WorldWideScience

Sample records for methodology space applications

  1. The Application Strategy of Iterative Solution Methodology to Matrix Equations in Hydraulic Solver Package, SPACE

    International Nuclear Information System (INIS)

    Na, Y. W.; Park, C. E.; Lee, S. Y.

    2009-01-01

    As a part of the Ministry of Knowledge Economy (MKE) project, 'Development of safety analysis codes for nuclear power plants', KOPEC has been developing the hydraulic solver code package applicable to the safety analyses of nuclear power plants (NPP's). The matrices of the hydraulic solver are usually sparse and may be asymmetric. In the earlier stage of this project, typical direct matrix solver packages MA48 and MA28 had been tested as matrix solver for the hydraulic solver code, SPACE. The selection was based on the reasonably reliable performance experience from their former version MA18 in RELAP computer code. In the later stage of this project, the iterative methodologies have been being tested in the SPACE code. Among a few candidate iterative solution methodologies tested so far, the biconjugate gradient stabilization methodology (BICGSTAB) has shown the best performance in the applicability test and in the application to the SPACE code. Regardless of all the merits of using the direct solver packages, there are some other aspects of tackling the iterative solution methodologies. The algorithm is much simpler and easier to handle. The potential problems related to the robustness of the iterative solution methodologies have been resolved by applying pre-conditioning methods adjusted and modified as appropriate to the application in the SPACE code. The application strategy of conjugate gradient method was introduced in detail by Schewchuk, Golub and Saad in the middle of 1990's. The application of his methodology to nuclear engineering in Korea started about the same time and is still going on and there are quite a few examples of application to neutronics. Besides, Yang introduced a conjugate gradient method programmed in C++ language. The purpose of this study is to assess the performance and behavior of the iterative solution methodology compared to those of the direct solution methodology still being preferred due to its robustness and reliability. The

  2. Application of NASA Kennedy Space Center system assurance analysis methodology to nuclear power plant systems designs

    International Nuclear Information System (INIS)

    Page, D.W.

    1985-01-01

    The Kennedy Space Center (KSC) entered into an agreement with the Nuclear Regulatory Commission (NRC) to conduct a study to demonstrate the feasibility and practicality of applying the KSC System Assurance Analysis (SAA) methodology to nuclear power plant systems designs. In joint meetings of KSC and Duke Power personnel, an agreement was made to select to CATAWBA systems, the Containment Spray System and the Residual Heat Removal System, for the analyses. Duke Power provided KSC with a full set a Final Safety Analysis Reports as well as schematics for the two systems. During Phase I of the study the reliability analyses of the SAA were performed. During Phase II the hazard analyses were performed. The final product of Phase II is a handbook for implementing the SAA methodology into nuclear power plant systems designs. The purpose of this paper is to describe the SAA methodology as it applies to nuclear power plant systems designs and to discuss the feasibility of its application. The conclusion is drawn that nuclear power plant systems and aerospace ground support systems are similar in complexity and design and share common safety and reliability goals. The SAA methodology is readily adaptable to nuclear power plant designs because of it's practical application of existing and well known safety and reliability analytical techniques tied to an effective management information system

  3. Application of NASA Kennedy Space Center System Assurance Analysis methodology to nuclear power plant systems designs

    International Nuclear Information System (INIS)

    Page, D.W.

    1985-01-01

    In May of 1982, the Kennedy Space Center (KSC) entered into an agreement with the NRC to conduct a study to demonstrate the feasibility and practicality of applying the KSC System Assurance Analysis (SAA) methodology to nuclear power plant systems designs. North Carolina's Duke Power Company expressed an interest in the study and proposed the nuclear power facility at CATAWBA for the basis of the study. In joint meetings of KSC and Duke Power personnel, an agreement was made to select two CATAWBA systems, the Containment Spray System and the Residual Heat Removal System, for the analyses. Duke Power provided KSC with a full set of Final Safety Analysis Reports (FSAR) as well as schematics for the two systems. During Phase I of the study the reliability analyses of the SAA were performed. During Phase II the hazard analyses were performed. The final product of Phase II is a handbook for implementing the SAA methodology into nuclear power plant systems designs. The purpose of this paper is to describe the SAA methodology as it applies to nuclear power plant systems designs and to discuss the feasibility of its application. (orig./HP)

  4. Issues and insights of PRA methodology in nuclear and space applications

    International Nuclear Information System (INIS)

    Hsu, F.

    2005-01-01

    This paper presents some important issues and technical insights on the scope, conceptual framework, and essential elements of nuclear power plant Probabilistic Risk Assessments (PRAs) and that of the PRAs in general applications of the aerospace industry, such as the Space Shuttle PRA being conducted by NASA. Discussions are focused on various lessons learned in nuclear power plant PRA applications and their potential applicability to the PRAs in the aerospace and launch vehicle systems. Based on insights gained from PRA projects for nuclear power plants and from the current Space Shuttle PRA effort, the paper explores the commonalities and the differences between the conduct of the different PRAs and the key issues and risk insights derived from extensive modeling practices in both industries of nuclear and space. (author)

  5. The GPT methodology. New fields of application

    International Nuclear Information System (INIS)

    Gandini, A.; Gomit, J.M.; Abramytchev, V.

    1996-01-01

    The GPT (Generalized Perturbation Theory) methodology is described, and a new application is discussed. The results obtained for a simple model (zero dimension, six parameters of interest) show that the expressions obtained using the GPT methodology, lead to results close to those obtained through direct calculations. The GPT methodology is useful to be used for radioactive waste disposal problems. The potentiality of the method linked to zero dimension model can be extended to radionuclide migration problems with space description. (K.A.)

  6. Analysing Medieval Urban Space; a methodology

    Directory of Open Access Journals (Sweden)

    Marlous L. Craane MA

    2007-08-01

    Full Text Available This article has been written in reaction to recent developments in medieval history and archaeology, to study not only the buildings in a town but also the spaces that hold them together. It discusses a more objective and interdisciplinary approach for analysing urban morphology and use of space. It proposes a 'new' methodology by combining town plan analysis and space syntax. This methodology was trialled on the city of Utrecht in the Netherlands. By comparing the results of this 'new' methodology with the results of previous, more conventional, research, this article shows that space syntax can be applied successfully to medieval urban contexts. It does this by demonstrating a strong correlation between medieval economic spaces and the most integrated spaces, just as is found in the study of modern urban environments. It thus provides a strong basis for the use of this technique in future research of medieval urban environments.

  7. A methodology for selecting optimum organizations for space communities

    Science.gov (United States)

    Ragusa, J. M.

    1978-01-01

    This paper suggests that a methodology exists for selecting optimum organizations for future space communities of various sizes and purposes. Results of an exploratory study to identify an optimum hypothetical organizational structure for a large earth-orbiting multidisciplinary research and applications (R&A) Space Base manned by a mixed crew of technologists are presented. Since such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than the empirical testing of it. The principal finding of this research was that a four-level project type 'total matrix' model will optimize the effectiveness of Space Base technologists. An overall conclusion which can be reached from the research is that application of this methodology, or portions of it, may provide planning insights for the formal organizations which will be needed during the Space Industrialization Age.

  8. Application of a passivity based control methodology for flexible joint robots to a simplified Space Shuttle RMS

    Science.gov (United States)

    Sicard, Pierre; Wen, John T.

    1992-01-01

    A passivity approach for the control design of flexible joint robots is applied to the rate control of a three-link arm modeled after the shoulder yaw joint of the Space Shuttle Remote Manipulator System (RMS). The system model includes friction and elastic joint couplings modeled as nonlinear springs. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. A regulator approach with link state feedback is employed to define the desired motor state. Passivity theory is used to design a motor state-based controller to stabilize the error system formed by the feedforward. Simulation results show that greatly improved performance was obtained by using the proposed controller over the existing RMS controller.

  9. Spaces of Global Security: Beyond Methodological Nationalism

    OpenAIRE

    Adamson , Fiona B.

    2016-01-01

    The changing political and social meanings of space under conditions of advanced globalization point to the need to analyze security – or the deployment and management of violence -- as a socio-spatial practice. This article draws attention to the “methodological nationalist” bias that has traditionally characterized mainstream security studies, and discusses its effect on how security issues are studied and conceptualized. Building on insights from political geography and sociology, the arti...

  10. Design methodology and projects for space engineering

    Science.gov (United States)

    Nichols, S.; Kleespies, H.; Wood, K.; Crawford, R.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design course of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, consisting of a design methodology course and a capstone design course. The philosophical basis of this sequence is briefly summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper concludes with a description of the projects completed during the 1991-92 academic year and the ongoing projects for the Fall 1992 semester.

  11. Top Level Space Cost Methodology (TLSCM)

    Science.gov (United States)

    1997-12-02

    Software 7 6. ACEIT . 7 C. Ground Rules and Assumptions 7 D. Typical Life Cycle Cost Distribution 7 E. Methodologies 7 1. Cost/budget Threshold 9 2. Analogy...which is based on real-time Air Force and space programs. Ref.(25:2- 8, 2-9) 6. ACEIT : Automated Cost Estimating Integrated Tools( ACEIT ), Tecolote...Research, Inc. There is a way to use the ACEIT cost program to get a print-out of an expanded WBS. Therefore, find someone that has ACEIT experience and

  12. Neural Networks Methodology and Applications

    CERN Document Server

    Dreyfus, Gérard

    2005-01-01

    Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...

  13. CIAU methodology and BEPU applications

    International Nuclear Information System (INIS)

    Petruzzi, A.; D'Auria, F.

    2009-01-01

    Best-Estimate calculation results from complex thermal-hydraulic system codes (like Relap5, Cathare, Athlet, Trace, etc..) are affected by unavoidable approximations that are unpredictable without the use of computational tools that account for the various sources of uncertainty. Therefore the use of best-estimate codes within the reactor technology, either for design or safety purposes, implies understanding and accepting the limitations and the deficiencies of those codes. Uncertainties may have different origins ranging from the approximation of the models, to the approximation of the numerical solution, and to the lack of precision of the values adopted for boundary and initial conditions. The amount of uncertainty that affects a calculation may strongly depend upon the codes and the modeling techniques (i.e. the code's users). A consistent and robust uncertainty methodology must be developed taking into consideration all the above aspects. The CIAU (Code with the capability of Internal Assessment of Uncertainty) and the UMAE (Uncertainty Methodology based on Accuracy Evaluation) methods have been developed by University of Pisa (UNIPI) in the framework of a long lasting research activities started since 80's and involving several researchers. CIAU is extensively discussed in the available technical literature, Refs. [1, 2, 3, 4, 5, 6, 7], and tens of additional relevant papers, that provide comprehensive details about the method, can be found in the bibliography lists of the above references. Therefore, the present paper supplies only 'spot-information' about CIAU and focuses mostly on the applications to some cases of industrial interest. In particular the application of CIAU to the OECD BEMUSE (Best Estimate Methods Uncertainty and Sensitivity Evaluation, [8, 9]) project is discussed and a critical comparison respect with other uncertainty methods (in relation to items like: sources of uncertainties, selection of the input parameters and quantification of

  14. PSA methodology development and application in Japan

    International Nuclear Information System (INIS)

    Kazuo Sato; Toshiaki Tobioka; Kiyoharu Abe

    1987-01-01

    The outlines of Japanese activities on development and application of probabilistic safety assessment (PSA) methodologies are described. First the activities on methodology development are described for system reliability analysis, operational data analysis, core melt accident analysis, environmental consequence analysis and seismic risk analysis. Then the methodoligy application examples by the regulatory side and the industry side are described. (author)

  15. A Guide to the Application of Probability Risk Assessment Methodology and Hazard Risk Frequency Criteria as a Hazard Control for the Use of the Mobile Servicing System on the International Space Station

    Science.gov (United States)

    D'silva, Oneil; Kerrison, Roger

    2013-09-01

    A key feature for the increased utilization of space robotics is to automate Extra-Vehicular manned space activities and thus significantly reduce the potential for catastrophic hazards while simultaneously minimizing the overall costs associated with manned space. The principal scope of the paper is to evaluate the use of industry standard accepted Probability risk/safety assessment (PRA/PSA) methodologies and Hazard Risk frequency Criteria as a hazard control. This paper illustrates the applicability of combining the selected Probability risk assessment methodology and hazard risk frequency criteria, in order to apply the necessary safety controls that allow for the increased use of the Mobile Servicing system (MSS) robotic system on the International Space Station. This document will consider factors such as component failure rate reliability, software reliability, and periods of operation and dormancy, fault tree analyses and their effects on the probability risk assessments. The paper concludes with suggestions for the incorporation of existing industry Risk/Safety plans to create an applicable safety process for future activities/programs

  16. Acoustic emission methodology and application

    CERN Document Server

    Nazarchuk, Zinoviy; Serhiyenko, Oleh

    2017-01-01

    This monograph analyses in detail the physical aspects of the elastic waves radiation during deformation or fracture of materials. I presents the  methodological bases for the practical use of acoustic emission device, and describes the results of theoretical and experimental researches of evaluation of the crack growth resistance of materials, selection of the useful AE signals. The efficiency of this methodology is shown through the diagnostics of various-purpose industrial objects. The authors obtain results of experimental researches with the help of the new methods and facilities.

  17. Current trends in Bayesian methodology with applications

    CERN Document Server

    Upadhyay, Satyanshu K; Dey, Dipak K; Loganathan, Appaia

    2015-01-01

    Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics.Each chapter is self-contained and focuses on

  18. Methodology and applications of eyetracking

    Directory of Open Access Journals (Sweden)

    Arkadiusz Rajs

    2016-05-01

    Garbary 2,85-229 Bydgoszcz, jacek.gospodarczyk@byd.pl   Summary Eyetracking gives great capability of computer’s systems control and study of usability applications. In this paper we show construction of eyetracker and range of applications.   Key words: eyetracker, computer vision.

  19. Application of an allocation methodology

    International Nuclear Information System (INIS)

    Youngblood, R.

    1989-01-01

    This paper presents a method for allocating resources to elements of a system for the purpose of achieving prescribed levels of defense-in-depth at minimal cost. The method makes extensive use of logic modelling. An analysis of a simplified high-level waste repository is used as an illustrative application of the method. It is shown that it is possible to allocate quality control costs (or demonstrate performance) in an optimal way over elements of a conceptual design

  20. Application of an allocation methodology

    International Nuclear Information System (INIS)

    Youngblood, R.; de Oliveira, L.F.S.

    1989-01-01

    This paper presents a method for allocating resources to elements of a system for the purpose of achieving prescribed levels of defense-in-depth at minimal cost. The method makes extensive use of logic modelling. An analysis of a simplified high-level waste repository is used as an illustrative application of the method. It is shown that it is possible to allocate quality control costs (or demonstrated performance) in an optimal way over elements of a conceptual design. 6 refs., 3 figs., 2 tabs

  1. Proposed Methodology for Establishing Area of Applicability

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Hopper, C.M.; Parks, C.V.

    1999-01-01

    This paper presents the application of sensitivity and uncertainty (S/U) analysis methodologies to the data validation tasks of a criticality safety computational study. The S/U methods presented are designed to provide a formal means of establishing the area (or range) of applicability for criticality safety data validation studies. The development of parameters that are analogous to the standard trending parameters form the key to the technique. These parameters are the so-called D parameters, which represent the differences by energy group of S/U-generated sensitivity profiles, and c parameters, which are the k correlation coefficients, each of which give information relative to the similarity between pairs of selected systems. The use of a Generalized Linear Least-Squares Methodology (GLLSM) tool is also described in this paper. These methods and guidelines are also applied to a sample validation for uranium systems with enrichments greater than 5 wt %

  2. Supporting Space Systems Design via Systems Dependency Analysis Methodology

    Science.gov (United States)

    Guariniello, Cesare

    assess the behavior of each system based on its internal status and on the topology of its dependencies on systems connected to it. Designers and decision makers can therefore quickly analyze and explore the behavior of complex systems and evaluate different architectures under various working conditions. The methods support educated decision making both in the design and in the update process of systems architecture, reducing the need to execute extensive simulations. In particular, in the phase of concept generation and selection, the information given by the methods can be used to identify promising architectures to be further tested and improved, while discarding architectures that do not show the required level of global features. The methods, when used in conjunction with appropriate metrics, also allow for improved reliability and risk analysis, as well as for automatic scheduling and re-scheduling based on the features of the dependencies and on the accepted level of risk. This dissertation illustrates the use of the two methods in sample aerospace applications, both in the operational and in the developmental domain. The applications show how to use the developed methodology to evaluate the impact of failures, assess the criticality of systems, quantify metrics of interest, quantify the impact of delays, support informed decision making when scheduling the development of systems and evaluate the achievement of partial capabilities. A larger, well-framed case study illustrates how the Systems Operational Dependency Analysis method and the Systems Developmental Dependency Analysis method can support analysis and decision making, at the mid and high level, in the design process of architectures for the exploration of Mars. The case study also shows how the methods do not replace the classical systems engineering methodologies, but support and improve them.

  3. Bistable Mechanisms for Space Applications.

    Science.gov (United States)

    Zirbel, Shannon A; Tolman, Kyler A; Trease, Brian P; Howell, Larry L

    2016-01-01

    Compliant bistable mechanisms are monolithic devices with two stable equilibrium positions separated by an unstable equilibrium position. They show promise in space applications as nonexplosive release mechanisms in deployment systems, thereby eliminating friction and improving the reliability and precision of those mechanical devices. This paper presents both analytical and numerical models that are used to predict bistable behavior and can be used to create bistable mechanisms in materials not previously feasible for compliant mechanisms. Materials compatible with space applications are evaluated for use as bistable mechanisms and prototypes are fabricated in three different materials. Pin-puller and cutter release mechanisms are proposed as potential space applications.

  4. Evolving Intelligent Systems Methodology and Applications

    CERN Document Server

    Angelov, Plamen; Kasabov, Nik

    2010-01-01

    From theory to techniques, the first all-in-one resource for EIS. There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on th

  5. Towards Supercapacitors in Space Applications

    OpenAIRE

    Buergler Brandon; Faure Bertrand; Latif David; Diblik Lukas; Vasina Petr; Gineste Valéry; Simcak Marek

    2017-01-01

    Supercapacitors offer a wide range of applications for space flight. The aim of this activity was to pursue life tests on commercial off the shelf (COTS) supercapacitors from different manufacturers, to evaluate their performance after long term vacuum exposure and to investigate balancing designs for the use of these cells in banks of supercapacitors (BOSC). This study enabled to select the most suitable part for space applications and to confirm the design rules at unit level and deratings ...

  6. Setting priorities for space research: An experiment in methodology

    Science.gov (United States)

    1995-01-01

    In 1989, the Space Studies Board created the Task Group on Priorities in Space Research to determine whether scientists should take a role in recommending priorities for long-term space research initiatives and, if so, to analyze the priority-setting problem in this context and develop a method by which such priorities could be established. After answering the first question in the affirmative in a previous report, the task group set out to accomplish the second task. The basic assumption in developing a priority-setting process is that a reasoned and structured approach for ordering competing initiatives will yield better results than other ways of proceeding. The task group proceeded from the principle that the central criterion for evaluating a research initiative must be its scientific merit -- the value of the initiative to the proposing discipline and to science generally. The group developed a two-stage methodology for priority setting and constructed a procedure and format to support the methodology. The first of two instruments developed was a standard format for structuring proposals for space research initiatives. The second instrument was a formal, semiquantitative appraisal procedure for evaluating competing proposals. This report makes available complete templates for the methodology, including the advocacy statement and evaluation forms, as well as an 11-step schema for a priority-setting process. From the beginning of its work, the task group was mindful that the issue of priority setting increasingly pervades all of federally supported science and that its work would have implications extending beyond space research. Thus, although the present report makes no recommendations for action by NASA or other government agencies, it provides the results of the task group's work for the use of others who may study priority-setting procedures or take up the challenge of implementing them in the future.

  7. Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno

    2014-01-01

    This book includes extended and revised versions of a set of selected papers from the 2012 International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2012) which was sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC) and held in Rome, Italy. SIMULTECH 2012 was technically co-sponsored by the Society for Modeling & Simulation International (SCS), GDR I3, Lionphant Simulation, Simulation Team and IFIP and held in cooperation with AIS Special Interest Group of Modeling and Simulation (AIS SIGMAS) and the Movimento Italiano Modellazione e Simulazione (MIMOS).

  8. Mining software specifications methodologies and applications

    CERN Document Server

    Lo, David

    2011-01-01

    An emerging topic in software engineering and data mining, specification mining tackles software maintenance and reliability issues that cost economies billions of dollars each year. The first unified reference on the subject, Mining Software Specifications: Methodologies and Applications describes recent approaches for mining specifications of software systems. Experts in the field illustrate how to apply state-of-the-art data mining and machine learning techniques to address software engineering concerns. In the first set of chapters, the book introduces a number of studies on mining finite

  9. Tether applications for space station

    Science.gov (United States)

    Nobles, W.

    1986-01-01

    A wide variety of space station applications for tethers were reviewed. Many will affect the operation of the station itself while others are in the category of research or scientific platforms. One of the most expensive aspects of operating the space station will be the continuing shuttle traffic to transport logistic supplies and payloads to the space station. If a means can be found to use tethers to improve the efficiency of that transportation operation, it will increase the operating efficiency of the system and reduce the overall cost of the space station. The concept studied consists of using a tether to lower the shuttle from the space station. This results in a transfer of angular momentum and energy from the orbiter to the space station. The consequences of this transfer is studied and how beneficial use can be made of it.

  10. MicroComputed Tomography: Methodology and Applications

    International Nuclear Information System (INIS)

    Stock, Stuart R.

    2009-01-01

    Due to the availability of commercial laboratory systems and the emergence of user facilities at synchrotron radiation sources, studies of microcomputed tomography or microCT have increased exponentially. MicroComputed Technology provides a complete introduction to the technology, describing how to use it effectively and understand its results. The first part of the book focuses on methodology, covering experimental methods, data analysis, and visualization approaches. The second part addresses various microCT applications, including porous solids, microstructural evolution, soft tissue studies, multimode studies, and indirect analyses. The author presents a sufficient amount of fundamental material so that those new to the field can develop a relative understanding of how to design their own microCT studies. One of the first full-length references dedicated to microCT, this book provides an accessible introduction to field, supplemented with application examples and color images.

  11. PET/MRI. Methodology and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Carrio, Ignasi [Autonomous Univ. of Barcelona, Hospital Sant Pau (Spain). Dept. Medicina Nuclear; Ros, Pablo (ed.) [Univ. Hospitals Case, Medical Center, Cleveland, OH (United States). Dept. of Radiology

    2014-04-01

    Provides detailed information on the methodology and equipment of MRI-PET. Covers a wide range of clinical applications in oncology, cardiology, and neurology. Written by an international group of experts in MRI and PET. PET/MRI is an exciting novel diagnostic imaging modality that combines the precise anatomic and physiologic information provided by magnetic resonance imaging (MRI) with the molecular data obtained with positron emission tomography (PET). PET/MRI offers the promise of a simplified work flow, reduced radiation, whole-body imaging with superior soft tissue contrast, and time of flight physiologic information. It has been described as the pathway to molecular imaging in medicine. In compiling this textbook, the editors have brought together a truly international group of experts in MRI and PET. The book is divided into two parts. The first part covers methodology and equipment and comprises chapters on basic molecular medicine, development of specific contrast agents, MR attenuation and validation, quantitative MRI and PET motion correction, and technical implications for both MRI and PET. The second part of the book focuses on clinical applications in oncology, cardiology, and neurology. Imaging of major neoplasms, including lymphomas and tumors of the breast, prostate, and head and neck, is covered in individual chapters. Further chapters address functional and metabolic cardiovascular examinations and major central nervous system applications such as brain tumors and dementias. Risks, safety aspects, and healthcare costs and impacts are also discussed. This book will be of interest to all radiologists and nuclear medicine physicians who wish to learn more about the latest developments in this important emerging imaging modality and its applications.

  12. Towards Supercapacitors in Space Applications

    Directory of Open Access Journals (Sweden)

    Buergler Brandon

    2017-01-01

    Full Text Available Supercapacitors offer a wide range of applications for space flight. The aim of this activity was to pursue life tests on commercial off the shelf (COTS supercapacitors from different manufacturers, to evaluate their performance after long term vacuum exposure and to investigate balancing designs for the use of these cells in banks of supercapacitors (BOSC. This study enabled to select the most suitable part for space applications and to confirm the design rules at unit level and deratings at component level, which need to be applied. All those complementary results have paved the way to the on-going activities related to Nesscap 10F qualification and associated modular Bank Of Supercapacitors development for space applications.

  13. Cleansing methodology of sites and its applications

    International Nuclear Information System (INIS)

    De Moura, Patrick; Dubot, Didier; Faure, Vincent; Attiogbe, Julien; Jeannee, Nicolas; Desnoyers, Yvon

    2009-01-01

    The Commissariat a l'Energie Atomique (CEA, French Atomic Energy Commission) has set up over the last 10 years an innovative methodology aiming at characterizing radiological contaminations. The application of the latter relies on various tools such as expertise vehicles with impressive detection performances (VEgAS) and recently developed software platform called Kartotrak. A Geographic Information System tailored to radiological needs constitutes the heart of the platform; it is surrounded by several modules aiming at sampling optimization (Stratege), data analysis and geostatistical modeling (Krigeo), real-time monitoring (Kartotrak- RT) and validation of cleaning efficiency (Pescar). This paper presents the different tools which provide exhaustive instruments for the follow-up of decontamination projects, from doubt removal to the verification of the decontamination process. (authors)

  14. Space time problems and applications

    DEFF Research Database (Denmark)

    Dethlefsen, Claus

    models, cubic spline models and structural time series models. The development of state space theory has interacted with the development of other statistical disciplines.   In the first part of the Thesis, we present the theory of state space models, including Gaussian state space models, approximative...... analysis of non-Gaussian models, simulation based techniques and model diagnostics.   The second part of the Thesis considers Markov random field models. These are spatial models applicable in e.g. disease mapping and in agricultural experiments. Recently, the Gaussian Markov random field models were...... techniques with importance sampling.   The third part of the Thesis contains applications of the theory. First, a univariate time series of count data is analysed. Then, a spatial model is used to compare wheat yields. Weed count data in connection with a project in precision farming is analysed using...

  15. MEMS for Space Flight Applications

    Science.gov (United States)

    Lawton, R.

    1998-01-01

    Micro-Electrical Mechanical Systems (MEMS) are entering the stage of design and verification to demonstrate the utility of the technology for a wide range of applications including sensors and actuators for military, space, medical, industrial, consumer, automotive and instrumentation products.

  16. Successfully Transitioning Science Research to Space Weather Applications

    Science.gov (United States)

    Spann, James

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  17. TESTS AND METHODOLOGIES FOR THE SURVEY OF NARROW SPACES

    Directory of Open Access Journals (Sweden)

    L. Perfetti

    2017-02-01

    Full Text Available The research illustrated in this article aimed at identifying a good standard methodology to survey very narrow spaces during 3D investigation of Cultural Heritage. It is an important topic in today’s era of BIM modelling applied to Cultural Heritage. Spaces like staircases, corridors and passages are very common in the architectural or archaeological fields, and obtaining a 3D-oriented survey of those areas can be a very complex task when completeness of the model and high precision are requested. Photogrammetry appears to be the most promising solution in terms of versatility and manoeuvrability also considering the quality of the required data. Fisheye lenses were studied and tested in depth because of their significant advantage in the field of view if compared with rectilinear lenses. This advantage alone can be crucial to reduce the total amount of photos and, as a consequence, to obtain manageable data, to simplify the survey phase and to significantly reduce the elaboration time. In order to overcome the main issue that arise when using fisheye lenses, which is the lack of rules that can be employed to design the survey, a general mathematical formulation to precisely estimate the GSD (Ground Sampling Distance for every optical projection is presented here. A complete survey of a real complex case study was performed in order to test and stress the proposed methodology, and to handle a fisheye-based survey from beginning to end: the photogrammetric survey of the Minguzzi Staircase. It is a complex service spiral-staircase located in the Duomo di Milano with a total height of 25 meters and characterized by a narrow walkable space about 70 centimetres wide.

  18. Application of agile methodologies in software development

    Directory of Open Access Journals (Sweden)

    Jovanović Aca D.

    2016-01-01

    Full Text Available The paper presents the potentials for the development of software using agile methodologies. Special consideration is devoted to the potentials and advantages of use of the Scrum methodology in the development of software and the relationship between the implementation of agile methodologies and the software development projects.

  19. Application of Response Surface Methodology for Optimizing Oil ...

    African Journals Online (AJOL)

    Application of Response Surface Methodology for Optimizing Oil Extraction Yield From ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... from tropical almond seed by the use of response surface methodology (RSM).

  20. Application opportunities of agile methodology in service company management

    OpenAIRE

    Barauskienė, Diana

    2017-01-01

    Application Opportunities of Agile Methodology in Service Company Management. The main purpose of this master thesis is to identify which methods (or their modified versions) of Agile methodology can be applied in service company management. This master thesis consists of these parts – literature scientific analysis, author’s research methodology (research methods, authors’ research model, essential elements used in the research of application of Agile methodology), research itself (prelimina...

  1. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  2. Challenges for Transitioning Science Research to Space Weather Applications

    Science.gov (United States)

    Spann, James

    2013-01-01

    Effectively transitioning science knowledge to useful applications relevant to space weather has become important. The effort to transition scientific knowledge to a useful application is not a research nor is it operations, but an activity that connects two. Successful transitioning must be an intentional effort with a clear goal and measureable outcome. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  3. Causal Meta-Analysis : Methodology and Applications

    NARCIS (Netherlands)

    Bax, L.J.

    2009-01-01

    Meta-analysis is a statistical method to summarize research data from multiple studies in a quantitative manner. This dissertation addresses a number of methodological topics in causal meta-analysis and reports the development and validation of meta-analysis software. In the first (methodological)

  4. Developing educational hypermedia applications: a methodological approach

    Directory of Open Access Journals (Sweden)

    Jose Miguel Nunes

    1996-01-01

    Full Text Available This paper proposes an hypermedia development methodology with the aim of integrating the work of both educators, who will be primarily responsible for the instructional design, with that of software experts, responsible for the software design and development. Hence, it is proposed that the educators and programmers should interact in an integrated and systematic manner following a methodological approach.

  5. Design Methodologies: Industrial and Educational Applications

    NARCIS (Netherlands)

    Tomiyama, T.; Gul, P.; Jin, Y.; Lutters, Diederick; Kind, Ch.; Kimura, F.

    2009-01-01

    The field of Design Theory and Methodology has a rich collection of research results that has been taught at educational institutions as well as applied to design practices. First, this keynote paper describes some methods to classify them. It then illustrates individual theories and methodologies

  6. Issues in the global applications of methodology in forensic anthropology.

    Science.gov (United States)

    Ubelaker, Douglas H

    2008-05-01

    The project and research reported in this collection of articles follows a long-term historical pattern in forensic anthropology in which new case work and applications reveal methodological issues that need to be addressed. Forensic anthropological analysis in the area of the former Yugoslavia led to questions raised regarding the applicability of methods developed from samples in other regions. The subsequently organized project reveals that such differences exist and new methodology and data are presented to facilitate applications in the Balkan area. The effort illustrates how case applications and court testimony can stimulate research advances. The articles also serve as a model for the improvement of methodology available for global applications.

  7. Green Application for Space Power

    Science.gov (United States)

    Robinson, Joel

    2015-01-01

    Most space vehicle auxiliary power units (APUs) use hydrazine propellant for generating power. Hydrazine is a toxic, hazardous fuel that requires special safety equipment and processes for handling and loading. In recent years, there has been development of two green propellants (less toxic) that could enable their use in APUs. The Swedish government, in concert with the Swedish Space Corporation, has developed a propellant based on ammonium dinitramide (LMP-103S) that was flown on the Prisma spacecraft in 2010. The United States Air Force (USAF) has been developing a propellant based on hydroxylammonium nitrate (AFM315E) that is scheduled to fly on the Green Propellant Infusion Mission in the spring of 2016 to demonstrate apogee and reaction control thrusters. However, no one else in the Agency is currently pursuing use of green propellants for application to the APUs. Per the TA-01 Launch Propulsion Roadmap, the Space Technology Mission Directorate had identified the need to have a green propellant APU by 2015. This is our motivation for continuing activities.

  8. Residual radioactive material guidelines: Methodology and applications

    International Nuclear Information System (INIS)

    Yu, C.; Yuan, Y.C.; Zielen, A.J.; Wallo, A. III.

    1989-01-01

    A methodology to calculate residual radioactive material guidelines was developed for the US Department of Energy (DOE). This methodology is coded in a menu-driven computer program, RESRAD, which can be run on IBM or IBM-compatible microcomputers. Seven pathways of exposure are considered: external radiation, inhalation, and ingestion of plant foods, meat, milk, aquatic foods, and water. The RESRAD code has been applied to several DOE sites to calculate soil cleanup guidelines. This experience has shown that the computer code is easy to use and very user-friendly. 3 refs., 8 figs

  9. The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James (Editor); Hughes, Peter (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies.

  10. Application of PRINCE2 Project Management Methodology

    Directory of Open Access Journals (Sweden)

    Vaníčková Radka

    2017-09-01

    Full Text Available The methodology describes the principle of setting a project in PRINCE2 project management. The main aim of the paper is to implement PRINCE2 methodology to be used in an enterprise in the service industry. A partial aim is to choose a supplier of the project among new travel guides. The result of the project activity is a sight-seeing tour/service more attractive for customers in the tourism industry and a possible choice of new job opportunities. The added value of the article is the description of applying the principles, processes and topics of PRINCE2 project management so that they might be used in the field.

  11. Advanced Materials for Space Applications

    Science.gov (United States)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  12. Space tug applications. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This article is the final report of the conceptual design efforts for a 'space tug'. It includes preliminary efforts, mission analysis, configuration analysis, impact analysis, and conclusions. Of the several concepts evaluated, the nuclear bimodal tug was one of the top candidates, with the two options being the NEBA-1 and NEBA-3 systems. Several potential tug benefits were identified during the mission analysis. The tug enables delivery of large (>3,500 kg) payloads to the outer planets and it increases the GSO delivery capability by 20% relative to current systems. By providing end of life disposal, the tug can be used to extend the life of existing space assets. It can also be used to reboost satellites which were not delivered to their final orbit by the launch system. A specific mission model is the key to validating the tug concept. Once a mission model can be established, mission analysis can be used to determine more precise propellant quantities and burn times. In addition, the specific payloads can be evaluated for mass and volume capability with the launch systems. Results of the economic analysis will be dependent on the total years of operations and the number of missions in the mission model. The mission applications evaluated during this phase drove the need for large propellant quantities and thus did not allow the payloads to step down to smaller and less expensive launch systems

  13. Analytical group decision making in natural resources: Methodology and application

    Science.gov (United States)

    Schmoldt, D.L.; Peterson, D.L.

    2000-01-01

    Group decision making is becoming increasingly important in natural resource management and associated scientific applications, because multiple values are treated coincidentally in time and space, multiple resource specialists are needed, and multiple stakeholders must be included in the decision process. Decades of social science research on decision making in groups have provided insights into the impediments to effective group processes and on techniques that can be applied in a group context. Nevertheless, little integration and few applications of these results have occurred in resource management decision processes, where formal groups are integral, either directly or indirectly. A group decision-making methodology is introduced as an effective approach for temporary, formal groups (e.g., workshops). It combines the following three components: (1) brainstorming to generate ideas; (2) the analytic hierarchy process to produce judgments, manage conflict, enable consensus, and plan for implementation; and (3) a discussion template (straw document). Resulting numerical assessments of alternative decision priorities can be analyzed statistically to indicate where group member agreement occurs and where priority values are significantly different. An application of this group process to fire research program development in a workshop setting indicates that the process helps focus group deliberations; mitigates groupthink, nondecision, and social loafing pitfalls; encourages individual interaction; identifies irrational judgments; and provides a large amount of useful quantitative information about group preferences. This approach can help facilitate scientific assessments and other decision-making processes in resource management.

  14. Applicability of the Directed Graph Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Huszti, Jozsef [Institute of Isotope of the Hungarian Academy of Sciences, Budapest (Hungary); Nemeth, Andras [ESRI Hungary, Budapest (Hungary); Vincze, Arpad [Hungarian Atomic Energy Authority, Budapest (Hungary)

    2012-06-15

    Possible methods to construct, visualize and analyse the 'map' of the State's nuclear infrastructure based on different directed graph approaches are proposed. The transportation and the flow network models are described in detail. The use of the possible evaluation methodologies and the use of available software tools to construct and maintain the nuclear 'map' using pre-defined standard building blocks (nuclear facilities) are introduced and discussed.

  15. ''Training plan optimized design'' methodology application to IBERDROLA - Power generation

    International Nuclear Information System (INIS)

    Gil, S.; Mendizabal, J.L.

    1996-01-01

    The trend in both Europe and the United States, towards the understanding that no training plan may be considered suitable if not backed by the results of application of the S.A.T. (Systematic Approach to Training) methodology, led TECNATOM, S.A. to apply thy methodology through development of an application specific to the conditions of the Spanish working system. The requirement that design of the training be coherent with the realities of the working environment is met by systematic application of the SAT methodology as part of the work analysis and job-based task analysis processes, this serving as a basis for design of the training plans

  16. Reliability analysis and utilization of PEMs in space application

    Science.gov (United States)

    Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi

    2009-11-01

    More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.

  17. Application of a methodology for retouching

    Directory of Open Access Journals (Sweden)

    Ana Bailão

    2010-11-01

    Full Text Available Between November 2006 and January 2010, an investigation into retouching methodologies was carried out. The aim of this paper is to describe, in four steps, the retouching methodology of a contemporary painting. The four steps are: chromatic and formal study, considering the use of Gestalt theory and the phenomena of contrast and assimilation; selection of the technique; choice of the materials and retouching practice.Entre Novembre 2006 et Janvier 2010, nous avons fait une recherche dans le cadre du programme de Maitrise sur la méthodologie et les techniques de retouche. Le but de cet article est la description, en quatre étapes, de la méthodologie de retouche d’une peinture contemporaine. Les quatre étapes sont: étude chromatique et formelle, avec l’utilisation de la théorie de la Gestalt et des phénomènes de contraste et assimilation, la sélection de la technique, le choix des matériaux et la pratique de retouche. 

  18. Novel Biomaterials Methodology, Development and Application

    Science.gov (United States)

    Traditionally the use of carbohydrate-based wound dressings including cotton, xerogels, charcoal cloth, alginates, chitosan and hydrogels, have afforded properties such as absorbency, ease of application and removal, bacterial protection, fluid balance, occlusion, and elasticity. Recent efforts in ...

  19. Intelligent tutoring systems for space applications

    Science.gov (United States)

    Luckhardt-Redfield, Carol A.

    1990-01-01

    Artificial Intelligence has been used in many space applications. Intelligent tutoring systems (ITSs) have only recently been developed for assisting training of space operations and skills. An ITS at Southwest Research Institute is described as an example of an ITS application for space operations, specifically, training console operations at mission control. A distinction is made between critical skills and knowledge versus routine skills. Other ITSs for space are also discussed and future training requirements and potential ITS solutions are described.

  20. Ecodesign of cosmetic formulae: methodology and application.

    Science.gov (United States)

    L'Haridon, J; Martz, P; Chenéble, J-C; Campion, J-F; Colombe, L

    2018-04-01

    This article describes an easy-to-use ecodesign methodology developed and applied since 2014 by the L'Oréal Group to improve the sustainable performance of its new products without any compromise on their cosmetic efficacy. Cosmetic products, after being used, are often discharged into the sewers and the aquatic compartment. This discharge is considered as dispersive and continuous. A consistent progress in reducing the environmental impact of cosmetic products can be achieved through focusing upon three strategic indicators: biodegradability, grey water footprint adapted for ecodesign (GWFE) and a global indicator, complementary to these two endpoints. Biodegradability represents the key process in the removal of organic ingredients from the environment. GWFE is defined herein as the theoretical volume of natural freshwater required to dilute a cosmetic formula after being used by the consumer, down to a concentration without any foreseeable toxic effects upon aquatic species. Finally, the complementary indicator highlights a possible alert on formula ingredients due to an unfavourable environmental profile based on hazard properties: for example Global Harmonization System/Classification, Labelling and Packaging (GHS/CLP) H410 classification or potential very persistent and very bioaccumulative (vPvB) classification. The ecodesign of a new cosmetic product can be a challenge as the cosmetic properties and quality of this new product should at least match the benchmark reference. As shown in the case studies described herein, new methodologies have been developed to maximize the biodegradability of cosmetic formulae, to minimize their GWFE and to limit the use of ingredients that present an unfavourable environmental profile, while reaching the highest standards in terms of cosmetic efficacy. By applying these methodologies, highly biodegradable products (≥ 95% based on ingredient composition) have been developed and marketed, with a low GWFE. This new

  1. Emission computed tomography: methodology and applications

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.; Greenberg, J.; Fowler, J.; Christman, D.; Rosenquist, A.; Rintelmann, W.; Hand, P.; MacGregor, R.; Wolf, A.

    1980-01-01

    A technique for the determination of local cerebral glucose metabolism using positron emission computed tomography is described as an example of the development of use of this methodology for the study of these parameters in man. The method for the determination of local cerebral glucose metabolism utilizes 18 F-2-fluoro-2-deoxyglucose ([ 18 F]-FDG). In this method [ 18 F]-FDG is used as a tracer for the exchange of glucose between plasma and brain and its phosphorylation by hexokinase in the tissue. The labelled product of metabolism, [ 18 F]-FDG phosphate, is essentially trapped in the tissue over the time course of the measurement. The studies demonstrate the potential usefulness of emission computed tomography for the measurement of various biochemical and physiological parameters in man. (Auth.)

  2. Robust PV Degradation Methodology and Application

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Dirk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deline, Christopher A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kimball, Greg [SunPower; Anderson, Mike [SunPower

    2017-11-15

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of PV systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this manuscript, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year (YOY) rate calculation. We show the method to provide reliable degradation rate estimates even in the case of sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.

  3. The micro-habitat methodology. Application protocols

    Energy Technology Data Exchange (ETDEWEB)

    Sabaton, C; Valentin, S; Souchon, Y

    1995-06-01

    A strong need has been felt for guidelines to help various entities in applying the micro-habitat methodology, particularly in impact studies on hydroelectric installations. CEMAGREF and Electricite de France have developed separately two protocols with five major steps: reconnaissance of the river, selection of representative units to be studied in greater depth, morpho-dynamic measurements at one or more rates of discharge and hydraulic modeling, coupling of hydraulic and biological models, calculation of habitat-quality scores for fish, analysis of results. The two approaches give very comparable results and are essentially differentiated by the hydraulic model used. CEMAGREF uses a one-dimensional model requiring measurements at only one discharge rate. Electricite de France uses a simplified model based on measurements at several rates of discharge. This approach is possible when discharge can be controlled in the study area during data acquisition, as is generally the case downstream of hydroelectric installations. The micro-habitat methodology is now a fully operational tool with which to study changes in fish habitat quality in relation to varying discharge. It provides an element of assessment pertinent to the choice of instreaming flow to be maintained downstream of a hydroelectric installation; this information is essential when the flow characteristics (velocity, depth) and the nature of the river bed are the preponderant factors governing habitat suitability for trout or salmon. The ultimate decision must nonetheless take into account any other potentially limiting factors for the biocenoses on the one hand, and the target water use objectives on the other. In many cases, compromises must be found among different uses, different species and different stages in the fish development cycle. (Abstract Truncated)

  4. A methodology for automation and robotics evaluation applied to the space station telerobotic servicer

    Science.gov (United States)

    Smith, Jeffrey H.; Gyanfi, Max; Volkmer, Kent; Zimmerman, Wayne

    1988-01-01

    The efforts of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems would involve a substitution of automation capabilities for human extravehicular or intravehicular activities (EVA, IVA). A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effect of operational constraints (space transportation system (STS), attached payload, and proximity operations). Changes in the region of cost-effectiveness are examined under a variety of systems design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: (1) as a research-oriented testbed to learn more about space usage of telerobotics; (2) as a research based testbed having an experimental demonstration orientation with limited assembly and servicing applications; or (3) as an operational system to augment EVA and to aid the construction of the Space Station and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations.

  5. Novel Photobioreactor Development for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Capability for controlled and efficient cultivation of microbial cells in microgravity environments opens the possibility for a plethora of applications. One such...

  6. New applications of partial residual methodology

    International Nuclear Information System (INIS)

    Uslu, V.R.

    1999-12-01

    The formulation of a problem of interest in the framework of a statistical analysis starts with collecting the data, choosing a model, making certain assumptions as described in the basic paradigm by Box (1980). This stage is is called model building. Then the estimation stage is in order by pretending as if the formulation of the problem was true to obtain estimates, to make tests and inferences. In the final stage, called diagnostic checking, checking of whether there are some disagreements between the data and the model fitted is done by using diagnostic measures and diagnostic plots. It is well known that statistical methods perform best under the condition that all assumptions related to the methods are satisfied. However it is true that having the ideal case in practice is very difficult. Diagnostics are therefore becoming important so are diagnostic plots because they provide a immediate assessment. Partial residual plots that are the main interest of the present study are playing the major role among the diagnostic plots in multiple regression analysis. In statistical literature it is admitted that partial residual plots are more useful than ordinary residual plots in detecting outliers, nonconstant variance, and especially discovering curvatures. In this study we consider the partial residual methodology in statistical methods rather than multiple regression. We have shown that for the same purpose as in the multiple regression the use of partial residual plots is possible particularly in autoregressive time series models, transfer function models, linear mixed models and ridge regression. (author)

  7. Green Applications for Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft propulsion and power for many decades has relied on Hydrazine monopropellant technology for auxiliary power units (APU), orbital circularization, orbit...

  8. An aspect-oriented methodology for designing secure applications

    NARCIS (Netherlands)

    Georg, Geri; Ray, Indrakshi; Anastasakis, Kyriakos; Bordbar, Behzad; Toahchoodee, Manachai; Houmb, S.H.

    We propose a methodology, based on aspect-oriented modeling (AOM), for incorporating security mechanisms in an application. The functionality of the application is described using the primary model and the attacks are specified using aspects. The attack aspect is composed with the primary model to

  9. Selection methodology for LWR safety programs and proposals. Volume 2. Methodology application

    International Nuclear Information System (INIS)

    Ritzman, R.L.; Husseiny, A.A.

    1980-08-01

    The results of work done to update and apply a methodology for selecting (prioritizing) LWR safety technology R and D programs are described. The methodology is based on multiattribute utility (MAU) theory. Application of the methodology to rank-order a group of specific R and D programs included development of a complete set of attribute utility functions, specification of individual attribute scaling constants, and refinement and use of an interactive computer program (MAUP) to process decision-maker inputs and generate overall (multiattribute) program utility values. The output results from several decision-makers are examined for consistency and conclusions and recommendations regarding general use of the methodology are presented. 3 figures, 18 tables

  10. Probabilistic risk assessment methodology for risk management and regulatory applications

    International Nuclear Information System (INIS)

    See Meng Wong; Kelly, D.L.; Riley, J.E.

    1997-01-01

    This paper discusses the development and potential applications of PRA methodology for risk management and regulatory applications in the U.S. nuclear industry. The new PRA methodology centers on the development of This paper discusses the time-dependent configuration risk profile for evaluating the effectiveness of operational risk management programs at U.S. nuclear power plants. Configuration-risk profiles have been used as risk-information tools for (1) a better understanding of the impact of daily operational activities on plant safety, and (2) proactive planning of operational activities to manage risk. Trial applications of the methodology were undertaken to demonstrate that configuration-risk profiles can be developed routinely, and can be useful for various industry and regulatory applications. Lessons learned include a better understanding of the issues and characteristics of PRA models available to industry, and identifying the attributes and pitfalls in the developement of risk profiles

  11. Methodology and applications for organizational safety culture

    International Nuclear Information System (INIS)

    Sakaue, Takeharu; Makino, Maomi

    2004-01-01

    The mission of our activity is making 'guidance of safety culture for understanding and evaluations' which comes in much more useful and making it substantial by clarifying positioning of safety culture within evaluation of the quality management. This is pointed out by 'Discussion on how to implement safety culture sufficiently and possible recommendation' last year by falsification issue of TEPCO (Tokyo Electric Power Company). We have been developing the safety culture evaluation structured by three elements. One is safety culture evaluation support tool (SCET), another is organizational reliability model (ORM), third is system for safety. This paper describes mainly organizational reliability model (ORM) and its applications as well as ticking the system for safety culture within quality management. (author)

  12. Reactor Start-up and Control Methodologies: Consideration of the Space Radiation Environment

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Holloway, James Paul

    2004-01-01

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable the accomplishment of ambitious space exploration missions. The natural radiation environment in space provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Initial investigation using MCNPX 2.5.b for proton transport through the SAFE-400 reactor indicates a secondary neutron net current of 1.4x107 n/s at the core-reflector interface, with an incoming current of 3.4x106 n/s due to neutrons produced in the Be reflector alone. This neutron population could provide a reliable startup source for a space reactor. Additionally, this source must be considered in developing a reliable control strategy during reactor startup, steady-state operation, and power transients. An autonomous control system is developed and analyzed for application during reactor startup, accounting for fluctuations in the radiation environment that result from changes in vehicle location (altitude, latitude, position in solar system) or due to temporal variations in the radiation field, as may occur in the case of solar flares. One proposed application of a nuclear electric propulsion vehicle is in a tour of the Jovian system, where the time required for communication to Earth is significant. Hence, it is important that a reactor control system be designed with feedback mechanisms to automatically adjust to changes in reactor temperatures, power levels, etc., maintaining nominal operation without user intervention. This paper will evaluate the potential use of secondary neutrons produced by proton interactions in the reactor vessel as a startup source for a space reactor and will present a

  13. Application and licensing requirements of the Framatome ANP RLBLOCA methodology

    International Nuclear Information System (INIS)

    Martin, R.P.; Dunn, B.M.

