to low acoustic impedance and efficient coupling with medium. Porous lead zirconate titanate (PZT) ceramics with varying porosity was developed using polymethyl methacrylate by burnable plastic spheres (BURPS) process. The porous PZT ceramics were characterized for dielectric constant ({epsilon}), dielectric loss factor (tan {delta}), hydrostatic charge (d {sub h}) and voltage (g {sub h}) coefficients and microstructure. The effect of the porous microstructure on the dielectric constant and loss factor at frequencies of 10-10{sup 5} Hz are discussed in this paper.

  19. The effect of coating patterns with spinel-based investment on the castability and porosity of titanium cast into three phosphate-bonded investments.

    Science.gov (United States)

    Pieralini, Anelise R F; Benjamin, Camila M; Ribeiro, Ricardo Faria; Scaf, Gulnara; Adabo, Gelson Luis

    2010-10-01

    This study evaluated the effect of pattern coating with spinel-based investment Rematitan Ultra (RU) on the castability and internal porosity of commercially pure (CP) titanium invested into phosphate-bonded investments. The apparent porosity of the investment was also measured. Square patterns (15 × 15 × 0.3 mm(3)) were either coated with RU, or not and invested into the phosphate-bonded investments: Rematitan Plus (RP), Rema Exakt (RE), Castorit Super C (CA), and RU (control group). The castings were made in an Ar-arc vacuum-pressure machine. The castability area (mm(2) ) was measured by an image-analysis system (n = 10). For internal porosity, the casting (12 × 12 × 2 mm(3) ) was studied by the X-ray method, and the projected porous area percentage was measured by an image-analysis system (n = 10). The apparent porosity of the investment (n = 10) was measured in accordance with the ASTM C373-88 standard. Analysis of variance (One-way ANOVA) of castability was significant, and the Tukey test indicated that RU had the highest mean but the investing technique with coating increased the castability for all phosphate-bonded investments. The analysis of the internal porosity of the cast by the nonparametric test demonstrated that the RP, RE, and CA with coating and RP without coating did not differ from the control group (RU), while the CA and RE casts without coating were more porous. The one-way ANOVA of apparent porosity of the investment was significant, and the Tukey test showed that the means of RU (36.10%) and CA (37.22%) were higher than those of RP (25.91%) and RE (26.02%). Pattern coating with spinel-based material prior to phosphate-bonded investments can influence the castability and the internal porosity of CP Ti. © 2010 by The American College of Prosthodontists.

  20. Effects of Pouring Temperature and Electromagnetic Stirring on Porosity and Mechanical Properties of A357 Aluminum Alloy Rheo-Diecasting

    Science.gov (United States)

    Guo, An; Zhao, Junwen; Xu, Chao; Li, Hu; Han, Jing; Zhang, Xu

    2018-05-01

    Semisolid slurry of A357 aluminum alloy was prepared using a temperature-controllable electromagnetic stirrer and rheo-diecast at different temperatures. The effects of pouring temperature and electromagnetic stirring (EMS) on the porosity in rheo-diecast samples, as well as the relation between porosity and mechanical properties, were investigated. The results show that pouring temperature and EMS had minor influences on rheo-diecast microstructure but marked influence on the porosity. With decreasing slurry pouring temperature, the porosity decreased first and then increased, whereas the maximum pore ratio (ratio of shape factor to diameter of the largest pore) increased first and then decreased. The maximum pore ratio determines the level of tensile strength and elongation, and higher mechanical properties can be obtained with smaller and rounder pores in samples. The mechanical properties of the rheo-diecast samples increased linearly with increasing maximum pore ratio. The maximum pore ratio was 1.43 µm-1, and the minimum porosity level was 0.37% under EMS condition for the rheo-diecast samples obtained at a pouring temperature of 608 °C. With this porosity condition, the maximum tensile strength and elongation were achieved at 274 MPa and 4.9%, respectively. It was also revealed that EMS improves mechanical properties by reduction in porosity and an increase in maximum pore ratio.

  1. The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Danilevicius, Paulius; Georgiadi, Leoni [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece); Pateman, Christopher J.; Claeyssens, Frederik [Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Chatzinikolaidou, Maria, E-mail: mchatzin@materials.uoc.gr [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece); Department of Materials Science and Technology, University of Crete, PO Box 2208, 71303 Heraklion (Greece); Farsari, Maria, E-mail: mfarsari@iesl.forth.gr [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece)

    2015-05-01

    Highlights: • We studied the porosity of laser-made 3D scaffolds on MC3T3-E1 pre-osteoblastic cells. • We made polylactide 3D scaffolds with pores 25–110 μm. - Abstract: The aim of this study is to demonstrate the accuracy required for the investigation of the role of solid scaffolds’ porosity in cell proliferation. We therefore present a qualitative investigation into the effect of porosity on MC3T3-E1 pre-osteoblastic cell ingrowth of three-dimensional (3D) scaffolds fabricated by direct femtosecond laser writing. The material we used is a purpose made photosensitive pre-polymer based on polylactide. We designed and fabricated complex, geometry-controlled 3D scaffolds with pore sizes ranging from 25 to 110 μm, representing porosities 70%, 82%, 86%, and 90%. The 70% porosity scaffolds did not support cell growth initially and in the long term. For the other porosities, we found a strong adhesion of the pre-osteoblastic cells from the first hours after seeding and a remarkable proliferation increase after 3 weeks and up to 8 weeks. The 86% porosity scaffolds exhibited a higher efficiency compared to 82% and 90%. In addition, bulk material degradation studies showed that the employed, highly-acrylated polylactide is degradable. These findings support the potential use of the proposed material and the scaffold fabrication technique in bone tissue engineering.

  2. Analysis of the effect of stent porosity and shape on saccular intracranial aneurysm using the Lattice Boltzmann method Análisis del efecto de la porosidad y forma de un stent en un aneurisma sacular intracraneal utilizando el método Lattice Boltzmann

    Directory of Open Access Journals (Sweden)

    D S Ayala

    2013-11-01

    Full Text Available This article presents an analysis of blood flow patterns in intracranial saccular aneurysm and the effects of the shape and porosity of the stents used in endovascular treatments. In this study will be used the flow reduction criteria for characterizing the efficiency of the stent. The hemodynamic properties of a newtonian blood flow into the aneurysm will be evaluated using the Lattice Boltzmann method (LBM. Porosity values and stent forms are proposed for analysis. In all stent cases analyzed is observed a reduction of velocity and pressure and an increase in viscosity. It is further noted that the rectangular contour stent is the optimal case and reduces the magnitude of the flow velocity inside the aneurysm much as 76%. The results help to understand the role of porosity in the form and design of a stent.En este artículo se presenta un analísis de los patrones de flujo sanguíneo en un aneurisma sacular intracraneal y los efectos de la forma y la porosidad de los stents empleados en tratamientos endovasculares. En este estudio se empleará el criterio de reducción del flujo para caracterizar la eficiencia del stent. Se evaluarán las propiedades hemodinámicas de un flujo sanguíneo newtoniano dentro del aneurisma a partir del método de Lattice Boltzmann (LBM. Se proponen algunos valores de porosidad y forma de stent para el análisis. En todos los casos de stent analizados se observa una reducción de velocidades y presiones y un aumento de viscosidad. Se observa además que el stent de contorno rectangular es el caso óptimo y reduce la magnitud de la velocidad del flujo en el interior del aneurisma hasta en un 76 %. Los resultados obtenidos ayudan a entender el papel de la forma y porosidad en el diseño de un stent.

  3. Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method covers procedures for determining water absorption, bulk density, apparent porosity, and apparent specific gravity of fired unglazed whiteware products. 1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  4. The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell

    Directory of Open Access Journals (Sweden)

    Celik Muhammet

    2016-01-01

    Full Text Available A polybenzimidazole (PBI based polymer electrolyte fuel cells, which called high temperature polymer electrolyte fuel cells (HT-PEMS, operate at higher temperatures (120-200°C than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a membrane electrode assembly (MEA needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, various porosity values of gas diffusion layers are considered in order to investigate the effects of porosity on the water management for two phase flow in fuel cell. Two-dimensional fuel cell with interdigitated flow-field is modelled using COMSOL Multiphysics 4.2a software. The operating temperature and doping level is selected as 160°C and 6.75mol H3PO4/PBI, respectively.

  5. Application of Monte Carlo perturbation methods to a neutron porosity logging tool, using DUCKPOND/McBEND

    International Nuclear Information System (INIS)

    Kemshell, P.B.; Wright, W.V.; Sanders, L.G.

    1984-01-01

    DUCKPOND, the sensitivity option of the Monte Carlo code McBEND, is being used to study the effect of environmental perturbations on the response of a dual detector neutron porosity logging tool. Using a detailed model of an actual tool, calculations have been performed for a 19% porosity limestone rock sample in the API Test Pit. Within a single computer run, the tool response, or near-to-far detector count ratio, and the sensitivity of this response to the concentration of each isotope present in the formation have been estimated. The calculated tool response underestimates the measured value by about 10%, which is equal to 1.5 ''standard errors'', but this apparent discrepancy is shown to be within the spread of calculated values arising from uncertainties on the rock composition

  6. The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams

    International Nuclear Information System (INIS)

    Sundarram, Sriharsha S.; Li, Wei

    2014-01-01

    The effect of pore size and porosity on the performance of phase change material (PCM) infiltrated metal foams, especially when the pore size reduces to less than 100 μm, is investigated in this study. A three dimensional finite element model was developed to consider both the metal and PCM domains, with heat exchange between them. The pore size and porosity effects were studied along with other system variables including heat generation and dissipation of the PCM-based thermal management system. It is shown that both porosity and pore size have strong effects on the heating of PCM. At a fixed porosity, a smaller pore size results in a lower temperature at the heat source for a longer period of time. The effects of pore size and porosity were more pronounced at high heat generation and low convective cooling conditions, representing the situation of portable electronics. There is an optimal porosity for the PCM-metal foam system; however, the optimal value only occurs at high cooling conditions. The net effective thermal conductivity of a PCM-microcellular metal foam system could be doubled by reducing the pore size from 100 μm to 25 μm. - Highlights: •Pore size and porosity of phase change material-microcellular metal foam were investigated. •A smaller pore size results in a lower temperature at the heat source for a longer period of time. •The effects were more pronounced at high heating and low cooling conditions. •Net thermal conductivity doubled by reducing the pore size from 100 μm to 25 μm

  7. Effect of shrinkage porosity on mechanical properties of ferritic ductile iron

    Directory of Open Access Journals (Sweden)

    Wang Zehua

    2013-05-01

    Full Text Available Casting defects could largely affect the mechanical properties of casting products. A number of test pieces made of ductile iron (EN-GJS-400-18-LT with different levels of shrinkage porosity were prepared and then tensile and fatigue tests were performed to investigate the impact of shrinkage porosity on their mechanical properties. The results showed that the tensile strength decreases linearly with increasing of the shrinkage porosity. The tensile elongation decreases sharply with the increase of the shrinkage porosity mainly due to the non-uniform plastic deformation. The fatigue life also dramatically declines with increasing of the porosity and follows a power law relationship with the area percentage of porosity. The existence of the shrinkage porosity made the fatigue fracture complex. The shrinkage pores, especially those close to the surface usually became the crack initiation sites. For test pieces with less porosity, the fatigue fracture was clearly composed of crack initiation, propagation, and overloading. While for samples with high level of porosity, multiple crack initiation sites were observed.

  8. In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition.

    Science.gov (United States)

    Diez-Escudero, A; Espanol, M; Beats, S; Ginebra, M-P

    2017-09-15

    The capacity of calcium phosphates to be replaced by bone is tightly linked to their resorbability. However, the relative importance of some textural parameters on their degradation behavior is still unclear. The present study aims to quantify the effect of composition, specific surface area (SSA), and porosity at various length scales (nano-, micro- and macroporosity) on the in vitro degradation of different calcium phosphates. Degradation studies were performed in an acidic medium to mimic the osteoclastic environment. Small degradations were found in samples with interconnected nano- and micropores with sizes below 3µm although they were highly porous (35-65%), with maximum weight loss of 8wt%. Biomimetic calcium deficient hydroxyapatite, with high SSA and low crystallinity, presented the highest degradation rates exceeding even the more soluble β-TCP. A dependence of degradation on SSA was indisputable when porosity and pore sizes were increased. The introduction of additional macroporosity with pore interconnections above 20µm significantly impacted degradation, more markedly in the substrates with high SSA (>15m 2 /g), whereas in sintered substrates with low SSA (calcium deficient hydroxyapatite did not increase its degradation rate. Overall, the study highlights the importance of textural properties, which can modulate or even outweigh the effect of other features such as the solubility of the compounds. The physicochemical features of calcium phosphates are crucial to tune biological events like resorption during bone remodeling. Understanding in vitro resorption can help to predict the in vivo behavior. Besides chemical composition, other parameters such as porosity and specific surface area have a strong influence on resorption. The complexity of isolating the contribution of each parameter lies in the close interrelation between them. In this work, a multiscale study was proposed to discern the extent to which each parameter influences degradation in

  9. Effects of pore shape and porosity on the properties of porous LNKN ceramics as bone substitute

    International Nuclear Information System (INIS)

    Wang Qi; Chen Qiang; Zhu Jianguo; Huang Chunpeng; Darvell, Brian W.; Chen Zhiqing

    2008-01-01

    A porous lead-free piezoelectric ceramic is investigated as direct bone substitute. Porous lithium sodium potassium niobate (Li 0.06 Na 0.5 K 0.44 )NbO 3 specimens were prepared by pore-forming method. Different volume fraction of ammonium oxalate monohydrate and poly(methyl methacrylate) were used as porogens to obtain different pore shape and porosity. Scanning electron microscopy showed a bicontinuous 3-3 structure of interconnected pores 150-250 μm in size. The piezoelectric constants and electromechanical coupling coefficients may be controlled by both size and shape of the porogens to tune for the best biological response. Such materials show promise for use as a piezoelectric composite bone substitute

  10. Theoretical study of the porosity effects on the shock response of graphitic materials

    Directory of Open Access Journals (Sweden)

    Pineau Nicolas

    2015-01-01

    Full Text Available In this paper we present a theoretical study of the shock compression of porous graphite by means of combined Monte Carlo and molecular dynamics simulations using the LCBOPII potential. The results show that the Hugoniostat methods can be used with “pole” properties calculated from porous models to reproduce the experimental Hugoniot of pure graphite and diamond with good accuracy. The computed shock temperatures show a sharp increase for weak shocks which we analyze as the heating associated with the closure of the initial porosity. After this initial phase, the temperature increases with shock intensity at a rate comparable to monocrystalline graphite and diamond. These simulations data can be exploited in view to build a full equation of state for use in hydrodynamic simulations.

  11. Quantification of porosity evolution from unaltered to propylitic-altered granites: the 14C-PMMA method applied on the hydrothermal system of Lavras do Sul, Brazil

    OpenAIRE

    Bongiolo, Everton M.; Bongiolo, Daniela E.; Sardini, Paul; Mexias, André S.; Siitari-Kauppi, Marja; Gomes, Márcia E.B.; Formoso, Milton L.L.

    2007-01-01

    This work is an application of the 14C-Polymethylmethacrylate method to compare the porosity evolution between unaltered and propylitic-altered granites, using samples from Lavras do Sul region, Brazil. This method, when coupled with optical and electronic petrography has the advantage over other methods to provide the quantification and identification of total and local porosity of rocks. From petrographic observations, different kinds of porous zones were identified and quantified (microfra...

  12. Effect of thermally activated paper sludge on the mechanical properties and porosity of cement pastes

    Directory of Open Access Journals (Sweden)

    García, R.

    2009-06-01

    Full Text Available The present article discusses the effect of paper sludge additions, calcined at 700 ºC for two hours, on cement paste pore structure and mechanical strength. Both total and capillary porosity were observed to depend on the percentage of calcined sludge added to the cementitious matrix. While a 10% addition induced values for both slightly higher than the control, adding 20% prompted the opposite result, reducing porosity values with respect to the control. Substantial refinement was observed, with a rise in pores smaller than 0.01 μm (gel pores when the calcined sludge was added. Such refinement was greater at the higher percentage of sludge. After approximately 15 days, strength was lower in both the additioned pastes compared to the control. A high correlation (R2≥0.939 was found between total porosity and compressive strength for both percentages studied.El presente trabajo muestra el resultado de una investigación llevada a cabo en pastas de cemento que contienen un 10 y un 20% de lodo de papel calcinado a 700 ºC, durante 2h. Se estudia cómo afecta esta adición activa en la estructura porosa y las resistencias mecánicas. Se demuestra que tanto la porosidad total como la capilar dependen del porcentaje de lodo calcinado añadido a la matriz cementante. Así, un 10% de adición muestra para ambas porosidades valores ligeramente superiores al de la pasta de referencia, sin embargo la incorporación de un 20% produce un resultado contrario, disminuyendo ambas porosidades con respecto a la pasta control. Para el caso de poros de tamaño inferior a 0,01 μm (poros de gel se detecta un importante proceso de refinamiento con la incorporación del lodo calcinado, este refinamiento es tanto mayor cuanto mayor es el porcentaje añadido. En cuanto a los valores de resistencia, para los dos porcentajes de adición se produce una disminución a partir de aproximadamente 15 días, respecto a la pasta patrón. Se muestra una buena correlaci

  13. Adobe photoshop quantification (PSQ) rather than point-counting: A rapid and precise method for quantifying rock textural data and porosities

    Science.gov (United States)

    Zhang, Xuefeng; Liu, Bo; Wang, Jieqiong; Zhang, Zhe; Shi, Kaibo; Wu, Shuanglin

    2014-08-01

    Commonly used petrological quantification methods are visual estimation, counting, and image analyses. However, in this article, an Adobe Photoshop-based analyzing method (PSQ) is recommended for quantifying the rock textural data and porosities. Adobe Photoshop system provides versatile abilities in selecting an area of interest and the pixel number of a selection could be read and used to calculate its area percentage. Therefore, Adobe Photoshop could be used to rapidly quantify textural components, such as content of grains, cements, and porosities including total porosities and different genetic type porosities. This method was named as Adobe Photoshop Quantification (PSQ). The workflow of the PSQ method was introduced with the oolitic dolomite samples from the Triassic Feixianguan Formation, Northeastern Sichuan Basin, China, for example. And the method was tested by comparing with the Folk's and Shvetsov's "standard" diagrams. In both cases, there is a close agreement between the "standard" percentages and those determined by the PSQ method with really small counting errors and operator errors, small standard deviations and high confidence levels. The porosities quantified by PSQ were evaluated against those determined by the whole rock helium gas expansion method to test the specimen errors. Results have shown that the porosities quantified by the PSQ are well correlated to the porosities determined by the conventional helium gas expansion method. Generally small discrepancies (mostly ranging from -3% to 3%) are caused by microporosities which would cause systematic underestimation of 2% and/or by macroporosities causing underestimation or overestimation in different cases. Adobe Photoshop could be used to quantify rock textural components and porosities. This method has been tested to be precise and accurate. It is time saving compared with usual methods.

  14. A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams

    International Nuclear Information System (INIS)

    Yang, X H; Kuang, J J; Lu, T J; Han, F S; Kim, T

    2013-01-01

    We present a simplistic yet accurate analytical model for the effective thermal conductivity of high porosity open-cell metal foams saturated in a low conducting fluid (air). The model is derived analytically based on a realistic representative unit cell (a tetrakaidecahedron) under the assumption of one-dimensional heat conduction along highly tortuous-conducting ligaments at high porosity ranges (ε ⩾ 0.9). Good agreement with existing experimental data suggests that heat conduction along highly conducting and tortuous ligaments predominantly defines the effective thermal conductivity of open-cell metal foams with negligible conduction in parallel through the fluid phase. (paper)

  15. Porosity and sonic velocity depth trends of Eocene chalk in Atlantic Ocean: Influence of effective stress and temperature

    DEFF Research Database (Denmark)

    Awedalkarim, Ahmed; Fabricius, Ida Lykke

    2014-01-01

    We aimed to relate changes in porosity and sonic velocity data, measured on water-saturated Eocene chalks from 36 Ocean Drilling Program drill sites in the Atlantic Ocean, to vertical effective stress and thermal maturity. We considered only chalk of Eocene age to avoid possible influence...... not show or at least it is difficult to define a clear pore-stiffening contact cementation trend as the Ontong Java Plateau chalk. Mechanical compaction is the principal cause of porosity reduction (at shallow depths) in the studied Eocene chalk, at least down to about 5MPa Terzaghi׳s effective stress...

  16. Well Test Analysis of Naturally Fractured Vuggy Reservoirs with an Analytical Triple Porosity – Double Permeability Model and a Global Optimization Method

    Directory of Open Access Journals (Sweden)

    Gómez Susana

    2014-07-01

    Full Text Available The aim of this work is to study the automatic characterization of Naturally Fractured Vuggy Reservoirs via well test analysis, using a triple porosity-dual permeability model. The inter-porosity flow parameters, the storativity ratios, as well as the permeability ratio, the wellbore storage effect, the skin and the total permeability will be identified as parameters of the model. In this work, we will perform the well test interpretation in Laplace space, using numerical algorithms to transfer the discrete real data given in fully dimensional time to Laplace space. The well test interpretation problem in Laplace space has been posed as a nonlinear least squares optimization problem with box constraints and a linear inequality constraint, which is usually solved using local Newton type methods with a trust region. However, local methods as the one used in our work called TRON or the well-known Levenberg-Marquardt method, are often not able to find an optimal solution with a good fit of the data. Also well test analysis with the triple porosity-double permeability model, like most inverse problems, can yield multiple solutions with good match to the data. To deal with these specific characteristics, we will use a global optimization algorithm called the Tunneling Method (TM. In the design of the algorithm, we take into account issues of the problem like the fact that the parameter estimation has to be done with high precision, the presence of noise in the measurements and the need to solve the problem computationally fast. We demonstrate that the use of the TM in this study, showed to be an efficient and robust alternative to solve the well test characterization, as several optimal solutions, with very good match to the data were obtained.

  17. Use of micrometric latex beads to improve the porosity of hydroxyapatite obtained by chemical coprecipitation method

    Science.gov (United States)

    Webler, G. D.; Rodrigues, W. C.; Silva, A. E. S.; Silva, A. O. S.; Fonseca, E. J. S.; Degenhardt, M. F. S.; Oliveira, C. L. P.; Otubo, L.; Barros Filho, D. A.

    2018-04-01

    Hydroxyapatite is one of the most important biomaterials whose application mainly extends to implants and drug delivery. This work will discuss the changes in the pore size distribution of hydroxyapatite when there are latex beads present during the synthesis. These changes were monitored using different techniques: small angle X-ray scattering, X-ray diffraction, thermal gravimetrical analysis, N2 adsorption, scanning and transmission electron microscopy. Latex beads and hydroxyapatite form a single nanocomposite with well-distinguished inorganic and organic phases. Latex bead removal in the temperature range of 300-600 °C did not modify the original crystalline structure of hydroxyapatite. However, the latex beads favored an increase in the adsorption capacity of mesopores at temperatures higher than their glassy transition (Tg). The main result of this research work consists on the increase of surface area and pore size distribution obtained after the removal of latex beads template. Latex beads have been used in a different approach changing the porosity of hydroxyapatite scaffolds not only introducing new routes for cell integration but also broadening the pore size distribution which can result in a more high efficiency for drug release in living cells.

  18. New quantitative methods for mineral and porosity mapping in clayey materials: application to the compacted bentonites of engineered barriers

    International Nuclear Information System (INIS)

    Pret, D.

    2003-12-01

    Clayey materials are well known for their non permeable properties and their textural changes between the dry and hydrated states. Their porous network is classically investigated in the dry state using bulk measurements. However, the relationship between porosity and mineral spatial heterogeneities in the hydrated state is poorly understood. The textural analysis limits induce some difficulties to understand the migration of solute species into compacted bentonites (as for nuclear waste repository). The goal of this work is to improve the analysis techniques for hydrated clayey materials in order to provide a multi-scale quantitative petrography. The bentonite samples are impregnated using a resin whose properties are close to water ones. The classical petrographic study reveals strong heterogeneities of spatial and size distributions of porosity and minerals. SEM images analysis allows a quantification and a simple mapping of pores and minerals into unaltered bentonites. Nevertheless, as alterations are suspected to happen in the repository context, two methods for the analysis of all types of materials have been also developed. Two specific softwares permits the treatments of autoradiographs and chemical element maps obtained using electron microprobe. The results are quantitative maps highlighting the spatial porosity heterogeneities from the decimetric to the micrometric scales. All pore sizes are taken into account including clay interlayer spaces. Moreover, an accurate mineral mapping is also supplied on millimetric areas with a spatial resolution close to the micrometer. In a widely point of view, this work provides new complementary tools for the textural analysis of fine grained materials and the improvement of migration modelling of solute species. (author)

  19. The formation and evolution of layered structures in porous media: effects of porosity and mechanical dispersion

    NARCIS (Netherlands)

    Schoofs, Stan; Trompert, Ron A.; Hansen, Ulrich

    1999-01-01

    Horizontally layered structures can develop in porous or partially molten environments, such as hydrothermal systems, magmatic intrusions and the early Earth's mantle. The porosity f of these natural environments is typically small. Since dissolved chemical elements unlike heat cannot diffuse

  20. Effect of initial porosity on mechanical properties of C/SiC composites fabricated by silicon melt infiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Bae, D.S.; Son, D.Y. [Dept. of Materials and Metallurgical Eng., Dong-Eui Univ., Busan (Korea); Lee, S.P. [Dept. of Mechanical Eng., Dong-Eui Univ., Busan (Korea); Park, H.S.; Kim, K.S. [Dreaming and Challenging Co., Changwon (Korea); Jeon, J.H. [Korea Inst. of Machinery and Materials, Changwon (Korea)

    2004-07-01

    Four kinds of raw C/C composites with a density between 1.25{proportional_to}1.66 g/cm{sup 3} were used in order to investigate the effect of the initial porosity of C/C composites on mechanical properties of liquid silicon infiltrated C/SiC composites. The microstructure observation, image analysis and flexural strength test of the composites were performed. The density and microstructural changes with the variation of the initial porosity was discussed in the terms of the infiltration behavior of liquid silicon and the reaction between liquid silicon and matrix carbon. (orig.)

  1. The effect of reinforcement volume ratio on porosity and thermal conductivity in Al-Mgo composites

    Directory of Open Access Journals (Sweden)

    Recep Calin

    2012-12-01

    Full Text Available In this study, the effects of reinforcement volume ratios (RVR on composite structure and thermal conductivity were examined in Al-MgO reinforced metal matrix composites (MMCs of 5%, 10% and 15% RVR produced by melt stirring. In the production of composites, EN AW 1050A aluminum alloy was used as the matrix material and MgO powders with particle size of -105 µm were used as the reinforcement material. For every composite specimen was produced at 500 rev/min stirring speed, at 750 °C liquid matrix temperature and 4 minutes stirring time. Composite samples were cooled under normal atmosphere. Then, microstructures of the samples were determined and evaluated by using Scanning Electron Microscope (SEM and Energy Dispersive X-ray Spectroscopy (EDS analysis. In general, it was observed that the reinforcement exhibited a homogeneous distribution. Furthermore, it was determined that the increase in the RVR increased porosity. From the Scanning Electron Microscope images, a thermal Ansys model was generated to determine effective thermal conductivity. Effective thermal conductivity of Al-MgO composites increased with the decrease in reinforcement volume ratio.

  2. Effects of varied porosity on the physic-mechanical properties of sintered ceramic from Ifon clay

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of saw dust admixture on the physic-mechanical properties of sintered clay bonded carbonized palm kernel shell ceramic was investigated. Composite mixtures of powdered carbonized palm kernel shell and clay from Ifon deposit were produced using equal amount of clay and carbonized palm kernel shell. These were then mixed with varied amount of saw dust (0%, 5% and 10% in a ball mill for 6 hours. From this standard sample specimens were produced using uniaxial compression after mixing each mixture with 10% moisture of clay contents. The compressed samples were sintered at 9500C and soaked for one hour. The sintered samples were characterized for various physic-mechanical properties using state of the art equipment’s. The fired samples were also characterized using ultra-high-resolution field emission scanning electron microscope (UHR-FEGSEM equipped with energy dispersive spectroscopy (EDX. It was observed that the apparent porosity and water absorption of the clay bonded carbonized palm kernel shell ceramic increased with increased amount of saw dust admixture, cold crushing strength, Young’ modulus of elasticity and absorbed energy of the sample reduced with increased amount of saw dust admixture. It was concluded that the sample with 0% saw dust admixture is judged to possess optimum physic-mechanical properties.

  3. Effects of porosity in a model of corrosion and passive layer growth

    Directory of Open Access Journals (Sweden)

    F.D.A. Aarão Reis

    2017-12-01

    Full Text Available We introduce a stochastic lattice model to investigate the effects of pore formation in a passive layer grown with products of metal corrosion. It considers that an anionic species diffuses across that layer and reacts at the corrosion front (metal-oxide interface, producing a random distribution of compact regions and large pores, respectively represented by O (oxide and P (pore sites. O sites are assumed to have very small pores, so that the fraction Φ of P sites is an estimate of the porosity, and the ratio between anion diffusion coefficients in those regions is D_r0 and D_r≪1, significant changes are observed in passive layer growth and corrosion front roughness. For small Φ, a slowdown of the growth rate is observed, which is interpreted as a consequence of the confinement of anions in isolated pores for long times. However, the presence of large pores near the corrosion front increases the frequency of reactions at those regions, which leads to an increase in the roughness of that front. This model may be a first step to represent defects in a passive layer which favor pitting corrosion.

  4. Effects of porosity on seismic velocities, elastic moduli and Poisson's ratios of solid materials and rocks

    Directory of Open Access Journals (Sweden)

    Chengbo Yu

    2016-02-01

    Full Text Available The generalized mixture rule (GMR is used to provide a unified framework for describing Young's (E, shear (G and bulk (K moduli, Lame parameter (λ, and P- and S-wave velocities (Vp and Vs as a function of porosity in various isotropic materials such as metals, ceramics and rocks. The characteristic J values of the GMR for E, G, K and λ of each material are systematically different and display consistent correlations with the Poisson's ratio of the nonporous material (ν0. For the materials dominated by corner-shaped pores, the fixed point at which the effective Poisson's ratio (ν remains constant is at ν0 = 0.2, and J(G > J(E > J(K > J(λ and J(G  0.2 and ν0  J(Vp and J(Vs  0.2 and ν0  0.2 and ν0 = 0.2, respectively. For natural rocks containing thin-disk-shaped pores parallel to mineral cleavages, grain boundaries and foliation, however, the ν fixed point decreases nonlinearly with decreasing pore aspect ratio (α: width/length. With increasing depth or pressure, cracks with smaller α values are progressively closed, making the ν fixed point rise and finally reach to the point at ν0 = 0.2.

  5. Fuzzy logic application for data correction of gamma ray profile and correlation with effective porosity of core from Resende Basin, Rio de Janeiro; Aplicacao da logica fuzzy para correcao de dados de perfil de raios gama e correlacao com porosidade efetiva de testemunhos da Bacia de Resende, Rio de Janeiro

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Francisco de Assis Leal de; Tunala, Leonardo Fernandes; Abreu, Carlos Jorge de; Lopes, Ricardo Tadeu, E-mail: pachoteki@yahoo.com.br, E-mail: leotunala@hotmail.com, E-mail: abreu@geologia.ufrj.br, E-mail: ricardo@lin.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ/CCMN), RJ (Brazil). Centro de Ciencias Matematicas e da Natureza. Inst. de Geociencias. Dept. de Geologia; Rocha, Paula Lucia Ferrucio da, E-mail: ferrucio@acd.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Martins, Ricardo Rhomberg, E-mail: ricardo301@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola Politenica de Engenharia; Lima, Inaya Correa Barbosa, E-mail: inaya@lin.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia

    2010-12-15

    This work presents here a study on the porosity of cores from Resende Basin (Rio de Janeiro). The first step involved the selection, thinning of the material (core) and sample preparation for the use of porosimeter to obtain effective porosity. The material studied is sandstone, friable, coarse to very fine of three wells (GPR1, GPR2 and GPR3). The fuzzy logic (MatLab) was applied to the effective porosity data calculated from the gamma ray (GR) profile for the construction of a synthetic profile and from this we could identify the errors made in calculating the data. Then the results of porosity from the core were correlated with data from the corrected effective porosity (gamma ray profile) in order to prove the results obtained with both methods. The analysis of the synthetic porosity calculated by the fuzzy logic has shown that this is a promising method for assessing the quality of data and to obtain good fits. (author)

  6. Earth formation porosity log

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1977-01-01

    A method for determining the porosity of earth formations in the vicinity of a cased well borehole is described, comprising the steps of: irradiating the earth formations in the vicinity of the cased well borehole with fast neutrons from a source of fast neutrons passed into the borehole; and generating a signal representative of the fast neutron population present in the well borehole at a location in the borehole, the signal is functionally related to the porosity of the earth formations in the vicinity of the borehole

  7. Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: Random packing simulations and NMR micro-imaging study

    Science.gov (United States)

    Lee, Bum Han; Lee, Sung Keun

    2013-07-01

    Despite the importance of understanding and quantifying the microstructure of porous networks in diverse geologic settings, the effects of the specific surface area and porosity on the key structural parameters of the networks have not been fully understood. We performed cube-counting fractal dimension (Dcc) and lacunarity analyses of 3D porous networks of model sands and configurational entropy analysis of 2D cross sections of model sands using random packing simulations and nuclear magnetic resonance (NMR) micro-imaging. We established relationships among porosity, specific surface area, structural parameters (Dcc and lacunarity), and the corresponding macroscopic properties (configurational entropy and permeability). The Dcc of the 3D porous networks increases with increasing specific surface area at a constant porosity and with increasing porosity at a constant specific surface area. Predictive relationships correlating Dcc, specific surface area, and porosity were also obtained. The lacunarity at the minimum box size decreases with increasing porosity, and that at the intermediate box size (∼0.469 mm in the current model sands) was reproduced well with specific surface area. The maximum configurational entropy increases with increasing porosity, and the entropy length of the pores decreases with increasing specific surface area and was used to calculate the average connectivity among the pores. The correlation among porosity, specific surface area, and permeability is consistent with the prediction from the Kozeny-Carman equation. From the relationship between the permeability and the Dcc of pores, the permeability can be expressed as a function of the Dcc of pores and porosity. The current methods and these newly identified correlations among structural parameters and properties provide improved insights into the nature of porous media and have useful geophysical and hydrological implications for elasticity and shear viscosity of complex composites of rock

  8. Effect of Etching Parameter on Pore Size and Porosity of Electrochemically Formed Nanoporous Silicon

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar

    2007-01-01

    Full Text Available The most common fabrication technique of porous silicon (PS is electrochemical etching of a crystalline silicon wafer in a hydrofluoric (HF acid-based solution. The electrochemical process allows for precise control of the properties of PS such as thickness of the porous layer, porosity, and average pore diameter. The control of these properties of PS was shown to depend on the HF concentration in the used electrolyte, the applied current density, and the thickness of PS. The change in pore diameter, porosity, and specific surface area of PS was investigated by measuring nitrogen sorption isotherms.

  9. Passively Aerated Composting of Straw-Rich Pig Manure : Effect of Compost Bed Porosity

    NARCIS (Netherlands)

    Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2002-01-01

    Straw-rich manure from organic pig farming systems can be composted in passively aerated systems as the high application of straw results in a compost bed with good structure and porosity. The passively aerated composting process was simulated in one-dimensional reactors of 2 m3 for straw-rich

  10. The effect of bed non-uniformities and porosity of particles on dryout in boiling particle beds

    International Nuclear Information System (INIS)

    Macbeth, R.V.; Mogford, D.J.; Willshire, S.J.

    1988-03-01

    This report relates to an on-going experimental programme concerned with the coolability of beds of reactor core debris or rubble immersed in a liquid coolant, as might occur in an accident situation. The objectives are to develop experimental techniques, improve the understanding of bed cooling mechanisms, determine dry-out limitations of various bed configurations and particle shapes and sizes and devise ways of improving bed coolability. The report concentrates on a recently discovered effect on bed coolability of particle porosity, such as exists in fragmented UO 2 fuel pellets. It is shown that porosity can lower bed dry-out powers by a factor of 4 or 5. A mechanism which explains the effect is presented. The report also gives results of bed non-uniformities obtained by mixing glass particles with the dielectrically heated 'ferrite' particles used in the experiments. (author)

  11. Effect of Temperature and Age of Concrete on Strength – Porosity Relation

    Directory of Open Access Journals (Sweden)

    T. Zadražil

    2004-01-01

    Full Text Available The compressive strengths of unsealed samples of concrete at the age of 180 days and have been measured at temperatures 20 °C, 300 °C, 600 °C and 900 °C. All of tests were performed for cold material. We compared our results with those obtained in [10] for the same type of concrete (age 28, resp. 90 days and measured at temperature ranging from 20 °C to 280 °C. Dependencies of compressive strength and porosity were correlated together and compared for the samples of age 28, 90 and 180 days. Behaviour of concrete of the age 90, resp. 180 days confirms generally accepted hypothesis that with increasing porosity strength of the concrete decreases. It has to be stressed out, howerer, that concrete samples of the age 28 days exhibit totally opposite dependency. 

  12. Effect of thermally induced porosity on an as-HIP powder metallurgy superalloy

    Science.gov (United States)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1979-01-01

    The impact of thermally induced porosity on the mechanical properties of an as-hot-isostatically-pressed and heat treated pressing made from low carbon Astroloy was determined. Porosity in the disk-shape pressing studied ranged from 2.6 percent at the bore to 1.4 percent at the rim. Tensile, yield strength, ductility, and rupture life of the rim of the porous pressing was only slightly inferior to the rim of sound pressings. The strength, ductility, and rupture life of the bore of the porous pressing was severely degraded compared to sound pressings. At strain ranges typical of commercial jet engine designs, the rim of the porous pressing had slightly inferior fatigue life to sound pressings.

  13. Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks

    OpenAIRE

    Tan, J. C.; Bennett, T. D.; Cheetham, A. K.

    2010-01-01

    The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the framework density and the underlying porosity. For the systems considered here, the elastic modulus was found to range from 3 to 10 GPa, whereas the hardness property lies between 300 MPa and 1.1 GPa. ...

  14. Effect of spherical porosity on co-fired dense/porous zirconia bi-layers cambering

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Marani, Debora; Kiebach, Wolff-Ragnar

    2018-01-01

    analyze the model case of dense taped of 8 mol% Y2O3-stabilized ZrO2 laminated on ca. 400 μ thick 3 mol% Y2O3 doped zirconia porous tapes, with homogenous spherical porosity of 13 vol%, 46 vol%, and 54 vol%. Sintering stress during densification is evaluated from the shrinkage rates and viscoelastic...

  15. Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenlin; Zheng, Jinyu; Luo, Yibin; Da, Zhijian, E-mail: dazhijian.ripp@sinopec.com

    2016-09-30

    Highlights: • Hierarchical zeolite Y was prepared by citric acid treatment and alkaline treatment with NaOH&TBPH. • The addition of TBPH during desilication process transferred the bridge bonded OH− to the terminal P−OH group. • Moderate Brønsted acid sites could be created with phosphorus modification. • Zeolite with hierarchical porosity and appropriated acidities favored high conversion of 1,3,5-TIPB. - Abstract: The zeolite Y is considered as a leading catalyst for FCC industry. The acidity and porosity modification play important roles in determining the final catalytic properties of zeolite Y. The alkaline treatment of zeolite Y by dealumination and alkaline treatment with NaOH and NaOH&TBPH was investigated. The zeolites were characterized by X-ray diffraction, low-temperature adsorption of nitrogen, transmission electron microscope, NMR, NH{sub 3}-TPD and IR study of acidity. Accordingly, the hierarchical porosity and acidity property were discussed systematically. Finally, the catalytic performance of the zeolites Y was evaluated in the cracking of 1,3,5-TIPB. It was found that desilication with NaOH&TBPH ensured the more uniform intracrystalline mesoporosity with higher microporosity, while preserving higher B/L ratio and moderate Brønsted acidities resulting in catalysts with the most appropriated acidity and then with better catalytic performance.

  16. Triple-porosity/permeability flow in faulted geothermal reservoirs: Two-dimensional effects

    Energy Technology Data Exchange (ETDEWEB)

    Cesar Suarez Arriaga, M. [Michoacan Univ. & CFE, Mich. (Mexico); Samaniego Verduzco, F. [National Autonomous Univ. of Mexico, Coyoacan (Mexico)

    1995-03-01

    An essential characteristic of some fractured geothermal reservoirs is noticeable when the drilled wells intersect an open fault or macrofracture. Several evidences observed, suggest that the fluid transport into this type of systems, occurs at least in three stages: flow between rock matrix and microfractures, flow between fractures and faults and flow between faults and wells. This pattern flow could define, by analogy to the classical double-porosity model, a triple-porosity, triple-permeability concept. From a mathematical modeling point of view, the non-linearity of the heterogeneous transport processes, occurring with abrupt changes on the petrophysical properties of the rock, makes impossible their exact or analytic solution. To simulate this phenomenon, a detailed two-dimensional geometric model was developed representing the matrix-fracture-fault system. The model was solved numerically using MULKOM with a H{sub 2}O=CO{sub 2} equation of state module. This approach helps to understand some real processes involved. Results obtained from this study, exhibit the importance of considering the triple porosity/permeability concept as a dominant mechanism producing, for example, strong pressure gradients between the reservoir and the bottom hole of some wells.

  17. Porosity of spacer-filled channels in spiral-wound membrane systems: Quantification methods and impact on hydraulic characterization

    KAUST Repository

    Siddiqui, Amber; Lehmann, S.; Haaksman, V.; Ogier, J.; Schellenberg, C.; van Loosdrecht, M.C.M.; Kruithof, J.C.; Vrouwenvelder, Johannes S.

    2017-01-01

    The porosity of spacer-filled feed channels influences the hydrodynamics of spiral-wound membrane systems and impacts the overall performance of the system. Therefore, an exact measurement and a detailed understanding of the impact of the feed

  18. Effect of roughness and porosity on geometry and kinematics of lock-exchange gravity currents

    Science.gov (United States)

    Gatto, Elena; Adduce, Claudia; Ferreira, Rui M. L.

    2017-04-01

    Gravity currents generated by lock-exchange are an important research tool to understand key features of flows driven by a density may be naturally caused by interaction of geophysical nature but may also be triggered by adverse anthropic actions, from oil spills to pollution related turbidity. Research on the fundamental geometrical and kinematic features of these currents is still necessary, especially when they propagate on complex geometries. The purpose of this work is to investigate the shape and the velocity of propagation of gravity currents over rough beds and over rough-porous beds. To attain this objective, different initial conditions were specified, namely smooth bed, rough bed composed of a single layer of 2 mm glass beads and rough and porous bed composed of 4 layers of the same beads. The dimensions of the channel are 300 × 19,6 × 40 cm in which a steel gate is inserted to define the lock. Two initial mixtures were tested: 1015 and 1030 kgm-3. The density is measured with a pycnometer on a high precision balance. The mixture is composed of fresh water, salt and rhodamine, to allow for visualization and measurements based on image analysis. A high-speed video system camera was used to record the motion of the current. The camera has a 50 mm lens and a sampling frequency of 100 fps. Gray-level images were obtained with 8 bit depth. Calibration of gray-levels was performed pixel by pixel to mixture concentrations. The current is examined in three positions: immediately after the gate ((x-x0)/x0 = 0 to 3), in the middle ((x-x0)/x0 = 5 to 8) and at the end of the channel((x - x0)/x0 = 10 to 13). It is shown that the celerity of the gravity current wave front varies with the different boundary conditions. Indeed, the current is faster for the smooth bed and slower for the rough bed conditions. No appreciable effects of porosity were registered on the wave celerity. The shape of the current varied slightly between the rough and the porous-rough tests

  19. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity

    International Nuclear Information System (INIS)

    Xu Bin; Wu Feng; Su Yuefeng; Cao Gaoping; Chen Shi; Zhou Zhiming; Yang Yusheng

    2008-01-01

    This work is focused on the competitive effects on the performance of the electric double layer capacitors (EDLCs) between porosity increase and simultaneous conductivity decrease for KOH-activated carbon nanotubes (CNTs). A series of the CNTs have been activated with KOH to enhance their surface areas for application in EDLCs. The microstructure of the activated carbon nanotubes (ACNTs) is characterized with N 2 adsorption, transmission electron microscopy (TEM) observation and electric conductivity measurement. Their electrochemical performances are evaluated in aqueous KOH electrolyte with galvanostatic charge/discharge, cyclic voltammetry, and ac impedance spectroscopy. It is found that the KOH activation enhances the specific surface area of the CNTs and its specific capacitance but decreases its electric conductivity and the rate performance in EDLC. By controlling the activation of the CNTs to balance the porosity and conductivity, ACNTs with both high capacitance and good rate performance are obtained

  20. Analysis of aluminum base-reaction effect in density, porosity, and thermal insulation of porous fire bricks

    Science.gov (United States)

    Wismogroho, Agus Sukarto; Firmansyah, Trisna Bagus; Meidianto, Alwi; Widayatno, Wahyu Bambang; Amal, Muhamad Ikhlasul

    2018-05-01

    This paper reports the effect of aluminium corrosion reaction on the density, porosity, and thermal insulation capability of porous fire bricks. The reaction between aluminium and alkaline solution produces hydrogen and other sediment products. The test specimens of fire bricks were made from the mixture of castable cement, aluminium powder of 325 mesh in size (0, 0.1, 1, and 2 wt% with respect to castable cement), and 0.185 M KOH solution. The structural examination of the specimens shows the increase of porosity to 22.7 - 30.6% and the decrease of density in the range of 1.135-1.503 g/mL. In addition, the samples possess average pore size of 0.001-0.003 cm3 with the thermal insulation in the range of 47-78%.

  1. Application of the θ-method to a telegraphic model of fluid flow in a dual-porosity medium

    Science.gov (United States)

    González-Calderón, Alfredo; Vivas-Cruz, Luis X.; Herrera-Hernández, Erik César

    2018-01-01

    This work focuses mainly on the study of numerical solutions, which are obtained using the θ-method, of a generalized Warren and Root model that includes a second-order wave-like equation in its formulation. The solutions approximately describe the single-phase hydraulic head in fractures by considering the finite velocity of propagation by means of a Cattaneo-like equation. The corresponding discretized model is obtained by utilizing a non-uniform grid and a non-uniform time step. A simple relationship is proposed to give the time-step distribution. Convergence is analyzed by comparing results from explicit, fully implicit, and Crank-Nicolson schemes with exact solutions: a telegraphic model of fluid flow in a single-porosity reservoir with relaxation dynamics, the Warren and Root model, and our studied model, which is solved with the inverse Laplace transform. We find that the flux and the hydraulic head have spurious oscillations that most often appear in small-time solutions but are attenuated as the solution time progresses. Furthermore, we show that the finite difference method is unable to reproduce the exact flux at time zero. Obtaining results for oilfield production times, which are in the order of months in real units, is only feasible using parallel implicit schemes. In addition, we propose simple parallel algorithms for the memory flux and for the explicit scheme.

  2. THE EFFECT OF VOLUME VARIATION OF SILVER NANOPARTICLE SOLUTION TOWARDS THE POROSITY AND COMPRESSIVE STRENGTH OF MORTAR

    Directory of Open Access Journals (Sweden)

    W.S.B. Dwandaru

    2016-10-01

    Full Text Available As the world is growing rapidly, people need better building materials such as mortar. The aim of this research is to determine the effect of adding silver nanoparticle solution towards the porosity and compressive strength of mortar. This research was started by making silver nanoparticle solution from nitrate silver (AgNO3. The solution is then characterized using Uv-Vis spectrophotometer. 5 mM silver nanoparticle is added in the process of mortar production with volume variation of the silver nanoparticle solution. The porosity, compressive strength, and the content of mortar were determined by digital scale, universal testing machine, and X-ray diffraction, respectively. For silver nanoparticle solution volumes of (in mL 0, 5, 10, 15, 20, and 25 the porosity obtained are (in % 20.38, 19.48, 19.42, 18.9, 17.8, and 17.5, respectively. The best increase in compressive strength is obtained for (in MPa 29,068, 29,308, and 31,385, with nanoparticle solution volumes of (in mL 5, 10, and 15   Keywords: mortar, silver nanoparticle, compressive strength

  3. Thermal radiation effects on magnetohydrodynamic free convection heat and mass transfer from a sphere in a variable porosity regime

    KAUST Repository

    Prasad, Vallampati Ramachandra Ramachandra

    2012-02-01

    A mathematical model is presented for multiphysical transport of an optically-dense, electrically-conducting fluid along a permeable isothermal sphere embedded in a variable-porosity medium. A constant, static, magnetic field is applied transverse to the cylinder surface. The non-Darcy effects are simulated via second order Forchheimer drag force term in the momentum boundary layer equation. The surface of the sphere is maintained at a constant temperature and concentration and is permeable, i.e. transpiration into and from the boundary layer regime is possible. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller-box finite difference scheme. Increasing porosity (ε) is found to elevate velocities, i.e. accelerate the flow but decrease temperatures, i.e. cool the boundary layer regime. Increasing Forchheimer inertial drag parameter (Λ) retards the flow considerably but enhances temperatures. Increasing Darcy number accelerates the flow due to a corresponding rise in permeability of the regime and concomitant decrease in Darcian impedance. Thermal radiation is seen to reduce both velocity and temperature in the boundary layer. Local Nusselt number is also found to be enhanced with increasing both porosity and radiation parameters. © 2011 Elsevier B.V.

  4. Effect of bond coat and preheat on the microstructure, hardness, and porosity of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermally sprayed coatings are used to improve the surface properties of tool steel materials. Bond coatings are commonly used as intermediate layers deposited on steel substrates (i.e. H13 tool steel) before the top coat is applied in order to enhance a number of critical performance criteria including adhesion of a barrier coating, limiting atomic migration of the base metal, and corrosion resistance. This paper presents the experimental results regarding the effect of nickel bond coat and preheats temperatures (i.e. 200°C, 300°C and 400°C) on microstructure, hardness, and porosity of tungsten carbide coatings sprayed by flame thermal coating. Micro-hardness, porosity and microstructure of tungsten carbide coatings are evaluated by using micro-hardness testing, optical microscopy, scanning electron microscopy, and X-ray diffraction. The results show that nickel bond coatings reduce the susceptibility of micro crack formation at the bonding area interfaces. The percentage of porosity level on the tungsten carbide coatings with nickel bond coat decreases from 5.36 % to 2.78% with the increase of preheat temperature of the steel substrate of H13 from 200°C to 400°C. The optimum hardness of tungsten carbide coatings is 1717 HVN in average resulted from the preheat temperature of 300°C.

