WorldWideScience

Sample records for methodology article optimization

  1. Beam optimization: improving methodology

    International Nuclear Information System (INIS)

    Quinteiro, Guillermo F.

    2004-01-01

    Different optimization techniques commonly used in biology and food technology allow a systematic and complete analysis of response functions. In spite of the great interest in medical and nuclear physics in the problem of optimizing mixed beams, little attention has been given to sophisticate mathematical tools. Indeed, many techniques are perfectly suited to the typical problem of beam optimization. This article is intended as a guide to the use of two methods, namely Response Surface Methodology and Simplex, that are expected to fasten the optimization process and, meanwhile give more insight into the relationships among the dependent variables controlling the response

  2. Robust Optimization in Simulation : Taguchi and Response Surface Methodology

    NARCIS (Netherlands)

    Dellino, G.; Kleijnen, J.P.C.; Meloni, C.

    2008-01-01

    Optimization of simulated systems is tackled by many methods, but most methods assume known environments. This article, however, develops a 'robust' methodology for uncertain environments. This methodology uses Taguchi's view of the uncertain world, but replaces his statistical techniques by

  3. Optimization Methodologies of Mixed Electrical Generators in ...

    African Journals Online (AJOL)

    This article deals of the optimization of renewable energy electric generators, for the alimentation of radio telecommunication systems. ... Have at one's the energetic and economic models, and simulation tools, we effected an optimization ...

  4. Methodology of shell structure reinforcement layout optimization

    Science.gov (United States)

    Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof

    2018-01-01

    This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.

  5. Optimized planning methodologies of ASON implementation

    Science.gov (United States)

    Zhou, Michael M.; Tamil, Lakshman S.

    2005-02-01

    Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.

  6. Gas Turbine Blade Damper Optimization Methodology

    OpenAIRE

    R. K. Giridhar; P. V. Ramaiah; G. Krishnaiah; S. G. Barad

    2012-01-01

    The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to...

  7. Methodological approach to strategic performance optimization

    OpenAIRE

    Hell, Marko; Vidačić, Stjepan; Garača, Željko

    2009-01-01

    This paper presents a matrix approach to the measuring and optimization of organizational strategic performance. The proposed model is based on the matrix presentation of strategic performance, which follows the theoretical notions of the balanced scorecard (BSC) and strategy map methodologies, initially developed by Kaplan and Norton. Development of a quantitative record of strategic objectives provides an arena for the application of linear programming (LP), which is a mathematical tech...

  8. Methodology for wind turbine blade geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Perfiliev, D.

    2013-11-01

    Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections. (orig.)

  9. Methodological Orientation of Research Articles Appearing in Higher Education Journals

    Science.gov (United States)

    Ritter, Sherri E.

    2012-01-01

    The purpose of this study was to understand the methodologies authors in higher education journals used to obtain knowledge in their fields. This study looked at five peer reviewed journals of higher education and analyzed the methods of research employed by the authors to help them answer their respective research questions. The methods of…

  10. On process optimization considering LCA methodology.

    Science.gov (United States)

    Pieragostini, Carla; Mussati, Miguel C; Aguirre, Pío

    2012-04-15

    The goal of this work is to research the state-of-the-art in process optimization techniques and tools based on LCA, focused in the process engineering field. A collection of methods, approaches, applications, specific software packages, and insights regarding experiences and progress made in applying the LCA methodology coupled to optimization frameworks is provided, and general trends are identified. The "cradle-to-gate" concept to define the system boundaries is the most used approach in practice, instead of the "cradle-to-grave" approach. Normally, the relationship between inventory data and impact category indicators is linearly expressed by the characterization factors; then, synergic effects of the contaminants are neglected. Among the LCIA methods, the eco-indicator 99, which is based on the endpoint category and the panel method, is the most used in practice. A single environmental impact function, resulting from the aggregation of environmental impacts, is formulated as the environmental objective in most analyzed cases. SimaPro is the most used software for LCA applications in literature analyzed. The multi-objective optimization is the most used approach for dealing with this kind of problems, where the ε-constraint method for generating the Pareto set is the most applied technique. However, a renewed interest in formulating a single economic objective function in optimization frameworks can be observed, favored by the development of life cycle cost software and progress made in assessing costs of environmental externalities. Finally, a trend to deal with multi-period scenarios into integrated LCA-optimization frameworks can be distinguished providing more accurate results upon data availability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Gas Turbine Blade Damper Optimization Methodology

    Directory of Open Access Journals (Sweden)

    R. K. Giridhar

    2012-01-01

    Full Text Available The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to develop an analytical model of blade damper system. The second phase is experimentation and model tuning necessary for response studies while the third phase is evaluating damper performance. The reduced model of blade is developed corresponding to the mode under investigation incorporating the friction damper then the simulations were carried out to arrive at an optimum design point of the damper. Bench tests were carried out in two phases. Phase-1 deals with characterization of the blade dynamically and the phase-2 deals with finding optimal normal load at which the blade resonating response is minimal for a given excitation. The test results are discussed, and are corroborated with simulated results, are in good agreement.