    2004-01-01

    The Framatome ANP Realistic Large-Break LOCA methodology (FANP RLBLOCA) is an analysis approach approved by the US NRC for supporting the licensing basis of 3- and 4-loop Westinghouse PWRs and CE 2x4 PWRs. It was developed consistent with the NRC's Code Scaling, Applicability, and Uncertainty (CSAU) methodology for performing best-estimate large-break LOCAs. The CSAU methodology consists of three key elements with the second and third element addressing uncertainty identification and application. Unique to the CSAU methodology is the use of engineering judgment and the Process Identification and Ranking Table (PIRT) defined in the first element to lay the groundwork for achieving the ultimate goal of quantifying the total uncertainty in predicted measures of interest associated with the large-break LOCA. It is the PIRT that not only directs the methodology development, but also directs the methodology review. While the FANP RLBLOCA methodology was generically approved, a plant-specific application is customized in two ways addressing how the unique plant characterization 1) is translated to code input and 2) relates to the unique methodology licensing requirements. Related to the former, plants are required by 10 CFR 50.36 to define a technical specification limiting condition for operation based on the following criteria: 1. Installed instrumentation that is used in the control room to detect, and indicate, a significant abnormal degradation of the reactor coolant pressure boundary. 2. A process variable, design feature, or operating restriction that is an initial condition of a design basis accident or transient analysis that either assumes the failure of or presents a challenge to the integrity of a fission product barrier. 3. A structure, system, or component that is part of the primary success path and which functions or actuates to mitigate a design basis accident or transient that either assumes the failure of or presents a challenge to the integrity of a

  14. Soils Activity Mobility Study: Methodology and Application

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-09-29

    and labor- and data-intensive methods. For the watersheds analyzed in this report using the Level 1 PSIAC method, the risk of erosion is low. The field reconnaissance surveys of these watersheds confirm the conclusion that the sediment yield of undisturbed areas at the NNSS would be low. The climate, geology, soils, ground cover, land use, and runoff potential are similar among these watersheds. There are no well-defined ephemeral channels except at the Smoky and Plutonium Valley sites. Topography seems to have the strongest influence on sediment yields, as sediment yields are higher on the steeper hill slopes. Lack of measured sediment yield data at the NNSS does not allow for a direct evaluation of the yield estimates by the PSIAC method. Level 2 MUSLE estimates in all the analyzed watersheds except Shasta are a small percentage of the estimates from PSIAC because MUSLE is not inclusive of channel erosion. This indicates that channel erosion dominates the total sediment yield in these watersheds. Annual sediment yields for these watersheds are estimated using the CHAN-SEDI and CHAN-SEDII channel sediment transport models. Both transport models give similar results and exceed the estimates obtained from PSIAC and MUSLE. It is recommended that the total watershed sediment yield of watersheds at the NNSS with flow channels be obtained by adding the washload estimate (rill and inter-rill erosion) from MUSLE to that obtained from channel transport models (bed load and suspended sediment). PSIAC will give comparable results if factor scores for channel erosion are revised towards the high erosion level. Application of the Level 3 process-based models to estimate sediment yields at the NNSS cannot be recommended at this time. Increased model complexity alone will not improve the certainty of the sediment yield estimates. Models must be calibrated against measured data before model results are accepted as certain. Because no measurements of sediment yields at the NNSS are

  15. Virtualizing living and working spaces: Proof of concept for a biomedical space-replication methodology.

    Science.gov (United States)

    Brennan, Patricia Flatley; Ponto, Kevin; Casper, Gail; Tredinnick, Ross; Broecker, Markus

    2015-10-01

    The physical spaces within which the work of health occurs - the home, the intensive care unit, the emergency room, even the bedroom - influence the manner in which behaviors unfold, and may contribute to efficacy and effectiveness of health interventions. Yet the study of such complex workspaces is difficult. Health care environments are complex, chaotic workspaces that do not lend themselves to the typical assessment approaches used in other industrial settings. This paper provides two methodological advances for studying internal health care environments: a strategy to capture salient aspects of the physical environment and a suite of approaches to visualize and analyze that physical environment. We used a Faro™ laser scanner to obtain point cloud data sets of the internal aspects of home environments. The point cloud enables precise measurement, including the location of physical boundaries and object perimeters, color, and light, in an interior space that can be translated later for visualization on a variety of platforms. The work was motivated by vizHOME, a multi-year program to intensively examine the home context of personal health information management in a way that minimizes repeated, intrusive, and potentially disruptive in vivo assessments. Thus, we illustrate how to capture, process, display, and analyze point clouds using the home as a specific example of a health care environment. Our work presages a time when emerging technologies facilitate inexpensive capture and efficient management of point cloud data, thus enabling visual and analytical tools for enhanced discharge planning, new insights for designers of consumer-facing clinical informatics solutions, and a robust approach to context-based studies of health-related work environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Thermoacoustic refrigerator for space applications

    Science.gov (United States)

    Garrett, Steven L.; Adeff, Jay A.; Hofler, Thomas J.

    1993-10-01

    A new spacecraft cryocooler which uses resonant high-amplitude sound waves in inert gases to pump heat is described. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). A space-qualified thermoacoustic refrigerator was flown on the Space Shuttle Discovery (STS-42) in January, 1992. It was entirely autonomous, had no sliding seals, required no lubrication, used mostly low-tolerance machined parts, and contained no expensive components. Thermoacoustics is shown to be a competitive candidate for food refrigerator/freezers and commercial/residential air conditioners. The design and performance of the Space Thermo/Acoustic Refrigerator (STAR) is described.

  17. Ethernet for Space Flight Applications

    Science.gov (United States)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  18. MEMS applications in space exploration

    Science.gov (United States)

    Tang, William C.

    1997-09-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. MEMS is one of the key enabling technology to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  19. A Test Methodology for Determining Space-Readiness of Xilinx SRAM-Based FPGA Designs

    International Nuclear Information System (INIS)

    Quinn, Heather M.; Graham, Paul S.; Morgan, Keith S.; Caffrey, Michael P.

    2008-01-01

    Using reconfigurable, static random-access memory (SRAM) based field-programmable gate arrays (FPGAs) for space-based computation has been an exciting area of research for the past decade. Since both the circuit and the circuit's state is stored in radiation-tolerant memory, both could be alterd by the harsh space radiation environment. Both the circuit and the circuit's state can be prote cted by triple-moduler redundancy (TMR), but applying TMR to FPGA user designs is often an error-prone process. Faulty application of TMR could cause the FPGA user circuit to output incorrect data. This paper will describe a three-tiered methodology for testing FPGA user designs for space-readiness. We will describe the standard approach to testing FPGA user designs using a particle accelerator, as well as two methods using fault injection and a modeling tool. While accelerator testing is the current 'gold standard' for pre-launch testing, we believe the use of fault injection and modeling tools allows for easy, cheap and uniform access for discovering errors early in the design process.

  20. Topological vector spaces and their applications

    CERN Document Server

    Bogachev, V I

    2017-01-01

    This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. In addition, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.

  1. Stable isotope methodology and its application to nutrition and gastroenterology

    International Nuclear Information System (INIS)

    Klein, P.D.; Hachey, D.L.; Wong, W.W.; Abrams, S.A.

    1993-01-01

    This report describes the activities of the Stable Isotope Laboratory in its function as a core resource facility for stable isotope applications in human nutrition research. Three aspects are covered: Training of visitors, assessment of new instrumentation, and development of new methodology. The research achievements of the laboratory are indicated in the publications that appeared during this period. (author). 23 refs

  2. SINGULAR SPECTRUM ANALYSIS: METHODOLOGY AND APPLICATION TO ECONOMICS DATA

    Institute of Scientific and Technical Information of China (English)

    Hossein HASSANI; Anatoly ZHIGLJAVSKY

    2009-01-01

    This paper describes the methodology of singular spectrum analysis (SSA) and demonstrate that it is a powerful method of time series analysis and forecasting, particulary for economic time series. The authors consider the application of SSA to the analysis and forecasting of the Iranian national accounts data as provided by the Central Bank of the Islamic Republic of lran.

  3. Towards an MDA-based development methodology for distributed applications

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Gavras, A.; Belaunde, M.; Ferreira Pires, Luis; Andrade Almeida, João

    2004-01-01

    This paper proposes a development methodology for distributed applications based on the principles and concepts of the Model-Driven Architecture (MDA). The paper identifies phases and activities of an MDA-based development trajectory, and defines the roles and products of each activity in accordance

  4. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles

    Science.gov (United States)

    Moffitt, Blake Almy

    Unmanned Aerial Vehicles (UAVs) are the most dynamic growth sector of the aerospace industry today. The need to provide persistent intelligence, surveillance, and reconnaissance for military operations is driving the planned acquisition of over 5,000 UAVs over the next five years. The most pressing need is for quiet, small UAVs with endurance beyond what is capable with advanced batteries or small internal combustion propulsion systems. Fuel cell systems demonstrate high efficiency, high specific energy, low noise, low temperature operation, modularity, and rapid refuelability making them a promising enabler of the small, quiet, and persistent UAVs that military planners are seeking. Despite the perceived benefits, the actual near-term performance of fuel cell powered UAVs is unknown. Until the auto industry began spending billions of dollars in research, fuel cell systems were too heavy for useful flight applications. However, the last decade has seen rapid development with fuel cell gravimetric and volumetric power density nearly doubling every 2--3 years. As a result, a few design studies and demonstrator aircraft have appeared, but overall the design methodology and vehicles are still in their infancy. The design of fuel cell aircraft poses many challenges. Fuel cells differ fundamentally from combustion based propulsion in how they generate power and interact with other aircraft subsystems. As a result, traditional multidisciplinary analysis (MDA) codes are inappropriate. Building new MDAs is difficult since fuel cells are rapidly changing in design, and various competitive architectures exist for balance of plant, hydrogen storage, and all electric aircraft subsystems. In addition, fuel cell design and performance data is closely protected which makes validation difficult and uncertainty significant. Finally, low specific power and high volumes compared to traditional combustion based propulsion result in more highly constrained design spaces that are

  5. Electric rail gun application to space propulsion

    International Nuclear Information System (INIS)

    Barber, J.P.

    1979-01-01

    The paper examines the possibility of using the DC electric gun principles as a space vehicle propulsion system, capable of producing intermediate thrust levels. The application of an electromagnetic launch technique, called the DC electric rail gun, to the space propulsion concept of O'Neill, is examined. It is determined that the DC electric rail gun offers very high projectile accelerations and a very significant potential for reducing the size and mass of a reaction motor for space application. A detailed description of rail gun principles is given and some simple expressions for the accelerating force, gun impedance, power supply requirements, and system performance are discussed

  6. Chemical sensors for space applications

    Science.gov (United States)

    Bonting, Sjoerd L.

    1992-01-01

    The payload of the Space Station Freedom will include sensors for frequent monitoring of the water recycling process and for measuring the many biochemical parameters related to onboard experiments. This paper describes the sensor technologies and the types of transducers and selectors considered for these sensors. Particular attention is given to such aspects of monitoring of the water recycling process as the types of water use, the sources of water and their hazards, the sensor systems for monitoring, microbial monitoring, and monitoring toxic metals and organics. An approach for monitoring water recycling is suggested, which includes microbial testing with a potentiometric device (which should be in first line of tests), the use of an ion-selective electrode for inorganic ion determinations, and the use of optic fiber techniques for the determination of total organic carbon.

  7. Future superconductivity applications in space - A review

    Science.gov (United States)

    Krishen, Kumar; Ignatiev, Alex

    High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.

  8. Interfacing system LOCA risk assessment: Methodology and application

    International Nuclear Information System (INIS)

    Galyean, W.J.; Schroeher, J.A.; Hanson, D.J.

    1991-01-01

    The United States Nuclear Regulatory Commission (NRC) is sponsoring a research program to develop an improved understanding of the human factors hardware, and accident consequence issues that dominate the risk from an Interfacing Systems Loss-of-Coolant Accident (ISLOCA) at a nuclear power plant. To accomplish this program, a methodology has been developed for estimating the core damage frequency and risk associated with an ISLOCA. The steps of the methodology are described with emphasis on one step which is unique, estimation of the probability of rupture of the low pressure systems. A trial application of the methodology was made for a Pressurized Water Reactor (PWR). The results are believed to be plant specific and indicate that human errors during startup and shutdown could be significant contributors to ISLOCA risk at the plant evaluated. 10 refs

  9. Hybrid probabilistic and possibilistic safety assessment. Methodology and application

    International Nuclear Information System (INIS)

    Kato, Kazuyuki; Amano, Osamu; Ueda, Hiroyoshi; Ikeda, Takao; Yoshida, Hideji; Takase, Hiroyasu

    2002-01-01

    This paper presents a unified methodology to handle variability and ignorance by using probabilistic and possibilistic techniques respectively. The methodology has been applied to the safety assessment of geological disposal of high-level radioactive waste. Uncertainties associated with scenarios, models and parameters were defined in terms of fuzzy membership functions derived through a series of interviews to the experts, while variability was formulated by means of probability density functions (pdfs) based on available data sets. The exercise demonstrated the applicability of the new methodology and, in particular, its advantage in quantifying uncertainties based on expert opinion and in providing information on the dependence of assessment results on the level of conservatism. In addition, it was shown that sensitivity analysis can identify key parameters contributing to uncertainties associated with results of the overall assessment. The information mentioned above can be utilized to support decision-making and to guide the process of disposal system development and optimization of protection against potential exposure. (author)

  10. De-individualized psychophysiological strain assessment during a flight simulation test—Validation of a space methodology

    Science.gov (United States)

    Johannes, Bernd; Salnitski, Vyacheslav; Soll, Henning; Rauch, Melina; Hoermann, Hans-Juergen

    For the evaluation of an operator's skill reliability indicators of work quality as well as of psychophysiological states during the work have to be considered. The herein presented methodology and measurement equipment were developed and tested in numerous terrestrial and space experiments using a simulation of a spacecraft docking on a space station. However, in this study the method was applied to a comparable terrestrial task—the flight simulator test (FST) used in the DLR selection procedure for ab initio pilot applicants for passenger airlines. This provided a large amount of data for a statistical verification of the space methodology. For the evaluation of the strain level of applicants during the FST psychophysiological measurements were used to construct a "psychophysiological arousal vector" (PAV) which is sensitive to various individual reaction patterns of the autonomic nervous system to mental load. Its changes and increases will be interpreted as "strain". In the first evaluation study, 614 subjects were analyzed. The subjects first underwent a calibration procedure for the assessment of their autonomic outlet type (AOT) and on the following day they performed the FST, which included three tasks and was evaluated by instructors applying well-established and standardized rating scales. This new method will possibly promote a wide range of other future applications in aviation and space psychology.

  11. A Global Sensitivity Analysis Methodology for Multi-physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tong, C H; Graziani, F R

    2007-02-02

    Experiments are conducted to draw inferences about an entire ensemble based on a selected number of observations. This applies to both physical experiments as well as computer experiments, the latter of which are performed by running the simulation models at different input configurations and analyzing the output responses. Computer experiments are instrumental in enabling model analyses such as uncertainty quantification and sensitivity analysis. This report focuses on a global sensitivity analysis methodology that relies on a divide-and-conquer strategy and uses intelligent computer experiments. The objective is to assess qualitatively and/or quantitatively how the variabilities of simulation output responses can be accounted for by input variabilities. We address global sensitivity analysis in three aspects: methodology, sampling/analysis strategies, and an implementation framework. The methodology consists of three major steps: (1) construct credible input ranges; (2) perform a parameter screening study; and (3) perform a quantitative sensitivity analysis on a reduced set of parameters. Once identified, research effort should be directed to the most sensitive parameters to reduce their uncertainty bounds. This process is repeated with tightened uncertainty bounds for the sensitive parameters until the output uncertainties become acceptable. To accommodate the needs of multi-physics application, this methodology should be recursively applied to individual physics modules. The methodology is also distinguished by an efficient technique for computing parameter interactions. Details for each step will be given using simple examples. Numerical results on large scale multi-physics applications will be available in another report. Computational techniques targeted for this methodology have been implemented in a software package called PSUADE.

  12. Training in radionuclide methodology and applications in biomedical area

    International Nuclear Information System (INIS)

    Signoretta, C.

    1998-01-01

    Full text: Training in the field of radionuclide methodology and applications in biomedical area is important to assure that radionuclide should duly be used without risk for patients or for technicians manipulating them. The National Atomic Energy Commission (CNEA) from its creation is giving training courses of different technical levels to those working in science and technology. The Course on Radionuclide Methodology and application is the most continuous, varied and requested within CNEA. This is a basic course mainly given to Biochemistry and Medicine. Its goal is to give both theoretical and practical knowledge for use and application of radionuclides bearing in mind radiological safety regulations. Personnel from CNEA and Nuclear Regulatory Authority (ARN) carry out teaching. On the other hand, a course for Technicians in Nuclear Medicine is giving supplying knowledge in this field, as well as expertise and practice to attend a responsible Medical Doctor. These curses comprise radionuclide methodology, anatomy, physiology, instrumentation and practical applications in Nuclear Medicine. Statistics concerning these course are giving. (author) [es

  13. Applications of mixed-methods methodology in clinical pharmacy research.

    Science.gov (United States)

    Hadi, Muhammad Abdul; Closs, S José

    2016-06-01

    Introduction Mixed-methods methodology, as the name suggests refers to mixing of elements of both qualitative and quantitative methodologies in a single study. In the past decade, mixed-methods methodology has gained popularity among healthcare researchers as it promises to bring together the strengths of both qualitative and quantitative approaches. Methodology A number of mixed-methods designs are available in the literature and the four most commonly used designs in healthcare research are: the convergent parallel design, the embedded design, the exploratory design, and the explanatory design. Each has its own unique advantages, challenges and procedures and selection of a particular design should be guided by the research question. Guidance on designing, conducting and reporting mixed-methods research is available in the literature, so it is advisable to adhere to this to ensure methodological rigour. When to use it is best suited when the research questions require: triangulating findings from different methodologies to explain a single phenomenon; clarifying the results of one method using another method; informing the design of one method based on the findings of another method, development of a scale/questionnaire and answering different research questions within a single study. Two case studies have been presented to illustrate possible applications of mixed-methods methodology. Limitations Possessing the necessary knowledge and skills to undertake qualitative and quantitative data collection, analysis, interpretation and integration remains the biggest challenge for researchers conducting mixed-methods studies. Sequential study designs are often time consuming, being in two (or more) phases whereas concurrent study designs may require more than one data collector to collect both qualitative and quantitative data at the same time.

  14. Methodological developments and applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.

    2007-01-01

    The paper reviews the author's experience acquired and achievements made in methodological developments of neutron activation analysis (NAA) of mostly biological materials. These involve epithermal neutron activation analysis, radiochemical neutron activation analysis using both single- and multi-element separation procedures, use of various counting modes, and the development and use of the self-verification principle. The role of NAA in the detection of analytical errors is discussed and examples of applications of the procedures developed are given. (author)

  15. PIXE methodology of rare earth element analysis and its applications

    International Nuclear Information System (INIS)

    Ma Xinpei

    1992-01-01

    The Proton Induced X-ray Emission (PIXE) methodology of rare earth element (REEs) analysis is discussed, including the significance of REE analysis, the principle of PIXE applied to REE, selection of characteristic X-ray for Lanthanide series elements, deconvolution of highly over lapped PIXE spectrum and minimum detection limit (MDL) of REEs. Some practical applications are presented. And the specialities of PIXE analysis to the high pure REE chemicals are discussed. (author)

  16. Environmental Development Plan (EDP): space applications

    International Nuclear Information System (INIS)

    1978-04-01

    This Environmental Development Plan (EDP) identifies and examines the environmental, safety, health, and socioeconomic (ES and H) issues associated with the ongoing DOE Space Applications Program and the associated research, development, and demonstration programs. The EDP presents an ES and H research and development (R/D) program and strategy for timely resolutions of the issues and satisfaction of the associated requirements necessary for precluding impediments to the space nuclear systems technology. The EDP has been limited to the consideration of: (1) space nuclear power system nuclear fuel fabrication; (2) space nuclear power system heat source fabrication; (3) testing of subsystems and assembled systems; (4) R and D in support of space nuclear system development; (5) nuclear system responses to launch and reentry accidents; and (6) nuclear system environmental behavior and recovery

  17. Analytical group decision making in natural resources: methodology and application

    Science.gov (United States)

    Daniel L. Schmoldt; David L. Peterson

    2000-01-01

    Group decision making is becoming increasingly important in natural resource management and associated scientific applications, because multiple values are treated coincidentally in time and space, multiple resource specialists are needed, and multiple stakeholders must be included in the decision process. Decades of social science research on decision making in groups...

  18. Application of Bow-tie methodology to improve patient safety.

    Science.gov (United States)

    Abdi, Zhaleh; Ravaghi, Hamid; Abbasi, Mohsen; Delgoshaei, Bahram; Esfandiari, Somayeh

    2016-05-09

    Purpose - The purpose of this paper is to apply Bow-tie methodology, a proactive risk assessment technique based on systemic approach, for prospective analysis of the risks threatening patient safety in intensive care unit (ICU). Design/methodology/approach - Bow-tie methodology was used to manage clinical risks threatening patient safety by a multidisciplinary team in the ICU. The Bow-tie analysis was conducted on incidents related to high-alert medications, ventilator associated pneumonia, catheter-related blood stream infection, urinary tract infection, and unwanted extubation. Findings - In total, 48 potential adverse events were analysed. The causal factors were identified and classified into relevant categories. The number and effectiveness of existing preventive and protective barriers were examined for each potential adverse event. The adverse events were evaluated according to the risk criteria and a set of interventions were proposed with the aim of improving the existing barriers or implementing new barriers. A number of recommendations were implemented in the ICU, while considering their feasibility. Originality/value - The application of Bow-tie methodology led to practical recommendations to eliminate or control the hazards identified. It also contributed to better understanding of hazard prevention and protection required for safe operations in clinical settings.

  19. Risk-Informed Assessment Methodology Development and Application

    International Nuclear Information System (INIS)

    Sung Goo Chi; Seok Jeong Park; Chul Jin Choi; Ritterbusch, S.E.; Jacob, M.C.

    2002-01-01

    Westinghouse Electric Company (WEC) has been working with Korea Power Engineering Company (KOPEC) on a US Department of Energy (DOE) sponsored Nuclear Energy Research Initiative (NERI) project through a collaborative agreement established for the domestic NERI program. The project deals with Risk-Informed Assessment (RIA) of regulatory and design requirements of future nuclear power plants. An objective of the RIA project is to develop a risk-informed design process, which focuses on identifying and incorporating advanced features into future nuclear power plants (NPPs) that would meet risk goals in a cost-effective manner. The RIA design methodology is proposed to accomplish this objective. This paper discusses the development of this methodology and demonstrates its application in the design of plant systems for future NPPs. Advanced conceptual plant systems consisting of an advanced Emergency Core Cooling System (ECCS) and Emergency Feedwater System (EFWS) for a NPP were developed and the risk-informed design process was exercised to demonstrate the viability and feasibility of the RIA design methodology. Best estimate Loss-of-Coolant Accident (LOCA) analyses were performed to validate the PSA success criteria for the NPP. The results of the analyses show that the PSA success criteria can be met using the advanced conceptual systems and that the RIA design methodology is a viable and appropriate means of designing key features of risk-significant NPP systems. (authors)

  20. A Methodology for Conducting Space Utilization Studies within Department of Defense Medical Facilities

    Science.gov (United States)

    1992-07-01

    database programs, such as dBase or Microsoft Excell, to yield statistical reports that can profile the health care facility . Ladeen (1989) feels that the...service specific space status report would be beneficial to the specific service(s) under study, it would not provide sufficient data for facility -wide...change in the Master Space Plan. The revised methodology also provides a mechanism and forum for spuce management education within the facility . The

  1. Calibration Modeling Methodology to Optimize Performance for Low Range Applications

    Science.gov (United States)

    McCollum, Raymond A.; Commo, Sean A.; Parker, Peter A.

    2010-01-01

    Calibration is a vital process in characterizing the performance of an instrument in an application environment and seeks to obtain acceptable accuracy over the entire design range. Often, project requirements specify a maximum total measurement uncertainty, expressed as a percent of full-scale. However in some applications, we seek to obtain enhanced performance at the low range, therefore expressing the accuracy as a percent of reading should be considered as a modeling strategy. For example, it is common to desire to use a force balance in multiple facilities or regimes, often well below its designed full-scale capacity. This paper presents a general statistical methodology for optimizing calibration mathematical models based on a percent of reading accuracy requirement, which has broad application in all types of transducer applications where low range performance is required. A case study illustrates the proposed methodology for the Mars Entry Atmospheric Data System that employs seven strain-gage based pressure transducers mounted on the heatshield of the Mars Science Laboratory mission.

  2. Reversible logic synthesis methodologies with application to quantum computing

    CERN Document Server

    Taha, Saleem Mohammed Ridha

    2016-01-01

    This book opens the door to a new interesting and ambitious world of reversible and quantum computing research. It presents the state of the art required to travel around that world safely. Top world universities, companies and government institutions  are in a race of developing new methodologies, algorithms and circuits on reversible logic, quantum logic, reversible and quantum computing and nano-technologies. In this book, twelve reversible logic synthesis methodologies are presented for the first time in a single literature with some new proposals. Also, the sequential reversible logic circuitries are discussed for the first time in a book. Reversible logic plays an important role in quantum computing. Any progress in the domain of reversible logic can be directly applied to quantum logic. One of the goals of this book is to show the application of reversible logic in quantum computing. A new implementation of wavelet and multiwavelet transforms using quantum computing is performed for this purpose. Rese...

  3. A gamma heating calculation methodology for research reactor application

    International Nuclear Information System (INIS)

    Lee, Y.K.; David, J.C.; Carcreff, H.

    2001-01-01

    Gamma heating is an important issue in research reactor operation and fuel safety. Heat deposition in irradiation targets and temperature distribution in irradiation facility should be determined so as to obtain the optimal irradiation conditions. This paper presents a recently developed gamma heating calculation methodology and its application on the research reactors. Based on the TRIPOLI-4 Monte Carlo code under the continuous-energy option, this new calculation methodology was validated against calorimetric measurements realized within a large ex-core irradiation facility of the 70 MWth OSIRIS materials testing reactor (MTR). The contributions from prompt fission neutrons, prompt fission γ-rays, capture γ-rays and inelastic γ-rays to heat deposition were evaluated by a coupled (n, γ) transport calculation. The fission product decay γ-rays were also considered but the activation γ-rays were neglected in this study. (author)

  4. Proposal of a Methodology of Stakeholder Analysis for the Brazilian Satellite Space Program

    Directory of Open Access Journals (Sweden)

    Mônica Elizabeth Rocha de Oliveira

    2012-03-01

    Full Text Available To ensure the continuity and growth of space activities in Brazil, it is fundamental to persuade the Brazilian society and its representatives in Government about the importance of investments in space activities. Also, it is important to convince talented professionals to place space activities as an object of their interest; the best schools should also be convinced to offer courses related to the space sector; finally, innovative companies should be convinced to take part in space sector activities, looking to returns, mainly in terms of market differentiation and qualification, as a path to take part in high-technology and high-complexity projects. On the one hand, this process of convincing or, more importantly, committing these actors to space activities, implies a thorough understanding of their expectations and needs, in order to plan how the system/organization can meet them. On the other hand, if stakeholders understand how much they can benefit from this relationship, their consequent commitment will very much strengthen the action of the system/organization. With this framework in perspective, this paper proposes a methodology of stakeholder analysis for the Brazilian satellite space program. In the exercise developed in the article, stakeholders have been identified from a study of the legal framework of the Brazilian space program. Subsequently, the proposed methodology has been applied to the planning of actions by a public organization.

  5. Microwave integrated circuits for space applications

    Science.gov (United States)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  6. UWB Technology and Applications on Space Exploration

    Science.gov (United States)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  7. Solar cells for space applications (part 2)

    International Nuclear Information System (INIS)

    Gomez, T.J.

    1992-01-01

    This lecture focusses on qualification and verification tests and procedures on solar cells designed for space applications. The series of tests should produce orbital performance under determined illumination, temperature and irradiance. Tests are divided in outdoor and laboratory experiments. Environmental tests include durability, qualification (mechanical and electrical), I-V curves, Spectral response

  8. Progress in space weather predictions and applications

    Science.gov (United States)

    Lundstedt, H.

    The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.

  9. Application of transient analysis methodology to heat exchanger performance monitoring

    International Nuclear Information System (INIS)

    Rampall, I.; Soler, A.I.; Singh, K.P.; Scott, B.H.

    1994-01-01

    A transient testing technique is developed to evaluate the thermal performance of industrial scale heat exchangers. A Galerkin-based numerical method with a choice of spectral basis elements to account for spatial temperature variations in heat exchangers is developed to solve the transient heat exchanger model equations. Testing a heat exchanger in the transient state may be the only viable alternative where conventional steady state testing procedures are impossible or infeasible. For example, this methodology is particularly suited to the determination of fouling levels in component cooling water system heat exchangers in nuclear power plants. The heat load on these so-called component coolers under steady state conditions is too small to permit meaningful testing. An adequate heat load develops immediately after a reactor shutdown when the exchanger inlet temperatures are highly time-dependent. The application of the analysis methodology is illustrated herein with reference to an in-situ transient testing carried out at a nuclear power plant. The method, however, is applicable to any transient testing application

  10. Technology Applications that Support Space Exploration

    Science.gov (United States)

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future

  11. Fast underdetermined BSS architecture design methodology for real time applications.

    Science.gov (United States)

    Mopuri, Suresh; Reddy, P Sreenivasa; Acharyya, Amit; Naik, Ganesh R

    2015-01-01

    In this paper, we propose a high speed architecture design methodology for the Under-determined Blind Source Separation (UBSS) algorithm using our recently proposed high speed Discrete Hilbert Transform (DHT) targeting real time applications. In UBSS algorithm, unlike the typical BSS, the number of sensors are less than the number of the sources, which is of more interest in the real time applications. The DHT architecture has been implemented based on sub matrix multiplication method to compute M point DHT, which uses N point architecture recursively and where M is an integer multiples of N. The DHT architecture and state of the art architecture are coded in VHDL for 16 bit word length and ASIC implementation is carried out using UMC 90 - nm technology @V DD = 1V and @ 1MHZ clock frequency. The proposed architecture implementation and experimental comparison results show that the DHT design is two times faster than state of the art architecture.

  12. Design verification methodology for a solenoid valve for industrial applications

    International Nuclear Information System (INIS)

    Park, Chang Dae; Lim, Byung Ju; Chun, Kyung Yul

    2015-01-01

    Solenoid operated valves (SOV) are widely used in many applications due to their fast dynamic responses, cost effectiveness, and less contamination sensitive characteristics. In this paper, we tried to provide a convenient method of design verification of SOV to design engineers who depend on their experiences and experiment during design and development process of SOV. First, we summarize a detailed procedure for designing SOVs for industrial applications. All of the design constraints are defined in the first step of the design, and then the detail design procedure is presented based on design experiences as well as various physical and electromagnetic relationships. Secondly, we have suggested a verification method of this design using theoretical relationships, which enables optimal design of SOV from a point of view of safety factor of design attraction force. Lastly, experimental performance tests using several prototypes manufactured based on this design method show that the suggested design verification methodology is appropriate for designing new models of solenoids. We believe that this verification process is novel logic and useful to save time and expenses during development of SOV because verification tests with manufactured specimen may be substituted partly by this verification methodology.

  13. [Nursing methodology applicated in patients with pressure ulcers. Clinical report].

    Science.gov (United States)

    Galvez Romero, Carmen

    2014-05-01

    The application of functional patterns lets us to make a systematic and premeditated nursing assessment, with which we obtain a lot of relevant patient data in an organized way, making easier to analize them. In our case, we use Marjory Gordon's functional health patterns and NANDA (North American Nursing Diagnosis Association), NOC (Nursing Outcomes Classification), NIC (Nursing Intervention Classification) taxonomy. The overall objective of this paper is to present the experience of implementation and development of nursing methodology in the care of patients with pressure ulcers. In this article it's reported a case of a 52-year-old female who presented necrosis of phalanxes in upper and lower limbs and suffered amputations of them after being hospitalized in an Intensive Care Unit. She was discharged with pressure ulcers on both heels. GENERAL ASSESSMENT: It was implemented the nursing theory known as "Gordon's functional health patterns" and the affected patterns were identified. The Second Pattern (Nutritional-Metabolic) was considered as reference, since this was the pattern which altered the rest. EVOLUTION OF THE PATIENT: The patient had a favourable evolution, improving all the altered patterns. The infections symptoms disappeared and the pressure ulcers of both heels healed completely. The application of nursing methodology to care patients with pressure ulcers using clinical practice guidelines, standardized procedures and rating scales of assessment improves the evaluation of results and the performance of nurses.

  14. Space Weather Research Towards Applications in Europe

    CERN Document Server

    Lilensten, Jean

    2007-01-01

    This book shows the state of the art in Europe on a very new discipline, Space Weather. This discipline lies at the edge between science and industry. This book reflects such a position, with theoretic papers and applicative papers as well. It is divided into 5 chapters. Each chapter starts with a short introduction, which shows the coherence of a given domain. Then, 4 to 5 contributions written by the best specialists in Europe give detailed hints of a hot topic in space weather. From the reading of this book, it becomes evident that space weather is a living discipline, full of promises and already full of amazing realizations. The strength of Europe is clear through the book, but it is also clear that this discipline is world wide.

  15. Submonotone mappings in Banach spaces and applications

    International Nuclear Information System (INIS)

    Georgiev, P.G.

    1995-11-01

    The notions 'submonotone' and 'strictly submonotone' mapping, introduced by J. Spingarn in R n , are extended in a natural way to arbitrary Banach spaces. Several results about monotone operators are proved for submonotone and strictly submonotone ones: Rockafellar's result about local boundedness of monotone operators; Kenderov's result about single-valuedness and upper-semicontinuity almost everywhere of monotone operators in Asplund spaces; minimality (as w * - cusco mappings) of maximal strictly submonotone mappings, etc. It is shown that subdifferentials of various classes non-convex functions defined as pointwise suprema of quasi-differentiable functions possess submonotone properties. Results about generic differentiability of such functions are obtained (among them are new generalizations of an Ekeland and Lebourg's theorem). Applications are given to the properties of the distance function in a Banach space with uniformly Gateaux differentiable norm. (author). 29 refs

  16. Marshall Space Flight Center's Virtual Reality Applications Program 1993

    Science.gov (United States)

    Hale, Joseph P., II

    1993-01-01

    A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical

  17. Exploring Methodologies and Indicators for Cross-disciplinary Applications

    Science.gov (United States)

    Bernknopf, R.; Pearlman, J.

    2015-12-01

    Assessing the impact and benefit of geospatial information is a multidisciplinary task that involves the social, economic and environmental knowledge to formulate indicators and methods. There are use cases that couple the social sciences including economics, psychology, sociology that incorporate geospatial information. Benefit - cost analysis is an empirical approach that uses money as an indicator for decision making. It is a traditional base for a use case and has been applied to geospatial information and other areas. A new use case that applies indicators is Meta Regression analysis, which is used to evaluate transfers of socioeconomic benefits from different geographic regions into a unifying statistical approach. In this technique, qualitative and quantitative variables are indicators, which provide a weighted average of value for the nonmarket good or resource over a large region. The expected willingness to pay for the nonmarket good can be applied to a specific region. A third use case is the application of Decision Support Systems and Tools that have been used for forecasting agricultural prices and analysis of hazard policies. However, new methods for integrating these disciplines into use cases, an avenue to instruct the development of operational applications of geospatial information, are needed. Experience in one case may not be broadly transferable to other uses and applications if multiple disciplines are involved. To move forward, more use cases are needed and, especially, applications in the private sector. Applications are being examined across a multidisciplinary community for good examples that would be instructive in meeting the challenge. This presentation will look at the results of an investigation into directions in the broader applications of use cases to teach the methodologies and use of indicators that have applications across fields of interest.

  18. Applications of quantum entanglement in space

    International Nuclear Information System (INIS)

    Ursin, R.; Aspelmeyer, M.; Jennewein, T.; Zeilinger, A.

    2005-01-01

    Full text: Quantum entanglement is at the heart of quantum physics. At the same time it is the basis for novel quantum communication schemes, such as quantum cryptography over long distances. Bringing quantum entanglement to the space environment will open a new range of fundamental physics experiments, and will provide unique opportunities for quantum communication applications over long distances. We proposed tests of quantum communication in space, whereby an entangled photon Source is placed onboard the ISS, and two entangled photons are transmitted via a simultaneous down link and received at two distant ground stations. Furthermore, performing a series of consecutive single down links with separate ground stations will enable a test of establishing quantum cryptography even on a global scale. This Space-QUEST proposal was submitted within ESA's OA-2004 and was rated as 'outstanding' because of both, a novel and imaginative scientific content and for technological applications of quantum cryptography respectively. We intend to explore the possibilities to send, receive and manipulate single entangled photon pairs using telescopes, reflectors and high-power lasers over a distance of some tens of kilometers up to 100 kilometers experimentally. A distance of approx. 10 kilometer would already correspond to one atmospheric equivalent and would thus imply the feasibility of installing a ground to satellite link. We are already collaborating with European Space Agency ESA, to investigate and outline the accommodation of a quantum communication terminal in existing optical terminals for satellite communication. (author)

  19. Application of decision-making methodology to certificate-of-need applications for CT scanners

    International Nuclear Information System (INIS)

    Gottinger, H.W.; Shapiro, P.

    1985-01-01

    This paper describes a case study and application of decision-making methodology to two competing Certificate of Need (CON) applications for CT body scanners. We demonstrate the use of decision-making methodology by evaluating the CON applications. Explicit value judgements reflecting the monetary equivalent of the different categories of benefit are introduced to facilitate this comparison. The difference between the benefits (measured in monetary terms) and costs is called the net social value. Any alternative with positive net social value is judged economically justifiable, and the alternative with the greatest net social value is judged the most attractive. (orig.)

  20. Static and Dynamic Verification of Critical Software for Space Applications

    Science.gov (United States)

    Moreira, F.; Maia, R.; Costa, D.; Duro, N.; Rodríguez-Dapena, P.; Hjortnaes, K.

    Space technology is no longer used only for much specialised research activities or for sophisticated manned space missions. Modern society relies more and more on space technology and applications for every day activities. Worldwide telecommunications, Earth observation, navigation and remote sensing are only a few examples of space applications on which we rely daily. The European driven global navigation system Galileo and its associated applications, e.g. air traffic management, vessel and car navigation, will significantly expand the already stringent safety requirements for space based applications Apart from their usefulness and practical applications, every single piece of onboard software deployed into the space represents an enormous investment. With a long lifetime operation and being extremely difficult to maintain and upgrade, at least when comparing with "mainstream" software development, the importance of ensuring their correctness before deployment is immense. Verification &Validation techniques and technologies have a key role in ensuring that the onboard software is correct and error free, or at least free from errors that can potentially lead to catastrophic failures. Many RAMS techniques including both static criticality analysis and dynamic verification techniques have been used as a means to verify and validate critical software and to ensure its correctness. But, traditionally, these have been isolated applied. One of the main reasons is the immaturity of this field in what concerns to its application to the increasing software product(s) within space systems. This paper presents an innovative way of combining both static and dynamic techniques exploiting their synergy and complementarity for software fault removal. The methodology proposed is based on the combination of Software FMEA and FTA with Fault-injection techniques. The case study herein described is implemented with support from two tools: The SoftCare tool for the SFMEA and SFTA

  1. Multidimensional Space-Time Methodology for Development of Planetary and Space Sciences, S-T Data Management and S-T Computational Tomography

    Science.gov (United States)

    Andonov, Zdravko

    Complex Time and Quan-tum Wave Cosmology Paradigm for Decision of the Main Problem of Contemporary Physics. 3. R&D of Einstein-Minkowski Geodesies' Paradigm in the 4D-Space-Time Continuum to 6D-6nD Space-Time Continuum Paradigms and 6D S-T Equations. . . 4. R&D of Erwin Schrüdinger 4D S-T Universe' Evolutional Equation; It's David Bohm 4D generalization for anisotropic mediums and innovative 6D -for instantaneously quantum measurement -Bohm-Schrüdinger 6D S-T Universe' Evolutional Equation. 5. R&D of brain new 6D Planning of S-T Experi-ments, brain new 6D Space Technicks and Space Technology Generalizations, especially for 6D RS VHRS Research, Monitoring and 6D Computational Tomography. 6. R&D of "6D Euler-Poisson Equations" and "6D Kolmogorov Turbulence Theory" for GeoDynamics and for Space Dynamics as evolution of Gauss-Riemann Paradigms. 7. R&D of N. Boneff NASA RD for Asteroid "Eros" & Space Science' Laws Evolution. 8. R&D of H. Poincare Paradigm for Nature and Cosmos as 6D Group of Transferences. 9. R&D of K. Popoff N-Body General Problem & General Thermodynamic S-T Theory as Einstein-Prigogine-Landau' Paradigms Development. ü 10. R&D of 1st GUT since 1958 by N. S. Kalitzin (Kalitzin N. S., 1958: Uber eine einheitliche Feldtheorie. ZAHeidelberg-ARI, WZHUmnR-B., 7 (2), 207-215) and "Multitemporal Theory of Relativity" -With special applications to Photon Rockets and all Space-Time R&D. GENERAL CONCLUSION: Multidimensional Space-Time Methodology is advance in space research, corresponding to the IAF-IAA-COSPAR Innovative Strategy and R&D Programs -UNEP, UNDP, GEOSS, GMES, Etc.

  2. Space applications of artificial intelligence; 1990 Goddard Conference, Greenbelt, MD, May 1, 2, 1990, Selected Papers

    Science.gov (United States)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  3. Commercial Application of In-Space Assembly

    Science.gov (United States)

    Lymer, John; Hanson, Mark; Tadros, Al; Boccio, Joel; Hollenstein, Bruno; Emerick, Ken; Doughtery, Sean; Doggett, Bill; Dorsey, John T.; King, Bruce D.; hide

    2016-01-01

    In-Space assembly (ISA) expands the opportunities for cost effective emplacement of systems in space. Currently, spacecraft are launched into space and deploy into their operational configuration through a carefully choreographed sequence of operations. The deployment operation dictates the arrangement of the primary systems on the spacecraft, limiting the ability to take full advantage of launch vehicles volume and mass capability. ISA enables vastly different spacecraft architectures and emplacement scenarios to be achieved, including optimal launch configurations ranging from single launch and assembly to on-orbit aggregation of multiple launches at different orbital locations and times. The spacecraft can be visited at different orbital locations and times to effect expansion and maintenance of an operational capability. To date, the primary application of ISA has been in large programs funded by government organizations, such as the International Space Station. Recently, Space Systems Loral (SSL) led a study funded by the Defense Advanced Research Projects Agency (DARPA), called Dragonfly, to investigate the commercial applicability and economic advantages of ISA. In the study, it was shown that ISA enables SSL to double the capability of a commercial satellite system by taking advantage of alternate packaging approaches for the reflectors. The study included an ultra-light-weight robotic system, derived from Mars manipulator designs, to complete assembly of portions of the antenna system using a tool derived from DARPA orbital express and National Aeronautics and Space Administration (NASA) automated structural assembly experience. The mechanical connector that enables robotic ISA takes advantage of decades of development by NASA from the 1970's to 1980's during the Space Station Freedom program, the precursor to the ISS. The mechanical connector was originally designed for rapid astronaut assembly while also providing a high quality structural connection

  4. Application of human reliability analysis methodology of second generation

    International Nuclear Information System (INIS)

    Ruiz S, T. de J.; Nelson E, P. F.

    2009-10-01

    The human reliability analysis (HRA) is a very important part of probabilistic safety analysis. The main contribution of HRA in nuclear power plants is the identification and characterization of the issues that are brought together for an error occurring in the human tasks that occur under normal operation conditions and those made after abnormal event. Additionally, the analysis of various accidents in history, it was found that the human component has been a contributing factor in the cause. Because of need to understand the forms and probability of human error in the 60 decade begins with the collection of generic data that result in the development of the first generation of HRA methodologies. Subsequently develop methods to include in their models additional performance shaping factors and the interaction between them. So by the 90 mid, comes what is considered the second generation methodologies. Among these is the methodology A Technique for Human Event Analysis (ATHEANA). The application of this method in a generic human failure event, it is interesting because it includes in its modeling commission error, the additional deviations quantification to nominal scenario considered in the accident sequence of probabilistic safety analysis and, for this event the dependency actions evaluation. That is, the generic human failure event was required first independent evaluation of the two related human failure events . So the gathering of the new human error probabilities involves the nominal scenario quantification and cases of significant deviations considered by the potential impact on analyzed human failure events. Like probabilistic safety analysis, with the analysis of the sequences were extracted factors more specific with the highest contribution in the human error probabilities. (Author)

  5. Simplified methodology for control cell constant calculations of the reactor cores for the space kinetics

    International Nuclear Information System (INIS)

    Santos, Rubens Souza dos; Martinez, Aquilino Senra; Alvim, Antonio Carlos Marques

    2002-01-01

    In this work is presented a methodology which focuses the distribution of neutron absorber rods in nuclear reactor power plants, for utilizing in space kinetic calculations, principally in the cluster ejection transients of control rods. A numerical model for macroscopic constant calculations based on the knowledge of the neutron flux without the control rods is proposed, as alternative to the analytical models, based on the hypothesis of the null current on the cell super boundaries. The proposed model in this work has itself showed adequate to deal with problems with strong space dependence, once that the model showed consistence in the global average built in the analytical model. (author)

  6. Methodology for neural networks prototyping. Application to traffic control

    Energy Technology Data Exchange (ETDEWEB)

    Belegan, I.C.

    1998-07-01

    The work described in this report was carried out in the context of the European project ASTORIA (Advanced Simulation Toolbox for Real-World Industrial Application in Passenger Management and Adaptive Control), and concerns the development of an advanced toolbox for complex transportation systems. Our work was focused on the methodology for prototyping a set of neural networks corresponding to specific strategies for traffic control and congestion management. The tool used for prototyping is SNNS (Stuggart Neural Network Simulator), developed at the University of Stuggart, Institute for Parallel and Distributed High Performance Systems, and the real data from the field were provided by ZELT. This report is structured into six parts. The introduction gives some insights about traffic control and its approaches. The second chapter discusses the various control strategies existing. The third chapter is an introduction to the field of neural networks. The data analysis and pre-processing is described in the fourth chapter. In the fifth chapter, the methodology for prototyping the neural networks is presented. Finally, conclusions and further work are presented. (author) 14 refs.

  7. Application of theoretical and methodological components of nursing care

    Directory of Open Access Journals (Sweden)

    Rosa del Socorro Morales-Aguilar

    2016-12-01

    Full Text Available Introduction: the theoretical and methodological components are the proper expertise in nursing, and it refers to models, theories, care process, taxonomy of nursing diagnoses, system of nursing intervention classification, and system of outcomes classification, which base nursing care into professional practice. Methodology: research was performed on Google Scholar, reviewing the databases of Scielo, Ciberindex, Index Enfermería, Dialnet, Redalyc, Medline, identifying 70 published articles between 2005-2015, and selecting 52 of them. The keywords used were: nurse care, nursing diagnostic, classification, nursing theory, in spanish and portuguese. Results: training students, receive knowledge in the nursing process, NANDA International, classification of the interventions, nurse results and theoretical components. The Dorothea Orem, Callista Roy, Nola Pender, Virginia Henderson, Florence Nightingale, and Betty Neuman theories are applied. The application of the nursing process is limited and low familiarity with the international taxonomy by nurse professionals in the assistance area is noticed. Conclusions: the challenge of nursing is to continue to solidify the scientific knowledge and to undo the gap between theory and practice.