  5. SALTSTONE VARIABILITY STUDY - MEASUREMENT OF POROSITY

    International Nuclear Information System (INIS)

    Harbour, J; Vickie Williams, V; Tommy Edwards, T; Russell Eibling, R; Ray Schumacher, R

    2007-01-01

    One of the goals of the Saltstone Variability Study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. One of the key performance properties is porosity which is a measure of the volume percent of a cured grout that is occupied by salt solution (for the saturated case). This report presents (1) the results of efforts to develop a method for the measurement of porosity of grout samples and (2) initial results of porosity values for samples that have been previously produced as part of the Saltstone Variability Study. A cost effective measurement method for porosity was developed that provides reproducible results, is relatively fast (30 to 60 minutes per sample) and uses a Mettler Toledo HR83 Moisture Analyzer that is already operational and routinely calibrated at Aiken County Technology Laboratory. The method involves the heating of the sample at 105 C until no further mass loss is observed. This mass loss value, which is due to water evaporation, is then used to calculate the volume percent porosity of the mix. The results of mass loss for mixes at 105 C were equivalent to the results obtained using thermal gravimetric analysis. The method was validated by comparing measurements of mass loss at 105 C for cured portland cement in water mixes to values presented in the literature for this system. A stereopycnometer from Quantachrome Instruments was selected to measure the cured grout bulk densities. Density is a property that is required to calculate the porosities. A stereopycnometer was already operational at Aiken County Technology Laboratory, has been calibrated using a solid stainless steel sphere of known volume, is cost effective and fast (∼15 minutes per sample). Cured grout densities are important in their own right because they can be used to project the volume of waste form produced from a given amount of salt feed of known composition. For mixes

  6. Effect of porosity on physical properties of lightweight cement composite with foamed glass aggregate

    Directory of Open Access Journals (Sweden)

    Kurpińska Marzena

    2017-01-01

    Full Text Available This paper reports on a study of physical properties of lightweight cement composite. We investigate the possibility of replacing traditional aggregate with Granulated Ash Aggregate (GAA and above all with Granulated Expanded Glass Aggregate (GEGA. For this purpose, 15 specimens of different percentage share of each aggregate in total aggregate volume were tested: 0%, 25%, 50%, 75% or 100% of foam glass aggregate (GEGA partially replaced by ash aggregate (GAA content in the cement composite. The water-cement ratio was constant and equal to w/c=0.5. Three grain sizes were analyzed: 2mm, 4mm (both GEGA and 8mm (GAA. Numerical simulations of concrete specimen behavior under static loading were conducted with the implementation of elastic plastic model of each component. The study shows a significant impact of grain type and size on physical properties of lightweight concrete. Due to lower density of foamed glass aggregate, specimens shows various apparent density and porosity, which affect concrete properties. Compressive strength of concrete decreases with the increase in foam glass aggregate content; however specimens show different workability and in consequence porosity of lightweight concrete.

  7. Radiographically detectable intracortical porosity

    International Nuclear Information System (INIS)

    Meema, H.E.

    1986-01-01

    Since the measurement of intracortical resorptive spaces by histologic methods is difficult and very few data are available in normal humans, we have measured their lengths and widths and calculated the intracortical porosity in metacarpals and phalanges of 79 normal women and 69 normal men, using fine-detail radiographs of the hands and a computerized semi-automatic image analysis system (Zeiss MOP-3), this being the first study of this kind. Several methodological problems were solved satisfactorily, and the results of this study could serve as a data bank for further investigations concerned with intracortical resorption. Significant differences were found between age and sex versus several intracortical resorptive parameters; also significant correlations were found with age in some cases. Normal intracortical porosity was found to be about three times greater in the proximal phalanges than in the metacarpals. It is concluded that this methodology could be used for further studies of intracortical resorption in osteoporosis and other metabolic bone diseases. (orig.)

  8. Effect of the porosity induced by the Chemical Vapor Infiltration (CVI) process on the elastic behaviour of SiC/SiC composite materials at the strand scale

    International Nuclear Information System (INIS)

    Gelebart, L.; Colin, C.

    2008-01-01

    The aim of this work is to reveal the role of porosity inhering to the CVI fabrication process. Indeed, this process which consists of depositing by a gaseous way a SiC layer on a fibrous preform (assembling weaved of SiC fibers) does not allow a complete densification of the material and induces thus a porosity of size and shape particularly heterogeneous and complex. The effect of this porosity, studied at the strand scale (unidirectional composite) is revealed by the elastic anisotropy of the behaviour as well as by the local stresses distribution heterogeneity inside the strand. A discussion is proposed on the representative elementary volume size associated with this type of microstructures. The method used depends on a generation model of 'representative' microstructures of the microstructures induced by the CVI process. On account of the lack of data on the three-dimensional characterization of the porosity, a microstructure invariance hypothesis in the direction of fibers is used. In order to study the elastic behaviour of these microstructures, a periodic homogenisation process, with stress control, is carried out on these porous microstructures in the finite elements CASTEM calculation code. The obtained results reveals an important elastic anisotropy. In order to reveal the interest of this approach and the requirement to take into account the complex geometry of the porosity, these results are compared to a Mori-Tanaka analytical model frequently used for this type of material. Then is studied the evolution of the heterogeneity of the local stresses, that no analytical model can describe, in term of the type of load. If for a traction direction parallel to fibers, the stresses are homogeneous, a strong heterogeneity appears when the traction direction diverges from the fibers direction. For a solicitation perpendicular to fibers, the stresses distribution reveals a peak with zero stress corresponding to zones unloaded inside the material; a second peak

  9. Effect of Solidification Rate and Rare Earth Metal Addition on the Microstructural Characteristics and Porosity Formation in A356 Alloy

    Directory of Open Access Journals (Sweden)

    M. G. Mahmoud

    2017-01-01

    Full Text Available The present study was performed on A356 alloy with the main aim of investigating the effects of La and Ce additions to 356 alloys (with and without 100 ppm Sr on the microstructure and porosity formation in these alloys. Measured amounts of La, Ce, and Sr were added to the molten alloy. The results showed that, in the absence of Sr, addition of La and Ce leads to an increase in the nucleation temperature of the α-Al dendritic network with a decrease in the temperature of the eutectic Si precipitation, resulting in increasing the freezing range. Addition of 100 ppm Sr results in neutralizing these effects. The presence of La or Ce in the casting has a minor effect on eutectic Si modification, in spite of the observed depression in the eutectic temperature. It should be noted that Ce is more effective than La as an alternate modifying agent. According to the atomic radius ratio, rLa/rSi is 1.604 and rCe/rSi is 1.559, theoretically, which shows that Ce is relatively more effective than La. The present findings confirm that Sr is the most dominating modification agent. Interaction between rare earth (RE metals and Sr would reduce the effectiveness of Sr. Although modification with Sr causes the formation of shrinkage porosity, it also reacts with RE-rich intermetallics, resulting in their fragmentation.

  10. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    P. Sanchez

    2001-05-30

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M&O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M&O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M&O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M&O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification

  11. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    P. Sanchez

    2001-01-01

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M and O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M and O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M and O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M and O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification report uses

  12. Autonomous Optimization of a Solidification Pattern and Its Effect on Porosity and Segregation in Steel Castings

    DEFF Research Database (Denmark)

    Kotas, Petr; Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    The present paper considers optimization of a solidification pattern of a gravity sand-cast steel part. That is, the choice of proper riser and chill designs has been investigated using genetic algorithms while simultaneously considering their impact on centerline porosity and macrosegregation...... distribution. This was accomplished by coupling a casting simulation software package with an optimization module. The casting process of the original casting design was simulated using a transient 3D thermal model incorporated in a commercial simulation software package to determine potential flaws...... and inadequacies. After this initial assessment, a new geometrical model was suggested with the redesigned gating system and rearranged chills to obtain better filling and solidification patterns. Based on the improved model, relevant optimization targets and constraints were defined. One multi...

  13. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Matschei, Thomas; Moeschner, Goeril; Glasser, Fred P.

    2008-01-01

    The composition of the phase assemblage and the pore solution of Portland cements hydrated between 0 and 60 deg. C were modelled as a function of time and temperature. The results of thermodynamic modelling showed a good agreement with the experimental data gained at 5, 20, and 50 deg. C. At 5 and at 20 deg. C, a similar phase assemblage was calculated to be present, while at approximately 50 deg. C, thermodynamic calculations predicted the conversion of ettringite and monocarbonate to monosulphate. Modelling showed that in Portland cements which have an Al 2 O 3 /SO 3 ratio of > 1.3 (bulk weight), above 50 deg. C monosulphate and monocarbonate are present. In Portland cements which contain less Al (Al 2 O 3 /SO 3 < 1.3), above 50 deg. C monosulphate and small amounts of ettringite are expected to persist. A good correlation between calculated porosity and measured compressive strength was observed

  14. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    Science.gov (United States)

    Miner, R. V.; Dreshfield, R. L.

    1980-01-01

    Hot-isostatically-pressed powder-metallurgy Astroloy was obtained which contained 1.4 percent porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with data on sound Astroloy. They influenced fatigue crack initiation and produced a more intergranular mode of propagation but fatigue life was not drastically reduced. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range-life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was changed little.

  15. Zeolites with continuously tuneable porosity

    OpenAIRE

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Cejka, Jiří; Morris, Russell E

    2014-01-01

    Czech Science Foundation. Grant Number: P106/12/G015 Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneabl...

  16. The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals

    Science.gov (United States)

    Lichtenberg, Tim; Golabek, Gregor J.; Gerya, Taras V.; Meyer, Michael R.

    2016-08-01

    The thermal history and internal structure of chondritic planetesimals, assembled before the giant impact phase of chaotic growth, potentially yield important implications for the final composition and evolution of terrestrial planets. These parameters critically depend on the internal balance of heating versus cooling, which is mostly determined by the presence of short-lived radionuclides (SLRs), such as 26Al and 60Fe, as well as the heat conductivity of the material. The heating by SLRs depends on their initial abundances, the formation time of the planetesimal and its size. It has been argued that the cooling history is determined by the porosity of the granular material, which undergoes dramatic changes via compaction processes and tends to decrease with time. In this study we assess the influence of these parameters on the thermo-mechanical evolution of young planetesimals with both 2D and 3D simulations. Using the code family I2ELVIS/I3ELVIS we have run numerous 2D and 3D numerical finite-difference fluid dynamic models with varying planetesimal radius, formation time and initial porosity. Our results indicate that powdery materials lowered the threshold for melting and convection in planetesimals, depending on the amount of SLRs present. A subset of planetesimals retained a powdery surface layer which lowered the thermal conductivity and hindered cooling. The effect of initial porosity was small, however, compared to those of planetesimal size and formation time, which dominated the thermo-mechanical evolution and were the primary factors for the onset of melting and differentiation. We comment on the implications of this work concerning the structure and evolution of these planetesimals, as well as their behavior as possible building blocks of terrestrial planets.

  17. Etude de la diagraphie neutron du granite de Beauvoir. Effet neutron des altérations et de la matrice du granite. Calibration granite. Porosité totale à l'eau et porosité neutron Analysis of the Beauvoir Granite Neutron Log. Neutron Effect of Alterations and of the Granite Matrix. Granite Calibration. Total Water Porosity and Neutron Porosity

    Directory of Open Access Journals (Sweden)

    Galle C.

    2006-11-01

    carottes (n. Nous montrons que, pour le granite de Beauvoir, l'effet neutron de la matrice est important (en moyenne proche de 7% et ne peut être négligé lorsque l'on mesure des porosités voisines de 0,5% sur carottes. La calibration de l'outil neutron dans le granite et non pas dans des calcaires est d'autre part capitale quant à la précision quantitative des résultats. This article describes the research done on the Beauvoir granite (Echassières GPF 1 borehole, French Massif Central range. The aim of this project was to obtain representative values of the water saturation (n total free water porosity of the Beauvoir granite from PorosityN neutron porosity (BRGM neutron log. The exact knowledge of the porosity of a crystalline block is effectively fundamental to determine its possibilities for being used as a waste storage site. With this goal, neutron logging provides indispensable information concerning the characterization of a porous medium. Our procedure was experimental, and we tried to go more deeply into various problems linked to the use of neutron logging in a granitic rock. Two main factors governed the neutron response : (i the hydrogen concentration of the formation (free water and combined water of various minerals and (ii the presence of absorber elements with a large capture cross-section such as gadolinium, cadmium, boron as well as lithium for the Beauvoir granite. After measuring the Beauvoir granite n total (free water porosity on core samples, we evaluated the combined water content of each sample tested on the basis of fire loss tests on rock powder at 900°C. From the hydrogen atoms volumic concentration, we determined a hydrogen index that we directly converted into the PorosityN(OH- neutron porosity, (by definition, pure water at 20°C has a hydrogen index of 1 which is equivalent to a 100% porosity. For the Beauvoir granite, the matrix combined water represents an average neutron porosity (Table 1 of about 4%. In the second phase, we used

  18. Effect of High Porosity Screen on the Near Wake of a Circular Cylinder

    Directory of Open Access Journals (Sweden)

    Sahin B.

    2013-04-01

    Full Text Available The change in flow characteristics downstream of a circular cylinder (inner cylinder surrounded by a permeable cylinder (outer cylinder made of a high porosity screen was investigated in shallow water using Particle Image Velocimetry (PIV technique. The diameter of the inner cylinder, outer cylinder and the water height were kept constant during the experiments as d = 50 mm, D = 100 mm and hw = 50 mm, respectively. The depth-averaged free stream velocity was also kept constant as U = 180 mm/s which corresponded to a Reynolds number of Red = 9000 based on the inner cylinder diameter. It was shown that the outer permeable cylinder had a substantialeffect on the vortex formation and consequent vortex shedding downstream of the circular cylinder, especially in the near wake. The time averaged vorticity layers, streamlines and velocity vector field depict that the location of the interaction of vortices considerably changed by the presence of the outer cylinder. Turbulent statistics clearly demonstrated that in comparison to the natural cylinder, turbulent kinetic energy and Reynolds stresses decreased remarkably downstream of the inner cylinder. Moreover, spectra of streamwise velocity fluctuations showed that the vortex shedding frequency significantly reduced compared to the natural cylinder case.

  19. Zeolites with Continuously Tuneable Porosity**

    Science.gov (United States)

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Čejka, Jiří; Morris, Russell E

    2014-01-01

    Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings. PMID:25284344

  20. The neutron porosity tool

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1988-01-01

    The report contains a review of available information on neutron porosity tools with the emphasis on dual thermal-neutron-detector porosity tools and epithermal-neutron-detector porosity tools. The general principle of such tools is discussed and theoretical models are very briefly reviewed. Available data on tool designs are summarized with special regard to the source-detector distance. Tool operational data, porosity determination and correction of measurements are briefly discussed. (author) 15 refs

  1. Triggering the Activation of Main-belt Comets: The Effect of Porosity

    Science.gov (United States)

    Haghighipour, N.; Maindl, T. I.; Schäfer, C. M.; Wandel, O. J.

    2018-03-01

    It has been suggested that the comet-like activity of Main-belt comets (MBCs) is due to the sublimation of sub-surface water-ice that is exposed when these objects are impacted by meter-sized bodies. We recently examined this scenario and showed that such impacts can, in fact, excavate ice and present a plausible mechanism for triggering the activation of MBCs. However, because the purpose of that study was to prove the concept and identify the most viable ice-longevity model, the porosity of the object and the loss of ice due to the heat of impact were ignored. In this paper, we extend our impact simulations to porous materials and account for the loss of ice due to an impact. We show that for a porous MBC, impact craters are deeper, reaching to ∼15 m, implying that if the activation of MBCs is due to the sublimation of sub-surface ice, this ice has to be within the top 15 m of the object. Results also indicate that the loss of ice due to the heat of impact is negligible, and the re-accretion of ejected ice is small. The latter suggests that the activities of current MBCs are most probably from multiple impact sites. Our study also indicates that for sublimation from multiple sites to account for the observed activity of the currently known MBCs, the water content of MBCs (and their parent asteroids) needs to be larger than the values traditionally considered in models of terrestrial planet formation.

  2. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.

    Science.gov (United States)

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Anaraki, A P; Ahmadi, S M; Zadpoor, A A; Schmauder, S

    2015-10-01

    Since the advent of additive manufacturing techniques, regular porous biomaterials have emerged as promising candidates for tissue engineering scaffolds owing to their controllable pore architecture and feasibility in producing scaffolds from a variety of biomaterials. The architecture of scaffolds could be designed to achieve similar mechanical properties as in the host bone tissue, thereby avoiding issues such as stress shielding in bone replacement procedure. In this paper, the deformation and failure mechanisms of porous titanium (Ti6Al4V) biomaterials manufactured by selective laser melting from two different types of repeating unit cells, namely cubic and diamond lattice structures, with four different porosities are studied. The mechanical behavior of the above-mentioned porous biomaterials was studied using finite element models. The computational results were compared with the experimental findings from a previous study of ours. The Johnson-Cook plasticity and damage model was implemented in the finite element models to simulate the failure of the additively manufactured scaffolds under compression. The computationally predicted stress-strain curves were compared with the experimental ones. The computational models incorporating the Johnson-Cook damage model could predict the plateau stress and maximum stress at the first peak with less than 18% error. Moreover, the computationally predicted deformation modes were in good agreement with the results of scaling law analysis. A layer-by-layer failure mechanism was found for the stretch-dominated structures, i.e. structures made from the cubic unit cell, while the failure of the bending-dominated structures, i.e. structures made from the diamond unit cells, was accompanied by the shearing bands of 45°. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of Fe content, cooling rate and porosity on the tensile properties of cast 319 and 356 aluminum alloys

    International Nuclear Information System (INIS)

    Ma, Z.; Samuel, A.M.; Samuel, F.H.; Doty, H.W.; Valtierra, S.

    2002-01-01

    The present study was carried out to investigate the effects of Fe content, cooling rate and porosity on the tensile properties of cast 319 and 356 alloys. Both experimental and industrial 319 alloys (containing 0.1 and 0.4 wt% Mg) and industrial 356 alloys were used, with 200-300 ppm strontium additions to study the modification effect. The Fe content was varied from 0.2 to 0.8 wt% in the 319 alloys, and from 0.1 to 0.6 wt% in the 356 alloy in keeping with Fe levels observed in industry. An end-chilled mold was employed to obtain directionally solidified castings, where the cooling rate varied with the height of the casting. Tensile and microstructural samples were sectioned at heights corresponding to dendrite arm spacings of ∼23 to ∼83 μm. The microstructures were examined using optical- and scanning electron microscopy. The effect of Fe content and cooling rate was investigated through measurements of the β-Al 5 FeSi platelets, using image analysis. Porosity measurements were also made. Phase identification was done using EPMA, EDX and XRD. The results show that the β-Al 5 FeSi platelet size has a significant effect on ductility and tensile strength up to sizes of ∼100 μm in the 319 alloys and ∼70 μm in the 356 alloy, but has no significant effect on the yield strength. While tensile properties are interpreted by means of UTS vs. log Elongation plots (after the Quality index concept of Drouzy et al. (5)), in the present study, the properties for all sample conditions were best interpreted by means of log UTS vs. log Elongation plots, where the properties increased linearly within low cooling rate-high Fe and high cooling rate-low Fe condition extremities. The results are explained in terms of the β-Al 5 FeSi platelet size and porosity values obtained. (author)

  4. Effects of low intensity pulsed ultrasound with and without increased cortical porosity on structural bone allograft incorporation

    Directory of Open Access Journals (Sweden)

    Ehrhart Nicole

    2008-05-01

    Full Text Available Abstract Background Though used for over a century, structural bone allografts suffer from a high rate of mechanical failure due to limited graft revitalization even after extended periods in vivo. Novel strategies that aim to improve graft incorporation are lacking but necessary to improve the long-term clinical outcome of patients receiving bone allografts. The current study evaluated the effect of low-intensity pulsed ultrasound (LIPUS, a potent exogenous biophysical stimulus used clinically to accelerate the course of fresh fracture healing, and longitudinal allograft perforations (LAP as non-invasive therapies to improve revitalization of intercalary allografts in a sheep model. Methods Fifteen skeletally-mature ewes were assigned to five experimental groups based on allograft type and treatment: +CTL, -CTL, LIPUS, LAP, LIPUS+LAP. The +CTL animals (n = 3 received a tibial ostectomy with immediate replacement of the resected autologous graft. The -CTL group (n = 3 received fresh frozen ovine tibial allografts. The +CTL and -CTL groups did not receive LAP or LIPUS treatments. The LIPUS treatment group (n = 3, following grafting with fresh frozen ovine tibial allografts, received ultrasound stimulation for 20 minutes/day, 5 days/week, for the duration of the healing period. The LAP treatment group (n = 3 received fresh frozen ovine allografts with 500 μm longitudinal perforations that extended 10 mm into the graft. The LIPUS+LAP treatment group (n = 3 received both LIPUS and LAP interventions. All animals were humanely euthanized four months following graft transplantation for biomechanical and histological analysis. Results After four months of healing, daily LIPUS stimulation of the host-allograft junctions, alone or in combination with LAP, resulted in 30% increases in reconstruction stiffness, paralleled by significant increases (p Conclusion The current study has demonstrated in a large animal model the potential of both LIPUS and LAP

  5. Effect of porosity and surface chemistry on the adsorption-desorption of uranium(VI) from aqueous solution and groundwater

    International Nuclear Information System (INIS)

    Yakout, S.M.

    2016-01-01

    Rice straw-based biochars modified with different chemical regents were used as an adsorbent for uranium(VI). Effect of pyrolysis temperature and nature of modifying agent's as well as surface chemistry, surface charge, and pore structure on U(VI) removal was investigated. Amount and nature of the surface groups has, in general, more influence than its porosity on U(VI) adsorption. The adsorption was maximum for the initial pH of 5.5. Rice straw derived biochars had comparable U(VI) adsorption as compared to other adsorbents. The U(VI) removal was 90 % from groundwater. NaHCO 3 was found to be the most efficient desorbent eluent for U(VI). (author)

  6. Effective porosity and density of carbonate rocks (Maynardville Limestone and Copper Ridge Dolomite) within Bear Creek Valley on the Oak Ridge Reservation based on modern petrophysical techniques

    International Nuclear Information System (INIS)

    Dorsch, J.

    1997-02-01

    The purpose of this study is to provide quantitative data on effective porosity of carbonate rock from the Maynardville Limestone and Copper Ridge Dolomite within Bear Creek Valley based on modern petrophysical techniques. The data will be useful for groundwater-flow and contaminant-flow modeling in the vicinity of the Y-12 Plant on the Oak Ridge Reservation (ORR). Furthermore, the data provides needed information on the amount of interconnected pore space potentially available for operation of matrix diffusion as a transport process within the fractured carbonate rock. A second aspect of this study is to compare effective porosity data based on modern petrophysical techniques to effective porosity data determined earlier by Goldstrand et al. (1995) with a different technique. An added bonus of the study is quantitative data on the bulk density and grain density of dolostone and limestone of the Maynardville Limestone and Copper Ridge Dolomite which might find use for geophysical modeling on the ORR

  7. Effective diffusion coefficients and porosity values for argillaceous rocks and bentonite: measured and estimated values for the provisional safety analyses for SGT-E2

    International Nuclear Information System (INIS)

    Van Loon, L.R.

    2014-11-01

    In Stage 2 of the Sectoral Plan for Deep Geological Repositories, safety analyses have to be performed. Geochemical parameters describing the transport and retardation of radionuclides in the argillaceous rocks considered and in compacted bentonite are required. In the present report, diffusion parameters for all clay host rocks, confining units and compacted bentonite are derived. Diffusion of tritiated water (HTO), "3"6Cl"- and "2"2Na"+ was studied. The measurements gave values for effective diffusion coefficients (D_e) and diffusion accessible porosities. The general observed trend "N"aD_e > "H"T"OD_e > "C"lD_e is in agreement with the expected behaviour of the three species in clay materials: ion exchanging cations show an enhanced mobility due to surface diffusion effects and anions are slowed down due to anion exclusion. Due to the negatively charged clay surfaces, anionic species are repelled from these surfaces resulting in an accessible porosity that is smaller than the total porosity as measured with HTO. The effect of porewater composition on the diffusion of HTO, "3"6Cl"- and "2"2Na"+ in Opalinus Clay was investigated. For ionic strength (IS) values between 0.17 M and 1.07 M, no significant effect on D_e could be observed. In the case of "3"6Cl"-, no effect on the accessible porosity was observed. The anion diffusion accessible porosity equals 50-60 % of the total porosity, independent on the ionic strength of the porewater. The diffusion parameters were measured on sedimentary rocks such as chalk, clay and limestone rocks. All data could be described by one single modified version of Archie's relation (extended Archie's relation). For values of porosity greater than about 0.1, the classical Archie's relation was valid. For values smaller than 0.1, the data deviated from the classical Archie's relation; this can be explained by additional changes of tortuosity with porosity values. At high porosity values (low density rocks), the microfabric of the clay

  8. Quantification of porosity evolution from unaltered to propylitic-altered granites: the 14C-PMMA method applied on the hydrothermal system of Lavras do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Everton M. Bongiolo

    2007-09-01

    Full Text Available This work is an application of the 14C-Polymethylmethacrylate method to compare the porosity evolution between unaltered and propylitic-altered granites, using samples from Lavras do Sul region, Brazil. This method, when coupled with optical and electronic petrography has the advantage over other methods to provide the quantification and identification of total and local porosity of rocks. From petrographic observations, different kinds of porous zones were identified and quantified (microfractures, grain boundaries, alteration of minerals, etc. Results show that unaltered granites have 0.5 to 0.6% porosity and propylitic-altered ones have 1.7 to 1.8% porosity, even between samples with different textures. Porosity of altered rocks increases mainly due to higher porosity of neoformed chlorite, calcite, sericite and microfractures. Field observations show that later phyllic alteration halos are wider in equigranular than in porphyritic granites, which could not be explained by different original porosity between those rocks. The observed differences of phyllic halos diffusion were controlled by structural and fluid/rock ratio variations between the equigranular and porphyritic granitic facies during the later hydrothermal stage.Este trabalho é uma aplicação do método 14C-polimetilmetacrilato na comparação da evolução da porosidade entre granitos não alterados e propilitizados, utilizando amostras da região de Lavras do Sul, Brasil. Este método, quando associado a análises por petrografia ótica, eletrônica e processamento digital de imagens tem a vantagem de fornecer, além da porosidade total, a quantificação e identificação da porosidade em locais específicos das rochas. A partir da petrografia foi possível identificar e quantificar os diferentes tipos de poros presentes nas rochas (microfraturas, limites de grãos, alteração de minerais, etc. Os resultados mostram que granitos não alterados têm porosidade de 0,5 a 0,6% e

  9. Effects of reduction in porosity and permeability with depth on storage capacity and injectivity in deep saline aquifers: A case study from the Mount Simon Sandstone aquifer

    Science.gov (United States)

    Medina, C.R.; Rupp, J.A.; Barnes, D.A.

    2011-01-01

    The Upper Cambrian Mount Simon Sandstone is recognized as a deep saline reservoir that has significant potential for geological sequestration in the Midwestern region of the United States. Porosity and permeability values collected from core analyses in rocks from this formation and its lateral equivalents in Indiana, Kentucky, Michigan, and Ohio indicate a predictable relationship with depth owing to a reduction in the pore structure due to the effects of compaction and/or cementation, primarily as quartz overgrowths. The regional trend of decreasing porosity with depth is described by the equation: ??(d)=16.36??e-0.00039*d, where ?? is the porosity and d is the depth in m. The decrease of porosity with depth generally holds true on a basinwide scale. Bearing in mind local variations in lithologic and petrophysical character within the Mount Simon Sandstone, the source data that were used to predict porosity were utilized to estimate the pore volume available within the reservoir that could potentially serve as storage space for injected CO2. The potential storage capacity estimated for the Mount Simon Sandstone in the study area, using efficiency factors of 1%, 5%, 10%, and 15%, is 23,680, 118,418, 236,832, and 355,242 million metric tons of CO2, respectively. ?? 2010 Elsevier Ltd.

  10. Thermal radiation effects on magnetohydrodynamic free convection heat and mass transfer from a sphere in a variable porosity regime

    KAUST Repository

    Prasad, Vallampati Ramachandra Ramachandra; Vasu, Buddakkagari; Bé g, Osman Anwar; Parshad, Rana

    2012-01-01

    A mathematical model is presented for multiphysical transport of an optically-dense, electrically-conducting fluid along a permeable isothermal sphere embedded in a variable-porosity medium. A constant, static, magnetic field is applied transverse

  11. Effects of Magnetite Aggregate and Steel Powder on Thermal Conductivity and Porosity in Concrete for Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-01-01

    Full Text Available Among many engineering advantages in concrete, low thermal conductivity is an attractive property. Concrete has been widely used for nuclear vessels and plant facilities for its excellent radiation shielding. The heat isolation through low thermal conductivity is actually positive for nuclear power plant concrete; however the property may cause adverse effect when fires and melt-down occur in nuclear vessel since cooling down from outer surface is almost impossible due to very low thermal conductivity. If concrete containing atomic reactor has higher thermal conductivity, the explosion risk of conductive may be partially reduced. This paper presents high thermally conductive concrete development. For the work, magnetite with varying replacements of normal aggregates and steel powder of 1.5% of volume are considered, and the equivalent thermal conductivity is evaluated. Only when the replacement ratio goes up to 30%, thermal conductivity increases rapidly to 2.5 times. Addition of steel powder is evaluated to be effective by 1.08~1.15 times. In order to evaluate the improvement of thermal conductivity, several models like ACI, DEMM, and MEM are studied, and their results are compared with test results. In the present work, the effects of steel powder and magnetite aggregate are studied not only for strength development but also for thermal behavior based on porosity.

  12. The effect of activation agent on surface morphology, density and porosity of palm shell and coconut shell activated carbon

    Science.gov (United States)

    Leman, A. M.; Zakaria, S.; Salleh, M. N. M.; Sunar, N. M.; Feriyanto, D.; Nazri, A. A.

    2017-09-01

    Activated carbon (AC) has one of the promising alternative technology for filtration and adsorption process. It inexpensive material because the sources is abundant especially in Malaysia. Main purpose of this project is to develop AC by chemical activation process to improve adsorption capacity by improving porosity of AC. AC developed via carbonization using designed burner at temperature of 650°C to 850 °C and activated by Potassium Hydroxide (KOH) in 12 hour and then dried at temperature of 300°C. Characterization and analysis is conducted by Scanning Electron Microscopy (SEM) for surface morphology analysis, Energy Dispersive Spectroscopy (EDS) for composition analysis, density and porosity analysis. Results shows that uneven surface has been observed both of AC and non-AC and also AC shows higher porosity as compared to non-AC materials. Density value of raw material has lower than AC up to 11.67% and 47.54% and porosity of raw material has higher than AC up to 31.45% and 45.69% for palm shell and coconut shell AC. It can be concluded that lower density represent higher porosity of material and higher porosity indicated higher adsorption capacity as well.

  13. Effect of impregnation pressure and time on the porosity, structure and properties of polyacrylonitrile-fiber based carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Venugopalan, Ramani, E-mail: rvg@barc.gov.in [Powder Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Roy, Mainak, E-mail: mainak73@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Thomas, Susy [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Patra, A.K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sathiyamoorthy, D. [Powder Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2013-02-15

    Carbon–carbon composites may find applications in critical parts of advanced nuclear reactors. A series of carbon–carbon composites were prepared using polyacrylonitrile (PAN) based carbon fibers. The materials were densified by impregnating two-dimensional (2D) preforms with liquid phenol formaldehyde resin at different pressures and for different periods of time and then carbonizing those by slowly heating at 1000 °C. Effects of the processing parameters on the structure of the composites were extensively studied. The study showed conclusively that open porosity decreased with increasing impregnation pressure, whereas impregnation time had lesser effect. Matrix–resin bonding also improved at higher pressure. d{sub 002} spacing decreased and ordering along c-axis increased with concomitant increase in sp{sup 2}-carbon fraction at higher impregnation pressures. The fiber reinforced composites exhibited short range ordering of carbon atoms and satisfied structural conditions (d{sub 002} values) of amorphous carbon according to the turbostratic model for non-graphitic carbon materials. The composites had pellet-density of ∼85% of the theoretical value, low thermal expansion and negligible neutron-poisoning. They maintained structural integrity and retained disordered nature even on heat-treatment at ca. 1800 °C.

  14. Oxygen distribution in packed-bed membrane reactors for partial oxidations: effect of the radial porosity profiles on the product selectivity

    NARCIS (Netherlands)

    Kurten, U.; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    A two-dimensional, pseudohomogeneous reactor model was presented to describe the radial and axial concentration profiles in a packed-bed membrane reactor and the local velocity field while accounting for the influences due to the distributive membrane flow and the radial porosity profile. The effect

  15. Analysis of cortical bone porosity using synchrotron radiation microtomography to evaluate the effects of chemotherapy

    Science.gov (United States)

    Alessio, R.; Nogueira, L. P.; Salata, C.; Mantuano, A.; Almeida, A. P.; Braz, D.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2015-11-01

    Microporosities play important biologic and mechanical roles on health. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to cortical bone changes. In the present work, the femur diaphysis of rats treated with chemotherapy drugs were evaluated by 3D morphometric parameters using synchrotron radiation microtomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the ELETTRA Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur diaphysis of rats.

  16. Evaluating the effect of lithology on porosity development in ridgetops in the Appalachian Piedmont

    Science.gov (United States)

    Marcon, V.; Gu, X.; Fisher, B.; Brantley, S. L.

    2016-12-01

    Together, chemical and physical processes transform fresh bedrock into friable weathered material. Even in systems where lithology, tectonic history, and climatic history are all known, it is challenging to predict the depth of weathering because the mechanisms that control the rate of regolith formation are not understood. In the Appalachian Piedmont, where rates of regolith formation and erosion are thought to be in a rough steady state, the depth of weathering varies with lithology. The Piedmont provides a controlled natural environment to isolate the effects of lithology on weathering processes so we can start to understand the mechanisms that initiate and drive weathering. Weathering is deepest over feldspathic rocks (schist/granite) with regolith 20-30m thick and thinnest over mafic and ultramafic rocks (diabase/serpentinite) with regolith serpentinization reactions and lost from collapse during weathering. Serpentinite consists of easily weathered hydrous minerals with little quartz. Comparatively, rocks with more quartz (e.g. schist) have a supportive skeleton as the rock weathers. This quartz skeleton could prevent the collapse of pores and result in isovolumetric weathering. Non-isovolumetric weathering limits infiltration of reactive fluids deeper into the rock, minimizing regolith formation in serpentinite due to its lack of a quartz skeleton. Given this, fracture toughness may be an important parameter to consider in terms of predicting regolith thickness.

  17. Effects of Surface Wettability on the Porosity and Wickability of Frost

    Science.gov (United States)

    Witt, Katherine; Ahmadi, Farzad; Boreyko, Jonathan

    2017-11-01

    The wicking of liquids through porous media has been studied for many materials, but never for frost, despite its implications for arctic oil spills and oil-infused surfaces. Here, we characterize silicone oils wicking up frost sheets. A layer of frost was grown on aluminum plates of varying surface wettability: superhydrophilic, hydrophilic, hydrophobic, and superhydrophobic. Once the desired frost thickness was grown, a humidity chamber was used to maintain the frost at the dew point and the bottom of the plate was dipped in a reservoir of fluorescent silicone oil. For all surfaces, the wicking rate of the oil increased with increasing wettability. For the wetting surfaces, this is manifested in the length vs. time data following the classical Washburn equation, exhibiting a power slope of about 1/2 and resulting in a larger effective pore radius with increasing wettability. However, we observed that on the non-wetting surfaces, the discrete distribution of the frosted dew droplets resulted in a new scaling law with a slope much less than 1/2, especially for the superhydrophobic surface which promoted jumping-droplet condensation. This research shows that the wicking of oil up a layer of frost can give insight into the morphology of frost. Conversely, if the underlying wettability of a frost sheet can be controlled, the spread of oil can be widely tuned. This work was supported by a Virginia Space Grant Consortium Undergraduate Research Scholarship (PMPTX7EP).

  18. Effects of particle size and porosity on in vivo remodeling of settable allograft bone/polymer composites.

    Science.gov (United States)

    Prieto, Edna M; Talley, Anne D; Gould, Nicholas R; Zienkiewicz, Katarzyna J; Drapeau, Susan J; Kalpakci, Kerem N; Guelcher, Scott A

    2015-11-01

    Established clinical approaches to treat bone voids include the implantation of autograft or allograft bone, ceramics, and other bone void fillers (BVFs). Composites prepared from lysine-derived polyurethanes and allograft bone can be injected as a reactive liquid and set to yield BVFs with mechanical strength comparable to trabecular bone. In this study, we investigated the effects of porosity, allograft particle size, and matrix mineralization on remodeling of injectable and settable allograft/polymer composites in a rabbit femoral condyle plug defect model. Both low viscosity and high viscosity grafts incorporating small (<105 μm) particles only partially healed at 12 weeks, and the addition of 10% demineralized bone matrix did not enhance healing. In contrast, composite grafts with large (105-500 μm) allograft particles healed at 12 weeks postimplantation, as evidenced by radial μCT and histomorphometric analysis. This study highlights particle size and surface connectivity as influential parameters regulating the remodeling of composite bone scaffolds. © 2015 Wiley Periodicals, Inc.

  19. Effect of drying on the porosity of the hydroxyapatite and cellulose nata de coco compositeas bone graft candidate

    Science.gov (United States)

    Anitasari, S.; Mu’ti, A.; Hutahaean, YO

    2018-04-01

    Bone graft is used to replace bone parts damaged by illness and accident. As a bone replacement material, the bone graft should be able to stimulate the process of the osteogenesis. The process of osteogenesis is influenced by the osteoconductive properties of a biomaterial, that porosity affects this process. The shells of blood scallop (Anadaragranosa) are producing hydroxyapatite (HAp),having high compressive strength, biocompatibility and osteoconductive properties, but low porosity while cellulose nata de coco (Cnc) have low compressive strength but high porosity. Therefore, the combination of two biomaterials are expected to produce composite that have high osteoconductive properties. The purpose of this research wasknowing the porosity of HAp/Cnc composite which wasbeingprecipitated for 5 hours, 15 hours, 25 hours and wasdried for 24 hours, 48 hours and 72 hours. This research usedwise drop technique to synthesis HAp powder and cellulose immersion technique for synthesis of HAp/Cnc. Results of this research, there was difference in porosity between HAp/Cnc that was precipitated for 5 hours, 15 hours and 25 hours, as well as was dried for 1 day, 2 days and 3 days. The conclusion, the synthesis of HAp/Cncwasuseful as bone graft candidate.

  20. Characterization of the porosity of human dental enamel and shear bond strength in vitro after variable etch times: initial findings using the BET method.

    Science.gov (United States)

    Nguyen, Trang T; Miller, Arthur; Orellana, Maria F

    2011-07-01

    (1) To quantitatively characterize human enamel porosity and surface area in vitro before and after etching for variable etching times; and (2) to evaluate shear bond strength after variable etching times. Specifically, our goal was to identify the presence of any correlation between enamel porosity and shear bond strength. Pore surface area, pore volume, and pore size of enamel from extracted human teeth were analyzed by Brunauer-Emmett-Teller (BET) gas adsorption before and after etching for 15, 30, and 60 seconds with 37% phosphoric acid. Orthodontic brackets were bonded with Transbond to the samples with variable etch times and were subsequently applied to a single-plane lap shear testing system. Pore volume and surface area increased after etching for 15 and 30 seconds. At 60 seconds, this increase was less pronounced. On the contrary, pore size appears to decrease after etching. No correlation was found between variable etching times and shear strength. Samples etched for 15, 30, and 60 seconds all demonstrated clinically viable shear strength values. The BET adsorption method could be a valuable tool in enhancing our understanding of enamel characteristics. Our findings indicate that distinct quantitative changes in enamel pore architecture are evident after etching. Further testing with a larger sample size would have to be carried out for more definitive conclusions to be made.

  1. Effect of W/C Ratio on Durability and Porosity in Cement Mortar with Constant Cement Amount

    Directory of Open Access Journals (Sweden)

    Yun-Yong Kim

    2014-01-01

    Full Text Available Water is often added to concrete placing for easy workability and finishability in construction site. The additional mixing water can help easy mixing and workability but causes increased porosity, which yields degradation of durability and structural performances. In this paper, cement mortar samples with 0.45 of W/C (water to cement ratio are prepared for control case and durability performances are evaluated with additional water from 0.45 to 0.60 of W/C. Several durability tests including strength, chloride diffusion, air permeability, saturation, and moisture diffusion are performed, and they are analyzed with changed porosity. The changing ratios and patterns of durability performance are evaluated considering pore size distribution, total porosity, and additional water content.

  2. The Effect of Cerium Ions on the Structure, Porosity and Electrochemical Properties of Si/Zr-Based Hybrid Sol-Gel Coatings Deposited on Aluminum

    Directory of Open Access Journals (Sweden)

    Peter Rodič

    2018-04-01

    Full Text Available This study was focused on the synthesis and characterization of Si/Zr-based hybrid sol-gel coatings with and without the addition of cerium(III ions. The coatings were deposited on aluminum aiming to act as an effective and ecologically harmless alternative to toxic chromate coatings. The chemical composition, structure, thermal properties and porosity of the non-doped and Ce-doped coatings containing various Zr contents were examined by Raman spectroscopy and photothermal beam deflection spectroscopy. The corrosion properties of the coated aluminum substrates were studied using AC and DC electrochemical methods in 0.1 M NaCl electrolyte solution. Barrier and protecting properties of the coatings were monitored upon long-term immersion in chloride solution using electrochemical impedance spectroscopy. The effect of cerium ions was two-fold: on the formation of a more condensed Si−O−Zr network structure and on the formation of Ce-based deposits, which diminish the rate of cathodic reaction at the coating/metal interface. These effects acted synergistically and resulted in the creation of the coatings with effective barrier and active corrosion protection.

  3. Investigating the effects of rock porosity and permeability on the performance of nitrogen injection into a southern Iranian oil reservoirs through neural network

    Science.gov (United States)

    Gheshmi, M. S.; Fatahiyan, S. M.; Khanesary, N. T.; Sia, C. W.; Momeni, M. S.

    2018-03-01

    In this work, a comprehensive model for Nitrogen injection into an oil reservoir (southern Iranian oil fields) was developed and used to investigate the effects of rock porosity and permeability on the oil production rate and the reservoir pressure decline. The model was simulated and developed by using ECLIPSE300 software, which involved two scenarios as porosity change and permeability changes in the horizontal direction. We found that the maximum pressure loss occurs at a porosity value of 0.07, which later on, goes to pressure buildup due to reservoir saturation with the gas. Also we found that minimum pressure loss is encountered at porosity 0.46. Increases in both pressure and permeability in the horizontal direction result in corresponding increase in the production rate, and the pressure drop speeds up at the beginning of production as it increases. However, afterwards, this pressure drop results in an increase in pressure because of reservoir saturation. Besides, we determined the regression values, R, for the correlation between pressure and total production, as well as for the correlation between permeability and the total production, using neural network discipline.

  4. Thermoelectric materials having porosity

    Science.gov (United States)

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  5. Porosity and water activity effects on stability of crystalline β-carotene in freeze-dried solids.

    Science.gov (United States)

    Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H

    2012-11-01

    Stability of entrapped crystalline β-carotene as affected by water activity, solids microstructure, and composition of freeze-dried systems was investigated. Aliquots (1000 mm(3) , 20% w/w solids) of solutions of maltodextrins of various dextrose equivalents (M040:DE6, M100:DE11, and M250:DE25.5), M100-sugars (1:1 glucose, fructose and sucrose), and agar for gelation with dispersed β-carotene were frozen at -20, -40, or -80 °C and freeze-dried. Glass transition and α-relaxation temperatures were determined with differential scanning calorimetry and dynamic mechanical analysis, respectively. β-Carotene contents were monitored spectrophotometrically. In the glassy solids, pore microstructure had a major effect on β-carotene stability. Small pores with thin walls and large surface area allowed β-carotene exposure to oxygen which led to a higher loss, whereas structural collapse enhanced stability of β-carotene by decreasing exposure to oxygen. As water plasticized matrices, an increase in molecular mobility in the matrix enhanced β-carotene degradation. Stability of dispersed β-carotene was highest at around 0.2 a(w) , but decreasing structural relaxation times above the glass transition correlated well with the rate of β-carotene degradation at higher a(w) . Microstructure, a(w) , and component mobility are important factors in the control of stability of β-carotene in freeze-dried solids. β-Carotene expresses various nutritional benefits; however, it is sensitive to oxygen and the degradation contributes to loss of nutritional values as well as product color. To increase stability of β-carotene in freeze-dried foods, the amount of oxygen penetration need to be limited. The modification of freeze-dried food structures, for example, porosity and structural collapse, components, and humidity effectively enhance the stability of dispersed β-carotene in freeze-dried solids. © 2012 Institute of Food Technologists®

  6. From picture to porosity of river bed material using Structure-from-Motion with Multi-View-Stereo

    Science.gov (United States)

    Seitz, Lydia; Haas, Christian; Noack, Markus; Wieprecht, Silke

    2018-04-01

    Common methods for in-situ determination of porosity of river bed material are time- and effort-consuming. Although mathematical predictors can be used for estimation, they do not adequately represent porosities. The objective of this study was to assess a new approach for the determination of porosity of frozen sediment samples. The method is based on volume determination by applying Structure-from-Motion with Multi View Stereo (SfM-MVS) to estimate a 3D volumetric model based on overlapping imagery. The method was applied on artificial sediment mixtures as well as field samples. In addition, the commonly used water replacement method was applied to determine porosities in comparison with the SfM-MVS method. We examined a range of porosities from 0.16 to 0.46 that are representative of the wide range of porosities found in rivers. SfM-MVS performed well in determining volumes of the sediment samples. A very good correlation (r = 0.998, p < 0.0001) was observed between the SfM-MVS and the water replacement method. Results further show that the water replacement method underestimated total sample volumes. A comparison with several mathematical predictors showed that for non-uniform samples the calculated porosity based on the standard deviation performed better than porosities based on the median grain size. None of the predictors were effective at estimating the porosity of the field samples.

  7. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  8. The Effects of Shear Strain, Fabric, and Porosity Evolution on Elastic and Mechanical Properties of Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Marone, C.

    2017-12-01

    Ultrasonic/seismic waves are widely used for probing fault zone elastic and mechanical properties (gouge composition, frictional strength, density) and elastic properties (Vp, Vs, bulk and shear moduli), as it can provide insight into key processes and fault properties during shearing. These include fabric and force chain formation, porosity evolution, and fault zone stiffness, which are in turn factors in fault slip, damage, and healing. We report on a suite of direct shear experiments on synthetic fault gouge composed of 50% smectite /50% quartz at a normal stress of 25 MPa, in which we use ultrasonic wave transmission to continuously monitor compressional and shear wave velocities (Vp, Vs) up to shear strains of 25, while simultaneously measuring friction and monitoring the evolution of density and porosity. We find that wavespeeds vary with shear strain, due to fabric development and the evolution of density and porosity. The coefficient of friction peaks at μ .47 at a shear strain of .5 - 1, decreases to a steady state value of μ .43 by shear strains of 4.5- 6 and then remains rather constant to shear strains of 6 - 25, consistent with previous work. Density increases rapidly from 1.78 g/cm3 to 1.83 g/cm3 at shear strains from 0-2 (porosity decreases from 33% to 25% over that range), and then more gradually increases to a density of 2.08 g/cm3 (porosity of 21%) at a shear strain of 25. Vp increases from 2400 m/s to 2900 m/s during the onset of shear until a shear strain of 3, and then decreases to 2400-2500 by shear strain of 7-9. At shear strains above 9, Vp slowly increases as the layer becomes denser and less porous. We interpret the co-evolving changes in friction, porosity, and elastic moduli/wavespeed to reflect fabric development and alignment of clay particles as a function of shearing. More specifically, the decrease in Vp at a shear strain of 3 reflects the clay particles gradually aligning. Once the particles are aligned, the gradual increase of

  9. One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness

    International Nuclear Information System (INIS)

    Maedler, Lutz; Lall, Anshuman A; Friedlander, Sheldon K

    2006-01-01

    A method is described for designing nanoparticle agglomerate films with desired film porosity and film thickness. Nanoparticle agglomerates generated in aerosol reactors can be directly deposited on substrates to form uniform porous films in one step, a significant advance over existing technologies. The effect of agglomerate morphology and deposition mechanism on film porosity and thickness are discussed. Film porosity was calculated for a given number and size of primary particles that compose the agglomerates, and fractal dimension. Agglomerate transport was described by the Langevin equation of motion. Deposition enhancing forces such as thermophoresis are incorporated in the model. The method was validated for single spherical particles using previous theoretical studies. An S-shape film porosity dependence on the particle Peclet number typical for spherical particles was also observed for agglomerates, but films formed from agglomerates had much higher porosities than films from spherical particles. Predicted film porosities compared well with measurements reported in the literature. Film porosities increased with the number of primary particles that compose an agglomerate and higher fractal dimension agglomerates resulted in denser films. Film thickness as a function of agglomerate deposition time was calculated from the agglomerate deposition flux in the presence of thermophoresis. The calculated film thickness was in good agreement with measured literature values. Thermophoresis can be used to reduce deposition time without affecting the film porosity

  10. Physical properties of Martian meteorites: Porosity and density measurements

    Science.gov (United States)

    Coulson, Ian M.; Beech, Martin; Nie, Wenshuang

    Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet's surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. In comparison with the limited existing data for Martian meteorites we find fairly good agreement, although our porosity values typically lie at the low end of published values. Surprisingly, despite the increased data set, there is little by way of correlation between either porosity or density with parameters such as shock effect or terrestrial residency. Further data collection on additional meteorite samples is required before more definitive statements can be made concerning the validity of these observations.