  12. Application of Response Surface Methodology for Optimizing Oil ...

    African Journals Online (AJOL)

    Application of Response Surface Methodology for Optimizing Oil Extraction Yield From ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... from tropical almond seed by the use of response surface methodology (RSM).

  13. A Comparison of the Methodological Quality of Articles in Computer Science Education Journals and Conference Proceedings

    Science.gov (United States)

    Randolph, Justus J.; Julnes, George; Bednarik, Roman; Sutinen, Erkki

    2007-01-01

    In this study we empirically investigate the claim that articles published in computer science education journals are more methodologically sound than articles published in computer science education conference proceedings. A random sample of 352 articles was selected from those articles published in major computer science education forums between…

  14. Procedure and methodology of Radiation Protection optimization

    International Nuclear Information System (INIS)

    Wang Hengde

    1995-01-01

    Optimization of Radiation Protection is one of the most important principles in the system of radiation protection. The paper introduces the basic principles of radiation protection optimization in general, and the procedure of implementing radiation protection optimization and methods of selecting the optimized radiation protection option in details, in accordance with ICRP 55. Finally, some economic concepts relating to estimation of costs are discussed briefly

  15. A Generic Methodology for Superstructure Optimization of Different Processing Networks

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Frauzem, Rebecca; Zhang, Lei

    2016-01-01

    In this paper, we propose a generic computer-aided methodology for synthesis of different processing networks using superstructure optimization. The methodology can handle different network optimization problems of various application fields. It integrates databases with a common data architecture......, a generic model to represent the processing steps, and appropriate optimization tools. A special software interface has been created to automate the steps in the methodology workflow, allow the transfer of data between tools and obtain the mathematical representation of the problem as required...

  16. Systematic Methodology for Reproducible Optimizing Batch Operation

    DEFF Research Database (Denmark)

    Bonné, Dennis; Jørgensen, Sten Bay

    2006-01-01

    This contribution presents a systematic methodology for rapid acquirement of discrete-time state space model representations of batch processes based on their historical operation data. These state space models are parsimoniously parameterized as a set of local, interdependent models. The present...

  17. Implementing the cost-optimal methodology in EU countries

    DEFF Research Database (Denmark)

    Atanasiu, Bogdan; Kouloumpi, Ilektra; Thomsen, Kirsten Engelund

    This study presents three cost-optimal calculations. The overall aim is to provide a deeper analysis and to provide additional guidance on how to properly implement the cost-optimality methodology in Member States. Without proper guidance and lessons from exemplary case studies using realistic...... input data (reflecting the likely future development), there is a risk that the cost-optimal methodology may be implemented at sub-optimal levels. This could lead to a misalignment between the defined cost-optimal levels and the long-term goals, leaving a significant energy saving potential unexploited....... Therefore, this study provides more evidence on the implementation of the cost-optimal methodology and highlights the implications of choosing different values for key factors (e.g. discount rates, simulation variants/packages, costs, energy prices) at national levels. The study demonstrates how existing...

  18. Methodological Reporting in Qualitative, Quantitative, and Mixed Methods Health Services Research Articles

    Science.gov (United States)

    Wisdom, Jennifer P; Cavaleri, Mary A; Onwuegbuzie, Anthony J; Green, Carla A

    2012-01-01

    Objectives Methodologically sound mixed methods research can improve our understanding of health services by providing a more comprehensive picture of health services than either method can alone. This study describes the frequency of mixed methods in published health services research and compares the presence of methodological components indicative of rigorous approaches across mixed methods, qualitative, and quantitative articles. Data Sources All empirical articles (n = 1,651) published between 2003 and 2007 from four top-ranked health services journals. Study Design All mixed methods articles (n = 47) and random samples of qualitative and quantitative articles were evaluated to identify reporting of key components indicating rigor for each method, based on accepted standards for evaluating the quality of research reports (e.g., use of p-values in quantitative reports, description of context in qualitative reports, and integration in mixed method reports). We used chi-square tests to evaluate differences between article types for each component. Principal Findings Mixed methods articles comprised 2.85 percent (n = 47) of empirical articles, quantitative articles 90.98 percent (n = 1,502), and qualitative articles 6.18 percent (n = 102). There was a statistically significant difference (χ2(1) = 12.20, p = .0005, Cramer's V = 0.09, odds ratio = 1.49 [95% confidence interval = 1,27, 1.74]) in the proportion of quantitative methodological components present in mixed methods compared to quantitative papers (21.94 versus 47.07 percent, respectively) but no statistically significant difference (χ2(1) = 0.02, p = .89, Cramer's V = 0.01) in the proportion of qualitative methodological components in mixed methods compared to qualitative papers (21.34 versus 25.47 percent, respectively). Conclusion Few published health services research articles use mixed methods. The frequency of key methodological components is variable. Suggestions are provided to increase the