  8. AN AUTOMATIC AND METHODOLOGICAL APPROACH FOR ACCESSIBLE WEB APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Lourdes Moreno

    2007-06-01

    Full Text Available Semantic Web approaches try to get the interoperability and communication among technologies and organizations. Nevertheless, sometimes it is forgotten that the Web must be useful for every user, consequently it is necessary to include tools and techniques doing Semantic Web be accessible. Accessibility and usability are two usually joined concepts widely used in web application development, however their meaning are different. Usability means the way to make easy the use but accessibility is referred to the access possibility. For the first one, there are many well proved approaches in real cases. However, accessibility field requires a deeper research that will make feasible the access to disable people and also the access to novel non-disable people due to the cost to automate and maintain accessible applications. In this paper, we propose one architecture to achieve the accessibility in web-environments dealing with the WAI accessibility standard and the Universal Design paradigm. This architecture tries to control the accessibility in web applications development life-cycle following a methodology starting from a semantic conceptual model and leans on description languages and controlled vocabularies.

  9. Modern methodology and applications in spatial-temporal modeling

    CERN Document Server

    Matsui, Tomoko

    2015-01-01

    This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component an...

  10. VaR Methodology Application for Banking Currency Portfolios

    Directory of Open Access Journals (Sweden)

    Daniel Armeanu

    2007-02-01

    Full Text Available VaR has become the standard measure that financial analysts use to quantify market risk. VaR measures can have many applications, such as in risk management, to evaluate the performance of risk takers and for regulatory requirements, and hence it is very important to develop methodologies that provide accurate estimates. In particular, the Basel Committee on Banking Supervision at the Bank for International Settlements imposes to financial institutions such as banks and investment firms to meet capital requirements based on VaR estimates. In this paper we determine VaR for a banking currency portfolio and respect rules of National Bank of Romania regarding VaR report.

  11. Thermoacoustic power systems for space applications

    International Nuclear Information System (INIS)

    Backhaus, S.N.; Tward, E.; Pedach, M.

    2001-01-01

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (W/kg). Thermoacoustic engines can convert high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, these engines are low mass and promise to be highly reliable. Coupling a thermoacoustic engine to a low-mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Data will be presented on the first tests of a demonstration thermoacoustic engine designed for the 100-Watt power range.

  12. Varied line-space gratings and applications

    International Nuclear Information System (INIS)

    McKinney, W.R.

    1991-01-01

    This paper presents a straightforward analytical and numerical method for the design of a specific type of varied line-space grating system. The mathematical development will assume plane or nearly-plane spherical gratings which are illuminated by convergent light, which covers many interesting cases for synchrotron radiation. The gratings discussed will have straight grooves whose spacing varies across the principal plane of the grating. Focal relationships and formulae for the optical grating-pole-to-exist-slit distance and grating radius previously presented by other authors will be derived with a symbolic algebra system. It is intended to provide the optical designer with the tools necessary to design such a system properly. Finally, some possible advantages and disadvantages for application to synchrotron to synchrotron radiation beamlines will be discussed

  13. Evaluation of Magnetoresistive RAM for Space Applications

    Science.gov (United States)

    Heidecker, Jason

    2014-01-01

    Magnetoresistive random-access memory (MRAM) is a non-volatile memory that exploits electronic spin, rather than charge, to store data. Instead of moving charge on and off a floating gate to alter the threshold voltage of a CMOS transistor (creating different bit states), MRAM uses magnetic fields to flip the polarization of a ferromagnetic material thus switching its resistance and bit state. These polarized states are immune to radiation-induced upset, thus making MRAM very attractive for space application. These magnetic memory elements also have infinite data retention and erase/program endurance. Presented here are results of reliability testing of two space-qualified MRAM products from Aeroflex and Honeywell.

  14. Nuclear Cross Sections for Space Radiation Applications

    Science.gov (United States)

    Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.

    2015-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.

  15. Discussion about photodiode architectures for space applications

    Science.gov (United States)

    Gravrand, O.; Destefanis, G.; Cervera, C.; Zanatta, J.-P.; Baier, N.; Ferron, A.; Boulade, O.

    2017-11-01

    Detection for space application is very demanding on the IR detector: all wavelengths, from visible-NIR (2- 3um cutoff) to LWIR (10-12.5um cutoff), even sometimes VLWIR (15um cutoff) may be of interest. Moreover, various scenarii are usually considered. Some are imaging applications where the focal plane array (FPA) is used as an optical element to sense an image. However, the FPA may also be used in spectrometric applications where light is triggered on the different pixels depending on its wavelength. In some cases, star pointing is another use of FPAs where the retina is used to sense the position of the satellite. In all those configurations, we might distinguish several categories of applications: • low flux applications where the FPA is staring at space and the detection occurs with only a few number of photons. • high flux applications where the FPA is usually staring at the earth. In this case, the black body emission of the earth and its atmosphere ensures usually a large number of photons to perform the detection. Those two different categories are highly dimensioning for the detector as it usually determines the level of dark current and quantum efficiency (QE) requirements. Indeed, high detection performance usually requires a large number of integrated photons such that high QE is needed for low flux applications, in order to limit the integration time as much as possible. Moreover, dark current requirement is also directly linked to the expected incoming flux, in order to limit as much as possible the SNR degradation due to dark charges vs photocharges. Note that in most cases, this dark current is highly depending on operating temperature which dominates detector consumption. A classical way to mitigate dark current is to cool down the detector to very low temperatures. This paper won't discuss the need for wavefront sensing where the number of detected photons is low because of a very narrow integration window. Rigorously, this kind of

  16. Do Space Requirement Applicable in Private Preschools?

    Directory of Open Access Journals (Sweden)

    Salleh Naziah Muhamad

    2016-01-01

    Full Text Available Working or studying in a comfortable environment enhances not only well-being, but also satisfaction and therefore increase the productivity and learning. The numbers of private preschool in Malaysia boost every year. Frequently they operate in premises that have been fully refurbished. This has invited the questions on the building capability and space condition to provide a good environment to the children during the learning activities. Most of the building was refurbished to enhance it applicability as a school. Yet, these adaptive-reused buildings are doubtful. This research focused to identify the characteristics of the buildings’ physical and condition as well as the scenario of refurbished private preschool in accordance with the standard. Observation particularly on space and pupils density either it is reckoning with the authorities’ requirements. Most of the building was refurbished to enhance it applicability as a school. The data obtained from the observation and staff’s interview to 237 preschool (771 classrooms. The data revealed in most of preschools, the occupants in the classrooms were over the limit regulating by the authority. The data obtained was analyzed to become a reference and benchmark to the authorities to prepare the private preschool’s applications.

  17. Third Conference on Artificial Intelligence for Space Applications, part 2

    Science.gov (United States)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed.

  18. Nonvolatile Memory Technology for Space Applications

    Science.gov (United States)

    Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.

    2010-01-01

    This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.

  19. Applications of a constrained mechanics methodology in economics

    Science.gov (United States)

    Janová, Jitka

    2011-11-01

    This paper presents instructive interdisciplinary applications of constrained mechanics calculus in economics on a level appropriate for undergraduate physics education. The aim of the paper is (i) to meet the demand for illustrative examples suitable for presenting the background of the highly expanding research field of econophysics even at the undergraduate level and (ii) to enable the students to gain a deeper understanding of the principles and methods routinely used in mechanics by looking at the well-known methodology from the different perspective of economics. Two constrained dynamic economic problems are presented using the economic terminology in an intuitive way. First, the Phillips model of the business cycle is presented as a system of forced oscillations and the general problem of two interacting economies is solved by the nonholonomic dynamics approach. Second, the Cass-Koopmans-Ramsey model of economical growth is solved as a variational problem with a velocity-dependent constraint using the vakonomic approach. The specifics of the solution interpretation in economics compared to mechanics is discussed in detail, a discussion of the nonholonomic and vakonomic approaches to constrained problems in mechanics and economics is provided and an economic interpretation of the Lagrange multipliers (possibly surprising for the students of physics) is carefully explained. This paper can be used by the undergraduate students of physics interested in interdisciplinary physics applications to gain an understanding of the current scientific approach to economics based on a physical background, or by university teachers as an attractive supplement to classical mechanics lessons.

  20. Applications of a constrained mechanics methodology in economics

    International Nuclear Information System (INIS)

    Janova, Jitka

    2011-01-01

    This paper presents instructive interdisciplinary applications of constrained mechanics calculus in economics on a level appropriate for undergraduate physics education. The aim of the paper is (i) to meet the demand for illustrative examples suitable for presenting the background of the highly expanding research field of econophysics even at the undergraduate level and (ii) to enable the students to gain a deeper understanding of the principles and methods routinely used in mechanics by looking at the well-known methodology from the different perspective of economics. Two constrained dynamic economic problems are presented using the economic terminology in an intuitive way. First, the Phillips model of the business cycle is presented as a system of forced oscillations and the general problem of two interacting economies is solved by the nonholonomic dynamics approach. Second, the Cass-Koopmans-Ramsey model of economical growth is solved as a variational problem with a velocity-dependent constraint using the vakonomic approach. The specifics of the solution interpretation in economics compared to mechanics is discussed in detail, a discussion of the nonholonomic and vakonomic approaches to constrained problems in mechanics and economics is provided and an economic interpretation of the Lagrange multipliers (possibly surprising for the students of physics) is carefully explained. This paper can be used by the undergraduate students of physics interested in interdisciplinary physics applications to gain an understanding of the current scientific approach to economics based on a physical background, or by university teachers as an attractive supplement to classical mechanics lessons.

  1. Applications of a constrained mechanics methodology in economics

    Energy Technology Data Exchange (ETDEWEB)

    Janova, Jitka, E-mail: janova@mendelu.cz [Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2011-11-15

    This paper presents instructive interdisciplinary applications of constrained mechanics calculus in economics on a level appropriate for undergraduate physics education. The aim of the paper is (i) to meet the demand for illustrative examples suitable for presenting the background of the highly expanding research field of econophysics even at the undergraduate level and (ii) to enable the students to gain a deeper understanding of the principles and methods routinely used in mechanics by looking at the well-known methodology from the different perspective of economics. Two constrained dynamic economic problems are presented using the economic terminology in an intuitive way. First, the Phillips model of the business cycle is presented as a system of forced oscillations and the general problem of two interacting economies is solved by the nonholonomic dynamics approach. Second, the Cass-Koopmans-Ramsey model of economical growth is solved as a variational problem with a velocity-dependent constraint using the vakonomic approach. The specifics of the solution interpretation in economics compared to mechanics is discussed in detail, a discussion of the nonholonomic and vakonomic approaches to constrained problems in mechanics and economics is provided and an economic interpretation of the Lagrange multipliers (possibly surprising for the students of physics) is carefully explained. This paper can be used by the undergraduate students of physics interested in interdisciplinary physics applications to gain an understanding of the current scientific approach to economics based on a physical background, or by university teachers as an attractive supplement to classical mechanics lessons.

  2. Complex basis functions for molecular resonances: Methodology and applications

    Science.gov (United States)

    White, Alec; McCurdy, C. William; Head-Gordon, Martin

    The computation of positions and widths of metastable electronic states is a challenge for molecular electronic structure theory because, in addition to the difficulty of the many-body problem, such states obey scattering boundary conditions. These resonances cannot be addressed with naïve application of traditional bound state electronic structure theory. Non-Hermitian electronic structure methods employing complex basis functions is one way that we may rigorously treat resonances within the framework of traditional electronic structure theory. In this talk, I will discuss our recent work in this area including the methodological extension from single determinant SCF-based approaches to highly correlated levels of wavefunction-based theory such as equation of motion coupled cluster and many-body perturbation theory. These approaches provide a hierarchy of theoretical methods for the computation of positions and widths of molecular resonances. Within this framework, we may also examine properties of resonances including the dependence of these parameters on molecular geometry. Some applications of these methods to temporary anions and dianions will also be discussed.

  3. Spatial Development Modeling Methodology Application Possibilities in Vilnius

    Directory of Open Access Journals (Sweden)

    Lina Panavaitė

    2017-05-01

    Full Text Available In order to control the continued development of high-rise buildings and their irreversible visual impact on the overall silhouette of the city, the great cities of the world introduced new methodological principles to city’s spatial development models. These methodologies and spatial planning guidelines are focused not only on the controlled development of high-rise buildings, but on the spatial modelling of the whole city by defining main development criteria and estimating possible consequences. Vilnius city is no exception, however the re-establishment of independence of Lithuania caused uncontrolled urbanization process, so most of the city development regulations emerged as a consequence of unmanaged processes of investors’ expectations legalization. The importance of consistent urban fabric as well as conservation and representation of city’s most important objects gained attention only when an actual threat of overshadowing them with new architecture along with unmanaged urbanization in the city center or urban sprawl at suburbia, caused by land-use projects, had emerged. Current Vilnius’ spatial planning documents clearly define urban structure and key development principles, however the definitions are relatively abstract, causing uniform building coverage requirements for territories with distinct qualities and simplifying planar designs which do not meet quality standards. The overall quality of urban architecture is not regulated. The article deals with current spatial modeling methods, their individual parts, principles, the criteria for quality assessment and their applicability in Vilnius. The text contains an outline of possible building coverage regulations and impact assessment criteria for new development. The article contains a compendium of requirements for high-quality spatial planning and building design.

  4. Drug-targeting methodologies with applications: A review

    Science.gov (United States)

    Kleinstreuer, Clement; Feng, Yu; Childress, Emily

    2014-01-01

    Targeted drug delivery to solid tumors is a very active research area, focusing mainly on improved drug formulation and associated best delivery methods/devices. Drug-targeting has the potential to greatly improve drug-delivery efficacy, reduce side effects, and lower the treatment costs. However, the vast majority of drug-targeting studies assume that the drug-particles are already at the target site or at least in its direct vicinity. In this review, drug-delivery methodologies, drug types and drug-delivery devices are discussed with examples in two major application areas: (1) inhaled drug-aerosol delivery into human lung-airways; and (2) intravascular drug-delivery for solid tumor targeting. The major problem addressed is how to deliver efficiently the drug-particles from the entry/infusion point to the target site. So far, most experimental results are based on animal studies. Concerning pulmonary drug delivery, the focus is on the pros and cons of three inhaler types, i.e., pressurized metered dose inhaler, dry powder inhaler and nebulizer, in addition to drug-aerosol formulations. Computational fluid-particle dynamics techniques and the underlying methodology for a smart inhaler system are discussed as well. Concerning intravascular drug-delivery for solid tumor targeting, passive and active targeting are reviewed as well as direct drug-targeting, using optimal delivery of radioactive microspheres to liver tumors as an example. The review concludes with suggestions for future work, considereing both pulmonary drug targeting and direct drug delivery to solid tumors in the vascular system. PMID:25516850

  5. MEMS Micro-Valve for Space Applications

    Science.gov (United States)

    Chakraborty, I.; Tang, W. C.; Bame, D. P.; Tang, T. K.

    1998-01-01

    We report on the development of a Micro-ElectroMechanical Systems (MEMS) valve that is designed to meet the rigorous performance requirements for a variety of space applications, such as micropropulsion, in-situ chemical analysis of other planets, or micro-fluidics experiments in micro-gravity. These systems often require very small yet reliable silicon valves with extremely low leak rates and long shelf lives. Also, they must survive the perils of space travel, which include unstoppable radiation, monumental shock and vibration forces, as well as extreme variations in temperature. Currently, no commercial MEMS valve meets these requirements. We at JPL are developing a piezoelectric MEMS valve that attempts to address the unique problem of space. We begin with proven configurations that may seem familiar. However, we have implemented some major design innovations that should produce a superior valve. The JPL micro-valve is expected to have an extremely low leak rate, limited susceptibility to particulates, vibration or radiation, as well as a wide operational temperature range.

  6. Evolution of new materials for space applications

    International Nuclear Information System (INIS)

    Purdy, D.M.

    1983-01-01

    The implications of spacecraft design requirements for materials technology are surveyed, with a focus on current trends and future needs. Criteria for materials selection are discussed, including contamination control (low-outgassing materials), electrical and thermal characteristics, structural stiffness, safety requirements, and survivability (under natural space conditions for longer periods and under potential hostile particle-beam or laser attack). The applications and potential of polymer-matrix, metal-matrix and ceramic-matrix composites are discussed and compared. While polymer-matrix-material applications are seen as extendable by using high-stiffness fibers and improving ultraviolet protection, the greatest potential is seen in the development of the metal-matrix and ceramic-matrix composites, as used in the Space Shuttle. A need for cheaper, lighter, more radiation-resistant and less contamination-prone thermal-control coatings than the present optical-solar-reflector tiles, silica fabric, and indium-tin-oxide coating is projected. Methods for the analysis of structural defects in viscoelastic electrical components are presented. The materials requirements of larger and more powerful future spacecraft are evaluated. 17 references

  7. Application of Agent Methodology in Healthcare Information Systems

    Directory of Open Access Journals (Sweden)

    Reem Abdalla

    2017-02-01

    Full Text Available This paper presents a case study to describe the features and the phases of the two agent methodologies. The Gaia methodology for agent oriented analysis and design, Tropos is a detailed agent oriented software engineering methodology to explore each methodology's ability to present solutions for small problems. Also we provide an attempt to discover whether the methodology is in fact understandable and usable. In addition we were collecting and taking notes of the advantages and weaknesses of these methodologies during the study analysis for each methodology and the relationships among their models. The Guardian Angle: Patient-Centered Health Information System (GA: PCHIS is the personal system to help track, manage, and interpret the subject's health history, and give advice to both patient and provider is used as the case study throughout the paper.

  8. Methodology and results of a space station education pilot programme in the primary school

    Science.gov (United States)

    Mirra, G.; Mirra, C.

    Potential users of the Space Station Freedom are now still in the Primary School. Subject studies 1 have shown that a robust familiarization programme has to be developed in order to increase public awareness on the microgravity environment and its capabilities to perform unique science. At the same time, several surveys 2 have demonstrated that elementary school students are showing the greatest interest and enthusiasm in space related activities among all school students. With these boundary conditions, a pilot programme, aimed at verifying the capabilities of young primary school pupils (aged between 10 and 12) in understanding why one performs research in space, has been conceived. In order to overcome the lack of space training of school teachers, an expert in space operations joined a group of elementary teachers to activate this program: merging the necessary didactic and technical capabilities. Consequently, the aim of the program becomes two folded: •generate critical thinking and problem solving capacities as well as inventiveness in children making them aware on the use of space to improve life on Earth. •identify the key issues for the definition of a robust space utilization educational programme. The programme has been managed by MARS Center. the Italian User Support Center for the Space Station utilization, and the institute "Speranzas" in the nearby of Naples, Italy. MARS Center, in particular, is responsible towards the national agency ASI, Agenzia Spaziale Italiana, of the execution of the promotional activity towards all the possible target groups: young students are among these groups. This programme started in late 1992 and is currently ongoing. The objective of this paper is to provide a description of the methodology and the reasons of such a programme with a snapshot on the preliminary results and future trends. Means used as supporting tools, such as films, posters and role plays are herein depicted as well as statistics on the pupils

  9. Model-driven methodology for rapid deployment of smart spaces based on resource-oriented architectures.

    Science.gov (United States)

    Corredor, Iván; Bernardos, Ana M; Iglesias, Josué; Casar, José R

    2012-01-01

    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.

  10. Model-Driven Methodology for Rapid Deployment of Smart Spaces Based on Resource-Oriented Architectures

    Directory of Open Access Journals (Sweden)

    José R. Casar

    2012-07-01

    Full Text Available Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT and Web of Things (WoT are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i to integrate sensing and actuating functionalities into everyday objects, and (ii to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD methodology based on the Model Driven Architecture (MDA. This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.

  11. STAIF96: space technology and applications international forum. Proceedings

    International Nuclear Information System (INIS)

    El-Genk, M.S.

    1996-01-01

    These proceedings represent papers presented at the Space Technology and Applications International Forum-STAIF. STAIF-96 hosted four technical conferences sharing the common interest in space exploration, technology, and commercialization. Topics discussed include space station, space transportation, materials processing in space, commercial forum, space power, commercial space ports, microelectronics, automation of robotics-space application, remote sensing, small business innovative research and communications. There were 243 papers presented at the forum, and 138 have been abstracted for the Energy Science and Technology database. STAIF-96 was partly sponsored by the U.S. Department of Energy

  12. Intelligent computational systems for space applications

    Science.gov (United States)

    Lum, Henry; Lau, Sonie

    Intelligent computational systems can be described as an adaptive computational system integrating both traditional computational approaches and artificial intelligence (AI) methodologies to meet the science and engineering data processing requirements imposed by specific mission objectives. These systems will be capable of integrating, interpreting, and understanding sensor input information; correlating that information to the "world model" stored within its data base and understanding the differences, if any; defining, verifying, and validating a command sequence to merge the "external world" with the "internal world model"; and, controlling the vehicle and/or platform to meet the scientific and engineering mission objectives. Performance and simulation data obtained to date indicate that the current flight processors baselined for many missions such as Space Station Freedom do not have the computational power to meet the challenges of advanced automation and robotics systems envisioned for the year 2000 era. Research issues which must be addressed to achieve greater than giga-flop performance for on-board intelligent computational systems have been identified, and a technology development program has been initiated to achieve the desired long-term system performance objectives.

  13. 1988 Goddard Conference on Space Applications of Artificial Intelligence, Greenbelt, MD, May 24, 1988, Proceedings

    Science.gov (United States)

    Rash, James L. (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools methodologies.

  14. FPGA Design Methodologies Applicable to Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kwong, Yongil; Jeong, Choongheui

    2013-01-01

    In order to solve the above problem, NPPs in some countries such as the US, Canada and Japan have already applied FPGA-based equipment which has advantages as follows: It is easier to verify the performance because it needs only HDL code to configure logic circuits without other software, compared to microprocessor-based equipment, It is much cheaper than ASIC in a small quantity, Its logic circuits are re configurable, It has enough resources like logic blocks and memory blocks to implement I and C functions, Multiple functions can be implemented in a FPGA chip, It is stronger with respect to carboy security than microprocessor-based equipment because its configuration cannot be changed by external access, It is simple to replace it with new one when it is obsolete, Its power consumption is lower. However, FPGA-based equipment does not have only the merits. There are some issues on its application to NPPs. First of all, the experiences in applying it to NPPs are much less than to other industries, and international standards or guidelines are also very few. And there is the small number of FPGA platforms for I and C systems. Finally, the specific guidelines on FPGA design are required because the design has both hardware and software characteristics. In order to handle the above issues, KINS(Korea Institute of Nuclear Safety) built a test platform last year and have developed regulatory guidelines for FPGA-application in NPPs. I and C systems of NPPs have been increasingly using FPGA-based equipment as an alternative of microprocessor-based equipment which is not simple to be evaluated for safety due to its complexity. This paper explained the FPGA design flow and design guidelines. Those methodologies can be used as the guidelines on FPGA verification for safety of I and C systems

  15. Application of System Dynamics Methodology in Population Analysis

    Directory of Open Access Journals (Sweden)

    August Turina

    2009-09-01

    Full Text Available The goal of this work is to present the application of system dynamics and system thinking, as well as the advantages and possible defects of this analytic approach, in order to improve the analysis of complex systems such as population and, thereby, to monitor more effectively the underlying causes of migrations. This methodology has long been present in interdisciplinary scientific circles, but its scientific contribution has not been sufficiently applied in analysis practice in Croatia. Namely, the major part of system analysis is focused on detailed complexity rather than on dynamic complexity. Generally, the science of complexity deals with emergence, innovation, learning and adaptation. Complexity is viewed according to the number of system components, or through a number of combinations that must be continually analyzed in order to understand and consequently provide adequate decisions. Simulations containing thousands of variables and complex arrays of details distract overall attention from the basic cause patterns and key inter-relations emerging and prevailing within an analyzed population. Systems thinking offers a holistic and integral perspective for observation of the world.

  16. Artificial Intelligence Methodologies and Their Application to Diabetes.

    Science.gov (United States)

    Rigla, Mercedes; García-Sáez, Gema; Pons, Belén; Hernando, Maria Elena

    2018-03-01

    In the past decade diabetes management has been transformed by the addition of continuous glucose monitoring and insulin pump data. More recently, a wide variety of functions and physiologic variables, such as heart rate, hours of sleep, number of steps walked and movement, have been available through wristbands or watches. New data, hydration, geolocation, and barometric pressure, among others, will be incorporated in the future. All these parameters, when analyzed, can be helpful for patients and doctors' decision support. Similar new scenarios have appeared in most medical fields, in such a way that in recent years, there has been an increased interest in the development and application of the methods of artificial intelligence (AI) to decision support and knowledge acquisition. Multidisciplinary research teams integrated by computer engineers and doctors are more and more frequent, mirroring the need of cooperation in this new topic. AI, as a science, can be defined as the ability to make computers do things that would require intelligence if done by humans. Increasingly, diabetes-related journals have been incorporating publications focused on AI tools applied to diabetes. In summary, diabetes management scenarios have suffered a deep transformation that forces diabetologists to incorporate skills from new areas. This recently needed knowledge includes AI tools, which have become part of the diabetes health care. The aim of this article is to explain in an easy and plane way the most used AI methodologies to promote the implication of health care providers-doctors and nurses-in this field.

  17. Application of parameters space analysis tools for empirical model validation

    Energy Technology Data Exchange (ETDEWEB)

    Paloma del Barrio, E. [LEPT-ENSAM UMR 8508, Talence (France); Guyon, G. [Electricite de France, Moret-sur-Loing (France)

    2004-01-01

    A new methodology for empirical model validation has been proposed in the framework of the Task 22 (Building Energy Analysis Tools) of the International Energy Agency. It involves two main steps: checking model validity and diagnosis. Both steps, as well as the underlying methods, have been presented in the first part of the paper. In this part, they are applied for testing modelling hypothesis in the framework of the thermal analysis of an actual building. Sensitivity analysis tools have been first used to identify the parts of the model that can be really tested on the available data. A preliminary diagnosis is then supplied by principal components analysis. Useful information for model behaviour improvement has been finally obtained by optimisation techniques. This example of application shows how model parameters space analysis is a powerful tool for empirical validation. In particular, diagnosis possibilities are largely increased in comparison with residuals analysis techniques. (author)

  18. Health Management Applications for International Space Station

    Science.gov (United States)

    Alena, Richard; Duncavage, Dan

    2005-01-01

    Traditional mission and vehicle management involves teams of highly trained specialists monitoring vehicle status and crew activities, responding rapidly to any anomalies encountered during operations. These teams work from the Mission Control Center and have access to engineering support teams with specialized expertise in International Space Station (ISS) subsystems. Integrated System Health Management (ISHM) applications can significantly augment these capabilities by providing enhanced monitoring, prognostic and diagnostic tools for critical decision support and mission management. The Intelligent Systems Division of NASA Ames Research Center is developing many prototype applications using model-based reasoning, data mining and simulation, working with Mission Control through the ISHM Testbed and Prototypes Project. This paper will briefly describe information technology that supports current mission management practice, and will extend this to a vision for future mission control workflow incorporating new ISHM applications. It will describe ISHM applications currently under development at NASA and will define technical approaches for implementing our vision of future human exploration mission management incorporating artificial intelligence and distributed web service architectures using specific examples. Several prototypes are under development, each highlighting a different computational approach. The ISStrider application allows in-depth analysis of Caution and Warning (C&W) events by correlating real-time telemetry with the logical fault trees used to define off-nominal events. The application uses live telemetry data and the Livingstone diagnostic inference engine to display the specific parameters and fault trees that generated the C&W event, allowing a flight controller to identify the root cause of the event from thousands of possibilities by simply navigating animated fault tree models on their workstation. SimStation models the functional power flow

  19. Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models: Appendices

    Science.gov (United States)

    Coppolino, Robert N.

    2018-01-01

    Verification and validation (V&V) is a highly challenging undertaking for SLS structural dynamics models due to the magnitude and complexity of SLS subassemblies and subassemblies. Responses to challenges associated with V&V of Space Launch System (SLS) structural dynamics models are presented in Volume I of this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA). (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976). (3) Mode Consolidation (MC). Finally, (4) Experimental Mode Verification (EMV). This document contains the appendices to Volume I.

  20. Green Applications for Space Power Project

    Science.gov (United States)

    Robinson, Joel (Principal Investigator)

    2014-01-01

    Spacecraft propulsion and power for many decades has relied on Hydrazine monopropellant technology for auxiliary power units (APU), orbital circularization, orbit raising/lowering and attitude control. However, Hydrazine is toxic and therefore requires special ground handling procedures to ensure launch crew safety. The Swedish Company ECAPS has developed a technology based upon the propellant Ammonium Dinitramide (ADN) that offers higher performance, higher density and reduced ground handling support than Hydrazine. This blended propellant is called LMP-103S. Currently, the United States Air Force (USAF) is pursuing a technology based on Hydroxyl Ammonium Nitrate (HAN, otherwise known as AF-M315E) with industry partners Aerojet and Moog. Based on the advantages offered by these propellants, MSFC should explore powering APU's with these propellants. Due to the availability of space hardware, the principal investigator has found a collection of USAF hardware, that will act as a surrogate, which operates on a Hydrazine derivative. The F-16 fighter jet uses H-70 or 30% diluted Hydrazine for an Emergency Power Unit (EPU) which supplies power to the plane. The PI has acquired two EPU's from planes slated for destruction at the Davis Monthan AFB. This CIF will include a partnership with 2 other NASA Centers who are individually seeking seed funds from their respective organizations: Kennedy Space Center (KSC) and Dryden Flight Research Center (DFRC). KSC is preparing for future flights from their launch pads that will utilize green propellants and desire a low-cost testbed in which to test and calibrate new leak detection sensors. DFRC has access to F-16's which can be used by MSFC & KSC to perform a ground test that demonstrates emergency power supplied to the jet. Neither of the green propellant alternatives have been considered nor evaluated for an APU application. Work has already been accomplished to characterize and obtain the properties of these 2 propellants

  1. PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION WORKING GROUP: METHODOLOGY AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bari R. A.; Whitlock, J.; Therios, I.U.; Peterson, P.F.

    2012-11-14

    We summarize the technical progress and accomplishments on the evaluation methodology for proliferation resistance and physical protection (PR and PP) of Generation IV nuclear energy systems. We intend the results of the evaluations performed with the methodology for three types of users: system designers, program policy makers, and external stakeholders. The PR and PP Working Group developed the methodology through a series of demonstration and case studies. Over the past few years various national and international groups have applied the methodology to nuclear energy system designs as well as to developing approaches to advanced safeguards.

  2. Proliferation resistance and physical protection working group: methodology and applications

    International Nuclear Information System (INIS)

    Bari, Robert A.; Whitlock, Jeremy J.; Therios, Ike U.; Peterson, P.F.

    2012-01-01

    We summarize the technical progress and accomplishments on the evaluation methodology for proliferation resistance and physical protection (PR and PP) of Generation IV nuclear energy systems. We intend the results of the evaluations performed with the methodology for three types of users: system designers, program policy makers, and external stakeholders. The PR and PP Working Group developed the methodology through a series of demonstration and case studies. Over the past few years various national and international groups have applied the methodology to nuclear energy system designs as well as to developing approaches to advanced safeguards.

  3. Radioisotope thermionic converters for space applications

    International Nuclear Information System (INIS)

    Miskolczy, G.; Lieb, D.P.

    1990-01-01

    The recent history of radioisotope thermionics is reviewed, with emphasis on the U.S. programs, and the prospects for the future are assessed. In radioisotope thermionic converters the emitter heat is generated by the decay of a radioactive isotope. The thermionic converter emitter is mounted directly on a capsule containing the isotope. The rest of the capsule is generally insulated to reduce thermal loss. The development of isotope-fueled thermionic power systems for space application has been pursued since the late 1950's. The U.S. effort was concentrated on modular systems with alpha emitters as the isotope heat source. In the SNAP-13 program, the heat sources were Cerium isotopes and each module produced about 100 watts. The converters were planar diodes and the capsule was insulated with multi-foil insulation

  4. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  5. Wireless Power Transfer for Space Applications

    Science.gov (United States)

    Ramos, Gabriel Vazquez; Yuan, Jiann-Shiun

    2011-01-01

    This paper introduces an implementation for magnetic resonance wireless power transfer for space applications. The analysis includes an equivalent impedance study, loop material characterization, source/load resonance coupling technique, and system response behavior due to loads variability. System characterization is accomplished by executing circuit design from analytical equations and simulations using Matlab and SPICE. The theory was validated by a combination of different experiments that includes loop material consideration, resonance coupling circuits considerations, electric loads considerations and a small scale proof-of-concept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The prototype provided about 4.5 W of power to the load at a separation of -5 cm from the source using a power amplifier rated for 7 W.

  6. Magnetoresistive magnetometer for space science applications

    International Nuclear Information System (INIS)

    Brown, P; Beek, T; Carr, C; O’Brien, H; Cupido, E; Oddy, T; Horbury, T S

    2012-01-01

    Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz −1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm 3 , respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012. (paper)

  7. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    Science.gov (United States)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  8. Characterization of associate spaces of weighted Lorentz spaces with applications

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Pick, L.; Soudský, F.

    2014-01-01

    Roč. 224, č. 1 (2014), s. 1-23 ISSN 0039-3223 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : weighted Lorentz spaces * weighted inequalities * non-increasing rearragement * Banach function space Subject RIV: BA - General Mathematics Impact factor: 0.610, year: 2014 http://journals.impan.gov.pl/sm/Inf/224-1-1.html

  9. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  10. An ultrasonic methodology for muscle cross section measurement of support space flight

    Science.gov (United States)

    Hatfield, Thomas R.; Klaus, David M.; Simske, Steven J.

    2004-09-01

    The number one priority for any manned space mission is the health and safety of its crew. The study of the short and long term physiological effects on humans is paramount to ensuring crew health and mission success. One of the challenges associated in studying the physiological effects of space flight on humans, such as loss of bone and muscle mass, has been that of readily attaining the data needed to characterize the changes. The small sampling size of astronauts, together with the fact that most physiological data collection tends to be rather tedious, continues to hinder elucidation of the underlying mechanisms responsible for the observed changes that occur in space. Better characterization of the muscle loss experienced by astronauts requires that new technologies be implemented. To this end, we have begun to validate a 360° ultrasonic scanning methodology for muscle measurements and have performed empirical sampling of a limb surrogate for comparison. Ultrasonic wave propagation was simulated using 144 stations of rotated arm and calf MRI images. These simulations were intended to provide a preliminary check of the scanning methodology and data analysis before its implementation with hardware. Pulse-echo waveforms were processed for each rotation station to characterize fat, muscle, bone, and limb boundary interfaces. The percentage error between MRI reference values and calculated muscle areas, as determined from reflection points for calf and arm cross sections, was -2.179% and +2.129%, respectively. These successful simulations suggest that ultrasound pulse scanning can be used to effectively determine limb cross-sectional areas. Cross-sectional images of a limb surrogate were then used to simulate signal measurements at several rotation angles, with ultrasonic pulse-echo sampling performed experimentally at the same stations on the actual limb surrogate to corroborate the results. The objective of the surrogate sampling was to compare the signal

  11. Application of systematic review methodology to the field of nutrition.

    Science.gov (United States)

    Lichtenstein, Alice H; Yetley, Elizabeth A; Lau, Joseph

    2008-12-01

    Systematic reviews represent a rigorous and transparent approach to synthesizing scientific evidence that minimizes bias. They evolved within the medical community to support development of clinical and public health practice guidelines, set research agendas, and formulate scientific consensus statements. The use of systematic reviews for nutrition-related topics is more recent. Systematic reviews provide independently conducted comprehensive and objective assessments of available information addressing precise questions. This approach to summarizing available data is a useful tool for identifying the state of science including knowledge gaps and associated research needs, supporting development of science-based recommendations and guidelines, and serving as the foundation for updates as new data emerge. Our objective is to describe the steps for performing systematic reviews and highlight areas unique to the discipline of nutrition that are important to consider in data assessment. The steps involved in generating systematic reviews include identifying staffing and planning for outside expert input, forming a research team, developing an analytic framework, developing and refining research questions, defining eligibility criteria, identifying search terms, screening abstracts according to eligibility criteria, retrieving articles for evaluation, constructing evidence and summary tables, assessing methodological quality and applicability, and synthesizing results including performing meta-analysis, if appropriate. Unique and at times challenging, nutrition-related considerations include baseline nutrient exposure, nutrient status, bioequivalence of bioactive compounds, bioavailability, multiple and interrelated biological functions, undefined nature of some interventions, and uncertainties in intake assessment. Systematic reviews are a valuable and independent component of decision-making processes by groups responsible for developing science-based recommendations

  12. Radiation applications in NDT in space program

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1994-01-01

    Non-destructive testing (NDT) and evaluation play an important role in the qualification of sub-systems and components in space programme. NDT is carried out at various stages of manufacturing of components and also prior to end use to ensure a high degree of reliability. Penetrating radiations such as X-rays, γ-rays and neutrons are extensively used for the radiographic inspection of components, sub-systems and assemblies in both the launch vehicles and satellites. Both low and high energy radiations are employed for the evaluation of the above components depending on their size and nature. Real time radiography (RTR) and computed tomography (CT) are also used in certain specific applications where more detailed information is needed. Neutron radiography is employed for the inspection of pyro-devices used in separation, destruct and satellite deployment systems. Besides their use for non-destructive testing purposes, the radiation sources are also used for various special applications like solid propellant slurry flow measurement simulation of radiation environment on components used in the satellites and also for studying migration of ingredients in solid rocket motor. (author). 12 refs., 6 figs

  13. GPS system simulation methodology

    Science.gov (United States)

    Ewing, Thomas F.

    1993-01-01

    The following topics are presented: background; Global Positioning System (GPS) methodology overview; the graphical user interface (GUI); current models; application to space nuclear power/propulsion; and interfacing requirements. The discussion is presented in vugraph form.

  14. Fisheye Photogrammetry: Tests and Methodologies for the Survey of Narrow Spaces

    Science.gov (United States)

    Perfetti, L.; Polari, C.; Fassi, F.

    2017-02-01

    The research illustrated in this article aimed at identifying a good standard methodology to survey very narrow spaces during 3D investigation of Cultural Heritage. It is an important topic in today's era of BIM modelling applied to Cultural Heritage. Spaces like staircases, corridors and passages are very common in the architectural or archaeological fields, and obtaining a 3D-oriented survey of those areas can be a very complex task when completeness of the model and high precision are requested. Photogrammetry appears to be the most promising solution in terms of versatility and manoeuvrability also considering the quality of the required data. Fisheye lenses were studied and tested in depth because of their significant advantage in the field of view if compared with rectilinear lenses. This advantage alone can be crucial to reduce the total amount of photos and, as a consequence, to obtain manageable data, to simplify the survey phase and to significantly reduce the elaboration time. In order to overcome the main issue that arise when using fisheye lenses, which is the lack of rules that can be employed to design the survey, a general mathematical formulation to precisely estimate the GSD (Ground Sampling Distance) for every optical projection is presented here. A complete survey of a real complex case study was performed in order to test and stress the proposed methodology, and to handle a fisheye-based survey from beginning to end: the photogrammetric survey of the Minguzzi Staircase. It is a complex service spiral-staircase located in the Duomo di Milano with a total height of 25 meters and characterized by a narrow walkable space about 70 centimetres wide.

  15. Systems selection methodology for civil nuclear power applications

    International Nuclear Information System (INIS)

    Scarborough, J.

    1988-01-01

    A methodology for evaluation and selection of a preferred Advanced Small or Medium Power Reactor (SMPR) for commercial electric power generation is discussed, and an illustrative example is presented with five US Advanced SMPR power plants. The evaluation procedure was developed from a methodology for ranking small, advanced nuclear power plant designs under development by the US Department of Energy (DOE) and Department of Defense (DOD). The methodology involves establishing numerical probability distributions for each of fifteen evaluation criteria for each Advanced SMPR plant. A resultant single probability distribution with its associated numerical mean value is then developed for each Advanced SMPR plant by Monte Carlo sampling techniques in order that each plant may be ranked with an associated statement of certainty. The selection methodology is intended as a screening procedure for commercial offerings to preclude detailed technical and commercial assessments from being conducted for those offerings which do not meet the initial screening criteria

  16. Application of precursor methodology in initiating frequency estimates

    International Nuclear Information System (INIS)

    Kohut, P.; Fitzpatrick, R.G.

    1991-01-01

    The precursor methodology developed in recent years provides a consistent technique to identify important accident sequence precursors. It relies on operational events (extracting information from actual experience) and infers core damage scenarios based on expected safety system responses. The ranking or categorization of each precursor is determined by considering the full spectrum of potential core damage sequences. The methodology estimates the frequency of severe core damage based on the approach suggested by Apostolakis and Mosleh, which may lead to a potential overestimation of the severe-accident sequence frequency due to the inherent dependencies between the safety systems and the initiating events. The methodology is an encompassing attempt to incorporate most of the operating information available from nuclear power plants and is an attractive tool from the point of view of risk management. In this paper, a further extension of this methodology is discussed with regard to the treatment of initiating frequency of the accident sequences

  17. Systems selection methodology for civil nuclear power applications

    International Nuclear Information System (INIS)

    Scarborough, J.C.

    1987-01-01

    A methodology for evaluation and selection of a preferred Advanced Small or Medium Power Reactor (SMPR) for commercial electric power generation is discussed, and an illustrative example is presented with five U.S. Advanced SMPR power plants. The evaluation procedure was developed from a methodology for ranking small. advenced nuclear power plant designs under development by the U.S. Department of Energy (DOE) and Department of Defense (DOD). The methodology involves establishing numerical probability distributions for each of fifteen evaluation criteria for each Advanced SMPR plant. A resultant single probability distribution with its associated numerical mean value is then developed for each Advanced SMPR plant by Monte Carlo sampling techniques in order that each plant may be ranked with an associated statement of certainty. The selection methodology is intended as a screening procedure for commercial offerings to preclude detailed technical and commercial assessments from being conducted for those offerings which do not meet the initial screening criteria. (auhtor)

  18. Methodology for the collection and application of information on food ...

    African Journals Online (AJOL)

    S Blignaut

    ISSN 0378-5254 Journal of Family Ecology and Consumer Sciences, Vol 26: No 2, 1998. 89. Methodology .... Food preference therefore indicates an individual's personal motivation ...... food behavior in Sanjur, D. Social and cultural perspec-.

  19. Methodology of Neural Design: Applications in Microwave Engineering

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2006-06-01

    Full Text Available In the paper, an original methodology for the automatic creation of neural models of microwave structures is proposed and verified. Following the methodology, neural models of the prescribed accuracy are built within the minimum CPU time. Validity of the proposed methodology is verified by developing neural models of selected microwave structures. Functionality of neural models is verified in a design - a neural model is joined with a genetic algorithm to find a global minimum of a formulated objective function. The objective function is minimized using different versions of genetic algorithms, and their mutual combinations. The verified methodology of the automated creation of accurate neural models of microwave structures, and their association with global optimization routines are the most important original features of the paper.

  20. Physical protection evaluation methodology program development and application

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Janghoon; Yoo, Hosik [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    It is essential to develop a reliable physical protection evaluation methodology for applying physical protection concept to the design stage. The methodology can be used to assess weak points and improve performance not only for the design stage but also for nuclear facilities in operation. Analyzing physical protection property of nuclear facilities is not a trivial work since there are many interconnected factors affecting overall performance. Therefore several international projects have been organized to develop a systematic physical protection evaluation methodology. INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles) and GIF PRPP (Generation IV International Forum Proliferation Resistance and Physical Protection) methodology are among the most well-known evaluation methodologies. INPRO adopts a checklist type of questionnaire and has a strong point in analyzing overall characteristic of facilities in a qualitative way. COMPRE program has been developed to help general users apply COMPRE methodology to nuclear facilities. In this work, COMPRE program development and a case study of the hypothetical nuclear facility are presented. The development of COMPRE program and a case study for hypothetic facility is presented in this work. The case study shows that COMPRE PP methodology can be a useful tool to assess the overall physical protection performance of nuclear facilities. To obtain meaningful results from COMPRE PP methodology, detailed information and comprehensive analysis are required. Especially, it is not trivial to calculate reliable values for PPSE (Physical Protection System Effectiveness) and C (Consequence), while it is relatively straightforward to evaluate LI (Legislative and Institutional framework), MC (Material Control) and HR (Human Resources). To obtain a reliable PPSE value, comprehensive information about physical protection system, vital area analysis and realistic threat scenario assessment are required. Like

  1. Physical protection evaluation methodology program development and application

    International Nuclear Information System (INIS)

    Seo, Janghoon; Yoo, Hosik

    2015-01-01

    It is essential to develop a reliable physical protection evaluation methodology for applying physical protection concept to the design stage. The methodology can be used to assess weak points and improve performance not only for the design stage but also for nuclear facilities in operation. Analyzing physical protection property of nuclear facilities is not a trivial work since there are many interconnected factors affecting overall performance. Therefore several international projects have been organized to develop a systematic physical protection evaluation methodology. INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles) and GIF PRPP (Generation IV International Forum Proliferation Resistance and Physical Protection) methodology are among the most well-known evaluation methodologies. INPRO adopts a checklist type of questionnaire and has a strong point in analyzing overall characteristic of facilities in a qualitative way. COMPRE program has been developed to help general users apply COMPRE methodology to nuclear facilities. In this work, COMPRE program development and a case study of the hypothetical nuclear facility are presented. The development of COMPRE program and a case study for hypothetic facility is presented in this work. The case study shows that COMPRE PP methodology can be a useful tool to assess the overall physical protection performance of nuclear facilities. To obtain meaningful results from COMPRE PP methodology, detailed information and comprehensive analysis are required. Especially, it is not trivial to calculate reliable values for PPSE (Physical Protection System Effectiveness) and C (Consequence), while it is relatively straightforward to evaluate LI (Legislative and Institutional framework), MC (Material Control) and HR (Human Resources). To obtain a reliable PPSE value, comprehensive information about physical protection system, vital area analysis and realistic threat scenario assessment are required. Like

  2. Application of theoretical and methodological components of nursing care

    OpenAIRE

    Rosa del Socorro Morales-Aguilar; Gloria Elena Lastre-Amell; Alba Cecilia Pardo-Vásquez

    2016-01-01

    Introduction: the theoretical and methodological components are the proper expertise in nursing, and it refers to models, theories, care process, taxonomy of nursing diagnoses, system of nursing intervention classification, and system of outcomes classification, which base nursing care into professional practice. Methodology: research was performed on Google Scholar, reviewing the databases of Scielo, Ciberindex, Index Enfermería, Dialnet, Redalyc, Medline, identifying 70 published articles b...

  3. Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    Science.gov (United States)

    Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer

    2011-01-01

    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator

  4. New Generation Power System for Space Applications

    Science.gov (United States)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; hide

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  5. Reliability Centered Maintenance - Methodologies

    Science.gov (United States)

    Kammerer, Catherine C.

    2009-01-01

    Journal article about Reliability Centered Maintenance (RCM) methodologies used by United Space Alliance, LLC (USA) in support of the Space Shuttle Program at Kennedy Space Center. The USA Reliability Centered Maintenance program differs from traditional RCM programs because various methodologies are utilized to take advantage of their respective strengths for each application. Based on operational experience, USA has customized the traditional RCM methodology into a streamlined lean logic path and has implemented the use of statistical tools to drive the process. USA RCM has integrated many of the L6S tools into both RCM methodologies. The tools utilized in the Measure, Analyze, and Improve phases of a Lean Six Sigma project lend themselves to application in the RCM process. All USA RCM methodologies meet the requirements defined in SAE JA 1011, Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes. The proposed article explores these methodologies.

  6. Nano-Engineered Hierarchical Advanced Composite Materials for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Composites are widely used throughout aerospace engineering and in numerous other applications where structures that possess high strength and toughness properties...

  7. International Space Station (ISS) 3D Printer Performance and Material Characterization Methodology

    Science.gov (United States)

    Bean, Q. A.; Cooper, K. G.; Edmunson, J. E.; Johnston, M. M.; Werkheiser, M. J.