  11. Use of the Schlieren Method to the Convection Analysis in the Steel Charge of Mixed Porosity / Wykorzystanie Metody Schlierena Do Analizy Zjawiska Konwekcji W Przypadku Wsadu Stalowego O Porowatości Mieszanej

    Directory of Open Access Journals (Sweden)

    Wyczółkowski R.

    2015-12-01

    Full Text Available The paper presents experimental studies devoted to the convection phenomenon within the steel charge of mixed porosity. Such charges constitute bundles of hollow long elements such as pipes or rectangular sections which are heat treated. A significant portion of the gas phase in the volume of the charge makes that natural convection of the gas occurring within the individual elements may have an effect on the course of heating. To the tests the Schlieren method was used which is one of the optical visualization methods applied to the analysis of the flow phenomena in the transparent and non luminous media such as air or water. The tested samples have the form of porous charge beds made from pipes and rectangular profiles. During the experiments the samples were heating up for the constant heat flux rate. The direction of flux was vertical, from the bottom to the top.

  12. Effects of ancient porosity and permeability on formation of sedimentary dolomites: Devonian Jefferson Formation (Frasnian), south-central Montana

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.M.; Dorobek, S.L.

    1987-08-01

    Petrographic and geochemical evidence indicates that multiple dolomitization and dolomite stabilization events affected the Devonian Jefferson Formation (Frasnian) in south-central Montana. Several types of dolomite occur, defined by cathodoluminescence: nonzoned, dully luminescent subhedral-anhedral mosaics (most common), euhedral nonzoned and zoned dolomites, zoned dolomite cements, and irregularly luminescent dolomites (dully luminescent with irregularly luminescent regions). The irregularly luminescent fabrics probably represent partial replacement of early dolomite phases with later dolomite phases. Nonzoned, Ca-enriched, euhedral dolomites occur in calcite-cemented, coarse-grained limestone layers. These permeable layers probably were conduits for early meteoric waters, that occluded porosity in the limestones and prevented later dolomite stabilization. Irregularly luminescent dolomites are interpreted as intermediate fabrics in the dolomite stabilization process. Later calcite cements which occlude intercrystalline porosity prevented further dolomite replacement. Total recrystallization of remaining dolomites and formation of final dully luminescent mosaics occurred prior to brecciation and stylolitization.

  13. Effect of Porosity on the Thick Electrodes for High Energy Density Lithium Ion Batteries for Stationary Applications

    Directory of Open Access Journals (Sweden)

    Madhav Singh

    2016-11-01

    Full Text Available A series of 250–350 μ m-thick single-sided lithium ion cell graphite anodes and lithium nickel manganese cobalt oxide (NMC cathodes with constant area weight, but varying porosity were prepared. Over this wide thickness range, micron-sized carbon fibers were used to stabilize the electrode structure and to improve electrode kinetics. By choosing the proper porosities for the anode and cathode, kinetic limitations and aging losses during cell cycling could be minimized and energy density improved. The cell (C38%-A48% exhibits the highest energy density, 441 Wh/L at the C/10 rate, upon cycling at elevated temperature and different C-rates. The cell (C38%-A48% showed 9% higher gravimetric energy density at C/10 in comparison to the cell with as-coated electrodes.

  14. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh; Hadwiger, Markus; Ben Romdhane, Mohamed; Behzad, Ali Reza; Madhavan, Poornima; Nunes, Suzana Pereira

    2016-01-01

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore

  15. The effects of bauxite, metakaolin, and porosity on the thermal properties of prepared Iraqi clays refractory mortars

    Science.gov (United States)

    Zaidan, Shihab A.; Omar, Mustafa H.

    2018-05-01

    One of the most important requirements for the manufacture of refractory mortars, especially those used in the construction of thermal systems (building or plastering), is the balance between thermal insulation properties and porosity. Where, increasing porosity of mortar to a large amount may be always undesirable, because the absorption of liquid and gases emitted from industrial system is decline the bonded with bricks and structural properties of mortars. Refractory mortars prepared from either fired bauxite or metakaolin clays with different percentages of kaolin (10, 20, 30, and 40 wt%). Bauxite rocks were fired at 1200 °C and metakaolin was obtained by firing kaolin up to 700 °C then crushed and grinded. Grog was added to mixture to reduce the shrinkage. Cylindrical specimens are prepared and then sintered at 1200 °C. All mixtures maintained a low thermal conductivity within the limits of thermal insulation material (less than 0.5 W/m K); it was done by controlling the porosity which reached a maximum value approximately 25%. The volumetric heat capacity and thermal diffusivity was ranged between (1-10 MJ/m3 K), (0.06-0.2 mm2/s), respectively.

  16. Effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium castings.

    Science.gov (United States)

    Zinelis, S

    2000-11-01

    Porosity is a frequently observed casting defect in dental titanium alloys. This study evaluated the effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium (cp Ti) castings. Eight groups (A-H) of 16 rectangular wax patterns each (30 mm in length, 3 mm in width, and 1 mm in depth) were prepared. The wax patterns were invested with a magnesia-based material and cast with cp Ti (grade II). Groups A, C, E, and G were cast under a pressure of 1 atm, and groups B, D, F, and H were cast under a pressure of 0.5 atm of He, Ar, Kr, and Xe, respectively. The extent of the porosity of the cast specimens was determined radiographically and quantified by image analysis. Three specimens of each group and 3 cylinders of the as-received cp Ti used as a reference were embedded in resin and studied metallographically after grinding, polishing, and chemical etching. These surfaces were used for determination of the Vickers hardness (VHN) as well. Eight specimens from each group were fractured in the tensile mode, and the 0.2% yield strength, fracture stress, and percentage elongation were calculated. Porosity was analyzed with 2-way ANOVA and the Newman-Keuls multiple range test. VHN measurements and tensile properties for specimen groups were compared with 1-way ANOVA and the Newman-Keuls multiple range test (95% significance level). The porosity levels per group were (%): A = 5.50 +/- 4.34, B = 0.77 +/- 1.27, C = 2.44 +/- 3.68, D = 0.06 +/- 0.12, E-H = 0. Two-way ANOVA showed that there was no detectable interaction (P<.05) between gas type and applied pressure. Metallographic examination revealed no differences in microstructure among the groups studied. A finer grain size was observed in all cast groups compared with the original cp Ti. The VHN of the as-received cp Ti was significantly greater than all the cast groups tested. Groups cast under He showed the highest VHN, yield strength, and

  17. Fabrication of dual porosity electrode structure

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-02-12

    A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

  18. Mapping porosity of the deep critical zone in 3D using near-surface geophysics, rock physics modeling, and drilling

    Science.gov (United States)

    Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.; Carr, B.; Jiao, J.

    2017-12-01

    Porosity is generated by chemical, physical and biological processes that work to transform bedrock into soil. The resulting porosity structure can provide specifics about these processes and can improve understanding groundwater storage in the deep critical zone. Near-surface geophysical methods, when combined with rock physics and drilling, can be a tool used to map porosity over large spatial scales. In this study, we estimate porosity in three-dimensions (3D) across a 58 Ha granite catchment. Observations focus on seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples of core acquired by push coring. We use a novel petrophysical approach integrating two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, that drive a Bayesian inversion to calculate porosity from seismic velocities. The inverted geophysical porosities are within about 0.05 m3/m3 of lab measured values. We extrapolate the porosity estimates below seismic refraction lines to a 3D volume using ordinary kriging to map the distribution of porosity in 3D up to depths of 80 m. This study provides a unique map of porosity on scale never-before-seen in critical zone science. Estimating porosity on these large spatial scales opens the door for improving and understanding the processes that shape the deep critical zone.

  19. Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno The most important methods for the characterization of porosity of styrene-divinylbenzene based resins

    Directory of Open Access Journals (Sweden)

    Viviane Gomes Teixeira

    2001-12-01

    Full Text Available This paper reviews the most important methods used to characterize the porosity of styrene-divinylbenzene resins. Methods such as adsorption of nitrogen for determination of surface area and mercury intrusion porosimetry for characterization of pore size distribution are related.

  20. Effect of substrate porosity on photoluminescence properties of ZnS films prepared on porous Si substrates by pulsed laser deposition

    Science.gov (United States)

    Wang, Cai-Feng; Li, Qing-Shan; Zhang, Li-Chun; Lv, Lei; Qi, Hong-Xia

    2007-05-01

    ZnS films were deposited on porous Si (PS) substrates with different porosities by pulsed laser deposition. The photoluminescence spectra of the samples were measured to study the effect of substrate porosity on luminescence properties of ZnS/porous Si composites. After deposition of ZnS films, the red photoluminescence peak of porous Si shows a slight blueshift compared with as-prepared porous Si samples. With an increase of the porosity, a green emission at about 550 nm was observed which may be ascribed to the defect-center luminescence of ZnS films, and the photoluminescence of ZnS/porous Si composites is very close to white light. Good crystal structures of the samples were observed by x-ray diffraction, showing that ZnS films were grown in preferred orientation. Due to the roughness of porous Si surface, some cracks appear in ZnS films, which could be seen from scanning electron microscope images.

  1. The Multi-Porosity Multi-Permeability and Electrokinetic Natures of Shales and Their Effects in Hydraulic Fracturing of Unconventional Shale Reservoirs

    Science.gov (United States)

    Liu, C.; Hoang, S. K.; Tran, M. H.; Abousleiman, Y. N.

    2013-12-01

    Imaging studies of unconventional shale reservoir rocks have recently revealed the multi-porosity multi-permeability nature of these intricate formations. In particular, the porosity spectrum of shale reservoir rocks often comprises of the nano-porosity in the organic matters, the inter-particle micro-porosity, and the macroscopic porosity of the natural fracture network. Shale is also well-known for its chemically active behaviors, especially shrinking and swelling when exposed to aqueous solutions, as the results of pore fluid exchange with external environment due to the difference in electro-chemical potentials. In this work, the effects of natural fractures and electrokinetic nature of shale on the formation responses during hydraulic fracturing are examined using the dual-poro-chemo-electro-elasticity approach which is a generalization of the classical Biot's poroelastic formulation. The analyses show that the presence of natural fractures can substantially increase the leak-off rate of fracturing fluid into the formation and create a larger region of high pore pressure near the fracture face as shown in Fig.1a. Due to the additional fluid invasion, the naturally fractured shale swells up more and the fracture aperture closes faster compared to an intrinsically low permeability non-fractured shale formation as shown in Fig.1b. Since naturally fractured zones are commonly targeted as pay zones, it is important to account for the faster fracture closing rate in fractured shales in hydraulic fracturing design. Our results also show that the presence of negative fixed charges on the surface of clay minerals creates an osmotic pressure at the interface of the shale and the external fluid as shown in Fig.1c. This additional Donnan-induced pore pressure can result in significant tensile effective stresses and tensile damage in the shale as shown in Fig.1d. The induced tensile damage can exacerbate the problem of proppant embedment resulting in more fracture closure

  2. Porosity Prediction of Plain Weft Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Muhammad Owais Raza Siddiqui

    2014-12-01

    Full Text Available Wearing comfort of clothing is dependent on air permeability, moisture absorbency and wicking properties of fabric, which are related to the porosity of fabric. In this work, a plug-in is developed using Python script and incorporated in Abaqus/CAE for the prediction of porosity of plain weft knitted fabrics. The Plug-in is able to automatically generate 3D solid and multifilament weft knitted fabric models and accurately determine the porosity of fabrics in two steps. In this work, plain weft knitted fabrics made of monofilament, multifilament and spun yarn made of staple fibers were used to evaluate the effectiveness of the developed plug-in. In the case of staple fiber yarn, intra yarn porosity was considered in the calculation of porosity. The first step is to develop a 3D geometrical model of plain weft knitted fabric and the second step is to calculate the porosity of the fabric by using the geometrical parameter of 3D weft knitted fabric model generated in step one. The predicted porosity of plain weft knitted fabric is extracted in the second step and is displayed in the message area. The predicted results obtained from the plug-in have been compared with the experimental results obtained from previously developed models; they agreed well.

  3. The evolution of hierarchical porosity in self-templated nitrogen-doped carbons and its effect on oxygen reduction electrocatalysis

    NARCIS (Netherlands)

    Eisenberg, D.; Prinsen, P.; Geels, N.J.; Stroek, W.; Yan, N.; Hua, B.; Luo, J.-L.; Rothenberg, G.

    2016-01-01

    Pyrolitic self-templating synthesis is an effective method for creating hierarchically porous N-doped carbons. We study the evolution of microstructure in self-templated carbons derived from magnesium nitrilotriacetate, in the 600–1000 °C temperature range. The materials are characterised using N2

  4. Effect of cathode porosity on the Lithium-air cell oxygen reduction reaction – A rotating ring-disk electrode investigation

    International Nuclear Information System (INIS)

    Seo, Jeongwook; Sankarasubramanian, Shrihari; Singh, Nikhilendra; Mizuno, Fuminori; Takechi, Kensuke; Prakash, Jai

    2017-01-01

    The kinetics of the oxygen reduction reaction (ORR) on the practical air cathode in a Lithium-air cell, which is conventionally composed of porous carbon with or without catalysts supported on it, was investigated. The mechanism and kinetics of the oxygen reduction reaction (ORR) was studied on a porous carbon electrode in an oxygen saturated solution of 0.1 M Lithium bis-trifluoromethanesulfonimide (LiTFSI) in Dimethoxyethane (DME) using cyclic voltammetery (CV) and the rotating ring-disk electrode (RRDE) technique. The oxygen reduction and evolution reactions were found to occur at similar potentials to those observed on a smooth, planar glassy carbon (GC) electrode. The effect of porosity and the resultant increase in surface area were readily observed in the increase in the transient time required for the intermediates to reach the ring and the much larger disk currents (compared to smooth, planar GC) recorded respectively. The RRDE data was analyzed using a kinetic model previously developed by us and the rate constants for the elementary reactions were calculated. The rates constant for the electrochemical reactions were found to be similar in magnitude to the rate constants calculated for smooth GC disks. The porosity of the electrode was found to decrease the rate of desorption of the intermediate and the product and delay their diffusion by shifting it from a Fickian regime in the electrolyte bulk to the Knudsen regime in the film pores. Thus, it is shown that the effect of the electrode porosity on the kinetics of the ORR is physical rather than electrochemical.

  5. PHREEQC modelling of concrete/clay interactions in a 2D geometry with explicit effect of porosity evolution on transport properties due to mineralogical changes

    International Nuclear Information System (INIS)

    Claret, F.; Marty, N.C.M.; Tournassat, C.; Gaboreau, S.; Burnol, A.; Chiaberge, C.; Gaucher, E.C.; Munier, I.; Cochepin, B.; Michau, N.

    2010-01-01

    component diffusion (MCD) feature in PHREEQC made possible to take into account a chemistry feedback effect on the transport parameters via the porosity evolution. The use of the MCD option to perform such calculation has been validated with an inter-comparison with TOUGHREACT on simple systems. Preliminary results show, as expected, that to consider the porosity feedback has a strong impact on the necessary time to clog the porosity. A sensitivity analysis is currently performed on the Archie parameter (Eq. 1) in order to evaluate its impact on the extent of the degradation. At the same time taking into consideration 2D geometry in comparison to 1D has a little effect on the extend of the alkaline plume that remains spatially restricted to the zone surrounding the concrete/clay interfaces. Eq(1) D e = D w ε n , where D e is the effective diffusion coefficient, D w the diffusion coefficient of the species in water, e the porosity and n the Archie parameter. (authors)

  6. Reflectance analysis of porosity gradient in nanostructured silicon layers

    Science.gov (United States)

    Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    In this work we study optical properties of nanostructured layers formed on silicon surface. Nanostructured layers on Si are formed in order to reach high suppression of the light reflectance. Low spectral reflectance is important for improvement of the conversion efficiency of solar cells and for other optoelectronic applications. Effective method of forming nanostructured layers with ultralow reflectance in a broad interval of wavelengths is in our approach based on metal assisted etching of Si. Si surface immersed in HF and H2O2 solution is etched in contact with the Pt mesh roller and the structure of the mesh is transferred on the etched surface. During this etching procedure the layer density evolves gradually and the spectral reflectance decreases exponentially with the depth in porous layer. We analyzed properties of the layer porosity by incorporating the porosity gradient into construction of the layer spectral reflectance theoretical model. Analyzed layer is splitted into 20 sublayers in our approach. Complex dielectric function in each sublayer is computed by using Bruggeman effective media theory and the theoretical spectral reflectance of modelled multilayer system is computed by using Abeles matrix formalism. Porosity gradient is extracted from the theoretical reflectance model optimized in comparison to the experimental values. Resulting values of the structure porosity development provide important information for optimization of the technological treatment operations.

  7. Meteoric calcite cementation: diagenetic response to relative fall in sea-level and effect on porosity and permeability, Las Negras area, southeastern Spain

    Science.gov (United States)

    Li, Zhaoqi; Goldstein, Robert H.; Franseen, Evan K.

    2017-03-01

    A dolomitized Upper Miocene carbonate system in southeast Spain contains extensive upper and lower zones of calcite cementation that cut across the stratigraphy. Cement textures including isopachous and circumgranular, which are consistent with phreatic-zone cementation. Cements in the upper cemented zone are non-luminescent, whereas those in the lower cemented zone exhibit multiple bands of luminescent and non-luminescent cements. In the upper cemented zone, isotopic data show two meteoric calcite lines (MCL) with mean δ18O at - 5.1‰ and - 5.8‰ VPDB, whereas no clear MCL is defined in the lower cemented zone where mean δ18O for calcite cement is at - 6.7‰ VPDB. δ13C values in both cement zones are predominantly negative, ranging from - 10 to + 2‰ VPDB, suggestive of carbon from soil gas or decayed organics. Measurements of Tm ice in primary fluid inclusions yield a mode of 0.0 °C in both zones, indicating calcite cementation from fresh water. These two zones define the positions of two different paleo-water tables that formed during a relative sea-level fall and erosional downcutting during the Plio-Pleistocene. The upper cemented zone pre-dated the lower cemented zone on the basis of known relative sea-level history. Meteoric calcite cementation reduced porosity and permeability, but measured values are inconsistent with simple filling of open pore space. Each texture, boundstone, grainstone, packstone, wackestone, produces a different relationship between percent calcite cement and porosity/permeability. Distribution of cements may be predictable on the basis of known sea-level history, and the effect of the cementation can be incorporated into subsurface geomodels by defining surfaces of rock boundaries that separate cemented zones from uncemented zones, and applying texture-specific relationships among cementation, porosity and permeability.

  8. Determination of Meteorite Porosity Using Liquid Nitrogen

    Science.gov (United States)

    Kohout, T.; Kletetschka, G.; Pesonen, L. J.; Wasilewski, P. J.

    2005-01-01

    We introduce a new harmless method for porosity measurement suitable for meteorite samples. The method is a modification of the traditional Archimedean method based on immersion of the samples in a liquid medium like water or organic liquids. In our case we used liquid nitrogen for its chemically inert characteristics.

  9. The effect of strontium on the microstructure, porosity and tensile properties of A356-10%B4C cast composite

    International Nuclear Information System (INIS)

    Lashgari, H.R.; Emamy, M.; Razaghian, A.; Najimi, A.A.

    2009-01-01

    This study was undertaken to investigate the effect of different concentrations of strontium (0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5% and 1%) on the microstructure, porosity content and tensile properties of A356-10%B 4 C particulate metal matrix composite. In this work, the matrix alloy and composite were characterized by optical microscope, scanning electron microscope equipped with EDS and XRD. The composite ingots were made by stir casting process. The results showed that the addition of 0.03%Sr strongly modified silicon eutectic phase in A356 monolithic alloy, but 0.5%Sr was needed to complete the modification of A356-10%B 4 C composite. Results also demonstrated that Sr addition increases shrinkage porosity and generates new intermetallics in the microstructure. Further investigations on tensile tests revealed optimum strontium levels for improving tensile properties. In the point of fracture behavior of the composite, modified specimens with 0.2%Sr showed broken B 4 C particles and acceptable cohesion between B 4 C and matrix.

  10. The effects of porosity, electrode and barrier materials on the conductivity of piezoelectric ceramics in high humidity and dc electric field

    International Nuclear Information System (INIS)

    Weaver, P M; Cain, M G; Stewart, M; Anson, A; Franks, J; Lipscomb, I P; McBride, J W; Zheng, D; Swingler, J

    2012-01-01

    Prolonged operation of piezoelectric ceramic devices under high dc electric fields promotes leakage currents between the electrodes. This paper investigates the effects of ceramic porosity, edge conduction and electrode materials and geometry in the development of low resistance conduction paths through the ceramic. Localized changes in the ceramic structure and corresponding microscopic breakdown sites are shown to be associated with leakage currents and breakdown processes resulting from prolonged operation in harsh environments. The role of barrier coatings in mitigating the effects of humidity is studied, and results are presented on improved performance using composite diamond-like carbon/polymer coatings. In contrast to the changes in the electrical properties of the ceramic, the measurements of the piezoelectric properties showed no significant effect of humidity. (paper)

  11. Effects of different management systems on porosity of oxisols in Paraná, Brazil Porosidade de latossolos do paraná influenciada por diferentes manejos

    Directory of Open Access Journals (Sweden)

    João Tavares Filho

    2010-06-01

    Full Text Available Soils play a fundamental role in the production of human foods. The Oxisols in the state of Paraná are among the richest and most productive soils in Brazil, but degradation and low porosity are frequently documented, due to intensive farming involving various management strategies and the application of high-tech solutions. This study aims to investigate changes in the porosity of two Red Oxisols (Latossolos Vermelhos, denoted LVef (eutroferric and LVdf (dystroferric under conventional and no-tillage soil management, with a succession of annual crops of soybean, maize and wheat over a continuous period of more than 20 years. After describing the soil profiles under native forest, no-tillage management and conventional tillage using the crop profile method, deformed and non-deformed soil samples were collected from the volumes most compacted by human intervention and the physical, chemical and mineralogical properties analyzed. The various porosity classes (total pore volume, inter-aggregate porosity between channels and biological cavities and intra-aggregate porosity (determined in 10 cm³ saturated clods subjected to a pressure of -10 kPa to obtain a pore volume with a radius (r eq, > 15 μm and 15 μm were affected by farming whereas in the LVef soil, pores with a radius of Sabe-se que os solos têm função primordial na produção de alimentos para a humanidade. No Estado do Paraná, os Latossolos Vermelhos estão entre os mais produtivos do Brasil; devido à utilização intensa deles com diferentes práticas culturais e a uma agricultura altamente tecnificada, são comuns relatos de sua degradação física, com redução da porosidade. Dessa forma, o objetivo deste trabalho consistiu em estudar a modificação da porosidade de Latossolos Vermelho eutroférrico (LVef e distroférrico (LVdf cultivados sob plantio direto e convencional, com sucessão das culturas anuais soja, milho e trigo por mais de 20 anos consecutivos. Após uma

  12. Effect of current and speed on porosity in autogenous Tungsten Inert Gas (TIG) welding of aluminum alloys A1100 butt joint

    Science.gov (United States)

    Milyardi, Indra; Sunar Baskoro, Ario

    2018-04-01

    Autogenous Tungsten Inert Gas (TIG) welding has been conducted on aluminum alloy A1100. The purpose of this research is to determine the proper current and speed of autogenous TIG welding with butt joint pattern. Variations on welding current are 150 A, 155 A, and 160 A with the variations on welding speed are 1 mm/seconds, 1.1 mm/seconds, 1.2 mm/seconds. The welded results were tested using non-destructive test (NDT) method using X-Ray radiography. After the test, it is found that the appropriate current for the best result without porosity can be achieved using the welding parameter of welding current of 160 A and the welding speed of 1.1 mm seconds.

  13. Influence of porosity on artificial deterioration of marble and limestone by heating

    Science.gov (United States)

    Sassoni, Enrico; Franzoni, Elisa

    2014-06-01

    Testing of stone consolidants to be used on-site, as well as research on new consolidating products, requires suitable stone samples, with deteriorated but still uniform and controllable characteristics. Therefore, a new methodology to artificially deteriorate stone samples by heating, exploiting the anisotropic thermal deformation of calcite crystals, has recently been proposed. In this study, the heating effects on a variety of lithotypes was evaluated and the influence of porosity in determining the actual heating effectiveness was specifically investigated. One marble and four limestones, having comparable calcite amounts but very different porosity, were heated at 400 °C for 1 hour. A systematic comparison between porosity, pore size distribution, water absorption, sorptivity and ultrasonic pulse velocity of unheated and heated samples was performed. The results of the study show that the initial stone porosity plays a very important role, as the modifications in microstructural, physical and mechanical properties are way less pronounced for increasing porosity. Heating was thus confirmed as a very promising artificial deterioration method, whose effectiveness in producing alterations that suitably resemble those actually experienced in the field depends on the initial porosity of the stone to be treated.

  14. Permeability-Porosity Relationships of Subduction Zone Sediments

    Science.gov (United States)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2008-12-01

    Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.

  15. Uranium City radiation reduction program: further efforts at remedial measures for houses with block walls, concrete porosity test results, and intercomparison of Kuznetz method and Tsivoglau method

    International Nuclear Information System (INIS)

    Haubrich, E.; Leung, M.K.; Mackie, R.

    1980-01-01

    An attempt was made to reduce the levels of radon in a house in Uranium City by mechanically venting the plenums in the concrete block basement walls, with little success. A table compares the results obtained by measuring the radon WL using the Tsivoglau and the Kuznetz methods

  16. Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers

    Science.gov (United States)

    da Luz, Fernanda Santos; Paciornik, Sidnei; Monteiro, Sergio Neves; da Silva, Luiz Carlos; Tommasini, Flávio James; Candido, Verônica Scarpini

    2017-10-01

    The application of natural lignocellulosic fibers (LCFs) in engineering composites has increased interest in their properties and structural characteristics. In particular, the inherent porosity of an LCF markedly affects its density and the adhesion to polymer matrices. For the first time, both open and closed porosities of a natural LCF, for different diameter ranges, were assessed. Fibers extracted from the mesocarp of the coconut fruit were investigated by nondestructive methods of density measurements and x-ray microtomography (microCT). It was found that, for all diameter ranges, the closed porosity is significantly higher than the open porosity. The total porosity increases with diameter to around 60% for coir fibers with more than 503 μm in diameter. The amount and characteristics of these open and closed porosities were revealed by t test and Weibull statistics as well as by microCT.

  17. Optimization and Development of Swellable Controlled Porosity ...

    African Journals Online (AJOL)

    Purpose: To develop swellable controlled porosity osmotic pump tablet of theophylline and to define the formulation and process variables responsible for drug release by applying statistical optimization technique. Methods: Formulations were prepared based on Taguchi Orthogonal Array design and Fraction Factorial ...

  18. Comparison of porosity measurement techniques for porous titanium scaffolds evaluation

    International Nuclear Information System (INIS)

    Oliveira, M.V.; Ribeiro, A.A.; Moreira, A.C.; Moraes, A.M.C.; Appoloni, C.R.; Pereira, L.C.

    2009-01-01

    Porous titanium has been used for grafts and implant coatings as it allows the mechanical interlocking of the pores and bone. Evaluation of porous scaffolds for bone regeneration is essential for their manufacture. Porosity, pore size, pore shape and pore homogeneity are parameters that influence strongly the mechanical strength and biological functionality. In this study, porous titanium samples were manufactured by powder metallurgy by using pure titanium powders mixed with a pore former. The quantification of the porosity parameters was assessed in this work by geometric method and gamma-ray transmission, the non-destructive techniques and metallographic images processing, a destructive technique. Qualitative evaluation of pore morphology and surface topography were performed by scanning electron microscopy and optical microscopy. The results obtained and the effectiveness of the techniques used were compared in order to select those most suitable for characterization of porous titanium scaffolds. (author)

  19. Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation.

    Science.gov (United States)

    Güden, Mustafa; Celik, Emrah; Hizal, Alpay; Altindiş, Mustafa; Cetiner, Sinan

    2008-05-01

    Sintered Ti6Al4V powder compacts potentially to be used in implant applications were prepared using commercially available spherical and angular powders (100-200 mum) within the porosity range of 34-54%. Cylindrical green powder compacts were cold compacted at various pressures and then sintered at 1200 degrees C for 2 h. The final percent porosity and mean pore sizes were determined as functions of the applied compaction pressure and powder type. The mechanical properties were investigated through compression testing. Results have shown that yield strength of the powder compacts of 40-42% porosity was comparable with that of human cortical bone. As compared with previously investigated Ti powder compacts, Ti6Al4V powder compacts showed higher strength at similar porosity range. Microscopic observations on the failed compact samples revealed that failure occurred primarily by the separation of interparticle bond regions in the planes 45 degrees to the loading axis. Copyright 2007 Wiley Periodicals, Inc.

  20. Porosity and Health: Perspective of Traditional Persian Medicine

    Science.gov (United States)

    Tafazoli, Vahid; Nimrouzi, Majid; Daneshfard, Babak

    2016-01-01

    Background: The authors of this manuscript aimed to show the importance of porosity and condensation in health according to traditional Persian medicine (TPM) with consideration of new evidence in conventional medicine. Methods: Cardinal traditional medical and pharmacological texts were searched for the traditional terms of takhalkhol (porosity) and takassof (condensity) focused on preventive methods. The findings were classified and compared with new medical findings. Results: According to traditional Persian medicine, porosity and condensity are the two crucial items that contribute to human health. Somatotype is a taxonomy based on embryonic development, which may be considered in parallel with porosity and condensation. However, these terms are not completely the same. There are many causes for acquired porosity comprising hot weather, too much intercourse, rage, starvation, and heavy exercises. In general, porosity increases the risk of diseases as it makes the body organs vulnerable to external hot and cold weather. On the other hand, the porose organs are more susceptible to accumulation of morbid matters because the cellular wastes cannot be evacuated in the normal way. There are some common points between traditional and conventional medicine in the context of porosity and condensity. The relation between diet and somatotype is an example. Conclusion: Condensity and porosity are the two basic items cited in the TPM resources and contribute to health maintenance and disease prevention of body organs. Creating a balance between these two states in different body organs, strongly contributes to disease prevention, treatment and diminishing chronic diseases period. Choosing proper modality including diet, drug therapy, and manual therapy depends on the amount porosity and stiffness of the considered organ and the preferred porosity of the affected organ keeping in a normal healthy state. PMID:27840513

  1. Enhanced ferro-actuator with a porosity-controlled membrane using the sol-gel process and the HF etching method

    International Nuclear Information System (INIS)

    Kim, KiSu; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-01-01

    In this paper, we propose a ferro-actuator using a porous polyvinylidene difluoride (PVDF) membrane. In detail, we fabricated the silica-embedded PVDF membrane using a sol-gel process with PVDF solution and tetraethyl orthosilicate (TEOS) solution, where the size of the silica was determined by the ratio of the PVDF and TEOS solutions. Using hydrofluoric acid (HF) etching, the silica were removed from the silica-embedded PVDF membrane, and porous PVDF membranes with different porosities were obtained. Finally, through absorption of a ferrofluid on the porous PVDF membrane, the proposed ferro-actuator using porous PVDF membranes with different porosities was fabricated. We executed the characterization and actuation test as follows. First, the silica size of the silica-embedded PVDF membrane and the pore size of the porous PVDF membrane were analyzed using scanning electron microscopy (SEM) imaging. Second, energy-dispersive x-ray spectroscopy analysis showed that the silica had clearly been removed from the silica-embedded PVDF membrane by HF etching. Third, through x-ray photoelectron spectroscopy and vibrating sample magnetometer (VSM) of the ferro-actuators, we found that more ferrofluids were absorbed by the porous PVDF membrane when the pore of the membrane was smaller and uniformly distributed. Finally, we executed tip displacement and a blocking force test of the proposed ferro-actuator using the porous PVDF membrane. Similar to the VSM result, the ferro-actuator that used a porous PVDF membrane with smaller pores exhibited better actuation performance. The ferro-actuator that used a porous PVDF membrane displayed a tip displacement that was about 7.2-fold better and a blocking force that was about 6.5-fold better than the ferro-actuator that used a pure PVDF membrane. Thus, we controlled the pore size of the porous PVDF membrane and enhanced the actuation performance of the ferro-actuator using a porous PVDF membrane. (technical note)

  2. Continuum damage mechanics based approach to the fatigue life prediction of cast aluminium alloy with considering the effect of porosity

    Directory of Open Access Journals (Sweden)

    Wang Xiaojia

    2018-01-01

    Full Text Available A damage mechanics based approach is applied for the study of fatigue behaviour of high pressure die cast ADC12 aluminium alloy. A damage coupled elastoplastic constitutive model is presented according to the concept of effective stress and the hypothesis of strain equivalence. An elastic fatigue damage model taking into account the pore-induced stress concentration is developed to investigate fatigue damage evolution of the specimens subjected to cyclic loading. The predicted lives for the specimens with different sizes of pores are consistent with the experimental data. The pore-induced fatigue damage and the variation of fatigue life along with the size of pores are also investigated.

  3. Generating porosity spectrum of carbonate reservoirs using ultrasonic imaging log

    Science.gov (United States)

    Zhang, Jie; Nie, Xin; Xiao, Suyun; Zhang, Chong; Zhang, Chaomo; Zhang, Zhansong

    2018-03-01

    Imaging logging tools can provide us the borehole wall image. The micro-resistivity imaging logging has been used to obtain borehole porosity spectrum. However, the resistivity imaging logging cannot cover the whole borehole wall. In this paper, we propose a method to calculate the porosity spectrum using ultrasonic imaging logging data. Based on the amplitude attenuation equation, we analyze the factors affecting the propagation of wave in drilling fluid and formation and based on the bulk-volume rock model, Wyllie equation and Raymer equation, we establish various conversion models between the reflection coefficient β and porosity ϕ. Then we use the ultrasonic imaging logging and conventional wireline logging data to calculate the near-borehole formation porosity distribution spectrum. The porosity spectrum result obtained from ultrasonic imaging data is compared with the one from the micro-resistivity imaging data, and they turn out to be similar, but with discrepancy, which is caused by the borehole coverage and data input difference. We separate the porosity types by performing threshold value segmentation and generate porosity-depth distribution curves by counting with equal depth spacing on the porosity image. The practice result is good and reveals the efficiency of our method.

  4. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Imteaz; Jhung, Sung Hwa, E-mail: sung@knu.ac.kr

    2016-08-15

    Highlights: • Metal-organic frameworks (MIL-101) were composed with graphene oxide (GnO). • GnO/MIL-101 showed the highest adsorption capacity for indole and quinoline. • Adsorption mechanism was clearly shown based on adsorption results and FTIR. • GnO/MIL-101 might be applied commercially considering capacity and reusability. - Abstract: A composite was prepared by combining a highly porous metal-organic framework (MOF), MIL-101 (Cr-benzenedicarboxylate), and graphene oxide (GnO). The porosity of the composite increased appreciably by the addition of GnO up to a specific amount in the MOF, though further increases in the quantity of GnO was detrimental to porosity. The improved porosity of the GnO/MIL-101 composite was utilized for adsorptive denitrogenation (ADN) of a model fuel where indole (IND) and quinoline (QUI) were used as nitrogen-containing compounds (NCCs). It was found that both IND and QUI showed improved adsorption on the composite compared with pristine MIL-101 or GnO due to the improved porosity of the composite. Interestingly, the improvement in adsorption of IND was much higher than the quantity estimated for the porosity. Importantly, GnO/MIL-101 showed the highest adsorption capacities for NCCs. Irrespective of the studied solvents and co-presence of IND and QUI, the composite adsorbent performed ADN most effectively. This remarkable improvement is explained by the additional mechanism of hydrogen bonding between the surface functional groups of GnO and the hydrogen attached to the nitrogen atom of IND. This hydrogen bonding mechanism is also supported by the results of the adsorption of pyrrole and methylpyrrole. On the other hand, QUI does not show hydrogen-bonding capability, and therefore, its enhanced adsorption originates from only the increased porosity of the adsorbents.

  5. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding

    International Nuclear Information System (INIS)

    Ahmed, Imteaz; Jhung, Sung Hwa

    2016-01-01

    Highlights: • Metal-organic frameworks (MIL-101) were composed with graphene oxide (GnO). • GnO/MIL-101 showed the highest adsorption capacity for indole and quinoline. • Adsorption mechanism was clearly shown based on adsorption results and FTIR. • GnO/MIL-101 might be applied commercially considering capacity and reusability. - Abstract: A composite was prepared by combining a highly porous metal-organic framework (MOF), MIL-101 (Cr-benzenedicarboxylate), and graphene oxide (GnO). The porosity of the composite increased appreciably by the addition of GnO up to a specific amount in the MOF, though further increases in the quantity of GnO was detrimental to porosity. The improved porosity of the GnO/MIL-101 composite was utilized for adsorptive denitrogenation (ADN) of a model fuel where indole (IND) and quinoline (QUI) were used as nitrogen-containing compounds (NCCs). It was found that both IND and QUI showed improved adsorption on the composite compared with pristine MIL-101 or GnO due to the improved porosity of the composite. Interestingly, the improvement in adsorption of IND was much higher than the quantity estimated for the porosity. Importantly, GnO/MIL-101 showed the highest adsorption capacities for NCCs. Irrespective of the studied solvents and co-presence of IND and QUI, the composite adsorbent performed ADN most effectively. This remarkable improvement is explained by the additional mechanism of hydrogen bonding between the surface functional groups of GnO and the hydrogen attached to the nitrogen atom of IND. This hydrogen bonding mechanism is also supported by the results of the adsorption of pyrrole and methylpyrrole. On the other hand, QUI does not show hydrogen-bonding capability, and therefore, its enhanced adsorption originates from only the increased porosity of the adsorbents.

  6. Wheel traffic effect on air-filled porosity and air permeability in a soil catena across the wheel rut

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Lamandé, Mathieu

    might induce different effects on soil physical properties. The objective of this study was to investigate the impact of vehicle traffic on soil physical properties and air permeability by systematic collection of samples in a transect running from the center to the outside of the wheel rut. A field...... catena running from center of the wheel rut to un wheeled part of the field ( 0, 20, 40, 50,60 and 400 cm horizontal distance). We measured water retention and air permeability (ka) at -30, -100 and -300 hPa matric potentials. At -100 hPa, we obtained consistently lower air filled under the wheel rut......The impact of wheel traffic on soil physical properties is usually quantified by randomly collecting soil cores at specific depths below the wheeled surface. However, modeling studies as well as few measurements indicated a non-uniform stress distribution in a catena across the wheel rut, which...

  7. The effect of acidity of electrolyte on the porosity and the nanostructure morphology of electrolytic manganese dioxide

    International Nuclear Information System (INIS)

    Adelkhani, H.

    2012-01-01

    The effects of acidity of electrolyte (pH) on the hysteresis behavior, the specific surface area, and nanostructure morphology of electrolytic manganese dioxides (EMDs) have been studied by using the Barrett-Joyner-Halenda (BJH) analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) images analysis. EMD samples are electrodeposited at a variable pH (6 to 1) and many fixed pH (2, 3, 4, 5, and 6). Results indicate that pH play key roles in the characteristics of EMD. The samples obtained at low pH (2 and 3) show multi-branched morphology and represent a H4 hysteresis loop. At pH 4 and 5, a uniform and dense structure of MnO 2 is obtained without hysteresis behavior. The sample electrodeposited at pH 6 shows a regular reticulate, that its adsorption-desorption isotherm show hysteresis behavior. By electrodeposition at a variable pH, the sample shows a cauliflower-like and multi-branched form. From the viewpoint of classification of isotherm, pH strongly affects on Type of isotherm. The results show that γ-MnO 2 is as main-product of electrodeposition and α-MnO 2 and β-MnO 2 were obtained as side-product at low and high pH, respectively.

  8. The effect of acidity of electrolyte on the porosity and the nanostructure morphology of electrolytic manganese dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Adelkhani, H., E-mail: adelkhani@hotmail.com [Material Research School, NSTRI, P.O. Box: 14395-836, Tehran (Iran, Islamic Republic of)

    2012-06-15

    The effects of acidity of electrolyte (pH) on the hysteresis behavior, the specific surface area, and nanostructure morphology of electrolytic manganese dioxides (EMDs) have been studied by using the Barrett-Joyner-Halenda (BJH) analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) images analysis. EMD samples are electrodeposited at a variable pH (6 to 1) and many fixed pH (2, 3, 4, 5, and 6). Results indicate that pH play key roles in the characteristics of EMD. The samples obtained at low pH (2 and 3) show multi-branched morphology and represent a H4 hysteresis loop. At pH 4 and 5, a uniform and dense structure of MnO{sub 2} is obtained without hysteresis behavior. The sample electrodeposited at pH 6 shows a regular reticulate, that its adsorption-desorption isotherm show hysteresis behavior. By electrodeposition at a variable pH, the sample shows a cauliflower-like and multi-branched form. From the viewpoint of classification of isotherm, pH strongly affects on Type of isotherm. The results show that {gamma}-MnO{sub 2} is as main-product of electrodeposition and {alpha}-MnO{sub 2} and {beta}-MnO{sub 2} were obtained as side-product at low and high pH, respectively.

  9. Investigation of the porosity of rocks

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Siitari-Kauppi, M.

    1990-06-01

    Methods for characterizing the nature of rock porosity in conjunction with diffusion experiments, are amongst the primary tools used in repository-site selection investigations. At this time no experimental method, alone, is capable of giving an unambiguous picture of the narrow-aperture pore space in crystalline rock. Methods giving information on overall properties must be complemented by those having high spatial resolution; then the lateral distribution of porosity within the matrix and its association with particular mineral phases or features, such as microfissures, fissure fillings, weathered or altered mineral phases etc, and the identification of diffusion pathways in inhomogeneous rock matrices can be determined. Nonsorbing, nonelectrolytic tracers should be used when one wants to determine rock-typical properties of the internal porosity without interference of interactions with surfaces. Preliminary information on a new method fulfilling these criteria is given. Impregnating rock samples with methylmethacrylate labeled with carbon-14 which, after impregnation, was polymerized by gamma radiation, gave specimens that made preparation of sections suitable for quantification by autoradiographic methods easy. Diffusion experiments can be conducted so that labeled MMA diffuses out of rock specimens into inactive free, MMA. Additional information may be gained by leaching PMMA fractions of lower molecular weight from the matrix

  10. Effects of parathyroid hormone on cortical porosity, non-enzymatic glycation and bone tissue mechanics in rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Campbell, G M; Tiwari, S; Hofbauer, C; Picke, A-K; Rauner, M; Huber, G; Peña, J A; Damm, T; Barkmann, R; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-01-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats. Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75μg/kg PTH (1-84) or vehicle 5days per week over 12weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence. Diabetes increased Ct.Po (vertebra (vert): +40.6%, femur (fem): +15.5% vs. ND group, pbone tissue mechanics where reductions in vertebral maximum strain (-22%) and toughness (-42%) were observed in the DB vs. ND group (pbone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility. This article is part of a Special Issue entitled "Bone and diabetes". Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Porosity Dependence of Piezoelectric Properties for Porous Potassium Niobate System Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wada, S; Mase, Y; Shimizu, S; Maeda, K; Fujii, I; Nakashima, K; Pulpan, P; Miyajima, N, E-mail: swada@yamanashi.ac.jp [Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510 (Japan)

    2011-10-29

    Porous potassium niobate (KNbO{sub 3}, KN) system ceramics were prepared by a conventional sintering method using carbon black (CB) nanoparticles. First, KN nanoparticles with a size of 100 nm was mixed with CB nanoparticles and binder using ball milling with ethanol. The mixture was dried, and pressed into pellets using uniaxial pressing. After binder burnout, these ceramics was sintered in air. Their piezoelectric properties were measured and discussed a relationship between porosity and piezoelectric properties. As the results, with increasing porosity, piezoelectric g33 constant increased significantly, which suggested that porous ceramics were effective for stress sensor application.

  12. Porosity Dependence of Piezoelectric Properties for Porous Potassium Niobate System Ceramics

    International Nuclear Information System (INIS)

    Wada, S; Mase, Y; Shimizu, S; Maeda, K; Fujii, I; Nakashima, K; Pulpan, P; Miyajima, N

    2011-01-01

    Porous potassium niobate (KNbO 3 , KN) system ceramics were prepared by a conventional sintering method using carbon black (CB) nanoparticles. First, KN nanoparticles with a size of 100 nm was mixed with CB nanoparticles and binder using ball milling with ethanol. The mixture was dried, and pressed into pellets using uniaxial pressing. After binder burnout, these ceramics was sintered in air. Their piezoelectric properties were measured and discussed a relationship between porosity and piezoelectric properties. As the results, with increasing porosity, piezoelectric g33 constant increased significantly, which suggested that porous ceramics were effective for stress sensor application.

  13. Pulsed neutron porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  14. Investigating porosity of anthracites during thermoprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, A.S.; Gilyazov, U.Sh.; Samoilov, V.S.; Mel' nichenko, V.M.; Kovalevskii, N.N.

    1983-07-01

    Changes in the porous structure of anthracite during thermoprocessing up to 3000 C, and the effect of mineral impurities on the materials were studied. A mercury porometer and an electron scanning microscope were used to study Donbass anthracites. A wider spectrum of pore volume distribution was observed for high rank anthracites than for lower rank anthracites. It was established that the specific pore volume in thermographite with an apparent density of more than one unit is three times less than in thermographite with an apparent density of less than one unit. The porosity of thermoanthracite increases sharply in comparison with the starting anthracite. Anthracites are suitable for graphitization after thermoprocessing at 2800-3000 C. The porosity of thermoanthracites depends on the presence and distribution of mineral impurities in the starting anthracite. 4 references.

  15. Characterizing the turbulent porosity of stellar wind structure generated by the line-deshadowing instability

    Science.gov (United States)

    Owocki, Stanley P.; Sundqvist, Jon O.

    2018-03-01

    We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.

  16. Characterization of porosity in support of mechanical property analysis

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.

    1992-01-01

    Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sample tested. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results

  17. Porosity measurement of amorphous materials by gamma ray transmission

    International Nuclear Information System (INIS)

    Poettker, Walmir Eno

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV), a NaI (Tl) scintillation detector, collimators, a XYZ, micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  18. Aerogel to simulate delamination and porosity defects in carbon-fiber reinforced polymer composites

    Science.gov (United States)

    Juarez, Peter; Leckey, Cara A. C.

    2018-04-01

    Representative defect standards are essential for the validation and calibration of new and existing inspection techniques. However, commonly used methods of simulating delaminations in carbon-fiber reinforced polymer (CFRP) composites do not accurately represent the behavior of the real-world defects for several widely-used NDE techniques. For instance, it is common practice to create a delamination standard by inserting Polytetrafluoroethylene (PTFE) in between ply layers. However, PTFE can transmit more ultrasonic energy than actual delaminations, leading to an unrealistic representation of the defect inspection. PTFE can also deform/wrinkle during the curing process and has a thermal effusivity two orders of magnitude higher than air (almost equal to that of a CFRP). It is therefore not effective in simulating a delamination for thermography. Currently there is also no standard practice for producing or representing a known porosity in composites. This paper presents a novel method of creating delamination and porosity standards using aerogel. Insertion of thin sheets of solid aerogel between ply layers during layup is shown to produce air-gap-like delaminations creating realistic ultrasonic and thermographic inspection responses. Furthermore, it is shown that depositing controlled amounts of aerogel powder can represent porosity. Micrograph data verifies the structural integrity of the aerogel through the composite curing process. This paper presents data from multiple NDE methods, including X-ray computed tomography, immersion ultrasound, and flash thermography to the effectiveness of aerogel as a delamination and porosity simulant.

  19. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  20. Effects of insulin therapy on porosity, non-enzymatic glycation and mechanical competence in the bone of rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Campbell, G M; Tiwari, S; Picke, A-K; Hofbauer, C; Rauner, M; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-10-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and optimal treatment strategies remain unclear. We studied the effects of diabetes and insulin therapy on non-enzymatic glycation (NEG), cortical porosity (Ct.Po) and biomechanics of the bone tissue in Zucker Diabetic Fatty (ZDF) rats. Eleven-week old ZDF diabetic and non-diabetic rats were given insulin to achieve glycaemic control or vehicle seven days per week over twelve weeks (insulin dose adapted individually 0.5 international units (IU) at week 1 to 13.0IU at week 12). The right femora were excised, micro-CT scanned, and tested in 3-point bending to measure biomechanics. NEG of the midshaft was determined from bulk fluorescence. Diabetes led to increased NEG (+50.1%, p=0.001) and Ct.Po (+22.9%, p=0.004), as well as to reduced mechanical competence (max. stress: -14.2%, p=0.041, toughness: -29.7%, p=0.016) in the bone tissue. NEG and Ct.Po both correlated positively to serum glucose (NEG: R(2)=0.41, p1, Ct.Po: R(2)=0.34, p=0.003) and HbA1c (NEG: R(2)=0.42, p1, Ct.Po: R(2)=0.28, p=0.008) levels, while NEG correlated negatively with bone biomechanics (elastic modulus: R(2)=0.21, p=0.023, yield stress: R(2)=0.17, p=0.047). Twelve weeks of insulin therapy had no significant effect on NEG or Ct.Po, and was unable to improve the mechanical competence of the bone tissue. A reduction of mechanical competence was observed in the bone tissue of the diabetic rats, which was explained in part by increased collagen NEG. Twelve weeks of insulin therapy did not alter NEG, Ct.Po or bone biomechanics. However, significant correlations between NEG and serum glucose and HbA1c were observed, both of which were reduced with insulin therapy. This suggests that a longer duration of insulin therapy may be required to reduce the NEG of the bone collagen and restore the mechanical competence of diabetic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Determining the mechanical properties of high porosity nickel

    International Nuclear Information System (INIS)

    Frappier, J.C.; Poirier, J.

    1975-01-01

    The following tests were carried out on high porosity (40 to 70%) sintered nickel: tensile tests, compression tests, diametral crushing tests, using strain gauges and extensometers. Results were obtained on the relationship elastic properties - porosity, Poisson coefficient in relation to deformation, variations of yield strength, and breaking stress. these various properties were also studied in relation to the sintering methods and the properties of the powders used [fr

  2. Porosity model for simultaneous radionuclide transfer in compact clay

    International Nuclear Information System (INIS)

    Grambow, B.; Ribet, S.; Landesman, C.; Altman, S.