  19. A Content and Methodological Review of Articles Concerning Multiracial Issues in Six Major Counseling Journals

    Science.gov (United States)

    Edwards, Lisa M.; Pedrotti, Jennifer Teramoto

    2008-01-01

    This study describes a comprehensive content and methodological review of articles about multiracial issues in 6 journals related to counseling up to the year 2006. The authors summarize findings about the 18 articles that emerged from this review of the "Journal of Counseling Psychology," "Journal of Counseling & Development," "The Counseling…

  20. Methodology for designing aircraft having optimal sound signatures

    NARCIS (Netherlands)

    Sahai, A.K.; Simons, D.G.

    2017-01-01

    This paper presents a methodology with which aircraft designs can be modified such that they produce optimal sound signatures on the ground. With optimal sound it is implied in this case sounds that are perceived as less annoying by residents living near airport vicinities. A novel design and

  1. Multiobjective Optimization Methodology A Jumping Gene Approach

    CERN Document Server

    Tang, KS

    2012-01-01

    Complex design problems are often governed by a number of performance merits. These markers gauge how good the design is going to be, but can conflict with the performance requirements that must be met. The challenge is reconciling these two requirements. This book introduces a newly developed jumping gene algorithm, designed to address the multi-functional objectives problem and supplies a viably adequate solution in speed. The text presents various multi-objective optimization techniques and provides the technical know-how for obtaining trade-off solutions between solution spread and converg

  2. Methodological reporting in qualitative, quantitative, and mixed methods health services research articles.

    Science.gov (United States)

    Wisdom, Jennifer P; Cavaleri, Mary A; Onwuegbuzie, Anthony J; Green, Carla A

    2012-04-01

    Methodologically sound mixed methods research can improve our understanding of health services by providing a more comprehensive picture of health services than either method can alone. This study describes the frequency of mixed methods in published health services research and compares the presence of methodological components indicative of rigorous approaches across mixed methods, qualitative, and quantitative articles. All empirical articles (n = 1,651) published between 2003 and 2007 from four top-ranked health services journals. All mixed methods articles (n = 47) and random samples of qualitative and quantitative articles were evaluated to identify reporting of key components indicating rigor for each method, based on accepted standards for evaluating the quality of research reports (e.g., use of p-values in quantitative reports, description of context in qualitative reports, and integration in mixed method reports). We used chi-square tests to evaluate differences between article types for each component. Mixed methods articles comprised 2.85 percent (n = 47) of empirical articles, quantitative articles 90.98 percent (n = 1,502), and qualitative articles 6.18 percent (n = 102). There was a statistically significant difference (χ(2) (1) = 12.20, p = .0005, Cramer's V = 0.09, odds ratio = 1.49 [95% confidence interval = 1,27, 1.74]) in the proportion of quantitative methodological components present in mixed methods compared to quantitative papers (21.94 versus 47.07 percent, respectively) but no statistically significant difference (χ(2) (1) = 0.02, p = .89, Cramer's V = 0.01) in the proportion of qualitative methodological components in mixed methods compared to qualitative papers (21.34 versus 25.47 percent, respectively). Few published health services research articles use mixed methods. The frequency of key methodological components is variable. Suggestions are provided to increase the transparency of mixed methods studies and

  3. Reporting and methodological quality of survival analysis in articles published in Chinese oncology journals.

    Science.gov (United States)

    Zhu, Xiaoyan; Zhou, Xiaobin; Zhang, Yuan; Sun, Xiao; Liu, Haihua; Zhang, Yingying

    2017-12-01

    Survival analysis methods have gained widespread use in the filed of oncology. For achievement of reliable results, the methodological process and report quality is crucial. This review provides the first examination of methodological characteristics and reporting quality of survival analysis in articles published in leading Chinese oncology journals.To examine methodological and reporting quality of survival analysis, to identify some common deficiencies, to desirable precautions in the analysis, and relate advice for authors, readers, and editors.A total of 242 survival analysis articles were included to be evaluated from 1492 articles published in 4 leading Chinese oncology journals in 2013. Articles were evaluated according to 16 established items for proper use and reporting of survival analysis.The application rates of Kaplan-Meier, life table, log-rank test, Breslow test, and Cox proportional hazards model (Cox model) were 91.74%, 3.72%, 78.51%, 0.41%, and 46.28%, respectively, no article used the parametric method for survival analysis. Multivariate Cox model was conducted in 112 articles (46.28%). Follow-up rates were mentioned in 155 articles (64.05%), of which 4 articles were under 80% and the lowest was 75.25%, 55 articles were100%. The report rates of all types of survival endpoint were lower than 10%. Eleven of 100 articles which reported a loss to follow-up had stated how to treat it in the analysis. One hundred thirty articles (53.72%) did not perform multivariate analysis. One hundred thirty-nine articles (57.44%) did not define the survival time. Violations and omissions of methodological guidelines included no mention of pertinent checks for proportional hazard assumption; no report of testing for interactions and collinearity between independent variables; no report of calculation method of sample size. Thirty-six articles (32.74%) reported the methods of independent variable selection. The above defects could make potentially inaccurate