    2015-01-01

    In order for human exploration of the Solar System to be sustainable, manufacturing of necessary items on-demand in space or on planetary surfaces will be a requirement. As a first step towards this goal, the 3D Printing In Zero-G (3D Print) technology demonstration made the first items fabricated in space on the International Space Station. From those items, and comparable prints made on the ground, information about the microgravity effects on the printing process can be determined. Lessons learned from this technology demonstration will be applicable to other in-space manufacturing technologies, and may affect the terrestrial manufacturing industry as well. The flight samples were received at the George C. Marshall Space Flight Center on 6 April 2015. These samples will undergo a series of tests designed to not only thoroughly characterize the samples, but to identify microgravity effects manifested during printing by comparing their results to those of samples printed on the ground. Samples will be visually inspected, photographed, scanned with structured light, and analyzed with scanning electron microscopy. Selected samples will be analyzed with computed tomography; some will be assessed using ASTM standard tests. These tests will provide the information required to determine the effects of microgravity on 3D printing in microgravity.

  8. Applicability and methodology of determining sustainable yield in groundwater systems

    Science.gov (United States)

    Kalf, Frans R. P.; Woolley, Donald R.

    2005-03-01

    There is currently a need for a review of the definition and methodology of determining sustainable yield. The reasons are: (1) current definitions and concepts are ambiguous and non-physically based so cannot be used for quantitative application, (2) there is a need to eliminate varying interpretations and misinterpretations and provide a sound basis for application, (3) the notion that all groundwater systems either are or can be made to be sustainable is invalid, (4) often there are an excessive number of factors bound up in the definition that are not easily quantifiable, (5) there is often confusion between production facility optimal yield and basin sustainable yield, (6) in many semi-arid and arid environments groundwater systems cannot be sensibly developed using a sustained yield policy particularly where ecological constraints are applied. Derivation of sustainable yield using conservation of mass principles leads to expressions for basin sustainable, partial (non-sustainable) mining and total (non-sustainable) mining yields that can be readily determined using numerical modelling methods and selected on the basis of applied constraints. For some cases there has to be recognition that the groundwater resource is not renewable and its use cannot therefore be sustainable. In these cases, its destiny should be the best equitable use. sostenible. Las razones son: (1) los conceptos y definiciones actuales son ambiguos y sin base física de modo que no pueden usarse para aplicación cuantitativa, (2) existe necesidad de eliminar interpretaciones variables y mal interpretaciones y aportar bases sanas para aplicación, (3) la noción de que todos los sistemas de aguas subterráneas son o pueden ser sostenibles no esvalida, (4) frecuentemente existen un numero excesivo de factores ligados a la definición de producción sostenible los cuales no son fácil de cuantificar, (5) frecuentemente existe confusión entre la producción optima de un establecimiento y la

  9. New quickest transient detection methodology. Nuclear engineering applications

    International Nuclear Information System (INIS)

    Wang, Xin; Jevremovic, Tatjana; Tsoukalas, Lefteri H.

    2003-01-01

    A new intelligent systems methodology for quickest online transient detection is presented. Based on information that includes, but is not limited to, statistical features, energy of frequency components and wavelet coefficients, the new methodology decides whether a transient has emerged. A fuzzy system makes the final decision, the membership functions of which are obtained by artificial neural networks and adjusted in an online manner. Comparisons are performed with conventional methods for transient detection using simulated and plant data. The proposed methodology could be useful in power plant operations, diagnostic and maintenance activities. It is also considered as a design tool for quick design modifications in a virtual design environment aimed at next generation University Research and Training Reactors (URTRs). (The virtual design environment is pursued as part of the Big-10 Consortium sponsored by the new Innovations in Nuclear Infrastructure and Education (INIE) program sponsored by the US Department of Energy.) (author)

  10. Application of integrated fuzzy VIKOR & AHP methodology to contractor ranking

    Directory of Open Access Journals (Sweden)

    Mohamad Rahim Ramezaniyan

    2012-08-01

    Full Text Available Contractor selection is a critical activity, which plays an important role in the overall success of any construction project. The implementation of fuzzy multiple criteria decision attribute (MCDA in selecting contractors has the advantage of rendering subjective and implicit decision making more objective and transparent. An additional merit of fuzzy MCDA is the ability to accommodate quantitative and qualitative information. In this paper, an integrated VIKOR–AHP methodology is proposed to make a selection among the alternative contractors in one of Iranian construction industry projects. In the proposed methodology, the weights of the selection criteria are determined by fuzzy pairwise comparison matrices of AHP.

  11. New mission requirements methodologies for services provided by the Office of Space Communications

    Science.gov (United States)

    Holmes, Dwight P.; Hall, J. R.; Macoughtry, William; Spearing, Robert

    1993-01-01

    The Office of Space Communications, NASA Headquarters, has recently revised its methodology for receiving, accepting and responding to customer requests for use of that office's tracking and communications capabilities. This revision is the result of a process which has become over-burdened by the size of the currently active and proposed missions set, requirements reviews that focus on single missions rather than on mission sets, and negotiations most often not completed early enough to effect needed additions to capacity or capability prior to launch. The requirements-coverage methodology described is more responsive to project/program needs and provides integrated input into the NASA budget process early enough to effect change, and describes the mechanisms and tools in place to insure a value-added process which will benefit both NASA and its customers. Key features of the requirements methodology include the establishment of a mechanism for early identification of and systems trades with new customers, and delegates the review and approval of requirements documents to NASA centers in lieu of Headquarters, thus empowering the system design teams to establish and negotiate the detailed requirements with the user. A Mission Requirements Request (MRR) is introduced to facilitate early customer interaction. The expected result is that the time to achieve an approved set of implementation requirements which meet the customer's needs can be greatly reduced. Finally, by increasing the discipline in requirements management, through the use of base lining procedures, a tighter coupling between customer requirements and the budget is provided. A twice-yearly projection of customer requirements accommodation, designated as the Capacity Projection Plan (CPP), provides customer feedback allowing the entire mission set to be serviced.

  12. Intelligent spaces the application of pervasive ICT

    CERN Document Server

    Steventon, Alan

    2010-01-01

    This book sets out a vision of 'intelligent spaces' and describes the progress that has been made towards realisation. The context for Intelligent Spaces (or iSpaces) is the world where ICT (Information and Communication Technology) and sensor systems disappear as they become embedded into physical objects and the spaces in which we live, work and play. The ultimate vision is that this embedded technology provides us with intelligent and contextually relevant support, augmenting our lives and experience of the physical world in a benign and non-intrusive manner. The ultimate vision is challeng

  13. Multifunctional Graphene Nanocomposite Foams for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Materials combined with a small amount of nanoparticles offer new possibilities in the synthesizing of multifunctional materials. One novel nanomaterial is graphene...

  14. Space Handbook: Astronautics and its Applications

    National Research Council Canada - National Science Library

    Buchheim, Robert W

    2007-01-01

    ... in the space environment, rocket vehicles, propulsion systems, propellants, internal power sources, structures and materials, flight path and orientation control, guidance, communication, observation...

  15. MAP: an iterative experimental design methodology for the optimization of catalytic search space structure modeling.

    Science.gov (United States)

    Baumes, Laurent A

    2006-01-01

    One of the main problems in high-throughput research for materials is still the design of experiments. At early stages of discovery programs, purely exploratory methodologies coupled with fast screening tools should be employed. This should lead to opportunities to find unexpected catalytic results and identify the "groups" of catalyst outputs, providing well-defined boundaries for future optimizations. However, very few new papers deal with strategies that guide exploratory studies. Mostly, traditional designs, homogeneous covering, or simple random samplings are exploited. Typical catalytic output distributions exhibit unbalanced datasets for which an efficient learning is hardly carried out, and interesting but rare classes are usually unrecognized. Here is suggested a new iterative algorithm for the characterization of the search space structure, working independently of learning processes. It enhances recognition rates by transferring catalysts to be screened from "performance-stable" space zones to "unsteady" ones which necessitate more experiments to be well-modeled. The evaluation of new algorithm attempts through benchmarks is compulsory due to the lack of past proofs about their efficiency. The method is detailed and thoroughly tested with mathematical functions exhibiting different levels of complexity. The strategy is not only empirically evaluated, the effect or efficiency of sampling on future Machine Learning performances is also quantified. The minimum sample size required by the algorithm for being statistically discriminated from simple random sampling is investigated.

  16. Software representation methodology for agile application development: An architectural approach

    Directory of Open Access Journals (Sweden)

    Alejandro Paolo Daza Corredor

    2016-06-01

    Full Text Available The generation of Web applications represents the execution of repetitive tasks, this process involves determining information structures, the generation of different types of components and finally deployment tasks and tuning applications. In many applications of this type are coincident components generated from application to application. Current trends in software engineering as MDE, MDA or MDD pretend to automate the generation of applications based on structuring a model to apply transformations to the achievement of the application. This document intends to translate an architectural foundation that facilitates the generation of these applications relying on model-driven architecture but without ignoring the existence and relevance of existing trends mentioned in this summary architectural models.

  17. Robotic Fish Technology and Its Applications to Space Mechatronics

    OpenAIRE

    Yamamoto, Ikuo; Shin, Nobuhiro; Oka, Taishi; Matsui, Miki

    2014-01-01

    The authors have developed a shark ray robotic fish based on biomimetic approaches. The paper describes the newly developed robotic fish technology and its application to mechatronics in the space. It is found that robotic fish technology creates not only new underwater robotics, but also the next generation space mechatronics for geological survey of lunar/planets and dust cleaning in the space station.

  18. Watermark: An Application and Methodology and Application for Interactive and intelligent Decision Support for Groundwater Systems

    Science.gov (United States)

    Pierce, S. A.; Wagner, K.; Schwartz, S.; Gentle, J. N., Jr.

    2016-12-01

    Critical water resources face the effects of historic drought, increased demand, and potential contamination, the need has never been greater to develop resources to effectively communicate conservation and protection across a broad audience and geographical area. The Watermark application and macro-analysis methodology merges topical analysis of context rich corpus from policy texts with multi-attributed solution sets from integrated models of water resource and other subsystems, such as mineral, food, energy, or environmental systems to construct a scalable, robust, and reproducible approach for identifying links between policy and science knowledge bases. The Watermark application is an open-source, interactive workspace to support science-based visualization and decision making. Designed with generalization in mind, Watermark is a flexible platform that allows for data analysis and inclusion of large datasets with an interactive front-end capable of connecting with other applications as well as advanced computing resources. In addition, the Watermark analysis methodology offers functionality that streamlines communication with non-technical users for policy, education, or engagement with groups around scientific topics of societal relevance. The technology stack for Watermark was selected with the goal of creating a robust and dynamic modular codebase that can be adjusted to fit many use cases and scale to support usage loads that range between simple data display to complex scientific simulation-based modelling and analytics. The methodology uses to topical analysis and simulation-optimization to systematically analyze the policy and management realities of resource systems and explicitly connect the social and problem contexts with science-based and engineering knowledge from models. A case example demonstrates use in a complex groundwater resources management study highlighting multi-criteria spatial decision making and uncertainty comparisons.

  19. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

    1999-06-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  20. Application of space benefits to education

    Science.gov (United States)

    Dannenberg, K. K.; Ordway, F. I., III

    1972-01-01

    Information on the conducting of a teacher workshop is presented. This educational pilot project updated instruction material, used improved teaching techniques, and increased student motivation. The NASA/MSFC industrial facilities, and the displays at the Alabama Space and Rocket Center (ASRC) were key elements of the program, including a permanent exhibit, at the latter, on selected benefits accruing from the space program.

  1. Swarm Products and Space Weather Applications

    DEFF Research Database (Denmark)

    Stolle, Claudia; Olsen, Nils; Martini, Daniel

    The Swarm satellite constellation mission provides high precision magnetic field data and models and other observations that enable us to explore near Earth space for example in terms of in situ electron density and electric fields. On board GPS observables can be used for sounding ionospheric...... in aeronomy and space weather. We will emphasize results from the Swarm mission....

  2. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  3. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  4. Second Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Dollman, Thomas (Compiler)

    1988-01-01

    The proceedings of the conference are presented. This second conference on Artificial Intelligence for Space Applications brings together a diversity of scientific and engineering work and is intended to provide an opportunity for those who employ AI methods in space applications to identify common goals and to discuss issues of general interest in the AI community.

  5. Model evaluation methodology applicable to environmental assessment models

    International Nuclear Information System (INIS)

    Shaeffer, D.L.

    1979-08-01

    A model evaluation methodology is presented to provide a systematic framework within which the adequacy of environmental assessment models might be examined. The necessity for such a tool is motivated by the widespread use of models for predicting the environmental consequences of various human activities and by the reliance on these model predictions for deciding whether a particular activity requires the deployment of costly control measures. Consequently, the uncertainty associated with prediction must be established for the use of such models. The methodology presented here consists of six major tasks: model examination, algorithm examination, data evaluation, sensitivity analyses, validation studies, and code comparison. This methodology is presented in the form of a flowchart to show the logical interrelatedness of the various tasks. Emphasis has been placed on identifying those parameters which are most important in determining the predictive outputs of a model. Importance has been attached to the process of collecting quality data. A method has been developed for analyzing multiplicative chain models when the input parameters are statistically independent and lognormally distributed. Latin hypercube sampling has been offered as a promising candidate for doing sensitivity analyses. Several different ways of viewing the validity of a model have been presented. Criteria are presented for selecting models for environmental assessment purposes

  6. Meta-Analytical Studies in Transport Economics. Methodology and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brons, M.R.E.

    2006-05-18

    Vast increases in the external costs of transport in the late twentieth century have caused national and international governmental bodies to worry about the sustainability of their transport systems. In this thesis we use meta-analysis as a research method to study various topics in transport economics that are relevant for sustainable transport policymaking. Meta-analysis is a research methodology that is based on the quantitative summarisation of a body of previously documented empirical evidence. In several fields of economic, meta-analysis has become a well-accepted research tool. Despite the appeal of the meta-analytical approach, there are methodological difficulties that need to be acknowledged. We study a specific methodological problem which is common in meta-analysis in economics, viz., within-study dependence caused by multiple sampling techniques. By means of Monte Carlo analysis we investigate the effect of such dependence on the performance of various multivariate estimators. In the applied part of the thesis we use and develop meta-analytical techniques to study the empirical variation in indicators of the price sensitivity of demand for aviation transport, the price sensitivity of demand for gasoline, the efficiency of urban public transport and the valuation of the external costs of noise from rail transport. We focus on the estimation of mean values for these indicators and on the identification of the impact of conditioning factors.

  7. Fifth Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Odell, Steve L. (Compiler)

    1990-01-01

    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration.

  8. Evaluating the impact of public space investments with limited time and funds: (methodological) lessons from a Swiss case study

    Energy Technology Data Exchange (ETDEWEB)

    Barjak, F.

    2016-07-01

    The paper suggests a methodology for evaluating innovation support policies and funding in the space sector. Previous evaluations have suggested methodologies which require considerable time and resources. Our approach combines a data collection at organisational level through standardised interviews and at project level through an online survey which are relatively quick to implement and less costly. We demonstrate that valid results can be obtained with such an approach. (Author)

  9. Artificial intelligence applications in space and SDI: A survey

    Science.gov (United States)

    Fiala, Harvey E.

    1988-01-01

    The purpose of this paper is to survey existing and planned Artificial Intelligence (AI) applications to show that they are sufficiently advanced for 32 percent of all space applications and SDI (Space Defense Initiative) software to be AI-based software. To best define the needs that AI can fill in space and SDI programs, this paper enumerates primary areas of research and lists generic application areas. Current and planned NASA and military space projects in AI will be reviewed. This review will be largely in the selected area of expert systems. Finally, direct applications of AI to SDI will be treated. The conclusion covers the importance of AI to space and SDI applications, and conversely, their importance to AI.

  10. Security Testing in Agile Web Application Development - A Case Study Using the EAST Methodology

    CERN Document Server

    Erdogan, Gencer

    2010-01-01

    There is a need for improved security testing methodologies specialized for Web applications and their agile development environment. The number of web application vulnerabilities is drastically increasing, while security testing tends to be given a low priority. In this paper, we analyze and compare Agile Security Testing with two other common methodologies for Web application security testing, and then present an extension of this methodology. We present a case study showing how our Extended Agile Security Testing (EAST) performs compared to a more ad hoc approach used within an organization. Our working hypothesis is that the detection of vulnerabilities in Web applications will be significantly more efficient when using a structured security testing methodology specialized for Web applications, compared to existing ad hoc ways of performing security tests. Our results show a clear indication that our hypothesis is on the right track.

  11. Interrogating discourse: the application of Foucault's methodological discussion to specific inquiry.

    Science.gov (United States)

    Fadyl, Joanna K; Nicholls, David A; McPherson, Kathryn M

    2013-09-01

    Discourse analysis following the work of Michel Foucault has become a valuable methodology in the critical analysis of a broad range of topics relating to health. However, it can be a daunting task, in that there seems to be both a huge number of possible approaches to carrying out this type of project, and an abundance of different, often conflicting, opinions about what counts as 'Foucauldian'. This article takes the position that methodological design should be informed by ongoing discussion and applied as appropriate to a particular area of inquiry. The discussion given offers an interpretation and application of Foucault's methodological principles, integrating a reading of Foucault with applications of his work by other authors, showing how this is then applied to interrogate the practice of vocational rehabilitation. It is intended as a contribution to methodological discussion in this area, offering an interpretation of various methodological elements described by Foucault, alongside specific application of these aspects.

  12. Space Operations Learning Center Facebook Application

    Science.gov (United States)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The proposed Space Operations Learning Center (SOLC) Facebook module, initially code-named Spaceville, is intended to be an educational online game utilizing the latest social networking technology to reach a broad audience base and inspire young audiences to be interested in math, science, and engineering. Spaceville will be a Facebook application/ game with the goal of combining learning with a fun game and social environment. The mission of the game is to build a scientific outpost on the Moon or Mars and expand the colony. Game activities include collecting resources, trading resources, completing simple science experiments, and building architectures such as laboratories, habitats, greenhouses, machine shops, etc. The player is awarded with points and achievement levels. The player s ability increases as his/her points and levels increase. A player can interact with other players using multiplayer Facebook functionality. As a result, a player can discover unexpected treasures through scientific missions, engineering, and working with others. The player creates his/her own avatar with his/her selection of its unique appearance, and names the character. The player controls the avatar to perform activities such as collecting oxygen molecules or building a habitat. From observations of other successful social online games such as Farmville and Restaurant City, a common element of these games is having eye-catching and cartoonish characters, and interesting animations for all activities. This will create a fun, educational, and rewarding environment. The player needs to accumulate points in order to be awarded special items needed for advancing to higher levels. Trophies will be awarded to the player when certain goals are reached or tasks are completed. In order to acquire some special items needed for advancement in the game, the player will need to visit his/her neighboring towns to discover the items. This is the social aspect of the game that requires the

  13. Modular Actuators for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocketstar Robotics is proposing the development of a modern dual drive actuator. Rocketstar has put together numerous modern concepts for modular actuators that...

  14. Bio-manufacturing for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-duration human exploration and habitation on other planets such as Mars will require not only bringing supplies, but also the ability to use local resources to...

  15. Compact variable rate laser for space application

    Data.gov (United States)

    National Aeronautics and Space Administration — We will focus on the development and test of high reliable, radiation tolerant, compact laser for planetary mission.  The laser will be able to operate at variable...

  16. A phase-space approach to atmospheric dynamics based on observational data. Theory and applications

    International Nuclear Information System (INIS)

    Wang Risheng.

    1994-01-01

    This thesis is an attempt to develop systematically a phase-space approach to the atmospheric dynamics based on the theoretical achievement and application experiences in nonlinear time-series analysis. In particular, it is concerned with the derivation of quantities for describing the geometrical structure of the observed dynamics in phase-space (dimension estimation) and the examination of the observed atmospheric fluctuations in the light of phase-space representation. The thesis is, therefore composed of three major parts, i.e. an general survey of the theory of statistical approaches to dynamic systems, the methodology designed for the present study and specific applications with respect to dimension estimation and to a phase-space analysis of the tropical stratospheric quasi-biennial oscillation. (orig./KW)

  17. The Combined ASTER MODIS Emissivity over Land (CAMEL Part 1: Methodology and High Spectral Resolution Application

    Directory of Open Access Journals (Sweden)

    E. Eva Borbas

    2018-04-01

    Full Text Available As part of a National Aeronautics and Space Administration (NASA MEaSUREs (Making Earth System Data Records for Use in Research Environments Land Surface Temperature and Emissivity project, the Space Science and Engineering Center (UW-Madison and the NASA Jet Propulsion Laboratory (JPL developed a global monthly mean emissivity Earth System Data Record (ESDR. This new Combined ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer and MODIS (Moderate Resolution Imaging Spectroradiometer Emissivity over Land (CAMEL ESDR was produced by merging two current state-of-the-art emissivity datasets: the UW-Madison MODIS Infrared emissivity dataset (UW BF and the JPL ASTER Global Emissivity Dataset Version 4 (GEDv4. The dataset includes monthly global records of emissivity and related uncertainties at 13 hinge points between 3.6–14.3 µm, as well as principal component analysis (PCA coefficients at 5-km resolution for the years 2000 through 2016. A high spectral resolution (HSR algorithm is provided for HSR applications. This paper describes the 13 hinge-points combination methodology and the high spectral resolutions algorithm, as well as reports the current status of the dataset.

  18. Application of code scaling applicability and uncertainty methodology to the large break loss of coolant

    International Nuclear Information System (INIS)

    Young, M.Y.; Bajorek, S.M.; Nissley, M.E.

    1998-01-01

    In the late 1980s, after completion of an extensive research program, the United States Nuclear Regulatory Commission (USNRC) amended its regulations (10CFR50.46) to allow the use of realistic physical models to analyze the loss of coolant accident (LOCA) in a light water reactors. Prior to this time, the evaluation of this accident was subject to a prescriptive set of rules (appendix K of the regulations) requiring conservative models and assumptions to be applied simultaneously, leading to very pessimistic estimates of the impact of this accident on the reactor core. The rule change therefore promised to provide significant benefits to owners of power reactors, allowing them to increase output. In response to the rule change, a method called code scaling, applicability and uncertainty (CSAU) was developed to apply realistic methods, while properly taking into account data uncertainty, uncertainty in physical modeling and plant variability. The method was claimed to be structured, traceable, and practical, but was met with some criticism when first demonstrated. In 1996, the USNRC approved a methodology, based on CSAU, developed by a group led by Westinghouse. The lessons learned in this application of CSAU will be summarized. Some of the issues raised concerning the validity and completeness of the CSAU methodology will also be discussed. (orig.)

  19. Tracking and sensor data fusion methodological framework and selected applications

    CERN Document Server

    Koch, Wolfgang

    2013-01-01

    Sensor Data Fusion is the process of combining incomplete and imperfect pieces of mutually complementary sensor information in such a way that a better understanding of an underlying real-world phenomenon is achieved. Typically, this insight is either unobtainable otherwise or a fusion result exceeds what can be produced from a single sensor output in accuracy, reliability, or cost. This book provides an introduction Sensor Data Fusion, as an information technology as well as a branch of engineering science and informatics. Part I presents a coherent methodological framework, thus providing th

  20. Improved FTA methodology and application to subsea pipeline reliability design.

    Science.gov (United States)

    Lin, Jing; Yuan, Yongbo; Zhang, Mingyuan

    2014-01-01

    An innovative logic tree, Failure Expansion Tree (FET), is proposed in this paper, which improves on traditional Fault Tree Analysis (FTA). It describes a different thinking approach for risk factor identification and reliability risk assessment. By providing a more comprehensive and objective methodology, the rather subjective nature of FTA node discovery is significantly reduced and the resulting mathematical calculations for quantitative analysis are greatly simplified. Applied to the Useful Life phase of a subsea pipeline engineering project, the approach provides a more structured analysis by constructing a tree following the laws of physics and geometry. Resulting improvements are summarized in comparison table form.

  1. Intravenous dipyridamole thallium-201 SPECT imaging methodology, applications, and interpretations

    International Nuclear Information System (INIS)

    Rockett, J.F.; Magill, H.L.; Loveless, V.S.; Murray, G.L.

    1990-01-01

    Dipyridamole TI-201 imaging is an ideal alternative to exercise TI-201 scintigraphy in patients who are unwilling or unable to perform maximum exercise stress. The use of intravenous dipyridamole, alone or in combination with exercise, has not been approved for clinical practice by the Food and Drug Administration. Once approval is granted, the test will become a widely used and important component of the cardiac work-up. The indications, methodology, side effects, and utility of dipyridamole cardiac imaging in the clinical setting are discussed and a variety of examples presented.59 references

  2. Analysis Methodology for Optimal Selection of Ground Station Site in Space Missions

    Science.gov (United States)

    Nieves-Chinchilla, J.; Farjas, M.; Martínez, R.

    2013-12-01

    Optimization of ground station sites is especially important in complex missions that include several small satellites (clusters or constellations) such as the QB50 project, where one ground station would be able to track several spatial vehicles, even simultaneously. In this regard the design of the communication system has to carefully take into account the ground station site and relevant signal phenomena, depending on the frequency band. To propose the optimal location of the ground station, these aspects become even more relevant to establish a trusted communication link due to the ground segment site in urban areas and/or selection of low orbits for the space segment. In addition, updated cartography with high resolution data of the location and its surroundings help to develop recommendations in the design of its location for spatial vehicles tracking and hence to improve effectiveness. The objectives of this analysis methodology are: completion of cartographic information, modelling the obstacles that hinder communication between the ground and space segment and representation in the generated 3D scene of the degree of impairment in the signal/noise of the phenomena that interferes with communication. The integration of new technologies of geographic data capture, such as 3D Laser Scan, determine that increased optimization of the antenna elevation mask, in its AOS and LOS azimuths along the horizon visible, maximizes visibility time with spatial vehicles. Furthermore, from the three-dimensional cloud of points captured, specific information is selected and, using 3D modeling techniques, the 3D scene of the antenna location site and surroundings is generated. The resulting 3D model evidences nearby obstacles related to the cartographic conditions such as mountain formations and buildings, and any additional obstacles that interfere with the operational quality of the antenna (other antennas and electronic devices that emit or receive in the same bandwidth

  3. Thin film coatings for space electrical power system applications

    Science.gov (United States)

    Gulino, Daniel A.

    1988-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  4. Topology with applications topological spaces via near and far

    CERN Document Server

    Naimpally, Somashekhar A

    2013-01-01

    The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and...

  5. Application of Six Sigma methodology to a diagnostic imaging process.

    Science.gov (United States)

    Taner, Mehmet Tolga; Sezen, Bulent; Atwat, Kamal M

    2012-01-01

    This paper aims to apply the Six Sigma methodology to improve workflow by eliminating the causes of failure in the medical imaging department of a private Turkish hospital. Implementation of the design, measure, analyse, improve and control (DMAIC) improvement cycle, workflow chart, fishbone diagrams and Pareto charts were employed, together with rigorous data collection in the department. The identification of root causes of repeat sessions and delays was followed by failure, mode and effect analysis, hazard analysis and decision tree analysis. The most frequent causes of failure were malfunction of the RIS/PACS system and improper positioning of patients. Subsequent to extensive training of professionals, the sigma level was increased from 3.5 to 4.2. The data were collected over only four months. Six Sigma's data measurement and process improvement methodology is the impetus for health care organisations to rethink their workflow and reduce malpractice. It involves measuring, recording and reporting data on a regular basis. This enables the administration to monitor workflow continuously. The improvements in the workflow under study, made by determining the failures and potential risks associated with radiologic care, will have a positive impact on society in terms of patient safety. Having eliminated repeat examinations, the risk of being exposed to more radiation was also minimised. This paper supports the need to apply Six Sigma and present an evaluation of the process in an imaging department.

  6. Application of the adjoint function methodology for neutron fluence determination

    International Nuclear Information System (INIS)

    Haghighat, A.; Nanayakkara, B.; Livingston, J.; Mahgerefteh, M.; Luoma, J.

    1991-01-01

    In previous studies, the neutron fluence at a reactor pressure vessel has been estimated based on consolidation of transport theory calculations and experimental data obtained from in-vessel capsules and/or cavity dosimeters. Normally, a forward neutron transport calculation is performed for each fuel cycle and the neutron fluxes are integrated over the reactor operating time to estimate the neutron fluence. Such calculations are performed for a geometrical model which is composed of one-eighth (0 to 45 deg) of the reactor core and its surroundings; i.e., core barrel, thermal shield, downcomer, reactor vessel, cavity region, concrete wall, and instrumentation well. Because the model is large, transport theory calculations generally require a significant amount of computer memory and time; hence, more efficient methodologies such as the adjoint transport approach have been proposed. These studies, however, do not address the necessary sensitivity studies needed for adjoint function calculations. The adjoint methodology has been employed to estimate the activity of a cavity dosimeter and that of an in-vessel capsule. A sensitivity study has been performed on the mesh distribution used in and around the cavity dosimeter and the in-vessel capsule. Further, since a major portion of the detector response is due to the neutrons originated in the peripheral fuel assemblies, a study on the use of a smaller calculational model has been performed

  7. Methodology Declassification of Impacted Buildings. Application of Technology MARSSIM

    International Nuclear Information System (INIS)

    Vico, A.M.; Álvarez, A.; Gómez, J.M.; Quiñones, J.

    2015-01-01

    This work describes the material measurement methodology to assure the absence of contamination on impacted buildings due to processes related to the first part of the nuclear fuel cycle performed at the former Junta de Energía Nuclear, JEN, currently Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, CIEMAT. The first part of the work encloses the identification and quantification of natural isotopes and its proportion in the studied surfaces through different analytical techniques. The experimental study has involved the proper equipment selection to carry out the field measurement and the characterization of uranium isotopes and their immediate descendants. According to European Union recommendations and specifications established by CSN (Consejo de Seguridad Nuclear), Spanish Regulatory authorities, for CIEMAT, the surface activity reference level have been established, which allow to decide if a surface can be classified as a conventional surface. In order to make decisions about the compliance with the established clearance criteria, MARSSIM methodology is applied by using the results obtained from field measurements (impacted and non impacted surfaces).

  8. Methodology of developing a smartphone application for crisis research and its clinical application.

    Science.gov (United States)

    Zhang, Melvyn W B; Ho, Cyrus S H; Fang, Pan; Lu, Yanxia; Ho, Roger C M

    2014-01-01

    Recent advancement in Internet based technologies have resulted in the growth of a sub-specialized field, termed as "Infodemiology" and "Infoveillance". Infoveillence refers to the collation of infodemiology measures for the purpose of surveillance and trending. Previous research has only demonstrated the research potential of Web 2.0 medium in collation of data in crisis situation. The objectives for the current study are to demonstrate the methodology of implementation of a smartphone-based application for dissemination and collation of information during a crisis situation. The Haze Smartphone application was developed using an online application builder and using HTML5 as the core programming language. A five-phase developmental method including a) formulation of user requirements, b) system design, c) system development, d) system evaluation and finally e) system application and implementation were adopted. The smartphone application was deployed during a one-week period via a self-sponsored Facebook post and via direct dissemination of the web-links by emails. A total of 298 respondents took part in the survey within the application. Most of them were between the ages of 20- to 29-years old and had a university education. More individuals preferred the option of accessing and providing feedback to a survey on physical and psychological wellbeing via direct access to a Web-based questionnaire. In addition, the participants reported a mean number of 4.03 physical symptoms (SD 2.6). The total Impact of Event Scale-Revised (IES-R) score was 18.47 (SD 11.69), which indicated that the study population did experience psychological stress but not posttraumatic stress disorder. The perceived dangerous Pollutant Standards Index (PSI) level and the number of physical symptoms were associated with higher IES-R Score (Psmartphone application could potentially be used to acquire research data in a crisis situation. However, it is crucial for future research to further

  9. 3rd Symposium on Space Optical Instruments and Applications

    CERN Document Server

    Zhang, Guangjun

    2017-01-01

    This volume contains selected and expanded contributions presented at the 3rd Symposium on Space Optical Instruments and Applications in Beijing, China June 28 – 29, 2016. This conference series is organised by the Sino-Holland Space Optical Instruments Laboratory, a cooperation platform between China and the Netherlands. The symposium focused on key technological problems of optical instruments and their applications in a space context. It covered the latest developments, experiments and results regarding theory, instrumentation and applications in space optics. The book is split across five topical sections. The first section covers space optical remote sensing system design, the second advanced optical system design, the third remote sensor calibration and measurement. Remote sensing data processing and information extraction is then presented, followed by a final section on remote sensing data applications. .

  10. The Status of Development of Electromagnetic Pumps for Space Application

    International Nuclear Information System (INIS)

    Kwak, J. S.; Kim, K. H.; Jeong, J. S.; Kim, Hee Reyoung

    2013-01-01

    Korea lunched this research as a part of the small nuclear power generation technology development for space. In this study, investigated are the basic principle and types of electromagnetic pump and the trend of electromagnetic pump technology development in foreign nations. The survey and analysis give the understanding of the suitability and prospect of electromagnetic pumps as space application technology in Korea. The analysis on the status of the development of electromagnetic pumps was carried out for the application to space environment. It was found that USA was approaching the research and development of electromagnetic pumps for space application. Most electromagnetic pumps surveyed have the efficiency between 35% and 50% where that of AC conduction pump is less than 6%. Further study was thought to have to be given for the mechanical and material characteristics, and the applicability of electromagnetic pumps for space nuclear reactor

  11. Solar EUV irradiance for space weather applications

    Science.gov (United States)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  12. The ESA Space Weather Applications Pilot Project

    Science.gov (United States)

    Glover, A.; Hilgers, A.; Daly, E.

    Following the completion in 2001 of two parallel studies to consider the feasibility of a European Space Weather Programme ESA embarked upon a space weather pilot study with the goal of prototyping European space weather services and assessing the overall market for such within Europe This pilot project centred on a number of targeted service development activities supported by a common infrastructure and making use of only existing space weather assets Each service activity included clear participation from at least one identified service user who was requested to provide initial requirements and regular feedback during the operational phase of the service These service activities are now reaching the end of their 2-year development and testing phase and are now accessible each with an element of the service in the public domain see http www esa-spaceweathet net swenet An additional crucial element of the study was the inclusion of a comprehensive and independent analysis of the benefits both economic and strategic of embarking on a programme which would include the deployment of an infrastructure with space-based elements The results of this study will be reported together with their implication for future coordinated European activities in this field

  13. Methodological Note: Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Hengameh Marzbani

    2016-04-01

    Full Text Available Neurofeedback is a kind of biofeedback, which teaches self-control of brain functions to subjects by measuring brain waves and providing a feedback signal. Neurofeedback usually provides the audio and or video feedback. Positive or negative feedback is produced for desirable or undesirable brain activities, respectively. In this review, we provided clinical and technical information about the following issues: (1 Various neurofeedback treatment protocols i.e. alpha, beta, alpha/theta, delta, gamma, and theta; (2 Different EEG electrode placements i.e. standard recording channels in the frontal, temporal, central, and occipital lobes; (3 Electrode montages (unipolar, bipolar; (4 Types of neurofeedback i.e. frequency, power, slow cortical potential, functional magnetic resonance imaging, and so on; (5 Clinical applications of neurofeedback i.e. treatment of attention deficit hyperactivity disorder, anxiety, depression, epilepsy, insomnia, drug addiction, schizophrenia, learning disabilities, dyslexia and dyscalculia, autistic spectrum disorders and so on as well as other applications such as pain management, and the improvement of musical and athletic performance; and (6 Neurofeedback softwares. To date, many studies have been conducted on the neurofeedback therapy and its effectiveness on the treatment ofmany diseases. Neurofeedback, like other treatments, has its own pros and cons. Although it  is a non-invasive procedure, its validity has been questioned in terms of conclusive scientific evidence. For example, it is expensive, time-consuming and its benefits are not long-lasting. Also, it might take months to show the desired improvements. Nevertheless, neurofeedback is known as a complementary and alternative treatment of many brain dysfunctions. However, current research does not support conclusive results about its efficacy.

  14. Applications of the TSUNAMI sensitivity and uncertainty analysis methodology

    International Nuclear Information System (INIS)

    Rearden, Bradley T.; Hopper, Calvin M.; Elam, Karla R.; Goluoglu, Sedat; Parks, Cecil V.

    2003-01-01

    The TSUNAMI sensitivity and uncertainty analysis tools under development for the SCALE code system have recently been applied in four criticality safety studies. TSUNAMI is used to identify applicable benchmark experiments for criticality code validation, assist in the design of new critical experiments for a particular need, reevaluate previously computed computational biases, and assess the validation coverage and propose a penalty for noncoverage for a specific application. (author)

  15. Case study application of the IAEA safeguards assessment methodology to a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Swartz, J.; McDaniel, T.

    1981-01-01

    Science Applications, Inc. has prepared a case study illustrating the application of an assessment methodology to an international system for safeguarding mixed oxide (MOX) fuel fabrication facilities. This study is the second in a series of case studies which support an effort by the International Atomic Energy Agency (IAEA) and an international Consultant Group to develop a methodology for assessing the effectiveness of IAEA safeguards. 3 refs

  16. Ground Robotic Hand Applications for the Space Program study (GRASP)

    Science.gov (United States)

    Grissom, William A.; Rafla, Nader I. (Editor)

    1992-01-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  17. Optoelectronic devices product assurance guideline for space application

    Science.gov (United States)

    Bensoussan, A.; Vanzi, M.

    2017-11-01

    New opportunities are emerging for the implementation of hardware sub-systems based on OptoElectronic Devices (OED) for space application. Since the end of this decade the main players for space systems namely designers and users including Industries, Agencies, Manufacturers and Laboratories are strongly demanding of adequate strategies to qualify and validate new optoelectronics products and sub-systems [1]. The long term space application mission will require to address either inter-satellite link (free space communication, positioning systems, tracking) or intra-satellite connectivity/flexibility/reconfigurability or high volume of data transfer between equipment installed into payload.

  18. Space Applications of Mass Spectrometry. Chapter 31

    Science.gov (United States)

    Hoffman, John H.; Griffin, Timothy P.; Limero, Thomas; Arkin, C. Richard

    2010-01-01

    Mass spectrometers have been involved in essentially all aspects of space exploration. This chapter outlines some of these many uses. Mass spectrometers have not only helped to expand our knowledge and understanding of the world and solar system around us, they have helped to put man safely in space and expand our frontier. Mass spectrometry continues to prove to be a very reliable, robust, and flexible analytical instrument, ensuring that its use will continue to help aid our investigation of the universe and this small planet that we call home.

  19. Application of advanced technology to space automation

    Science.gov (United States)

    Schappell, R. T.; Polhemus, J. T.; Lowrie, J. W.; Hughes, C. A.; Stephens, J. R.; Chang, C. Y.

    1979-01-01

    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits.

  20. Thulium heat sources for space power applications

    International Nuclear Information System (INIS)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems

  1. Applications of MEMS for Space Exploration

    Science.gov (United States)

    Tang, William C.

    1998-03-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. Micro Electro Mechanical Systems (MEMS) is one of the key enabling technologies to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  2. Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models

    Science.gov (United States)

    Coppolino, Robert N.

    2018-01-01

    Responses to challenges associated with verification and validation (V&V) of Space Launch System (SLS) structural dynamics models are presented in this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA), which has gained acceptance by various principals in the NASA community, defines efficient and accurate FEM modal sensitivity models that are useful in test-analysis correlation and reconciliation and parametric uncertainty studies. (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976), developed to remedy difficulties encountered with the widely used Classical Guyan Reduction (CGR) method, are presented. MGR and HR are particularly relevant for estimation of "body dominant" target modes of shell-type SLS assemblies that have numerous "body", "breathing" and local component constituents. Realities associated with configuration features and "imperfections" cause "body" and "breathing" mode characteristics to mix resulting in a lack of clarity in the understanding and correlation of FEM- and test-derived modal data. (3) Mode Consolidation (MC) is a newly introduced procedure designed to effectively "de-feature" FEM and experimental modes of detailed structural shell assemblies for unambiguous estimation of "body" dominant target modes. Finally, (4) Experimental Mode Verification (EMV) is a procedure that addresses ambiguities associated with experimental modal analysis of complex structural systems. Specifically, EMV directly separates well-defined modal data from spurious and poorly excited modal data employing newly introduced graphical and coherence metrics.

  3. Optimal Corridor Selection for a Road Space Management Strategy: Methodology and Tool

    Directory of Open Access Journals (Sweden)

    Sushant Sharma

    2017-01-01

    Full Text Available Nationwide, there is a growing realization that there are valuable benefits to using the existing roadway facilities to their full potential rather than expanding capacity in a traditional way. Currently, state DOTs are looking for cost-effective transportation solutions to mitigate the growing congestion and increasing funding gaps. Innovative road space management strategies like narrowing of multiple lanes (three or more and shoulder width to add a lane enhance the utilization while eliminating the costs associated with constructing new lanes. Although this strategy (among many generally leads to better mobility, identifying optimal corridors is a challenge and may affect the benefits. Further, there is a likelihood that added capacity may provide localized benefits, at the expense of system level performance measures (travel time and crashes because of the relocation of traffic operational bottlenecks. This paper develops a novel transportation programming and investment decision method to identify optimal corridors for adding capacity in the network by leveraging lane widths. The methodology explicitly takes into consideration the system level benefits and safety. The programming compares two conflicting objectives of system travel time and safety benefits to find an optimal solution.

  4. Application of a Methodology to calculate logistical cost

    Directory of Open Access Journals (Sweden)

    Joaquín Mock-Díaz

    2017-12-01

    Full Text Available At present time, the managerial environment constantly becomes more aggressive and unstable. For that reason, companies are forced to improve on a regular basis their management, to increase their economic efficiency and their effectiveness and have a better performance. Within this context, the objective of this research is to apply a methodology to determine logistical costs, in a service−providing company, which allows assessing the behavior of such costs during the year 2016. A financial assessment performed to the logistical activities proved the existence of a high cost of opportunity, element mainly dependent on inventory rotation. For the purposes of this study, several scientific methods were used; the historical−logical method, to analyze the historical evolution of logistics; and the analysis−synthesis method to gather the elements and main ideas that characterize it.

  5. Radiation monitoring methodologies and their applications at BARC site

    International Nuclear Information System (INIS)

    Divkar, J.K.; Chatterjee, M.K.; Patra, R.P; Morali, S.; Singh, Rajvir

    2016-01-01

    Radiation monitoring methodology can be planned for various objectives during normal as well as emergency situations. During radiological emergency, radiation monitoring data provides useful information required for management of the abnormal situation. In order to assess the possible consequences accurately and to implement adequate measure, the emergency management authorities should have a well-prepared monitoring strategy in readiness. Fixed monitoring method is useful to analyze the behavior of nuclear plant site and to develop holistic model for it mobile monitoring is useful for quick impact assessment and will be the backbone of emergency response, particularly in case of non availability of fixed monitoring system caused due to natural disaster like floods, earthquake and tsunami

  6. Tutorials on emerging methodologies and applications in operations research

    CERN Document Server

    2005-01-01

    Operations Research emerged as a quantitative approach to problem-solving in World War II. Its founders, who were physicists, mathematicians, and engineers, quickly found peace-time uses for this new field. Moreover, we can say that Operations Research (OR) was born in the same incubator as computer science, and through the years, it has spawned many new disciplines, including systems engineering, health care management, and transportation science. Fundamentally, Operations Research crosses discipline domains to seek solutions on a range of problems and benefits diverse disciplines from finance to bioengineering. Many disciplines routinely use OR methods. Many scientific researchers, engineers, and others will find the methodological presentations in this book useful and helpful in their problem-solving efforts. OR’s strengths are modeling, analysis, and algorithm design. It provides a quantitative foundation for a broad spectrum of problems, from economics to medicine, from environmental control to sports,...

  7. Fourth Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Odell, Stephen L. (Compiler); Denton, Judith S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming.

  8. Potential refractory alloy requirements for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.

    1984-01-01

    In reviewing design requirements for refractory alloys for space nuclear applications, several key points are identified. First, the successful utilization of refractory alloys is considered an enabling requirement for the successful deployment of high efficiency, lightweight, and small space nuclear systems. Second, the recapture of refractory alloy nuclear technology developed in the 1960s and early 1970s appears to be a pacing activity in the successful utilization of refractory alloys. Third, the successful application of refractory alloys for space nuclear applications will present a significant challenge to both the materials and the systems design communities

  9. Super-dense teleportation for space applications

    Science.gov (United States)

    Zeitler, Chris; Graham, Trent M.; Chapman, Joseph; Bernstein, Herbert; Kwiat, Paul G.

    2016-03-01

    Establishing a quantum communication network would provide advantages in areas such as security and information processing. Such a network would require the implementation of quantum teleportation between remote parties. However, for photonic "qudits" of dimension greater than two, this teleportation always fails due to the inability to carry out the required quantum Bell-state measurement. A quantum communication protocol called Superdense Teleportation (SDT) can allow the reconstruction of a state without the usual 2-photon Bell-state measurements, enabling the protocol to succeed deterministically even for high dimensional qudits. This technique restricts the class of states transferred to equimodular states, a type of superposition state where each term can differ from the others in phase but not in amplitude; this restricted space of transmitted states allows the transfer to occur deterministically. We report on our implementation of SDT using photon pairs that are entangled in both polarization and temporal mode. After encoding the phases of the desired equimodular state on the signal photon, we perform a complete tomography on the idler photon to verify that we properly prepared the chosen state. Beyond our tabletop demonstration, we are working towards an implementation between a space platform in low earth orbit and a ground telescope, to demonstrate the feasibility of space-based quantum communication. We will discuss the various challenges presented by moving the experiment out of the laboratory, and our proposed solutions to make Superdense Teleportation realizable in the space setting.

  10. Telerobotic technology for nuclear and space applications

    International Nuclear Information System (INIS)

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs

  11. Application of TRIZ Methodology in Diffusion Welding System Optimization

    Science.gov (United States)

    Ravinder Reddy, N.; Satyanarayana, V. V.; Prashanthi, M.; Suguna, N.

    2017-12-01

    Welding is tremendously used in metal joining processes in the manufacturing process. In recent years, diffusion welding method has significantly increased the quality of a weld. Nevertheless, diffusion welding has some extent short research and application progress. Therefore, diffusion welding has a lack of relevant information, concerned with the joining of thick and thin materials with or without interlayers, on welding design such as fixture, parameters selection and integrated design. This article intends to combine innovative methods in the application of diffusion welding design. This will help to decrease trial and error or failure risks in the welding process being guided by the theory of inventive problem solving (TRIZ) design method. This article hopes to provide welding design personnel with innovative design ideas under research and for practical application.

  12. Understanding the Primary School Students' Van Hiele Levels of Geometry Thinking in Learning Shapes and Spaces: A Q-Methodology

    Science.gov (United States)

    Hock, Tan Tong; Tarmizi, Rohani Ahmad; Yunus, Aida Suraya Md.; Ayub, Ahmad Fauzi

    2015-01-01

    This study was conducted using a new hybrid method of research which combined qualitative and quantitative designs to investigate the viewpoints of primary school students' conceptual understanding in learning geometry from the aspect of shapes and spaces according to van Hiele theory. Q-methodology is used in this research to find out what…

  13. Trademarks in the Linguistic Landscape: Methodological and Theoretical Challenges in Qualifying Brand Names in the Public Space

    Science.gov (United States)

    Tufi, Stefania; Blackwood, Robert

    2010-01-01

    In the last few decades, investigations into the linguistic landscape (LL) have sought to analyse written language practices as they are observable in public space. Whilst the LL analysis of language choice in given contexts has opened a host of possibilities for scientific enquiry in the field, the methodologies employed in the collection and…

  14. Methodological aspect of research of the process of socialization in media-cultural space of information society

    Directory of Open Access Journals (Sweden)

    N. Y. Hirlina

    2016-03-01

    Full Text Available Integrated within the social and philosophical discourse interdisciplinary methodology, based on the classic philosophical methodology for the analysis of socio-cultural phenomena enables a holistic understanding of the studied phenomenon. From a methodological point of view it is important to determine the social and philosophical understanding of the impact medіa cultural space of personality in conditions of dynamically changing socio-cultural environment. important social and philosophical methodological guideline should be considered on a thesis constant presence in the media culture of human space as being due to the fact that man is a social being, and the information society without media culture as its attribute exists. Philosophical «core» study of the spiritual culture of youth is humanism in its broadest sense, that is, understanding of the studied phenomenon primarily as a multi-dimensional culturing of human values. Submission materialistic determinant factors medіa cultural spiritual space is only possible under the dominance of humanistic values. With all the variety to understanding the spiritual dimension of the relationship of the individual with the socio-cultural environment common dominant philosophical idea of guidelines is the recognition of the spiritual and cultural autonomy rights. Globalization and its associated civilization and processes are seen as foreign in relation to social rights, while the internal spiritual content is cultural processes. Anthropological oriented cultural space of socialization based on interpersonal cultural interaction that produces unique and distinctive personality.