    2010-01-01

    Document available in extended abstract form only. Both, a mono and a dual porosity model have been developed to describe diffusion in bentonite as function of compaction, which give similar results for the diffusion coefficients. There are little advantages but more computation time for the dual porosity model compared to the mono-porosity model. A significant change in paradigm has been proposed to describe diffusion accessible porosity in bentonite: Only a single micro-porosity value is considered for anions, cations and neutral species. Hydration water in the interlayers is considered as part of the solid phase and is not considered as a constitutive part of overall porosity. Since hydration water takes part of the solid phase, it is now possible to explicitly account for retention of HTO by formulating exchange between HTO and water in the interlayers. In the adaptation of the model to experimental data, a single fit constant, the geometric factor G = 7 was used, common to all ions and neutral species and for densities between 0.2 and 1.8 kg.dm -3 . The only input parameters to describe the effect of dry density on diffusion coefficients are the micro porosity (total porosity minus interlayer porosity) and the hydration numbers of exchanging cations in the interlayers, both of which can be measured by independent means (DRX, water sorption isotherms). The modelling of simultaneous mass transfer of HTO, Cs, Br and Ni has been undertaken. From the results apparent diffusion coefficients were obtained. Effective diffusion coefficients can of course only be compared to literature data if the the same porosity hypothesis is used for Da-De conversion as used in literature (total porosity for anions and HTO, micro-porosity for anions). Then, the calculated apparent diffusion coefficients for HTO match closely the measured values in the mentioned density range. Considering large experimental data uncertainty the agreement between anion diffusion data and calculations

  3. Carbonate porosity: some remarks; Porosidade em reservatorios carbonaticos: algumas consideracoes

    Energy Technology Data Exchange (ETDEWEB)

    Spadini, Adali Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao]. E-mail: spadini@petrobras.com.br; Marcal, Rosely de Araujo [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-05-01

    Carbonate rocks are the major reservoirs of the largest super-giants fields in the world, including the Ghawar Field in Saudi Arabia, where the producing oil reservoir is the late Jurassic Arab-D limestone with five million barrels per day. Despite the great susceptibility to early diagenesis, that can dramatically modify the porous media, porosity values of carbonates remain essentially the same as that of deposition before burial. Porosity loss is essentially a subsurface process with a drastic reduction below 2500 m of burial depth. The occurrence of good reservoirs deeply buried, sometimes below 4,000 m, indicate that porosity can be preserved in subsurface in response to a series of mechanisms such as early oil emplacement, framework rigidity, abnormal pore pressure, among others. Percolation of geothermal fluids is a process considered to be responsible for generation of porosity in subsurface resulting in some good reservoir rocks. In Campos Basin, areas with burial around 2000 m, petrophysical data show a cyclic distribution that coincides with the shoaling upward cycles typical of the Albian carbonates. The greatest permeabilities coincide with the grain stones of the top of the cycles while the peloidal/oncolite wackestones/pack stones at the base show low values, reflecting the depositional texture. These relationships indicate that preservation of depositional porosity was very effective. The preservation of high porosity values for all the facies are related to early oil entrance in the reservoirs. In some cases, the presence of porosities of almost 30% in fine-grained peloidal carbonates, 3000 m of burial, without any clear effective preservation mechanism, suggest that corrosive subsurface brines have played an important role in porosity evolution. In Santos Basin, where reservoirs are deeply buried, only the grain stones have preserved porosity. The associated low energy facies has virtually no porosity. In this case, the depositional texture

  4. Porosity-dependent fractal nature of the porous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of)

    2015-07-15

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.

  5. Brazilian urban porosity : Treat or threat?

    NARCIS (Netherlands)

    Moreno Pessoa, I.; Tasan-Kok, M.T.; Korthals Altes, W.K.

    2016-01-01

    Urban areas have spatial discontinuities, such as disconnected neighbourhoods, brownfield areas and leftover places. They can be captured by the metaphor of urban porosity. This paper aims to highlight the potential social consequences of urban porosity by creating a ‘porosity index’. The authors

  6. Effect of Heat Input During Disk Laser Bead-On-Plate Welding of Thermomechanically Rolled Steel on Penetration Characteristics and Porosity Formation in the Weld Metal

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-03-01

    Full Text Available The paper presents a detailed analysis of the influence of heat input during laser bead-on-plate welding of 5.0 mm thick plates of S700MC steel by modern Disk laser on the mechanism of steel penetration, shape and depth of penetration, and also on tendency to weld porosity formation. Based on the investigations performed in a wide range of laser welding parameters the relationship between laser power and welding speed, thus heat input, required for full penetration was determined. Additionally the relationship between the laser welding parameters and weld quality was determined.

  7. Porosity and liquid absorption of cement paste

    DEFF Research Database (Denmark)

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    be a slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which...... are not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square root...

  8. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  9. Micro- and macroscopic study on the porosity of marble as a function of temperature and impregnation

    Science.gov (United States)

    Malaga-Starzec, K.; Akesson, U.; Lindqvist, J. E.; Schouenborg, B.

    2003-04-01

    The thermal weathering of marble is demonstrated by the progressive granular decohesion that leads to an increased porosity and subsequently to loss of strength. In order to determine how temperature cycling initiates changes in the porosity of fresh and impregnated stones: two chemically and petrographically very different marble types were tested for water absorption and ultrasonic velocity propagation and analysed by fluorescence microscopy and nitrogen adsorption. The influence of the impregnation materials: GypStop P17 and P22, both silica sols with different particle size, on changes of the porosity was also evaluated. A separate long-term study of thermal expansion was additionally performed on fresh unimpregnated samples. The results indicated that inter-granular decohesion was more pronounced for the calictic marble than the dolomitic marble. The impregnation materials had a mitigating effect on the granular decohesion. Use of fluorescence microscopy, among the other methods, appears to give inexpensive and reliable information about internal structure of the marbles. A better understanding of the effect that temperature has on the porosity of marble could be used as a guide for election of suitable stone material for exterior use as well as an indication for appropriate conditioning of the samples before physical properties testing.

  10. Benchmark neutron porosity log calculations

    International Nuclear Information System (INIS)

    Little, R.C.; Michael, M.; Verghese, K.; Gardner, R.P.

    1989-01-01

    Calculations have been made for a benchmark neutron porosity log problem with the general purpose Monte Carlo code MCNP and the specific purpose Monte Carlo code McDNL. For accuracy and timing comparison purposes the CRAY XMP and MicroVax II computers have been used with these codes. The CRAY has been used for an analog version of the MCNP code while the MicroVax II has been used for the optimized variance reduction versions of both codes. Results indicate that the two codes give the same results within calculated standard deviations. Comparisons are given and discussed for accuracy (precision) and computation times for the two codes

  11. A 2D double-porosity model for melting and melt migration beneath mid-oceanic ridges

    Science.gov (United States)

    Liu, B.; Liang, Y.; Parmentier, E.

    2017-12-01

    Several lines of evidence suggest that the melting and melt extraction region of the MORB mantle is heterogeneous consisting of an interconnected network of high permeability dunite channels in a low porosity harzburgite or lherzolite matrix. In principle, one can include channel formation into the tectonic-scale geodynamic models by solving conservation equations for a chemically reactive and viscously deformable porous medium. Such an approach eventually runs into computational limitations such as resolving fractal-like channels that have a spectrum of width. To better understand first order features of melting and melt-rock interaction beneath MOR, we have formulated a 2D double porosity model in which we treat the triangular melting region as two overlapping continua occupied by the low-porosity matrix and interconnected high-porosity channels. We use melt productivity derived from a thermodynamic model and melt suction rate to close our problem. We use a high-order accurate numerical method to solve the conservation equations in 2D for porosity, solid and melt velocities and concentrations of chemical tracers in the melting region. We carry out numerical simulations to systematically study effects of matrix-to-channel melt suction and spatially distributed channels on the distributions of porosity and trace element and isotopic ratios in the melting region. For near fractional melting with 10 vol% channel in the melting region, the flow field of the matrix melt follows closely to that of the solid because the small porosity (exchange between the melt and the solid. The smearing effect can be approximated by dispersion coefficient. For slowly diffusing trace elements (e.g., LREE and HFSE), the melt migration induced dispersion can be as effective as thermal diffusion. Therefore, sub-kilometer scale heterogeneities of Nd and Hf isotopes are significantly damped or homogenized in the melting region.

  12. Combined effect of nano-SiO2 and nano-Fe2O3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars

    International Nuclear Information System (INIS)

    Sanjuán, M.A.; Argiz, C.; Gálvez, J.C.; Reyes, E.

    2018-01-01

    The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe2O3 and nano-SiO2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C3S and C2S) hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe2O3 and nano-SiO2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe2O3 and nano-SiO2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP) measurements, pore-size distribution (PSD), total porosity and critical pore diameter also confirmed such results. [es

  13. Combined effect of nano-SiO2 and nano-Fe2O3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars

    Directory of Open Access Journals (Sweden)

    M. A. Sanjuán

    2018-03-01

    Full Text Available The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe2O3 and nano-SiO2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C3S and C2S hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe2O3 and nano-SiO2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe2O3 and nano-SiO2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP measurements, pore-size distribution (PSD, total porosity and critical pore diameter also confirmed such results.

  14. Brushite foams—the effect of Tween® 80 and Pluronic® F‐127 on foam porosity and mechanical properties

    Science.gov (United States)

    Montufar, Edgar B.; Engqvist, Håkan; Ginebra, Maria‐Pau; Persson, Cecilia

    2016-01-01

    Abstract Resorbable calcium phosphate based bone void fillers should work as temporary templates for new bone formation. The incorporation of macropores with sizes of 100 −300 µm has been shown to increase the resorption rate of the implant and speed up bone ingrowth. In this work, macroporous brushite cements were fabricated through foaming of the cement paste, using two different synthetic surfactants, Tween® 80 and Pluronic® F‐127. The macropores formed in the Pluronic samples were both smaller and less homogeneously distributed compared with the pores formed in the Tween samples. The porosity and compressive strength (CS) were comparable to previously developed hydroxyapatite foams. The cement foam containing Tween, 0.5M citric acid in the liquid, 1 mass% of disodium dihydrogen pyrophosphate mixed in the powder and a liquid to powder ratio of 0.43 mL/g, showed the highest porosity values (76% total and 56% macroporosity), while the CS was >1 MPa, that is, the hardened cement could be handled without rupture of the foamed structure. The investigated brushite foams show potential for future clinical use, both as bone void fillers and as scaffolds for in vitro bone regeneration. © 2015 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 67–77, 2016. PMID:25615405

  15. Brushite foams--the effect of Tween® 80 and Pluronic® F-127 on foam porosity and mechanical properties.

    Science.gov (United States)

    Unosson, Johanna; Montufar, Edgar B; Engqvist, Håkan; Ginebra, Maria-Pau; Persson, Cecilia

    2016-01-01

    Resorbable calcium phosphate based bone void fillers should work as temporary templates for new bone formation. The incorporation of macropores with sizes of 100 -300 µm has been shown to increase the resorption rate of the implant and speed up bone ingrowth. In this work, macroporous brushite cements were fabricated through foaming of the cement paste, using two different synthetic surfactants, Tween® 80 and Pluronic® F-127. The macropores formed in the Pluronic samples were both smaller and less homogeneously distributed compared with the pores formed in the Tween samples. The porosity and compressive strength (CS) were comparable to previously developed hydroxyapatite foams. The cement foam containing Tween, 0.5M citric acid in the liquid, 1 mass% of disodium dihydrogen pyrophosphate mixed in the powder and a liquid to powder ratio of 0.43 mL/g, showed the highest porosity values (76% total and 56% macroporosity), while the CS was >1 MPa, that is, the hardened cement could be handled without rupture of the foamed structure. The investigated brushite foams show potential for future clinical use, both as bone void fillers and as scaffolds for in vitro bone regeneration. © 2015 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  16. Can porosity affect the hyperspectral signature of sandy landscapes?

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Kimmel, Bradley W.

    2017-10-01

    Porosity is a fundamental property of sand deposits found in a wide range of landscapes, from beaches to dune fields. As a primary determinant of the density and permeability of sediments, it represents a central element in geophysical studies involving basin modeling and coastal erosion as well as geoaccoustics and geochemical investigations aiming at the understanding of sediment transport and water diffusion properties of sandy landscapes. These applications highlight the importance of obtaining reliable porosity estimations, which remains an elusive task, notably through remote sensing. In this work, we aim to contribute to the strengthening of the knowledge basis required for the development of new technologies for the remote monitoring of environmentally-triggered changes in sandy landscapes. Accordingly, we employ an in silico investigation approach to assess the effects of porosity variations on the reflectance of sandy landscapes in the visible and near-infrared spectral domains. More specifically, we perform predictive computer simulations using SPLITS, a hyperspectral light transport model for particulate materials that takes into account actual sand characterization data. To the best of our knowledge, this work represents the first comprehensive investigation relating porosity to the reflectance responses of sandy landscapes. Our findings indicate that the putative dependence of these responses on porosity may be considerably less pronounced than its dependence on other properties such as grain size and shape. Hence, future initiatives for the remote quantification of porosity will likely require reflectance sensors with a high degree of sensitivity.

  17. On the porosity of barrier layers

    Directory of Open Access Journals (Sweden)

    J. Mignot

    2009-09-01

    Full Text Available Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL thickness first proposed by de Boyer Montégut et al. (2007. In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere.

  18. Electrical impedance spectroscopy as a potential tool for recovering bone porosity

    International Nuclear Information System (INIS)

    Bonifasi-Lista, C; Cherkaev, E

    2009-01-01

    This paper deals with the recovery of porosity of bone from measurements of its effective electrical properties. The microstructural information is contained in the spectral measure in the Stieltjes representation of the bone effective complex permittivity or complex conductivity and can be recovered from the measurements over a range of frequencies. The problem of reconstruction of the spectral measure is very ill-posed and requires the use of regularization techniques. We apply the method to the effective electrical properties of cancellous bone numerically calculated using micro-CT images of human vertebrae. The presented method is based on an analytical approach and does not rely on correlation analysis nor on any a priori model of the bone micro-architecture. However the method requires a priori knowledge of the properties of the bone constituents (trabecular tissue and bone marrow). These properties vary from patient to patient. To address this issue, a sensitivity analysis of the technique was performed. Normally distributed random noise was added to the data to simulate uncertainty in the properties of the constituents and possible experimental errors in measurements of the effective properties. The values of porosity calculated from effective complex conductivity are in good agreement with the true values of bone porosity even assuming high level errors in the estimation of the bone components. These results prove the future potential of electrical impedance spectroscopy for in vivo monitoring of level and treatment of osteoporosis.

  19. Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix

    International Nuclear Information System (INIS)

    Kumar, Ashish; Saha, Sandip K.

    2016-01-01

    Graphical abstract: I. Metal matrix is used as the thermal conductivity enhancers (TCE) in PCM-based TES. II. Time evolution second law analysis is evaluated for different porosities and pore diameters. III. Reduction in fluctuation in HTF temperature is significantly affected by the change in porosity (ε) shown in figure. IV. Maximum energy and exergy efficiencies are obtained for porosity of 0.85. V. Effect of pore diameter on first law and second law efficiencies is found to be marginal. - Abstract: Thermal energy storage system in a concentrating solar plant (CSP) reduces the gap between energy demand and supply caused by the intermittent behaviour of solar radiation. In this paper, detailed exergy and energy analyses of shell and tube type latent heat thermal storage system (LHTES) for medium temperature solar thermal power plant (∼200 °C) are performed to estimate the net useful energy during the charging and discharging period in a cycle. A commercial-grade organic phase change material (PCM) is stored inside the annular space of the shell and the heat transfer fluid (HTF) flows through the tubes. Thermal conductivity enhancer (TCE) in the form of metal matrix is embedded in PCM to augment heat transfer. A numerical model is developed to investigate the fluid flow and heat transfer characteristics using the momentum equation and the two-temperature non-equilibrium energy equation coupled with the enthalpy method to account for phase change in PCM. The effects of storage material, porosity and pore-diameter on the net useful energy that can be stored and released during a cycle, are studied. It is found that the first law efficiency of sensible heat storage system is less compared to LHTES. With the decrease in porosity, the first law and second law efficiencies of LHTES increase for both the charging and discharging period. There is no significant variation in energy and exergy efficiencies with the change in pore-diameter of the metal matrix.

  20. Hyporheic less-mobile porosity and solute transport in porous media

    Science.gov (United States)

    MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Scruggs, C.; Singha, K.; Zarnetske, J. P.; Lane, J. W., Jr.; Bagtzoglou, A. C.

    2017-12-01

    Solute transport and reactive processes are strongly influenced by hydrodynamic exchange with the hyporheic zone. Contaminant transport and redox zonation in the hyporheic zone and near-stream aquifer can be impacted by the exchange between mobile and less-mobile porosity zones in heterogeneous porous media. Less-mobile porosity zones can be created by fine materials with tight pore throats (e.g. clay, organics) and in larger, well-connected pores down gradient of flow obstructions (e.g. sand behind cobbles). Whereas fluid sampling is primarily responsive to the more-mobile domain, tracking solute tracer dynamics by geoelectrical methods provides direct information about both more- and less-mobile zones. During tracer injection through porous media of varied pore connectivity, a lag between fluid and bulk electrical conductivity is observed, creating a hysteresis loop when plotted in conductivity space. Thus, the combination of simultaneous fluid and bulk electrical conductivity measurements enables a much improved quantification of less-mobile solute dynamics compared to traditional fluid-only sampling approaches. We have demonstrated the less-mobile porosity exchange in laboratory-scale column experiments verified by simulation models. The experimental approach has also been applied to streambed sediments in column and reach-scale field experiments and verified using numerical simulation. Properties of the resultant hysteresis loops can be used to estimate exchange parameters of less-mobile porosity. Our integrated approach combining field experiments, laboratory experiments, and numerical modeling provides new insights into the effect of less-mobile porosity on solute transport in the hyporheic zone.

  1. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  2. Quantifying multiscale porosity and fracture aperture distribution in granite cores using computed tomography

    Science.gov (United States)

    Wenning, Quinn; Madonna, Claudio; Joss, Lisa; Pini, Ronny

    2017-04-01

    Knowledge of porosity and fracture (aperture) distribution is key towards a sound description of fluid transport in low-permeability rocks. In the context of geothermal energy development, the ability to quantify the transport properties of fractures is needed to in turn quantify the rate of heat transfer, and, accordingly, to optimize the engineering design of the operation. In this context, core-flooding experiments coupled with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) represent a powerful tool for making direct observations of these properties under representative geologic conditions. This study focuses on quantifying porosity and fracture aperture distribution in a fractured westerly granite core by using two recently developed experimental protocols. The latter include the use of a highly attenuating gas [Vega et al., 2014] and the application of the so-called missing CT attenuation method [Huo et al., 2016] to produce multidimensional maps of the pore space and of the fractures. Prior to the imaging experiments, the westerly granite core (diameter: 5 cm, length: 10 cm) was thermally shocked to induce micro-fractured pore space; this was followed by the application of the so-called Brazilian method to induce a macroscopic fracture along the length of the core. The sample was then mounted in a high-pressure aluminum core-holder, exposed to a confining pressure and placed inside a medical CT scanner for imaging. An initial compressive pressure cycle was performed to remove weak asperities and reduce the hysteretic behavior of the fracture with respect to effective pressure. The CT scans were acquired at room temperature and 0.5, 5, 7, and 10 MPa effective pressure under loading and unloading conditions. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated at the desired pressure with a high precision pump. Highly transmissible krypton and helium gases were used as

  3. Particle porosity at plasma are spraying of metals

    International Nuclear Information System (INIS)

    Petrunichev, V.A.; Koroleva, E.B.; Pushilin, N.P.

    1985-01-01

    Quantitative dependences of porosity and character of pore distribution in particles of different materials on particle size and composition of atmosphere in a working chamber are studied experimentally as applied to the process of plasma wire sputtering. Wires 1.2 mm in diameter made of tungsten, molybdenum, Kh20N80 alloy, and zirconium served as sputtering materials. It is shown that pore size and character of their distribution in particles of powders obtained by the method of plasma wire sputtering are dependent on sizes of forming particles and determined by conditions of their cooling. Intensive porosity formation is characteristic of wire sputtering in argon plasma with nitrogen additions, but there are critical values of nitrogen concentration in plasma, above which intensive porosity formation in forming particles stops

  4. Microstructure and Porosity of Laser-welded Dissimilar Material Joints of HR-2 and J75

    Science.gov (United States)

    Shen, Xianfeng; Teng, Wenhua; Zhao, Shuming; He, Wenpei

    Dissimilar laser welding of HR-2 and J75 has a wide range of applications in high-and low-temperature hydrogen storage. The porosity distributions of the welded joints were investigated at different line energies, penetration status, and welding positions (1G, 2G, and 3G). The effect of the welding position on the welding appearance was evident only at high line energies because of the essential effect of gravity of the larger and longer dwelling molten pool. The porosity of the welded joints between the solutionised and aged J75 and HR-2 at the 3G position and partial penetration was located at the weld centre line, while the porosity at the 2G position with full penetration was distributed at the weld edges, which is consistent with the distribution of floating slag. Full keyhole penetration resulted in minimum porosity, partial penetration resulted in moderate porosity, and periodic molten pool penetration resulted in maximum porosity.

  5. Particle track membranes with higher porosity

    International Nuclear Information System (INIS)

    Heinrich, B.; Gemende, B.; Lueck, H.B.

    1992-01-01

    Possibilities of improvement of flux and dirt loading capacity of particle track membranes have been examined. Three different ways were investigated: using a divergent ion beam for the irradiation; enlarging the surface porosity through a conical pore shape; creating an asymmetrical membrane structure with two different porosities. Mathematical models and experimental results have been discussed. 9 figs, 3 tabs

  6. Characterization of porosity in support of mechanical property analysis

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.

    1993-01-01

    The general applicability of laboratory data for engineering purposes is a prime concern for the design and licensing of a potential repository of high level nuclear waste at Yucca Mountain. In order for the results of experiments to be applicable to the repository scale, the data must be scaled to in situ size and conditions. Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sampled test. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results

  7. Low porosity portland cement pastes based on furan polymers

    International Nuclear Information System (INIS)

    Darweesh, H.H.M.

    2005-01-01

    The effect of three different types of Furan polymers on the porosity, mechanical properties, mechanism of hydration and microstructure of Ordinary Portland cement (OPC) pastes was investigated. The results showed that mixing the OPC with Furan polymers, the standard water of consistency of the different cement pastes decreases and therefore the setting times (initial and final) are shortened. The total porosity of the hardened cement pastes decreased, while the mechanical properties improved and enhanced at all curing ages of hydration compared with those of the pure OPC pastes. The hydration process with Furan polymers proceeded according to the following decreasing order: F.ac. > F.ph. > F.alc. > OPC

  8. Effectiveness of Family Planning Methods

    Science.gov (United States)

    ... women in a year Effectiveness of Family Planning Methods Implant Reversible Intrauterine Device (IUD) Permanent Male Sterilization ... 0.5 % Diaphragm 12 % How to make your method most effective After procedure, little or nothing to ...

  9. Cold spray NDE for porosity and other process anomalies

    Science.gov (United States)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar

  10. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.; Kirk, G. J. D.; Jones, D. L.; Wissuwa, M.; Roose, T.

    2011-01-01

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional 'single porosity' models, this 'dual porosity' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  11. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.

    2011-08-09

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional \\'single porosity\\' models, this \\'dual porosity\\' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  12. Homogeneity vs. Heterogeneity of Porosity in Boom Clay

    International Nuclear Information System (INIS)

    Hemes, Susanne; Desbois, Guillaume; Urai, Janos L.; De Craen, Mieke; Honty, Miroslav

    2013-01-01

    Microstructural investigations on Boom Clay at nano- to micrometer scale, using BIB-SEM methods, result in porosity characterization for different mineral phases from direct observations on high resolution SE2-images of representative elementary areas (REAs). High quality, polished surfaces of cross-sections of ∼ 1 mm 2 size were produced on three different samples from the Mol-Dessel research site (Belgium). More than 33,000 pores were detected, manually segmented and analyzed with regard to their size, shape and orientation. Two main pore classes were defined: Small pores (< 500 nm (ED)) within the clay matrices of samples and =big' pores (> 500 nm (ED)) at the interfaces between clay and non-clay mineral (NCM) grains. Samples investigated show similar porosities regarding the first pore-class, but differences occur at the interfaces between clay matrix and NCM grains. These differences were interpreted to be due to differences in quantitative mineralogy (amount of non-clay mineral grains) and grain-size distributions between samples investigated. Visible porosities were measured as 15 to 17 % for samples investigated. Pore-size distributions of pores in clay are similar for all samples, showing log-normal distributions with peaks around 60 nm (ED) and more than 95 % of the pores being smaller than 500 nm (ED). Fitting pore-size distributions using power-laws with exponents between 1.56 and 1.7, assuming self-similarity of the pore space, thus pores smaller than the pore detection resolution following the same power-laws and using these power-laws for extrapolation of pore-size distributions below the limit of pore detection resolution, results in total estimated porosities between 20 and 30 %. These results are in good agreement with data known from Mercury Porosimetry investigations (35-40 % porosity) and water content porosity measurements (∼ 36 %) performed on Boom Clay. (authors)

  13. Relationship between fiber porosity and cellulose digestibility in steam-exploded Pinus radiata

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K.K.Y.; Deverell, K.F.; Mackie, K.L.; Clark, T.A.; Donaldson, L.A.

    1988-04-05

    The use of lignocellulosic materials in bioconversion processes may be improved if the critical factors limiting conversion are better understood. Steam explosion after sulfur dioxide impregnation of wood chips is an effective method for improving the enzymatic digestibility of cellulose in the softwood Pinus radiata. Digestibility of pretreated fiber was progressively increased by altering the conditions of steam explosion. With increasing digestibility, there was an observed increase in fiber porosity as measured by the solute exclusion technique. Accessible pore volume and accessible surface area to a 5-nm dextran probe positively correlated with both 2- and 24-h digestion yields from pretreated fiber. The increase in accessibility was probably the result of hemicellulose extraction and lignin redistribution. A subsequent loss in accessibility, brought about by structural collapse or further lignin redistribution, resulted in a corresponding loss in digestibility. It appears that steam explosion increases cellulose digestibility in P. radiata by increasing fiber porosity.

  14. Relationship between soil aggregate strength, shape and porosity for soils under different long-term management

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, Richard J; Deen, Bill

    2016-01-01

    were mouldboard ploughing (MP) and no-tillage (NT). The soil coreswere exposed to a drop shatter test and airdried before separation into different size fractions. Ten aggregates fromthe 4–9.2mmsize fraction per core sample (i.e. 320 in all)were X-ray micro-CT scanned. The size, shape and porosity...... porosity and more rounded aggregates than the continuous corn rotation. Surprisingly, therewas no treatment effect on X-ray micro-CT resolvable porosities. Aggregate strength decreased with both total and X-ray micro-CT resolvable porosity even though the correlations were weak. Significant correlation...

  15. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Mora, M.B. de la; Bornacelli, J.; Nava, R.; Zanella, R.; Reyes-Esqueda, J.A.

    2014-01-01

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  16. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  17. Chalk porosity and sonic velocity versus burial depth

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Gommesen, Lars; Krogsbøll, Anette Susanne

    2008-01-01

    Seventy chalk samples from four formations in the overpressured Danish central North Sea have been analyzed to investigate how correlations of porosity and sonic velocity with burial depth are affected by varying mineralogy, fluid pressure, and early introduction of petroleum. The results show th...... for fluid pressure because the cementing ions originate from stylolites, which are mechanically similar to fractures. We find that cementation occurs over a relatively short depth interval.......Seventy chalk samples from four formations in the overpressured Danish central North Sea have been analyzed to investigate how correlations of porosity and sonic velocity with burial depth are affected by varying mineralogy, fluid pressure, and early introduction of petroleum. The results show...... that porosity and sonic velocity follow the most consistent depth trends when fluid pressure and pore-volume compressibility are considered. Quartz content up to 10% has no marked effect, but more than 5% clay causes lower porosity and velocity. The mineralogical effect differs between P-wave and shear velocity...

  18. Microstructure, porosity and mineralogy around fractures in Olkiluoto bedrock

    International Nuclear Information System (INIS)

    Kuva, J.; Kelokaski, M.; Ikonen, J.; Siitari-Kauppi, M.; Lindberg, A.; Aaltonen, I.

    2012-01-01

    3D distributions of minerals and porosities were determined for samples that included waterconducting fractures. The analysis of these samples was performed using conventional petrography methods, electron microscopy, C-14-PMMA porosity analysis and X-ray tomography. While X-ray tomography proved to be a very useful method when determining the inner structure of the samples, combining tomography results with those obtained by other methods turned out to be difficult without very careful sample preparation design. It seems that the properties of rock around a water-conducting fracture depend on so many uncorrelated factors that no clear pattern emerged even for rock samples with a given type of fracture. We can conclude, however, that a combination of different analysis methods can be useful and used to infer novel structural information about alteration zones adjacent to fracture surfaces. (orig.)

  19. Microstructure, porosity and mineralogy around fractures in Olkiluoto bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Kuva, J. (ed.); Myllys, M.; Timonen, J. [Jyvaeskylae Univ. (Finland); Kelokaski, M.; Ikonen, J.; Siitari-Kauppi, M. [Helsinki Univ. (Finland); Lindberg, A. [Geological Survey of Finland, Espoo (Finland); Aaltonen, I.

    2012-01-15

    3D distributions of minerals and porosities were determined for samples that included waterconducting fractures. The analysis of these samples was performed using conventional petrography methods, electron microscopy, C-14-PMMA porosity analysis and X-ray tomography. While X-ray tomography proved to be a very useful method when determining the inner structure of the samples, combining tomography results with those obtained by other methods turned out to be difficult without very careful sample preparation design. It seems that the properties of rock around a water-conducting fracture depend on so many uncorrelated factors that no clear pattern emerged even for rock samples with a given type of fracture. We can conclude, however, that a combination of different analysis methods can be useful and used to infer novel structural information about alteration zones adjacent to fracture surfaces. (orig.)

  20. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  1. Ultrasonic Characterization of Water Saturated Double Porosity Media

    Science.gov (United States)

    Bai, Ruonan; Tinel, Alain; Alem, Abdellah; Franklin, Hervé; Wang, Huaqing

    Wave propagation through a multilayered structure consisting of a water saturated double porosity medium in an aluminum rectangular box immersed in water is studied. By assuming a plane incident wave from water onto the structure, the reflection and transmission coefficients are derived by application of the boundary conditions at each interface. Numerical computations are done for two particular double porosity media, ROBU® and Tobermorite 11 Å, that are assumed to obey Berryman's extension of Biot's theory [Berryman 1995, 2000]. The influence of the thickness of double porosity medium is investigated. To compare experiments to computations, two comparison coefficients Cnum and Cexp are introduced. The theoretical one Cnum is defined as the ratio of the transmission coefficient of the structure to the transmission coefficient of the box filled exclusively with water. The experimental comparison coefficient Cexp is defined as the ratio of the Fourier transforms of the transmitted signals by the box filled with the double porous medium to that of the transmitted signals by the box filled with water. A method of minimization based on a gradient descent algorithm is used to optimize some of the parameters of the double porosity media such as the bulk moduli.

  2. Ultrasonic velocities of North Sea chalk samples: influence of porosity, fluid content and texture

    DEFF Research Database (Denmark)

    Rogen, B.; Fabricius, Ida Lykke; Japsen, P.

    2005-01-01

    a porosity-reducing effect and that samples rich in large grains have a relatively low porosity for a given P-wave modulus. The clay content in the samples is low and is mainly represented by either kaolinite or smectite; samples with smectite have a lower P-wave modulus than samples with kaolinite at equal...

  3. Ultrasonic maps of porosity in aluminum castings

    International Nuclear Information System (INIS)

    Ghaffari, Bita; Potter, Timothy J.; Mozurkewich, George

    2002-01-01

    The use of cast aluminum in the automotive industry has grown dramatically in recent years, leading to increased need for quantitative characterization of microporosity. As previously reported in the literature, the attenuation of ultrasound can be used to measure the porosity volume fraction and the mean pore size. An immersion ultrasound system has been built utilizing this technique to scan castings with high spatial resolution. Maps of attenuation are shown to locate areas of varying porosity readily and reliably

  4. Determination of barometric efficiency and effective porosity, boreholes UE-25 cNo.1, UE-25 cNo.2, UE-25 cNo.3, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Geldon, A.L.; Earle, J.D.; Umari, A.M.A.

    1997-01-01

    Simultaneous records of water-level altitudes in boreholes UE-25 cNo.1, UE-25 cNo.2, and UE-25 cNo.3 (the C-holes) and atmospheric pressure at and near the C-holes were obtained from July 15 to September 8, 1993, to determine the barometric efficiency of the entire uncased section of each of the C-holes, for the purpose of analyzing pumping tests. Each of the C-holes is 3,000 feet deep. About 1,600 feet of each borehole is open in Miocene tuffaceous rocks. Water-level altitudes in the C-holes fluctuate in response to Earth tides and changes in atmospheric pressure, which are characteristics of wells completed in an elastic, confined aquifer. The barometric efficiency of the C-holes in this study was analyzed by filtering simultaneously collected water-level-altitude and atmospheric-pressure data to remove the influences of Earth tides and semi-diurnal heating and cooling and then regressing filtered water-level-altitude changes as a function of filtered changes in atmospheric pressure. The average barometric efficiency of the uncased sections of boreholes UE-25 cNo.1 and UE-25 cNo.3 was determined to be 0.94. Malfunctioning equipment prevented determining the barometric efficiency of bore-hole UE-25 cNo.2. An average effective porosity of 0.36 was calculated from barometric efficiency values determined in this study and a specific storage value of 0.497 x 10 -6 per foot that was determined previously from geophysical logs of the C-holes. A porosity of 0.36 is consistent with values determined from geophysical logs and core analyses for the Calico Hills Formation

  5. Measurement of the open porosity of agricultural soils with acoustic waves

    Science.gov (United States)

    Luong, Jeanne; Mercatoris, Benoit; Destain, Marie-France

    2015-04-01

    soil, since there are more voids filled with air and water, increasing the viscous losses. Fellah et al. (2003) showed that porosity can be determined from phase speed and reflection coefficient. The propagation of acoustic waves in soil is investigated to develop a rapid method for the quantification of the porosity level of agricultural soils. In the present contribution, correlations are determined between the acoustic signatures of agricultural soil in function of its structural properties. In laboratory, compression tests are performed on unsaturated soil samples to reproduce different porosity levels. Ultrasonic pulses are sent through the considered samples. The propagated signals are treated in both time and frequency domains in order to determine the speed of the phase velocity and the reflection. Porosity is then determined and compared with water content measured by gravimetric method. Alaoui, A., Lipiec, J. & Gerke, H.H., 2011. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil and Tillage Research, 115-116, pp.1-15. Fellah Z.E.A., Berger S., Lauriks W., Depollier C., Aristegui C., Chapelon J.Y., 2003. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. The Journal of the Acoustical Society of America 113 (5), pp 2424-2433 Hamza, M.A. & Anderson, W.K., 2005. Soil compaction in cropping systems. Soil and Tillage Research, 82(2), pp.121-145. Lu, Z., 2005. Role of hysteresis in propagating acousitcs waves in soils. Geophysical Research Letter, pp.32:1-4. Lu, Z., Hickey, C.J. & Sabatier, J.M., 2004. Effects of compaction on the acoustic velocity in soils. Soil Science Society of America Journal, 68(1), pp.7-16. Lu, Z. & Sabatier, J.M., 2009. Effects of soil water potential and moisture content on sound speed. Soil Science Society of America Journal, 73(5), pp.1614-1625. Le Maitre, D.C., Kotzee, I.M. & O'Farrell, P.J., 2014. Impacts of land-cover change on

  6. Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast

    Energy Technology Data Exchange (ETDEWEB)

    Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.; Tomutsa, L.; Brantley, S.L.

    2009-02-15

    Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering, but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.

  7. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  8. Computer Based Porosity Design by Multi Phase Topology Optimization

    Science.gov (United States)

    Burblies, Andreas; Busse, Matthias

    2008-02-01

    A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.

  9. Integrated Analysis Seismic Inversion and Rockphysics for Determining Secondary Porosity Distribution of Carbonate Reservoir at “FR” Field

    Science.gov (United States)

    Rosid, M. S.; Augusta, F. F.; Haidar, M. W.

    2018-05-01

    In general, carbonate secondary pore structure is very complex due to the significant diagenesis process. Therefore, the determination of carbonate secondary pore types is an important factor which is related to study of production. This paper mainly deals not only to figure out the secondary pores types, but also to predict the distribution of the secondary pore types of carbonate reservoir. We apply Differential Effective Medium (DEM) for analyzing pore types of carbonate rocks. The input parameter of DEM inclusion model is fraction of porosity and the output parameters are bulk moduli and shear moduli as a function of porosity, which is used as input parameter for creating Vp and Vs modelling. We also apply seismic post-stack inversion technique that is used to map the pore type distribution from 3D seismic data. Afterward, we create porosity cube which is better to use geostatistical method due to the complexity of carbonate reservoir. Thus, the results of this study might show the secondary porosity distribution of carbonate reservoir at “FR” field. In this case, North – Northwest of study area are dominated by interparticle pores and crack pores. Hence, that area has highest permeability that hydrocarbon can be more accumulated.

  10. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    Science.gov (United States)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  11. Effect of the temperature and the porosity of the gettering process on the removal of heavy metals from Tunisian phosphate rock

    Directory of Open Access Journals (Sweden)

    R. Daik

    Full Text Available Gettering is a process by which unwanted impurities are removed by providing an alternative location, this method used by many researchers for the purification of silicon wafers or powder. In this work, this method is used for the first time to remove the impurities from Tunisian phosphate rock (TPR. This method consists in two steps: the rapid thermal processing by infrared furnace followed by a rapid chemical etching. In order to enhance the efficiency of this process, a porous layer on the surface of grains was grown. By this method, we have demonstrated in this present work that the majority of impurities were well extracted from TPR. UV–visible absorption spectra show that the highest intensity of absorbance (∼1 appears for the porous sample treated at 900 °C (P900 °C, which due to the presence of large quantities of impurities in the extracted solution. These results were well confirmed by AAS and ICP-AES which show that the majority of the impurities have been almost removed for the P900 °C sample. Keywords: Gettering process, Porous phosphate rock, Temperature, Impurities

  12. Spark plasma sintering and porosity studies of uranium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle D., E-mail: kylej@kth.se; Wallenius, Janne; Jolkkonen, Mikael; Claisse, Antoine

    2016-05-15

    In this study, a number of samples of UN sintered by the SPS method have been fabricated, and highly pure samples ranging in density from 68% to 99.8%TD – corresponding to an absolute density of 14.25 g/cm{sup 3} out of a theoretical density of 14.28 g/cm{sup 3} – have been fabricated. By careful adjustment of the sintering parameters of temperature and applied pressure, the production of pellets of specific porosity may now be achieved between these ranges. The pore closure behaviour of the material has also been documented and compared to previous studies of similar materials, which demonstrates that full pore closure using these methods occurs near 97.5% of relative density. - Highlights: • UN pellets are fabricated over a wide array of densities using the SPS method. • The sintereing parameters necessary to produce pellets over a wide array of density space are charted. • Pellets of extremely high density (99.9% of TD, absolute density of 14.25 g/cm{sup 3}) are fabricated. • Full-closure of the porosity in this material is obtained at around 2.5% of total porosity.

  13. Geochemical porosity values obtained in core samples from different clay-rocks

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2010-01-01

    Document available in extended abstract form only. Argillaceous formations of low permeability are considered in many countries as potential host rocks for the disposal of high level radioactive wastes (HLRW). In order to determine their suitability for waste disposal, evaluations of the hydro-geochemistry and transport mechanisms from such geologic formations to the biosphere must be undertaken. One of the key questions about radionuclide diffusion and retention is to know the chemistry and chemical reactions and sorption processes that will occur in the rock and their effects on radionuclide mobility. In this context, the knowledge of the pore water chemistry is essential for performance assessment purposes. This information allows to establish a reliable model for the main water-rock interactions, which control the physico-chemical parameters and the chemistry of the major elements of the system. An important issue in order to model the pore water chemistry in clayey media is to determine the respective volume accessible to cations and anions, i.e, the amount of water actually available for chemical reactions/solute transport. This amount is usually referred as accessible porosity or geochemical porosity. By using the anion inventories, i.e. the anion content obtained from aqueous leaching, and assuming that all Cl - , Br - and SO4 2- leached in the aqueous extracts originates from pore water, the concentration of a conservative ion can be converted into the real pore water concentration if the accessible porosity is known. In this work, the accessible porosity or geochemical porosity has been determined in core samples belonging to four different formations: Boom Clay from Hades URL (Belgium, BE), Opalinus Clay from Mont Terri (Switzerland, CH), and Callovo-Oxfordian argillite from Bure URL (France, FR). The geochemical or chloride porosity was defined as the ratio between the pore water volume containing Cl-bearing pore water and the total volume of a sample

  14. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...

  15. Three dimensional fracture aperture and porosity distribution using computerized tomography

    Science.gov (United States)

    Wenning, Q.; Madonna, C.; Joss, L.; Pini, R.

    2017-12-01

    A wide range of geologic processes and geo-engineered applications are governed by coupled hydromechanical properties in the subsurface. In geothermal energy reservoirs, quantifying the rate of heat transfer is directly linked with the transport properties of fractures, underscoring the importance of fracture aperture characterization for achieving optimal heat production. In this context, coupled core-flooding experiments with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) provide a powerful method to make observations of these properties under representative geologic conditions. This study focuses on quantifying fracture aperture distribution in a fractured westerly granite core by using a recently developed calibration-free method [Huo et al., 2016]. Porosity is also estimated with the X-ray saturation technique using helium and krypton gases as saturating fluids, chosen for their high transmissibility and high CT contrast [e.g., Vega et al., 2014]. The westerly granite sample (diameter: 5 cm, length: 10 cm) with a single through-going rough-walled fracture was mounted in a high-pressure aluminum core-holder and placed inside a medical CT scanner for imaging. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated to have the desired effective pressure (0.5, 5, 7 and 10 MPa) under loading and unloading conditions. 3D reconstructions of the sample have been prepared in terms of fracture aperture and porosity at a maximum resolution of (0.24×0.24×1) mm3. Fracture aperture maps obtained independently using helium and krypton for the whole core depict a similar heterogeneous aperture field, which is also dependent on confining pressure. Estimates of the average hydraulic aperture from CT scans are in quantitative agreement with results from fluid flow experiments. However, the latter lack of the level of observational detail achieved through imaging, which further evidence the

  16. A CFD-Model for prediction of unintended porosities in metal matrix composites

    DEFF Research Database (Denmark)

    Li, Shizhao; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    This paper presents a numerical method that simulates the flow through the porous corridors of the preform, which in theory enables the prediction of unintended porosities at the end of the process....

  17. Earth formation porosity log using measurement of neutron energy spectrum

    International Nuclear Information System (INIS)

    1981-01-01

    Methods and apparatus are described for measuring the porosity of subsurface earth formations in the vicinity of a well borehole by means of neutron well logging techniques. All the commercial techniques for measuring porosity currently available are not as accurate as desirable due to variations in the borehole wall diameter, in the borehole fluids (e.g. with chlorine content) in the casings of the borehole etc. This invention seeks to improve accuracy by using a measurement of the epithermal neutron population at one detector and the fast neutron population at a second detector, spaced approximately the same distance from a neutron source. The latter can be detected either by a fast neutron detector or indirectly by an inelastic gamma ray detector. Background correction can be made, and special detectors used, to discriminate against the detection of thermal neutrons or their resultant capture gamma rays. These fluctuations affect the measurement of thermal neutron populations. (U.K.)

  18. Three frequency modulated combination thermal neutron lifetime log and porosity

    International Nuclear Information System (INIS)

    Paap, H.J.; Arnold, D.M.; Smith, M.P.

    1976-01-01

    Methods are disclosed for measuring simultaneously the thermal neutron lifetime of the borehole fluid and earth formations in the vicinity of a well borehole, together with the formation porosity. A harmonically intensity modulated source of fast neutrons is used to irradiate the earth formations with fast neutrons at three different modulation frequencies. Intensity modulated clouds of thermal neutrons at each of the three modulation frequencies are detected by dual spaced detectors and the relative phase shift of the thermal neutrons with respect to the fast neutrons is determined at each of the three modulation frequencies at each detector. These measurements are then combined to determine simultaneously the thermal neutron decay time of the borehole fluid, the thermal neutron decay time of surrounding earth formation media and the porosity of the formation media

  19. Effects of inherent/enhanced solid acidity and morphology of diatomite templates on the synthesis and porosity of hierarchically porous carbon.

    Science.gov (United States)

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Fan, Mingde; Yuan, Aihua; Zhu, Jianxi; He, Hongping

    2010-12-21

    The inherent or enhanced solid acidity of raw or activated diatomite is found to have significant effects on the synthesis of hierarchically porous diatomite-templated carbon with high surface area and special porous structure. The solid acidity makes raw/activated diatomite a catalyst for the generation of porous carbon, and the porous parameters of the carbon products are strongly dependent on the solid acidity of diatomite templates. The morphology of diatomite also dramatically affects the textural structure of porous carbon. Two types of macroporous structures in the carbon product, the partially solid pillars and the ordered hollow tubes, derive from the replication of the central and the edge pores of diatom shell, respectively. The hierarchically porous carbon shows good capability for the adsorption of solvent naphtha and H(2), enabling potential applications in adsorption and gas storage.

  20. Relationship between micro-porosity and tensile properties of 6063 alloy

    Directory of Open Access Journals (Sweden)

    Li Xiehua

    2013-01-01

    Full Text Available The micro-porosity is usually present in the as-cast microstructure, which decreases the tensile strength and ductility and therefore limit the application of cast aluminum parts. Although much work has been done to investigate the effects of various casting parameters on the formation of porosity in various aluminum alloys, up to now, little information has been available for the relationship between micro-porosity and tensile properties of 6063 alloy. In this study, the influences of size and area fraction of micro-porosity on the tensile properties and fracture behavior of 6063 aluminum alloy were investigated by means of tensile testing, optical microscopy (OM, and scanning electron microscopy (SEM. The tensile tests were conducted in air at 100 ℃, 200 ℃ and 300 ℃, respectively. Results show that the large micro-porosity with sizes between 100 μm and 800 μm located at the center and top of the ingot, while the small micro-porosity with size between 2 μm and 60 μm distributed at the edge and bottom of the ingot. The area fraction of micro-porosity at the center of the ingot is much bigger than that at the edge of the ingot. When tested at 100 ℃, with the decrease in the area fraction of micro-porosity from the top of the ingot to the bottom of the ingot, the ultimate tensile strength, yield strength and the elongation are increased from 82 to 99 MPa, 32 to 66 MPa and 7% to 11%, respectively. When the temperature is no more than 200 ℃, the strain hardening exponent decreases with an increase in the area fraction of micro-porosity; while the deviation disappears when the temperature reaches 300 ℃. The fracture mode of the alloy is greatly influenced by the size and area fraction of the micro-porosity.

  1. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arce, P., E-mail: plopezar@geo.ucm.es [Group of Applied Petrology to Heritage Conservation, Institute of Economic Geology (CSIC-UCM), Madrid 28040 (Spain); Gomez-Villalba, L.S. [Group of Applied Petrology to Heritage Conservation, Institute of Economic Geology (CSIC-UCM), Madrid 28040 (Spain); Pinho, L. [Center of Construction Studies, Engineering Faculty, Oporto University, Oporto 4200-465 (Portugal); Fernandez-Valle, M.E. [Research Assistance Center, Nuclear Magnetic Resonance (Pluridisciplinar Institute), Complutense University of Madrid (UCM), Madrid 28040 (Spain); Alvarez de Buergo, M.; Fort, R. [Group of Applied Petrology to Heritage Conservation, Institute of Economic Geology (CSIC-UCM), Madrid 28040 (Spain)

    2010-02-15

    Slaked lime (Ca(OH){sub 2}) nanoparticles were exposed at 33% and 75% relative humidity (RH) to consolidate dolostone samples used in historical buildings. Non-destructive techniques (NDT) were applied to determine the chemical, morphological, physical and hydric properties of the stone samples, before and after 20 days treatment. Morphological and mineralogical characterisation of the nanoparticles was performed. 75% RH favors the consolidation process studied under Environmental Scanning Electron Microscopy (ESEM-EDS), spectrophotometry, capillarity, water absorption under vacuum, ultrasound velocity, Nuclear Magnetic Resonance (imaging and relaxometry) and Optical Surface Roughness analyses. At 75% RH the nanoparticles fill the pores and inter-crystalline dolomite grain contacts but do not favor calcite re-crystallization as it occurs at 33% RH. The ESEM, XRD and TEM analyses under 75% RH reveal the fast transformation of portlandite (Ca(OH){sub 2}) into vaterite (CaCO{sub 3}), monohydrocalcite (CaCO{sub 3} . H{sub 2}O) and calcite (CaCO{sub 3}), and eventually the physical and hydric properties of the stones significantly improve. New insights are provided for the assessment of consolidation effectiveness of porous carbonate stones with calcium hydroxide nanoparticles under optimum RH conditions combining several NDT.

  2. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques

    International Nuclear Information System (INIS)

    Lopez-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernandez-Valle, M.E.; Alvarez de Buergo, M.; Fort, R.

    2010-01-01

    Slaked lime (Ca(OH) 2 ) nanoparticles were exposed at 33% and 75% relative humidity (RH) to consolidate dolostone samples used in historical buildings. Non-destructive techniques (NDT) were applied to determine the chemical, morphological, physical and hydric properties of the stone samples, before and after 20 days treatment. Morphological and mineralogical characterisation of the nanoparticles was performed. 75% RH favors the consolidation process studied under Environmental Scanning Electron Microscopy (ESEM-EDS), spectrophotometry, capillarity, water absorption under vacuum, ultrasound velocity, Nuclear Magnetic Resonance (imaging and relaxometry) and Optical Surface Roughness analyses. At 75% RH the nanoparticles fill the pores and inter-crystalline dolomite grain contacts but do not favor calcite re-crystallization as it occurs at 33% RH. The ESEM, XRD and TEM analyses under 75% RH reveal the fast transformation of portlandite (Ca(OH) 2 ) into vaterite (CaCO 3 ), monohydrocalcite (CaCO 3 . H 2 O) and calcite (CaCO 3 ), and eventually the physical and hydric properties of the stones significantly improve. New insights are provided for the assessment of consolidation effectiveness of porous carbonate stones with calcium hydroxide nanoparticles under optimum RH conditions combining several NDT.