  15. Applications of a Constrained Mechanics Methodology in Economics

    Science.gov (United States)

    Janova, Jitka

    2011-01-01

    This paper presents instructive interdisciplinary applications of constrained mechanics calculus in economics on a level appropriate for undergraduate physics education. The aim of the paper is (i) to meet the demand for illustrative examples suitable for presenting the background of the highly expanding research field of econophysics even at the…

  16. Validation of nuclear models used in space radiation shielding applications

    International Nuclear Information System (INIS)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-01

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  17. A non-linear reduced order methodology applicable to boiling water reactor stability analysis

    International Nuclear Information System (INIS)

    Prill, Dennis Paul

    2013-01-01

    Thermal-hydraulic coupling between power, flow rate and density, intensified by neutronics feedback are the main drivers of boiling water reactor (BWR) stability behavior. High-power low-flow conditions in connection with unfavorable power distributions can lead the BWR system into unstable regions where power oscillations can be triggered. This important threat to operational safety requires careful analysis for proper understanding. Analyzing an exhaustive parameter space of the non-linear BWR system becomes feasible with methodologies based on reduced order models (ROMs), saving computational cost and improving the physical understanding. Presently within reactor dynamics, no general and automatic prediction of high-dimensional ROMs based on detailed BWR models are available. In this thesis a systematic self-contained model order reduction (MOR) technique is derived which is applicable for several classes of dynamical problems, and in particular to BWRs of any degree of details. Expert knowledge can be given by operational, experimental or numerical transient data and is transfered into an optimal basis function representation. The methodology is mostly automated and provides the framework for the reduction of various different systems of any level of complexity. Only little effort is necessary to attain a reduced version within this self-written code which is based on coupling of sophisticated commercial software. The methodology reduces a complex system in a grid-free manner to a small system able to capture even non-linear dynamics. It is based on an optimal choice of basis functions given by the so-called proper orthogonal decomposition (POD). Required steps to achieve reliable and numerical stable ROM are given by a distinct calibration road-map. In validation and verification steps, a wide spectrum of representative test examples is systematically studied regarding a later BWR application. The first example is non-linear and has a dispersive character

  18. Gram staining apparatus for space station applications

    Science.gov (United States)

    Molina, T. C.; Brown, H. D.; Irbe, R. M.; Pierson, D. L.

    1990-01-01

    A self-contained, portable Gram staining apparatus (GSA) has been developed for use in the microgravity environment on board the Space Station Freedom. Accuracy and reproducibility of this apparatus compared with the conventional Gram staining method were evaluated by using gram-negative and gram-positive controls and different species of bacteria grown in pure cultures. A subsequent study was designed to assess the performance of the GSA with actual specimens. A set of 60 human and environmental specimens was evaluated with the GSA and the conventional Gram staining procedure. Data obtained from these studies indicated that the GSA will provide the Gram staining capability needed for the microgravity environment of space.

  19. Do Space Requirement Applicable in Private Preschools?

    OpenAIRE

    Salleh Naziah Muhamad; Agus Salim Nuzaihan Aras; Kamaruzzaman Syahrul Nizam; Mahyuddin Norhayati

    2016-01-01

    Working or studying in a comfortable environment enhances not only well-being, but also satisfaction and therefore increase the productivity and learning. The numbers of private preschool in Malaysia boost every year. Frequently they operate in premises that have been fully refurbished. This has invited the questions on the building capability and space condition to provide a good environment to the children during the learning activities. Most of the building was refurbished to enhance it ap...

  20. Applications of neuroscience in criminal law: legal and methodological issues.

    Science.gov (United States)

    Meixner, John B

    2015-01-01

    The use of neuroscience in criminal law applications is an increasingly discussed topic among legal and psychological scholars. Over the past 5 years, several prominent federal criminal cases have referenced neuroscience studies and made admissibility determinations regarding neuroscience evidence. Despite this growth, the field is exceptionally young, and no one knows for sure how significant of a contribution neuroscience will make to criminal law. This article focuses on three major subfields: (1) neuroscience-based credibility assessment, which seeks to detect lies or knowledge associated with a crime; (2) application of neuroscience to aid in assessments of brain capacity for culpability, especially among adolescents; and (3) neuroscience-based prediction of future recidivism. The article briefly reviews these fields as applied to criminal law and makes recommendations for future research, calling for the increased use of individual-level data and increased realism in laboratory studies.

  1. New approaches in intelligent control techniques, methodologies and applications

    CERN Document Server

    Kountchev, Roumen

    2016-01-01

    This volume introduces new approaches in intelligent control area from both the viewpoints of theory and application. It consists of eleven contributions by prominent authors from all over the world and an introductory chapter. This volume is strongly connected to another volume entitled "New Approaches in Intelligent Image Analysis" (Eds. Roumen Kountchev and Kazumi Nakamatsu). The chapters of this volume are self-contained and include summary, conclusion and future works. Some of the chapters introduce specific case studies of various intelligent control systems and others focus on intelligent theory based control techniques with applications. A remarkable specificity of this volume is that three chapters are dealing with intelligent control based on paraconsistent logics.

  2. Third Conference on Artificial Intelligence for Space Applications, part 1

    Science.gov (United States)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  3. High Performance Computing Software Applications for Space Situational Awareness

    Science.gov (United States)

    Giuliano, C.; Schumacher, P.; Matson, C.; Chun, F.; Duncan, B.; Borelli, K.; Desonia, R.; Gusciora, G.; Roe, K.

    The High Performance Computing Software Applications Institute for Space Situational Awareness (HSAI-SSA) has completed its first full year of applications development. The emphasis of our work in this first year was in improving space surveillance sensor models and image enhancement software. These applications are the Space Surveillance Network Analysis Model (SSNAM), the Air Force Space Fence simulation (SimFence), and physically constrained iterative de-convolution (PCID) image enhancement software tool. Specifically, we have demonstrated order of magnitude speed-up in those codes running on the latest Cray XD-1 Linux supercomputer (Hoku) at the Maui High Performance Computing Center. The software applications improvements that HSAI-SSA has made, has had significant impact to the warfighter and has fundamentally changed the role of high performance computing in SSA.

  4. Analogue and Mixed-Signal Integrated Circuits for Space Applications

    CERN Document Server

    2014-01-01

    The purpose of AMICSA 2014 (organised in collaboration of ESA and CERN) is to provide an international forum for the presentation and discussion of recent advances in analogue and mixed-signal VLSI design techniques and technologies for space applications.

  5. A Brief overview of neutron activation analyses methodology and applications

    International Nuclear Information System (INIS)

    Ali, M.A.

    2000-01-01

    The primary objective of this talk is to present our new facility for Neutron Activation Analysis to the scientific and industrial societies and show its possibilities. Therefore my talk will handle the following main items: An overview of neutron activation analysis, The special interest of fast mono-energetic neutrons, The NAA method and its sensitivities, The Recent scientific and industrial applications using NAA, and o An illustrating example measured by using our facility is presented What is NAA? It is a sensitive analytical technique useful for performing both qualitative and quantitative multi-element analyses in samples. Worldwide application of NAA is so widespread; it is estimated that approximately several 10,000 samples undergo analysis each year from almost every conceivable field of scientific or technical interest. Why NAA? For many elements and applications, NAA: Offers sensitivities that are sometimes superior to those attainable by other methods, on the order of nano-gram level, It is accurate and reliable, NAA is generally recognized as the r eferee method o f choice when new procedures are being developed or when other methods yield results that do not agree. However, the activation analysis at En=14 MeV is limited by a few factors: Low value of flux, low cross-sections of threshold reactions, o Short irradiation time due to finite target life, Interfering reactions and gamma ray spectral interference

  6. Designing Interaction Spaces for Rich Internet Applications with UML

    DEFF Research Database (Denmark)

    Dolog, Peter; Stage, Jan

    2007-01-01

    In this paper, we propose a new method for designing rich internet applications. The design process uses results from an object-oriented analysis and employs interaction spaces as the basic abstraction mechanism. State diagrams are employed as refinements of interaction spaces and task models...

  7. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview

    Science.gov (United States)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.

  8. Applicability evaluation on the conservative metal-water reaction(MWR) model implemented into the SPACE code

    International Nuclear Information System (INIS)

    Lee, Suk Ho; You, Sung Chang; Kim, Han Gon

    2011-01-01

    The SBLOCA (Small Break Loss-of-Coolant Accident) evaluation methodology for the APR1400 (Advanced Power Reactor 1400) is under development using the SPACE code. The goal of the development of this methodology is to set up a conservative evaluation methodology in accordance with Appendix K of 10CFR50 by the end of 2012. In order to develop the Appendix K version of the SPACE code, the code modification is considered through implementation of the code on the required evaluation models. For the conservative models required in the SPACE code, the metal-water reaction (MWR) model, the critical flow model, the Critical Heat Flux (CHF) model and the post-CHF model must be implemented in the code. At present, the integration of the model to generate the Appendix K version of SPACE is in its preliminary stage. Among them, the conservative MWR model and its code applicability are introduced in this paper

  9. Closed-Loop Optimal Control Implementations for Space Applications

    Science.gov (United States)

    2016-12-01

    with standard linear algebra techniques if is converted to a diagonal square matrix by multiplying by the identity matrix, I , as was done in (1.134...OPTIMAL CONTROL IMPLEMENTATIONS FOR SPACE APPLICATIONS by Colin S. Monk December 2016 Thesis Advisor: Mark Karpenko Second Reader: I. M...COVERED Master’s thesis, Jan-Dec 2016 4. TITLE AND SUBTITLE CLOSED-LOOP OPTIMAL CONTROL IMPLEMENTATIONS FOR SPACE APPLICATIONS 5. FUNDING NUMBERS

  10. Advances in Artificial Neural Networks – Methodological Development and Application

    Directory of Open Access Journals (Sweden)

    Yanbo Huang

    2009-08-01

    Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological

  11. Frequency stabilized lasers for space applications

    Science.gov (United States)

    Lieber, Mike; Adkins, Mike; Pierce, Robert; Warden, Robert; Wallace, Cynthia; Weimer, Carl

    2014-09-01

    metrology, spectroscopy, atomic clocks and geodesy. This technology will be a key enabler to several proposed NASA science missions. Although lasers such as Q-switched Nd-YAG are now commonly used in space, other types of lasers - especially those with narrow linewidth - are still few in number and more development is required to advance their technology readiness. In this paper we discuss a reconfigurable laser frequency stabilization testbed, and end-to-end modeling to support system development. Two important features enabling testbed flexibility are that the controller, signal processing and interfaces are hosted on a field programmable gate array (FPGA) which has spacequalified equivalent parts, and secondly, fiber optic relay of the beam paths. Given the nonlinear behavior of lasers, FPGA implementation is a key system reliability aspect allowing on-orbit retuning of the control system and initial frequency acquisition. The testbed features a dual sensor system, one based upon a high finesse resonator cavity which provides relative stability through Pound-Drever-Hall (PDH) modulation and secondly an absolute frequency reference by dither locking to an acetylene gas cell (GC). To provide for differences between ground and space implementation, we have developed an end-to-end Simulink/ Matlab®-based control system model of the testbed components including the important noise sources. This model is in the process of being correlated to the testbed data which then can be used for trade studies, and estimation of space-based performance and sensitivities. A 1530 nm wavelength semiconductor laser is used for this initial work.

  12. RF power harvesting: a review on designing methodologies and applications

    Science.gov (United States)

    Tran, Le-Giang; Cha, Hyouk-Kyu; Park, Woo-Tae

    2017-12-01

    Wireless power transmission was conceptualized nearly a century ago. Certain achievements made to date have made power harvesting a reality, capable of providing alternative sources of energy. This review provides a summ ary of radio frequency (RF) power harvesting technologies in order to serve as a guide for the design of RF energy harvesting units. Since energy harvesting circuits are designed to operate with relatively small voltages and currents, they rely on state-of-the-art electrical technology for obtaining high efficiency. Thus, comprehensive analysis and discussions of various designs and their tradeoffs are included. Finally, recent applications of RF power harvesting are outlined.

  13. Minimal cut-set methodology for artificial intelligence applications

    International Nuclear Information System (INIS)

    Weisbin, C.R.; de Saussure, G.; Barhen, J.; Oblow, E.M.; White, J.C.

    1984-01-01

    This paper reviews minimal cut-set theory and illustrates its application with an example. The minimal cut-set approach uses disjunctive normal form in Boolean algebra and various Boolean operators to simplify very complicated tree structures composed of AND/OR gates. The simplification process is automated and performed off-line using existing computer codes to implement the Boolean reduction on the finite, but large tree structure. With this approach, on-line expert diagnostic systems whose response time is critical, could determine directly whether a goal is achievable by comparing the actual system state to a concisely stored set of preprocessed critical state elements

  14. Reference Management Methodologies for Large Structural Models at Kennedy Space Center

    Science.gov (United States)

    Jones, Corey; Bingham, Ryan; Schmidt, Rick

    2011-01-01

    There have been many challenges associated with modeling some of NASA KSC's largest structures. Given the size of the welded structures here at KSC, it was critically important to properly organize model struc.ture and carefully manage references. Additionally, because of the amount of hardware to be installed on these structures, it was very important to have a means to coordinate between different design teams and organizations, check for interferences, produce consistent drawings, and allow for simple release processes. Facing these challenges, the modeling team developed a unique reference management methodology and model fidelity methodology. This presentation will describe the techniques and methodologies that were developed for these projects. The attendees will learn about KSC's reference management and model fidelity methodologies for large structures. The attendees will understand the goals of these methodologies. The attendees will appreciate the advantages of developing a reference management methodology.

  15. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    Science.gov (United States)

    Raju, Ivatury S.; Elliot, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this report, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from aircraft and other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  16. Integrated modeling and analysis methodology for precision pointing applications

    Science.gov (United States)

    Gutierrez, Homero L.

    2002-07-01

    Space-based optical systems that perform tasks such as laser communications, Earth imaging, and astronomical observations require precise line-of-sight (LOS) pointing. A general approach is described for integrated modeling and analysis of these types of systems within the MATLAB/Simulink environment. The approach can be applied during all stages of program development, from early conceptual design studies to hardware implementation phases. The main objective is to predict the dynamic pointing performance subject to anticipated disturbances and noise sources. Secondary objectives include assessing the control stability, levying subsystem requirements, supporting pointing error budgets, and performing trade studies. The integrated model resides in Simulink, and several MATLAB graphical user interfaces (GUI"s) allow the user to configure the model, select analysis options, run analyses, and process the results. A convenient parameter naming and storage scheme, as well as model conditioning and reduction tools and run-time enhancements, are incorporated into the framework. This enables the proposed architecture to accommodate models of realistic complexity.

  17. Energy minimization in medical image analysis: Methodologies and applications.

    Science.gov (United States)

    Zhao, Feng; Xie, Xianghua

    2016-02-01

    Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd.

  18. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  19. Evaluation of spaced education as a learning methodology for in-service training of health workers in Ethiopia

    Directory of Open Access Journals (Sweden)

    Kate Tulenko

    2013-09-01

    Full Text Available Participation in in-service training can be a challenge for health workers, especially those stationed in remote areas. Spaced education is an innovative learning methodology that can be delivered electronically by Internet or mobile smartphone. This pilot study, which followed a convenience sample of 37 Ethiopian nationals enrolled in a spaced education course over a six-month period, attempted to determine the acceptability and effectiveness of the methodology in a low-resource context. The course content was co-developed by Ethiopian and international nutrition experts and focused on the recently revised Ethiopian Federal Ministry of Health (FMOH guidelines on the feeding of infants of HIV-positive mothers. Conducted by the US Agency for International Development (USAID-funded CapacityPlus project, led by IntraHealth International, the study suggests that the Internet-based spaced education methodology is acceptable and effective for the acquisition of knowledge in a low-resource context for course participants with a clinical or public health background and moderately reliable Internet access. More research is needed to test the feasibility, acceptability, and effectiveness of the methodology among a wider population of health workers in developing countries, and particularly among government and volunteer health workers in rural and remote settings.

  20. Latent Trait Theory Applications to Test Item Bias Methodology. Research Memorandum No. 1.

    Science.gov (United States)

    Osterlind, Steven J.; Martois, John S.

    This study discusses latent trait theory applications to test item bias methodology. A real data set is used in describing the rationale and application of the Rasch probabilistic model item calibrations across various ethnic group populations. A high school graduation proficiency test covering reading comprehension, writing mechanics, and…

  1. GMSK Modulation for Deep Space Applications

    Science.gov (United States)

    Shambayati, Shervin; Lee, Dennis K.

    2012-01-01

    Due to scarcity of spectrum at 8.42 GHz deep space Xband allocation, many deep space missions are now considering the use of higher order modulation schemes instead of the traditional binary phase shift keying (BPSK). One such scheme is pre-coded Gaussian minimum shift keying (GMSK). GMSK is an excellent candidate for deep space missions. GMSK is a constant envelope, bandwidth efficien modulation whose frame error rate (FER) performance with perfect carrier tracking and proper receiver structure is nearly identical to that of BPSK. There are several issues that need to be addressed with GMSK however. Specificall, we are interested in the combined effects of spectrum limitations and receiver structure on the coded performance of the X-band link using GMSK. The receivers that are typically used for GMSK demodulations are variations on offset quadrature phase shift keying (OQPSK) receivers. In this paper we consider three receivers: the standard DSN OQPSK receiver, DSN OQPSK receiver with filte ed input, and an optimum OQPSK receiver with filte ed input. For the DSN OQPSK receiver we show experimental results with (8920, 1/2), (8920, 1/3) and (8920, 1/6) turbo codes in terms of their error rate performance. We also consider the tracking performance of this receiver as a function of data rate, channel code and the carrier loop signal-to-noise ratio (SNR). For the other two receivers we derive theoretical results that will show that for a given loop bandwidth, a receiver structure, and a channel code, there is a lower data rate limit on the GMSK below which a higher SNR than what is required to achieve the required FER on the link is needed. These limits stem from the minimum loop signal-to-noise ratio requirements on the receivers for achieving lock. As a result of this, for a given channel code and a given FER, there could be a gap between the maximum data rate that BPSK can support without violating the spectrum limits and the minimum data rate that GMSK can support

  2. Critical spaces for quasilinear parabolic evolution equations and applications

    Science.gov (United States)

    Prüss, Jan; Simonett, Gieri; Wilke, Mathias

    2018-02-01

    We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.

  3. Acoustic levitation and manipulation for space applications

    Science.gov (United States)

    Wang, T. G.

    1979-01-01

    A wide spectrum of experiments to be performed in space in a microgravity environment require levitation and manipulation of liquid or molten samples. A novel acoustic method has been developed at JPL for controlling liquid samples without physical contacts. This method utilizes the static pressure generated by three orthogonal acoustic standing waves excited within an enclosure. Furthermore, this method will allow the sample to be rotated and/or oscillated by modifying the phase angles and/or the amplitude of the acoustic field. This technique has been proven both in our laboratory and in a microgravity environment provided by KC-135 flights. Samples placed within our chamber driven at (1,0,0), (0,1,0), and (0,0,1), modes were indeed levitated, rotated, and oscillated.

  4. Multimegawatt disk generator system for space applications

    International Nuclear Information System (INIS)

    Solbes, A.; Iwata, H.

    1988-01-01

    The conceptual design of a 100 megawatt - 500 seconds disk MHD generator system suitable as a burst power source for a space based neutral particle beam (NPB) is presented. The system features two disk generators operated in the magnetic field produced by a single circular superconducting magnet. Gelled reactants are used as the energy source. The oxidizer gel includes the alkali seed. The high heat flux areas of the power train are water cooled. Heat is rejected to a hydrogen stream which is also used for cooling of the exit section. The hydrogen is also used to mitigate the effects of the exhaust products of combustion on the platform. The two disk channels are operated in parallel. A dc to dc converter consolidates the channel's output into a single 100 kilovolt dc output

  5. Solar Stirling for deep space applications

    International Nuclear Information System (INIS)

    Mason, Lee S.

    2000-01-01

    A study was performed to quantify the performance of solar thermal power systems for deep space planetary missions. The study incorporated projected advances in solar concentrator and energy conversion technologies. These technologies included inflatable structures, lightweight primary concentrators, high efficiency secondary concentrators, and high efficiency Stirling convertors. Analyses were performed to determine the mass and deployed area of multihundred watt solar thermal power systems for missions out to 40 astronomical units. Emphasis was given to system optimization, parametric sensitivity analyses, and concentrator configuration comparisons. The results indicated that solar thermal power systems are a competitive alternative to radioisotope systems out to 10 astronomical units without the cost or safety implications associated with nuclear sources

  6. Rotating film radiators for space applications

    International Nuclear Information System (INIS)

    Koenig, D.R.

    1985-01-01

    A new class of light-weight radiators is described. This radiator consists of a thin rotating envelope that contains the working fluid. The envelope can have many shapes including redundant, foldable configurations. The working fluid, which may be a liquid or a condensable vapor, impinges on the inside surface of the radiator and is driven as a film to the periphery by centrifugal force. Heat is radiated to space by the outer surface of the envelope. Pumps located on the periphery then return the liquid to the power converter. For a 100-MW radiator operating at 800 K, specific mass approx.0.1 kg/kW and mass density approx.2 kg/m 2 may be achievable. 7 refs., 4 figs., 4 tabs

  7. Application of SDI technology in space propulsion

    International Nuclear Information System (INIS)

    Klein, A.J.

    1992-01-01

    Numerous technologies developed by the DOD within the SDI program are now available for adaptation to the requirements of commercial spacecraft; SDI has accordingly organized the Technology Applications Information System data base, which contains nearly 2000 nonproprietary abstracts on SDI technology. Attention is here given to such illustrative systems as hydrogen arcjets, ammonia arcjets, ion engines, SSTO launch vehicles, gel propellants, lateral thrusters, pulsed electrothermal thrusters, laser-powered rockets, and nuclear propulsion

  8. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  9. Seismic hazard analysis. Application of methodology, results, and sensitivity studies

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1981-10-01

    As part of the Site Specific Spectra Project, this report seeks to identify the sources of and minimize uncertainty in estimates of seismic hazards in the Eastern United States. Findings are being used by the Nuclear Regulatory Commission to develop a synthesis among various methods that can be used in evaluating seismic hazard at the various plants in the Eastern United States. In this volume, one of a five-volume series, we discuss the application of the probabilistic approach using expert opinion. The seismic hazard is developed at nine sites in the Central and Northeastern United States, and both individual experts' and synthesis results are obtained. We also discuss and evaluate the ground motion models used to develop the seismic hazard at the various sites, analyzing extensive sensitivity studies to determine the important parameters and the significance of uncertainty in them. Comparisons are made between probabilistic and real spectra for a number of Eastern earthquakes. The uncertainty in the real spectra is examined as a function of the key earthquake source parameters. In our opinion, the single most important conclusion of this study is that the use of expert opinion to supplement the sparse data available on Eastern United States earthquakes is a viable approach for determining estimated seismic hazard in this region of the country. (author)

  10. Application of Six Sigma methodology to a cataract surgery unit.

    Science.gov (United States)

    Taner, Mehmet Tolga

    2013-01-01

    The article's aim is to focus on the application of Six Sigma to minimise intraoperative and post-operative complications rates in a Turkish public hospital cataract surgery unit. Implementing define-measure-analyse-improve and control (DMAIC) involves process mapping, fishbone diagrams and rigorous data-collection. Failure mode and effect analysis (FMEA), pareto diagrams, control charts and process capability analysis are applied to redress cataract surgery failure root causes. Inefficient skills of assistant surgeons and technicians, low quality of IOLs used, wrong IOL placement, unsystematic sterilisation of surgery rooms and devices, and the unprioritising network system are found to be the critical drivers of intraoperative-operative and post-operative complications. Sigma level was increased from 2.60 to 3.75 subsequent to extensive training of assistant surgeons, ophthalmologists and technicians, better quality IOLs, systematic sterilisation and air-filtering, and the implementation of a more sophisticated network system. This article shows that Six Sigma measurement and process improvement can become the impetus for cataract unit staff to rethink their process and reduce malpractices. Measuring, recording and reporting data regularly helps them to continuously monitor their overall process and deliver safer treatments. This is the first Six Sigma ophthalmology study in Turkey.

  11. Student satisfaction and loyalty in Denmark: Application of EPSI methodology.

    Science.gov (United States)

    Shahsavar, Tina; Sudzina, Frantisek

    2017-01-01

    Monitoring and managing customers' satisfaction are key features to benefit from today's competitive environment. In higher education context, only a few studies are available on satisfaction and loyalty of the main customers who are the students, which signifies the need to investigate the field more thoroughly. The aim of this research is to measure the strength of determinants of students' satisfaction and the importance of antecedents in students' satisfaction and loyalty in Denmark. Our research model is the modification of European Performance Satisfaction Index (EPSI), which takes the university's image direct effects on students' expectations into account from students' perspective. The structural equation model of student satisfaction and loyalty has been evaluated using partial least square path modelling. Our findings confirm that the EPSI framework is applicable on student satisfaction and loyalty among Danish universities. We show that all the relationships among variables of the research model are significant except the relationship between quality of software and students' loyalty. Results further verify the significance of antecedents in students' satisfaction and loyalty at Danish universities; the university image and student satisfaction are the antecedents of student loyalty with a significant direct effect, while perceived value, quality of hardware, quality of software, expectations, and university image are antecedents of student satisfaction. Eventually, our findings may be of an inspiration to maintain and improve students' experiences during their study at the university. Dedicating resources to identified important factors from students' perception enable universities to attract more students, make them highly satisfied and loyal.

  12. Student satisfaction and loyalty in Denmark: Application of EPSI methodology

    Science.gov (United States)

    Shahsavar, Tina

    2017-01-01

    Monitoring and managing customers’ satisfaction are key features to benefit from today’s competitive environment. In higher education context, only a few studies are available on satisfaction and loyalty of the main customers who are the students, which signifies the need to investigate the field more thoroughly. The aim of this research is to measure the strength of determinants of students’ satisfaction and the importance of antecedents in students’ satisfaction and loyalty in Denmark. Our research model is the modification of European Performance Satisfaction Index (EPSI), which takes the university’s image direct effects on students’ expectations into account from students’ perspective. The structural equation model of student satisfaction and loyalty has been evaluated using partial least square path modelling. Our findings confirm that the EPSI framework is applicable on student satisfaction and loyalty among Danish universities. We show that all the relationships among variables of the research model are significant except the relationship between quality of software and students’ loyalty. Results further verify the significance of antecedents in students’ satisfaction and loyalty at Danish universities; the university image and student satisfaction are the antecedents of student loyalty with a significant direct effect, while perceived value, quality of hardware, quality of software, expectations, and university image are antecedents of student satisfaction. Eventually, our findings may be of an inspiration to maintain and improve students’ experiences during their study at the university. Dedicating resources to identified important factors from students’ perception enable universities to attract more students, make them highly satisfied and loyal. PMID:29240801

  13. Strategic environmental assessment methodologies--applications within the energy sector

    International Nuclear Information System (INIS)

    Finnveden, Goeran; Nilsson, Maans; Johansson, Jessica; Persson, Aasa; Moberg, Aasa; Carlsson, Tomas

    2003-01-01

    Strategic Environmental Assessment (SEA) is a procedural tool and within the framework of SEA, several different types of analytical tools can be used in the assessment. Several analytical tools are presented and their relation to SEA is discussed including methods for future studies, Life Cycle Assessment, Risk Assessment, Economic Valuation and Multi-Attribute Approaches. A framework for the integration of some analytical tools in the SEA process is suggested. It is noted that the available analytical tools primarily cover some types of environmental impacts related to emissions of pollutants. Tools covering impacts on ecosystems and landscapes are more limited. The relation between application and choice of analytical tools is discussed. It is suggested that SEAs used to support a choice between different alternatives require more quantitative methods, whereas SEAs used to identify critical aspects and suggest mitigation strategies can suffice with more qualitative methods. The possible and desired degree of site-specificity in the assessment can also influence the choice of methods. It is also suggested that values and world views can be of importance for judging whether different types of tools and results are meaningful and useful. Since values and world views differ between different stakeholders, consultation and understanding are important to ensure credibility and relevance

  14. Flux Measurements in Trees: Methodological Approach and Application to Vineyards

    Directory of Open Access Journals (Sweden)

    Francesca De Lorenzi

    2008-03-01

    Full Text Available In this paper a review of two sap flow methods for measuring the transpiration in vineyards is presented. The objective of this work is to examine the potential of detecting transpiration in trees in response to environmental stresses, particularly the high concentration of ozone (O3 in troposphere. The methods described are the stem heat balance and the thermal dissipation probe; advantages and disadvantages of each method are detailed. Applications of both techniques are shown, in two large commercial vineyards in Southern Italy (Apulia and Sicily, submitted to semi-arid climate. Sap flow techniques allow to measure transpiration at plant scale and an upscaling procedure is necessary to calculate the transpiration at the whole stand level. Here a general technique to link the value of transpiration at plant level to the canopy value is presented, based on experimental relationships between transpiration and biometric characteristics of the trees. In both vineyards transpiration measured by sap flow methods compares well with evapotranspiration measured by micrometeorological techniques at canopy scale. Moreover soil evaporation component has been quantified. In conclusion, comments about the suitability of the sap flow methods for studying the interactions between trees and ozone are given.

  15. The 1992 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1992-01-01

    The purpose of this conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers fall into the following areas: planning and scheduling, control, fault monitoring/diagnosis and recovery, information management, tools, neural networks, and miscellaneous applications.

  16. GO-FLOW methodology. Basic concept and integrated analysis framework for its applications

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2010-01-01

    GO-FLOW methodology is a success oriented system analysis technique, and is capable of evaluating a large system with complex operational sequences. Recently an integrated analysis framework of the GO-FLOW has been developed for the safety evaluation of elevator systems by the Ministry of Land, Infrastructure, Transport and Tourism, Japanese Government. This paper describes (a) an Overview of the GO-FLOW methodology, (b) Procedure of treating a phased mission problem, (c) Common cause failure analysis, (d) Uncertainty analysis, and (e) Integrated analysis framework. The GO-FLOW methodology is a valuable and useful tool for system reliability analysis and has a wide range of applications. (author)

  17. Performance specification methodology: introduction and application to displays

    Science.gov (United States)

    Hopper, Darrel G.

    1998-09-01

    Acquisition reform is based on the notion that DoD must rely on the commercial marketplace insofar as possible rather than solely looking inward to a military marketplace to meet its needs. This reform forces a fundamental change in the way DoD conducts business, including a heavy reliance on private sector models of change. The key to more reliance on the commercial marketplace is the performance specifications (PS). This paper introduces some PS concepts and a PS classification principal to help bring some structure to the analysis of risk (cost, schedule, capability) in weapons system development and the management of opportunities for affordable ownership (maintain/increase capability via technology insertion, reduce cost) in this new paradigm. The DoD shift toward commercial components is nowhere better exemplified than in displays. Displays are the quintessential dual-use technology and are used herein to exemplify these PS concepts and principal. The advent of flat panel displays as a successful technology is setting off an epochal shift in cockpits and other military applications. Displays are installed in every DoD weapon system, and are, thus, representative of a range of technologies where issues and concerns throughout industry and government have been raised regarding the increased DoD reliance on the commercial marketplace. Performance specifications require metrics: the overall metrics of 'information-thrust' with units of Mb/s and 'specific info- thrust' with units of Mb/s/kg are introduced to analyze value of a display to the warfighter and affordability to the taxpayer.

  18. Safety Framework for Nuclear Power Source Applications in Outer Space

    International Nuclear Information System (INIS)

    2009-01-01

    Nuclear power sources (NPS) for use in outer space have been developed and used in space applications where unique mission requirements and constraints on electrical power and thermal management precluded the use of non-nuclear power sources. Such missions have included interplanetary missions to the outer limits of the Solar System, for which solar panels were not suitable as a source of electrical power because of the long duration of these missions at great distances from the Sun. According to current knowledge and capabilities, space NPS are the only viable energy option to power some space missions and significantly enhance others. Several ongoing and foreseeable missions would not be possible without the use of space NPS. Past, present and foreseeable space NPS applications include radioisotope power systems (for example, radioisotope thermoelectric generators and radioisotope heater units) and nuclear reactor systems for power and propulsion. The presence of radioactive materials or nuclear fuels in space NPS and their consequent potential for harm to people and the environment in Earth's biosphere due to an accident require that safety should always be an inherent part of the design and application of space NPS. NPS applications in outer space have unique safety considerations compared with terrestrial applications. Unlike many terrestrial nuclear applications, space applications tend to be used infrequently and their requirements can vary significantly depending upon the specific mission. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. For some applications, space NPS must operate autonomously at great distances from Earth in harsh environments. Potential accident conditions resulting from launch failures and inadvertent re-entry could expose NPS to extreme physical conditions. These and other unique safety considerations for the use of

  19. Applications of Space-Time Duality

    Science.gov (United States)

    Plansinis, Brent W.

    The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms

  20. Radio Frequency Plasma Applications for Space Propulsion

    International Nuclear Information System (INIS)

    Baity, F.W. Jr.; Barber, G.C.; Carter, M.D.; Chang-Diaz, F.R.; Goulding, R.H.; Ilin, A.V.; Jaeger, E.F.; Sparks, D.O.; Squire, J.P.

    1999-01-01

    Recent developments in solid-state radio frequency (RF) power technologies allow for the practical consideration of RF heated plasmas for space propulsion. These technologies permit the use of any electrical power source, de-couple the power and propellant sources, and allow for the efficient use of both the propellant mass and power. Efficient use of the propellant is obtained by expelling the rocket exhaust at the highest possible velocity, which can be orders of magnitude higher than those achieved in chemical rockets. Handling the hot plasma exhaust requires the use of magnetic nozzles, and the basic physics of ion detachment from the magnetic eld is discussed. The plasma can be generated by RF using helicon waves to heat electrons. Further direct heating of the ions helps to reduce the line radiation losses, and the magnetic geometry is tailored to allow ion cyclotron resonance heating. RF eld and ion trajectory calculations are presented to give a reasonably self-consistent picture of the ion acceleration process

  1. Multimegawatt disk generator system for space applications

    International Nuclear Information System (INIS)

    Solbes, H.; Iwata, H.

    1988-01-01

    The conceptual design of a 100 megawatt - 500 seconds disk MHD generator system suitable as a burst power source for a space based neutral particle beam (NPB) is presented. The system features two disk generators operated in the magnetic field produced by a single circular superconducting magnet. Gelled reactants are used as the energy source. The oxidizer gel includes the alkali seed. The high heat flux areas of the power train are water cooled. Heat is rejected to a hydrogen stream which is also used for cooling of the exit section. The hydrogen is also used to mitigate the effects of the exhaust products of combustion on the platform. The two disk channels are operated in parallel. A dc to dc converter consolidates the channel's output into a single 100 kilovolt dc output. Critical development issues relevant to the development of such power systems are identified and discussed. A R and D plan aimed at establishing the technical feasibility of the proposed system is also presented

  2. Advanced lightweight optics development for space applications

    International Nuclear Information System (INIS)

    Bilbro, James W.

    1998-01-01

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed

  3. Precision segmented reflectors for space applications

    Science.gov (United States)

    Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.

    1990-08-01

    A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.

  4. Cryogenic characterization of LEDs for space application

    Science.gov (United States)

    Carron, Jérôme; Philippon, Anne; How, Lip Sun; Delbergue, Audrey; Hassanzadeh, Sahar; Cillierre, David; Danto, Pascale; Boutillier, Mathieu

    2017-09-01

    In the frame of EUCLID project, the Calibration Unit of the VIS (VISible Imager) instrument must provide an accurate and well characterized light source for in-flight instrument calibration without noise when it is switched off. The Calibration Unit consists of a set of LEDs emitting at various wavelengths in the visible towards an integrating sphere. The sphere's output provides a uniform illumination over the entire focal plane. Nine references of LEDs from different manufacturers were selected, screened and qualified under cryogenic conditions. Testing this large quantity of samples led to the implementation of automated testing equipment with complete in-situ monitoring of optoelectronic parameters as well as temperature and vacuum values. All the electrical and optical parameters of the LED have been monitored and recorded at ambient and cryogenic temperatures. These results have been compiled in order to show the total deviation of the LED electrical and electro-optical properties in the whole mission and to select the best suitable LED references for the mission. This qualification has demonstrated the robustness of COTS LEDs to operate at low cryogenic temperatures and in the space environment. Then 6 wavelengths were selected and submitted to an EMC sensitivity test at room and cold temperature by counting the number of photons when LEDs drivers are OFF. Characterizations were conducted in the full frequency spectrum in order to implement solutions at system level to suppress the emission of photons when the LED drivers are OFF. LEDs impedance was also characterized at room temperature and cold temperature.

  5. Space Reflector Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    J. Nash; V. Munne; LL Stimely

    2006-01-31

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al{sub 2}O{sub 3}), and magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of {approx}5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of {approx}10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES&H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be

  6. Space Reflector Materials for Prometheus Application

    International Nuclear Information System (INIS)

    J. Nash; V. Munne; LL Stimely

    2006-01-01

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al 2 O 3 ), and magnesium aluminate spinel (MgAl 2 O 4 ) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of ∼5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of ∼10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES and H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be-bearing materials require

  7. New technology innovations with potential for space applications

    Science.gov (United States)

    Krishen, Kumar

    2008-07-01

    Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.

  8. Exploration Challenges: Transferring Ground Repair Techniques to Space Flight Application

    Science.gov (United States)

    McLemore, Carole A.; Kennedy, James P.; Rose, Frederick A.; Evans, Brian W.

    2007-01-01

    Fulfilling NASA's Vision for Space Exploration will demand an extended presence in space at distances from our home planet that exceed our current experience in space logistics and maintenance. The ability to perform repairs in lieu of the customary Orbital Replacement Unit (ORU) process where a faulty part is replaced will be elevated from contingency to routine to sustain operations. The use and cost effectiveness of field repairs for ground based operations in industry and the military have advanced with the development of technology in new materials, new repair techniques and new equipment. The unique environments, accessibility constraints and Extra Vehicular Activity (EVA) issues of space operations will require extensive assessment and evolution of these technologies to provide an equivalent and expected level of assurance to mission success. Challenges include the necessity of changes in design philosophy and policy, extremes in thermal cycling, disruptive forces (such as static charge and wind entrainment) on developed methods for control of materials, dramatically increased volatility of chemicals for cleaning and other compounds due to extremely low pressures, the limits imposed on dexterity and maneuverability by current EVA equipment and practices, and the necessity of unique verification methodology. This paper describes these challenges in and discusses the effects on the established ground techniques for repair. The paper also describes the leading repair methodology candidates and their beneficial attributes for resolving these issues with the evolution of technology.

  9. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  10. Applied Virtual Reality Research and Applications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Hale, Joseph P.

    1995-01-01

    A Virtual Reality (VR) applications program has been under development at NASA/Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before this technology can be utilized with confidence in these applications, it must be validated for each particular class of application. That is, the precision and reliability with which it maps onto real settings and scenarios, representative of a class, must be calculated and assessed. The approach of the MSFC VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems. Specific validation studies for selected classes of applications have been completed or are currently underway. These include macro-ergonomic "control-room class" design analysis, Spacelab stowage reconfiguration training, a full-body micro-gravity functional reach simulator, and a gross anatomy teaching simulator. This paper describes the MSFC VR Applications Program and the validation studies.

  11. Space Shielding Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    R. Lewis

    2006-01-20

    mitigate the risks in LiH development for a project with an aggressive schedule like JIMO, some background or advanced development effort for LiH should be considered for future space reactor projects.

  12. Application of the integrated safety assessment methodology to the protection of electric systems

    International Nuclear Information System (INIS)

    Hortal, Javier; Izquierdo, Jose M.

    1996-01-01

    The generalization of classical techniques for risk assessment incorporating dynamic effects is the main objective of the Integrated Safety Assessment Methodology, as practical implementation of Protection Theory. Transient stability, contingency analysis and protection setpoint verification in electric power systems are particularly appropriate domains of application, since the coupling of reliability and dynamic analysis in the protection assessment process is being increasingly demanded. Suitable techniques for dynamic simulation of sequences of switching events in power systems are derived from the use of quasi-linear equation solution algorithms. The application of the methodology, step by step, is illustrated in a simple but representative example

  13. Space Telecommunications Radio System (STRS) Application Repository Design and Analysis

    Science.gov (United States)

    Handler, Louis M.

    2013-01-01

    The Space Telecommunications Radio System (STRS) Application Repository Design and Analysis document describes the STRS application repository for software-defined radio (SDR) applications intended to be compliant to the STRS Architecture Standard. The document provides information about the submission of artifacts to the STRS application repository, to provide information to the potential users of that information, and for the systems engineer to understand the requirements, concepts, and approach to the STRS application repository. The STRS application repository is intended to capture knowledge, documents, and other artifacts for each waveform application or other application outside of its project so that when the project ends, the knowledge is retained. The document describes the transmission of technology from mission to mission capturing lessons learned that are used for continuous improvement across projects and supporting NASA Procedural Requirements (NPRs) for performing software engineering projects and NASAs release process.

  14. SP-100 nuclear space power systems with application to space commercialization

    International Nuclear Information System (INIS)

    Smith, J.M.

    1988-01-01

    The purpose of this paper is to familiarize the Space Commercialization Community with the status and characteristics of the SP-100 space nuclear power system. The program is a joint undertaking by the Department of Defense, the Department of Energy and NASA. The goal of the program is to develop, validate, and demonstrate the technology for space nuclear power systems in the range of 10 to 1000 kWe electric for use in the future civilian and military space missions. Also discussed are mission applications which are enhanced and/or enabled by SP-100 technology and how this technology compares to that of more familiar solar power systems. The mission applications include earth orbiting platforms and lunar/Mars surface power

  15. Go-flow: a reliability analysis methodology applicable to piping system

    International Nuclear Information System (INIS)

    Matsuoka, T.; Kobayashi, M.

    1985-01-01

    Since the completion of the Reactor Safety Study, the use of probabilistic risk assessment technique has been becoming more widespread in the nuclear community. Several analytical methods are used for the reliability analysis of nuclear power plants. The GO methodology is one of these methods. Using the GO methodology, the authors performed a reliability analysis of the emergency decay heat removal system of the nuclear ship Mutsu, in order to examine its applicability to piping systems. By this analysis, the authors have found out some disadvantages of the GO methodology. In the GO methodology, the signal is on-to-off or off-to-on signal, therefore the GO finds out the time point at which the state of a system changes, and can not treat a system which state changes as off-on-off. Several computer runs are required to obtain the time dependent failure probability of a system. In order to overcome these disadvantages, the authors propose a new analytical methodology: GO-FLOW. In GO-FLOW, the modeling method (chart) and the calculation procedure are similar to those in the GO methodology, but the meaning of signal and time point, and the definitions of operators are essentially different. In the paper, the GO-FLOW methodology is explained and two examples of the analysis by GO-FLOW are given

  16. Space Technology and Applications International Forum -1999. Proceedings

    International Nuclear Information System (INIS)

    El-Genk, M.S.

    1999-01-01

    These proceedings represent papers presented at the 1999 Space Technology and Applications International Forum (STAIF-99). This is a large conference in terms of the number of hosted technical sessions and the technical papers presented. This year's theme, ''Opportunities and Challenges for the New Millenium,'' covered a broad spectrum of topics in space science and technology that spans the range from basic research, such as thermophysics in microgravity and breakthrough propulsion physics, to the most recent advances in space power and propulsion, space exploration and commercialization, next generation launch systems, and the international effort to deploy and assemble the international space station. STAIF-99 was co-sponsored by the United States Department of Energy. The two-volume proceedings includes 253 articles, out of which 28 have been abstracted for the Energy,Science and Technology database

  17. Application of new design methodologies to very high-temperature metallic components of the HTTR

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Ohkubo, Minoru; Baba, Osamu

    1991-01-01

    The high-temperature piping and helium-to-helium intermediate heat exchanger of the High-Temperature Engineering Test Reactor (HTTR) are designed to be operating at very high temperatures of about 900deg C among the class 1 components of the HTTR. At such a high temperature, mechanical strength of heat-resistant metallic materials is very low and thermal expansions of structural members are large. Therefore, innovative design methodologies are needed to reduce both mechanical and thermal loads acting on these components. To the HTTR, the design methodologies which can separate the heat-resistant function from the pressure-retaining functions and allow them to expand freely are applied to reduce pressure and thermal loads. Since these design methodologies need to verify their applicability, the Japan Atomic Energy Research Institute (JAERI) has been performing many design and research works on their verifications. The details of the design methodologies and their verifications are given in this paper. (orig.)

  18. Classical-physics applications for Finsler b space

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Joshua [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Lehnert, Ralf, E-mail: ralehner@indiana.edu [Indiana University Center for Spacetime Symmetries, Bloomington, IN 47405 (United States)

    2015-06-30

    The classical propagation of certain Lorentz-violating fermions is known to be governed by geodesics of a four-dimensional pseudo-Finsler b space parametrized by a prescribed background covector field. This work identifies systems in classical physics that are governed by the three-dimensional version of Finsler b space and constructs a geodesic for a sample non-constant choice for the background covector. The existence of these classical analogues demonstrates that Finsler b spaces possess applications in conventional physics, which may yield insight into the propagation of SME fermions on curved manifolds.

  19. Application of Mobile-ip to Space and Aeronautical Networks

    Science.gov (United States)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  20. [Application of spaced retrieval training on patients with dementia].

    Science.gov (United States)

    Wu, Hua-Shan; Lin, Li-Chan

    2012-10-01

    Dementia causes semantic and episodic memory impairments that limit patients' activities of daily living (ADL) and increase caregiver burden. Spaced retrieval training uses repetitive retrieval to strengthen cognitive and motor skills intuitively in mild / moderate dementia patients who retain preserved implicit / non-declarative memory. This article describes and discusses the operative mechanism, influencing variables, and practical applications of spaced retrieval training. We hope this article increases professional understanding and application of this training approach to improve dementia patient ADL and improve quality of life for both caregivers and patients.

  1. Status of the organic Rankine cycle for space applications

    Science.gov (United States)

    Bland, T. J.; Lacey, P. D.; Sorensen, G. L.

    The Organic Rankine Cycle (ORC) has been under continuous development and evaluation since the 1960s for both terrestrial and space power applications. Recent activities (Bland et al, 1987) have focused primarily on the Space Station's solar dynamic power system and Dynamic Isotope Power Systems (DIPS) applications. This paper addresses ORC-DIPS system level trade studies conducted during the past year and a half. Two companion papers (Bland and Pearson) present more detailed data on specific ORC-DIPS technology issues and testing conducted during the same period.

  2. An Application of the Methodology for Assessment of the Sustainability of Air Transport System

    Science.gov (United States)

    Janic, Milan

    2003-01-01

    An assessment and operationalization of the concept of sustainable air transport system is recognized as an important but complex research, operational and policy task. In the scope of the academic efforts to properly address the problem, this paper aims to assess the sustainability of air transport system. It particular, the paper describes the methodology for assessment of sustainability and its potential application. The methodology consists of the indicator systems, which relate to the air transport system operational, economic, social and environmental dimension of performance. The particular indicator systems are relevant for the particular actors such users (air travellers), air transport operators, aerospace manufacturers, local communities, governmental authorities at different levels (local, national, international), international air transport associations, pressure groups and public. In the scope of application of the methodology, the specific cases are selected to estimate the particular indicators, and thus to assess the system sustainability under given conditions.

  3. Space-Time Data fusion for Remote Sensing Applications

    Science.gov (United States)

    Braverman, Amy; Nguyen, H.; Cressie, N.

    2011-01-01

    NASA has been collecting massive amounts of remote sensing data about Earth's systems for more than a decade. Missions are selected to be complementary in quantities measured, retrieval techniques, and sampling characteristics, so these datasets are highly synergistic. To fully exploit this, a rigorous methodology for combining data with heterogeneous sampling characteristics is required. For scientific purposes, the methodology must also provide quantitative measures of uncertainty that propagate input-data uncertainty appropriately. We view this as a statistical inference problem. The true but notdirectly- observed quantities form a vector-valued field continuous in space and time. Our goal is to infer those true values or some function of them, and provide to uncertainty quantification for those inferences. We use a spatiotemporal statistical model that relates the unobserved quantities of interest at point-level to the spatially aggregated, observed data. We describe and illustrate our method using CO2 data from two NASA data sets.