  3. Development of сertified reference materials set for opened porosity of solid substances and materials (imitators

    Directory of Open Access Journals (Sweden)

    E. P. Sobina

    2016-01-01

    Full Text Available The article deals with data of research for development of certified reference materials set for opened porosity of solid substances and materials (imitators (OPTB SO UNIIM Set Certified Reference Materials GSO 10583-2015. The certified values of opened porosity of metal cylinders were established by the method of hydrostatic weighing before and after boring of holes in. The certified reference materials are intended for calibration and verification of measuring instruments of opened porosity, based on the Boyle - Mariotte's law.

  4. A combined salt-hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance

    KAUST Repository

    Bhandari, Nidhi

    2015-06-01

    A new approach, based on a combination of salt and hard templating for producing multi-modal porous carbons is demonstrated. The hard template, silica nanoparticles, generate mesopores (∼22 nm), and in some cases borderline-macropores (∼64 nm), resulting in high pore volume (∼3.9 cm3/g) while the salt template, zinc chloride, generates borderline-mesopores (∼2 nm), thus imparting high surface area (∼2100 m2/g). The versatility of the proposed synthesis technique is demonstrated using: (i) dual salt templates with hard template resulting in magnetic, nanostructured-clay embedded (∼27% clay content), high surface area (∼1527 m2/g) bimodal carbons (∼2 and 70 nm pores), (ii) multiple hard templates with salt template resulting in tri-modal carbons (∼2, 12 and 28 nm pores), (iii) low temperature (450 °C) synthesis of bimodal carbons afforded by the presence of hygroscopic salt template, (iv) easy coupling with physical activation approaches. A selected set of thus synthesized carbons were used to evaluate, for the first time, the simultaneous effects of carbon porosity and pressure applied during electrode fabrication on EDLC performance. Electrode pressing was found to be more favorable for carbons containing hard-templated mesopores (∼87% capacitance retention at current density of 40 A/g) as compared to those without (∼54% capacitance retention). © 2015 Elsevier Ltd. All rights reserved.

  5. Void porosity measurements in coastal structures

    NARCIS (Netherlands)

    Bosma, C.; Verhagen, H.J.; D'Angremond, K.; Sint Nicolaas, W.

    2002-01-01

    The paper describes the use of two fundamental design parameters, the void porosity and layer thickness in rock armour constructions. These design parameters are very sensible for factors such as the boundary definition of a rock layer, rock production properties, intrinsic properties and

  6. Numerical study on determining formation porosity using a boron capture gamma ray technique and MCNP.

    Science.gov (United States)

    Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong

    2014-12-01

    Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Oxygen plasma treatment of HKUST-1 for porosity retention upon exposure to moisture.

    Science.gov (United States)

    Bae, Jaeyeon; Jung, Jin-Woo; Park, Hyo Yul; Cho, Chang-Hee; Park, Jinhee

    2017-11-07

    Despite their remarkable properties, metal-organic frameworks (MOFs) present vulnerable structures that are sensitive to moisture; therefore, their application to real field situations is challenging. Herein, an O 2 plasma technique was introduced as a new method for the activation and protection of porosity in HKUST-1. In an unprecedented manner, O 2 plasma-treated HKUST-1 retains its porosity after a long exposure to moisture as compared to pristine HKUST-1. Porosity retention was examined by N 2 adsorption/desorption measurements of non-activated HKUST-1 after exposure to moisture.

  8. Compost addition reduces porosity and chlordecone transfer in soil microstructure.

    Science.gov (United States)

    Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie

    2016-01-01

    Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity.

  9. Porosity evolution in Icelandic hydrothermal systems

    Science.gov (United States)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  10. A functionally gradient variational porosity architecture for hollowed scaffolds fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Khoda, A K M [Department of Industrial Engineering, University at Buffalo, Buffalo, NY 14260 (United States); Ozbolat, Ibrahim T [Department of Mechanical and Industrial Engineering, Center for Computer Aided Design, University of Iowa, Iowa City, IA 52242-1527 (United States); Koc, Bahattin, E-mail: bahattinkoc@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956 (Turkey)

    2011-09-15

    This paper presents a novel continuous tool-path planning methodology for hollowed scaffold fabrication in tissue engineering. A new functionally gradient porous architecture is proposed with a continuous material deposition planning scheme. A controllable variational pore size and hence the porosity have been achieved with a combination of two geometrically oriented consecutive layers. The desired porosity has been achieved with consecutive layers by geometrically partitioning each layer into sub-regions based on the area and the tissue scaffold design constraints. A continuous, interconnected and optimized tool-path for layers has been generated for a three-dimensional biomaterial deposition/printing process. A zigzag pattern tool-path has been proposed for an accumulated sub-region layer, and a concentric spiral-like optimal tool-path pattern has been generated for the successive layer to ensure continuity along the structure. Three-dimensional layers, formed by the proposed tool-path plan, vary the pore size and the porosity based on the biological and mechanical requirements. Several examples demonstrate the proposed methodology along with illustrative results. Also a comparative study between the proposed design and conventional Cartesian coordinate scaffolds has been performed. The results demonstrate a significant reduction in design error with the proposed method. Moreover, sample examples have been fabricated using a micro-nozzle biomaterial deposition system, and characterized for validation.

  11. A functionally gradient variational porosity architecture for hollowed scaffolds fabrication

    International Nuclear Information System (INIS)

    Khoda, A K M; Ozbolat, Ibrahim T; Koc, Bahattin

    2011-01-01

    This paper presents a novel continuous tool-path planning methodology for hollowed scaffold fabrication in tissue engineering. A new functionally gradient porous architecture is proposed with a continuous material deposition planning scheme. A controllable variational pore size and hence the porosity have been achieved with a combination of two geometrically oriented consecutive layers. The desired porosity has been achieved with consecutive layers by geometrically partitioning each layer into sub-regions based on the area and the tissue scaffold design constraints. A continuous, interconnected and optimized tool-path for layers has been generated for a three-dimensional biomaterial deposition/printing process. A zigzag pattern tool-path has been proposed for an accumulated sub-region layer, and a concentric spiral-like optimal tool-path pattern has been generated for the successive layer to ensure continuity along the structure. Three-dimensional layers, formed by the proposed tool-path plan, vary the pore size and the porosity based on the biological and mechanical requirements. Several examples demonstrate the proposed methodology along with illustrative results. Also a comparative study between the proposed design and conventional Cartesian coordinate scaffolds has been performed. The results demonstrate a significant reduction in design error with the proposed method. Moreover, sample examples have been fabricated using a micro-nozzle biomaterial deposition system, and characterized for validation.

  12. Local porosity analysis of pore structure in cement paste

    International Nuclear Information System (INIS)

    Hu Jing; Stroeven, Piet

    2005-01-01

    Three-dimensional (3-D) local porosity theory (LPT) was originally proposed by Hilfer and recently used for the analysis of pore space geometry in model sandstone. LPT pursues to define the probability density functions of porosity and porosity connectivity. In doing so, heterogeneity differences in various sandstone samples were assessed. However, fundamental issues as to the stochastic concept of geometric heterogeneity are ignored in Hilfer's LPT theory. This paper focuses on proper sampling procedures that should be based on stochastic approaches to multistage sampling and geometric heterogeneity. Standard LPT analysis provides a 3-D microscopic modeling approach to materials. Traditional experimental techniques yield two-dimensional (2-D) section images, however. Therefore, this paper replaces the method for assessing material data in standard LPT theory to a more practical one, based on stereological, 3-D interpretation of quantitative image analysis data. The developed methodology is used to characterize the pore structure in hardened cement paste with various water/cement ratios (w/c) at different hydration stages

  13. A functionally gradient variational porosity architecture for hollowed scaffolds fabrication.

    Science.gov (United States)

    Khoda, A K M; Ozbolat, Ibrahim T; Koc, Bahattin

    2011-09-01

    This paper presents a novel continuous tool-path planning methodology for hollowed scaffold fabrication in tissue engineering. A new functionally gradient porous architecture is proposed with a continuous material deposition planning scheme. A controllable variational pore size and hence the porosity have been achieved with a combination of two geometrically oriented consecutive layers. The desired porosity has been achieved with consecutive layers by geometrically partitioning each layer into sub-regions based on the area and the tissue scaffold design constraints. A continuous, interconnected and optimized tool-path for layers has been generated for a three-dimensional biomaterial deposition/printing process. A zigzag pattern tool-path has been proposed for an accumulated sub-region layer, and a concentric spiral-like optimal tool-path pattern has been generated for the successive layer to ensure continuity along the structure. Three-dimensional layers, formed by the proposed tool-path plan, vary the pore size and the porosity based on the biological and mechanical requirements. Several examples demonstrate the proposed methodology along with illustrative results. Also a comparative study between the proposed design and conventional Cartesian coordinate scaffolds has been performed. The results demonstrate a significant reduction in design error with the proposed method. Moreover, sample examples have been fabricated using a micro-nozzle biomaterial deposition system, and characterized for validation.

  14. Porosity Defect Remodeling and Tensile Analysis of Cast Steel

    Directory of Open Access Journals (Sweden)

    Linfeng Sun

    2016-02-01

    Full Text Available Tensile properties on ASTM A216 WCB cast steel with centerline porosity defect were studied with radiographic mapping and finite element remodeling technique. Non-linear elastic and plastic behaviors dependent on porosity were mathematically described by relevant equation sets. According to the ASTM E8 tensile test standard, matrix and defect specimens were machined into two categories by two types of height. After applying radiographic inspection, defect morphologies were mapped to the mid-sections of the finite element models and the porosity fraction fields had been generated with interpolation method. ABAQUS input parameters were confirmed by trial simulations to the matrix specimen and comparison with experimental outcomes. Fine agreements of the result curves between simulations and experiments could be observed, and predicted positions of the tensile fracture were found to be in accordance with the tests. Chord modulus was used to obtain the equivalent elastic stiffness because of the non-linear features. The results showed that elongation was the most influenced term to the defect cast steel, compared with elastic stiffness and yield stress. Additional visual explanations on the tensile fracture caused by void propagation were also given by the result contours at different mechanical stages, including distributions of Mises stress and plastic strain.

  15. Porosity estimation by semi-supervised learning with sparsely available labeled samples

    Science.gov (United States)

    Lima, Luiz Alberto; Görnitz, Nico; Varella, Luiz Eduardo; Vellasco, Marley; Müller, Klaus-Robert; Nakajima, Shinichi

    2017-09-01

    This paper addresses the porosity estimation problem from seismic impedance volumes and porosity samples located in a small group of exploratory wells. Regression methods, trained on the impedance as inputs and the porosity as output labels, generally suffer from extremely expensive (and hence sparsely available) porosity samples. To optimally make use of the valuable porosity data, a semi-supervised machine learning method was proposed, Transductive Conditional Random Field Regression (TCRFR), showing good performance (Görnitz et al., 2017). TCRFR, however, still requires more labeled data than those usually available, which creates a gap when applying the method to the porosity estimation problem in realistic situations. In this paper, we aim to fill this gap by introducing two graph-based preprocessing techniques, which adapt the original TCRFR for extremely weakly supervised scenarios. Our new method outperforms the previous automatic estimation methods on synthetic data and provides a comparable result to the manual labored, time-consuming geostatistics approach on real data, proving its potential as a practical industrial tool.

  16. Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy

    Directory of Open Access Journals (Sweden)

    J. Wang

    2015-10-01

    Full Text Available When joining the aluminum alloys, one of the biggest challenges is the formation of porosity, which deteriorates mechanical properties of welds. In this study, the lap welding was conducted on an aluminum alloy 5754 metal sheets with a thickness of 2 mm. The effects of various laser welding parameters on the weld quality were investigated. The porosity content was measured by X-ray inspections. The key is to control the solidification duration of molten pool. When the solidification duration of molten pool is large enough, more bubbles can escape from the molten pool and less remain as porosity.

  17. Characterization of porosity via secondary reactions. Final technical report, 1 September 1991--30 November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Zhang, L.; Hall, P.J.; Antxustegi, M. [Brown Univ., Providence, RI (United States). Div. of Engineering

    1997-09-01

    A new approach to the study of porosity and porosity development in coal chars during gasification was investigated. This approach involves the establishment of the relationships between the amount and type of surface complexes evolved during post-activation temperature programmed desorption (TPD), and the porosity, as measured by gas adsorption and small angle neutron scattering (SANS) techniques. With this new method, the total surface area and micropore volume can be determined by the interpretation of post-activation TPD spectra. The primary conclusion of this work is that it is possible to predict total surface area and micropore volume from TPD spectra. From the extended random pore model, additional information about the micropore surface area, the nonmicroporous surface area, and the mean micropore size development as a function of reaction time (or burn-off) can also be predicted. Therefore, combining the TPD technique and the extended random pore model provides a new method for the characterization of char porosity.

  18. Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shahir Mohd Yusuf

    2017-02-01

    Full Text Available This study investigates the porosity and microhardness of 316L stainless steel samples fabricated by selective laser melting (SLM. The porosity content was measured using the Archimedes method and the advanced X-ray computed tomography (XCT scan. High densification level (≥99% with a low average porosity content (~0.82% were obtained from the Archimedes method. The highest porosity content in the XCT-scanned sample was ~0.61. However, the pores in the SLM samples for both cases (optical microscopy and XCT were not uniformly distributed. The higher average microhardness values in the SLM samples compared to the wrought manufactured counterpart are attributed to the fine microstructures from the localised melting and rapid solidification rate of the SLM process.

  19. Measurement of the porosity of amorphous materials by gamma ray transmission methodology

    International Nuclear Information System (INIS)

    Pottker, Walmir Eno; Appoloni, Carlos Roberto

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV ), a NaI(Tl) scintillation detector, collimators, a XYZ micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  20. Porosity and wear resistance of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermal-sprayed coatings offer practical and economical solutions for corrosion and wear protection of components or tools. To improve the coating properties, heat treatment such as preheat is applied. The selection of coating and substrate materials is a key factor in improving the quality of the coating morphology after the heat treatment. This paper presents the experimental results regarding the effect of preheat temperatures, i.e. 200°C, 300°C and 400°C, on porosity and wear resistance of tungsten carbide (WC) coating sprayed by flame thermal coating. The powders and coatings morphology were analyzed by a Field Emission Scanning Electron Microscope equipped with Energy Dispersive Spectrometry (FE-SEM/EDS), whereas the phase identification was performed by X-Ray diffraction technique (XRD). In order to evaluate the quality of the flame spray obtained coatings, the porosity, micro-hardness and wear rate of the specimens was determined. The results showed that WC coating gives a higher surface hardness from 1391 HVN up to 1541 HVN compared to that of the non-coating. Moreover, the wear rate increased from 0.072 mm3/min. to 0.082 mm3/min. when preheat temperature was increased. Preheat on H13 steel substrate can reduce the percentage of porosity level from 10.24 % to 3.94% on the thermal spray coatings.

  1. Effect of porosity on the ferroelectric and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics

    DEFF Research Database (Denmark)

    Yap, Emily W.; Glaum, Julia; Oddershede, Jette

    2018-01-01

    The ferroelectric and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) ceramics were measured as a function of porosity. Porous BCZT ceramics were fabricated using the sacrificial fugitive technique. Two different pore morphologies were induced by adding polymeric microspheres...... and fibres as the pore-forming agents. Increasing porosity led to decreasing ferroelectric and piezoelectric properties due to a reduction of polarisable BCZT ceramic available. With the benefit of being a lead-free piezoelectric material, porous BCZT ceramics may be considered for acoustic impedance...

  2. Process of making porous ceramic materials with controlled porosity

    Science.gov (United States)

    Anderson, Marc A.; Ku, Qunyin

    1993-01-01

    A method of making metal oxide ceramic material is disclosed by which the porosity of the resulting material can be selectively controlled by manipulating the sol used to make the material. The method can be used to make a variety of metal oxide ceramic bodies, including membranes, but also pellets, plugs or other bodies. It has also been found that viscous sol materials can readily be shaped by extrusion into shapes typical of catalytic or adsorbent bodies used in industry, to facilitate the application of such materials for catalytic and adsorbent applications.

  3. Influence of local porosity and local permeability on the performances of a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Akiki, Tilda [Universite Saint Esprit Kaslik (Lebanon); Universite de Technologie de Belfort-Montbeliard, FCLAB Institute for Research on Fuel Cell Systems, 90010 Belfort (France); Charon, Willy; Iltchev, Marie-Christine; Kouta, Raed [Universite de Technologie de Belfort-Montbeliard, FCLAB Institute for Research on Fuel Cell Systems, 90010 Belfort (France); Accary, Gilbert [Universite Saint Esprit Kaslik (Lebanon)

    2010-08-15

    In the literature, many models and studies focused on the steady-state aspect of fuel cell systems while their dynamic transient behavior is still a wide area of research. In the present paper, we study the effects of mechanical solicitations on the performance of a proton exchange membrane fuel cell as well as the coupling between the physico-chemical phenomena and the mechanical behavior. We first develop a finite element method to analyze the local porosity distribution and the local permeability distribution inside the gas diffusion layer induced by different pressures applied on deformable graphite or steel bipolar plates. Then, a multi-physical approach is carried out, taking into account the chemical phenomena and the effects of the mechanical compression of the fuel cell, more precisely the deformation of the gas diffusion layer, the changes in the physical properties and the mass transfer in the gas diffusion layer. The effects of this varying porosity and permeability fields on the polarization and on the power density curves are reported, and the local current density is also investigated. Unlike other studies, our model accounts for a porosity field that varies locally in order to correctly simulate the effect of an inhomogeneous compression in the cell. (author)

  4. Changes in porosity of graphite caused by radiolytic gasification by carbon dioxide

    International Nuclear Information System (INIS)

    Murdie, Neil; Edwards, I.A.S.; Marsh, Harry

    1986-01-01

    Methods have been developed to study porosity in nuclear grade graphite. The changes induced during the radiolytic gasification of graphite in carbon dioxide have been investigated. Porosity in radiolytically gasified graphite (0-22.8% wt. loss) was examined by optical microscopy and scanning electron microscopy (SEM). Each sample was vacuum impregnated with a slow-setting resin containing a fluorescent dye. Optical microscopy was used to study pores >2 μm 2 c.s.a. A semi-automatic image analysis system linked to the optical microscope enabled pore parameter data including cross-sectional areas, perimeters, Feret's diameters and shape factors, to be collected. The results showed that radiolytic gasification produced a large increase in the number of pores 2 c.s.a. New open pores 2 c.s.a. were developed by gasification of existing open porosity into the closed porosity ( 2 c.s.a.) within the binder-coke. Open pores, 2-100 μm 2 c.s.a., which were gasified within the coarse-grained mosaics of the binder-coke. In the gasification process to 22.8% wt. loss, the apparent open pore volume increased from 6.6 to 33.8% and the apparent closed pore volumes decreased from approx. 3% to 0.1%. The increase in apparent open porosity from 6.6% (virgin) to 33.8% resulted from gasification within original open porosity and by the opening and development of closed porosity. There was no evidence for creation of porosity from within the 'bulk' graphite, it being developed from existing fine porosity. The structure of pores > 100 μm 2 c.s.a. showed no change because of the inhibition of oxidation by deposition of carbonaceous species from the CH 4 inhibitor. Such species diffuse to the pore wall and are sacrificially oxidised. (author)

  5. Stress history influence on sedimentary rock porosity estimates: Implications for geological CO2 storage in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Jie Wu

    2017-01-01

    Full Text Available We established a stress-history-dependent porosity model of potential target rocks for CO2 geosequestration based on rock sample porosity measurements under various effective stresses (5 - 120 MPa. The measured samples were collected from shallow boreholes (< 300 m depth drilled at the frontal fold in northern Taiwan. The lithology, density, and the stress-history-dependent porosity derived from shallow boreholes enabled us to predict the porosity-depth relationship of given rock formations at (burial depths of approximately 3170 - 3470 m potential sites for CO2 geosequestration located near the Taoyuan Tableland coastline. Our results indicate that the porosity of samples derived from laboratory tests under atmospheric pressure is significantly greater than the porosity measured under stress caused by sediment burial. It is therefore strongly recommended that CO2 storage capacity assessment not be estimated from the porosity measured under atmospheric pressure. Neglecting the stress history effect on the porosity of compacted and uplifted rocks may induce a percentage error of 7.7% at a depth of approximately 1000 m, where the thickness of the eroded, formerly overlying formation is 2.5 km in a synthetic case. The CO2 injection pressure effect on the porosity was also evaluated using the stress-history-dependent porosity model. As expected, the pore pressure buildup during CO2 injection will induce an increase in the rock porosity. For example, a large injection pressure of 13 MPa at a depth of approximately 1000 m will increase the rock porosity by a percentage error of 6.7%. Our results have implications for CO2 storage capacity injection pressure estimates.

  6. Some absolutely effective product methods

    Directory of Open Access Journals (Sweden)

    H. P. Dikshit

    1992-01-01

    Full Text Available It is proved that the product method A(C,1, where (C,1 is the Cesàro arithmetic mean matrix, is totally effective under certain conditions concerning the matrix A. This general result is applied to study absolute Nörlund summability of Fourier series and other related series.

  7. Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity

    Science.gov (United States)

    Kim, Minjae; Yoo, Eunjoo; Ahn, Wha-Seung; Shim, Sang Eun

    2018-06-01

    In rechargeable lithium-oxygen (Li-O2) batteries, the porosity of porous carbon materials plays a crucial role in the electrochemical performance serving as oxygen diffusion path and Li ion transfer passage. However, the influence of optimization of porous carbon as an air electrode on cell electrochemical performance remains unclear. To understand the role of carbon porosity in Li-O2 batteries, carbon materials featuring controlled pore sizes and porosity, including C-800 (nearly 96% microporous) and AC-950 (55:45 micro/meso porosity), are designed and synthesized by carbonization using a triazine-based covalent organic polymer (TCOP). We find that the microporous C-800 cathode allows 120 cycles with a limited capacity of 1000 mAh g-1, about 2 and 10 times higher than that of mixed-porosity AC-950 and mesoporous CMK-3, respectively. Meanwhile, the specific discharge capacity of the C-800 electrode at 200 mA g-1 is 6003 mAh g-1, which is lower than that of the 8433 and 9960 mAh g-1 when using AC-950 and CMK-3, respectively. This difference in the electrochemical performance of the porous carbon cathode with different porosity causes to the generation and decomposition of Li2O2 during the charge and discharge cycle, which affects oxygen diffusion and Li ion transfer.

  8. Thermal behavior of human eye in relation with change in blood perfusion, porosity, evaporation and ambient temperature.

    Science.gov (United States)

    Rafiq, Aasma; Khanday, M A

    2016-12-01

    Extreme environmental and physiological conditions present challenges for thermal processes in body tissues including multi-layered human eye. A mathematical model has been formulated in this direction to study the thermal behavior of the human eye in relation with the change in blood perfusion, porosity, evaporation and environmental temperatures. In this study, a comprehensive thermal analysis has been performed on the multi-layered eye using Pennes' bio-heat equation with appropriate boundary and interface conditions. The variational finite element method and MATLAB software were used for the solution purpose and simulation of the results. The thermoregulatory effect due to blood perfusion rate, porosity, ambient temperature and evaporation at various regions of human eye was illustrated mathematically and graphically. The main applications of this model are associated with the medical sciences while performing laser therapy and other thermoregulatory investigation on human eye. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization

    Science.gov (United States)

    Parnell, William J; Grimal, Quentin

    2008-01-01

    Recently, the mesoscale of cortical bone has been given particular attention in association with novel experimental techniques such as nanoindentation, micro-computed X-ray tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged for reliable mathematical models to interpret the related microscopic and mesoscopic data in terms of effective elastic properties. In this work, a new model of cortical bone elasticity is developed and used to assess the influence of mesoscale porosity on the induced anisotropy of the material. Only the largest pores (Haversian canals and resorption cavities), characteristic of the mesoscale, are considered. The input parameters of the model are derived from typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic homogenization to determine the local effective elastic properties by modelling the propagation of low-frequency elastic waves through an idealized material that models the local mesostructure. We use a novel solution of the cell problem developed by Parnell & Abrahams. This solution is stable for the physiological range of variation of mesoscopic porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the solutions can be implemented easily by other workers. Parametric studies are performed in order to assess the influence of mesoscopic porosity, the assumptions regarding the material inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are shown to be in good qualitative agreement with existing schemes and we describe the potential of the scheme for future use in modelling more complex microstructures for cortical bone. In particular, the scheme is shown to be a useful tool with which to predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale. PMID:18628200

  10. Air filled porosity in composting processes

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-07-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  11. Porosity influence on UO2 pellet fracture

    International Nuclear Information System (INIS)

    Quadros, N.F. de; Abreu Aires, M. de; Gentile, E.F.

    1976-01-01

    Compression tests were made with UO 2 pellets with grain size of 0,01 mm, approximately the same for all pellets, and with different porosities. The strain rate was 5,5 X 10 -5 sec -1 at room temperature. From fractographic studies and observations made during the compression tests, it was suggested that the pores and flaws resulting from sintering at 1650 0 C, play a fundamental role on the fracture mechanism of the UO 2 pellets [pt

  12. Air filled porosity in composting processes

    International Nuclear Information System (INIS)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-01-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  13. Soil plasticity with a different porosity

    Directory of Open Access Journals (Sweden)

    Klovanych Sergii

    2017-01-01

    Full Text Available The model of soils with different porosity in the framework of the associated theory of plasticity is presented The single analytical function describes the loading surface in the stress space. The deformational hardening/softening and the phenomenon of dilatancy during plastic flow are incorporated in the model. The triaxial compression tests are simulated and compared with the experimental results for different values of the void ratio and initial hydrostatic stresses.

  14. Acoustics of a Mixed Porosity Felt Airfoil

    Science.gov (United States)

    2016-06-06

    NUWC-NPT Technical Report 12,212 6 June 2016 Acoustics of a Mixed Porosity Felt Airfoil Aren M. Hellum Undersea Warfare Weapons...Felt Airfoil 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Aren M. Hellum 5.d PROJECT NUMBER 5e...existing literature. Geyer et al. [5] measured a sound reduction of 5 to 15 dB for airfoils made entirely of porous material. A 1973 patent

  15. Mathematical aspects of multi-porosity continua

    CERN Document Server

    Straughan, Brian

    2017-01-01

    This book is devoted to describing theories for porous media where such pores have an inbuilt macro structure and a micro structure. For example, a double porosity material has pores on a macro scale, but additionally there are cracks or fissures in the solid skeleton. The actual body is allowed to deform and thus the underlying theory is one of elasticity. Various different descriptions are reviewed. Chapter 1 introduces the classical linear theory of elastodynamics together with uniqueness and continuous dependence results. Chapters 2 and 3 review developments of theories for double and triple porosity using a pressure-displacement structure and also using voids-displacement. Chapter 4 compares various aspects of the pressure-displacement and voids-displacement theories via uniqueness studies and wave motion analysis. Mathematical analyses of double and triple porosity materials are included concentrating on uniqueness and stability studies in chapters 5 to 7. In chapters 8 and 9 the emphasis is on wa...

  16. Monte Carlo Study on Gas Pressure Response of He-3 Tube in Neutron Porosity Logging

    Directory of Open Access Journals (Sweden)

    TIAN Li-li;ZHANG Feng;WANG Xin-guang;LIU Jun-tao

    2016-10-01

    Full Text Available Thermal neutrons are detected by (n,p reaction of Helium-3 tube in the compensated neutron logging. The helium gas pressure in the counting area influences neutron detection efficiency greatly, and then it is an important parameter for neutron porosity measurement accuracy. The variation law of counting rates of a near detector and a far one with helium gas pressure under different formation condition was simulated by Monte Carlo method. The results showed that with the increasing of helium pressure the counting rate of these detectors increased firstly and then leveled off. In addition, the neutron counting rate ratio and porosity sensitivity increased slightly, the porosity measurement error decreased exponentially, which improved the measurement accuracy. These research results can provide technical support for selecting the type of Helium-3 detector in developing neutron porosity logging.

  17. Influence of refining process on the porosity of high pressure die casting alloy Al-Si

    Directory of Open Access Journals (Sweden)

    A.W. Orlowicz

    2009-04-01

    Full Text Available This study presents research results of the influence that refining and transfer of AlSi12S alloy on the porosity of high pressure diecastings.Tests were conducted under production conditions of Die-casting Foundry META-ZEL Sp z o.o. The operation of refining was conducted in a melting furnace, with the use of an FDU Mini Degasser. Decay of the refining effect was assessed by evaluating the porosity content and metallographic examination.

  18. Solutes transport in unsaturated double-porosity medium. Modelling by homogenization and applications

    International Nuclear Information System (INIS)

    Tran Ngoc, T.D.

    2008-07-01

    This Ph.D thesis presents the development of the solute transport models in unsaturated double-porosity medium, by using the asymptotic homogenization method. The obtained macroscopic models concern diffusion, diffusion-convection and dispersion-convection, according to the transport regime which is characterized by the non-dimensional numbers. The models consist of two coupled equations that show the local non-equilibrium of concentrations. The double-porosity transport models were numerically implemented using the code COMSOL Multiphysics (finite elements method), and compared with the solution of the same problem at the fine scale. The implementation allows solving the coupled equations in the macro- and micro-porosity domains (two-scale computations). The calculations of the dispersion tensor as a solution of the local boundary value problems, were also conducted. It was shown that the dispersivity depends on the saturation, the physical properties of the macro-porosity domain and the internal structure of the double-porosity medium. Finally, two series of experiments were performed on a physical model of double-porosity that is composed of a periodic assemblage of sintered clay spheres in Hostun sand HN38. The first experiment was a drainage experiment, which was conducted in order to validate the unsaturated flow model. The second series was a dispersion experiment in permanent unsaturated water flow condition (water content measured by gamma ray attenuation technique). A good agreement between the numerical simulations and the experimental observations allows the validation of the developed models. (author)

  19. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Schultz, W.E.; Smith, H.D.; Smith, M.P.

    1980-01-01

    An improved method and apparatus are described for simultaneously measuring the porosity and thermal neutron capture cross section of earth formations in situ in the vicinity of a well borehole using pulsed neutron well logging techniques. The logging tool which is moved through the borehole consists of a 14 MeV pulsed neutron source, an epithermal neutron detector and a combination gamma ray and fast neutron detector. The associated gating systems, counters and combined digital computer are sited above ground. (U.K.)

  20. Mechanical and hydraulic behaviour of compacting crushed salt backfill at low porosities. Project REPOPERM. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Kroehn, Klaus-Peter; Czaikowski, Oliver; Wieczorek, Klaus; Zhang, Chun-Liang; Moog, Helge; Friedenberg, Larissa [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Stuehrenberg, Dieter; Heemann, Ulrich [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Jobmann, Michael; Mueller, Christian; Schirmer, Sonja [DBE Technology GmbH (DBE TEC), Peine (Germany)

    2017-02-15

    The compaction behavior of crushed salt has been extensively investigated by means of experimental as well as theoretical work. The readiness of numerical tools for the application to modeling the complex coupled thermo-hydro-mechanical processes in the crushed salt backfilled in a repository in salt rock has also been demonstrated. Compaction tests were performed under repository-relevant conditions. These tests were supplemented by laboratory work aiming at specific aspects of compaction. The following list covers the topics of these investigations as well as the main results. - Revisiting the determination of the porosity in relevant, past experiments (BGR). - Influence of the grain size distribution on compaction (BGR). - Triaxial compaction test with dry material at low porosities (BGR). - Investigation of the influence of humidity on compaction covers several subtopics. - Permeability associated with low porosity includes two subtopics. - Constitutive equations for two -phase flow (GRS). - Microstructural Investigations (DBE TEC). Parallel to the experimental work attention focussed on several aspects of the basics for modelling the compaction of crushed salt. This work covers checking the validity of the established numerical tools as well as exploring new methods. Topics and main results are listed here: - Development/definition and comparison of constitutive models (BGR). - Benchmark calculations (BGR and GRS). - Capability of scaling-rules for capillary pressure from the oil industry (GRS). - Application of discrete element codes to compacting crushed salt (DBE TEC). Finally, repository-relevant scenarios are discussed as a basis for a realistic but generic numerical model of brine inflow in to a converging back filled drift under a thermal gradient (GRS). This exercise demonstrates the feasibility of modelling crushed salt compaction as a fully coupled thermohydraulic-mechanical process including two-phase flow effects.

  1. Mechanical and hydraulic behaviour of compacting crushed salt backfill at low porosities. Project REPOPERM. Phase 2

    International Nuclear Information System (INIS)

    Kroehn, Klaus-Peter; Czaikowski, Oliver; Wieczorek, Klaus; Zhang, Chun-Liang; Moog, Helge; Friedenberg, Larissa; Stuehrenberg, Dieter; Heemann, Ulrich; Jobmann, Michael; Mueller, Christian; Schirmer, Sonja

    2017-02-01

    The compaction behavior of crushed salt has been extensively investigated by means of experimental as well as theoretical work. The readiness of numerical tools for the application to modeling the complex coupled thermo-hydro-mechanical processes in the crushed salt backfilled in a repository in salt rock has also been demonstrated. Compaction tests were performed under repository-relevant conditions. These tests were supplemented by laboratory work aiming at specific aspects of compaction. The following list covers the topics of these investigations as well as the main results. - Revisiting the determination of the porosity in relevant, past experiments (BGR). - Influence of the grain size distribution on compaction (BGR). - Triaxial compaction test with dry material at low porosities (BGR). - Investigation of the influence of humidity on compaction covers several subtopics. - Permeability associated with low porosity includes two subtopics. - Constitutive equations for two -phase flow (GRS). - Microstructural Investigations (DBE TEC). Parallel to the experimental work attention focussed on several aspects of the basics for modelling the compaction of crushed salt. This work covers checking the validity of the established numerical tools as well as exploring new methods. Topics and main results are listed here: - Development/definition and comparison of constitutive models (BGR). - Benchmark calculations (BGR and GRS). - Capability of scaling-rules for capillary pressure from the oil industry (GRS). - Application of discrete element codes to compacting crushed salt (DBE TEC). Finally, repository-relevant scenarios are discussed as a basis for a realistic but generic numerical model of brine inflow in to a converging back filled drift under a thermal gradient (GRS). This exercise demonstrates the feasibility of modelling crushed salt compaction as a fully coupled thermohydraulic-mechanical process including two-phase flow effects.

  2. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media

    Science.gov (United States)

    Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai

    2018-02-01

    In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.

  3. Fracture toughness of Dy123 low porosity bulks at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Murakami, A.; Otaka, K.; Miura, T.; Iwamoto, A.

    2011-01-01

    Fracture toughness values were measured for Dy123 bulks. Fracture toughness was improved by reducing porosity. Fracture toughness values at 77 K were higher than those at room temperature. Fracture toughness was also improved by Ag addition. In order to evaluate the fracture toughness of DyBa 2 Cu 3 O x (Dy123) low porosity bulks, bending tests of V-notched specimens cut from the bulks were carried out. Fracture toughness evaluations of a conventional Dy123 bulk which had pores were also carried out and effects of elimination of pores on the fracture toughness were investigated. Fracture toughness values at 77 K of the low porosity bulks were higher than those of the porous bulk. These fracture toughness values at 77 K were higher than the values at room temperature. Fracture toughness of the low porosity bulk was improved by Ag addition.

  4. Formation of peripheral porosity regions around urania in zirconia-urania mixed oxide powder compact sintering

    International Nuclear Information System (INIS)

    Das, P.; Choudhury, R.

    1992-01-01

    Sintering studies of zirconia-urania mixed oxide powder compacts (in stages of 5% urania up to a maximum of 20% addition) were carried out at temperatures between 1000-1400deg C for various soaking periods. The formation of a peripheral porosity region around comparatively coarser urania particle was a characteristic feature in this mixed oxide sintered compact. At even a higher sintering temperature (1800deg C), where extensive solid solution formation takes place, this porosity region demarcates the solutionized particles from the host zirconia apparently acting as a discontinuity in the system. Relative shrinkage difference between the dissimilar particles probably contributes to the porosity regions around the minor second phase at a lower temperature while at higher temperature generation of 'Kirkendall porosity' may be responsible for such an effect. (orig.)

  5. 3D-printing porosity: A new approach to creating elevated porosity materials and structures.

    Science.gov (United States)

    Jakus, A E; Geisendorfer, N R; Lewis, P L; Shah, R N

    2018-05-01

    We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO 4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO 4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6-94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7-742.2%. Studies with adult human mesenchymal stem cells (hMSCs) demonstrated that elevated porosity substantially promotes cell adhesion, viability, and proliferation. F-PLGA can also act as carriers for weak, naturally or synthetically-derived hydrogels. Finally, we show that this process can be extended to other materials including graphene, metals, and ceramics. Porosity plays an essential role in the performance and function of biomaterials, tissue engineering, and clinical medicine. For the same material chemistry, the level of porosity can dictate if it is cell, tissue, or organ friendly; with low porosity materials being far less favorable than high porosity materials. Despite its importance, it has been difficult to create three-dimensionally printed structures that are comprised of materials that have extremely high levels of internal porosity yet are surgically friendly (able to handle and utilize during surgical operations). In this work, we extend a new materials-centric approach to 3D-printing, 3D-Painting, to 3D-printing structures made almost entirely out of water-soluble salt. The structures are then washed in a specific way that not only extracts the salt but causes the structures to increase in size. With the salt removed, the resulting medical polymer

  6. Efeitos de sistemas de cultivo na densidade e macroporosidade do solo e no desenvolvimento radicular do milho em latossolo roxo Effects of tillage systems on bulk density, aeration porosity and root development of corn in a typic haplorthox soil

    Directory of Open Access Journals (Sweden)

    Paulo César Corsini

    1999-02-01

    Full Text Available Neste trabalho foram estudados os efeitos imediato e residual de dois sistemas de preparo na densidade e macroporosidade do solo e no desenvolvimento radicular do milho (Zea mays L., em camadas estruturalmente estabilizadas de um Latossolo Roxo, mantido por longo período sob plantio direto de milho. Os efeitos imediatos das operações envolvendo a subsolagem e a aração e gradagem aumentaram, em menos de um ano agrícola, a macroporosidade da camada superficial desse solo bem como o potencial de desenvolvimento radicular. Nesses tratamentos e nos três primeiros anos agrícolas, a adoção contínua do sistema de plantio direto diminuiu a porosidade de aeração do solo e o potencial de desenvolvimento radicular do milho. Os benefícios da manutenção desse sistema conservacionista nos valores de macroporosidade e densidade na camada superficial do solo iniciaram-se no quarto ano agrícola. A partir daí aumentaram, atingindo no oitavo ano agrícola consecutivo valores semelhantes aos imediatamente obtidos após as operações mecânicas realizadas na instalação do experimento. As relações entre desenvolvimento radicular, densidade e macroporosidade do solo foram estabelecidas por equações bem como por classes de desenvolvimento radicular.The objective of this study was to evaluate the immediate and the residual effects of soil preparation on bulk density, aeration porosity and root development relationships in stabilized structural layers of a typic Haplorthox soil due to long-term no-tillage system of corn (Zea mays L..The immediate effects of soil preparation to planting involving subsoiling, plowing, and disking improved soil macroporosity and root development for a short period of time. In these treatments and on the first three consecutive years, the adoption of continuous no-tillage management decreased soil macroporosity and root development. The long-term benefits of continuous no-tillage on soil macroporosity initiated at the

  7. Porosity measurement of solid pharmaceutical dosage forms by gamma-ray transmission

    International Nuclear Information System (INIS)

    Martins de Oliveira, Jose; Andreo Filho, Newton; Vinicius Chaud, Marco; Angiolucci, Tatiana; Aranha, Norberto; Germano Martins, Antonio Cesar

    2010-01-01

    The aim of the present work is the determination of porosity in tablets by using the gamma-ray transmission technique. Tablet dissolution depends on some inherent characteristics of the manufacturing process, such as compression force, tablet volume, density and porosity, nature of excipients, preparation methods and its physical-chemical properties. Porosity is a measure of empty spaces in a material and can be determined by various techniques. In this paper, we propose the use of a gamma-ray transmission technique to obtain the porosity of experimental formulation of tablets. The results of porosity were compared with those obtained by using conventional methodology (density and mercury intrusion). The experimental setup for gamma-ray transmission consists of a gamma-ray source of 241 Am (photons of 59.6 keV and an activity of 3.7x10 9 Bq), an NaI(Tl) scintillation detector, collimators and a standard gamma-ray spectrometry electronics. Our results suggest that the gamma-ray transmission technique is a powerful tool for non-destructive porosity quantification of solid pharmaceutical forms and presents smaller errors than those obtained with conventional methodologies.

  8. Monte Carlo simulation of determining porosity by using dual gamma detectors

    International Nuclear Information System (INIS)

    Zhang Feng; Liu Juntao; Yu Huawei; Yuan Chao; Jia Yan

    2013-01-01

    Current formation elements spectroscopy logging technology utilize 241 Am-Be neutron source and single BGO detector to determine elements contents. It plays an important role in mineral analysis and lithology identification of unconventional oil and gas exploration, but information measured is relatively ld. Measured system based on 241 Am-Be neutron and dual detectors can be developed to realize the measurement of elements content as well as determine neutron gamma porosity by using ratio of gamma count between near and far detectors. Calculation model is built by Monte Carlo method to study neutron gamma porosity logging response with different spacing and shields. And it is concluded that measuring neutron gamma have high counts and good statistical property contrasted with measuring thermal neutron, but the sensitivity of porosity decrease. Sensitivity of porosity will increase as the spacing of dual detector increases. Spacing of far and near detectors should be around 62 cm and 35 cm respectively. Gamma counts decrease and neutron gamma porosity sensitivity increase when shield is fixed between neutron and detector. The length of main shield should be greater than 10 cm and associated shielding is about 5 cm. By Monte Carlo Simulation study, the result provides technical support for determining porosity in formation elements spectroscopy logging using 241 Am-Be neutron and gamma detectors. (authors)

  9. Porosity, permeability, and their relationship in granite, basalt, and tuff

    International Nuclear Information System (INIS)

    1983-04-01

    This report discusses the porosity, storage, and permeability of fractured (mainly crystalline) rock types proposed as host rock for nuclear waste repositories. The emphasis is on the inter-relationships of these properties, but a number of reported measurements are included as well. The porosity of rock is shown to consist of fracture porosity and matrix porosity; techniques are described for determining the total interconnected porosity through both laboratory and field measurement. Permeability coefficient, as obtained by experiments ranging from laboratory to crustal scale, is discussed. Finally, the problem of determining the relationship between porosity and permeability is discussed. There is no simple, all encompassing relationship that describes the dependence of permeability upon porosity. However, two particular cases have been successfully analyzed: flow through a single rough fracture, and flow through isotropic porous rock. These two cases are discussed in this report

  10. Porosity characterization for heterogeneous shales using integrated multiscale microscopy

    Science.gov (United States)

    Rassouli, F.; Andrew, M.; Zoback, M. D.

    2016-12-01

    Pore size distribution analysis plays a critical role in gas storage capacity and fluid transport characterization of shales. Study of the diverse distribution of pore size and structure in such low permeably rocks is withheld by the lack of tools to visualize the microstructural properties of shale rocks. In this paper we try to use multiple techniques to investigate the full pore size range in different sample scales. Modern imaging techniques are combined with routine analytical investigations (x-ray diffraction, thin section analysis and mercury porosimetry) to describe pore size distribution of shale samples from Haynesville formation in East Texas to generate a more holistic understanding of the porosity structure in shales, ranging from standard core plug down to nm scales. Standard 1" diameter core plug samples were first imaged using a Versa 3D x-ray microscope at lower resolutions. Then we pick several regions of interest (ROIs) with various micro-features (such as micro-cracks and high organic matters) in the rock samples to run higher resolution CT scans using a non-destructive interior tomography scans. After this step, we cut the samples and drill 5 mm diameter cores out of the selected ROIs. Then we rescan the samples to measure porosity distribution of the 5 mm cores. We repeat this step for samples with diameter of 1 mm being cut out of the 5 mm cores using a laser cutting machine. After comparing the pore structure and distribution of the samples measured form micro-CT analysis, we move to nano-scale imaging to capture the ultra-fine pores within the shale samples. At this stage, the diameter of the 1 mm samples will be milled down to 70 microns using the laser beam. We scan these samples in a nano-CT Ultra x-ray microscope and calculate the porosity of the samples by image segmentation methods. Finally, we use images collected from focused ion beam scanning electron microscopy (FIB-SEM) to be able to compare the results of porosity measurements

  11. Physical Explanation of Archie's Porosity Exponent in Granular Materials: A Process-Based, Pore-Scale Numerical Study

    Science.gov (United States)

    Niu, Qifei; Zhang, Chi

    2018-02-01

    The empirical Archie's law has been widely used in geosciences and engineering to explain the measured electrical resistivity of many geological materials, but its physical basis has not been fully understood yet. In this study, we use a pore-scale numerical approach combining discrete element-finite difference methods to study Archie's porosity exponent m of granular materials over a wide porosity range. Numerical results reveal that at dilute states (e.g., porosity ϕ > 65%), m is exclusively related to the particle shape and orientation. As the porosity decreases, the electric flow in pore space concentrates progressively near particle contacts and m increases continuously in response to the intensified nonuniformity of the local electrical field. It is also found that the increase in m is universally correlated with the volume fraction of pore throats for all the samples regardless of their particle shapes, particle size range, and porosities.

  12. Investigation of the influence on residual stresses of porosity in high temperature ZrO2 coatings on Ag tape for magnet technologies

    International Nuclear Information System (INIS)

    Arman, Yusuf; Aktas, Mehmet; Celik, Erdal; Mutlu, Ibrahim H.; Sayman, Onur

    2007-01-01

    The present paper reports on the effect on residual stresses of porosity in high temperature ZrO 2 coatings on Ag tape for magnet technologies. ZrO 2 coatings were fabricated on Ag tape substrate using a reel-to-reel sol-gel system. The microstructural evolution of high temperature ZrO 2 coatings was investigated by a scanning electron microscope (SEM). SEM observations revealed that ZrO 2 coatings with crack had some porosity and mosaic structure. Stress analysis was carried out on ZrO 2 coatings with porosity on Ag tape substrates under cryogenic conditions by using classical lamination theory (CLT) for elastic solution and finite element method (FEM) for elasto-plastic solution in the temperature range of 0 o C to -223 o C in liquid helium media. Because of the static equilibrium, tensile force is applied to the Ag substrate, by ZrO 2 coating. The stress component (σ x ) values change rapidly at coating-substrate interface owing to the different moduli of elasticity and thermal expansion coefficient. In spite of the thickness of Ag substrate, the stress components vary from tensile to compressive. In addition, along the thickness of ZrO 2 coating and Ag substrate system, the stress distribution changes linearly. FEM results demonstrate that the failure does not occur in ZrO 2 coating for all porosities due to its high yield strength

  13. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Shultz, W.E.

    1980-01-01

    A method for simultaneously determining the porosity and thermal neutron capture cross-section of earth formations in the vicinity of a well borehole is claimed. It comprises the following steps: passing a well tool into a cased well borehole. The tool has a pulsed source of fast neutrons, a combination fast neutron and gamma ray detector and an epithermal neutron detector; repetitively irradiating the earth formations in the vicinity of the borehole with bursts of fast neutrons; detecting the fast neutron and epithermal neutron populations in the borehole (during the neutron bursts) and generating first and second measurement signals; detecting for second and third time intervals during the time between the neutron bursts, the gamma radiation present in the borehole due to the capture of thermalized neutrons by the nuclei of elements comprising the earth formations and generating third and fourth measurement signals; and combining the first and second measurement signals according to a predetermined relationship to derive an indication of the porosity of the earth formations and combining the third and fourth measurement signals to derive an indication of the thermal neutron capture cross-section of the earth formations

  14. Controlled porosity solubility modulated osmotic pump tablets of gliclazide.

    Science.gov (United States)

    Banerjee, Arti; Verma, P R P; Gore, Subhash

    2015-06-01

    A system that can deliver drug at a controlled rate is very important for the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Poorly water-soluble drug with pH-dependent solubility such as gliclazide (GLZ) offers challenges in the controlled-release formulation because of low dissolution rate and poor bioavailability. Solid dispersion (SD) of GLZ consisted of hydroxypropyl cellulose (HPC-SSL) as a polymeric solubilizer was manufactured by hot melt extrusion (HME) technology. Then, controlled porosity osmotic pump (CPOP) tablet of gliclazide was designed to deliver drug in a controlled manner up to 16 h. The developed formulation was optimized for type and level of pore former and coating weight gain. The optimized formulation was found to exhibit zero order kinetics independent of pH and agitation speed but depends on osmotic pressure of dissolution media indicated that mechanism of drug release was osmotic pressure. The in vivo performance prediction of developed formulation using convolution approach revealed that the developed formulation was superior to the existing marketed extended-release formulation in terms of attaining steady state plasma levels and indicated adequate exposure in translating hypoglycemic response. The prototype solubilization method combined with controlled porosity osmotic pump based technique could provide a unique way to increase dissolution rate and bioavailability of many poorly water-soluble, narrow therapeutic index drugs used in diabetes, cardiovascular diseases, etc.