  4. Optimization Of Methodological Support Of Application Tax Benefits In Regions: Practice Of Perm Region

    Directory of Open Access Journals (Sweden)

    Alexandr Ivanovich Tatarkin

    2015-03-01

    Full Text Available In the article, the problem of the methodological process support of regional tax benefits is reviewed. The method of tax benefits assessment, accepted in Perm Region, was chosen as an analysis object because the relatively long period of application of benefits has allowed to build enough statistics base. In the article, the reliability of budget, economic, investment, and social effectiveness assessments of application benefits, based on the Method, is investigated. The suggestions of its perfection are formulated

  5. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications

    Science.gov (United States)

    Lee, Jay; Wu, Fangji; Zhao, Wenyu; Ghaffari, Masoud; Liao, Linxia; Siegel, David

    2014-01-01

    Much research has been conducted in prognostics and health management (PHM), an emerging field in mechanical engineering that is gaining interest from both academia and industry. Most of these efforts have been in the area of machinery PHM, resulting in the development of many algorithms for this particular application. The majority of these algorithms concentrate on applications involving common rotary machinery components, such as bearings and gears. Knowledge of this prior work is a necessity for any future research efforts to be conducted; however, there has not been a comprehensive overview that details previous and on-going efforts in PHM. In addition, a systematic method for developing and deploying a PHM system has yet to be established. Such a method would enable rapid customization and integration of PHM systems for diverse applications. To address these gaps, this paper provides a comprehensive review of the PHM field, followed by an introduction of a systematic PHM design methodology, 5S methodology, for converting data to prognostics information. This methodology includes procedures for identifying critical components, as well as tools for selecting the most appropriate algorithms for specific applications. Visualization tools are presented for displaying prognostics information in an appropriate fashion for quick and accurate decision making. Industrial case studies are included in this paper to show how this methodology can help in the design of an effective PHM system.

  6. Application of Resource Description Framework to Personalise Learning: Systematic Review and Methodology

    Science.gov (United States)

    Jevsikova, Tatjana; Berniukevicius, Andrius; Kurilovas, Eugenijus

    2017-01-01

    The paper is aimed to present a methodology of learning personalisation based on applying Resource Description Framework (RDF) standard model. Research results are two-fold: first, the results of systematic literature review on Linked Data, RDF "subject-predicate-object" triples, and Web Ontology Language (OWL) application in education…

  7. Radiological safety methodology in radioactive tracer applications for hydrodynamics and environmental studies

    International Nuclear Information System (INIS)

    Suarez, R.; Badano, A.; Dellepere, A.; Artucio, G.; Bertolotti, A.

    1995-01-01

    The use of radioactive tracer techniques as control sewage disposal contamination in Montevideo Estuarine and Carrasco beach has been studied for the Nuclear Technology National Direction. Hydrodynamic models simulation has been introduced as work methodology. As well as radiological safety and radioactive material applications in the environmental studies has been evaluated mainly in the conclusions and recommendations in this report. maps

  8. The Expanded Application of Forensic Science and Law Enforcement Methodologies in Army Counterintelligence

    Science.gov (United States)

    2017-09-01

    enforcement (LE) capabilities during the investigation of criminal offenses has become commonplace in the U.S. criminal justice system . These... system , and FORENSICS AND LAW ENFORCEMENT IN ARMY COUNTERINTELLIGENCE 22 would likely need to go to their local Army CID or military police...THE EXPANDED APPLICATION OF FORENSIC SCIENCE AND LAW ENFORCEMENT METHODOLOGIES IN ARMY COUNTERINTELLIGENCE A RESEARCH PROJECT

  9. Chemical Gas Sensors for Aeronautic and Space Applications 2

    Science.gov (United States)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  10. Chemical Gas Sensors for Aeronautics and Space Applications III

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; hide

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  11. CHARACTERIZATION OF SMALL AND MEDIUM ENTERPRISES (SMES OF POMERANIAN REGION IN SIX SIGMA METHODOLOGY APPLICATION

    Directory of Open Access Journals (Sweden)

    2011-12-01

    Full Text Available Background: Six Sigma is related to product’s characteristics and parameters of actions, needed to obtain these products. On the other hand, it is a multi-step, cyclic process aimed at the improvements leading to global standard, closed to the perfection. There is a growing interest in Six Sigma methodology among smaller organizations but there are still too little publications presented such events in the sector of small and medium enterprises, especially based on good empirical results. It was already noticed at the phase of the preliminary researches, that only small part of companies from this sector in Pomerian region use elements of this methodology. Methods: The companies were divided into groups by the type of their activities as well as the employment size. The questionnaires were sent to 150 randomly selected organizations in two steps and were addressed to senior managers. The questionnaire contained the questions about basic information about a company, the level of the knowledge and the practical application of Six Sigma methodology, opinions about improvements of processes occurring in the company, opinions about trainings in Six Sigma methodology. Results: The following hypotheses were proposed, statistically verified and received the answer: The lack of the adequate knowledge of Six Sigma methodology in SMEs limits the possibility to effectively monitor and improve processes - accepted. The use of statistical tools of Six Sigma methodology requires the broad action to popularize this knowledge among national SMEs - accepted. The level of the awareness of the importance as well as practical use of Six Sigma methodology in manufacturing SMEs is higher than in SMEs providing services - rejected, the level is equal. The level of the knowledge and the use of Six Sigma methodology in medium manufacturing companies is significantly higher than in small manufacturing companies - accepted. The level of the knowledge and the application

  12. NASA space applications of high-temperature superconductors

    Science.gov (United States)

    Heinen, Vernon O.; Sokoloski, Martin M.; Aron, Paul R.; Bhasin, Kul B.

    1992-01-01

    The application of superconducting technology in space has been limited by the requirement of cooling to near liquid helium temperatures. The only means of attaining these temperatures has been with cryogenic fluids which severely limits mission lifetime. The development of materials with superconducting transition temperatures (T sub c) above 77 K has made superconducting technology more attractive and feasible for employment in aerospace systems. Potential applications of high-temperature superconducting technology in cryocoolers and remote sensing, communications, and power systems are discussed.

  13. The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1991-01-01

    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications.

  14. A radiation hardened digital fluxgate magnetometer for space applications

    Science.gov (United States)

    Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.

    2013-09-01

    Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.

  15. Optimization of application execution in the GridSpace environment

    NARCIS (Netherlands)

    Malawski, M.; Kocot, J.; Ryszka, I.; Bubak, M.; Wieczorek, M.; Fahringer, T.

    2008-01-01

    This paper describes an approach to optimization of execution of applications in the GridSpace environment. In this environment operations are invoked on special objects which reside on Grid resources what requires a specific approach to optimization of execution. This approach is implemented in the

  16. Distributed expert systems for ground and space applications

    Science.gov (United States)

    Buckley, Brian; Wheatcraft, Louis

    1992-01-01

    Presented here is the Spacecraft Command Language (SCL) concept of the unification of ground and space operations using a distributed approach. SCL is a hybrid software environment borrowing from expert system technology, fifth generation language development, and multitasking operating system environments. Examples of potential uses for the system and current distributed applications of SCL are given.

  17. Overview of NASA Power Technologies for Space and Aero Applications

    Science.gov (United States)

    Beach, Raymond F.

    2014-01-01

    To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both the space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development.

  18. China national space remote sensing infrastructure and its application

    Science.gov (United States)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  19. Qualification Tests of Micro-camera Modules for Space Applications

    Science.gov (United States)

    Kimura, Shinichi; Miyasaka, Akira

    Visual capability is very important for space-based activities, for which small, low-cost space cameras are desired. Although cameras for terrestrial applications are continually being improved, little progress has been made on cameras used in space, which must be extremely robust to withstand harsh environments. This study focuses on commercial off-the-shelf (COTS) CMOS digital cameras because they are very small and are based on an established mass-market technology. Radiation and ultrahigh-vacuum tests were conducted on a small COTS camera that weighs less than 100 mg (including optics). This paper presents the results of the qualification tests for COTS cameras and for a small, low-cost COTS-based space camera.

  20. Autogenic Feedback Training Applications for Man in Space

    Science.gov (United States)

    Cowings, Patricia S.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Finding an effective treatment for the motion sickness-like symptoms that occur in space has become a high priority for NASA. This paper reviews the back-round research and procedures of an experiment designed to prevent space motion sickness in shuttle crewmembers. The preventive method used, Autogenic - Feedback Training (AFT) involves training subjects to control voluntarily several of their own physiological responses to environmental stressors. AFT has been used reliably to increase tolerance to motion sickness during around based tests in over 300 men and women under a variety of conditions that induce motion sickness, and preliminary evidence from space suggests that AFT may be an effective treatment for space motion sickness as well. Other applications of AFT described include; (1) a potential treatment for post flight orthostatic intolerance, a serious biomedical problem resulting from long duration exposure to micro-g and (2) improving pilot performance during emergency flying conditions.

  1. Environmental and sanitary evaluation of electro-nuclear sites: methodological research and application to prospective scenarios

    International Nuclear Information System (INIS)

    2004-12-01

    In the framework of the radioactive wastes disposal of the law of 1991, an exchange forum constituted by ANDRA, CEA, COGEMA, EdF, Framatome-ANP and IRSN implemented an environmental and sanitary evaluation of the different methods of radioactive wastes management. This report presents the six studies scenarios, the proposed methodology, the application to the six scenarios and the analysis of the results which showed the efficiency of the different recycling options towards the electronuclear cycle impacts limitation, and a technical conclusion illustrated by improvement possibilities of the methodology. (A.L.B.)

  2. Case-Crossover Analysis of Air Pollution Health Effects: A Systematic Review of Methodology and Application

    Science.gov (United States)

    Carracedo-Martínez, Eduardo; Taracido, Margarita; Tobias, Aurelio; Saez, Marc; Figueiras, Adolfo

    2010-01-01

    Background Case-crossover is one of the most used designs for analyzing the health-related effects of air pollution. Nevertheless, no one has reviewed its application and methodology in this context. Objective We conducted a systematic review of case-crossover (CCO) designs used to study the relationship between air pollution and morbidity and mortality, from the standpoint of methodology and application. Data sources and extraction A search was made of the MEDLINE and EMBASE databases. Reports were classified as methodologic or applied. From the latter, the following information was extracted: author, study location, year, type of population (general or patients), dependent variable(s), independent variable(s), type of CCO design, and whether effect modification was analyzed for variables at the individual level. Data synthesis The review covered 105 reports that fulfilled the inclusion criteria. Of these, 24 addressed methodological aspects, and the remainder involved the design’s application. In the methodological reports, the designs that yielded the best results in simulation were symmetric bidirectional CCO and time-stratified CCO. Furthermore, we observed an increase across time in the use of certain CCO designs, mainly symmetric bidirectional and time-stratified CCO. The dependent variables most frequently analyzed were those relating to hospital morbidity; the pollutants most often studied were those linked to particulate matter. Among the CCO-application reports, 13.6% studied effect modification for variables at the individual level. Conclusions The use of CCO designs has undergone considerable growth; the most widely used designs were those that yielded better results in simulation studies: symmetric bidirectional and time-stratified CCO. However, the advantages of CCO as a method of analysis of variables at the individual level are put to little use. PMID:20356818

  3. An Evaluation Methodology Development and Application Process for Severe Accident Safety Issue Resolution

    Directory of Open Access Journals (Sweden)

    Robert P. Martin

    2012-01-01

    Full Text Available A general evaluation methodology development and application process (EMDAP paradigm is described for the resolution of severe accident safety issues. For the broader objective of complete and comprehensive design validation, severe accident safety issues are resolved by demonstrating comprehensive severe-accident-related engineering through applicable testing programs, process studies demonstrating certain deterministic elements, probabilistic risk assessment, and severe accident management guidelines. The basic framework described in this paper extends the top-down, bottom-up strategy described in the U.S Nuclear Regulatory Commission Regulatory Guide 1.203 to severe accident evaluations addressing U.S. NRC expectation for plant design certification applications.

  4. Application of artificial intelligence (AI) concepts to the development of space flight parts approval model

    Science.gov (United States)

    Krishnan, Govindarajapuram Subramaniam

    1997-12-01

    The National Aeronautics & Space Administration (NASA), the European Space Agency (ESA), and the Canadian Space Agency (CSA) missions involve the performance of scientific experiments in Space. Instruments used in such experiments are fabricated using electronic parts such as microcircuits, inductors, capacitors, diodes, transistors, etc. For instruments to perform reliably the selection of commercial parts must be monitored and strictly controlled. The process used to achieve this goal is by a manual review and approval of every part used to build the instrument. The present system to select and approve parts for space applications is manual, inefficient, inconsistent, slow and tedious, and very costly. In this dissertation a computer based decision support model is developed for implementing this process using artificial intelligence concepts based on the current information (expert sources). Such a model would result in a greater consistency, accuracy, and timeliness of evaluation. This study presents the methodology of development and features of the model, and the analysis of the data pertaining to the performance of the model in the field. The model was evaluated for three different part types by experts from three different space agencies. The results show that the model was more consistent than the manual evaluation for all part types considered. The study concludes with the cost and benefits analysis of implementing the models and shows that implementation of the model will result in significant cost savings. Other implementation details are highlighted.

  5. Chemical Gas Sensors for Aeronautic and Space Applications

    Science.gov (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  6. NASA FDL: Accelerating Artificial Intelligence Applications in the Space Sciences.

    Science.gov (United States)

    Parr, J.; Navas-Moreno, M.; Dahlstrom, E. L.; Jennings, S. B.

    2017-12-01

    NASA has a long history of using Artificial Intelligence (AI) for exploration purposes, however due to the recent explosion of the Machine Learning (ML) field within AI, there are great opportunities for NASA to find expanded benefit. For over two years now, the NASA Frontier Development Lab (FDL) has been at the nexus of bright academic researchers, private sector expertise in AI/ML and NASA scientific problem solving. The FDL hypothesis of improving science results was predicated on three main ideas, faster results could be achieved through sprint methodologies, better results could be achieved through interdisciplinarity, and public-private partnerships could lower costs We present select results obtained during two summer sessions in 2016 and 2017 where the research was focused on topics in planetary defense, space resources and space weather, and utilized variational auto encoders, bayesian optimization, and deep learning techniques like deep, recurrent and residual neural networks. The FDL results demonstrate the power of bridging research disciplines and the potential that AI/ML has for supporting research goals, improving on current methodologies, enabling new discovery and doing so in accelerated timeframes.

  7. Application of 'Process management' methodology in providing financial services of PE 'Post Serbia'

    Directory of Open Access Journals (Sweden)

    Kujačić Momčilo D.

    2014-01-01

    Full Text Available The paper describes application of the methodology 'Process management', in providing of financial services at the post office counter hall. An overview of the methodology is given, as one of the most commonly used qualitative methodology, whereby Process management's technics are described , those can better meet user needs and market demands, as well as to find more effectively way to resist current competition in the postal service market. One of the main problem that pointed out is a long waiting time in the counter hall during providing financial services, which leads to the formation of queue lines, and thus to customer dissatisfaction. According that, paper points steps that should be taken during provide of financial services in a postal network unit for providing services to customers by optimizing user time waiting in line and increasing the satisfaction of all participants in that process.

  8. Assessment methodology applicable to safe decommissioning of Romanian VVR-S research reactor

    International Nuclear Information System (INIS)

    Baniu, O.; Vladescu, G.; Vidican, D.; Penescu, M.

    2002-01-01

    The paper contains the results of research activity performed by CITON specialists regarding the assessment methodology intended to be applied to safe decommissioning of the research reactors, developed taking into account specific conditions of the Romanian VVR-S Research Reactor. The Romanian VVR-S Research Reactor is an old reactor (1957) and its Decommissioning Plan is under study. The main topics of paper are as follows: Safety approach of nuclear facilities decommissioning. Applicable safety principles; Main steps of the proposed assessment methodology; Generic content of Decommissioning Plan. Main decommissioning activities. Discussion about the proposed Decommissioning Plan for Romanian Research Reactor; Safety risks which may occur during decommissioning activities. Normal decommissioning operations. Fault conditions. Internal and external hazards; Typical development of a scenario. Features, Events and Processes List. Exposure pathways. Calculation methodology. (author)

  9. Applications of a methodology for the analysis of learning trends in nuclear power plants

    International Nuclear Information System (INIS)

    Cho, Hang Youn; Choi, Sung Nam; Yun, Won Yong

    1995-01-01

    A methodology is applied to identify the learning trend related to the safety and availability of U.S. commercial nuclear power plants. The application is intended to aid in reducing likelihood of human errors. To assure that the methodology can be easily adapted to various types of classification schemes of operation data, a data bank classified by the Transient Analysis Classification and Evaluation(TRACE) scheme is selected for the methodology. The significance criteria for human-initiated events affecting the systems and for events caused by human deficiencies were used. Clustering analysis was used to identify the learning trend in multi-dimensional histograms. A computer code is developed based on the K-Means algorithm and applied to find the learning period in which error rates are monotonously decreasing with plant age

  10. Research-grade CMOS image sensors for demanding space applications

    Science.gov (United States)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2017-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid- 90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  11. Application of Master Curve Methodology for Structural Integrity Assessments of Nuclear Components

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, Iradj [Det Norske Veritas, Stockholm (Sweden); Wallin, Kim [VTT, Esbo (Finland)

    2005-10-15

    The objective was to perform an in-depth investigation of the Master Curve methodology and also based on this method develop a procedure for fracture assessments of nuclear components. The project has sufficiently illustrated the capabilities of the Master Curve methodology for fracture assessments of nuclear components. Within the scope of this work, the theoretical background of the methodology and its validation on small and large specimens has been studied and presented to a sufficiently large extent, as well as the correlations between the charpy-V data and the Master Curve T{sub 0} reference temperature in the evaluation of fracture toughness. The work gives a comprehensive report of the background theory and the different applications of the Master Curve methodology. The main results of the work have shown that the cleavage fracture toughness is characterized by a large amount of statistical scatter in the transition region, it is specimen size dependent and it should be treated statistically rather than deterministically. The Master Curve methodology is able to make use of statistical data in a consistent way. Furthermore, the Master Curve methodology provides a more precise prediction of the fracture toughness of embrittled materials in comparison with the ASME K{sub IC} reference curve, which often gives over-conservative results. The suggested procedure in this study, concerning the application of the Master Curve method in fracture assessments of ferritic steels in the transition region and the low shelf regions, is valid for the temperatures range T{sub 0}-50{<=}T{<=}T{sub 0}+50 deg C. If only approximate information is required, the Master Curve may well be extrapolated outside this temperature range. The suggested procedure has also been illustrated for some examples.

  12. Assessment of nuclear reactor concepts for low power space applications

    Science.gov (United States)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  13. Nuclear alkali metal Rankine power systems for space applications

    International Nuclear Information System (INIS)

    Moyers, J.C.; Holcomb, R.S.

    1986-08-01

    Nucler power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper

  14. Nuclear alkali metal Rankine power systems for space applications

    International Nuclear Information System (INIS)

    Moyers, J.C.; Holcomb, R.S.

    1986-01-01

    Nuclear power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper

  15. High density storage of antimatter for space propulsion applications

    International Nuclear Information System (INIS)

    Smith, Gerald A.; Coughlin, Dan P.

    2001-01-01

    The specific energy of antimatter is 180 MJ/μg, making it the largest specific energy density material known to humankind. Three challenges remain to be solved for space propulsion applications: first, sufficient amounts must be made to permit missions into deep space; second, efficient methods must be found to turn the antimatter into thrust and Isp; and third, the antimatter must be stored for long periods of time. This paper addresses the third issue. We discuss conventional (electromagnetic) methods of confining antimatter, as well as unconventional concepts, including the use of quantum effects in materials and antimatter chemistry

  16. 77 FR 8801 - Request for Applications: The Community Forest and Open Space Conservation Program

    Science.gov (United States)

    2012-02-15

    ... DEPARTMENT OF AGRICULTURE Forest Service Request for Applications: The Community Forest and Open Space Conservation Program AGENCY: Forest Service, USDA. ACTION: Request for applications. SUMMARY: The..., requests applications for the Community Forest and Open Space Conservation Program (Community Forest...

  17. Combining Statistical Methodologies in Water Quality Monitoring in a Hydrological Basin - Space and Time Approaches

    OpenAIRE

    Costa, Marco; A. Manuela Gonçalves

    2012-01-01

    In this work are discussed some statistical approaches that combine multivariate statistical techniques and time series analysis in order to describe and model spatial patterns and temporal evolution by observing hydrological series of water quality variables recorded in time and space. These approaches are illustrated with a data set collected in the River Ave hydrological basin located in the Northwest region of Portugal.

  18. Towards more sustainable management of European food waste: Methodological approach and numerical application.

    Science.gov (United States)

    Manfredi, Simone; Cristobal, Jorge

    2016-09-01

    Trying to respond to the latest policy needs, the work presented in this article aims at developing a life-cycle based framework methodology to quantitatively evaluate the environmental and economic sustainability of European food waste management options. The methodology is structured into six steps aimed at defining boundaries and scope of the evaluation, evaluating environmental and economic impacts and identifying best performing options. The methodology is able to accommodate additional assessment criteria, for example the social dimension of sustainability, thus moving towards a comprehensive sustainability assessment framework. A numerical case study is also developed to provide an example of application of the proposed methodology to an average European context. Different options for food waste treatment are compared, including landfilling, composting, anaerobic digestion and incineration. The environmental dimension is evaluated with the software EASETECH, while the economic assessment is conducted based on different indicators expressing the costs associated with food waste management. Results show that the proposed methodology allows for a straightforward identification of the most sustainable options for food waste, thus can provide factual support to decision/policy making. However, it was also observed that results markedly depend on a number of user-defined assumptions, for example on the choice of the indicators to express the environmental and economic performance. © The Author(s) 2016.

  19. Application of FIVE methodology in probabilistic risk assessment (PRA) of fire events

    International Nuclear Information System (INIS)

    Lopez Garcia, F.J.; Suarez Alonso, J.; Fiolamengual, M.J.

    1993-01-01

    This paper reflects the experience acquired during the process of evaluation and updating of the fire analysis within the Cofrentes NPP PRA. It determines which points are the least precise, either because of their greater uncertainty or because of their excessive conservatism, as well as the subtasks which have involved a larger work load and could be simplified. These aspects are compared with the steps followed in methodology FIVE (Fire Vulnerability Evaluation Methodology) to assess whether application of this methodology would optimize the task, by making it more systematic and realistic and reducing uncertainties. On the one hand, the FIVE methodology does not have the scope sufficient to carry out a quantitative risk evaluation, but it can easily be complemented -without detriment to its systematic nature- by quantifying core damage in significant areas. On the other hand, certain issues such as definition of the fire growth software program which has to be used, are still not fully closed. Nevertheless, the conclusions derived from this assessment are satisfactory, since it is considered that this methodology would serve to unify the criteria and data of the analysis of fire-induced risks, providing a progressive screening method which would considerably simplify the task. (author)

  20. Cinema-debate like a space of philosophical approach: Towards the possibility of a teaching methodology

    Directory of Open Access Journals (Sweden)

    Muriel Vázquez

    2016-07-01

    Full Text Available This paper addresses the relationship between philosophy and film from the film production linkages with the debate surrounding from its interpretation by a group of subjects. It explores the ways of understanding the philosophical activity to suggest a conception of it as a conscious and deliberate exercise of a way of looking that results in an individual and collective transformation. The conditions of possibility to think about a teaching methodology cinema - debate based on certain guidelines aimed at guiding a conversational exchange in both philosophical dialogue arise.

  1. Application of the accident management information needs methodology to a severe accident sequence

    International Nuclear Information System (INIS)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R.; Solberg, D.E.

    1989-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is conducting an Accident Management Research Program that emphasizes the application of severe accident research results to enhance the capability of plant operating personnel to effectively manage severe accidents. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed as part of the research program designed to resolve this issue. The methodology identifies the information needs of the plant personnel during a wide range of accident conditions, the existing plant measurements capable of supplying these information needs and what, if any minor additions to instrument and display systems would enhance the capability to manage accidents, known limitations on the capability of these measurements to function properly under the conditions that will be present during a wide range of severe accidents, and areas in which the information systems could mislead plant personnel. This paper presents an application of this methodology to a severe accident sequence to demonstrate its use in identifying the information which is available for management of the event. The methodology has been applied to a severe accident sequence in a Pressurized Water Reactor with a large dry containment. An examination of the capability of the existing measurements was then performed to determine whether the information needs can be supplied

  2. A dynamic systems engineering methodology research study. Phase 2: Evaluating methodologies, tools, and techniques for applicability to NASA's systems projects

    Science.gov (United States)

    Paul, Arthur S.; Gill, Tepper L.; Maclin, Arlene P.

    1989-01-01

    A study of NASA's Systems Management Policy (SMP) concluded that the primary methodology being used by the Mission Operations and Data Systems Directorate and its subordinate, the Networks Division, is very effective. Still some unmet needs were identified. This study involved evaluating methodologies, tools, and techniques with the potential for resolving the previously identified deficiencies. Six preselected methodologies being used by other organizations with similar development problems were studied. The study revealed a wide range of significant differences in structure. Each system had some strengths but none will satisfy all of the needs of the Networks Division. Areas for improvement of the methodology being used by the Networks Division are listed with recommendations for specific action.

  3. Tornado missile simulation and design methodology. Volume 1: simulation methodology, design applications, and TORMIS computer code. Final report

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.

    1981-08-01

    A probabilistic methodology has been developed to predict the probabilities of tornado-propelled missiles impacting and damaging nuclear power plant structures. Mathematical models of each event in the tornado missile hazard have been developed and sequenced to form an integrated, time-history simulation methodology. The models are data based where feasible. The data include documented records of tornado occurrence, field observations of missile transport, results of wind tunnel experiments, and missile impact tests. Probabilistic Monte Carlo techniques are used to estimate the risk probabilities. The methodology has been encoded in the TORMIS computer code to facilitate numerical analysis and plant-specific tornado missile probability assessments. Sensitivity analyses have been performed on both the individual models and the integrated methodology, and risk has been assessed for a hypothetical nuclear power plant design case study

  4. 2014 International Conference on Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Ören, Tuncer; Kacprzyk, Janusz; Filipe, Joaquim

    2015-01-01

    The present book includes a set of selected extended papers from the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2014), held in Vienna, Austria, from 28 to 30 August 2014. The conference brought together researchers, engineers and practitioners interested in methodologies and applications of modeling and simulation. New and innovative solutions are reported in this book. SIMULTECH 2014 received 167 submissions, from 45 countries, in all continents. After a double blind paper review performed by the Program Committee, 23% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based also on the assessment of presentation quality and audience interest, so that this book includes the extended and revised versions of the very best papers of SIMULTECH 2014. Commitment to high quality standards is a major concern of SIMULTEC...

  5. Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report

    International Nuclear Information System (INIS)

    Gore, B.F.; Huenefeld, J.C.

    1987-07-01

    This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein

  6. 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Kacprzyk, Janusz; Ören, Tuncer; Filipe, Joaquim

    2016-01-01

    The present book includes a set of selected extended papers from the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2015), held in Colmar, France, from 21 to 23 July 2015. The conference brought together researchers, engineers and practitioners interested in methodologies and applications of modeling and simulation. New and innovative solutions are reported in this book. SIMULTECH 2015 received 102 submissions, from 36 countries, in all continents. After a double blind paper review performed by the Program Committee, 19% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based also on the assessment of presentation quality and audience interest, so that this book includes the extended and revised versions of the very best papers of SIMULTECH 2015. Commitment to high quality standards is a major concern of SIMULTECH t...

  7. Managing mixed fisheries in the European western waters: application of Fcube methodology

    DEFF Research Database (Denmark)

    Iriondo, Ane; García, Dorleta; Santurtún, Marina

    2012-01-01

    Fisheries management is moving towards ecosystem based management instead of traditional single species based advice. To progress towards an ecosystem approach, a new methodology called “Fleet and Fisheries Forecast” (Fcube) has been proposed. In the application of the method, a precise initial f...... the lowest. In this analysis, Western Waters fleet management results show consistency between stocks and their respective TACs. The study highlights that it is possible to deliver advice within the context of mixed fisheries using the Fcube method......Fisheries management is moving towards ecosystem based management instead of traditional single species based advice. To progress towards an ecosystem approach, a new methodology called “Fleet and Fisheries Forecast” (Fcube) has been proposed. In the application of the method, a precise initial...

  8. Refractory alloy technology for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys

  9. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  10. Application of project management methodology in design management of nuclear safety related structure

    International Nuclear Information System (INIS)

    Chen Mao

    2004-01-01

    This paper focuses on the application of project management methodology in the design management of Nuclear Safety Related Structure (NSRS), considering the design management features of its civil construction. Based on the experiences from the management of several projects, the project management triangle is proposed to be used in the management, to well treat the position of design interface in the project management. Some other management methods are also proposed

  11. Methodology and application of 13C breath test in gastroenterology practice

    International Nuclear Information System (INIS)

    Yan Weili; Jiang Yibin

    2002-01-01

    13 C breath test has been widely used in research of nutrition, pharmacology and gastroenterology for its properties such as safety, non-invasion and so on. The author describes the principle, methodology of 13 C breath test and its application in detection to Helico-bacteria pylori infection in stomach and small bowl bacterial overgrowth, measurement of gastric emptying, pancreatic exocrine function and liver function with various substrates

  12. The simplified spherical harmonics (SPL) methodology with space and moment decomposition in parallel environments

    International Nuclear Information System (INIS)

    Gianluca, Longoni; Alireza, Haghighat

    2003-01-01

    In recent years, the SP L (simplified spherical harmonics) equations have received renewed interest for the simulation of nuclear systems. We have derived the SP L equations starting from the even-parity form of the S N equations. The SP L equations form a system of (L+1)/2 second order partial differential equations that can be solved with standard iterative techniques such as the Conjugate Gradient (CG). We discretized the SP L equations with the finite-volume approach in a 3-D Cartesian space. We developed a new 3-D general code, Pensp L (Parallel Environment Neutral-particle SP L ). Pensp L solves both fixed source and criticality eigenvalue problems. In order to optimize the memory management, we implemented a Compressed Diagonal Storage (CDS) to store the SP L matrices. Pensp L includes parallel algorithms for space and moment domain decomposition. The computational load is distributed on different processors, using a mapping function, which maps the 3-D Cartesian space and moments onto processors. The code is written in Fortran 90 using the Message Passing Interface (MPI) libraries for the parallel implementation of the algorithm. The code has been tested on the Pcpen cluster and the parallel performance has been assessed in terms of speed-up and parallel efficiency. (author)

  13. Lightweight High Efficiency Electric Motors for Space Applications

    Science.gov (United States)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  14. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  15. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  16. Replicated x-ray optics for space applications

    Science.gov (United States)

    Hudec, René; Pína, Ladislav; Inneman, Adolf

    2017-11-01

    We report on the program of design and development of X-ray optics for space applications in the Czech Republic. Having more than 30 years background in X-ray optics development for space applications (for use in astronomical X-ray telescopes onboard spacecrafts, before 1989 mostly for Soviet and East European INTERKOSMOS program), we focus nowadays on novel technologies and approaches, thin shell replicated mirrors, as well as studies of light-weight mirrors based on innovative materials such as ceramics. The collaboration includes teams from the Academy of Sciences, Universities, and industry. We will describe and discuss both the history of the development of Xray optics in the Czech Republic and the developed technologies and approaches (with focus on replication technology) as well as recent activities and developments including our participation on the ESA XEUS mirror technology development based on the Agreement between ESA and Czech Government.

  17. A Unique Photon Bombardment System for Space Applications

    Science.gov (United States)

    Klein, E. J.

    1993-01-01

    The innovative Electromagnetic Radiation Collection and Concentration System (EMRCCS) described is the foundation for the development of a multiplicity of space and terrestrial system formats. The system capability allows its use in the visual, infrared, and ultraviolet ranges of the spectrum for EM collection, concentration, source/receptor tracking, and targeting. The nonimaging modular optical system uses a physically static position aperture for EM radiation collection. Folded optics provide the concentration of the radiation and source autotracking. The collected and concentrated electromagnetic radiation is utilized in many applications, e.g., solar spectrum in thermal and associative photon bombardment applications for hazardous waste management, water purification, metal hardening, hydrogen generation, photovoltaics, etc., in both space and terrestrial segment utilization. Additionally, at the high end of the concentration capability range, i.e., 60,000+, a solar-pulsed laser system is possible.

  18. A review of European applications of artificial intelligence to space

    Science.gov (United States)

    Drummond, Mark (Editor); Stewart, Helen (Editor)

    1993-01-01

    The purpose is to describe the applications of Artificial Intelligence (AI) to the European Space program that are being developed or have been developed. The results of a study sponsored by the Artificial Intelligence Research and Development program of NASA's Office of Advanced Concepts and Technology (OACT) are described. The report is divided into two sections. The first consists of site reports, which are descriptions of the AI applications seen at each place visited. The second section consists of two summaries which synthesize the information in the site reports by organizing this information in two different ways. The first organizes the material in terms of the type of application, e.g., data analysis, planning and scheduling, and procedure management. The second organizes the material in terms of the component technologies of Artificial Intelligence which the applications used, e.g., knowledge based systems, model based reasoning, procedural reasoning, etc.

  19. Proposed advanced satellite applications utilizing space nuclear power systems

    International Nuclear Information System (INIS)

    Bailey, P.G.; Isenberg, L.

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000 kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Safety issues are shown to be identified, and if properly addressed should not pose a hindrance. Applications are summarized for the federal and civilian community. These applications include both low and high altitude satellite surveillance missions, communications satellites, planetary probes, low and high power lunar and planetary base power systems, broad-band global telecommunications, air traffic control, and high-definition television

  20. Adhesive Bonding for Optical Metrology Systems in Space Applications

    International Nuclear Information System (INIS)

    Gohlke, Martin; Schuldt, Thilo; Braxmaier, Claus; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis

    2015-01-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10 -15 range for longer integration times. The EM setup was thermally cycled and vibration tested. (paper)

  1. Methodologies and applications for critical infrastructure protection: State-of-the-art

    International Nuclear Information System (INIS)

    Yusta, Jose M.; Correa, Gabriel J.; Lacal-Arantegui, Roberto

    2011-01-01

    This work provides an update of the state-of-the-art on energy security relating to critical infrastructure protection. For this purpose, this survey is based upon the conceptual view of OECD countries, and specifically in accordance with EU Directive 114/08/EC on the identification and designation of European critical infrastructures, and on the 2009 US National Infrastructure Protection Plan. The review discusses the different definitions of energy security, critical infrastructure and key resources, and shows some of the experie'nces in countries considered as international reference on the subject, including some information-sharing issues. In addition, the paper carries out a complete review of current methodologies, software applications and modelling techniques around critical infrastructure protection in accordance with their functionality in a risk management framework. The study of threats and vulnerabilities in critical infrastructure systems shows two important trends in methodologies and modelling. A first trend relates to the identification of methods, techniques, tools and diagrams to describe the current state of infrastructure. The other trend accomplishes a dynamic behaviour of the infrastructure systems by means of simulation techniques including systems dynamics, Monte Carlo simulation, multi-agent systems, etc. - Highlights: → We examine critical infrastructure protection experiences, systems and applications. → Some international experiences are reviewed, including EU EPCIP Plan and the US NIPP programme. → We discuss current methodologies and applications on critical infrastructure protection, with emphasis in electric networks.

  2. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    Science.gov (United States)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  3. Wear-resistant ball bearings for space applications

    Science.gov (United States)

    Boving, H.; Hintermann, H. E.; Hanni, W.; Bondivenne, E.; Boeto, M.; Conde, E.

    1977-01-01

    Ball bearings consisting of steel parts of which the rings are coated with hard, wear resistant, chemical vapor deposited TiC are described. Experiments conducted in ultrahigh vacuum, using cages of various materials with self-lubricating properties, show that such bearings are suitable for space applications. The results of laboratory tests on the ESA Meteosat Radiometer Focalizing mechanism, which contains six coated bearings, are summarized.

  4. Application of Advanced Materials Protecting from Influence of Free Space Environment

    Science.gov (United States)

    Dotsenko, Oleg; Shovkoplyas, Yuriy

    2016-07-01

    High cost and low availability of the components certified for use in the space environment forces satellite designers to using industrial and even commercial items. Risks associated with insufficient knowledge about behavior of these components in radiation environment are parried, mainly, by careful radiating designing of a satellite where application of special protective materials with improved space radiation shielding characteristics is one of the most widely used practices. Another advantage of protective materials application appears when a satellite designer needs using equipment in more severe space environment conditions then it has been provided at the equipment development. In such cases only expensive repeated qualification of the equipment hardness can be alternative to protective materials application. But mostly this way is unacceptable for satellite developers, being within strong financial and temporal restrictions. To apply protective materials effectively, the developer should have possibility to answer the question: "Where inside a satellite shall I place these materials and what shall be their shape to meet the requirements on space radiation hardness with minimal mass and volume expenses?" At that, the minimum set of requirements on space radiation hardness include: ionizing dose, nonionizing dose, single events, and internal charging. The standard calculative models and experimental techniques, now in use for space radiation hardness assurance of a satellite are unsuitable for the problem solving in such formulation. The sector analysis methodology, widely used in satellite radiating designing, is applicable only for aluminium shielding and doesn't allow taking into account advantages of protective materials. The programs simulating transport of space radiations through a substance with the use of Monte-Carlo technique, such as GEANT4, FLUKA, HZETRN and others, are fully applicable in view of their capabilities; but time required for

  5. Assessing Freshwater Ecosystem Service Risk over Ecological, Socioeconomic, and Cultural Gradients: Problem Space Characterization and Methodology

    Science.gov (United States)

    Harmon, T. C.; Villamizar, S. R.; Conde, D.; Rusak, J.; Reid, B.; Astorga, A.; Perillo, G. M.; Piccolo, M. C.; Zilio, M.; London, S.; Velez, M.; Hoyos, N.; Escobar, J.

    2014-12-01

    Freshwater ecosystems and the services they provide are under increasing anthropogenic pressure at local (e.g., irrigation diversions, wastewater discharge) and global scales (e.g., climate change, global trading). The impact depends on an ecosystem's sensitivity, which is determined by its geophysical and ecological settings, and the population and activities in its surrounding watershed. Given the importance of ecosystem services, it is critical that we improve our ability to identify and understand changes in aquatic ecosystems, and translate them to risk of service loss. Furthermore, to inspire changes in human behavior, it is equally critical that we learn to communicate risk, and pose risk mitigation strategies, in a manner acceptable to a broad spectrum of stakeholders. Quantifying the nature and timing of the risk is difficult because (1) we often fail to understand the connection between anthropogenic pressures and the timing and extent of ecosystem changes; and (2) the concept of risk is inherently coupled to human perception, which generally differs with cultural and socio-economic conditions. In this study, we endeavor to assess aquatic ecosystem risks across an international array of six study sites. The challenge is to construct a methodology capable of capturing the marked biogeographical, socioeconomic, and cultural differences among the sites, which include: (1) Muskoka River watershed in humid continental Ontario, Canada; (2) Lower San Joaquin River, an impounded snow-fed river in semi-arid Central California; (3) Ciénaga Grande de Santa Marta, a tropical coastal lagoon in Colombia; (4) Senguer River basin in the semi-arid part of Argentina; (5) Laguna de Rocha watershed in humid subtropical Uruguay; and (6) Palomas Lake complex in oceanic Chilean Patagonia. Results will include a characterization of the experimental gradient over the six sites, an overview of the risk assessment methodology, and preliminary findings for several of the sites.

  6. Legal Provisions Applicable to the Definition of Outer Space

    Science.gov (United States)

    Thorin, T.

    2002-01-01

    Whether it be the adjective "spatial" or the definition "space", these two terms have, in many respects, a non-identifiable dimension, which serves as a reference point for all players in this field, without being concerned with the exact area of application. This is evident from the vast diversity of corporate names, acronyms, logos and other designations that we often use. Among some of the most worldwide common include: NASA, ISS, ESA, and so on. Without of course forgetting , a field which concerns all legal experts and should not be overlooked is "space law". Thus, it is apparent that although the "space" community (i.e. influential and space- minded governments and relevant international authorities) has been involved in this field over the last few decades, no specific and universally-accepted definition has been adopted to date. Apart from certain demands made or unilateral positions taken by a given state particularly concerned by the matter, it is important to underline that the international community has refrained from making legislation in this area, apart from some rather limited or symbolic provisions introduced. This vagueness, in legal terms, should clearly be taken as the assertion of nationalistic demands, but also shows divergence or even antagonism between states fuelled by hypothetical profits, as was the case when attempts were made to establish maritime boundaries. We can thus by now summarise this issue by asking the following question: "Where does outer space begin?" We shall begin by looking at the sketchy legal references that we have at our disposal, which as lawyers we must use to attempt to find a solution to practical commercial or scientific contingencies which we are increasingly confronted with. Such references include the Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies of 10th October 1967, constituting the fundamental space charter

  7. Application of SADT and ARIS methodologies for modeling and management of business processes of information systems

    Directory of Open Access Journals (Sweden)

    O. V. Fedorova

    2018-01-01

    Full Text Available The article is devoted to application of SADT and ARIS methodologies for modeling and management of business processes of information systems. The relevance of this article is beyond doubt, because the design of the architecture of information systems, based on a thorough system analysis of the subject area, is of paramount importance for the development of information systems in general. The authors conducted a serious work on the analysis of the application of SADT and ARIS methodologies for modeling and managing business processes of information systems. The analysis was carried out both in terms of modeling business processes (notation and applying the CASE-tool, and in terms of business process management. The first point of view reflects the interaction of the business analyst and the programmer in the development of the information system. The second point of view is the interaction of the business analyst and the customer. The basis of many modern methodologies for modeling business processes is the SADT methodology. Using the methodology of the IDEF family, it is possible to efficiently display and analyze the activity models of a wide range of complex information systems in various aspects. CASE-tool ARIS is a complex of tools for analysis and modeling of the organization's activities. The methodical basis of ARIS is a set of different modeling methods that reflect different views on the system under study. The authors' conclusions are fully justified. The results of the work can be useful for specialists in the field of modeling business processes of information systems. In addition, the article has an oriented character when working on the constituent elements of curricula for students specializing in information specialties and management, provides an update of the content and structure of disciplines on modeling the architecture of information systems and organization management, using models.

  8. Applications of nuclear-powered thermoelectric generators in space

    International Nuclear Information System (INIS)

    Rowe, D.M.

    1991-01-01

    The source of electrical power which enables information to be transmitted from the space crafts Voyager 1 and 2 back to Earth after a time period of more than a decade and at a distance of more than a billion miles is known as an RTG (radioisotope thermoelectric generator). It utilises the Seebeck effect in producing electricity from heat. In essence it consists of a large number of semiconductor thermocouples connected electrically in series and thermally in parallel. A temperature difference is maintained across the thermocouples by providing a heat source, which in the case of an RTG is a radioactive isotope, and the heat sink is space. The combination of an energy-conversion system, free of moving parts and a long-life, high energy-density heat source, provides a supply of electrical power typically in the range of tens to hundred of watts and which operates reliably over extended periods of time. An electric power source, based upon thermoelectric conversion by which utilises a nuclear reactor as a heat source, has also been deployed in space and a 100-kW system is being developed to provide electrical power to a variety of commercial and military projects including SDI. Developments in thermoelectrics that have taken place in the western world during the past 30 years are primarily due to United States interest and involvement in the exploration of space. This paper reviews US applications of nuclear-powered thermoelectric generators in space. (author)

  9. Evaluating Russian space nuclear reactor technology for United States applications

    International Nuclear Information System (INIS)

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch

  10. State-space models for bio-loggers: A methodological road map

    DEFF Research Database (Denmark)

    Jonsen, I.D.; Basson, M.; Bestley, S.

    2012-01-01

    Ecologists have an unprecedented array of bio-logging technologies available to conduct in situ studies of horizontal and vertical movement patterns of marine animals. These tracking data provide key information about foraging, migratory, and other behaviours that can be linked with bio-physical...... development of state-space modelling approaches for animal movement data provides statistical rigor for inferring hidden behavioural states, relating these states to bio-physical data, and ultimately for predicting the potential impacts of climate change. Despite the widespread utility, and current popularity...

  11. General background and approach to multibody dynamics for space applications

    Science.gov (United States)

    Santini, Paolo; Gasbarri, Paolo

    2009-06-01

    Multibody dynamics for space applications is dictated by space environment such as space-varying gravity forces, orbital and attitude perturbations, control forces if any. Several methods and formulations devoted to the modeling of flexible bodies undergoing large overall motions were developed in recent years. Most of these different formulations were aimed to face one of the main problems concerning the analysis of spacecraft dynamics namely the reduction of computer simulation time. By virtue of this, the use of symbolic manipulation, recursive formulation and parallel processing algorithms were proposed. All these approaches fall into two categories, the one based on Newton/Euler methods and the one based on Lagrangian methods; both of them have their advantages and disadvantages although in general, Newtonian approaches lend to a better understanding of the physics of problems and in particular of the magnitude of the reactions and of the corresponding structural stresses. Another important issue which must be addressed carefully in multibody space dynamics is relevant to a correct choice of kinematics variables. In fact, when dealing with flexible multibody system the resulting equations include two different types of state variables, the ones associated with large (rigid) displacements and the ones associated with elastic deformations. These two sets of variables have generally two different time scales if we think of the attitude motion of a satellite whose period of oscillation, due to the gravity gradient effects, is of the same order of magnitude as the orbital period, which is much bigger than the one associated with the structural vibration of the satellite itself. Therefore, the numerical integration of the equations of the system represents a challenging problem. This was the abstract and some of the arguments that Professor Paolo Santini intended to present for the Breakwell Lecture; unfortunately a deadly disease attacked him and shortly took him

  12. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, J. W.

    1996-01-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  13. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, John W.

    1996-02-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  14. Application of an environmental remediation methodology: theory vs. practice reflections and two Belgian case studies - 59184

    International Nuclear Information System (INIS)

    Blommaert, W.; Mannaerts, K.; Pepin, S.; Dehandschutter, B.

    2012-01-01

    Like in many countries, polluted industrial sites also exist in Belgium. Although the contamination is purely chemical in most cases, they may also contain a radioactive component. For chemically contaminated sites, extensive regulations and methodologies were already developed and applied by the different regional authorities. However and essentially because radioactivity is a federal competence, there was also a necessity for developing a legal federal framework (including an ER-methodology [1]) for remediation of radioactive contaminated sites. Most of the so-called radioactive contaminated sites are exhibiting a mixed contamination (chemical and radiological), and hence the development of such methodology had to be in line with the existing (regional) ones concerning chemical contamination. Each authority having their own responsibilities with regard to the type of contamination, this makes it more complicated and time-consuming finding the best solution satisfying all involved parties. To overcome these difficulties the legal framework and methodology - including the necessary involvement of the stakeholders and delineation of each party's responsibilities - has to be transparent, clear and unambiguous. Once the methodology is developed as such and approved, the application of it is expected to be more or less easy, logic and straightforward. But is this really true? The aim of this document is to investigate as well the impact of factors such as the type of radioactive contamination - levels of contamination, related to NORM activity or not, homogeneous or heterogeneous, the differences in licensing procedures,.. - on the application of the developed methodology and what could be the consequences in the long run on the remediation process. Two existing case studies in Belgium will be presented ([2]). The first case deals with a historical radium contaminated site, the second one with a phosphate processing facility still in operation, both with (very) low

  15. Motivating Students for Project-based Learning for Application of Research Methodology Skills.

    Science.gov (United States)

    Tiwari, Ranjana; Arya, Raj Kumar; Bansal, Manoj

    2017-12-01

    Project-based learning (PBL) is motivational for students to learn research methodology skills. It is a way to engage and give them ownership over their own learning. The aim of this study is to use PBL for application of research methodology skills for better learning by encouraging an all-inclusive approach in teaching and learning rather than an individualized tailored approach. The present study was carried out for MBBS 6 th - and 7 th -semester students of community medicine. Students and faculties were sensitized about PBL and components of research methodology skills. They worked in small groups. The students were asked to fill the student feedback Questionnaire and the faculty was also asked to fill the faculty feedback Questionnaire. Both the Questionnaires were assessed on a 5 point Likert scale. After submitted projects, document analysis was done. A total of 99 students of the 6 th and 7 th semester were participated in PBL. About 90.91% students agreed that there should be continuation of PBL in subsequent batches. 73.74% felt satisfied and motivated with PBL, whereas 76.77% felt that they would be able to use research methodology in the near future. PBL requires considerable knowledge, effort, persistence, and self-regulation on the part of the students. They need to devise plans, gather information evaluate both the findings, and their approach. Facilitator plays a critical role in helping students in the process by shaping opportunity for learning, guiding students, thinking, and helping them construct new understanding.