  15. Carbonate reservoir characterization with lithofacies clustering and porosity prediction

    International Nuclear Information System (INIS)

    Al Moqbel, Abdulrahman; Wang, Yanghua

    2011-01-01

    One of the objectives in reservoir characterization is to quantitatively or semi-quantitatively map the spatial distribution of its heterogeneity and related properties. With the availability of 3D seismic data, artificial neural networks are capable of discovering the nonlinear relationship between seismic attributes and reservoir parameters. For a target carbonate reservoir, we adopt a two-stage approach to conduct characterization. First, we use an unsupervised neural network, the self-organizing map method, to classify the reservoir lithofacies. Then we apply a supervised neural network, the back-propagation algorithm, to quantitatively predict the porosity of the carbonate reservoir. Based on porosity maps at different time levels, we interpret the target reservoir vertically related to three depositional phases corresponding to, respectively, a lowstand system tract before sea water immersion, a highstand system tract when water covers organic deposits and a transition zone for the sea level falling. The highstand system is the most prospective zone, given the organic content deposited during this stage. The transition zone is also another prospective feature in the carbonate depositional system due to local build-ups

  16. Comparing flows to a tunnel for single porosity, double porosity and discrete fracture representations of the EDZ

    International Nuclear Information System (INIS)

    Hawkins, I.; Swift, B.; Hoch, A.; Wendling, J.

    2010-01-01

    transfer between the continua. The MINC model is an extension of double continuum models. Double continuum models assume that the flow between the fractures and matrix blocks is 'quasi-steady' (i.e. proportional to the local difference in average pressure between the fractures and matrix blocks). In contrast, the MINC model treats this flow in a fully transient way; it resolves the gradients that drive the flow by discretizing the matrix blocks into a nested sequence of volume elements. DFN models were implemented using the computer program NAPSAC. The program uses an efficient finite-element method that allows the flow through many thousands of fractures to be calculated accurately. Amongst its capabilities, NAPSAC is able to: calculate the effective continuum permeability tensor; calculate the porosity and the inter-fracture matrix block size; simulate steady-state and transient inflows to tunnels; and simulate unsaturated flow in fractured rocks. Continuum models were implemented using the computer program TOUGH2v2. TOUGH2v2 can be used to simulate multiphase flows in single continuum, double continuum or MINC models. A DFN model of the EDZ was developed. The model includes three classes of fractures. - Chevron fractures are curved, flowing surfaces, which cut perpendicular to the tunnel axis and have a variable spacing. - Oblique fractures are planar, and cut into the side of the tunnel at a defined angle. - Random fractures are small, planar features, which lie in a narrow region close to the tunnel wall. - Additionally, lattices of fractures were included in the DFN model to represent the undamaged clay and the concrete lining of the tunnel. NAPSAC was used to calculate effective continuum permeability tensors and porosities for sub-regions of the DFN model. These permeability tensors and porosities were used to parameterize both single continuum and MINC models of the EDZ. For each of the models (i.e. DFN, single continuum and MINC), desaturation of the

  17. From obc seismic to porosity volume: A pre-stack analysis of a turbidite reservoir, deepwater Campos Basin, Brazil

    Science.gov (United States)

    Martins, Luiz M. R.

    The Campos Basin is the best known and most productive of the Brazilian coastal basins. Turbidites are, by far, the main oil-bearing reservoirs. Using a four component (4-C) ocean-bottom-cable (OBC) seismic survey I set out to improve the reservoir characterization in a deep-water turbidite field in the Campos Basin. In order to achieve my goal, pre-stack angle gathers were derived and PP and PS inversion were performed. The inversion was used as an input to predict the petrophysical properties of the reservoir. Converting seismic reflection amplitudes into impedance profiles not only maximizes vertical resolution but also minimizes tuning effects. Mapping the porosity is extremely important in the development of a hydrocarbon reservoirs. Combining seismic attributes derived from the P-P data and porosity logs I use linear multi-regression and neural network geostatistical tools to predict porosity between the seismic attributes and porosity logs at the well locations. After predicting porosity in well locations, those relationships were applied to the seismic attributes to generate a 3-D porosity volume. The predicted porosity volume highlighted the best reservoir facies in the reservoir. The integration of elastic impedance, shear impedance and porosity improved the reservoir characterization.

  18. Determining Effective Thermal Conductivity of Fabrics by Using Fractal Method

    Science.gov (United States)

    Zhu, Fanglong; Li, Kejing

    2010-03-01

    In this article, a fractal effective thermal conductivity model for woven fabrics with multiple layers is developed. Structural models of yarn and plain woven fabric are derived based on the fractal characteristics of macro-pores (gap or channel) between the yarns and micro-pores inside the yarns. The fractal effective thermal conductivity model can be expressed as a function of the pore structure (fractal dimension) and architectural parameters of the woven fabric. Good agreement is found between the fractal model and the thermal conductivity measurements in the general porosity ranges. It is expected that the model will be helpful in the evaluation of thermal comfort for woven fabric in the whole range of porosity.

  19. Elastic wave scattering from multiple voids (porosity)

    International Nuclear Information System (INIS)

    Thompson, D.O.; Rose, J.H.; Thompson, R.B.; Wormley, S.J.

    1983-01-01

    This paper describes the development of an ultrasonic backscatter measurement technique which provides a convenient way to determine certain characteristics of a distribution of voids (porosity) in materials. A typical ultrasonic sample prepared by placing the ''frit'' in a crucible in an RF induction heater is shown. The results of the measurements were Fourier transformed into an amplitude-frequency description, and were then deconvolved with the transducer response function. Several properties needed to characterize a void distribution are obtained from the experimental results, including average void size, the spatial extent of the voids region, the average void separation, and the volume fraction of material contained in the void distribution. A detailed comparison of values obtained from the ultrasonic measurements with visually determined results is also given

  20. Change in Soil Porosity under Load

    Science.gov (United States)

    Dyba, V. P.; Skibin, E. G.

    2017-11-01

    The theoretical basis for the process of soil compaction under various loading paths is considered in the article, the theoretical assumptions are compared with the results of the tests of clay soil on a stabilometer. The variant of the critical state model of the sealing plastic-rigid environment is also considered the strength characteristics of which depend on the porosity coefficient. The loading surface is determined by the results of compression and stabilometrical tests. In order to clarify the results of this task, it is necessary to carry out stabilometric tests under conditions of simple loading, i.e. where the vertical pressure would be proportional to the compression pressure σ3 = kσ1. Within the study the attempts were made to confirm the model given in the beginning of the article by laboratory tests. After the analysis of the results, the provided theoretical assumptions were confirmed.

  1. A study of porosity of synthetic polymer nanoparticles using PALS

    Energy Technology Data Exchange (ETDEWEB)

    Pham, B; Smith, S V [Centre for Antimatter-Matter Studies, Australian Nuclear Science and Technology Organisation (ANSTO) NSW 2232 (Australia); Guagliardo, P; Williams, J; Samarin, S, E-mail: binh.pham@ansto.gov.au, E-mail: svs@ansto.gov.au [Centre for Antimatter-Matter Studies, School of Physics, University of Western Australia, WA 6009 (Australia)

    2011-01-01

    Positron annihilation lifetime spectroscopy (PALS) has been used to study the free volume in dry synthetic polymer nanoparticles of various sizes. A series of poly(styrene/divinyl benzene) particles with diameters in the range of 100 to 500 nm were synthesized and then carefully chemically treated using the sulfonation process, to increase their porosity. The particles were characterised by Scanning Electron Microscopy (SEM), light scattering and PALS. Light scattering gave larger size for the treated particles, reflecting the hydration effect and therefore the increase in porosity. PALS spectra of untreated and treated particles gave four and three life-time components, respectively. Analysis by PAScual version 1.3.0 program indicated there was a reduction in the intensity and the type of the micropores in the treated particles. The data suggest PALS is a sensitive tool for detecting changes in microporosity in particles. The conflicting results obtained for light scattering compared to PALS for chemically treated particles is difficult to resolve and suggests sample preparation of polymeric materials for PALS is the critical factor.

  2. Evaluation of concrete mechanical strength through porosity

    Directory of Open Access Journals (Sweden)

    Olivares, M.

    2004-03-01

    Full Text Available The increasing on voids or pores in any material - if the rest of characteristics remains equal -always causes a decrease in their mechanical strength since the ratio volume/resistant mass is lower Following all these fact a well known conclusion rises: there is a relationship between compacity/porosity and mechanical strengths. The purpose of this research is to establish a new possible correlation between both concrete properties with independence of the proportions, type of cement, size of grain, age, use. etc. So it can be concluded that the results of this research allow the engineer or architect in charge of a restoration or reparation to determine the compression strength of a concrete element. A first step is to determine the porosity through a rather short number of tests. Subsequently, compression strength will be obtained applying just a mathematical formula.

    El aumento de huecos o poros de cualquier material, lo mismo que en otras circunstancias, redunda siempre en una merma de sus resistencias mecánicas, al haber menor volumen-masa resistente. En consecuencia, puede deducirse, que hay una relación entre la compacidad/porosidad y las resistencias mecánicas. En el presente trabajo se estudia una posible correlación entre ambas propiedades del hormigón con independencia de su dosificación, tipo de cemento, granulometría, edad, uso, etc. Las conclusiones obtenidas en la presente investigación permiten al técnico, encargado de una restauración o rehabilitación, determinar la resistencia a compresión de un elemento de hormigón, una vez hallada, de una forma sencilla, la porosidad de una muestra no muy voluminosa, mediante la aplicación de una simple fórmula matemática.

  3. On the Use of Surface Porosity to Reduce Unsteady Lift

    Science.gov (United States)

    Tinetti, Ana F.; Kelly, Jeffrey J.; Bauer, Steven X. S.; Thomas, Russell H.

    2001-01-01

    An innovative application of existing technology is proposed for attenuating the effects of transient phenomena, such as rotor-stator and rotor-strut interactions, linked to noise and fatigue failure in turbomachinery environments. A computational study was designed to assess the potential of passive porosity technology as a mechanism for alleviating interaction effects by reducing the unsteady lift developed on a stator airfoil subject to wake impingement. The study involved a typical high bypass fan Stator airfoil (solid baseline and several porous configurations), immersed in a free field and exposed to the effects of a transversely moving wake. It was found that, for the airfoil under consideration, the magnitude of the unsteady lift could be reduced more than 18% without incurring significant performance losses.

  4. Estimation and measurement of porosity change in cement paste

    International Nuclear Information System (INIS)

    Lee, Eunyong; Jung, Haeryong; Kwon, Ki-jung; Kim, Do-Gyeum

    2011-01-01

    Laboratory-scale experiments were performed to understand the porosity change of cement pastes. The cement pastes were prepared using commercially available Type-I ordinary Portland cement (OPC). As the cement pastes were exposed in water, the porosity of the cement pastes sharply increased; however, the slow decrease of porosity was observed as the dissolution period was extended more than 50 days. As expected, the dissolution reaction was significantly influenced by w/c ratio and the ionic strength of solution. A thermodynamic model was applied to simulate the porosity change of the cement pastes. It was highly influenced by the depth of the cement pastes. There was porosity increase on the surface of the cement pastes due to dissolution of hydration products, such as portlandite, ettringite, and CSH. However, the decrease of porosity was estimated inside the cement pastes due to the precipitation of cement minerals. (author)

  5. Determination of Porosity in Shale by Double Headspace Extraction GC Analysis.

    Science.gov (United States)

    Zhang, Chun-Yun; Li, Teng-Fei; Chai, Xin-Sheng; Xiao, Xian-Ming; Barnes, Donald

    2015-11-03

    This paper reports on a novel method for the rapid determination of the shale porosity by double headspace extraction gas chromatography (DHE-GC). Ground core samples of shale were placed into headspace vials and DHE-GC measurements of released methane gas were performed at a given time interval. A linear correlation between shale porosity and the ratio of consecutive GC signals was established both theoretically and experimentally by comparing with the results from the standard helium pycnometry method. The results showed that (a) the porosity of ground core samples of shale can be measured within 30 min; (b) the new method is not significantly affected by particle size of the sample; (c) the uncertainties of measured porosities of nine shale samples by the present method range from 0.31 to 0.46 p.u.; and (d) the results obtained by the DHE-GC method are in a good agreement with those from the standard helium pycnometry method. In short, the new DHE-GC method is simple, rapid, and accurate, making it a valuable tool for shale gas-related research and applications.

  6. Porosity influence of power generating equipment structural materials on its thermoelastic characteristics and thermal conductivity

    Science.gov (United States)

    Zarubin, V. S.; Sergeeva, E. S.

    2017-11-01

    This paper outlines simulation models that represent the quantitative interdependencies between the thermal conductivity and the thermoelastic properties of composites, on the one hand, and their porous structure and matrix properties, as well as the volume fraction of their reinforcing inclusions, on the other hand. As the reinforcing inclusions, randomly-oriented anisotropic single-wall carbon nanotubes (SWNT) are taken. The key means for constructing the simulation models are the self-matching method and the dual variational formulation of the thermal conductivity/thermoelasticity problem for a non-homogeneous solid body. With the simulation models presented below, it is possible to estimate the effect the nanocomposite porosity has on the thermoelastic properties and thermal conductivity of nanocomposites.

  7. Electro-location, tomography and porosity measurements in geotechnical centrifuge models based on electrical resistivity concepts

    Science.gov (United States)

    Li, Zhihua

    This research was focused on the development of electrical techniques for soil characterization and soil dynamic behavior assessment. The research carried out mainly includes (1) development of a needle probe tool for assessment of soil spatial variability in terms of porosity with high-resolution in the centrifuge testing; (2) development of an electro-location technique to accurately detect buried objects' movements inside the soil during dynamic events; (3) collaborative development of a new electrode switching system to implement electrical resistivity tomography, and electro-location with high speed and high resolution. To assess soil spatial variability with high-resolution, electrical needle probes with different tip shapes were developed to measure soil electrical resistivity. After normalizing soil resistivity by pore fluid resistivity, this information can be correlated to soil porosity. Calibrations in laboratory prepared soils were conducted. Loosening due to insertion of needle probes was evaluated. A special needle probe tool, along with data acquisition and data processing tools were developed to be operated by the new NEES robot on the centrifuge. The needle probes have great potential to resolve interfaces between soil layers and small local porosity variations with a spatial resolution approximately equal to the spacing between electrodes (about half of the probe diameter). A new electrode switching system was developed to accurately detect buried objects' movements using a new electro-location scheme. The idea was to establish an electromagnetic field in a centrifuge model by injecting low-frequency alternating currents through pairs of boundary electrodes. The locations of buried objects are related to the potentials measured on them. A closed form expression for the electric field in a rectangular specimen with insulated boundaries was obtained based on the method of images. Effects of sampling parameters on spatial resolution and tradeoffs

  8. Integration of ANFIS, NN and GA to determine core porosity and permeability from conventional well log data

    Science.gov (United States)

    Ja'fari, Ahmad; Hamidzadeh Moghadam, Rasoul

    2012-10-01

    Routine core analysis provides useful information for petrophysical study of the hydrocarbon reservoirs. Effective porosity and fluid conductivity (permeability) could be obtained from core analysis in laboratory. Coring hydrocarbon bearing intervals and analysis of obtained cores in laboratory is expensive and time consuming. In this study an improved method to make a quantitative correlation between porosity and permeability obtained from core and conventional well log data by integration of different artificial intelligent systems is proposed. The proposed method combines the results of adaptive neuro-fuzzy inference system (ANFIS) and neural network (NN) algorithms for overall estimation of core data from conventional well log data. These methods multiply the output of each algorithm with a weight factor. Simple averaging and weighted averaging were used for determining the weight factors. In the weighted averaging method the genetic algorithm (GA) is used to determine the weight factors. The overall algorithm was applied in one of SW Iran’s oil fields with two cored wells. One-third of all data were used as the test dataset and the rest of them were used for training the networks. Results show that the output of the GA averaging method provided the best mean square error and also the best correlation coefficient with real core data.

  9. Integration of ANFIS, NN and GA to determine core porosity and permeability from conventional well log data

    International Nuclear Information System (INIS)

    Ja’fari, Ahmad; Moghadam, Rasoul Hamidzadeh

    2012-01-01

    Routine core analysis provides useful information for petrophysical study of the hydrocarbon reservoirs. Effective porosity and fluid conductivity (permeability) could be obtained from core analysis in laboratory. Coring hydrocarbon bearing intervals and analysis of obtained cores in laboratory is expensive and time consuming. In this study an improved method to make a quantitative correlation between porosity and permeability obtained from core and conventional well log data by integration of different artificial intelligent systems is proposed. The proposed method combines the results of adaptive neuro-fuzzy inference system (ANFIS) and neural network (NN) algorithms for overall estimation of core data from conventional well log data. These methods multiply the output of each algorithm with a weight factor. Simple averaging and weighted averaging were used for determining the weight factors. In the weighted averaging method the genetic algorithm (GA) is used to determine the weight factors. The overall algorithm was applied in one of SW Iran’s oil fields with two cored wells. One-third of all data were used as the test dataset and the rest of them were used for training the networks. Results show that the output of the GA averaging method provided the best mean square error and also the best correlation coefficient with real core data. (paper)

  10. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Czech Academy of Sciences Publication Activity Database

    Medřický, J.; Curry, N.; Pala, Zdeněk; Vilémová, Monika; Chráska, Tomáš; Johansson, J.; Markocsan, N.

    2015-01-01

    Roč. 24, č. 4 (2015), s. 622-628 ISSN 1059-9630 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : gas turbine s * high temperature application * porosity of coatings * stabilized zirconia * thermal barrier coatings (TBCs) Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.568, year: 2015

  11. Qualitative and quantitative comparison of geostatistical techniques of porosity prediction from the seismic and logging data: a case study from the Blackfoot Field, Alberta, Canada

    Science.gov (United States)

    Maurya, S. P.; Singh, K. H.; Singh, N. P.

    2018-05-01

    In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.

  12. Impact of cover crops and tillage on porosity of podzolic soil

    Science.gov (United States)

    Błażewicz-Woźniak, M.; Konopiñski, M.

    2013-09-01

    The aim of the study was to determine the influence of cover crops biomass, mixed with the soil on different dates and with the use of different tools in field conditions. The cover crop biomass had a beneficial influence on the total porosity of the 0-20 cm layer of the soil after winter. The highest porosity was achievedwith cover crops of buckwheat, phacelia and mustard, the lowest with rye. During the vegetation period the highest porosity of soil was observed in the ridges. Among the remaining non-ploughing cultivations, pre-winter use of stubble cultivator proved to have a beneficial influence on the soil porosity, providing results comparable to those achieved in conventional tillage. The differential porosity of the soil was modified not only by the catch crops and the cultivation methods applied, but also by the sample collection dates, and it did change during the vegetation period. The highest content of macropores after winter was observed for the phacelia cover crop, and the lowest in the case of cultivation without any cover crops. Pre-winter tillage with the use of a stubble cultivator increased the amount of macropores in soil in spring, and caused the biggest participation of mesopores as compared with other non-ploughing cultivation treatments of the soil. The smallest amount of mesopores was found in the ridges.

  13. Cellular Automaton Study of Hydrogen Porosity Evolution Coupled with Dendrite Growth During Solidification in the Molten Pool of Al-Cu Alloys

    Science.gov (United States)

    Gu, Cheng; Wei, Yanhong; Yu, Fengyi; Liu, Xiangbo; She, Lvbo

    2017-09-01

    Welding porosity defects significantly reduce the mechanical properties of welded joints. In this paper, the hydrogen porosity evolution coupled with dendrite growth during solidification in the molten pool of Al-4.0 wt pct Cu alloy was modeled and simulated. Three phases, including a liquid phase, a solid phase, and a gas phase, were considered in this model. The growth of dendrites and hydrogen gas pores was reproduced using a cellular automaton (CA) approach. The diffusion of solute and hydrogen was calculated using the finite difference method (FDM). Columnar and equiaxed dendrite growth with porosity evolution were simulated. Competitive growth between different dendrites and porosities was observed. Dendrite morphology was influenced by porosity formation near dendrites. After solidification, when the porosities were surrounded by dendrites, they could not escape from the liquid, and they made pores that existed in the welded joints. With the increase in the cooling rate, the average diameter of porosities decreased, and the average number of porosities increased. The average diameter of porosities and the number of porosities in the simulation results had the same trend as the experimental results.

  14. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Science.gov (United States)

    Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie

    2015-04-01

    Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.

  15. Pore former induced porosity in LSM/CGO cathodes for electrochemical cells for flue gas purification

    DEFF Research Database (Denmark)

    Skovgaard, M.; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    In this study the effect of the characteristics of polymethyl methacrylate (PMMA) pore formers on the porosity, pore size distribution and the air flow through the prepared lanthanum strontium manganate/gadolinium-doped cerium oxide (LSM/CGO) cathodes was investigated. Porous cathodes were obtained...... and the highest porosity measured was 46.4% with an average pore diameter of 0.98 μm. The air flow through this cathode was measured to 5.8 ml/(min mm2). Also the effect of exposure time to the solvent was tested for the most promising PMMA pore former and it was found that the average pore diameter decreases...

  16. High Porosity Alumina as Matrix Material for Composites of Al-Mg Alloys

    International Nuclear Information System (INIS)

    Gömze, L A; Egész, Á; Gömze, L N; Ojima, F

    2013-01-01

    The sophisticated industry and technologies require higher and higher assumptions against mechanical strength and surface hardness of ceramic reinforced metal alloys and metal matrix composites. Applying the well-known alumina powders by dry pressing technology and some special pore-forming additives and sintering technology the authors have successfully developed a new, high porosity alumina matrix material for composites of advenced Al-Mg alloys. The developed new matrix material have higher than 30% porosity, with homogenous porous structure and pore sizes from few nano up to 2–3 mm depending on the alloys containments. Thanks to the used materials and the sintering conditions the authors could decrease the wetting angles less than 90° between the high porosity alumina matrix and the Al-Mg alloys. Applied analytical methods in this research were laser granulometry, scanning electron microscopy, and X-ray diffraction. Digital image analysis was applied to microscopy results, to enhance the results of transformation

  17. In silico modeling of structural and porosity properties of additive manufactured implants for regenerative medicine.

    Science.gov (United States)

    Brünler, Ronny; Aibibu, Dilbar; Wöltje, Michael; Anthofer, Anna-Maria; Cherif, Chokri

    2017-07-01

    Additive manufacturing technologies are a promising technology towards patient-specific implants for applications in regenerative medicine. The Net-Shape-Nonwoven technology is used to manufacture structures from short fibers with interconnected pores and large functional surfaces that are predestined for cell adhesion and growth. The present study reports on a modeling approach with a particular focus on the specific structural properties. The overall porosities and mean pore-sizes of the digital models are simulated according to liquid-displacement porosity in a tool implemented in the modeling software. This allows adjusting the process parameters fiber length and fiber diameter to generate biomimetic structures with pore-sizes adapted to the requirements of the tissue that is to be replaced. Modeling the structural and porosity properties of scaffolds and implants leads to an efficient use of the processed biomaterials as the trial-and-error method is avoided. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1.

    Science.gov (United States)

    Feldblyum, Jeremy I; Liu, Ming; Gidley, David W; Matzger, Adam J

    2011-11-16

    There are several compounds for which there exists a disconnect between porosity as predicted by crystallography and porosity measured by gas sorption analysis. In this paper, the Zn-based analogue of Cu(3)(btc)(2) (HKUST-1), Zn(3)(btc)(2) (Zn-HKUST-1; btc = 1,3,5-benzenetricarboxylate) is investigated. Conventional analysis of Zn-HKUST-1 by powder X-ray diffraction and gas sorption indicates retention of crystalline structure but negligible nitrogen uptake at 77 K. By using positron annihilation lifetime spectroscopy, a densified surface layer preventing the entry of even small molecular species into the crystal framework is revealed. The material is shown to have inherent surface instability after solvent removal, rendering it impermeable to molecular guests irrespective of handling and processing methods. This previously unobserved surface instability may provide insight into the failure of other microporous coordination polymers to exhibit significant porosity despite crystal structures indicative of regular, interconnected, microporous networks.

  19. Property-porosity relationships for polymer-impregnated superconducting ceramic composite

    International Nuclear Information System (INIS)

    Salib, S.; Vipulanandan, C.

    1990-01-01

    A thermoplastic polymer, poly(methyl methacrylate) (PMMA), was used to improve the flexural properties of the high-temperature superconducting ceramic (YBa 2 Cu 3 O 7-δ ). Ceramic specimens with different porosities were prepared by dry compacting 12.5-mm-diameter disk specimens at various uniaxial pressures. Density-pressure relationships have been developed for before- and after-sintering conditions. The PMMA polymer was impregnated into the porous ceramic at room temperature. The mechanical properties were evaluated by concentrically loading simply supported disk specimens. The load-displacement responses were analyzed using the finite-element method. Impregnation of PMMA polymer at room temperature increased the flexural strength and modulus of the superconducting ceramic without affecting its electrical properties. The flexural properties depended on the porosity of the ceramics, and, hence, linear and nonlinear property-porosity relationships have been used to characterize the behavior of superconducting ceramic with an without the polymer

  20. Application of a novel cellular automaton porosity prediction model to aluminium castings

    International Nuclear Information System (INIS)

    Atwood, R.C.; Chirazi, A.; Lee, P.D.

    2002-01-01

    A multiscale model was developed to predict the formation of porosity within a solidifying aluminium-silicon alloy. The diffusion of silicon and dissolved gas was simulated on a microscopic scale combined with cellular automaton models of gas porosity formation within the growing three-dimensional solidification microstructure. However, due to high computational cost, the modelled volume is limited to the millimetre range. This renders the application of direct modelling of complex shape castings unfeasible. Combining the microstructural modelling with a statistical response-surface prediction method allows application of the microstructural model results to industrial scale casts by incorporating them in commercial solidification software. (author)

  1. Experimental Investigation of Closed Porosity of Inorganic Solidified Foam Designed to Prevent Coal Fires

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2015-01-01

    Full Text Available In order to overcome the deficiency of the existing fire control technology and control coal spontaneous combustion by sealing air leakages in coal mines, inorganic solidified foam (ISF with high closed porosity was developed. The effect of sodium dodecyl sulfate (SDS concentration on the porosity of the foams was investigated. The results showed that the optimized closed porosity of the solidified foam was 38.65 wt.% for an SDS concentration of approximately 7.4×10-3 mol/L. Based on observations of the microstructure of the pore walls after solidification, it was inferred that an equilibrium between the hydration process and the drainage process existed. Therefore, the ISF was improved using three different systems. Gelatin can increase the viscosity of the continuous phase to form a viscoelastic film around the air cells, and the SDS + gelatin system can create a mixed surfactant layer at gas/liquid interfaces. The accelerator (AC accelerates the hydration process and coagulation of the pore walls before the end of drainage. The mixed SDS + gelatin + AC systems produced an ISF with a total porosity of 79.89% and a closed porosity of 66.89%, which verified the proposed stabilization mechanism.

  2. Characterization of the spatial distribution of porosity in the eogenetic karst Miami Limestone using ground penetrating radar

    Science.gov (United States)

    Mount, G. J.; Comas, X.; Wright, W. J.; McClellan, M. D.

    2014-12-01

    Hydrogeologic characterization of karst limestone aquifers is difficult due to the variability in the spatial distribution of porosity and dissolution features. Typical methods for aquifer investigation, such as drilling and pump testing, are limited by the scale or spatial extent of the measurement. Hydrogeophysical techniques such as ground penetrating radar (GPR) can provide indirect measurements of aquifer properties and be expanded spatially beyond typical point measures. This investigation used a multiscale approach to identify and quantify porosity distribution in the Miami Limestone, the lithostratigraphic unit that composes the uppermost portions of the Biscayne Aquifer in Miami Dade County, Florida. At the meter scale, laboratory measures of porosity and dielectric permittivity were made on blocks of Miami Limestone using zero offset GPR, laboratory and digital image techniques. Results show good correspondence between GPR and analytical porosity estimates and show variability between 22 and 66 %. GPR measurements at the field scale 10-1000 m investigated the bulk porosity of the limestone based on the assumption that a directly measured water table would remain at a consistent depth in the GPR reflection record. Porosity variability determined from the changes in the depth to water table resulted in porosity values that ranged from 33 to 61 %, with the greatest porosity variability being attributed to the presence of dissolution features. At the larger field scales, 100 - 1000 m, fitting of hyperbolic diffractions in GPR common offsets determined the vertical and horizontal variability of porosity in the saturated subsurface. Results indicate that porosity can vary between 23 and 41 %, and delineate potential areas of enhanced recharge or groundwater / surface water interactions. This study shows porosity variability in the Miami Limestone can range from 22 to 66 % within 1.5 m distances, with areas of high macroporosity or karst dissolution features

  3. Porosity, petrophysics and permeability of the Whitby Mudstone (UK)

    Science.gov (United States)

    Houben, M.; Barnhoorn, A.; Hardebol, N.; Ifada, M.; Boersma, Q.; Douma, L.; Peach, C. J.; Bertotti, G.; Drury, M. R.

    2016-12-01

    Typically pore diameters in shales range from the µm down to the nm scale and the effective permeability of shale reservoirs is a function of the interconnectivity between the pore space and the natural fracture network present. The length and spacing of mechanical induced and natural fractures is one of the factors controlling gas produtivity from unconventional reservoirs. Permeability of the Whitby Mudstone measured on 1 inch cores was linked to microstructure and combined with natural fracture spacing present in outcrops along the Yorkshire coast (UK) to get insight into possible fluid pathways from reservoir to well. We used a combination of different techniques to characterize the porosity (gas adsorption, Scanning Electron Microscopy), mineralogy (X-Ray Fluorescence, X-Ray Diffraction, Scanning Electron Microscopy) and permeability (pressure step decay) of the Whitby Mudstone. In addition, we mapped the natural fracture network as present in outcrops along the Yorkshire coast (UK) at the 10-2-101m scale. Mineralogically we are dealing with a rock that is high in clay content and has an average organic matter content of about 10%. Results show a low porosity (max. 7%) as well as low permeability for the Whitby Mudstone. The permeability, measured parallel to bedding, depends on the confining pressure and is 86 nanodarcy at 10 MPa effective confining pressure and decreases to 16 nanodarcy at 40 MPa effective confining pressure. At the scale of observation the average distance to nearest natural fracture is in the order of 0.13 meter and 90 percent of all matrix elements are spaced within 0.4 meter to the nearest fracture. By assuming darcy flow, a permeability of 100 nanodarcy and 10% of overpressure we calculated that for the Whitby mudstone most of the gas resides in the matrix for less than 60 days until it reaches the fracture network.

  4. Computational intelligence models to predict porosity of tablets using minimum features

    Directory of Open Access Journals (Sweden)

    Khalid MH

    2017-01-01

    Full Text Available Mohammad Hassan Khalid,1 Pezhman Kazemi,1 Lucia Perez-Gandarillas,2 Abderrahim Michrafy,2 Jakub Szlęk,1 Renata Jachowicz,1 Aleksander Mendyk1 1Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; 2Centre National de la Recherche Scientifique, Centre RAPSODEE, Mines Albi, Université de Toulouse, Albi, France Abstract: The effects of different formulations and manufacturing process conditions on the physical properties of a solid dosage form are of importance to the pharmaceutical industry. It is vital to have in-depth understanding of the material properties and governing parameters of its processes in response to different formulations. Understanding the mentioned aspects will allow tighter control of the process, leading to implementation of quality-by-design (QbD practices. Computational intelligence (CI offers an opportunity to create empirical models that can be used to describe the system and predict future outcomes in silico. CI models can help explore the behavior of input parameters, unlocking deeper understanding of the system. This research endeavor presents CI models to predict the porosity of tablets created by roll-compacted binary mixtures, which were milled and compacted under systematically varying conditions. CI models were created using tree-based methods, artificial neural networks (ANNs, and symbolic regression trained on an experimental data set and screened using root-mean-square error (RMSE scores. The experimental data were composed of proportion of microcrystalline cellulose (MCC (in percentage, granule size fraction (in micrometers, and die compaction force (in kilonewtons as inputs and porosity as an output. The resulting models show impressive generalization ability, with ANNs (normalized root-mean-square error [NRMSE] =1% and symbolic regression (NRMSE =4% as the best-performing methods, also exhibiting reliable predictive

  5. EFFECT OF BLANCHING METHODS ON

    African Journals Online (AJOL)

    Prof(Mrs)T-Akintunde

    2011-12-07

    Dec 7, 2011 ... effect on the on the drying kinetics of fruits and vegetables [3, 4, 6, 7, 8]. ..... reduced the effect of skin thickness, which is a normal resistance to water .... Karathanos VT and VG Belessiotis Sun and Artificial Air Drying Kinetics.

  6. Tunable-Porosity Membranes From Discrete Nanoparticles

    Science.gov (United States)

    Marchetti, Patrizia; Mechelhoff, Martin; Livingston, Andrew G.

    2015-01-01

    Thin film composite membranes were prepared through a facile single-step wire-wound rod coating procedure in which internally crosslinked poly(styrene-co-butadiene) polymer nanoparticles self-assembled to form a thin film on a hydrophilic ultrafiltration support. This nanoparticle film provided a defect-free separation layer 130–150 nm thick, which was highly permeable and able to withstand aggressive pH conditions beyond the range of available commercial membranes. The nanoparticles were found to coalesce to form a rubbery film when heated above their glass transition temperature (Tg). The retention properties of the novel membrane were strongly affected by charge repulsion, due to the negative charge of the hydroxyl functionalized nanoparticles. Porosity was tuned by annealing the membranes at different temperatures, below and above the nanoparticle Tg. This enabled fabrication of membranes with varying performance. Nanofiltration properties were achieved with a molecular weight cut-off below 500 g mol−1 and a low fouling tendency. Interestingly, after annealing above Tg, memory of the interstitial spaces between the nanoparticles persisted. This memory led to significant water permeance, in marked contrast to the almost impermeable films cast from a solution of the same polymer. PMID:26626565

  7. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Directory of Open Access Journals (Sweden)

    Kohei Tanaka

    Full Text Available Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1 covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes, and 2 open nests, in which eggs are exposed in the nest and brooded (as in most birds. Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1 covered nests are likely the primitive condition for dinosaurs (and probably archosaurs, and 2 open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment

  8. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Science.gov (United States)

    Tanaka, Kohei; Zelenitsky, Darla K; Therrien, François

    2015-01-01

    Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1) covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes), and 2) open nests, in which eggs are exposed in the nest and brooded (as in most birds). Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity) of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1) covered nests are likely the primitive condition for dinosaurs (and probably archosaurs), and 2) open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids) were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment. Open nests

  9. SR-Can. Data and uncertainty assessment. Matrix diffusivity and porosity in situ

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu; Loefgren, Martin; Neretnieks, Ivars [Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)

    2006-12-15

    The molecular diffusion in microscopically small pores of crystalline rock matrices allows radionuclides to enter the stagnant matrix water. The water volume in the matrix is orders of magnitude larger than the mobile water in the flowing fractures. This effect will retard the nuclide migration. A further retardation effect is due to the sorption of the sorbing nuclides on the interior surfaces of the matrix. The internal surfaces are on the order of 100,000 times larger than the surfaces of the flowing fractures. It is therefore important to ensure that matrix diffusion will take place in intact rock under the stresses which prevail at repository depths. Laboratory experiments on drill cores have shown that the matrix porosity is connected over distances of at least several tens of centimetres for un-stressed samples. Samples that have been re-stressed to repository depth stresses have also been found to have connected porosity. Diffusivities in re-stressed samples were found to be up to three times lower than in un-stressed samples. This was found both using actual through-diffusion experiments as well as electrical conductivity measurements. Diffusion experiments are very time consuming, costly and difficult to make in deeply lying rock under undisturbed conditions. An alternative way of measuring the mobility of charged species in porous rock is by using electric current to carry the ions. For bulk water this has a long-standing theoretical basis and is used to determine ion diffusivities. The method has also long been used in laboratory investigation to measure diffusivities in porous rocks. It has been shown to give electrical conductivities that agree well with that expected from diffusivity measurements. A number of tests have been made with AC (alternating current) and DC (direct current) to measure resistivities as well as using DC current to conduct ions through rock samples. These tests clearly confirm that the different methods give comparable results

  10. SR-Can. Data and uncertainty assessment. Matrix diffusivity and porosity in situ

    International Nuclear Information System (INIS)

    Jinsong Liu; Loefgren, Martin; Neretnieks, Ivars

    2006-12-01

    The molecular diffusion in microscopically small pores of crystalline rock matrices allows radionuclides to enter the stagnant matrix water. The water volume in the matrix is orders of magnitude larger than the mobile water in the flowing fractures. This effect will retard the nuclide migration. A further retardation effect is due to the sorption of the sorbing nuclides on the interior surfaces of the matrix. The internal surfaces are on the order of 100,000 times larger than the surfaces of the flowing fractures. It is therefore important to ensure that matrix diffusion will take place in intact rock under the stresses which prevail at repository depths. Laboratory experiments on drill cores have shown that the matrix porosity is connected over distances of at least several tens of centimetres for un-stressed samples. Samples that have been re-stressed to repository depth stresses have also been found to have connected porosity. Diffusivities in re-stressed samples were found to be up to three times lower than in un-stressed samples. This was found both using actual through-diffusion experiments as well as electrical conductivity measurements. Diffusion experiments are very time consuming, costly and difficult to make in deeply lying rock under undisturbed conditions. An alternative way of measuring the mobility of charged species in porous rock is by using electric current to carry the ions. For bulk water this has a long-standing theoretical basis and is used to determine ion diffusivities. The method has also long been used in laboratory investigation to measure diffusivities in porous rocks. It has been shown to give electrical conductivities that agree well with that expected from diffusivity measurements. A number of tests have been made with AC (alternating current) and DC (direct current) to measure resistivities as well as using DC current to conduct ions through rock samples. These tests clearly confirm that the different methods give comparable results

  11. Tailoring the porosity of hierarchical zeolites by carbon-templating

    DEFF Research Database (Denmark)

    Zhu, Kake; Egeblad, Kresten; Christensen, Claus H.

    2008-01-01

    We report the synthesis and characterization of a series of hierarchical porous zeolite single crystal materials with a range of porosities made available by carbon-templating using differently-sized carbon particles as templates for the additional non-micropore porosity. The materials were...

  12. Casting Porosity-Free Grain Refined Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schwam, David [Case Western Reserve University

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  13. Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace

    Energy Technology Data Exchange (ETDEWEB)

    Dolberg, David M.

    1998-12-31

    This presentation relates to porosity prediction from seismic inversion. The porosity prediction concerns the Lavrans Field of the Halten Terrace on the Norwegian continental shelf. The main themes discussed here cover seismic inversion, rock physics, statistical analysis - verification of well trends, upscaling/sculpting, and implementation. 2 refs., 6 figs.

  14. Impedance Spectroscopic Characterisation of Porosity in 3D Cell Culture Scaffolds with Different Channel Networks

    DEFF Research Database (Denmark)

    Canali, Chiara; Mohanty, Soumyaranjan; Heiskanen, Arto

    2015-01-01

    We present the application of electrochemical impedance spectroscopy (EIS) as a method for discriminating between different polydimethylsiloxane (PDMS) scaffolds for three-dimensional (3D) cell cultures. The validity of EIS characterisation for scaffolds having different degree of porosity...... serve as means of single-frequency measurements for fast scaffold characterization combined with in vitro monitoring of 3D cell cultures....

  15. Porosity measurement of amorphous materials by gamma ray transmission; Medida de porosidade de materiais amorfos por transmissao de raios gama

    Energy Technology Data Exchange (ETDEWEB)

    Poettker, Walmir Eno

    2000-07-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a {sup 241} Am source (59,53 keV), a NaI (Tl) scintillation detector, collimators, a XYZ, micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  16. The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules

    Energy Technology Data Exchange (ETDEWEB)

    Alphenaar, P.A. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology); Perez, M.C. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology); Lettinga, G. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology)

    1993-05-01

    The relationship between porosity, diameter and methanogenic activity of anaerobic granules has been investigated. Experiments with different granular sludges revealed that substrate transport limitations increase with the diameter of the granules. As a consequence, autolysis can occur in the core of the granule, producing hollow granules. The porosity measurements revealed that the hollow centre is not available for substrate transport. Possibly as an effect of bacterial lysis, the porosity decreases in the more interior layers of the granules. This results in a inactive inner part of the large granules, which is not involved in the treatment process; the specific methanogenic activity decreases with granule size. No marked difference in substrate affinity is observed between granules of different sizes, which probably indicates that for large granules only the exterior is biological active. (orig.)

  17. Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-09-01

    In this article, the size-dependent and porosity-dependent vibrational behavior of magneto-electro-elastic functionally graded (MEE-FG) nanoscale beams on two-parameter elastic substrate is presented via a third-order shear deformation beam model. Porosity-dependent material coefficients of the nanobeam are compositionally graded throughout the thickness according to a modified power-law model. Incorporation of small size effect is carried out based on Eringen's nonlocal elasticity theory. Through Hamilton's principle, derivation of nonlocal governing equations is performed. After analytically solving these equations, the influences of porosity, elastic foundation, magnetic potential, applied voltage, scale coefficient, material gradation and slenderness ratio on the frequencies of the porous MEE-FG nanobeams are examined.

  18. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    Science.gov (United States)

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-02-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3-99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale.

  19. Porosity study on free mineral addition cement paste

    International Nuclear Information System (INIS)

    Salgueiro, W.; Somoza, A.; Cabrera, O.; Consolati, G.

    2004-01-01

    A study of the hydration process and the porosity evolution in a cement paste is presented. The analysis of porosity was made in samples with water to cement ratios (w/c) of 0.24, 0.40 and 0.60 at age of 3, 7, 28 and 365 days, respectively. Information on the evolution of total porosity and on the strength of the paste were obtained using positron annihilation lifetime spectroscopy (PALS), scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical tests (compression and flexion) and water absorption techniques. Specifically, positron lifetime technique allowed us to analyze the evolution of gel and capillary porosity during the hydration process. Using a simple function proposed, reasonable fits to the experimental data of the porosity evolution as a function of the compression strength were obtained

  20. Relating porosity and mechanical properties in spray formed tubulars

    International Nuclear Information System (INIS)

    Payne, R.D.; Naval Surface Warfare Center, Annapolis, MD; Moran, A.L.; United States Naval Academy, Annapolis, MD; Cammarata, R.C.

    1993-01-01

    Because the spray forming process holds the potential to reduce the cost of alloy production, there is significant interest in developing methods to industrialized and automate this process through advanced sensing techniques. These advanced sensing techniques will observe the process real-time and give inputs to a process controller. By determining relationships between part quality, process parameters and sensor inputs, the process controller will be able to determine the quality of a part while it is being made and make adjustments if necessary. A Tinius-Olsen Tensile Tester was used to test five tensile specimens. The five tensile specimens were taken from five alloy 625 (60% Ni, 20% Cr, 8%Mo, 5% Fe) tubulars with varying properties. Among the advanced sensing techniques currently used to monitor the spray forming process is a surface roughness sensor. It consists of an argon laser, a charge coupled device (CCD) camera and roughness determination software. The laser emission is expanded into a long, thin line and projected onto the substrate as the molten metal consolidates on the surface. The roughness determination software will grab a frame with the laser stripe, digitize it and calculate the root mean square (RMS) value of the roughness in that particular frame. Each frame has a time stamp and can be related back to other time stamped process parameters. Recent sensor work has tried to find correlations between RMS values and porosities determined after processing. This venture has met with limited success. The object of this paper is to link porosity with mechanical properties and therefore define quality. Eventually the input from all sensors and process parameters will be entered into a process controller. If there is a link between sensor data and quality, this controller will be able to determine the quality of a forming material from sensor inputs and make changes in the process parameters if the quality is poor

  1. POROSITY OF THE WALL OF A NEUROLAC (R) NERVE CONDUIT HAMPERS NERVE REGENERATION

    NARCIS (Netherlands)

    Meek, Marcel F.; Den Dunnen, Wilfred F. A.

    2009-01-01

    One way to improve nerve regeneration and bridge longer nerve gaps may be the use of semipermeable/porous conduits. With porosity less biomaterial is used for the nerve conduit. We evaluated the short-term effects of porous Neurolac (R) nerve conduits for in vivo peripheral nerve regeneration. In 10

  2. Porosity in fiber laser formation of 5A06 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang Chun; Wang, Chun Ming; Hu, Xi Yuan; Wang, Jun; Yu, Sheng Fu [HUST, Wuhan (China)

    2010-05-15

    The mechanism of porosity formation and its suppression methods in laser formation of aluminum alloy have been studied using a 4kW fiber laser to weld 5A06 aluminum alloy with SAl-Mg5 filler. It was found that the porosity formation is closely related to the stability of the keyhole and fluctuation of the molten pool in the laser welding aluminum alloy. The filling wire increased the instability of the keyhole and weld pool, thus further increasing the amount of gas cavities in the joint. Prefabrication of a suitable gap for the butt joint can provide a natural passage for the flow of the liquid metal, which can weaken, and even completely eliminate the disturbance of the filling wire on the formation of keyhole. The gap can also provide a passage for the escape of the bubble. Thus, this method can greatly decrease the sheet's susceptibility to porosity. Moreover, for a thin sheet, if the power of the laser is sufficient to form a keyhole with stable penetration through the weld sheet, a weld bead without porosity can also be obtained because closing the keyhole is almost impossible

  3. Porosity in fiber laser formation of 5A06 aluminum alloy

    International Nuclear Information System (INIS)

    Yu, Yang Chun; Wang, Chun Ming; Hu, Xi Yuan; Wang, Jun; Yu, Sheng Fu

    2010-01-01

    The mechanism of porosity formation and its suppression methods in laser formation of aluminum alloy have been studied using a 4kW fiber laser to weld 5A06 aluminum alloy with SAl-Mg5 filler. It was found that the porosity formation is closely related to the stability of the keyhole and fluctuation of the molten pool in the laser welding aluminum alloy. The filling wire increased the instability of the keyhole and weld pool, thus further increasing the amount of gas cavities in the joint. Prefabrication of a suitable gap for the butt joint can provide a natural passage for the flow of the liquid metal, which can weaken, and even completely eliminate the disturbance of the filling wire on the formation of keyhole. The gap can also provide a passage for the escape of the bubble. Thus, this method can greatly decrease the sheet's susceptibility to porosity. Moreover, for a thin sheet, if the power of the laser is sufficient to form a keyhole with stable penetration through the weld sheet, a weld bead without porosity can also be obtained because closing the keyhole is almost impossible

  4. Causes and remedies for porosity in composite manufacturing

    Science.gov (United States)

    Fernlund, G.; Wells, J.; Fahrang, L.; Kay, J.; Poursartip, A.

    2016-07-01

    Porosity is a challenge in virtually all composite processes but in particular in low pressure processes such as out of autoclave processing of prepregs, where the maximum pressure is one atmosphere. This paper discusses the physics behind important transport phenomena that control porosity and how we can use our understanding of the underlying science to develop strategies to achieve low porosity for these materials and processes in an industrial setting. A three step approach is outlined that addresses and discusses: gas evacuation of trapped air, volatiles and off-gassing, and resin infiltration of evacuated void space.

  5. Porosity in Ocean Racing Yacht Composites: a Review

    Science.gov (United States)

    Baley, Christophe; Lan, Marine; Davies, Peter; Cartié, Denis

    2015-02-01

    Ocean racing yachts are mainly manufactured from carbon/epoxy composites similar to those used by the aeronautical industry but, with some exceptions such as masts, these structures are not produced in autoclaves. This leads to the presence of higher porosity levels. This paper will first present the different types of porosity found in traditional racing yacht structures. Difficulties in evaluating defect levels will then be discussed and published work characterizing the influence of defects will be reviewed. Current developments to improve racing yacht composite quality such as thin ply technology, out-of-autoclave processing and automated fibre placement will then be described, and their implications for porosity will be discussed.

  6. Influence of porosity on mechanical properties of tetragonal stabilized zirconia

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Soprani, Stefano

    2018-01-01

    3YSZ specimens with variable open porosity (1–57%) were fabricated, and the stiffness, strength and fracture properties (fracture toughness and R-curve) were measured to investigate their potential use as support structures for solid oxide fuel or electrolysis cells. The ball-on-ring test was used...... to characterize Young's modulus and Weibull strength. The variation of fracture toughness with porosity was investigated and modelled using the results from fracture mechanical testing. A distinct R-curve behaviour was observed in dense 3YSZ specimens, in samples with a porosity around 15% and in some...... supports for SOFC/SOECs from a mechanical point of view....

  7. Mapping urban porosity and roughness characteristics as a mean of defining urban ventilation corridors

    Science.gov (United States)

    Wicht, Marzena; Wicht, Andreas; Osińska-Skotak, Katarzyna

    2017-10-01

    Cities can be characterized with the roughest aerodynamic boundaries, which results in the enhanced turbulent motion and increased drag effect. This leads to reduced wind speeds and directly increases negative effects of living within urban areas. Urban Heat Island, decreased air quality or densely built-up residential/industrial areas occur in many cities, both in temperate and tropical regions, and are included in these negative effects. This case study investigates Warsaw, the capital of Poland, representing a dense, urban environment, located in the temperate zone. It suffers from immense air pollution levels, as well as Urban Heat Island, and the local government is seeking ways to resolve these issues. Among many mitigation techniques, air restoration and exchange system were suggested as appropriate measures, as they address many of the aforementioned issues. The essential elements of such system are ventilation corridors. This paper describes mapping these corridors utilizing the morphometric methods of urban roughness aided by remote sensing data. We focus especially on the terrain topology and texture of single elements, including high vegetation canopy layer. This study considers DSM and different porosity of obstacles, deriving a new outlook at the morphometric methods as a way to improve them. The mapped areas of low roughness characteristics might be appointed as ventilation corridors and play a crucial role in air restoration and exchange system. They may also be included in further planning processes by the local government as preservation areas.

  8. Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets

    Science.gov (United States)

    Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping

    2018-03-01

    Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.

  9. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    Science.gov (United States)

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 970-974, 2003

  10. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  11. 2.5-D poroelastic wave modelling in double porosity media

    Science.gov (United States)

    Liu, Xu; Greenhalgh, Stewart; Wang, Yanghua

    2011-09-01

    To approximate seismic wave propagation in double porosity media, the 2.5-D governing equations of poroelastic waves are developed and numerically solved. The equations are obtained by taking a Fourier transform in the strike or medium-invariant direction over all of the field quantities in the 3-D governing equations. The new memory variables from the Zener model are suggested as a way to represent the sum of the convolution integrals for both the solid particle velocity and the macroscopic fluid flux in the governing equations. By application of the memory equations, the field quantities at every time step need not be stored. However, this approximation allows just two Zener relaxation times to represent the very complex double porosity and dual permeability attenuation mechanism, and thus reduce the difficulty. The 2.5-D governing equations are numerically solved by a time-splitting method for the non-stiff parts and an explicit fourth-order Runge-Kutta method for the time integration and a Fourier pseudospectral staggered-grid for handling the spatial derivative terms. The 2.5-D solution has the advantage of producing a 3-D wavefield (point source) for a 2-D model but is much more computationally efficient than the full 3-D solution. As an illustrative example, we firstly show the computed 2.5-D wavefields in a homogeneous single porosity model for which we reformulated an analytic solution. Results for a two-layer, water-saturated double porosity model and a laterally heterogeneous double porosity structure are also presented.

  12. Dynamics of hydrocarbon vents: Focus on primary porosity

    Science.gov (United States)

    Johansen, C.; Shedd, W.; Abichou, T.; Pineda-Garcia, O.; Silva, M.; MacDonald, I. R.

    2012-12-01

    at least three degrees of porosity (i.e. traveling through faulted consolidated sediment, unconsolidated sediment, and finally the gas hydrate outcroppings as described here). The oil and gas travel from the sub-bottom reservoir along, what is thought, an interface between the salt and sediment, and then up a fault in the consolidated sediment. When it reaches the unconsolidated sediments, vertical pathways bifurcate due to lack of sediment strength to allow for the oil and gas to reach different clusters of hydrocarbon vents at the sea floor. Hydrocarbon vents are formed and sustained by a combination of pressure, temperature, and gas solubility (Peltzer & Brewer, 2000) creating persistent primary porosity conduits, from which the bubbles escape at different rates depending on the size of the tubes. Previous research has been carried out in order to determine the effect of temperature fluxes on hydrocarbon outcroppings (MacDonald et al, 2005), however, a focus on the dynamics at this level of primary porosity is lacking. By determining the rate and size of bubbles and pore size distribution of the hydrocarbon outcropping, we can explore the hydraulic properties. Therefore, examination of biological and physical effects, such as the role of ice-worms, and the effect of tides, allow for a better understanding of the dynamics and persistency of hydrocarbon vent outcroppings.

  13. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    Science.gov (United States)

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  14. The efficiency of windbreaks on the basis of wind field and optical porosity measurement

    Directory of Open Access Journals (Sweden)

    Tomáš Středa

    2008-01-01

    Full Text Available Windbreaks have been used for many years to reduce wind speed as a wind-erosion control mea­su­re. To assessment of windbreak efficiency two main parameters are using: height of windbreak (H and aerodynamic porosity. In South Moravian Region the total area of windbreaks is approximately 1200 ha. For purposes of horizontal profile measurement of wind speed and wind direction windbreaks with various spices composition, age and construction in cadastral territory Suchá Loz and Micmanice were chosen. Windbreak influence on horizontal wind profile was found out in distance of 50, 100, 150 and 200 m in front and behind windbreak in two-meter height above surface. For the optical porosity measurement the ImageTool program was used. The wind field measurement results of windbreak in Suchá Loz cadastral shows limited effect of windbreak on wind speed. The windbreak is created mainly by Canadian poplars (Populus × canadensis. In dependence on main species foliage stage the effect of windbreak was obvious on leeward side to distance of 100–150 m (c. 5–7 H. Average optical porosity of windbreak in Suchá Loz was 50% (April. Reduction of average wind speed was about 17% maximally in this stage. Optical porosity was 20% and wind speed reduction was about 37% during second measurement (October. The second monitored windbreak (Micmanice had a significant influence on wind speed even to the maximal measured distance (200 m, c. 14 H. This windbreak crea­ted mainly by Acer sp. and Fraxinus excelsior reduced the wind speed about 64%. During first measurement (May the optical porosity of 20% and maximal wind speed reduction of 64% were assessed. For optical porosity of 21% (October the wind speed reduction was about 55%. Close relation between optical porosity and wind speed reduction was found out by statistical evaluation. Correlation coefficient regardless locality for distance of 50 m was −0.80, 100 m −0.92, 150 m −0.76 and for distance of 200 m

  15. The use of multi-energy-group neutron diffusion theory to numerically evaluate the relative utility of three dial-detector neutron porosity well logging tools

    International Nuclear Information System (INIS)

    Zalan, T.A.

    1988-01-01

    Multi-energy-group neutron diffusion theory is used to numerically evaluate the utility of two different dual-detector neutron porosity logging devices, a 14 MeV (accelerator) neutron source - epithermal neutron detector device and a 4 MeV neutron source - capture gamma-ray detector device, relative to the traditional 4 MeV neutron source - thermal neutron detector device. Fast and epithermal neutron diffusion parameters are calculated using Monte Carlo - derived neutron flux distributions. Thermal parameters are calculated from tabulated cross sections. An existing analytical method to describe the transport of gamma-rays through common earth materials is modified in order to accommodate the modeling of the 4 MeV neutron - capture gamma-ray device. The 14 MeV neutron - epithermal neutron device is found to be less sensitive to porosity than the 4 MeV neutron - capture gamma-ray device, which in turn is found to be less sensitive to porosity than the traditional 4 MeV neutron - thermal neutron device. Salinity effects are found to be comparable for the 4 MeV neutron - capture gamma-ray and 4 MeV neutron - thermal neutron devices. The 4 MeV neutron capture gamma-ray measurement is found to be deepest investigating

  16. Rules for Flight Paths and Time of Flight for Flows in Porous Media with Heterogeneous Permeability and Porosity

    Directory of Open Access Journals (Sweden)

    Lihua Zuo

    2017-01-01

    Full Text Available Porous media like hydrocarbon reservoirs may be composed of a wide variety of rocks with different porosity and permeability. Our study shows in algorithms and in synthetic numerical simulations that the flow pattern of any particular porous medium, assuming constant fluid properties and standardized boundary and initial conditions, is not affected by any spatial porosity changes but will vary only according to spatial permeability changes. In contrast, the time of flight along the streamline will be affected by both the permeability and porosity, albeit in opposite directions. A theoretical framework is presented with evidence from flow visualizations. A series of strategically chosen streamline simulations, including systematic spatial variations of porosity and permeability, visualizes the respective effects on the flight path and time of flight. Two practical rules are formulated. Rule  1 states that an increase in permeability decreases the time of flight, whereas an increase in porosity increases the time of flight. Rule  2 states that the permeability uniquely controls the flight path of fluid flow in porous media; local porosity variations do not affect the streamline path. The two rules are essential for understanding fluid transport mechanisms, and their rigorous validation therefore is merited.

  17. Development of model hydroxyapatite bone scaffolds with multiscale porosity for potential load bearing applications

    Science.gov (United States)

    Dellinger, Jennifer Gwynne

    2005-11-01

    Model hydroxyapatite (HA) bone scaffolds consisting of a latticed pattern of rods were fabricated by a solid freeform fabrication (SFF) technique based on the robotic deposition of colloidal pastes. An optimal HA paste formulation for this method was developed. Local porosity, i.e. microporosity (1--30 mum) and sintering porosity (less than 1 mum), were produced by including polymer microsphere porogens in the HA pastes and by controlling the sintering of the scaffolds. Scaffolds with and without local porosity were evaluated with and without in vitro accelerated degradation. Percent weight loss of the scaffolds and calcium and phosphorus concentrations in solution increased with degradation time. After degradation, compressive strength and modulus decreased significantly for scaffolds with local porosity, but did not change significantly for scaffolds without local porosity. The compressive strength and modulus of scaffolds without local porosity were comparable to human cortical bone and were significantly greater than the scaffolds with local porosity. Micropores in HA disks caused surface pits that increased the surface roughness as compared to non-microporous HA disks. Mouse mesenchymal stem cells extended their cell processes into these microporous pits on HA disks in vitro. ALP expression was prolonged, cell attachment strength increased, and ECM production appeared greater on microporous HA disks compared to non-microporous HA disks and tissue culture treated polystyrene controls. Scaffolds with and without microporosity were implanted in goats bones. Microporous scaffolds with rhBMP-2 increased the percent of the scaffold filled with bone tissue compared to microporous scaffolds without rhBMP-2. Lamellar bone inside scaffolds was aligned near the rods junctions whereas lamellar bone was aligned in a more random configuration away from the rod junctions. Microporous scaffolds stained darkly with toluidine blue beneath areas of contact with new bone. This

  18. Optical Properties of Sol-Gel Nb2O5 Films with Tunable Porosity for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Rosen Georgiev

    2015-01-01

    Full Text Available Thin Nb2O5 films with tunable porosity are deposited by the sol-gel and evaporation induced self-assembly methods using organic template Pluronic PE6100 with different molar fractions with respect to NbCl5 used as a precursor for synthesis of Nb sol. Surface morphology and structure of the films are studied by Transmission Electron Microscopy and Selected Area Electron Diffraction. The optical characterization of the films is carried out through reflectance spectra measurements of the films deposited on silicon substrates and theoretical modeling in order to obtain refractive index, extinction coefficient, and thickness of the films. The overall porosity of the films and the amount of adsorbed acetone vapors in the pores are quantified by means of Bruggeman effective medium approximation using already determined optical constants. The sensing properties of the samples are studied by measuring both the reflectance spectra and room-temperature photoluminescence spectra prior to and after exposure to acetone vapors and liquid, respectively. The potential of using the studied mesoporous Nb2O5 films for chemooptical sensing is demonstrated and discussed.

  19. Carbon nanostructures modified LiFePO4 cathodes for lithium ion battery applications: optimized porosity and composition

    Science.gov (United States)

    Mahmoud, Lama; Singh Lalia, Boor; Hashaikeh, Raed

    2016-12-01

    Lithium iron phosphate (LiFePO4) battery cathode was fabricated without using any metallic current collector and polymeric binder. Carbon nanostructures (CNS) were used as microbinders for LiFePO4 particles and at the same time as a 3D current collector. A facile and cost effective method of fabricating composite cathodes of CNS and LiFePO4 was developed. Thick electrodes with high loading of active material (20-25 mg cm-2) were obtained that are almost 2-3 folds higher than commercial electrodes. SEM images confirm that the 3D CNS conductive network encapsulated the LiFePO4 particles homogenously facilitating the charge transfer at the electrode-CNS interface. The composition, scan rate and porosity of the paper-like cathode were sequentially varied and their influence was systematically monitored by means of linear sweep cyclic voltammetry and AC electrochemical impedance spectroscopy. Addition of CNS improved the electrode’s bulk electronic conductivity, mechanical integrity, surface area and double layer capacitance, yet compromised the charge transfer resistance at the electrode-electrolyte interface. Based on a range of the tested binder-free electrodes, this study proposes that electrodes with 20 wt% CNS having 49 ± 2.5% porosity had realized best improvements of two folds and four folds in the electronic conductivity and diffusion coefficient, respectively.

  20. Effective Methods of Teaching Moon Phases

    Science.gov (United States)

    Jones, Heather; Hintz, E. G.; Lawler, M. J.; Jones, M.; Mangrubang, F. R.; Neeley, J. E.

    2010-01-01

    This research investigates the effectiveness of several commonly used methods for teaching the causes of moon phases to sixth grade students. Common teaching methods being investigated are the use of diagrams, animations, modeling/kinesthetics and direct observations of moon phases using a planetarium. Data for each method will be measured by a pre and post assessment of students understanding of moon phases taught using one of the methods. The data will then be used to evaluate the effectiveness of each teaching method individually and comparatively, as well as the method's ability to discourage common misconceptions about moon phases. Results from this research will provide foundational data for the development of educational planetarium shows for the deaf or other linguistically disadvantage children.

  1. Genealogical series method. Hyperpolar points screen effect

    International Nuclear Information System (INIS)

    Gorbatov, A.M.

    1991-01-01

    The fundamental values of the genealogical series method -the genealogical integrals (sandwiches) have been investigated. The hyperpolar points screen effect has been found. It allows one to calculate the sandwiches for the Fermion systems with large number of particles and to ascertain the validity of the iterated-potential method as well. For the first time the genealogical-series method has been realized numerically for the central spin-independent potential

  2. Exploration of the Effectiveness of Tactile Methods

    Science.gov (United States)

    Aldajani, Neda F.

    2016-01-01

    This paper introduces the tactile method and aims to explore the effectiveness of using tactile methods with students who are blind and visually impaired. Although there was limited research about using this strategy, all of the research agrees that using tactile is one of the best ways for students who are blind and visually impaired to be…

  3. Effectiveness of weed control methods on pavement

    NARCIS (Netherlands)

    Vermeulen, G.D.; Verwijs, B.R.; Kempenaar, C.

    2007-01-01

    The policy in the Netherlands is to signifiantly reduce the use of herbicides, also on pavements. Existing non-chemical methods to control weeds are much less effective than spot spraying, the usual method at this moment. Therefore, the cost of non-chemical weed management is often estimated to be 4

  4. Digital Rock Physics Aplications: Visualisation Complex Pore and Porosity-Permeability Estimations of the Porous Sandstone Reservoir

    Science.gov (United States)

    Handoyo; Fatkhan; Del, Fourier

    2018-03-01

    Reservoir rock containing oil and gas generally has high porosity and permeability. High porosity is expected to accommodate hydrocarbon fluid in large quantities and high permeability is associated with the rock’s ability to let hydrocarbon fluid flow optimally. Porosity and permeability measurement of a rock sample is usually performed in the laboratory. We estimate the porosity and permeability of sandstones digitally by using digital images from μCT-Scan. Advantages of the method are non-destructive and can be applied for small rock pieces also easily to construct the model. The porosity values are calculated by comparing the digital image of the pore volume to the total volume of the sandstones; while the permeability values are calculated using the Lattice Boltzmann calculations utilizing the nature of the law of conservation of mass and conservation of momentum of a particle. To determine variations of the porosity and permeability, the main sandstone samples with a dimension of 300 × 300 × 300 pixels are made into eight sub-cubes with a size of 150 × 150 × 150 pixels. Results of digital image modeling fluid flow velocity are visualized as normal velocity (streamline). Variations in value sandstone porosity vary between 0.30 to 0.38 and permeability variations in the range of 4000 mD to 6200 mD. The results of calculations show that the sandstone sample in this research is highly porous and permeable. The method combined with rock physics can be powerful tools for determining rock properties from small rock fragments.

  5. Evaluation of the effective thermal conductivity of UO{sub 2} fuel by combining Potts model and finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae-Yong, E-mail: tylor@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedeok-daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of); Koo, Yang-Hyun; Lee, Byung-Ho; Tahk, Young-Wook [Korea Atomic Energy Research Institute, Daedeok-daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2011-07-15

    This paper evaluated the effects of porosity on the effective thermal conductivity of UO{sub 2} fuel by combining the Potts model and the finite difference method (FDM). Two types of microstructures representing irradiated UO{sub 2} microstructures were simulated by the Potts model in the three dimensional cubic system. One represented very small intragranular bubbles and a few intergranular bubbles under a low temperature condition. The other represented large intergranular bubbles under a high temperature or annealing condition. For the simulated microstructures, the effective thermal conductivities were determined by FDM calculation of the temperature distributions under steady state condition. They were compared with an experimental equation and the effect of bubble morphology was investigated by fitting a porosity shape factor in the Maxwell-Eucken equation. The simulation results showed a good agreement with an experimental equation and demonstrated the capability of the Potts model to provide information on microstructure for calculating the effective thermal conductivity of UO{sub 2} fuel.

  6. Hemodynamic transition driven by stent porosity in sidewall aneurysms.

    Science.gov (United States)

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes

    2015-05-01

    The healing process of intracranial aneurysms (IAs) treated with flow diverter stents (FDSs) depends on the IA flow modifications and on the epithelization process over the neck. In sidewall IA models with straight parent artery, two main hemodynamic regimes with different flow patterns and IA flow magnitude were broadly observed for unstented and high porosity stented IA on one side, and low porosity stented IA on the other side. The hemodynamic transition between these two regimes is potentially involved in thrombosis formation. In the present study, CFD simulations and multi-time lag (MTL) particle imaging velocimetry (PIV) measurements were combined to investigate the physical nature of this transition. Measurable velocity fields and non-measurable shear stress and pressure fields were assessed experimentally and numerically in the aneurysm volume in the presence of stents with various porosities. The two main regimes observed in both PIV and CFD showed typical flow features of shear and pressure driven regimes. In particular, the waveform of the averaged IA velocities was matching both the shear stress waveform at IA neck or the pressure gradient waveform in parent artery. Moreover, the transition between the two regimes was controlled by stent porosity: a decrease of stent porosity leads to an increase (decrease) of pressure differential (shear stress) through IA neck. Finally, a good PIV-CFD agreement was found except in transitional regimes and low motion eddies due to small mismatch of PIV-CFD running conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Temperature distribution, porosity migration and formation of the central void in cylindrical fuel rods

    International Nuclear Information System (INIS)

    Cotta, R.M.; Roberty, N.C.

    1982-01-01

    The porosity - and temperature distribution in cylindrical fuels rods, were studied by numerical resolution of mass-and energy equation, as well as determining the evolution of the central void radii. The finite difference method with implicit formulation for heat conduction equation and explicit formulation for continuity equation, was used. The Nichols model was used in the determination of the constitutive equation of the porous migration velocity. (E.G.) [pt

  8. Saturation and porosity measurements of different soil samples by gamma ray transmission

    International Nuclear Information System (INIS)

    Akbal, S.; Filiz Baytas, A.

    2000-01-01

    Gamma-ray transmission methods have been used accurately for the study of the properties of soil samples. In this study, the soil samples were collected from various regions of Turkey and a Nal (TI) detector measured the attenuation of strongly collimated monoenergetic gamma beam (from Cs-137) through soil samples. The water saturation and porosity were therefore calculated from the transmission measurements for each soil sample. (authors)

  9. A CFD Approach for Prediction of Unintended Porosities in Aluminum Syntactic Foam: A Preliminary Study

    DEFF Research Database (Denmark)

    Li, Shizhao; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    Aluminum Syntactic Foam (ASF) is a material with great potential in applications related to lightweight structures and structural damping. However, experimental investigations in literature report that the infiltration process to fabricate ASF often results in incomplete infiltration. Published...... calculates the pressure, velocity and free surface of the aluminum. The results of the numerical model illustrate that this method has great potential of predicting unintended porosities in ASF and thereby optimizing the parameters involved in the infiltration process....

  10. Anomalously high porosity in subduction inputs to the Nankai Trough (SW Japan) potentially caused by volcanic ash and pumice

    Science.gov (United States)

    Huepers, A.; Ikari, M.; Underwood, M.; Kopf, A.

    2013-12-01

    At convergent margins, the sedimentary section seaward of the trench on the subducting oceanic lithosphere provides the source material for accretionary prisms and eventually becomes the host rock of the plate boundary megathrust. The mechanical properties of the sediments seaward of the subduction zone have therefore a first order control on subduction zone forearc mechanics and hydrogeology. At the Nankai Trough (SW Japan) the majority of sediment approaching the subduction zone is clay-rich. Scientific drilling expeditions in the framework of the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) have revealed an anomalous zone of high porosity in a major lithologic unit known as the Upper Shikoku Basin facies (USB), which is associated with elevated volcanic ash content and high amounts of silica in the interstitial water. The existence of the high porosity zone has previously been associated with advanced silica cementation, driven by the dual diagenetic transition of opal-A to opal-CT, and opal-CT to quartz. However, temperature estimates from recent drilling expeditions offshore the Kii peninsula reveal different in situ temperatures at the proposed diagenetic boundary in the Shikoku Basin. Furthermore, laboratory measurements using core samples from the USB show that cohesive strength is not elevated in the high porosity zone, suggesting that a process other than cementation may be responsible. The USB sediment is characterized by abundant volcanic ash and pumice, therefore the high porosity zone in the USB may be closely linked to the mechanical behavior of this phase. We conducted consolidation tests in the range 0.1 to 8 MPa effective vertical stress on artificial ash-smectite and pumice-smectite mixtures, as well as intact and remolded natural samples from the IODP Sites C0011 and C0012 to investigate the role of the volcanic constituent on porosity loss with progressive burial. Our results show that both remolded and intact

  11. Superfield tadpole method for SUSY effective potential

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1983-01-01

    Superfield formulation of Weinberg's tadpole method to compute the effective potential in supersymmetric theories is illustrated by considering the general renormalizable action involving only chiral scalar superfields. Unconstrained superfield potentials are introduced to simplify the ''effective'' superfield propagator which is derived in a compact form. (orig.)

  12. Porosity of natural stone and use of confocal laser scanning microscopy on calcitic marble aged in laboratory

    Directory of Open Access Journals (Sweden)

    Ana Mladenovič

    2008-06-01

    Full Text Available Porosity is one of the key characteristics of natural stone, which influences ondurability as well as functionality of stone as building material. Further, deterioration processes themselves are also characterized by change of porosity. Different direct and indirect techniques can be used for porosity determination. In the following paper overview of these methods, as well as their advantages and disadvantages, is given. Confocal laser scanning microscopy (CLSM is indirect (microscopic technique. Despite its numerous advantages, among which 3D visualizationof pore structure is of major importance, this technique is less known in the area of building materials. An example how CLSM can be applied for qualitative and quantitative evaluation of porosity of calcitic polygonal granoblastic marble is given in this paper. Studied marble has been, despite of its poor durability, often used as building material, especially in the case of claddings. It is shown that thermal hydric factors of deterioration can influence porosity significantly,especially formation of intergranular cracks.This kind of deterioration can be successfully evaluated with use of CLSM method, if samples are suitable prepared and if suitable image analysis tools are developed.

  13. Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study

    Science.gov (United States)

    Al-Anazi, A. F.; Gates, I. D.

    2010-12-01

    In wells with limited log and core data, porosity, a fundamental and essential property to characterize reservoirs, is challenging to estimate by conventional statistical methods from offset well log and core data in heterogeneous formations. Beyond simple regression, neural networks have been used to develop more accurate porosity correlations. Unfortunately, neural network-based correlations have limited generalization ability and global correlations for a field are usually less accurate compared to local correlations for a sub-region of the reservoir. In this paper, support vector machines are explored as an intelligent technique to correlate porosity to well log data. Recently, support vector regression (SVR), based on the statistical learning theory, have been proposed as a new intelligence technique for both prediction and classification tasks. The underlying formulation of support vector machines embodies the structural risk minimization (SRM) principle which has been shown to be superior to the traditional empirical risk minimization (ERM) principle employed by conventional neural networks and classical statistical methods. This new formulation uses margin-based loss functions to control model complexity independently of the dimensionality of the input space, and kernel functions to project the estimation problem to a higher dimensional space, which enables the solution of more complex nonlinear problem optimization methods to exist for a globally optimal solution. SRM minimizes an upper bound on the expected risk using a margin-based loss function ( ɛ-insensitivity loss function for regression) in contrast to ERM which minimizes the error on the training data. Unlike classical learning methods, SRM, indexed by margin-based loss function, can also control model complexity independent of dimensionality. The SRM inductive principle is designed for statistical estimation with finite data where the ERM inductive principle provides the optimal solution (the

  14. Evaluation of porosity in Al alloy die castings

    Directory of Open Access Journals (Sweden)

    M. Říhová

    2012-01-01

    Full Text Available Mechanical properties of an Al-alloy die casting depend significantly on its structural properties. Porosity in Al-alloy castings is one of the most frequent causes of waste castings. Gas pores are responsible for impaired mechanical-technological properties of cast materials. On the basis of a complex evaluation of experiments conducted on AlSi9Cu3 alloy samples taken from the upper engine block which was die- cast with and without local squeeze casting it can be said that castings manufactured without squeeze casting exhibit maximum porosity in the longitudinal section. The area without local squeeze casting exhibits a certain reduction in mechanical properties and porosity increased to as much as 5%. However, this still meets the norms set by SKODA AUTO a.s.

  15. Porosity Variation in Cenozoic and Upper Chalk from the Ontong Java Pleateau

    DEFF Research Database (Denmark)

    Borre, Mai Kirstine

    1997-01-01

    Porosity was obtained from matrix- and intraparticle porosity assessed from image analysis of backscattered electron micrographs of 3000x and 300x magnification. Comparing porosity assessed from image analysis with porosity measured by index properties, it was seen that image analysis data at 300...

  16. A successful application of homotopy perturbation method for efficiency and effectiveness assessment of longitudinal porous fins

    International Nuclear Information System (INIS)

    Cuce, Erdem; Cuce, Pinar Mert

    2015-01-01

    Highlights: • Homotopy perturbation method has been applied to porous fins. • Dimensionless efficiency and effectiveness expressions have been firstly developed. • Effects of porous and convection parameters on thermal analysis have been clarified. • Ratio of porous fin to solid fin heat transfer rate has been given for various cases. • Reliability and practicality of homotopy perturbation method has been illustrated. - Abstract: In our previous works, thermal performance of straight fins with both constant and temperature-dependent thermal conductivity has been investigated in detail and dimensionless analytical expressions of fin efficiency and fin effectiveness have been developed for the first time in literature via homotopy perturbation method. In this study, previous works have been extended to porous fins. Governing equations have been formulated by performing Darcy’s model. Dimensionless temperature distribution along the length of porous fin has been determined as a function of porosity and convection parameters. The ratio of porous fin to solid fin heat transfer rate has also been evaluated as a function of thermo-geometric fin parameter. The results have been compared with those of finite difference method for a specific case and an excellent agreement has been observed. The expressions developed are beneficial for thermal engineers for preliminary assessment of thermophysical systems instead of consuming time in heat conduction problems governed by strongly nonlinear differential equations

  17. Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-13

    The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.

  18. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations

    DEFF Research Database (Denmark)

    Holm, René; Borkenfelt, Simon; Allesø, Morten

    2016-01-01

    for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.......g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed......, however for six out of seven compounds similar results were obtained by applying a standard pressure (866MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle...

  19. Determination of residual boron in thermally treated controlled-porosity glasses, by colorimetry, spectrography and isotachophoresis

    International Nuclear Information System (INIS)

    Dawidowicz, A.L.; Matusewicz, J.; Wysocka-Lisek, J.

    1989-01-01

    Controlled-porosity glasses (CPGs) are often applied as sorbents in chromatography. Besides having high thermal, chemical and mechanical resistance they are characterized by a very narrow pore-size distribution and the choice of mean pore diameter and porosity covers a wide range. In spite of these advantages, their range of use in chromatography is restricted because of their strong adsorption properties, which are connected with the presence of residual boron atoms in the porous CPG skeleton. The boron concentration on the CPG surface can be increased by proper thermal treatment. When CPGs are heated in the range 400-800 0 the residual boron atoms in the network diffuse from the bulk to the surface. The paper discusses the boron content in porous glasses of different mean pore diameters and the determination of the enrichment of boron on the GPG surface, by three independent methods: colorimetry, spectrography and isotachophoresis. (author)

  20. A review of porosity-generating mechanisms in crustal shear zones

    Science.gov (United States)

    Fusseis, F.; Regenauer-Lieb, K.; Revets, S.

    2009-04-01

    seems reasonable to assume that the total porosity in shear zones is the sum of porosities generated by all of these mechanisms, and that the individual porosities have different effects on permeability. We propose that a fundamental understanding of the porosity evolution in a shear zone can be derived from an assessment of the stress-temperature-fluid/rock chemistry-time path during the tectonometamorphic history of a rock. In this contribution we present a first evaluation of typical porosity-permeability evolutions. We furthermore present a new generation of numerical experiments that allows the quantitative assessment of the roles of the thermal, chemical and mechanical generation of porosity and their feedbacks on the evolution of shear zones. References: Baumgartner et al., 1997, in Jamtveit & Yardley, eds. Fluid flow and transport in rocks, 83-98, Berner & Holdren, 1979, Geochim Cosmochim Acta 43, 1173-1186, Cox & Etheridge, 1989, JSG 11/1-2, 147-162, Etheridge et al., 1984, JGR 89/B6, 4344-4358, Fei, 1995, in Ahrens, ed. Mineral Physics and Crystallography, AGU, 29-44, Fusseis et al., in review, Nature, Gleeson et al., 2003, Geofluids 3, 33-48, Hacker, 1997, JGR 102/B11, 24459-24467, Higgs et al., 2007, J Sed Res 77, 1003-1025, Holdren & Berner, 1979, Geochim Cosmochim Acta 43, 1161-1171, Jamtveit et al., 1997, in Jamtveit & Yardley, eds. Fluid flow and transport in rocks, 57-82, Jamtveit et al., 2007, EPSL 267, 620-627, Dyson et al., 1976, Proc Roy Soc London A, 349/1657, 245-259, Kassner & Hayes, 2003, Int J Plasticity 19, 1715-1748, Kerrich et al., 1984, JGR 89/B6, 4331-4343, Kranz, 1983, Tectonophysics 100, 449-480, McCaig 1988, Geology 16, 867-870, Oliver, 1996, JMG 14, 477-492, Oliver et al., 1990, JMG 8, 311-331, Putnis, 2002, Min Magaz 66/5, 689-708, Putnis et al., 2007, Lithos 2007, 10-18, Rumble et al., 1982, Amer J Sci 282, 886-919, Rumble, 1994, JGR 99/B8, 15499-15502, Rybacki et al., 2008, GRL 35, L04304, Sprunt & Brace, 1974, Int J Rock Mech Min

  1. Porosity study of synthetic sandstones by non-destructive nuclear techniques

    International Nuclear Information System (INIS)

    Marques, Leonardo Carmezini

    2008-01-01

    In this paper, nuclear techniques have been used to describe structural characteristics of ceramic samples. These samples were produced to serve as simulates of sandstones and their mainly component was silica (SiO 2 ). Three sets of these samples with different characteristics were analyzed with the gamma ray transmission and the X-ray microtomography. They had the function to describe parameters as porosity point to point and total average porosity, for the transmission case, and 2D sections average porosity, total average porosity and size porous distribution for microtomography, as well as to investigate possible irregularities in bulk sample. The experimental set up for the Gamma Ray Transmission technique consisted of: a 2'' x 2'' crystal NaI(Tl) detector, an 241 Am radioactive source (59.54 keV, 100 mCi), an automatic micrometric table for the sample XZ movement and standard gamma spectrometry electronics. Lead collimators with 2 mm diameter were placed on the source way out and on the detector entrance. The microtomographic measurements were done with a Skyscan system, model 1172, with a X -ray tube with 20 - 100 kV of voltage range and a CCD camera. Employing gamma ray transmission method was possible to obtain overall porosity values from 25.8 to 34.0 % and from 24.8 to 29.2 % for samples with parallelepiped and cylinder shape, respectively, for ceramic I set; from 58.5 to 61.0 % and from 57.1 to 61.7 % for the same geometric shape of ceramic II set. The samples analyzed by the microtomography achieved resolutions of 1.73 μm, 0.64 μm and 1.28 μm for samples of ceramic set I, II and III, respectively. This methodology provided average total porosity values from 26.6 to 29.4 %, from 48.4 to 51.0 % and from 28.2 to 30.6 % to I, II and III ceramic sets, respectively. The porous size profiles of each ceramic sample were also measured. (author)

  2. Study of the porosity of synthetic sandstones by nondestructive nuclear techniques

    International Nuclear Information System (INIS)

    Marques, Leonardo Carmezini

    2008-01-01

    In this paper, nuclear techniques have been used to describe structural characteristics of ceramic samples. These samples were produced to serve as simulates of sandstones and their mainly component was silica (SiO 2 ). Three sets of these samples with different characteristics were analyzed with the gamma ray transmission and the X-ray microtomography. They had the function to describe parameters as porosity point to point and total average porosity, for the transmission case, and 2D sections average porosity, total average porosity and size porous distribution for microtomography, as well as to investigate possible irregularities in bulk sample. The experimental set up for the gamma ray transmission technique consisted of: a 2 x 2 crystal NaI(Tl) detector, an 241 Am radioactive source (59.54 keV, 100 mCi), an automatic micrometric table for the sample XZ movement and standard gamma spectrometry electronics. Lead collimators with 2 mm diameter were placed on the source way out and on the detector entrance. The microtomographic measurements were done with a Skyscan system, model 1172, with a X-ray tube with 20-100 kV of voltage range and a CCD camera. Employing gamma ray transmission method was possible to obtain overall porosity values from 25.8 to 34.0 % and from 24.8 to 29.2 % for samples with parallelepiped and cylinder shape, respectively, for ceramic I set; from 58.5 to 61.0 % and from 57.1 to 61.7 % for the same geometric shape of ceramic II set. The samples analyzed by the microtomography achieved resolutions of 1.73 μm, 0.64 μm and 1.28 μm for samples of ceramic set I, II and III, respectively. This methodology provided average total porosity values from 26.6 to 29.4 %, from 48.4 to 51.0 % and from 28.2 to 30.6 % to I, II and III ceramic sets, respectively. The porous size profiles of each ceramic sample were also measured. (author)

  3. Porosity and mechanical properties of amorphous alloys

    International Nuclear Information System (INIS)

    Betekhtin, V.I.; Kadomtsev, A.G.; Amosova, O.V.

    2003-01-01

    The obtained experimental data on the effect of the inherent submicroporosity and its change under impact of high hydrostatic pressure or annealing on the strength, microdestruction, embrittlement temperature, the first crystallization stage and peculiarities of the surface crystallization of the amorphous alloys are analyzed. The conclusion is made on the basis of the studies on the peculiarities of the voluminous and surface crystallization of the Fe 56 Co 24 Si 5 B 15 , Fe 78 Ni 2 Si 8 B 12 , Fe 85 B 15 , Fe 58 Ni 20 Si 9 B 13 amorphous alloys that the increase in the inherent submicroporosity is one of the essential factors facilitating crystallization [ru

  4. Reducing the porosity and reflection loss of silicon nanowires by a sticky tape

    International Nuclear Information System (INIS)

    Liu, Junjun; Huang, Zhifeng

    2015-01-01

    Engineering the porosity of silicon nanowires (SiNWs) is of fundamental importance, and this work introduces a new method for doing so. Metal-assisted chemical etching (MACE) of heavily doped Si(100) creates mesoporous silicon nanowires (mp-SiNWs). mp-SiNWs are transferred from the MACE-treated wafer to a sticky tape, leaving residues composed of broken mp-SiNWs and a mesoporous Si layer on the wafer. Then the taped wafer is re-treated by MACE, without changing the etching conditions. The second MACE treatment generates mp-SiNWs that are less porous and longer than those generated by the first MACE treatment, which can be attributed to the difference in the surface topography at the beginning of the etching process. Less porous mp-SiNWs reduce optical scattering from the porous Si skeletons, and vertically protrude on the wafer without aggregation to facilitate optical trapping. Consequently, less porous mp-SiNWs effectively reduce ultraviolet-visible reflection loss. (paper)

  5. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating.

    Science.gov (United States)

    Petkovich, Nicholas D; Stein, Andreas

    2013-05-07

    Rigid, porous objects and surfactants serve as powerful templates for the formation of mesoporous and macroporous materials. When both types of template are combined in a single synthesis, materials with intricate architectures and hierarchical porosity can be obtained. In this tutorial review, we explain how to conduct syntheses with both soft and hard templates; moreover, we describe methods to control the final structure present in the templated material. Much of the foundation for multiple templating lies in the study of materials made with only one type of template. To establish a foundation in this area, a description of hard and soft templating is given, delving into the templates available and the steps required for effective templating. This leads into an extended discussion about materials templated with both hard and soft templates. Through the use of recent examples in the literature, we aim to show the diversity of structures possible through multiple templating and the advantages these structures can provide for a wide range of applications. An emphasis is placed on how various factors-such as the type of template, type of precursor, heat-treatment temperature, confinement within a small space, and template-template interactions-impact morphology.

  6. Robust numerical simulation of porosity evolution in chemical vapor infiltration III: three space dimension

    CERN Document Server

    Jin Shi

    2003-01-01

    Chemical vapor infiltration (CVI) process is an important technology to fabricate ceramic matrix composites (CMC's). In this paper, a three-dimension numerical model is presented to describe pore microstructure evolution during the CVI process. We extend the two-dimension model proposed in [S. Jin, X.L. Wang, T.L. Starr, J. Mater. Res. 14 (1999) 3829; S. Jin. X.L. Wang, T.L. Starr, X.F. Chen, J. Comp. Phys. 162 (2000) 467], where the fiber surface is modeled as an evolving interface, to the three space dimension. The 3D method keeps all the virtue of the 2D model: robust numerical capturing of topological changes of the interface such as the merging, and fast detection of the inaccessible pores. For models in the kinetic limit, where the moving speed of the interface is constant, some numerical examples are presented to show that this three-dimension model will effectively track the change of porosity, close-off time, location and shape of all pores.

  7. Ultra-thin and strong formvar-based membranes with controlled porosity for micro- and nano-scale systems

    Science.gov (United States)

    Auchter, Eric; Marquez, Justin; Stevens, Garrison; Silva, Rebecca; Mcculloch, Quinn; Guengerich, Quintessa; Blair, Andrew; Litchfield, Sebastian; Li, Nan; Sheehan, Chris; Chamberlin, Rebecca; Yarbro, Stephen L.; Dervishi, Enkeleda

    2018-05-01

    We present a methodology for developing ultra-thin and strong formvar-based membranes with controlled morphologies. Formvar is a thin hydrophilic and oleophilic polymer inert to most chemicals and resistant to radiation. The formvar-based membranes are viable materials as support structures in micro- and macro-scale systems depending on thinness and porosity control. Tunable sub-micron thick porous membranes with 20%–65% porosity were synthesized by controlling the ratios of formvar, glycerol, and chloroform. This synthesis process does not require complex separation or handling methods and allows for the production of strong, thin, and porous formvar-based membranes. An expansive array of these membrane characterizations including chemical compatibility, mechanical responses, wettability, as well as the mathematical simulations as a function of porosity has been presented. The wide range of chemical compatibility allows for membrane applications in various environments, where other polymers would not be suitable. Our formvar-based membranes were found to have an elastic modulus of 7.8 GPa, a surface free energy of 50 mN m‑1 and an average thickness of 125 nm. Stochastic model simulations indicate that formvar with the porosity of ∼50% is the optimal membrane formulation, allowing the most material transfer across the membrane while also withstanding the highest simulated pressure loadings before tearing. Development of novel, resilient and versatile membranes with controlled porosity offers a wide range of exciting applications in the fields of nanoscience, microfluidics, and MEMS.

  8. The Influence of Home Scrap on Porosity of MgAl9Zn1 Alloy Pressure Castings

    Directory of Open Access Journals (Sweden)

    Konopka Z.

    2017-03-01

    Full Text Available The work presents the results of examinations concerning the influence of various amounts of home scrap additions on the porosity of castings made of MgAl9Zn1 alloy. The fraction of home scrap in the metal charge ranged from 0 to 100%. Castings were pressure cast by means of the hot-chamber pressure die casting machine under the industrial conditions in one of the domestic foundries. Additionally, for the purpose of comparison, the porosity of specimens cut out directly of the MgAl9Zn1 ingot alloy was also determined. The examinations consisted in the qualitative assessment of porosity by means of the optical microscopy and its quantitative determination by the method of weighting specimens in air and in water. It was found during the examination that the porosity of castings decreases with an increase in the home scrap fraction in the metal charge. The qualitative examinations confirmed the beneficial influence of the increased home scrap fraction on the porosity of castings. It was concluded that the reusing of home scrap in a foundry can be a good way of reduction of costs related to the production of pressure castings.

  9. PROCESSES AND FACTORS OF POROSITY EVOLUTION

    Directory of Open Access Journals (Sweden)

    Gheorghe Jigau

    2010-10-01

    Full Text Available It is widely recognized that agriculture, and mostly the intensive type of agriculture, has an important impact on soil. In this case, even the simplest tillage operation leads to the greatest dysfunction ever met in the trophic chain and to the negative anthropogenic impact on soil. The result is defined by a number of new features (arable horizon, sub-arable horizon, layered and reversed profiles and intensification of some processes like dehumification, compaction, de-structuring etc. Specified processes are distributed and have a common characteristic regarding the accumulation of residual effects from one year to another, from one stage to another, leading to the establishment in agricultural soils of a specific dynamic of pedogenetic processes, different from the natural one.The integrated index of the mentioned processes is the soil pore space and its dynamics in an anthropogenic regime.

  10. Synthesis of polymer membranes of different porosity and their application for phenol removal from liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Hofman-Bieniek, Magdalena; Jasiewicz, Katarzyna; Pietrzak, Robert [Adam Mickiewicz University in Poznan, Poznan (Poland)

    2014-02-15

    Preparation of polymeric membranes based on polyethersulfone (PES) modified by adding different amounts of a pore-forming agent (PVP) is presented, and potential application of the membranes obtained for removal of phenol from the liquid phase is examined. The addition of various amounts of PVP has been shown to bring about changes in the content of the surface oxygen groups, but has no significant effect on the chemical character of the groups and acidic groups dominate. Filtration by phenol solution leads to significant changes in the total content of surface oxides; however, the acidic groups remain dominant. Membranes characterized by higher porosity exhibited more stable and higher rejection ratio for phenol removal. Although all the membranes were characterized by similar rejection ratios for phenol removal, the cake resistance (Rc) and pore resistance (Rp) values were found to depend significantly on the structure and porosity of the membrane applied for filtration.

  11. Synthesis of polymer membranes of different porosity and their application for phenol removal from liquid phase

    International Nuclear Information System (INIS)

    Hofman-Bieniek, Magdalena; Jasiewicz, Katarzyna; Pietrzak, Robert

    2014-01-01

    Preparation of polymeric membranes based on polyethersulfone (PES) modified by adding different amounts of a pore-forming agent (PVP) is presented, and potential application of the membranes obtained for removal of phenol from the liquid phase is examined. The addition of various amounts of PVP has been shown to bring about changes in the content of the surface oxygen groups, but has no significant effect on the chemical character of the groups and acidic groups dominate. Filtration by phenol solution leads to significant changes in the total content of surface oxides; however, the acidic groups remain dominant. Membranes characterized by higher porosity exhibited more stable and higher rejection ratio for phenol removal. Although all the membranes were characterized by similar rejection ratios for phenol removal, the cake resistance (Rc) and pore resistance (Rp) values were found to depend significantly on the structure and porosity of the membrane applied for filtration

  12. Porosity and adsorption properties of activated carbon derived from palm oil waste

    International Nuclear Information System (INIS)

    Che Seman Mahmood; Nor Hayati Alias; Choo Thye Foo; Megat Harun Al-Rashid Megat Ahmad

    2004-01-01

    Activated carbon have extensively been used as adsorbents in industry for the removal of pollutant species from gases for the purpose of purification and recovery of chemicals. The adsorption properties of the carbons depend very much on the porosity and type of pore presents which can be generated and controlled during synthesis and activation steps. This paper reports the effect of chemical activation by ZnCl 3 , KOH and nh 4 OH on the porosity of carbon produced from palm oil industry waste. Type of pores will further be validated by the SEM micrograph. The amount of gas adsorbed, the adsorption capacities can also be estimated based on the BET experiments data. The applicability of the produced carbon materials for the removal and exchange of hazardous incinerator gas is discussed. (Author)

  13. A new effective Monte Carlo Midway coupling method in MCNP applied to a well logging problem

    Energy Technology Data Exchange (ETDEWEB)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E

    1998-12-01

    The background of the Midway forward-adjoint coupling method including the black absorber technique for efficient Monte Carlo determination of radiation detector responses is described. The method is implemented in the general purpose MCNP Monte Carlo code. The utilization of the method is fairly straightforward and does not require any substantial extra expertise. The method was applied to a standard neutron well logging porosity tool problem. The results exhibit reliability and high efficiency of the Midway method. For the studied problem the efficiency gain is considerably higher than for a normal forward calculation, which is already strongly optimized by weight-windows. No additional effort is required to adjust the Midway model if the position of the detector or the porosity of the formation is changed. Additionally, the Midway method can be used with other variance reduction techniques if extra gain in efficiency is desired.

  14. Initial porosity of random packing : Computer simulation of grain rearrangement

    NARCIS (Netherlands)

    Alberts, L.J.H.

    2005-01-01

    The initial porosity of clastic sediments is poorly defined. In spite of this, it is an important parameter in many models that describe the diagenetic processes taking place during the burial of sediments and which are responsible for the transition from sand to sandstone. Diagenetic models are of

  15. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  16. Bulk density and porosity distributions in a compost pile

    NARCIS (Netherlands)

    Ginkel, van J.T.; Raats, P.A.C.; Haneghem, van I.A.

    1999-01-01

    This paper mainly deals with the description of the initial distribution of bulk density and porosity at the moment a compost pile is built or rebuilt. A relationship between bulk density and vertical position in a pile is deduced from theoretical and empirical considerations. Formulae to calculate

  17. An effective method for terrestrial arthropod euthanasia.

    Science.gov (United States)

    Bennie, Neil A C; Loaring, Christopher D; Bennie, Mikaella M G; Trim, Steven A

    2012-12-15

    As scientific understanding of invertebrate life increases, so does the concern for how to end that life in an effective way that minimises (potential) suffering and is also safe for those carrying out the procedure. There is increasing debate on the most appropriate euthanasia methods for invertebrates as their use in experimental research and zoological institutions grows. Their popularity as pet species has also led to an increase in the need for greater veterinary understanding. Through the use of a local injection of potassium chloride (KCl) initially developed for use in American lobsters, this paper describes a safe and effective method for euthanasia in terrestrial invertebrates. Initial work focused on empirically determining the dose for cockroaches, which was then extrapolated to other arthropod species. For this method of euthanasia, we propose the term 'targeted hyperkalosis' to describe death through terminal depolarisation of the thoracic ganglia as a result of high potassium concentration.

  18. Porosity Gradient at the Surface of Comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Christou, C.; Dadzie, S. K.; Thomas, N.; Hartogh, P.; Jorda, L.; Kuhrt, E.; Wright, I.; Zarnecki, J.

    2017-12-01

    The Rosetta mission has provided invaluable and unexpected information about our knowledge and understanding of comets until now. The on-board instruments, ROSINA and VIRTIS showed the non-uniformly outgassing of H2O over the surface of the nucleus. After Philae landing in a small lobe and the attempt to intrude MUPUS into the surface led to estimate the minimum compressive strength of material > 4MPa. This high strength of material (at least locally) along with different porosity ranges that have been presented for the 67P/Churyumov-Gerasimenko (67P) challenge our understanding of the surface and outgassing processes. Here we used the micro computed tomography (micro-CT) technology to represent 3D Earth rock samples with different porosity to investigate outgassing in the near surface boundary layer. The Direct Simulation of Monte Carlo (DSMC) method is used to simulate the rarefied cometary atmosphere. We presented results with H2O outgassing at a maximum production rate near perihelion. We show that an existence of a possible porosity gradient at the surface of the comet may explain some of the structures observed on 67P.

  19. Control of Porosity and Pore Size of Metal Reinforced Carbon Nanotube Membranes

    Directory of Open Access Journals (Sweden)

    Stephen Gray

    2010-12-01

    Full Text Available Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT Bucky-Paper (BP composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90% and specific surface area (>400 m2/g. Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported.

  20. Porosity characterization of biodegradable porous poly (L-lactic acid) electrospun nanofibers

    Science.gov (United States)

    Valipouri, Afsaneh; Gharehaghaji, Ali Akbar; Alirezazadeh, Azam; Ravandi, Seyed Abdolkarim Hosseini

    2017-12-01

    Poly-L lactic acid (PLLA) is one of the mostly used fibers in biomedical applications as a biodegradable and biocompatible material. Porosity and fiber diameter distribution are governing factors that determine the performance of nanofibers. Present work aims at investigating the process parameters that are affecting porosity and diameter distribution of PLLA nanofibers. PLLA nanofibers were fabricated through electrospinning method using the solution of PLLA polymer/dichloromethane (DCM). Nanofibers with various fiber diameter distribution and porosity were made by changing of process parameters such as spinning distance (5, 10 and 15 cm), voltage (11 and 15 kV), solution concentration (10, 11 and 12 wt%) and feeding rate (0.3, 0.4 and 0.7 ml h-1). Image processing techniques (with Matlab R2017), surface analysis (with Mountainsmap7) and diameter distribution analysis (with Measurement software) were used to examine surface morphology of samples. The results showed that the fiber diameter distribution becomes wider with increasing the applied voltage and reducing the spinning distance. In the other hand, coarse fibers possessed larger pores while having irregular and fewer pores in comparison to fine fibers. The most uniform nano-web with high porous nanofibers was attained by the choice of the process parameters at the voltage of 11 kV, spinning distance of 15 cm, feeding rate of 0.4 ml h-1 and solution concentration of 10 wt%.

  1. Shrinkage Porosity Criterion and Its Application to A 5.5 Ton Steel Ingot

    Directory of Open Access Journals (Sweden)

    Zhang C.

    2016-06-01

    Full Text Available In order to predict the distribution of shrinkage porosity in steel ingot efficiently and accurately, a criterion R√L and a method to obtain its threshold value were proposed. The criterion R√L was derived based on the solidification characteristics of steel ingot and pressure gradient in the mushy zone, in which the physical properties, the thermal parameters, the structure of the mushy zone and the secondary dendrite arm spacing were all taken into consideration. The threshold value of the criterion R√L was obtained with combination of numerical simulation of ingot solidification and total solidification shrinkage rate. Prediction of the shrinkage porosity in a 5.5 ton ingot of 2Cr13 steel with criterion R√L>0.21 m · °C1/2 · s−3/2 agreed well with the results of experimental sectioning. Based on this criterion, optimization of the ingot was carried out by decreasing the height-to-diameter ratio and increasing the taper, which successfully eliminated the centreline porosity and further proved the applicability of this criterion.

  2. Nano-suspension coating as a technique to modulate the drug release from controlled porosity osmotic pumps for a soluble agent.