  16. Production methodologies of polymeric and hydrogel particles for drug delivery applications.

    Science.gov (United States)

    Lima, Ana Catarina; Sher, Praveen; Mano, João F

    2012-02-01

    Polymeric particles are ideal vehicles for controlled delivery applications due to their ability to encapsulate a variety of substances, namely low- and high-molecular mass therapeutics, antigens or DNA. Micro and nano scale spherical materials have been developed as carriers for therapies, using appropriated methodologies, in order to achieve a prolonged and controlled drug administration. This paper reviews the methodologies used for the production of polymeric micro/nanoparticles. Emulsions, phase separation, spray drying, ionic gelation, polyelectrolyte complexation and supercritical fluids precipitation are all widely used processes for polymeric micro/nanoencapsulation. This paper also discusses the recent developments and patents reported in this field. Other less conventional methodologies are also described, such as the use of superhydrophobic substrates to produce hydrogel and polymeric particulate biomaterials. Polymeric drug delivery systems have gained increased importance due to the need for improving the efficiency and versatility of existing therapies. This allows the development of innovative concepts that could create more efficient systems, which in turn may address many healthcare needs worldwide. The existing methods to produce polymeric release systems have some critical drawbacks, which compromise the efficiency of these techniques. Improvements and development of new methodologies could be achieved by using multidisciplinary approaches and tools taken from other subjects, including nanotechnologies, biomimetics, tissue engineering, polymer science or microfluidics.

  17. Methodology for biosphere analysis in high level waste disposal. Application to the Mediterranean system

    International Nuclear Information System (INIS)

    Pinedo, P.; Simon, I.; Aguero, A.; Cancio, D.

    2000-01-01

    For several years CIEMAT has been developing for ENRESA a conceptual approach and tools to support the modelling of the migration and accumulation of radionuclides within the biosphere once those radionuclides are released or reach one or more parts of the biosphere (atmosphere, water bodies or soils). The model development also includes evaluation of radiological impacts arising from the resulting distribution of radionuclides in the biosphere. At the time when the methodology was proposed, the level of development of the different aspects proposed within it was quite heterogeneous and, while aspects of radionuclide transport modelling were already well developed in theoretical and practical terms, other aspects, like the procedure for conceptual model development and the description of biosphere systems representatives of the long term needed further developments. The developments have been performed in parallel to international projects, within which there were and are an active participation, mainly, the BIOphere Models Validation Study (BIOMOVS II) international Project, within which it was developed the so called Reference Biosphere Methodology and, the International Atomic Energy Agency (IAEA) Programme on BIOsphere Modelling and ASSessment methods (BIOMASS), that is under development at present. The methodology been made takes account of these international developments. The purpose of the work summarised herein is the application of the methodology to the 1997 performance assessment (PA) exercise made by ENRESA, using from it the general and particular information about the assessment context, the source term, and the geo-biosphere interface data. (author)

  18. OverView of Space Applications for Environment (SAFE) initiative

    Science.gov (United States)

    Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki

    2014-06-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.

  19. OverView of Space Applications for Environment (SAFE) initiative

    International Nuclear Information System (INIS)

    Hamamoto, Ko; Fukuda, Toru; Nukui, Tomoyuki; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi

    2014-01-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes

  20. The Office of Space Science and Applications strategic plan, 1990: A strategy for leadership in space through excellence in space science and applications

    Science.gov (United States)

    1990-01-01

    A strategic plan for the U.S. space science and applications program during the next 5 to 10 years was developed and published in 1988. Based on the strategies developed by the advisory committees of both the National Academy of Science and NASA, the plan balances major, moderate, and small mission initiatives, the utilization of the Space Station Freedom, and the requirements for a vital research base. The Office of Space Science and Applications (OSSA) strategic plan is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy will yield a viable program; and check the strategy for consistency within resource constraints. The OSSA plan is revised annually. This OSSA 1990 Strategic Plan refines the 1989 Plan and represents OSSA's initial plan for fulfilling its responsibilities in two major national initiatives. The Plan is now built on interrelated, complementary strategies for the core space science and applications program, for the U.S. Global Change Research Program, and for the Space Exploration Initiative. The challenge is to make sure that the current level of activity is sustained through the end of this century and into the next. The 1990 Plan presents OSSA's strategy to do this.

  1. Methodology of development and students' perceptions of a psychiatry educational smartphone application.

    Science.gov (United States)

    Zhang, Melvyn W B; Ho, Cyrus S H; Ho, Roger C M

    2014-01-01

    The usage of Smartphones and smartphone applications in the recent decade has indeed become more prevalent. Previous research has highlighted the lack of critical appraisal of new applications. In addition, previous research has highlighted a method of using just the Internet Browser and a text editor to create an application, but this does not eliminate the challenges faced by clinicians. In addition, even though there has been a high rate of smartphone applications usage and acceptance, it is common knowledge that it would cost clinicians as well as their centers a lot to develop smartphone applications that could be catered to their needs, and help them in their daily educational needs. The objectives of the current research are thus to highlight a cost-effective methodology of development of interactive education smartphone applications, and also to determine whether medical students are receptive towards having smartphone applications and their perspectives with regards to the contents within. In this study, we will elaborate how the Mastering Psychiatry Online Portal and web-based mobile application were developed using HTML5 as the core programming language. The online portal and web-based application was launched in July 2012 and usage data were obtained. Subsequently, a native application was developed, as it was funded by an educational grant and students are recruited after their end of posting clinical examination to fill up a survey questionnaire relating to perspectives. Our initial analytical results showed that since inception to date, for the online portal, there have been a total of 15,803 views, with a total of 2,109 copies of the online textbook being downloaded. As for the online videos, 5,895 viewers have watched the training videos from the start till the end. 722 users have accessed the mobile textbook application. A total of 185 students participated in the perspective survey, with the majority having positive perspectives about the

  2. 0.25μm radiation tolerant technology for space applications

    International Nuclear Information System (INIS)

    Haddad, N.; Brady, F.; Scott, T.; Yoder, J.

    1999-01-01

    Lockheed Martin federal systems has developed a state-of-the-art radiation tolerant 0,25 μm CMOS capability that is compatible with commercial foundries as well as radiation hardened fabrication. A technology test chip was designed, fabricated and evaluated for performance, power and radiation hardness in order to validate the methodology and evaluate the technology. Testing results show that -) the active transistor threshold shift is negligible for 0.25 μm CMOS, -) the hardened STI (shallow trench isolation) can support Mega-rad applications, and -) the holding voltage is well beyond the operating voltage of 2.5 V. This technology is intended to support high density, high performance and low power space applications

  3. Multi-GNSS signal-in-space range error assessment - Methodology and results

    Science.gov (United States)

    Montenbruck, Oliver; Steigenberger, Peter; Hauschild, André

    2018-06-01

    The positioning accuracy of global and regional navigation satellite systems (GNSS/RNSS) depends on a variety of influence factors. For constellation-specific performance analyses it has become common practice to separate a geometry-related quality factor (the dilution of precision, DOP) from the measurement and modeling errors of the individual ranging measurements (known as user equivalent range error, UERE). The latter is further divided into user equipment errors and contributions related to the space and control segment. The present study reviews the fundamental concepts and underlying assumptions of signal-in-space range error (SISRE) analyses and presents a harmonized framework for multi-GNSS performance monitoring based on the comparison of broadcast and precise ephemerides. The implications of inconsistent geometric reference points, non-common time systems, and signal-specific range biases are analyzed, and strategies for coping with these issues in the definition and computation of SIS range errors are developed. The presented concepts are, furthermore, applied to current navigation satellite systems, and representative results are presented along with a discussion of constellation-specific problems in their determination. Based on data for the January to December 2017 time frame, representative global average root-mean-square (RMS) SISRE values of 0.2 m, 0.6 m, 1 m, and 2 m are obtained for Galileo, GPS, BeiDou-2, and GLONASS, respectively. Roughly two times larger values apply for the corresponding 95th-percentile values. Overall, the study contributes to a better understanding and harmonization of multi-GNSS SISRE analyses and their use as key performance indicators for the various constellations.

  4. Foucault's notion of problematization: a methodological discussion of the application of Foucault's later work to nursing research.

    Science.gov (United States)

    Frederiksen, Kirsten; Lomborg, Kirsten; Beedholm, Kirsten

    2015-09-01

    This study takes its point of departure in an oft-voiced critique that the French philosopher Michel Foucault gives discourse priority over practice, thereby being deterministic and leaving little space for the individual to act as an agent. Based on an interpretation of the latter part of Foucault's oeuvre, we argue against this critique and provide a methodological discussion of the perception that Foucault's method constitutes, primarily, discourse analysis. We argue that it is possible to overcome this critique of Foucault's work by the application of methodological tools adapted from Foucault's later writings and his diagnosis of his own work as studies of forms of problematization. To shed light on the possibilities that this approach offers to the researcher, we present a reading of aspects of Foucault's work, with a focus on his notion of forms of problematization. Furthermore, we elaborate on concepts from his so-called genealogical period, namely 'the dispositive', strategy and tactics. Our interpretation is supported by examples from a study of the emergence of Danish nursing education, which is based on an analytical framework that we developed in the light of an interpretation of aspects of Foucault's work. © 2015 John Wiley & Sons Ltd.

  5. Prototype application of best estimate and uncertainty safety analysis methodology to large LOCA analysis

    International Nuclear Information System (INIS)

    Luxat, J.C.; Huget, R.G.

    2001-01-01

    Development of a methodology to perform best estimate and uncertainty nuclear safety analysis has been underway at Ontario Power Generation for the past two and one half years. A key driver for the methodology development, and one of the major challenges faced, is the need to re-establish demonstrated safety margins that have progressively been undermined through excessive and compounding conservatism in deterministic analyses. The major focus of the prototyping applications was to quantify the safety margins that exist at the probable range of high power operating conditions, rather than the highly improbable operating states associated with Limit of the Envelope (LOE) assumptions. In LOE, all parameters of significance to the consequences of a postulated accident are assumed to simultaneously deviate to their limiting values. Another equally important objective of the prototyping was to demonstrate the feasibility of conducting safety analysis as an incremental analysis activity, as opposed to a major re-analysis activity. The prototype analysis solely employed prior analyses of Bruce B large break LOCA events - no new computer simulations were undertaken. This is a significant and novel feature of the prototyping work. This methodology framework has been applied to a postulated large break LOCA in a Bruce generating unit on a prototype basis. This paper presents results of the application. (author)

  6. Drift design methodology and preliminary application for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Hardy, M.P.; Bauer, S.J.

    1991-12-01

    Excavation stability in an underground nuclear waste repository is required during construction, emplacement, retrieval (if required), and closure phases to ensure worker health and safety, and to prevent development of potential pathways for radionuclide migration in the post-closure period. Stable excavations are developed by appropriate excavation procedures, design of the room shape, design and installation of rock support reinforcement systems, and implementation of appropriate monitoring and maintenance programs. In addition to the loads imposed by the in situ stress field, the repository drifts will be impacted by thermal loads developed after waste emplacement and, periodically, by seismic loads from naturally occurring earthquakes and underground nuclear events. A priori evaluation of stability is required for design of the ground support system, to confirm that the thermal loads are reasonable, and to support the license application process. In this report, a design methodology for assessing drift stability is presented. This is based on site conditions, together with empirical and analytical methods. Analytical numerical methods are emphasized at this time because empirical data are unavailable for excavations in welded tuff either at elevated temperatures or under seismic loads. The analytical methodology incorporates analysis of rock masses that are systematically jointed, randomly jointed, and sparsely jointed. In situ thermal and seismic loads are considered. Methods of evaluating the analytical results and estimating ground support requirements for all the full range of expected ground conditions are outlines. The results of a preliminary application of the methodology using the limited available data are presented. 26 figs., 55 tabs

  7. A general centroid determination methodology, with application to multilayer dielectric structures and thermally stimulated current measurements

    International Nuclear Information System (INIS)

    Miller, S.L.; Fleetwood, D.M.; McWhorter, P.J.; Reber, R.A. Jr.; Murray, J.R.

    1993-01-01

    A general methodology is developed to experimentally characterize the spatial distribution of occupied traps in dielectric films on a semiconductor. The effects of parasitics such as leakage, charge transport through more than one interface, and interface trap charge are quantitatively addressed. Charge transport with contributions from multiple charge species is rigorously treated. The methodology is independent of the charge transport mechanism(s), and is directly applicable to multilayer dielectric structures. The centroid capacitance, rather than the centroid itself, is introduced as the fundamental quantity that permits the generic analysis of multilayer structures. In particular, the form of many equations describing stacked dielectric structures becomes independent of the number of layers comprising the stack if they are expressed in terms of the centroid capacitance and/or the flatband voltage. The experimental methodology is illustrated with an application using thermally stimulated current (TSC) measurements. The centroid of changes (via thermal emission) in the amount of trapped charge was determined for two different samples of a triple-layer dielectric structure. A direct consequence of the TSC analyses is the rigorous proof that changes in interface trap charge can contribute, though typically not significantly, to thermally stimulated current

  8. Developing a Methodology for Risk-Informed Trade-Space Analysis in Acquisition

    Science.gov (United States)

    2015-01-01

    relevant data and view- ing tailored output graphs following the MC exercise. RTRAM uses VBA code and ActiveX controls, which allow it to be accessible to...Excel, this code can be accessed by clicking the Visual Basic button of the Developer tab. For information about using VBA in Excel, search for...Command TRL technology readiness level UI user interface VBA Visual Basic for Applications WBS work breakdown structure 1 CHAPTER ONE Introduction

  9. A methodology for developing strategic municipal solid waste management plans with an application in Greece.

    Science.gov (United States)

    Economopoulos, A P

    2010-11-01

    A rational approach for developing optimal municipal solid waste (MSW) management plans comprises the strategic and the detailed planning phases. The present paper focuses on the former, the objective of which is to screen management alternatives so as to select the ones that are able to fulfil all legal and other management requirements with reasonable cost. The analysis considers the transportation, treatment and final disposal of the commingled wastes that remain after the application of material recovery at the source programmes and comprises 10 elements, four of which are region-dependent and the remaining ones application-dependent. These elements and their inter-dependencies are described and the entire methodology is applied to Greece. The application considers the existing regional plans and shows that they are incompatible with the existing EU Directives, as well as overly expensive. To address this problem, a new plan is developed in accordance with the rational planning principles of the present methodology. The comparative evaluation of the above alternatives shows that the existing regional plans, in addition to being incompatible with the applicable EU Directives, require 4.3 to 4.8 times (3.7 to 4.4 billion €) higher capital investment and their annual cost is at least 2.1 to 2.3 times (590 to 735 million € year(-1)) higher in comparison with the new national plan.

  10. Intelligent Chemical Sensor Systems for In-space Safety Applications

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  11. Common Fixed Points of Mappings and Set-Valued Mappings in Symmetric Spaces with Application to Probabilistic Spaces

    OpenAIRE

    M. Aamri; A. Bassou; S. Bennani; D. El Moutawakil

    2007-01-01

    The main purpose of this paper is to give some common fixed point theorems of mappings and set-valued mappings of a symmetric space with some applications to probabilistic spaces. In order to get these results, we define the concept of E-weak compatibility between set-valued and single-valued mappings of a symmetric space.

  12. MAGDAS Project for Space Weather Research and Application

    International Nuclear Information System (INIS)

    Yumoto, Kiyohumi

    2009-01-01

    The Space Environment Research Center (SERC), Kyushu University, is currently deploying a new ground-based magnetometer network of MAGnetic Data Acqusition System (MAGDAS), in cooperation with about 30 organizations in the world, in order to understand the complex Sun-Earth system for space weather research and application. SERC will conducts MAGDAS observation at 50 stations in the Circum-pan Pacific Magnetometer Network (CPMN) region, and FM-CW radar observation along the 210 deg. magnetic meridian (MM) during the IHY/ILWS/CAWSES periods. This project is actively providing the following space weather monitoring:(1) Global 3-dimensional current system to know electromagnetic coupling of the region 1 and 2 field-aligned currents, auroral electrojet current, Sq current, and equatorial electrojet current. (2) Plasma mass density along the 210 deg. MM to understand plasma environment change during space storms. (3) Ionospheric electric field intensity with 10-sec sampling at L = 1.26 to understand how the external electric field penetrates into the equatorial ionosphere.

  13. GOES-16 Space Weather Data Availability and Applications

    Science.gov (United States)

    Tilton, M.; Rowland, W. F.; Codrescu, S.; Seaton, D. B.; Redmon, R. J.; Hsu, V.

    2017-12-01

    In November 2016, NOAA launched the first in the "R" series of Geostationary Operational Environmental Satellites, GOES-16. Compared to its GOES predecessors, the GOES-R series satellites provide improved in situ measurements of charged particles, higher cadence magnetic field measurements, and enhanced remote sensing of the sun through ultraviolet (UV) imagery and X-ray/UV irradiance. GOES-16 space weather instruments will nominally reach provisional status near the beginning of 2018. After this milestone has been achieved, NOAA's National Centers for Environmental Information (NCEI) will provide archive access to GOES-16 space weather data. This presentation will describe the status of the space weather instruments, including available products and their applicability for forecasters, modelers, academics, spacecraft operators, and other users. It will discuss the available access systems for all levels of data-raw telemetry (Level 0), science measurements in high resolution (L1b), and higher-level (L2+) products developed by NCEI scientists. Finally, it will cover NCEI's efforts to promote space weather awareness through data visualization tools and image dissemination via the Helioviewer project.

  14. Application of the HGPT methodology of reactor operation problems with a nodal mixed method

    International Nuclear Information System (INIS)

    Baudron, A.M.; Bruna, G.B.; Gandini, A.; Lautard, J.J.; Monti, S.; Pizzigati, G.

    1998-01-01

    The heuristically based generalized perturbation theory (HGPT), to first and higher order, applied to the neutron field of a reactor system, is discussed in relation to quasistatic problems. This methodology is of particular interest in reactor operation. In this application it may allow an on-line appraisal of the main physical responses of the reactor system when subject to alterations relevant to normal system exploitation, e.g. control rod movement, and/or soluble boron concentration changes to be introduced, for instance, for compensating power level variations following electrical network demands. In this paper, after describing the main features of the theory, its implementation into the diffusion, 3D mixed dual nodal code MINOS of the SAPHYR system is presented. The results from a small scale investigation performed on a simplified PWR system corroborate the validity of the methodology proposed

  15. Assessment of ISLOCA risk: Methodology and application to a Westinghouse four-loop ice condenser plant

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L.; Auflick, J.L.; Haney, L.N. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-04-01

    Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISLOCA core damage frequency and risk. This report presents a detailed description of the application of this analysis methodology to a Westinghouse four-loop ice condenser plant. This document also includes appendices A through I which provide: System descriptions; ISLOCA event trees; human reliability analysis; thermal hydraulic analysis; core uncovery timing calculations; calculation of system rupture probability; ISLOCA consequences analysis; uncertainty analysis; and component failure analysis.

  16. Assessment of ISLOCA risk: Methodology and application to a Westinghouse four-loop ice condenser plant

    International Nuclear Information System (INIS)

    Kelly, D.L.; Auflick, J.L.; Haney, L.N.

    1992-04-01

    Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISLOCA core damage frequency and risk. This report presents a detailed description of the application of this analysis methodology to a Westinghouse four-loop ice condenser plant. This document also includes appendices A through I which provide: System descriptions; ISLOCA event trees; human reliability analysis; thermal hydraulic analysis; core uncovery timing calculations; calculation of system rupture probability; ISLOCA consequences analysis; uncertainty analysis; and component failure analysis

  17. An overall methodology for reliability prediction of mechatronic systems design with industrial application

    International Nuclear Information System (INIS)

    Habchi, Georges; Barthod, Christine

    2016-01-01

    We propose in this paper an overall ten-step methodology dedicated to the analysis and quantification of reliability during the design phase of a mechatronic system, considered as a complex system. The ten steps of the methodology are detailed according to the downward side of the V-development cycle usually used for the design of complex systems. Two main phases of analysis are complementary and cover the ten steps, qualitative analysis and quantitative analysis. The qualitative phase proposes to analyze the functional and dysfunctional behavior of the system and then determine its different failure modes and degradation states, based on external and internal functional analysis, organic and physical implementation, and dependencies between components, with consideration of customer specifications and mission profile. The quantitative phase is used to calculate the reliability of the system and its components, based on the qualitative behavior patterns, and considering data gathering and processing and reliability targets. Systemic approach is used to calculate the reliability of the system taking into account: the different technologies of a mechatronic system (mechanics, electronics, electrical .), dependencies and interactions between components and external influencing factors. To validate the methodology, the ten steps are applied to an industrial system, the smart actuator of Pack'Aero Company. - Highlights: • A ten-step methodology for reliability prediction of mechatronic systems design. • Qualitative and quantitative analysis for reliability evaluation using PN and RBD. • A dependency matrix proposal, based on the collateral and functional interactions. • Models consider mission profile, deterioration, interactions and influent factors. • Application and validation of the methodology on the “Smart Actuator” of PACK’AERO.

  18. Application of the Biosphere Assessment Methodology to the ENRESA, 1997 Performance and Safety Assessment

    International Nuclear Information System (INIS)

    Pinedo, P.; Simon, I.; Aguero, A.

    1998-01-01

    For several years CIEMAT has been developing for ENRESA knowledge and tools to support the modelling of the migration and accumulation of radionuclides within the biosphere once those radionuclides are released or reach one or more parts of the biosphere (atmosphere, water bodies or soils). The model development also includes evaluation of radiological impacts arising from the resulting distribution of radionuclides in the biosphere. In 1996, a Methodology to analyse the biosphere in this context proposed to ENRESA. The level of development of the different aspects proposed within the Methodology was quite heterogeneous and, while aspects of radionuclide transport modelling were already well developed in theoretical and practical terms, other aspects like the procedure for conceptual model development and the description of biosphere system representatives of the long term needed further developments. At present, the International Atomic Energy Agency (IAEA) Programme on Biosphere Modelling and Assessment (BIOMASS) in collaboration with several national organizations, ENRESA and CIEMAT among them, is working to complete and augment the Reference Biosphere Methodology and to produce some practical descriptions of Reference Systems. The overall purpose of this document is to apply the Methodology, taking account of on-going developments in biosphere modelling, to the last performance assessment (PA) exercise made by ENRESA (ENRESA, 1997), using from it the general and particular information about the assessment context, radionuclide information, geosphere and geobiosphere interface data. There are three particular objectives to this work: (a) to determine the practicability of the Methodology in an application to a realistic assessment situation, (b) To compare and contrast previous biosphere modelling in HLW PA and, (c) to test software development related with data management and modelling. (Author) 42 refs

  19. Multi-objective and multi-physics optimization methodology for SFR core: application to CFV concept

    International Nuclear Information System (INIS)

    Fabbris, Olivier

    2014-01-01

    Nuclear reactor core design is a highly multidisciplinary task where neutronics, thermal-hydraulics, fuel thermo-mechanics and fuel cycle are involved. The problem is moreover multi-objective (several performances) and highly dimensional (several tens of design parameters).As the reference deterministic calculation codes for core characterization require important computing resources, the classical design method is not well suited to investigate and optimize new innovative core concepts. To cope with these difficulties, a new methodology has been developed in this thesis. Our work is based on the development and validation of simplified neutronics and thermal-hydraulics calculation schemes allowing the full characterization of Sodium-cooled Fast Reactor core regarding both neutronics performances and behavior during thermal hydraulic dimensioning transients.The developed methodology uses surrogate models (or meta-models) able to replace the neutronics and thermal-hydraulics calculation chain. Advanced mathematical methods for the design of experiment, building and validation of meta-models allows substituting this calculation chain by regression models with high prediction capabilities.The methodology is applied on a very large design space to a challenging core called CFV (French acronym for low void effect core) with a large gain on the sodium void effect. Global sensitivity analysis leads to identify the significant design parameters on the core design and its behavior during unprotected transient which can lead to severe accidents. Multi-objective optimizations lead to alternative core configurations with significantly improved performances. Validation results demonstrate the relevance of the methodology at the pre-design stage of a Sodium-cooled Fast Reactor core. (author) [fr

  20. Application of Haddon’s matrix in qualitative research methodology: an experience in burns epidemiology

    Directory of Open Access Journals (Sweden)

    Deljavan R

    2012-07-01

    Full Text Available Reza Deljavan,1 Homayoun Sadeghi-Bazarganim,2,3 Nasrin Fouladim,4 Shahnam Arshi,5 Reza Mohammadi61Injury Epidemiology and Prevention Research Center, 2Neuroscience Research Center, Department of Statistics and Epidemiology, Tabriz University of Medical Sciences, Tabriz, Iran; 3Public Health Department, Karolinska Institute, Stockholm, Sweden; 4Ardabil University of Medical Sciences, Ardabil, Iran; 5Shahid Beheshti University of Medical Sciences, Tehran, Iran; 6Public Health Department, Karolinska Institute, Stockholm, SwedenBackground: Little has been done to investigate the application of injury specific qualitative research methods in the field of burn injuries. The aim of this study was to use an analytical tool (Haddon’s matrix through qualitative research methods to better understand people’s perceptions about burn injuries.Methods: This study applied Haddon’s matrix as a framework and an analytical tool for a qualitative research methodology in burn research. Both child and adult burn injury victims were enrolled into a qualitative study conducted using focus group discussion. Haddon’s matrix was used to develop an interview guide and also through the analysis phase.Results: The main analysis clusters were pre-event level/human (including risky behaviors, belief and cultural factors, and knowledge and education, pre-event level/object, pre-event phase/environment and event and post-event phase (including fire control, emergency scald and burn wound management, traditional remedies, medical consultation, and severity indicators. This research gave rise to results that are possibly useful both for future injury research and for designing burn injury prevention plans.Conclusion: Haddon’s matrix is applicable in a qualitative research methodology both at data collection and data analysis phases. The study using Haddon’s matrix through a qualitative research methodology yielded substantially rich information regarding burn injuries

  1. Application of low-cost methodologies for mobile phone app development.

    Science.gov (United States)

    Zhang, Melvyn; Cheow, Enquan; Ho, Cyrus Sh; Ng, Beng Yeong; Ho, Roger; Cheok, Christopher Cheng Soon

    2014-12-09

    The usage of mobile phones and mobile phone apps in the recent decade has indeed become more prevalent. Previous research has highlighted a method of using just the Internet browser and a text editor to create an app, but this does not eliminate the challenges faced by clinicians. More recently, two methodologies of app development have been shared, but there has not been any disclosures pertaining to the costs involved. In addition, limitations such as the distribution and dissemination of the apps have not been addressed. The aims of this research article are to: (1) highlight a low-cost methodology that clinicians without technical knowledge could use to develop educational apps; (2) clarify the respective costs involved in the process of development; (3) illustrate how limitations pertaining to dissemination could be addressed; and (4) to report initial utilization data of the apps and to share initial users' self-rated perception of the apps. In this study, we will present two techniques of how to create a mobile app using two of the well-established online mobile app building websites. The costs of development are specified and the methodology of dissemination of the apps will be shared. The application of the low-cost methodologies in the creation of the "Mastering Psychiatry" app for undergraduates and "Déjà vu" app for postgraduates will be discussed. A questionnaire survey has been administered to undergraduate students collating their perceptions towards the app. For the Mastering Psychiatry app, a cumulative total of 722 users have used the mobile app since inception, based on our analytics. For the Déjà vu app, there has been a cumulative total of 154 downloads since inception. The utilization data demonstrated the receptiveness towards these apps, and this is reinforced by the positive perceptions undergraduate students (n=185) had towards the low-cost self-developed apps. This is one of the few studies that have demonstrated the low

  2. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation

    Science.gov (United States)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.

    2016-01-01

    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  3. Development of Advanced Robotic Hand System for space application

    Science.gov (United States)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  4. Space Solar Power Technology for Lunar Polar Applications

    Science.gov (United States)

    Henley, Mark W.; Howell, Joe T.

    2004-01-01

    The technology for Laser-Photo-Voltaic Wireless Power Transistor (Laser-PV WPT) is being developed for lunar polar applications by Boeing and NASA Marshall Space Center. A lunar polar mission could demonstrate and validate Laser-PV WPT and other SSP technologies, while enabling access to cold, permanently shadowed craters that are believed to contain ice. Crater may hold frozen water and other volatiles deposited over billion of years, recording prior impact event on the moon (and Earth). A photo-voltaic-powered rover could use sunlight, when available, and laser light, when required, to explore a wide range of lunar terrain. The National Research Council recently found that a mission to the moon's south pole-Aitkir basin has priority for space science

  5. Scientific applications of frequency-stabilized laser technology in space

    Science.gov (United States)

    Schumaker, Bonny L.

    1990-01-01

    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.

  6. Application of code scaling, applicability and uncertainty methodology to large break LOCA analysis of two loop PWR

    International Nuclear Information System (INIS)

    Mavko, B.; Stritar, A.; Prosek, A.

    1993-01-01

    In NED 119, No. 1 (May 1990) a series of six papers published by a Technical Program Group presented a new methodology for the safety evaluation of emergency core cooling systems in nuclear power plants. This paper describes the application of that new methodology to the LB LOCA analysis of the two loop Westinghouse power plant. Results of the original work were used wherever possible, so that the analysis was finished in less than one man year of work. Steam generator plugging level and safety injection flow rate were used as additional uncertainty parameters, which had not been used in the original work. The computer code RELAP5/MOD2 was used. Response surface was generated by the regression analysis and by the artificial neural network like Optimal Statistical Estimator method. Results were compared also to the analytical calculation. (orig.)

  7. The Hubble Space Telescope Medium Deep Survey Cluster Sample: Methodology and Data

    Science.gov (United States)

    Ostrander, E. J.; Nichol, R. C.; Ratnatunga, K. U.; Griffiths, R. E.

    1998-12-01

    We present a new, objectively selected, sample of galaxy overdensities detected in the Hubble Space Telescope Medium Deep Survey (MDS). These clusters/groups were found using an automated procedure that involved searching for statistically significant galaxy overdensities. The contrast of the clusters against the field galaxy population is increased when morphological data are used to search around bulge-dominated galaxies. In total, we present 92 overdensities above a probability threshold of 99.5%. We show, via extensive Monte Carlo simulations, that at least 60% of these overdensities are likely to be real clusters and groups and not random line-of-sight superpositions of galaxies. For each overdensity in the MDS cluster sample, we provide a richness and the average of the bulge-to-total ratio of galaxies within each system. This MDS cluster sample potentially contains some of the most distant clusters/groups ever detected, with about 25% of the overdensities having estimated redshifts z > ~0.9. We have made this sample publicly available to facilitate spectroscopic confirmation of these clusters and help more detailed studies of cluster and galaxy evolution. We also report the serendipitous discovery of a new cluster close on the sky to the rich optical cluster Cl l0016+16 at z = 0.546. This new overdensity, HST 001831+16208, may be coincident with both an X-ray source and a radio source. HST 001831+16208 is the third cluster/group discovered near to Cl 0016+16 and appears to strengthen the claims of Connolly et al. of superclustering at high redshift.

  8. An efficient hysteresis modeling methodology and its implementation in field computation applications

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A., E-mail: adlyamr@gmail.com [Electrical Power and Machines Dept., Faculty of Engineering, Cairo University, Giza 12613 (Egypt); Abd-El-Hafiz, S.K. [Engineering Mathematics Department, Faculty of Engineering, Cairo University, Giza 12613 (Egypt)

    2017-07-15

    Highlights: • An approach to simulate hysteresis while taking shape anisotropy into consideration. • Utilizing the ensemble of triangular sub-regions hysteresis models in field computation. • A novel tool capable of carrying out field computation while keeping track of hysteresis losses. • The approach may be extended for 3D tetra-hedra sub-volumes. - Abstract: Field computation in media exhibiting hysteresis is crucial to a variety of applications such as magnetic recording processes and accurate determination of core losses in power devices. Recently, Hopfield neural networks (HNN) have been successfully configured to construct scalar and vector hysteresis models. This paper presents an efficient hysteresis modeling methodology and its implementation in field computation applications. The methodology is based on the application of the integral equation approach on discretized triangular magnetic sub-regions. Within every triangular sub-region, hysteresis properties are realized using a 3-node HNN. Details of the approach and sample computation results are given in the paper.

  9. Application of a methodology based on the Theory of Constraints in the sector of tourism services

    Directory of Open Access Journals (Sweden)

    Reyner Pérez Campdesuñer

    2017-04-01

    Full Text Available Purpose: The objective of the research was aimed at achieving the implementation of the theory of constraints on the operating conditions of a hotel, which differs by its characteristics of traditional processes that have applied this method, from the great heterogeneity of resources needed to meet the demand of customers. Design/methodology/approach: To achieve this purpose, a method of generating conversion equations that allowed to express all the resources of the organization under study depending on the number of customers to serve facilitating comparison between different resources and estimated demand through techniques developed traditional forecasting, these features were integrated into the classical methodology of theory of constraints. Findings: The application of tools designed for hospitality organizations allowed to demonstrate the applicability of the theory of constraints on entities under conditions different from the usual, develop a set of conversion equations of different resources facilitating comparison with demand and consequently achieve improve levels of efficiency and effectiveness of the organization. Originality/value: The originality of the research is summarized in the application of the theory of constraints in a very different from the usual conditions, covering 100% of the processes and resources in hospitality organizations.

  10. Defense nuclear energy systems selection methodology for civil nuclear power applications

    International Nuclear Information System (INIS)

    Scarborough, J.C.

    1986-01-01

    A methodology developed to select a preferred nuclear power system for a US Department of Defense (DOD) application has been used to evaluate preferred nuclear power systems for a remote island community in Southeast Asia. The plant would provide ∼10 MW of electric power, possibly low-temperature process heat for the local community, and would supplement existing island diesel electric capacity. The nuclear power system evaluation procedure was evolved from a disciplined methodology for ranking ten nuclear power designs under joint development by the US Department of Energy (DOE) and DOD. These included six designs proposed by industry for the Secure Military Power Plant Program (now termed Multimegawatt Terrestrial Reactor Program), the SP-100 Program, the North Warning System Program, and the Modular Advanced High-Temperature Gas-Cooled Reactor (HTGR) and Liquid-Metal Reactor (LMR) programs. The 15 evaluation criteria established for the civil application were generally similar to those developed and used for the defense energy systems evaluation, except that the weighting factor applied to each individual criterion differed. The criteria and their weighting (importance) functions for the civil application are described

  11. Morphological Control: A Design Principal for Applications in Space Science

    Science.gov (United States)

    Füchslin, R. M.; Dumont, E.; Flumini, D.; Fuchs, H. U.; Hauser, H.; Jaeger, C.; Scheidegger, S.; Schönenberger-Deuel, J.; Lichtensteiger, L.; Luchsinger, R.; Weyland, M.

    Designing robots for applications in space flight requires a different prioritization of design criteria than for systems operating on Earth. In this article, we argue that the field of soft robotics offers novel approaches meeting the specific requirements of space flight. We present one especially promising construction principle, so called Tensairity, in some detail. Tensairity, as the name suggests, takes ideas from Tensegrity, but uses inflatable structures instead of cables and struts. Soft robots pose substantial challenges with respect to control. One way to meet these challenges is given by the concept of morphological computation and control. Morphological computation can be loosely defined as the exploitation of the shape, material properties, and dynamics of a physical system to improve the efficiency of computation and to deal with systems for which it is difficult to construct a virtual representation using a kinematic model. We discuss fundamental aspects of morphological control and their relevance for space flight. Besides low weight, small consumption of space in the inactive state and advantageous properties with respect to intrinsic safety and energy consumption, we discuss how the blurring of the discrimination of hard- and software leads to control strategies that require only very little and very simple electronic circuitry (which is beneficial in an environment with high irradiation). Finally, we present a research strategy that bundles activities in space flight with research and development in medicine, especially for support systems for an aging population, that are faced with similar morphological computing challenges to astronauts. Such a combination meets the demands for research that is not only effective, but also efficient with respect to economic resources.

  12. Space Processing Applications Rocket project, SPAR 1. Final report

    International Nuclear Information System (INIS)

    Reeves, F.; Chassay, R.

    1976-12-01

    The experiment objectives, design/operational concepts, and final results of each of nine scientific experiments conducted during the first Space Processing Applications Rocket (SPAR) flight are summarized. The nine individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: solidification of Pb-Sb eutectic, feasibility of producing closed-cell metal foams, characterization of rocket vibration environment by measurement of mixing of two liquids, uniform dispersions of crystallization processing, direct observation of solidification as a function of gravity levels, casting thoria dispersion-strengthened interfaces, contained polycrystalline solidification, and preparation of a special alloy for manufacturing of magnetic hard superconductor under zero-g environment

  13. Preliminary Evaluation Of Commercial Supercapacitors For Space Applications

    Science.gov (United States)

    Gineste, Valery; Loup, Didier; Mattesco, Patrick; Neugnot, Nicolas

    2011-10-01

    Supercapacitors are identified since years as a new technology enabling energy storage together with high power delivery capability to the system. A recent ESA study [1] led by Astrium has demonstrated the interest of these devices for space application, providing that reliability and end of life performances are demonstrated. A realistic commercial on the shelf (COTS) approach (or with limited design modification approved by potential suppliers) has been favoured (as for batteries). This paper presents preliminary test results done by Astrium on COTS supercapacitors: accelerated life tests, calendar life tests, technology analyses. Based on these results, assessment and lessons learnt are drawn in view of future exhaustive supercapacitor validation and future qualification.

  14. Evaluation of nickel-hydrogen battery for space application

    Science.gov (United States)

    Billard, J. M.; Dupont, D.

    1983-01-01

    Results of electrical space qualification tests of nickel-hydrogen battery type HR 23S are presented. The results obtained for the nickel-cadmium battery type VO 23S are similar except that the voltage level and the charge conservation characteristics vary significantly. The electrical and thermal characteristics permit predictions of the following optimal applications: charge coefficient in the order of 1.3 to 1.4 at 20C; charge current density higher than C/10 at 20C; discharge current density from C/10 to C/3 at 20C; maximum discharge temperature: OC; storage temperature: -20C.

  15. Future NASA Power Technologies for Space and Aero Propulsion Applications

    Science.gov (United States)

    Soeder, James F.

    2015-01-01

    To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development. Finally, the presentation examines what type of non-traditional learning areas should be emphasized in student curriculum so that the engineering needs of the third decade of the 21st Century are met.

  16. Space Processing Applications rocket project SPAR III. Final report

    International Nuclear Information System (INIS)

    Reeves, F.

    1978-01-01

    This document presents the engineering report and science payload III test report and summarizes the experiment objectives, design/operational concepts, and final results of each of five scientific experiments conducted during the third Space Processing Applications Rocket (SPAR) flight flown by NASA in December 1976. The five individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: Liquid Mixing, Interaction of Bubbles with Solidification Interfaces, Epitaxial Growth of Single Crystal Film, Containerless Processing of Beryllium, and Contact and Coalescence of Viscous Bodies

  17. TiAu-based micro-calorimeters for space applications

    International Nuclear Information System (INIS)

    Dirks, B.P.F.; Popescu, M.; Bruijn, M.; Gottardi, L.; Hoevers, H.F.C.; Korte, P.A.J. de; Kuur, J. van der; Ridder, M.; Takei, Y.

    2009-01-01

    We present the latest results of the performance of micro-calorimeters based on transition edge sensors (TESs) for space applications. Sensors based on TiAu superconductive layers with Cu/Bi absorbers are discussed and have been characterized. Different coupling schemes between absorber and TES have been tested leading to an optimal (preferred) design for a new batch of arrays. We discuss the progress on array development for the International X-ray Observatory (IXO) in terms of pixel uniformity and filling factor. Inter-pixel cross-talk is discussed as well.

  18. Attack Methodology Analysis: Emerging Trends in Computer-Based Attack Methodologies and Their Applicability to Control System Networks

    Energy Technology Data Exchange (ETDEWEB)

    Bri Rolston

    2005-06-01

    Threat characterization is a key component in evaluating the threat faced by control systems. Without a thorough understanding of the threat faced by critical infrastructure networks, adequate resources cannot be allocated or directed effectively to the defense of these systems. Traditional methods of threat analysis focus on identifying the capabilities and motivations of a specific attacker, assessing the value the adversary would place on targeted systems, and deploying defenses according to the threat posed by the potential adversary. Too many effective exploits and tools exist and are easily accessible to anyone with access to an Internet connection, minimal technical skills, and a significantly reduced motivational threshold to be able to narrow the field of potential adversaries effectively. Understanding how hackers evaluate new IT security research and incorporate significant new ideas into their own tools provides a means of anticipating how IT systems are most likely to be attacked in the future. This research, Attack Methodology Analysis (AMA), could supply pertinent information on how to detect and stop new types of attacks. Since the exploit methodologies and attack vectors developed in the general Information Technology (IT) arena can be converted for use against control system environments, assessing areas in which cutting edge exploit development and remediation techniques are occurring can provide significance intelligence for control system network exploitation, defense, and a means of assessing threat without identifying specific capabilities of individual opponents. Attack Methodology Analysis begins with the study of what exploit technology and attack methodologies are being developed in the Information Technology (IT) security research community within the black and white hat community. Once a solid understanding of the cutting edge security research is established, emerging trends in attack methodology can be identified and the gap between

  19. Strategic plan, 1991: A strategy for leadership in space through excellence in space science and applications

    Science.gov (United States)

    1991-01-01

    In 1988, the Office of Space Science and Applications (OSSA) developed and published a Strategic Plan for the United States' space science and applications program during the next 5 to 10 years. The Plan presented the proposed OSSA program for the next fiscal year and defined a flexible process that provides the basis for near-term decisions on the allocation of resources and the planning of future efforts. Based on the strategies that have been developed by the advisory committees both of the National Academy of Sciences and of NASA, the Plan balances major, moderate, and small mission initiatives, the utilization of Space Station Freedom, and the requirements for a vital research base. The Plan can be adjusted to accommodate varying budget levels, both those levels that provide opportunities for an expanded science and applications program, and those that constrain growth. SSA's strategic planning is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy can yield a viable program; and check the strategy for consistency with resource constraints. The outcome of this process is a clear, coherent strategy that meets both NASA's and OSSA's goals, that assures realism in long-range planning and advanced technology development, and that provides sufficient resiliency to respond and adapt to both known and unexpected internal and external realities. The OSSA Strategic Plan is revised annually to reflect the approval of new programs, improved understanding of requirements and issues, and any major changes in the circumstances, both within NASA and external to NASA, in which OSSA initiatives are considered.

  20. Methodology for digital radiography simulation using the Monte Carlo code MCNPX for industrial applications

    International Nuclear Information System (INIS)

    Souza, E.M.; Correa, S.C.A.; Silva, A.X.; Lopes, R.T.; Oliveira, D.F.

    2008-01-01

    This work presents a methodology for digital radiography simulation for industrial applications using the MCNPX radiography tally. In order to perform the simulation, the energy-dependent response of a BaFBr imaging plate detector was modeled and introduced in the MCNPX radiography tally input. In addition, a post-processing program was used to convert the MCNPX radiography tally output into 16-bit digital images. Simulated and experimental images of a steel pipe containing corrosion alveoli and stress corrosion cracking were compared, and the results showed good agreement between both images

  1. SystemVerilog assertions and functional coverage guide to language, methodology and applications

    CERN Document Server

    Mehta, Ashok B

    2013-01-01

    This book provides a hands-on, application-oriented guide to the language and methodology of both SystemVerilog Assertions and SytemVerilog Functional Coverage.  Readers will benefit from the step-by-step approach to functional hardware verification, which will enable them to uncover hidden and hard to find bugs, point directly to the source of the bug, provide for a clean and easy way to model complex timing checks and objectively answer the question 'have we functionally verified everything'.  Written by a professional end-user of both SystemVerilog Assertions and SystemVerilog Functional Co

  2. The JPL space photovoltaic program. [energy efficient so1 silicon solar cells for space applications

    Science.gov (United States)

    Scott-Monck, J. A.

    1979-01-01

    The development of energy efficient solar cells for space applications is discussed. The electrical performance of solar cells as a function of temperature and solar intensity and the influence of radiation and subsequent thermal annealing on the electrical behavior of cells are among the factors studied. Progress in GaAs solar cell development is reported with emphasis on improvement of output power and radiation resistance to demonstrate a solar cell array to meet the specific power and stability requirements of solar power satellites.

  3. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  4. Development of Pulse Tube Cryocoolers at SITP for Space Application

    Science.gov (United States)

    Zhang, Ankuo; Wu, Yinong; Liu, Shaoshuai; Yu, Huiqin; Yang, Baoyu

    2018-05-01

    Over the last 10 years, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, has developed very high-efficiency pulse tube cryocoolers (PTCs) for aerospace applications. These PTCs can provide cooling power from milliwatt scale to tens of watts over a range of temperatures from 30 to 170 K and can be used to cool a variety of detectors in space applications (such as quantum interference devices, radiometers and ocean color sensors) that must operate at a specific cryogenic temperature to increase the signal-to-noise ratio, sensitivity and optical resolution. This paper reviews the development of single-stage PTCs over a range of weights from 1.6 to 12 kg that offer cooling powers at the cold temperature range from 40 to 170 K. In addition, a two-stage 30 K-PTC is under development.

  5. System Engineering of Photonic Systems for Space Application

    Science.gov (United States)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  6. Guidelines on Lithium-ion Battery Use in Space Applications

    Science.gov (United States)

    Mckissock, Barbara; Loyselle, Patricia; Vogel, Elisa

    2009-01-01

    This guideline discusses a standard approach for defining, determining, and addressing safety, handling, and qualification standards for lithium-ion (Li-Ion) batteries to help the implementation of the technology in aerospace applications. Information from a variety of other sources relating to Li-ion batteries and their aerospace uses has been collected and included in this document. The sources used are listed in the reference section at the end of this document. The Li-Ion chemistry is highly energetic due to its inherent high specific energy and its flammable electrolyte. Due to the extreme importance of appropriate design, test, and hazard control of Li-ion batteries, it is recommended that all Government and industry users and vendors of this technology for space applications, especially involving humans, use this document for appropriate guidance prior to implementing the technology.

  7. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric

    2001-01-01

    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  8. Vedic division methodology for high-speed very large scale integration applications

    Directory of Open Access Journals (Sweden)

    Prabir Saha

    2014-02-01

    Full Text Available Transistor level implementation of division methodology using ancient Vedic mathematics is reported in this Letter. The potentiality of the ‘Dhvajanka (on top of the flag’ formula was adopted from Vedic mathematics to implement such type of divider for practical very large scale integration applications. The division methodology was implemented through half of the divisor bit instead of the actual divisor, subtraction and little multiplication. Propagation delay and dynamic power consumption of divider circuitry were minimised significantly by stage reduction through Vedic division methodology. The functionality of the division algorithm was checked and performance parameters like propagation delay and dynamic power consumption were calculated through spice spectre with 90 nm complementary metal oxide semiconductor technology. The propagation delay of the resulted (32 ÷ 16 bit divider circuitry was only ∼300 ns and consumed ∼32.5 mW power for a layout area of 17.39 mm^2. Combination of Boolean arithmetic along with ancient Vedic mathematics, substantial amount of iterations were reduced resulted as ∼47, ∼38, 34% reduction in delay and ∼34, ∼21, ∼18% reduction in power were investigated compared with the mostly used (e.g. digit-recurrence, Newton–Raphson, Goldschmidt architectures.

  9. Calculation of t8/5 by response surface methodology for electric arc welding applications

    Directory of Open Access Journals (Sweden)

    Meseguer-Valdenebro José Luis

    2014-01-01

    Full Text Available One of the greatest difficulties traditionally found in stainless steel constructions has been the execution of welding parts in them. At the present time, the available technology allows us to use arc welding processes for that application without any disadvantage. Response surface methodology is used to optimise a process in which the variables that take part in it are not related to each other by a mathematical law. Therefore, an empiric model must be formulated. With this methodology the optimisation of one selected variable may be done. In this work, the cooling time that takes place from 800 to 500ºC, t8/5, after TIG welding operation, is modelled by the response surface method. The arc power, the welding velocity and the thermal efficiency factor are considered as the variables that have influence on the t8/5 value. Different cooling times,t8/5, for different combinations of values for the variables are previously determined by a numerical method. The input values for the variables have been experimentally established. The results indicate that response surface methodology may be considered as a valid technique for these purposes.