    Science.gov (United States)

    Bahari, Leila Azharshekoufeh; Javadzadeh, Yousef; Jalali, Mohammad Barzegar; Johari, Peyvand; Nokhodchi, Ali; Shokri, Javad

    2017-05-01

    In controlled porosity osmotic pumps (CPOP), usually finding a single solvent with a capability to dissolve both film former (hydrophobic) and pore former (hydrophilic) is extremely challenging. Therefore, the aim of the present investigation was to tackle the issue associated with controlled porosity osmotic pump (CPOP) system using nano-suspension coating method. In the present study 4-Amino pyridine was used as a highly water soluble drug. In this method, a hydrophilic pore former (sucrose or mannitol) in nano range was suspended in polymeric coating solution using ball-mill. The performance of the prepared formulations was assessed in terms of D 12h (cumulative release percent after 12h), Dev zero (mean percent deviation of drug release from zero order kinetic), t L (lag time of the drug release) and RSQ zero . The results revealed that gelling agent amount (HPMC E 15LV ) in core and pore former concentration in SPM had crucial effect on SPM integrity. All the optimised formulations showed a burst drug release due to fast dissolving nature of the pore formers. Results obtained from scanning electron microscopy demonstrated the formation of nanopores in the membrane where the drug release takes place via these nanopores. Nano suspension coating method can be introduced as novel method in formulation of CPOPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Effect of Temperature and Rotational Speed on Structure and Mechanical Properties of Cast Cu Base Alloy (Cu-Al-Si-Fe) Welded by Semisolid Stir Joining Method

    Science.gov (United States)

    Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Shafizadeh, Mahdi; Nikzad, Siamak

    2015-12-01

    Semisolid stir joining has been under deliberation as a possible method for joining of copper alloys. In this study, the effect of temperature and rotational speed of stirrer on macrostructure evaluation and mechanical properties of samples were investigated. Optical microscopy and X-ray diffraction were performed for macro and microstructural analysis. A uniform micro-hardness profile was attained by semisolid stir joining method. The ultimate shear strength and bending strength of welded samples were improved in comparison with the cast sample. There is also lower area porosity in welded samples than the cast metal. The mechanical properties were improved by increasing temperature and rotational speed of the joining process.

  4. Integration of porosity and bio-functionalization to form a 3D scaffold: cell culture studies and in vitro degradation

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Anupama; Negi, Poonam; Garkhal, Kalpna; Verma, Shalini; Kumar, Neeraj, E-mail: neeraj@niper.ac.i [Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar-160 062, Punjab (India)

    2010-08-01

    In this study, porous poly(lactide-co-glycolide) (PLGA) (50/50) microspheres have been fabricated by the gas-foaming technique using ammonium bicarbonate as a gas-foaming agent. Microspheres of different porosities have been formulated by varying the concentration of the gas-foaming agent (0%, 5%, 10% and 15% w/v). These microspheres were characterized for particle size, porosity and average pore size, morphology, water uptake ratio and surface area and it was found that the porosity, pore size and surface area increased on increasing the concentration of the gas-foaming agent. Further, the effect of porosity on degradation behavior was evaluated over a 12 week period by measuring changes in mass, pH, molecular weight and morphology. Porosity was found to have an inverse relationship with degradation rate. To render the surface of the microspheres biomimetic, peptide P-15 was coupled to the surface of these microspheres. In vitro cell viability, proliferation and morphological evaluation were carried out on these microsphere scaffolds using MG-63 cell line to study the effect of the porosity and pore size of scaffolds and to evaluate the effect of P-15 on cell growth on porous scaffolds. MTT assay, actin, alizarin staining and SEM revealed the potential of biomimetic porous PLGA (50/50) microspheres as scaffolds for tissue engineering. As shown in graphical representation, an attempt has been made to correlate the cell behavior on the scaffolds (growth, proliferation and cell death) with the concurrent degradation of the porous microsphere scaffold as a function of time.

  5. Integration of porosity and bio-functionalization to form a 3D scaffold: cell culture studies and in vitro degradation

    International Nuclear Information System (INIS)

    Mittal, Anupama; Negi, Poonam; Garkhal, Kalpna; Verma, Shalini; Kumar, Neeraj

    2010-01-01

    In this study, porous poly(lactide-co-glycolide) (PLGA) (50/50) microspheres have been fabricated by the gas-foaming technique using ammonium bicarbonate as a gas-foaming agent. Microspheres of different porosities have been formulated by varying the concentration of the gas-foaming agent (0%, 5%, 10% and 15% w/v). These microspheres were characterized for particle size, porosity and average pore size, morphology, water uptake ratio and surface area and it was found that the porosity, pore size and surface area increased on increasing the concentration of the gas-foaming agent. Further, the effect of porosity on degradation behavior was evaluated over a 12 week period by measuring changes in mass, pH, molecular weight and morphology. Porosity was found to have an inverse relationship with degradation rate. To render the surface of the microspheres biomimetic, peptide P-15 was coupled to the surface of these microspheres. In vitro cell viability, proliferation and morphological evaluation were carried out on these microsphere scaffolds using MG-63 cell line to study the effect of the porosity and pore size of scaffolds and to evaluate the effect of P-15 on cell growth on porous scaffolds. MTT assay, actin, alizarin staining and SEM revealed the potential of biomimetic porous PLGA (50/50) microspheres as scaffolds for tissue engineering. As shown in graphical representation, an attempt has been made to correlate the cell behavior on the scaffolds (growth, proliferation and cell death) with the concurrent degradation of the porous microsphere scaffold as a function of time.

  6. Laboratory testing of rock and salt samples for determination of specific gravity and total porosity of the Zeeck No. 1 well (PD-7), Palo Duro Basin, Texas: unanalyzed data

    International Nuclear Information System (INIS)

    1984-07-01

    This report contains the specific gravity and total porosity determinations for rock and salt samples from Zeeck No. 1 Well of the Permian Basin. The laboratory test samples were measured for water content, apparent specific gravity, specific gravity of solids, total porosity and effective porosity. Specimen descriptions including specimen number, formation/group, and lithologic description as well as typical data sheets are included in the appendices. These data are preliminary. They have been neither analyzed nor evaluated

  7. Analysis of the Coupled Influence of Hydraulic Conductivity and Porosity Heterogeneity on Probabilistic Risk Analysis

    Science.gov (United States)

    Libera, A.; Henri, C.; de Barros, F.

    2017-12-01

    Heterogeneities in natural porous formations, mainly manifested through the hydraulic conductivity (K) and, to a lesser degree, the porosity (Φ), largely control subsurface flow and solute transport. The influence of the heterogeneous structure of K on flow and solute transport processes has been widely studied, whereas less attention is dedicated to the joint heterogeneity of conductivity and porosity fields. Our study employs computational tools to investigate the joint effect of the spatial variabilities of K and Φ on the transport behavior of a solute plume. We explore multiple scenarios, characterized by different levels of heterogeneity of the geological system, and compare the computational results from the joint K and Φ heterogeneous system with the results originating from the generally adopted constant porosity case. In our work, we assume that the heterogeneous porosity is positively correlated to hydraulic conductivity. We perform numerical Monte Carlo simulations of conservative and reactive contaminant transport in a 3D aquifer. Contaminant mass and plume arrival times at multiple control planes and/or pumping wells operating under different extraction rates are analyzed. We employ different probabilistic metrics to quantify the risk at the monitoring locations, e.g., increased lifetime cancer risk and exceedance of Maximum Contaminant Levels (MCLs), under multiple transport scenarios (i.e., different levels of heterogeneity, conservative or reactive solutes and different contaminant species). Results show that early and late arrival times of the solute mass at the selected sensitive locations (i.e. control planes/pumping wells) as well as risk metrics are strongly influenced by the spatial variability of the Φ field.

  8. Establishment of a permeability/porosity equation for salt grit and damming materials

    International Nuclear Information System (INIS)

    Fein, E.; Mueller-Lyda, I.; Storck, R.

    1996-09-01

    The flow resistance of stowing and sealing materials hinder the transport of brines in an ultimate storage site in salt rock strata. This effect can be seen when brines flow into the storage areas and when contaminated brines are pressed out of the underground structure. The main variable determining flow resistance is permeability. The convergence process induced by rock pressure reduces the size of the available residual cavern and also the permeability of the stowing and sealing materials. In the long-term safety analyses carried out so far, the interdependence between porosity and permeability in the case of salt grit was commonly described by a power function. The present investigation uses the data available until the end of 1994 to derive an improved relation between permeability and porosity for salt grit stowing material. The results obtained show that the power function used until now is still applicable with only a slight modification of parameters. In addition, the statistical distribution functions of the correlated parameters of the permeability/porosity relation were determined for the first time for a probabilistic safety analysis. (orig./DG) [de

  9. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy.

    Science.gov (United States)

    Donaldson, L A; Kroese, H W; Hill, S J; Franich, R A

    2015-09-01

    A novel approach to nanoscale detection of cell wall porosity using confocal fluorescence microscopy is described. Infiltration of cell walls with a range of nitrophenyl-substituted carbohydrates of different molecular weights was assessed by measuring changes in the intensity of lignin fluorescence, in response to the quenching effect of the 4-nitrophenyl group. The following carbohydrates were used in order of increasing molecular weight; 4-nitrophenyl β-D-glucopyrano-side (monosaccharide), 4-nitrophenyl β-D-lactopyranoside (disaccharide), 2-chloro-4-nitrophenyl β-D-maltotrioside (trisaccharide), and 4-nitrophenyl α-D-maltopentaoside (pentasaccharide). This technique was used to compare cell wall porosity in wood which had been dewatered to 40% moisture content using supercritical CO2, where cell walls remain fully hydrated, with kiln dried wood equilibrated to 12% moisture content. Infiltration of cell walls as measured by fluorescence quenching, was found to decrease with increasing molecular weight, with the pentasaccharide being significantly excluded compared to the monosaccharide. Porosity experiments were performed on blocks and sections to assess differences in cell wall accessibility. Dewatered and kiln dried wood infiltrated as blocks showed similar results, but greater infiltration was achieved by using sections, indicating that not all pores were easily accessible by infiltration from the lumen surface. In wood blocks infiltrated with 4-nitrophenyl α-D-maltopentaoside, quenching of the secondary wall was quite variable, especially in kiln dried wood, indicating limited connectivity of pores accessible from the lumen surface. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. Effects of selected casting methods on mechanical behaviour of Al-Mg-Si alloy

    Directory of Open Access Journals (Sweden)

    Henry Kayode TALABI

    2014-11-01

    Full Text Available This study investigated the effects of selected casting methods on mechanical behaviour of Al-Mg-Si alloy. The casting methods used was spin, sand and die casting, these were done with a view to determine which of the casting methods will produce the best properties. The pure aluminium scrap, magnesium and silicon were subjected to chemical analysis using spectrometric analyzer, thereafter the charge calculation to determine the amount needed to be charged into the furnace was properly worked out and charged into the crucible furnace from which as-cast aluminium was obtained. The mechanical properties of the casting produced were assessed by hardness and impact toughness test. The optical microscopy and experimental density and porosity were also investigated. From the results it was observed that magnesium and silicon were well dispersed in aluminium matrix of the spin casting. It was observed from visual examination after machining that there were minimal defects. It was also observed that out of the three casting methods, spin casting possesses the best mechanical properties (hardness and impact toughness.

  11. Effective beam method for element concentrations

    International Nuclear Information System (INIS)

    Tolhurst, Thomas; Barbi, Mauricio; Tokaryk, Tim

    2015-01-01

    A method to evaluate chemical element concentrations in samples by generating an effective polychromatic beam using as initial input real monochromatic beam data is presented. There is a great diversity of research being conducted at synchrotron facilities around the world and a diverse set of beamlines to accommodate this research. Time is a precious commodity at synchrotron facilities; therefore, methods that can maximize the time spent collecting data are of value. At the same time the incident radiation spectrum, necessary for some research, may not be known on a given beamline. A preliminary presentation of a method applicable to X-ray fluorescence spectrocopic analyses that overcomes the lack of information about the incident beam spectrum that addresses both of these concerns is given here. The method is equally applicable for other X-ray sources so long as local conditions are considered. It relies on replacing the polychromatic spectrum in a standard fundamental parameters analysis with a set of effective monochromatic photon beams. A beam is associated with each element and can be described by an analytical function allowing extension to elements not included in the necessary calibration measurement(s)

  12. Lattice Boltzmann simulation of dissolution-induced changes in permeability and porosity in 3D CO2 reactive transport

    Science.gov (United States)

    Tian, Zhiwei; Wang, Junye

    2018-02-01

    Dissolution and precipitation of rock matrix are one of the most important processes of geological CO2 sequestration in reservoirs. They change connections of pore channels and properties of matrix, such as bulk density, microporosity and hydraulic conductivity. This study builds on a recently developed multi-layer model to account for dynamic changes of microporous matrix that can accurately predict variations in hydraulic properties and reaction rates due to dynamic changes in matrix porosity and pore connectivity. We apply the model to simulate the dissolution and precipitation processes of rock matrix in heterogeneous porous media to quantify (1) the effect of the reaction rate on dissolution and matrix porosity, (2) the effect of microporous matrix diffusion on the overall effective diffusion and (3) the effect of heterogeneity on hydraulic conductivity. The results show the CO2 storage influenced by factors including the matrix porosity change, reaction front movement, velocity and initial properties. We also simulated dissolution-induced permeability enhancement as well as effects of initial porosity heterogeneity. The matrix with very low permeability, which can be unresolved on X-ray CT, do contribute to flow patterns and dispersion. The concentration of reactant H+ increases along the main fracture paths where the flow velocity increases. The product Ca++ shows the inversed distribution pattern against the H+ concentration. This demonstrates the capability of this model to investigate the complex CO2 reactive transport in real 3D heterogeneous porous media.

  13. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model

    Directory of Open Access Journals (Sweden)

    D. Draebing

    2012-10-01

    Full Text Available P-wave refraction seismics is a key method in permafrost research but its applicability to low-porosity rocks, which constitute alpine rock walls, has been denied in prior studies. These studies explain p-wave velocity changes in freezing rocks exclusively due to changing velocities of pore infill, i.e. water, air and ice. In existing models, no significant velocity increase is expected for low-porosity bedrock. We postulate, that mixing laws apply for high-porosity rocks, but freezing in confined space in low-porosity bedrock also alters physical rock matrix properties. In the laboratory, we measured p-wave velocities of 22 decimetre-large low-porosity (< 10% metamorphic, magmatic and sedimentary rock samples from permafrost sites with a natural texture (> 100 micro-fissures from 25 °C to −15 °C in 0.3 °C increments close to the freezing point. When freezing, p-wave velocity increases by 11–166% perpendicular to cleavage/bedding and equivalent to a matrix velocity increase from 11–200% coincident to an anisotropy decrease in most samples. The expansion of rigid bedrock upon freezing is restricted and ice pressure will increase matrix velocity and decrease anisotropy while changing velocities of the pore infill are insignificant. Here, we present a modified Timur's two-phase-equation implementing changes in matrix velocity dependent on lithology and demonstrate the general applicability of refraction seismics to differentiate frozen and unfrozen low-porosity bedrock.

  14. Change in cap rock porosity triggered by pressure and temperature dependent CO2–water–rock interactions in CO2 storage systems

    Directory of Open Access Journals (Sweden)

    Christina Hemme

    2017-03-01

    Full Text Available Carbon capture and storage in deep geological formations is a method to reduce greenhouse gas emissions. Supercritical CO2 is injected into a reservoir and dissolves in the brine. Under the impact of pressure and temperature (P–T the aqueous species of the CO2-acidified brine diffuse through the cap rock where they trigger CO2–water–rock interactions. These geochemical reactions result in mineral dissolution and precipitation along the CO2 migration path and are responsible for a change in porosity and therefore for the sealing capacity of the cap rock. This study focuses on the diffusive mass transport of CO2 along a gradient of decreasing P–T conditions. The process is retraced with a one-dimensional hydrogeochemical reactive mass transport model. The semi-generic hydrogeochemical model is based on chemical equilibrium thermodynamics. Based on a broad variety of scenarios, including different initial mineralogical, chemical and physical parameters, the hydrogeochemical parameters that are most sensitive for safe long-term CO2 storage are identified. The results demonstrate that P–T conditions have the strongest effect on the change in porosity and the effect of both is stronger at high P–T conditions because the solubility of the mineral phases involved depends on P–T conditions. Furthermore, modeling results indicate that the change in porosity depends strongly on the initial mineralogical composition of the reservoir and cap rock as well as on the brine compositions. Nevertheless, a wide range of conditions for safe CO2 storage is identified.

  15. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1979-01-01

    A simultaneous pulsed neutron porosity and thermal neutron capture cross section logging system is provided for radiological well logging of subsurface earth formations. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a combination gamma ray and fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations; and, during the bursts, the fast neutron and epithermal neutron populations are sampled. During the interval between bursts the thermal neutron capture gamma ray population is sampled in two or more time intervals. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity phi. The capture gamma ray measurements are combined to provide a simultaneous determination of the thermal neutron capture cross section Σ

  16. Stylolites, porosity, depositional texture, and silicates in chalk facies sediments

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Borre, Mai K.

    2007-01-01

    dissolution around 490 m below sea floor (bsf) corresponds to an interval of waning porosity-decline, and even the occurrence of proper stylolites from 830 m bsf is accompanied by only minor porosity reduction. Because opal is present, the pore-water is relatively rich in Si which through the formation of Ca......-silica complexes causes an apparent super-saturation of Ca and retards cementation. The onset of massive pore-filling cementation at 1100 m bsf may be controlled by the temperature-dependent transition from opal-CT to quartz. In the stylolite-bearing chalk of two wells in the Gorm and Tyra fields, the nannofossil...... matrix shows recrystallization but only minor pore-filling cement, whereas microfossils are cemented. Cementation in Gorm and Tyra is thus partial and has apparently not been retarded by opal-controlled pore-water. A possible explanation is that, due to the relatively high temperature, silica has...

  17. Understanding age-induced cortical porosity in women

    DEFF Research Database (Denmark)

    Andreasen, Christina Møller; Delaisse, Jean-Marie; van der Eerden, Bram C J

    2018-01-01

    of a histomorphometric analysis of sections of iliac bone specimens from 35 women (age 16-78 years). Firstly, the study shows that the aging-induced cortical porosity reflects an increased pore size rather than an increased pore density. Secondly, it establishes a novel histomorphometric classification of the pores...... initiation of the subsequent bone formation. This article is protected by copyright. All rights reserved....

  18. Design and Synthesis of Hybrid Ceramic Foams with Tailored Porosity

    OpenAIRE

    Capasso, Ilaria

    2017-01-01

    Alkali activated ceramic foams have been produced by using metakaolin and/or diatomite as aluminosilicate source, an aqueous sodium silicate solution as alkali activator and Na2SiF6 as a catalyst that promotes the gelification of the entire system. Two different techniques of direct foaming have been coupled, one based on chemical reactions with gas production and the other one based on a mechanical foaming. Then, other levels of hierarchical porosity (nanometric and macrometric scale) have b...

  19. Waste-to-resource preparation of a porous ceramic membrane support featuring elongated mullite whiskers with enhanced porosity and permeance

    NARCIS (Netherlands)

    Zhu, Li; Dong, Yingchao; Hampshire, Stuart; Cerneaux, Sophie; Winnubst, Aloysius J.A.

    2015-01-01

    Different from traditional particle packing structure, a porous structure of ceramic membrane support was fabricated, featuring elongated mullitewhiskers with enhanced porosity, permeance and sufficient mechanical strength. The effect of additives (MoO3and AlF3) and sintering procedureon open

  20. Preparation and microstructure of ZrO2- and LaGaO3-based high-porosity ceramics

    International Nuclear Information System (INIS)

    Kaleva, G.M.; Golubko, N.V.; Suvorkin, S.V.; Kosarev, G.V.; Sukhareva, I.P.; Avetisov, A.K.; Politova, E.D.

    2006-01-01

    The morphology and concentration of pore formers are studied for their effect on the microstructure and gas permeability of porous zirconia- and lanthanum-gallate-based oxygen-ion-conducting ceramics. The results have been used to optimize the preparation conditions and composition of the ceramics. The resultant dense, fine-grained materials have porosities of up to ∼56% [ru

  1. Emulsion Inks for 3D Printing of High Porosity Materials.

    Science.gov (United States)

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    Science.gov (United States)

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  3. Prediction methods environmental-effect reporting

    International Nuclear Information System (INIS)

    Jonker, R.J.; Koester, H.W.

    1987-12-01

    This report provides a survey of prediction methods which can be applied to the calculation of emissions in cuclear-reactor accidents, in the framework of environment-effect reports (dutch m.e.r.) or risk analyses. Also emissions during normal operation are important for m.e.r.. These can be derived from measured emissions of power plants being in operation. Data concerning the latter are reported. The report consists of an introduction into reactor technology, among which a description of some reactor types, the corresponding fuel cycle and dismantling scenarios - a discussion of risk-analyses for nuclear power plants and the physical processes which can play a role during accidents - a discussion of prediction methods to be employed and the expected developments in this area - some background information. (aughor). 145 refs.; 21 figs.; 20 tabs

  4. Numerical analysis of pressure and porosity evolution in lava domes during periodic degassing conditions

    Science.gov (United States)

    Hyman, D.; Bursik, M. I.; Pitman, E. B.

    2017-12-01

    The collapse or explosive breakup of growing and degassing lava domes presents a significant hazard due to the generation of dense, mobile pyroclastic flows as well as the wide dispersal of dense ballistic blocks. Lava dome stability is in large part governed by the balance of transport and storage of gas within the pore space. Because pore pressurization reduces the effective stress within a dome, the transient distribution of elevated gas pressure is critically important to understanding dome break up. We combine mathematical and numerical analyses to gain a better understanding of the temporal variation in gas flow and storage within the dome system. In doing so, we develop and analyze new governing equations describing nonlinear gas pressure diffusion in a deforming dome with an evolving porosity field. By relating porosity, permeability, and pressure, we show that the flux of gas through a dome is highly sensitive to the porosity distribution and viscosity of the lava, as well as the timescale and magnitude of the gas supply. The numerical results suggest that the diffusion of pressure and porosity variations play an integral role in the cyclic growth and destruction of small domes.The nearly continuous cycles of lava dome growth, pressurization, and failure that have characterized the last two decades of eruptive history at Volcán Popocatépetl, Mexico provide excellent natural data with which to compare new models of transient dome pressurization. At Popocatépetl, periodic pressure increases brought on by changes in gas supply into the base of the dome may play a role in its cyclic growth and destruction behavior. We compare our model of cyclic pressurization with lava dome survival data from Popocatépetl. We show that transient changes in pore pressure explain how small lava domes evolve to a state of criticality before explosion or collapse. Additionally, numerical analyses presented here suggest that short-term oscillations cannot arise within the dome

  5. Estimation of Dry Fracture Weakness, Porosity, and Fluid Modulus Using Observable Seismic Reflection Data in a Gas-Bearing Reservoir

    Science.gov (United States)

    Chen, Huaizhen; Zhang, Guangzhi

    2017-05-01

    Fracture detection and fluid identification are important tasks for a fractured reservoir characterization. Our goal is to demonstrate a direct approach to utilize azimuthal seismic data to estimate fluid bulk modulus, porosity, and dry fracture weaknesses, which decreases the uncertainty of fluid identification. Combining Gassmann's (Vier. der Natur. Gesellschaft Zürich 96:1-23, 1951) equations and linear-slip model, we first establish new simplified expressions of stiffness parameters for a gas-bearing saturated fractured rock with low porosity and small fracture density, and then we derive a novel PP-wave reflection coefficient in terms of dry background rock properties (P-wave and S-wave moduli, and density), fracture (dry fracture weaknesses), porosity, and fluid (fluid bulk modulus). A Bayesian Markov chain Monte Carlo nonlinear inversion method is proposed to estimate fluid bulk modulus, porosity, and fracture weaknesses directly from azimuthal seismic data. The inversion method yields reasonable estimates in the case of synthetic data containing a moderate noise and stable results on real data.

  6. Acoustic properties in travertines and their relation to porosity and pore types

    NARCIS (Netherlands)

    Soete, J.; Kleipool, L.M.; Claes, H.; Claes, S.; Hamaekers, H.; Kele, S.; Özkul, M.; Foubert, A.; Reijmer, J.J.G.; Swennen, R.

    2015-01-01

    Sonic velocities of Pleistocene travertines were measured under variable confining pressures. Combined with petrographical characteristics and petrophysical data, i.e. porosity, permeability and density, it was determined that travertine porosity, pore types and cementation control

  7. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    International Nuclear Information System (INIS)

    Neumann, Bjoern

    2013-11-01

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [de

  8. Fabrication of porous ethyl cellulose microspheres based on the acetone-glycerin-water ternary system: Controlling porosity via the solvent-removal mode.

    Science.gov (United States)

    Murakami, Masahiro; Matsumoto, Akihiro; Watanabe, Chie; Kurumado, Yu; Takama, Masashi

    2015-08-01

    Porous ethyl cellulose (EC) microspheres were prepared from the acetone-glycerin-water ternary system using an oil/water (O/W)-type emulsion solvent extraction method. The O/ W type emulsion was prepared using acetone dissolved ethyl cellulose as an oil phase and aqueous glycerin as a water phase. The effects of the different solvent extraction modes on the porosity of the microspheres were investigated. The specific surface area of the porous EC microspheres was estimated by the gas adsorption method. When the solvent was extracted rapidly by mixing the emulsion with water instantaneously, porous EC microspheres with a maximum specific surface area of 40.7±2.1 m2/g were obtained. On the other hand, when water was added gradually to the emulsion, the specific surface area of the fabricated microspheres decreased rapidly with an increase in the infusion period, with the area being 25-45% of the maximum value. The results of an analysis of the ternary phase diagram of the system suggested that the penetration of water and glycerin from the continuous phase to the dispersed phase before solidification affected the porosity of the fabricated EC microspheres.

  9. Effects of Porosity and Thermal Treatment on Hydration of Mushrooms

    NARCIS (Netherlands)

    Paudel, Ekaraj; Boom, R.M.; Sman, van der R.G.M.

    2016-01-01

    In this study, hydration of mushroom as a porous food material has been studied considering their biphasic character. It consists of a solid phase that consists of intertwined hyphae and having cell walls with a swellable polymeric matrix and a pore phase made up by the space in between the

  10. Effects of sintering temperature on the density and porosity

    African Journals Online (AJOL)

    2013-03-01

    bonding) between the salt beads at all the temperatures in which sintering was performed. .... and the sintering of some covalent solids and low- stability ceramics. The entire sintering process is gen- erally considered to occur in ...

  11. Reservoir core porosity in the Resende formation using 3D high-resolution X-ray computed microtomography

    International Nuclear Information System (INIS)

    Oliveira, Milena F.S.; Lima, Inaya; Lopes, Ricardo T.; Rocha, Paula Lucia F. da

    2009-01-01

    The storage capacity and production of oil are influenced, among other things, by rocks and fluids characteristics. Porosity is one of the most important characteristics to be analyzed in oil industry, mainly in oil prospection because it represents the direct capacity of storage fluids in the rocks. By definition, porosity is the ratio of pore volume to the total bulk volume of the formation, expressed in percentage, being able to be absolute or effective. The aim of this study was to calculate porosity by 3D High-Resolution X-ray Computed Microtomography using core plugs from Resende Formation which were collected in Porto Real, Rio de Janeiro State. This formation is characterized by sandstones and fine conglomerates with associated fine siliciclastic sediments, and the paleoenviroment is interpreted as a braided fluvial system. For acquisitions data, it was used a 3D high resolution microtomography system which has a microfocus X-ray tube (spot size < 5μm) and a 12-bit cooled X-ray camera (CCD fiber-optically coupled to a scintillator) operated at 100 kV and 100 μA. Twenty-two samples taken at different depths from two boreholes were analyzed. A total of 961 slices were performed with a resolution of 14.9 μm. The results demonstrated that μ-CT is a reliable and effective technique. Through the images and data it was possible to quantify the porosity and to view the size and shape of porous. (author)

  12. Examining the social porosity of environmental features on neighborhood sociability and attachment.

    Directory of Open Access Journals (Sweden)

    John R Hipp

    Full Text Available The local neighborhood forms an integral part of our lives. It provides the context through which social networks are nurtured and the foundation from which a sense of attachment and cohesion with fellow residents can be established. Whereas much of the previous research has examined the role of social and demographic characteristic in relation to the level of neighboring and cohesion, this paper explores whether particular environmental features in the neighborhood affect social porosity. We define social porosity as the degree to which social ties flow over the surface of a neighborhood. The focus of our paper is to examine the extent to which a neighborhood's environmental features impede the level of social porosity present among residents. To do this, we integrate data from the census, topographic databases and a 2010 survey of 4,351 residents from 146 neighborhoods in Australia. The study introduces the concepts of wedges and social holes. The presence of two sources of wedges is measured: rivers and highways. The presence of two sources of social holes is measured: parks and industrial areas. Borrowing from the geography literature, several measures are constructed to capture how these features collectively carve up the physical environment of neighborhoods. We then consider how this influences residents' neighboring behavior, their level of attachment to the neighborhood and their sense of neighborhood cohesion. We find that the distance of a neighborhood to one form of social hole-industrial areas-has a particularly strong negative effect on all three dependent variables. The presence of the other form of social hole-parks-has a weaker negative effect. Neighborhood wedges also impact social interaction. Both the length of a river and the number of highway fragments in a neighborhood has a consistent negative effect on neighboring, attachment and cohesion.

  13. Porosity of Self-Compacting Concrete (SCC) incorporating high volume fly ash

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Murti, G. Y.

    2017-02-01

    Degradation of concrete could be triggered by the presence of aggressive agents from the environment into the body of concrete. The penetration of these agents is influenced by the pore characteristics of the concrete. Incorporating a pozzolanic material such as fly ash could modify the pore characteristic of the concrete. This research aims to investigate the influence of incorporating fly ash at high volume level on the porosity of Self-Compacting Concrete (SCC). Laboratory investigations were carried out following the ASTM C642 for measuring density and volume of permeable pores (voids) of the SCC with varying fly ash contents (50-70% by weight of total binder). In addition, a measurement of permeable voids by saturation method was carried out to obtain an additional volume of voids that could not be measured by the immersion and boiling method of ASTM C642. The results show that the influence of fly ash content on the porosity appears to be dependent on age of SCC. At age less than 56 d, fly ash tends to cause an increase of voids but at 90 d of age it reduces the pores. The additional pores that can be penetrated by vacuum saturation method counts about 50% of the total voids.

  14. Mechanical properties and porosity of dental glass-ceramics hot-pressed at different temperatures

    Directory of Open Access Journals (Sweden)

    Carla Castiglia Gonzaga

    2008-09-01

    Full Text Available The objective of this work was to evaluate biaxial-flexural-strength (σf, Vickers hardness (HV, fracture toughness (K Ic, Young's modulus (E, Poisson's ratio (ν and porosity (P of two commercial glass-ceramics, Empress (E1 and Empress 2 (E2, as a function of the hot-pressing temperature. Ten disks were hot-pressed at 1065, 1070, 1075 and 1080 °C for E1; and at 910, 915, 920 and 925 °C for E2. The porosity was measured by an image analyzer software and s f was determined using the piston-on-three-balls method. K Ic and HV were determined by an indentation method. Elastic constants were determined by the pulse-echo method. For E1 samples treated at different temperatures, there were no statistical differences among the values of all evaluated properties. For E2 samples treated at different temperatures, there were no statistical differences among the values of σf, E, and ν, however HV and K Ic were significantly higher for 910 and 915 °C, respectively. Regarding P, the mean value obtained for E2 for 925 °C was significantly higher compared to other temperatures.

  15. Effect of defuzzification method of fuzzy modeling

    Science.gov (United States)

    Lapohos, Tibor; Buchal, Ralph O.

    1994-10-01

    Imprecision can arise in fuzzy relational modeling as a result of fuzzification, inference and defuzzification. These three sources of imprecision are difficult to separate. We have determined through numerical studies that an important source of imprecision is the defuzzification stage. This imprecision adversely affects the quality of the model output. The most widely used defuzzification algorithm is known by the name of `center of area' (COA) or `center of gravity' (COG). In this paper, we show that this algorithm not only maps the near limit values of the variables improperly but also introduces errors for middle domain values of the same variables. Furthermore, the behavior of this algorithm is a function of the shape of the reference sets. We compare the COA method to the weighted average of cluster centers (WACC) procedure in which the transformation is carried out based on the values of the cluster centers belonging to each of the reference membership functions instead of using the functions themselves. We show that this procedure is more effective and computationally much faster than the COA. The method is tested for a family of reference sets satisfying certain constraints, that is, for any support value the sum of reference membership function values equals one and the peak values of the two marginal membership functions project to the boundaries of the universe of discourse. For all the member sets of this family of reference sets the defuzzification errors do not get bigger as the linguistic variables tend to their extreme values. In addition, the more reference sets that are defined for a certain linguistic variable, the less the average defuzzification error becomes. In case of triangle shaped reference sets there is no defuzzification error at all. Finally, an alternative solution is provided that improves the performance of the COA method.

  16. Theory and application of a measurement-while-drilling neutron porosity sensor

    International Nuclear Information System (INIS)

    Roesler, R.F.; Barnett, W.C.; Paske, W.C.

    1987-01-01

    The authors describe the first MWD compensated neutron porosity measurement service (CNO) which employs a dual-spaced, borehole-compensated detector system to measure neutron-capture gamma rays. CNO service, when combined with existing MWD gamma ray and resistivity services, provides the basic data necessary for calculation of water saturation from MWD logs, making it possible to replace wireline logs in many situations with resulting savings in both logging costs and associated rig time. This is particularly cost effective when drilling high angle offshore development wells and in other high cost development drilling

  17. Threshold burnup for recrystallization and model for rim porosity in the high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Lee, Byung Ho; Koo, Yang Hyun; Sohn, Dong Seong

    1998-01-01

    Applicability of the threshold burnup for rim formation was investigated as a function of temperature by Rest's model. The threshold burnup was the lowest in the intermediate temperature region, while on the other temperature regions the threshold burnup is higher. The rim porosity was predicted by the van der Waals equation based of the rim pore radius of 0.75μm and the overpressurization model on rim pores. The calculated centerline temperature is in good agreement with the measured temperature. However, more efforts seem to be necessary for the mechanistic model of the rim effect including rim growth with the fuel burnup

  18. A new multi-zone model for porosity distribution in Al–Si alloy castings

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Taylor, John A.; Easton, Mark A.

    2013-01-01

    A new multi-zone model is proposed that explains how porosity forms in various regions of a casting under different conditions and leads to distinct zonal differences in pore shape, size and distribution. This model was developed by considering the effect of cooling rate on solidification......) a central zone where the thermal gradient is low and equiaxed dendritic grains and eutectic cells grow at the centre of the casting and larger, rounded pores tend to form. The paper discusses how Si content, modification type and cooling conditions influence the location and size (i.e. depth) of each...

  19. The effects of composition and sintering temperature on the silica foam fabricated by slurry method

    International Nuclear Information System (INIS)

    Baharom, Syazwani; Ahmad, Sufizar; Taib, Hariati; Muda, Rizamarhaiza

    2016-01-01

    Reticulated ceramic or open pore ceramic foam is a well-known material which exhibits extremely high porosities, with a significant degree of interconnectivity that makes them desirable in a wide range of applications. There were broad types of ceramic foam fabrication method such as polymeric sponge method, direct foaming, and starch consolidation. In this study, the slurry method has been chosen to fabricate Silica (SiO_2) foam. In this process, Polyurethane (PU) foam template was dipped into ceramic slurry and followed by drying and sintering to obtain foam which contains porosity in the range of 50% to 70%. The compositions of SiO_2 were varied starting from 55 wt.%, 60 wt.%, 65 wt.% and 70 wt.%. The samples of SiO_2 that have been dipped and dried were sintered at 900°C, 1000°C, 1100°C, and 1250°C. The sintered SiO_2 ceramic foam samples were characterized to observe their morphology, and physical properties. Thus, the microstructure of the SiO_2 ceramic foams samples was examined by Scanning Electron Microscopy (SEM), and Electron Dispersive Spectroscopy (EDS). Meanwhile, the physical properties of the SiO_2 ceramic foam samples such as the total porosity (%) and bulk density were determined using Archimedes method. It was found that the density of ceramic foam produced was in the range of 0.25 g/cm"3 up to 0.75 g/cm"3, whereas the level of porosity percentage was in the range of 61.81% to 82.18% with the size of open pore or window cells were in between 141 µm up to 626 µm.

  20. The effects of composition and sintering temperature on the silica foam fabricated by slurry method

    Energy Technology Data Exchange (ETDEWEB)

    Baharom, Syazwani, E-mail: hd140001@siswa.uthm.edu.my; Ahmad, Sufizar, E-mail: sufizar@uthm.edu.my; Taib, Hariati, E-mail: hariati@uthm.edu.my; Muda, Rizamarhaiza, E-mail: hd130013@siswa.uthm.edu.my [Department of Material and Design Engineering, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2016-07-19

    Reticulated ceramic or open pore ceramic foam is a well-known material which exhibits extremely high porosities, with a significant degree of interconnectivity that makes them desirable in a wide range of applications. There were broad types of ceramic foam fabrication method such as polymeric sponge method, direct foaming, and starch consolidation. In this study, the slurry method has been chosen to fabricate Silica (SiO{sub 2}) foam. In this process, Polyurethane (PU) foam template was dipped into ceramic slurry and followed by drying and sintering to obtain foam which contains porosity in the range of 50% to 70%. The compositions of SiO{sub 2} were varied starting from 55 wt.%, 60 wt.%, 65 wt.% and 70 wt.%. The samples of SiO{sub 2} that have been dipped and dried were sintered at 900°C, 1000°C, 1100°C, and 1250°C. The sintered SiO{sub 2} ceramic foam samples were characterized to observe their morphology, and physical properties. Thus, the microstructure of the SiO{sub 2} ceramic foams samples was examined by Scanning Electron Microscopy (SEM), and Electron Dispersive Spectroscopy (EDS). Meanwhile, the physical properties of the SiO{sub 2} ceramic foam samples such as the total porosity (%) and bulk density were determined using Archimedes method. It was found that the density of ceramic foam produced was in the range of 0.25 g/cm{sup 3} up to 0.75 g/cm{sup 3}, whereas the level of porosity percentage was in the range of 61.81% to 82.18% with the size of open pore or window cells were in between 141 µm up to 626 µm.

  1. Critically Tapered Wedges and Critical State Soil Mechanics: Porosity-based Pressure Prediction in the Nankai Accretionary Prism.

    Science.gov (United States)

    Flemings, P. B.; Saffer, D. M.

    2016-12-01

    We predict pore pressure from porosity measurements at ODP Sites 1174 and 808 in the Nankai Accretionary prism, offshore Japan. For a range of friction angles (5-30 degrees), we estimate that the pore pressure ratio (λ*) ranges from 0.5 to 0.8: the pore pressure supports 50% to 80% of the overburden. Higher friction angles result in higher pressures. For the majority of the scenarios, pressures within the prism parallel the lithostat and are greater than the pressures beneath it. Our results support previous qualitative interpretations at Nankai and elsewhere suggesting that lower porosity above the décollement than below reflects higher mean effective stress there. By coupling a critical state soil model (Modified Cam Clay), which describes porosity as a function of mean and deviator stress, with a stress model that considers the difference in stress states above and below the décollement, we quantitatively show that the prism porosities record significant overpressure despite their lower porosity. As the soil is consumed by the advancing prism, changes in both mean and shear stress drive overpressure generation. Even in the extreme case where only change in mean stress is considered (a vertical end cap model), significant overpressures are generated. The high pressures we predict require an effective friction coefficient (µb') at the décollement of 0.023-0.038. Assuming that the pore pressure at the décollement lies between the values we report for the wedge and the underthrusting sediments, these effective friction coefficients correspond to intrinsic friction coefficients of µb= 0.08-0.38 (f = 4.6 - 21°). These values are comparable to friction coefficients of 0.1-0.4 reported for clay-dominated fault zones in a wide range of settings. By coupling the critical wedge model with an appropriate constitutive model, we present a systematic approach to predict pressure in thrust systems.

  2. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  3. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    Science.gov (United States)

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  4. Rayleigh waves in elastic medium with double porosity

    Directory of Open Access Journals (Sweden)

    Rajneesh KUMAR

    2018-03-01

    Full Text Available The present paper deals with the propagation of Rayleigh waves in isotropic homogeneous elastic half-space with double porosity whose surface is subjected to stress-free boundary conditions. The compact secular equations for elastic solid half-space with voids are deduced as special cases from the present analysis. In order to illustrate the analytical developments, the secular equations have been solved numerically. The computer simulated results for copper materials in respect of Rayleigh wave velocity and attenuation coe¢ cient have been presented graphically.

  5. Radioactive wastes storage rock porosity study using neutron radiography

    International Nuclear Information System (INIS)

    Peterka, F.

    1995-01-01

    Neutron radiography and neutron transmission analysis application to porosity study was mainly dealing with the building industry, the art protection and the basic research. Cooperation with the building industry has produced the solution of number of problems. Cement hydratation, concrete material, red brick sample, roofing tiles protection and epoxy resin efficiency for sand stones sculpture protection, can be cited as example. Many valuable experiences (like samples thickness, penetrating substances, detection techniques for the different experiments) were achieved. These can be used in the rockies formation studies too. Resolution is the proposal to JAERI and PNC for the cooperation, which can even be on the international basis. (J.P.N.)

  6. Analysis of the porosity distribution of mixed oxide pins

    International Nuclear Information System (INIS)

    Lieblich, M.; Lopez, J.

    1987-01-01

    In the frame of the Joint Irradiation Program IVO-FR2-Vg7 between the Centre of Nuclear Research of Karlsruhe (KfK), the irradiation of 30 mixed-oxide fuel rods in the FR2 experimental reactor was carried out. The pins were located in 10 single-walled NaK capsules. The behaviour of the fuel during its burnup was studied, mainly, the rest-porosity and cracking distribution in the pellet, partial densification, etc. In this work 3 pins from the capsule No. 165 were analyzed. The experimental results (pore and cracking profiles) were interpreted by the fuel rod code SATURN. (Author) 20 refs

  7. Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport

    Science.gov (United States)

    de Vries, Enno T.; Raoof, Amir; van Genuchten, Martinus Th.

    2017-07-01

    Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have been used to simulate contaminant transport in such media. Many of these models consider advective-dispersive transport through relatively large inter-aggregate pore domains, while exchange with the smaller intra-aggregate pores is assumed to be controlled by diffusion. Exchange of solute between the two domains is often represented using a first-order mass transfer coefficient, which is commonly obtained by fitting to observed data. This study aims to understand and quantify the solute exchange term by applying a dual-porosity pore-scale network model to relatively large domains, and analysing the pore-scale results in terms of the classical dual-porosity (mobile-immobile) transport formulation. We examined the effects of key parameters (notably aggregate porosity and aggregate permeability) on the main dual-porosity model parameters, i.e., the mobile water fraction (ϕm) and the mass transfer coefficient (α). Results were obtained for a wide range of aggregate porosities (between 0.082 and 0.700). The effect of aggregate permeability was explored by varying pore throat sizes within the aggregates. Solute breakthrough curves (BTCs) obtained with the pore-scale network model at several locations along the domain were analysed using analytical solutions of the dual-porosity model to obtain estimates of ϕm and α. An increase in aggregate porosity was found to decrease ϕm and increase α, leading to considerable tailing in the BTCs. Changes in the aggregate pore throat size affected the relative flow velocity between the intra- and inter-aggregate domains. Higher flow velocities within the aggregates caused a change in the transport regime from diffusion dominated to more

  8. Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity

    Energy Technology Data Exchange (ETDEWEB)

    Kőrösi, László, E-mail: ltkorosi@gmail.com [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scarpellini, Alice [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Petrik, Péter [Institute for Technical Physics and Materials Science, Konkoly-Thege út 29-33, H-1121 Budapest (Hungary); Papp, Szilvia [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Dékány, Imre [MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged (Hungary)

    2014-11-30

    Graphical abstract: - Highlights: • Nanocrystalline ITO thin films and powders were prepared by a sol–gel method. • The nature of the compounds used for hydrolysis plays a key role in the morphology. • Hydrolysis of In{sup 3+}/Sn{sup 4+} with EA led to a rod-like morphology. • Monodisperse spherical ITO nanoparticles were obtained on the use of AC. • ITO{sub E}A was highly porous, while ITO{sub A}C contained densely packed nanocrystals. - Abstract: Nanostructured indium tin oxide (ITO) powders and thin films differing in morphology and porosity were prepared by a sol–gel method. In{sup 3+} and Sn{sup 4+} were hydrolyzed in aqueous medium through the use of ethanolamine (EA) or sodium acetate (AC). X-ray diffraction measurements demonstrated that both EA and AC furnished indium tin hydroxide, which became nanocrystalline after aging for one day. The indium tin hydroxide samples calcined at 550 °C afforded ITO with a cubic crystal structure, but the morphology differed significantly, depending on the agent used for hydrolysis. Electron microscopy revealed the formation of round monodisperse nanoparticles when AC was used, whereas the application of EA led to rod-like ITO nanoparticles. Both types of nanoparticles were suitable for the preparation of transparent and conductive ITO thin films. The influence of the morphology and porosity on the optical properties is discussed.

  9. SEPARATION OF THE INTER- AND INTRA-PARTICLE POROSITY IN IMAGES OF POWDER COMPACTS

    Directory of Open Access Journals (Sweden)

    Jacques Lacaze

    2011-05-01

    Full Text Available Powder metallurgy is a highly developed and cheap method of manufacturing reliable materials, either metallic, ceramic or composite. This process was used to make green compacts of iron powders with a high porosity level. This study is part of a project aimed at describing the relationships between mechanical properties and morphological features of such compacts, with particular attention paid to the shape of the grains and the compaction pressure. In this report, a method is proposed to separate the intra grain porosity from the cavities located between particles. The approach is based on the covariogram of images obtained from the surface of the compacts by means of a laser roughometer. To achieve this separation, a model of the structure is proposed which assumes that the distributions of the grains and of the intra-particle cavities are random and independent. Each distribution is characterized by two parameters. A satisfactory agreement is obtained between experimental and calculated covariograms after identification of these parameters.

  10. Experimental methods of effective delayed neutron fraction

    International Nuclear Information System (INIS)

    Yamaye, Yoshihiro

    1995-01-01

    The defining principle and examples of β eff measurement method: the substitutional method, Cf neutron source method, Bennett method, the coupling coefficient method and Nelson method were introduced and surveyed. Measurement errors and C/E value of the substitutional, Cf ray source and Bennett method were of the order of 3%, 5% and 3 - 6% and 0.903 - 0.965, 1.85 and 1.019 - 1.165, respectably. Evaluation of the absolute value is so hard that β eff measurement belongs to the difficult experiment. The dependence on nuclear calculation in decreasing order is the substitutional, Cf ray source, Bennett, the coupling coefficient and Nelson number method. If good substitute materials were selected, the substitutional method has possibility to determine β eff by small correction value or independent on calculation. (S.Y.)

  11. Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design

    Science.gov (United States)

    Ma, Zhipeng; Kawai, Kentaro; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.

  12. Methods of Speakers\\' Effects on the Audience

    Directory of Open Access Journals (Sweden)

    فریبا حسینی

    2010-09-01

    Full Text Available Methods of Speakers' Effects on the Audience    Nasrollah Shameli *   Fariba Hosayni **     Abstract   This article is focused on four issues. The first issue is related to the speaker's external appearance including the beauty of face, the power of his voice, moves and signals by hand, the stick and eyebrow as well as the height. Such characteristics could have an important effect on the audience. The second issue is related to internal features of the speaker. These include the ethics of the preacher , his/her piety and intention on the speakers based on their personalities, habits and emotions, knowledge and culture, and speed of learning. The third issue is concerned with the appearance of the lecture. Words should be clear enough as well as being mixed with Quranic verses, poetry and proverbs. The final issue is related to the content. It is argued that the subject of the talk should be in accordance with the level of understanding of listeners as well as being new and interesting for them.   3 - A phenomenon rhetoric: It was noted in this section How to give words and phrases so that these words and phrases are clear, correct, mixed in parables, governance and Quranic verses, and appropriate their meaning.   4 - the content of Oratory : It was noted in this section to the topic of Oratory and say that the Oratory should be the theme commensurate with the minds of audiences and also should mean that agree with the case may be, then I say: that the rhetoric if the theme was innovative and new is affecting more and more on the audience.     Key words : Oratory , Preacher , Audience, Influence of speech     * Associate Professor, Department of Arabic Language and Literature, University of Isfahan E-mail: Dr-Nasrolla Shameli@Yahoo.com   * * M.A. in Arabic Language and Literature from Isfahan University E-mail: faribahosayni@yahoo.com

  13. Application of nuclear logging to porosity studies in Itaborai basin

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Milena F.S.; Lima, Inaya; Lopes, Ricardo Tadeu, E-mail: milena@lin.ufrj.br, E-mail: inaya@lin.ufrj.br, E-mail: ricardo@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Ferrucio, Paula Lucia; Borghi, Leonardo, E-mail: ferrucio@acd.ufrj.br, E-mail: borghi@ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Geociencias. Dept. de Geologia; Abreu, Carlos Jorge, E-mail: jo_abreu@unb.br [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Geociencias

    2011-07-01

    Nuclear logging provides information on bulk density and porosity variations by measuring the intensity of the scattered radiation induced on the formation by radioactive sources. In this study, nuclear logging was employed to analyze the pore-space system of the 2-ITAB-1-RJ well placed on the Itaborai limestone basin, in the state of Rio de Janeiro. This is one of the smallest sedimentary basin in Brazil and it is formed by clastic deposits and travertine limestone rocks which are fractured. Understanding the pore-space system of carbonate rocks has become important subject for the oil industry, specially in Brazil. A Density Gamma Probe (LSD) and a Neutron Probe (NEUT) were used for data acquisition, which nuclear logging was carried out in part of the well, with continuous detection for about 50 m of deep. The detection speed was 4 m/min for the LSD and 5 m/min for the NEUT. The results obtained by nuclear logging showed that the 2-ITAB-1-RJ well consists of three different intervals with rocks ranging from low to moderate porosity present in travertine, marls and gneisses. (author)

  14. The influence of freezing and tissue porosity on the material properties of vegetable tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ralfs, Julie D

    2002-07-01

    Tissue porosity and fluid flow have been shown to be important parameters affecting the mechanical and sensorial behaviour of edible plant tissues. The quantity of fluid and the manner with which it was released on compression of the plant tissue were also important regarding the sensory perception and a good indication of any structural damage resulting from freezing, for example. Potato, carrot and Chinese water chestnut were used to study the effects freezing has on model plant tissues. Mechanical and structural measurements of the plant tissue were correlated with sensory analysis. Conventional freezing was shown to cause severe structural damage predominantly in the form of cavities between or through cells, resulting in decreases in mechanical strength and stiffness, and samples that were perceived in the mouth as '