  10. Water and Carbon Footprint of Wine: Methodology Review and Application to a Case Study

    Directory of Open Access Journals (Sweden)

    Sara Rinaldi

    2016-07-01

    Full Text Available Life cycle assessments (LCAs play a strategic role in improving the environmental performance of a company and in supporting a successful marketing communication. The high impact of the food industry on natural resources, in terms of water consumption and greenhouse gases emission, has been focusing the attention of consumers and producers towards environmentally sustainable products. This work presents a comprehensive approach for the joint evaluation of carbon (CF and water (WF footprint of the wine industry from a cradle to grave perspective. The LCA analysis is carried out following the requirements of international standards (ISO/TS 14067 and ISO 14046. A complete review of the water footprint methodology is presented and guidelines for all the phases of the evaluation procedure are provided, including acquisition and validation of input data, allocation, application of analytic models, and interpretation of the results. The strength of this approach is the implementation of a side-by-side CF vs. WF assessment, based on the same system boundaries, functional unit, and input data, that allows a reliable comparison between the two indicators. In particular, a revised methodology is presented for the evaluation of the grey water component. The methodology was applied to a white and a red wine produced in the same company. A comparison between the two products is presented for each LCA phase along with literature results for similar wines.

  11. Lidar technologies for airborne and space-based applications

    International Nuclear Information System (INIS)

    Henson, T.D.; Schmitt, R.L.; Sobering, T.J.; Raymond, T.D.; Stephenson, D.A.

    1994-10-01

    This study identifies technologies required to extend the capabilities of airborne light detection and ranging (lidar) systems and establish the feasibility of autonomous space-based lidars. Work focused on technologies that enable the development of a lightweight, low power, rugged and autonomous Differential Absorption Lidar (DIAL) instruments. Applications for airborne or space-based DIAL include the measurement of water vapor profiles in support of climate research and processing-plant emissions signatures for environmental and nonproliferation monitoring. A computer-based lidar performance model was developed to allow trade studies to be performed on various technologies and system configurations. It combines input from the physics (absorption line strengths and locations) of the problem, the system requirements (weight, power, volume, accuracy), and the critical technologies available (detectors, lasers, filters) to produce the best conceptual design. Conceptual designs for an airborne and space-based water vapor DIAL, and a detailed design of a ground-based water vapor DIAL demonstration system were completed. Future work planned includes the final testing, integration, and operation of the demonstration system to prove the capability of the critical enabling technologies identified

  12. Mitigating radiation damage of single photon detectors for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Cranmer, Miles [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Choi, Eric [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Magellan Aerospace, Ottawa, ON (Canada); Hudson, Danya; Piche, Louis P.; Scott, Alan [Honeywell Aerospace (formerly COM DEV Ltd.), Ottawa, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada)

    2017-12-15

    Single-photon detectors in space must retain useful performance characteristics despite being bombarded with sub-atomic particles. Mitigating the effects of this space radiation is vital to enabling new space applications which require high-fidelity single-photon detection. To this end, we conducted proton radiation tests of various models of avalanche photodiodes (APDs) and one model of photomultiplier tube potentially suitable for satellite-based quantum communications. The samples were irradiated with 106 MeV protons at doses approximately equivalent to lifetimes of 0.6, 6, 12 and 24 months in a low-Earth polar orbit. Although most detection properties were preserved, including efficiency, timing jitter and afterpulsing probability, all APD samples demonstrated significant increases in dark count rate (DCR) due to radiation-induced damage, many orders of magnitude higher than the 200 counts per second (cps) required for ground-to-satellite quantum communications. We then successfully demonstrated the mitigation of this DCR degradation through the use of deep cooling, to as low as -86 C. This achieved DCR below the required 200 cps over the 24 months orbit duration. DCR was further reduced by thermal annealing at temperatures of +50 to +100 C. (orig.)

  13. Review of the Space Debris Protection Application on ``TIANGONG-1''

    Science.gov (United States)

    Zhang, Yong; Li, Ming; Han, Zengyao

    Meteoroid and orbital debris (M/OD) is the key factor related to the astronaut safety. The long-term manned spacelab generally adopts protection measures to reduce its hypervelocity impact (HVI) risk. This paper presents the engineering application on“Tiangong-1”,the first long-term spacelab in orbit for China.The application includes the M/OD shielding, active avoidance and mitigation. Firstly, the shielding concepts on“Tiangong-1”manned module and radiator are summarized. Two typical Whipple shields respectively with the 70mm and 50mm standoff are separately utilized for the front cone and cylinder pressurized walls. The ballistic limit Equations (BLE) of these two shieldings are achieved through the HVI tests and numerical simulation. The shields provide the resistance capability of space debris particle.Meanwhile, the M/OD risk is assessed by utilizing the MODAOST to predict the probability of penetration (PP) and probability of critical failure (PCF). The assessment shows that the shielding design meets the safety requirement with the PP of 2.09X10 (-3) and the critical cracking PCF of 3.35X10 (-4) . The radiator,the large-scaled component of manned Spacelab, adopts the Ω-shaped tube to improve the HVI resistance capability with the cost of less mass. Secondly, the orbit transfer strategy is designed not only to meet the requirement of the orbit phase of “Shenzhou” spacecraft but also actively avoid the rendezvous with the cataloged debris in orbit. This strategy is validated through the rendezvous and docking missions of “Shenzhou-8” and “Tiangong-1”,“Shenzhou-9”,“Shenzhou-10”. Thirdly, the mitigation and deactivation concepts are introduced by means of reentry simulation of “Tiangong-1” to protect the space environment and reduce the ground casualty. The space debris protection techniques applied on “Tiangong-1” have been broken through with the successful mission of “Tiangong-1”, and these applied techniques provide

  14. Construction of fuzzy spaces and their applications to matrix models

    Science.gov (United States)

    Abe, Yasuhiro

    Quantization of spacetime by means of finite dimensional matrices is the basic idea of fuzzy spaces. There remains an issue of quantizing time, however, the idea is simple and it provides an interesting interplay of various ideas in mathematics and physics. Shedding some light on such an interplay is the main theme of this dissertation. The dissertation roughly separates into two parts. In the first part, we consider rather mathematical aspects of fuzzy spaces, namely, their construction. We begin with a review of construction of fuzzy complex projective spaces CP k (k = 1, 2, · · ·) in relation to geometric quantization. This construction facilitates defining symbols and star products on fuzzy CPk. Algebraic construction of fuzzy CPk is also discussed. We then present construction of fuzzy S 4, utilizing the fact that CP3 is an S2 bundle over S4. Fuzzy S4 is obtained by imposing an additional algebraic constraint on fuzzy CP3. Consequently it is proposed that coordinates on fuzzy S4 are described by certain block-diagonal matrices. It is also found that fuzzy S8 can analogously be constructed. In the second part of this dissertation, we consider applications of fuzzy spaces to physics. We first consider theories of gravity on fuzzy spaces, anticipating that they may offer a novel way of regularizing spacetime dynamics. We obtain actions for gravity on fuzzy S2 and on fuzzy CP3 in terms of finite dimensional matrices. Application to M(atrix) theory is also discussed. With an introduction of extra potentials to the theory, we show that it also has new brane solutions whose transverse directions are described by fuzzy S 4 and fuzzy CP3. The extra potentials can be considered as fuzzy versions of differential forms or fluxes, which enable us to discuss compactification models of M(atrix) theory. In particular, compactification down to fuzzy S4 is discussed and a realistic matrix model of M-theory in four-dimensions is proposed.

  15. Space Solar Power Technology Demonstration for Lunar Polar Applications

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  16. Characterisation of a LSO scintillation crystal for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Elftmann, Robert; Grunau, Jan; Kulkarni, Shrinivasrao; Martin, Cesar; Wimmer-Schweingruber, Robert F. [IEAP, Christian-Albrechts-Universitaet Kiel (Germany)

    2013-07-01

    Inorganic scintillation crystals coupled with semiconductor detectors are often used in space applications as gamma ray detectors or high energy particle calorimeters. Currently BGO (Bi{sub 4}Ge{sub 3}O{sub 12}) is widely used for this purpose because of its high stopping power, the non hygroscopy and its ruggedness, which is favorable in space applications. Cerium doped LSO (Lu{sub 2}SiO{sub 5}) offers the same benefits with higher light output capabilites and a shorter decay time. In this work a cerium doped LSO scintillation crystal coupled with a photo diode is investigated. The light yield and resolution studies for two different radioactive sources, {sup 207}Bi and {sup 60}Co, are presented. To increase the light collection and consequently the energy resolution, scintillation crystals are wrapped in highly reflective material. The increase in light collection depending on the amount of layers for the LSO crystal along with investigations of quenching effects with alpha particles and the background spectrum, which arises from radioactive cerium isotopes, are also included in this work.

  17. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    Science.gov (United States)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  18. 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Koziel, Slawomir; Kacprzyk, Janusz; Leifsson, Leifur; Ören, Tuncer

    2015-01-01

    This book includes extended and revised versions of a set of selected papers from the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2013) which was co-organized by the Reykjavik University (RU) and sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC). SIMULTECH 2013 was held in cooperation with the ACM SIGSIM - Special Interest Group (SIG) on SImulation and Modeling (SIM), Movimento Italiano Modellazione e Simulazione (MIMOS) and AIS Special Interest Group on Modeling and Simulation (AIS SIGMAS) and technically co-sponsored by the Society for Modeling & Simulation International (SCS), Liophant Simulation, Simulation Team and International Federation for Information Processing (IFIP). This proceedings brings together researchers, engineers, applied mathematicians and practitioners working in the advances and applications in the field of system simulation.

  19. Probablistic risk assessment methodology application to Indian pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Babar, A.K.; Grover, R.B.; Mehra, V.K.; Gangwal, D.K.; Chakraborty, G.

    1987-01-01

    Probabilistic risk assessment in the context of nuclear power plants is associated with models that predict the offsite radiological releases resulting from reactor accidents. Level 1 PRA deals with the identification of accident sequences relevant to the design of a system and also with their quantitative estimation. It is characterised by event tree, fault tree analysis. The initiating events applicable to pressurised heavy water reactors have been considered and the dominating initiating events essential for detailed studies are identified in this paper. Reliability analysis and the associated problems encountered during the case studies are mentioned briefly. It is imperative to validate the failure data used for analysis. Bayesian technique has been employed for the same and a brief account is included herein. A few important observations, e.g. effects of the presence of moderator, made during the application of probabilistic risk assessment methodology are also discussed. (author)

  20. Application of the BEPU methodology to assess fuel performance in dry storage

    International Nuclear Information System (INIS)

    Feria, F.; Herranz, L.E.

    2017-01-01

    Highlights: • Application of the BEPU methodology to estimate the cladding stress in dry storage. • The stress predicted is notably affected by the irradiation history. • Improvements of FGR modelling would significantly enhance the stress estimates. • The prediction uncertainty should not be disregarded when assessing clad integrity. - Abstract: The stress at which fuel cladding is submitted in dry storage is the driving force of the main degrading mechanisms postulated (i.e., embrittlement due to hydrides radial reorientation and creep). Therefore, a sound assessment is mandatory to reliably predict fuel performance under the dry storage prevailing conditions. Through fuel rod thermo-mechanical codes, best estimate calculations can be conducted. Precision of predictions depends on uncertainties affecting the way of calculating the stress, so by using uncertainty analysis an upper bound of stress can be determined and compared to safety limits set. The present work shows the application of the BEPU (Best Estimate Plus Uncertainty) methodology in this field. Concretely, hydrides radial reorientation has been assessed based on stress predictions under challenging thermal conditions (400 °C) and a stress limit of 90 MPa. The computational tools used to do that are FRAPCON-3xt (best estimate) and Dakota (uncertainty analysis). The methodology has been applied to a typical PWR fuel rod highly irradiated (65 GWd/tU) at different power histories. The study performed allows concluding that both the power history and the prediction uncertainty should not be disregarded when fuel rod integrity is evaluated in dry storage. On probabilistic bases, a burnup of 60 GWd/tU is found out as an acceptable threshold even in the most challenging irradiation conditions considered.

  1. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings.

    Science.gov (United States)

    Bao, Yihai; Main, Joseph A; Noh, Sam-Young

    2017-08-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.

  2. Assessment of brain perfusion with MRI: methodology and application to acute stroke

    International Nuclear Information System (INIS)

    Grandin, C.B.

    2003-01-01

    We review the methodology of brain perfusion measurements with MRI and their application to acute stroke, with particular emphasis on the work awarded by the 6th Lucien Appel Prize for Neuroradiology. The application of the indicator dilution theory to the dynamic susceptibility-weighted bolus-tracking method is explained, as is the approach to obtaining quantitative measurements of cerebral blood flow (CBF) and volume (CBV). Our contribution to methodological developments, such as CBV measurement with the frequency-shifted burst sequence, development of the PRESTO sequence, comparison of different deconvolution methods and of spin- and gradient-echo sequences, and the validation of MRI measurements against positron emission tomography is summarised. The pathophysiology of brain ischaemia and the role of neuroimaging in the setting of acute stroke are reviewed, with an introduction to the concepts of ischaemic penumbra and diffusion/perfusion mismatch. Our work on the determination of absolute CBF and CBV thresholds for predicting the area of infarct growth, identification of the best perfusion parameters (relative or absolute) for predicting the area of infarct growth and the role of MR angiography is also summarised. We conclude that MRI is a very powerful way to assess brain perfusion and that its use might help in selecting patients who will benefit most from treatment such as thrombolysis. (orig.)

  3. APPLICATION OF METHODOLOGY OF STRATEGIC PLANNING IN DEVELOPING NATIONAL PROGRAMMES ON DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Inna NOVAK

    2015-07-01

    Full Text Available Actuality: The main purpose of strategic planning is that long-term interests of sustainable development of a market economy require the use of effective measures of state regulation of economic and social processes. Objective: The aim of the article is determined to analyze the development of strategic planning methodology and practical experience of its application in the design of national development programs. Methods: When writing the article the following research methods were used: analysis and synthesis, target-oriented and monographic. Results: In Ukraine at the level of state and local government authorities strategies of development of branches, regions, cities, etc. are being developed but given the lack of state funding a unified investment strategy of the country is not developed. After analyzing development of the strategic planning methodology and examples of its application in the design of state development programs we identified the need to develop an investment strategy of the state (sectors, regions, etc., as due to defined directions and guidelines of the activity it will increase the investment level in the country and ensure national strategy “Ukraine-2020”.

  4. Smart Grid Development Issues for Terrestrial and Space Applications

    Science.gov (United States)

    Soeder, James F.

    2014-01-01

    The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.

  5. Radiation Tests of Single Photon Avalanche Diode for Space Applications

    Science.gov (United States)

    Moscatelli, Francesco; Marisaldi, Martino; MacCagnani, Piera; Labanti, Claudio; Fuschino, Fabio; Prest, Michela; Berra, Alessandro; Bolognini, Davide; Ghioni, Massimo; Rech, Ivan; hide

    2013-01-01

    Single photon avalanche diodes (SPADs) have been recently studied as photodetectors for applications in space missions. In this presentation we report the results of radiation hardness test on large area SPAD (actual results refer to SPADs having 500 micron diameter). Dark counts rate as low as few kHz at -10 degC has been obtained for the 500 micron devices, before irradiation. We performed bulk damage and total dose radiation tests with protons and gamma-rays in order to evaluate their radiation hardness properties and their suitability for application in a Low Earth Orbit (LEO) space mission. With this aim SPAD devices have been irradiated using up to 20 krad total dose with gamma-rays and 5 krad with protons. The test performed show that large area SPADs are very sensitive to proton doses as low as 2×10(exp 8) (1 MeV eq) n/cm2 with a significant increase in dark counts rate (DCR) as well as in the manifestation of the "random telegraph signal" effect. Annealing studies at room temperature (RT) and at 80 degC have been carried out, showing a high decrease of DCR after 24-48 h at RT. Lower protons doses in the range 1-10×10(exp 7) (1 MeV eq) n/cm(exp 2) result in a lower increase of DCR suggesting that the large-area SPADs tested in this study are well suitable for application in low-inclination LEO, particularly useful for gamma-ray astrophysics.

  6. Wireless Technology Use Case Requirement Analysis for Future Space Applications

    Science.gov (United States)

    Abedi, Ali; Wilkerson, DeLisa

    2016-01-01

    This report presents various use case scenarios for wireless technology -including radio frequency (RF), optical, and acoustic- and studies requirements and boundary conditions in each scenario. The results of this study can be used to prioritize technology evaluation and development and in the long run help in development of a roadmap for future use of wireless technology. The presented scenarios cover the following application areas: (i) Space Vehicles (manned/unmanned), (ii) Satellites and Payloads, (iii) Surface Explorations, (iv) Ground Systems, and (v) Habitats. The requirement analysis covers two parallel set of conditions. The first set includes the environmental conditions such as temperature, radiation, noise/interference, wireless channel characteristics and accessibility. The second set of requirements are dictated by the application and may include parameters such as latency, throughput (effective data rate), error tolerance, and reliability. This report provides a comprehensive overview of all requirements from both perspectives and details their effects on wireless system reliability and network design. Application area examples are based on 2015 NASA Technology roadmap with specific focus on technology areas: TA 2.4, 3.3, 5.2, 5.5, 6.4, 7.4, and 10.4 sections that might benefit from wireless technology.

  7. Ni-Ti Next Generation Bearings for Space Applications

    Science.gov (United States)

    DellaCorte, Christopher

    2018-01-01

    NASA applications challenge traditional bearing materials. The rigors of launch often include heavy shock loads and exposure to corrosive environments (e.g., salt spray). Unfortunately, ball and roller bearings made from hardened steels are vulnerable to Brinell denting and rust which can limit performance and life. Ceramic materials can eliminate corrosion concerns but their high stiffness and extreme hardness actually makes denting problems worse. In this presentation, an emerging superelastic alloy, NiTi, is introduced for rolling element bearing applications. Through a decade of RD, NiTi alloy bearings have been put through a comprehensive series of life and performance tests. Hardness, corrosion, strength, stiffness, and rolling contact fatigue tests have been conducted and reported. Ball bearings ranging in size from 12 to 50mm bore have been successfully engineered and operated over a wide range of speeds and test conditions including being submerged in water. The combination of high hardness, moderate elastic modulus, low density, and intrinsic corrosion immunity provide new possibilities for mechanisms that operate under extreme conditions. Recent preliminary tests indicate that bearings can be made from NiTi alloys that are easily lubricated by conventional oils and greases and exhibit acceptable rolling contact fatigue resistance. This presentation introduces the NiTi materials systems and shows how NASA is using it to alleviate several specific problems encountered in advanced space applications.

  8. Characterization of 3D joint space morphology using an electrostatic model (with application to osteoarthritis)

    International Nuclear Information System (INIS)

    Cao, Qian; Gang, Grace J; Zbijewski, Wojciech; Reigel, Thomas; Siewerdsen, Jeffrey H; Thawait, Gaurav; Demehri, Shadpour; Brown, Tyler; Corner, Brian

    2015-01-01

    Joint space morphology can be indicative of the risk, presence, progression, and/or treatment response of disease or trauma. We describe a novel methodology of characterizing joint space morphology in high-resolution 3D images (e.g. cone-beam CT (CBCT)) using a model based on elementary electrostatics that overcomes a variety of basic limitations of existing 2D and 3D methods. The method models each surface of a joint as a conductor at fixed electrostatic potential and characterizes the intra-articular space in terms of the electric field lines resulting from the solution of Gauss’ Law and the Laplace equation. As a test case, the method was applied to discrimination of healthy and osteoarthritic subjects (N = 39) in 3D images of the knee acquired on an extremity CBCT system. The method demonstrated improved diagnostic performance (area under the receiver operating characteristic curve, AUC > 0.98) compared to simpler methods of quantitative measurement and qualitative image-based assessment by three expert musculoskeletal radiologists (AUC = 0.87, p-value = 0.007). The method is applicable to simple (e.g. the knee or elbow) or multi-axial joints (e.g. the wrist or ankle) and may provide a useful means of quantitatively assessing a variety of joint pathologies. (paper)

  9. Characterization of 3D joint space morphology using an electrostatic model (with application to osteoarthritis)

    Science.gov (United States)

    Cao, Qian; Thawait, Gaurav; Gang, Grace J.; Zbijewski, Wojciech; Reigel, Thomas; Brown, Tyler; Corner, Brian; Demehri, Shadpour; Siewerdsen, Jeffrey H.

    2015-02-01

    Joint space morphology can be indicative of the risk, presence, progression, and/or treatment response of disease or trauma. We describe a novel methodology of characterizing joint space morphology in high-resolution 3D images (e.g. cone-beam CT (CBCT)) using a model based on elementary electrostatics that overcomes a variety of basic limitations of existing 2D and 3D methods. The method models each surface of a joint as a conductor at fixed electrostatic potential and characterizes the intra-articular space in terms of the electric field lines resulting from the solution of Gauss’ Law and the Laplace equation. As a test case, the method was applied to discrimination of healthy and osteoarthritic subjects (N = 39) in 3D images of the knee acquired on an extremity CBCT system. The method demonstrated improved diagnostic performance (area under the receiver operating characteristic curve, AUC > 0.98) compared to simpler methods of quantitative measurement and qualitative image-based assessment by three expert musculoskeletal radiologists (AUC = 0.87, p-value = 0.007). The method is applicable to simple (e.g. the knee or elbow) or multi-axial joints (e.g. the wrist or ankle) and may provide a useful means of quantitatively assessing a variety of joint pathologies.

  10. Development of a Novel Wireless Electric Power Transfer System for Space Applications

    Science.gov (United States)

    VazquezRamos, Gabriel; Yuan, Jiann-Shiun

    2011-01-01

    This paper will introduce a new implementation for wireless electric power transfer systems: space applications. Due to the risks that constitute the use of electrical connector for some space missions/applications, a simple wireless power system design approach will be evaluated as an alternative for the use of electrical connectors. This approach takes into consideration the overall system performance by designing the magnetic resonance elements and by verifying the overall system electrical behavior. System characterization is accomplished by executing circuit and analytical simulations using Matlab(TradeMark) and LTSpiceIV(TradeMark) software packages. The design methodology was validated by two different experiments: frequency consideration (design of three magnetic elements) and a small scale proof-ofconcept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The proof-of-concept prototype provided approx.4 W of wireless power to the load (light bulb) at a separation of 3 cm from the source. In addition. a resonant circuit was designed and installed to the battery terminals of a handheld radio without batteries, making it tum on at a separation of approx.5 cm or less from the source. It was also demonstrated by prototype experimentation that multiple loads can be powered wirelessly at the same time with a single electric power source.

  11. Applications of human error analysis to aviation and space operations

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1998-01-01

    For the past several years at the Idaho National Engineering and Environmental Laboratory (INEEL) we have been working to apply methods of human error analysis to the design of complex systems. We have focused on adapting human reliability analysis (HRA) methods that were developed for Probabilistic Safety Assessment (PSA) for application to system design. We are developing methods so that human errors can be systematically identified during system design, the potential consequences of each error can be assessed, and potential corrective actions (e.g. changes to system design or procedures) can be identified. These applications lead to different requirements when compared with HR.As performed as part of a PSA. For example, because the analysis will begin early during the design stage, the methods must be usable when only partial design information is available. In addition, the ability to perform numerous ''what if'' analyses to identify and compare multiple design alternatives is essential. Finally, since the goals of such human error analyses focus on proactive design changes rather than the estimate of failure probabilities for PRA, there is more emphasis on qualitative evaluations of error relationships and causal factors than on quantitative estimates of error frequency. The primary vehicle we have used to develop and apply these methods has been a series of prqjects sponsored by the National Aeronautics and Space Administration (NASA) to apply human error analysis to aviation operations. The first NASA-sponsored project had the goal to evaluate human errors caused by advanced cockpit automation. Our next aviation project focused on the development of methods and tools to apply human error analysis to the design of commercial aircraft. This project was performed by a consortium comprised of INEEL, NASA, and Boeing Commercial Airplane Group. The focus of the project was aircraft design and procedures that could lead to human errors during airplane maintenance

  12. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    Science.gov (United States)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  13. Cermet-fueled reactors for multimegawatt space power applications

    International Nuclear Information System (INIS)

    Cowan, C.L.; Armijo, J.S.; Kruger, G.B.; Palmer, R.S.; Van Hoomisson, J.E.

    1988-01-01

    The cermet-fueled reactor has evolved as a potential power source for a broad range of multimegawatt space applications. In particular, the fast spectrum reactor concept can be used to deliver 10s of megawatts of electric power for continuous, long term, unattended operation, and 100s of megawatts of electric power for times exceeding several hundred seconds. The system can also be utilized with either a gas coolant in a Brayton power conversion cycle, or a liquid metal coolant in a Rankine power conversion cycle. Extensive testing of the cermet fuel element has demonstrated that the fuel is capable of operating at very high temperatures under repeated thermal cycling conditions, including transient conditions which approach the multimegawatt burst power requirements. The cermet fuel test performance is reviewed and an advanced cermet-fueled multimegawatt nuclear reactor is described in this paper

  14. HgCdTe APDS for space applications

    Science.gov (United States)

    Rothman, Johan; de Broniol, Eric; Foubert, Kevin; Mollard, Laurent; Péré-Laperne, Nicolas; Salvetti, Frederic; Kerlain, Alexandre; Reibel, Yann

    2017-11-01

    HgCdTe avalanche photodiode focal plane arrays (FPAs) and single element detectors have been developed for a large scope of photon starved applications. The present communication present the characteristics of our most recent detector developments that opens the horizon for low infrared (IR) photon number detection with high information conservation for imaging, atmospheric lidar and free space telecommunications. In particular, we report on the performance of TEC cooled large area detectors with sensitive diameters ranging from 30- 200 μm, characterised by detector gains of 2- 20 V/μW and noise equivalent input power of 0.1-1 nW for bandwidths ranging from 20 to 400 MHz.

  15. Efficient and compact hyperspectral imager for space-borne applications

    Science.gov (United States)

    Pisani, Marco; Zucco, Massimo

    2017-11-01

    In the last decades Hyperspectral Imager (HI) have become irreplaceable space-borne instruments for an increasing number of applications. A number of HIs are now operative onboard (e.g. CHRIS on PROBA), others are going to be launched (e.g. PRISMA, EnMAP, HyspIRI), many others are at the breadboard level. The researchers goal is to realize HI with high spatial and spectral resolution, having low weight and contained dimensions. The most common HI technique is based on the use of a dispersive mean (a grating or a prism) or on the use of band pass filters (tunable or linear variable). These approaches have the advantages of allowing compact devices. Another approach is based on the use of interferometer based spectrometers (Michelson or Sagnac type). The advantage of the latter is a very high efficiency in light collection because of the well-known Felgett and Jaquinot principles.

  16. Terrestrial Micro Renewable Energy Applications of Space Technology

    Science.gov (United States)

    Komerath, N. M.; Komerath, P. P.

    This paper explores the synergy between technologies intended for extraterrestrial in situ resource utilization and those for terrestrial mass-market micro renewable power generation systems. The case for a micro renewable energy architecture is presented. The obstacles hindering market success are summarized, along with opportunities from recent demonstrations suggesting that the public appetite for sophisticated technology worldwide may be underappreciated by technical researchers. Technical innovations from space research are summarized along with estimates of possible conversion efficiencies. It is argued that the cost-effectiveness of micro power generation must be viewed through the value of the first few watts of available power, rather than the marginal cost per kilowatt-hour of electric power from utility power grids. This leads to the finding that the actual target cost per unit power, and efficiency, are well within reach of space technology products. Hybrid systems integrating power extraction from multiple resources, and adaptable for multiple applications, can break through mass market price barriers. Recent work to develop learning resources and test beds as part of a Micro Renewable Energy Laboratory is summarized.

  17. Nano-Particle Enhanced Polymer Materials for Space Flight Applications

    Science.gov (United States)

    Criss, Jim M., Jr.; Powell, William D.; Connell, John W.; Stallworth-Bordain, Yemaya; Brown, Tracy R.; Mintz, Eric A.; Schlea, Michelle R.; Shofne, Meisha L.

    2009-01-01

    Recent advances in materials technology both in polymer chemistry and nano-materials warrant development of enhanced structures for space flight applications. This work aims to develop spacecraft structures based on polymer matrix composites (PMCs) that utilize these advancements.. Multi-wall carbon nano-tubes (MWCNTs) are expected ·to increase mechanical performance, lower coefficient of thermal expansion (CTE), increase electrical conductivity (mitigate electrostatic charge), increase thermal conductivity, and reduce moisture absorption of the resultant space structures. In this work, blends of MWCNTs with PETI-330 were prepared and characterized. The nano-reinforced resins were then resin transfer molded (RTM) into composite panels using M55J carbon fabric and compared to baseline panels fabricated from a cyanate ester (RS-3) or a polyimide (PETI-330) resin containing no MWCNTs. In addition, methods of pre-loading the fabric with the MWCNTs were also investigated. The effects of the MWCNTs on the resin processing properties and on the composite end-use properties were also determined.

  18. A Multi-Wavelength IR Laser for Space Applications

    Science.gov (United States)

    Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.

    2017-01-01

    We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to mid-infrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 microns, 2.7 microns and 3.4 microns. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated.

  19. Cermet-fueled reactors for advanced space applications

    International Nuclear Information System (INIS)

    Cowan, C.L.; Palmer, R.S.; Taylor, I.N.; Vaidyanathan, S.; Bhattacharyya, S.K.; Barner, J.O.

    1987-12-01

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel were carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper

  20. Tailoring Laser Propulsion for Future Applications in Space

    International Nuclear Information System (INIS)

    Eckel, Hans-Albert; Scharring, Stefan

    2010-01-01

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites.First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

  1. Power conversion for a microreactor: a nuclear space application

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine N.F.; Camillo, Giannino P.; Nascimento, Jamil A.; Borges, Eduardo M.; Placco, Guilherme M.

    2009-01-01

    Generating nuclear power in space is of fundamental importance if it is desired to realize some aggressive type of exploration. Basically, at Earth orbit (either LEO or GEO) most applications tend to use solar panels, which are just fine, in spite of problems such as vibration, non optimal light incidence angle and non electricity generation due to Earth's shadow. For deep space exploration the nuclear power is been considered as a strong candidate and maybe the only one. The Institute for Advanced Studies is conducting the TERRA project that tracks the developments in the area and, also, intends to develop the key technologies that will allow such a machine to be build with indigenous technology. TERRA stands for TEcnologia de Reatores Rapidos Avancados. This project, at its first stage aims at the specification of the microreactor fuel element with its possible geometrical arrangements. Also for this stage a gas Brayton closed cycle is being considered as a heat conversion to electricity and/or propulsion effect. The basic idea is to adapt an open loop aeronautic gas turbine to operate as a closed loop gas Turbine. This arrangement will use heat pipes as a cold source, or a heat rejection passive system. Up to this point a lot has been done in terms of numerical and graphical development. It is expected that some built up will be happening during this year. An account of this work will be presented at the conference. (author)

  2. Validation of elastic cross section models for space radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center (United States); Xu, X. [National Institute of Aerospace (United States); Norman, R.B. [NASA Langley Research Center (United States); Ford, W.P. [The University of Tennessee (United States); Maung, K.M. [The University of Southern Mississippi (United States)

    2017-02-01

    The space radiation field is composed of energetic particles that pose both acute and long-term risks for astronauts in low earth orbit and beyond. In order to estimate radiation risk to crew members, the fluence of particles and biological response to the radiation must be known at tissue sites. Given that the spectral fluence at the boundary of the shielding material is characterized, radiation transport algorithms may be used to find the fluence of particles inside the shield and body, and the radio-biological response is estimated from experiments and models. The fidelity of the radiation spectrum inside the shield and body depends on radiation transport algorithms and the accuracy of the nuclear cross sections. In a recent study, self-consistent nuclear models based on multiple scattering theory that include the option to study relativistic kinematics were developed for the prediction of nuclear cross sections for space radiation applications. The aim of the current work is to use uncertainty quantification to ascertain the validity of the models as compared to a nuclear reaction database and to identify components of the models that can be improved in future efforts.

  3. Technology development for nuclear power generation for space application

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M.

    2015-01-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  4. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  5. Evaluation of Application Space Expansion for the Sensor Fish

    Energy Technology Data Exchange (ETDEWEB)

    DeRolph, Christopher R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-02-01

    The Pacific Northwest National Laboratory has developed an instrument known as the sensor fish that can be released into downstream passage routes at hydropower facilities to collect data on the physical conditions that a fish might be exposed to during passage through a turbine. The US Department of Energy Wind and Water Power Program sees value in expanding the sensor fish application space beyond large Kaplan turbines in the northwest United States to evaluate conditions to which a greater variety of fish species are exposed. Development of fish-friendly turbines requires an understanding of both physical passage conditions and biological responses to those conditions. Expanding the use of sensor fish into other application spaces will add to the knowledge base of physical passage conditions and could also enhance the use of sensor fish as a site-specific tool in mitigating potential impacts to fish populations from hydropower. The Oak Ridge National Laboratory (ORNL) National Hydropower Assessment Program (NHAAP) database contains hydropower facility characteristics that, along with national fish distribution data, were used to evaluate potential interactions between fish species and project characteristics related to downstream passage issues. ORNL developed rankings for the turbine types in the NHAAP database in terms of their potential to impact fish through injury or mortality during downstream turbine passage. National-scale fish distributions for 31 key migratory species were spatially intersected with hydropower plant locations to identify facilities where turbines with a high threat to fish injury or mortality overlap with the potential range of a sensitive fish species. A dataset was produced that identifies hydropower facilities where deployment of the sensor fish technology might be beneficial in addressing issues related to downstream fish passage. The dataset can be queried to target specific geographic regions, fish species, license expiration

  6. Application of a power plant simplification methodology: The example of the condensate feedwater system

    International Nuclear Information System (INIS)

    Seong, P.H.; Manno, V.P.; Golay, M.W.

    1988-01-01

    A novel framework for the systematic simplification of power plant design is described with a focus on the application for the optimization of condensate feedwater system (CFWS) design. The evolution of design complexity of CFWS is reviewed with emphasis upon the underlying optimization process. A new evaluation methodology which includes explicit accounting of human as well as mechanical effects upon system availability is described. The unifying figure of merit for an operating system is taken to be net electricity production cost. The evaluation methodology is applied to the comparative analysis of three designs. In the illustrative examples, the results illustrate how inclusion in the evaluation of explicit availability related costs leads to optimal configurations. These are different from those of current system design practices in that thermodynamic efficiency and capital cost optimization are not overemphasized. Rather a more complete set of design-dependent variables is taken into account, and other important variables which remain neglected in current practices are identified. A critique of the new optimization approach and a discussion of future work areas including improved human performance modeling and different optimization constraints are provided. (orig.)

  7. Development and application of a hybrid transport methodology for active interrogation systems

    Energy Technology Data Exchange (ETDEWEB)

    Royston, K.; Walters, W.; Haghighat, A. [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech., 900 N Glebe Rd., Arlington, VA 22203 (United States); Yi, C.; Sjoden, G. [Nuclear and Radiological Engineering, Georgia Tech, 801 Ferst Drive, Atlanta, GA 30332 (United States)

    2013-07-01

    A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, 7) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water cargo. To complete the first step, a response-function formulation has been developed to calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, 7) cross sections to find the resulting gamma source distribution. In the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma current at a detector window. The AIMS (Active Interrogation for Monitoring Special-Nuclear-Materials) software has been written to output the gamma current for a source-detector assembly scanning across a cargo container using the pre-calculated values and taking significantly less time than a reference MCNP5 calculation. (authors)

  8. Assessment of ISLOCA risk: Methodology and application to a Babcock and Wilcox nuclear power plant

    International Nuclear Information System (INIS)

    Galyean, W.J.; Gertman, D.I.

    1992-04-01

    This report presents information essential to understanding the risk associated with inter-system loss-of-coolant accidents (ISLOCAs). The methodology developed and presented in the report provides a state-of-the-art method for identifying and evaluating plant-specific hardware design, human performance issues, and accident consequence factors to relevant to the prediction of the ISLOCA risk. This ISLOCA methodology was developed and then applied to a Babcock and Wilcox (B ampersand W) nuclear power plants. The results from this application are described in detail. For this particular B ampersand W reference plant, the assessment indicated that the probability of a severe ISLOCA is approximately 2.2E-06/reactor-year. This document Volume 3 provides appendices A--H of the report. Topics are: Historical experience related to ISLOCA events; component failure rates; reference B ampersand W plant system descriptions; reference B ampersand W plant ISLOCA event trees; Human reliability analysis for the B ampersand W ISLOCA probabilistic risk assessment; thermal hydraulic calculations; bounding core uncovery time calculations; and system rupture probability

  9. Application of machine learning methodology for pet-based definition of lung cancer

    Science.gov (United States)

    Kerhet, A.; Small, C.; Quon, H.; Riauka, T.; Schrader, L.; Greiner, R.; Yee, D.; McEwan, A.; Roa, W.

    2010-01-01

    We applied a learning methodology framework to assist in the threshold-based segmentation of non-small-cell lung cancer (nsclc) tumours in positron-emission tomography–computed tomography (pet–ct) imaging for use in radiotherapy planning. Gated and standard free-breathing studies of two patients were independently analysed (four studies in total). Each study had a pet–ct and a treatment-planning ct image. The reference gross tumour volume (gtv) was identified by two experienced radiation oncologists who also determined reference standardized uptake value (suv) thresholds that most closely approximated the gtv contour on each slice. A set of uptake distribution-related attributes was calculated for each pet slice. A machine learning algorithm was trained on a subset of the pet slices to cope with slice-to-slice variation in the optimal suv threshold: that is, to predict the most appropriate suv threshold from the calculated attributes for each slice. The algorithm’s performance was evaluated using the remainder of the pet slices. A high degree of geometric similarity was achieved between the areas outlined by the predicted and the reference suv thresholds (Jaccard index exceeding 0.82). No significant difference was found between the gated and the free-breathing results in the same patient. In this preliminary work, we demonstrated the potential applicability of a machine learning methodology as an auxiliary tool for radiation treatment planning in nsclc. PMID:20179802

  10. An update on technical and methodological aspects for cardiac PET applications

    International Nuclear Information System (INIS)

    PRESOTTO, Luca; BUSNARDO, Elena; GIANOLLI, Luigi; BETTINARDI, Valentino

    2016-01-01

    Positron emission tomography (PET) is indicated for a large number of cardiac diseases: perfusion and viability studies are commonly used to evaluate coronary artery disease; PET can also be used to assess sarcoidosis and endocarditis, as well as to investigate amyloidosis. Furthermore, a hot topic for research is plaque characterization. Most of these studies are technically very challenging. High count rates and short acquisition times characterize perfusion scans while very small targets have to be imaged in inflammation/infection and plaques examinations. Furthermore, cardiac PET suffers from respiratory and cardiac motion blur. Each type of studies has specific requirements from the technical and methodological point of view, thus PET systems with overall high performances are required. Furthermore, in the era of hybrid PET/computed tomography (CT) and PET/Magnetic Resonance Imaging (MRI) systems, the combination of complementary functional and anatomical information can be used to improve diagnosis and prognosis. Moreover, PET images can be qualitatively and quantitatively improved exploiting information from the other modality, using advanced algorithms. In this review we will report the latest technological and methodological innovations for PET cardiac applications, with particular reference to the state of the art of the hybrid PET/CT and PET/MRI. We will also report the most recent advancements in software, from reconstruction algorithms to image processing and analysis programs.

  11. Application of REPAS Methodology to Assess the Reliability of Passive Safety Systems

    Directory of Open Access Journals (Sweden)

    Franco Pierro

    2009-01-01

    Full Text Available The paper deals with the presentation of the Reliability Evaluation of Passive Safety System (REPAS methodology developed by University of Pisa. The general objective of the REPAS is to characterize in an analytical way the performance of a passive system in order to increase the confidence toward its operation and to compare the performances of active and passive systems and the performances of different passive systems. The REPAS can be used in the design of the passive safety systems to assess their goodness and to optimize their costs. It may also provide numerical values that can be used in more complex safety assessment studies and it can be seen as a support to Probabilistic Safety Analysis studies. With regard to this, some examples in the application of the methodology are reported in the paper. A best-estimate thermal-hydraulic code, RELAP5, has been used to support the analyses and to model the selected systems. Probability distributions have been assigned to the uncertain input parameters through engineering judgment. Monte Carlo method has been used to propagate uncertainties and Wilks' formula has been taken into account to select sample size. Failure criterions are defined in terms of nonfulfillment of the defined design targets.

  12. Definition of a near real-time microbiological monitor for application in space vehicles

    Science.gov (United States)

    Kilgore, Melvin V., Jr.; Zahorchak, Robert J.; Arendale, William F.; Woodward, Samuel S.; Pierson, Duane L.

    1989-01-01

    The concepts and methodologies for microbiological monitoring in space are examined, focusing on the determination of the requirements of a near real-time microbiological monitor. Results are presented from the technical evaluation of five microbiological monitor concepts, including cultural methods, single cell detection, biomolecular detection, specific product detection, and general molecular composition. Within these concepts, twenty-eight specific methodolgies were assessed and the five candidate methodologies with the highest engineering and feasibility scores were selected for further evaluations. The candidate methodologies are laser light scattering, primary fluorescence, secondary fluorescence, volatile product detection, and electronic particle detection. The advantages and disadvantages of these five candidate methodologies are discussed.

  13. Process monitoring for intelligent manufacturing processes - Methodology and application to Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas

    Process monitoring provides important information on the product, process and manufacturing system during part manufacturing. Such information can be used for process optimization and detection of undesired processing conditions to initiate timely actions for avoidance of defects, thereby improving...... quality assurance. This thesis is aimed at a systematic development of process monitoring solutions, constituting a key element of intelligent manufacturing systems towards zero defect manufacturing. A methodological approach of general applicability is presented in this concern.The approach consists...... of six consecutive steps for identification of product Vital Quality Characteristics (VQCs) and Key Process Variables (KPVs), selection and characterization of sensors, optimization of sensors placement, validation of the monitoring solutions, definition of the reference manufacturing performance...

  14. Social Life Cycle Assessment as a Management Tool: Methodology for Application in Tourism

    Directory of Open Access Journals (Sweden)

    Roberto Merli

    2013-08-01

    Full Text Available As is widely known, sustainability is an important factor in competition, increasing the added value of a company in terms of image and credibility. However, it is important that sustainability assessments are effectively addressed in a global perspective. Therefore, life cycle tools are adopted to evaluate environmental and social impacts. Among these, and of particular significance, appears the Social Life Cycle Assessment (SLCA, which, although in its early stage of development, seems to have extremely promising methodological features. For this reason, it seemed interesting to propose a first application to the tourism sector, which could be better than other methods, studied in terms of social sustainability data. The particular characteristics of service delivery lend themselves more to the development of data related to social sustainability than other sectors. In this paper the results of a case study carried out using social accounting and business management tools are shown.

  15. A statistical methodology for the estimation of extreme wave conditions for offshore renewable applications

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kalogeri, Christina; Galanis, George

    2015-01-01

    and post-process outputs from a high resolution numerical wave modeling system for extreme wave estimation based on the significant wave height. This approach is demonstrated through the data analysis at a relatively deep water site, FINO 1, as well as a relatively shallow water area, coastal site Horns...... as a characteristic index of extreme wave conditions. The results from the proposed methodology seem to be in a good agreement with the measurements at both the relatively deep, open water and the shallow, coastal water sites, providing a potentially useful tool for offshore renewable energy applications. © 2015...... Rev, which is located in the North Sea, west of Denmark. The post-processing targets at correcting the modeled time series of the significant wave height, in order to match the statistics of the corresponding measurements, including not only the conventional parameters such as the mean and standard...

  16. Methodology for validating technical tools to assess customer Demand Response: Application to a commercial customer

    International Nuclear Information System (INIS)

    Alcazar-Ortega, Manuel; Escriva-Escriva, Guillermo; Segura-Heras, Isidoro

    2011-01-01

    The authors present a methodology, which is demonstrated with some applications to the commercial sector, in order to validate a Demand Response (DR) evaluation method previously developed and applied to a wide range of industrial and commercial segments, whose flexibility was evaluated by modeling. DR is playing a more and more important role in the framework of electricity systems management for the effective integration of other distributed energy resources. Consequently, customers must identify what they are using the energy for in order to use their flexible loads for management purposes. Modeling tools are used to predict the impact of flexibility on the behavior of customers, but this result needs to be validated since both customers and grid operators have to be confident in these flexibility predictions. An easy-to-use two-steps method to achieve this goal is presented in this paper.

  17. The application of life cycle assessment to integrated solid waste management. Pt. 1: Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Clift, R.; Doig, A.; Finnveden, G.

    2000-07-01

    Integrated Waste Management is one of the holistic approaches to environmental and resource management which are emerging from applying the concept of sustainable development. Assessment of waste management options requires application of Life Cycle Assessment (LCA). This paper summarizes the methodology for applying LCA to Integrated Waste Management of Municipal Solid Wastes (MSW) developed for and now used by the UK Environment Agency, including recent developments in international fora. Particular attention is devoted to system definition leading to rational and clear compilation of the Life Cycle Inventory, with appropriate 'credit' for recovering materials and/or energy from the waste. LCA of waste management is best seen as a way of structuring information to help decision processes. (Author)

  18. Selection of phage-displayed accessible recombinant targeted antibodies (SPARTA): methodology and applications.

    Science.gov (United States)

    D'Angelo, Sara; Staquicini, Fernanda I; Ferrara, Fortunato; Staquicini, Daniela I; Sharma, Geetanjali; Tarleton, Christy A; Nguyen, Huynh; Naranjo, Leslie A; Sidman, Richard L; Arap, Wadih; Bradbury, Andrew Rm; Pasqualini, Renata

    2018-05-03

    We developed a potentially novel and robust antibody discovery methodology, termed selection of phage-displayed accessible recombinant targeted antibodies (SPARTA). This combines an in vitro screening step of a naive human antibody library against known tumor targets, with in vivo selections based on tumor-homing capabilities of a preenriched antibody pool. This unique approach overcomes several rate-limiting challenges to generate human antibodies amenable to rapid translation into medical applications. As a proof of concept, we evaluated SPARTA on 2 well-established tumor cell surface targets, EphA5 and GRP78. We evaluated antibodies that showed tumor-targeting selectivity as a representative panel of antibody-drug conjugates (ADCs) and were highly efficacious. Our results validate a discovery platform to identify and validate monoclonal antibodies with favorable tumor-targeting attributes. This approach may also extend to other diseases with known cell surface targets and affected tissues easily isolated for in vivo selection.

  19. Improving life cycle assessment methodology for the application of decision support

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg

    for the application of decision support and evaluation of uncertainty in LCA. From a decision maker’s (DM’s) point of view there are at least three main “illness” factors influencing the quality of the information that the DM uses for making decisions. The factors are not independent of each other, but it seems......) refrain from making a decision based on an LCA and thus support a decision on other parameters than the LCA environmental parameters. Conversely, it may in some decision support contexts be acceptable to base a decision on highly uncertain information. This all depends on the specific decision support...... the different steps. A deterioration of the quality in each step is likely to accumulate through the statistical value chain in terms of increased uncertainty and bias. Ultimately this can make final decision support problematic. The "Law of large numbers" (LLN) is the methodological tool/probability theory...

  20. The social representation of public space for the design and management of sustainable territories A theoretical-practical and methodological proposal for participatory planning

    Directory of Open Access Journals (Sweden)

    Heidi Natalie Contreras-Lovich

    2016-04-01

    Full Text Available La representación social del espacio público para el diseño y gestión de territorios sostenibles. Una propuesta teórica-práctica y metodológica para un urbanismo participativo. ResumenA partir de la gestión integral participativa se orienta el desarrollo espacial de los territorios vistos desde el individuo, para comprender la gestión, acción y ordenamiento territorial, desde la diferencia entre la ciudad entendida como lo que es y el espacio público como objeto de observación. Las vías para recolectar la información fueron la revisión bibliográfica y, a partir de la aplicación de una metodología mixta, se evidenciaron las representaciones vivenciales de los individuos que construyen el saber y el conocimiento a partir del espacio cultural vivido, en donde las experiencias y las prácticas del espacio prevalecen en el desarrollo de un urbanismo participativo. La propuesta se consolida a partir del hacer, el saber y el evaluar, en una trialéctica del ambiente humanizado. Se concluye con los aportes de la propuesta en términos teóricos, prácticos y metodológicos, con el fin de validar una gestión humana participativa en la cual el individuo se vaya convirtiendo en un ser creativo que fomente la calidad de vida y el bienestar social.Palabras clave: desarrollo urbano, diseño urbano, espacio público, gestión urbana, imaginarios urbanos, participación ciudadana. The social representation of public space for the design and management of sustainable territoriesA theoretical-practical and methodological proposal for participatory planningAbstractFrom participatory integrated management, spatial development of the territories seen by the individual is oriented to understand the management, action and land from the difference between the city understood as what it is and public space as an object of observation. The ways to collect the information were the literature review and from the application of a mixed methodology