  4. Methodological adequacy of articles published in two open-access Brazilian cardiology periodicals.

    Science.gov (United States)

    Macedo, Cristiane Rufino; Silva, Davi Leite da; Puga, Maria Eduarda

    2010-01-01

    The use of rigorous scientific methods has contributed towards developing scientific articles of excellent methodological quality. This has made it possible to promote their citation and increase the impact factor. Brazilian periodicals have had to adapt to certain quality standards demanded by these indexing organizations, such as the content and the number of original articles published in each issue. This study aimed to evaluate the methodological adequacy of two Brazilian periodicals within the field of cardiology that are indexed in several databases and freely accessible through the Scientific Electronic Library Online (SciELO), and which are now indexed by the Web of Science (Institute for Scientific Information, ISI). Descriptive study at Brazilian Cochrane Center. All the published articles were evaluated according to merit assessment (content) and form assessment (performance). Ninety-six percent of the articles analyzed presented study designs that were adequate for answering the objectives. These two Brazilian periodicals within the field of cardiology published methodologically adequate articles, since they followed the quality standards. Thus, these periodicals can be considered both for consultation and as vehicles for publishing future articles. For further analyses, it is essential to apply other indicators of scientific activity such as bibliometrics, which evaluates quantitative aspects of the production, dissemination and use of information, and scientometrics, which is also concerned with the development of science policies, within which it is often superimposed on bibliometrics.

  5. Radiation protection optimization using a knowledge based methodology

    International Nuclear Information System (INIS)

    Reyes-Jimenez, J.; Tsoukalas, L.H.

    1991-01-01

    This paper presents a knowledge based methodology for radiological planning and radiation protection optimization. The cost-benefit methodology described on International Commission of Radiation Protection Report No. 37 is employed within a knowledge based framework for the purpose of optimizing radiation protection and plan maintenance activities while optimizing radiation protection. 1, 2 The methodology is demonstrated through an application to a heating ventilation and air conditioning (HVAC) system. HVAC is used to reduce radioactivity concentration levels in selected contaminated multi-compartment models at nuclear power plants when higher than normal radiation levels are detected. The overall objective is to reduce personnel exposure resulting from airborne radioactivity, when routine or maintenance access is required in contaminated areas. 2 figs, 15 refs

  6. Methodology for Variable Fidelity Multistage Optimization under Uncertainty

    Science.gov (United States)

    2011-03-31

    problem selected for the application of the new optimization methodology is a Single Stage To Orbit ( SSTO ) expendable launch vehicle (ELV). Three...the primary exercise of the variable fidelity optimization portion of the code. SSTO vehicles have been discussed almost exclusively in the context...of reusable launch vehicles (RLV). There is very little discussion in recent literature of SSTO designs which are expendable. In the light of the

  7. Methodology for Plantwide Design and Optimization of Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Maria Dragan, Johanna; Zubov, Alexandr; Sin, Gürkan

    2017-01-01

    Design of Wastewater Treatment Plants (WWTPs) is a complex engineering task which requires integration of knowledge and experience from environmental biotechnology, process engineering, process synthesis and design as well as mathematical programming. A methodology has been formulated and applied...... for the systematic analysis and development of plantwide design of WWTPs using mathematical optimization and statistical methods such as sensitivity and uncertainty analyses....

  8. Article

    African Journals Online (AJOL)

    2009-06-22

    Jun 22, 2009 ... of the 80% of pregnant women having access to prevention of mother-to-child ... breviation for a complicated statement that includes, among other things, moral ... duce an outcome where frustrations of welfare interests become .... Article abortion and its related issues of moral status in prenatal life. The.

  9. Investment Strategies Optimization based on a SAX-GA Methodology

    CERN Document Server

    Canelas, António M L; Horta, Nuno C G

    2013-01-01

    This book presents a new computational finance approach combining a Symbolic Aggregate approXimation (SAX) technique with an optimization kernel based on genetic algorithms (GA). While the SAX representation is used to describe the financial time series, the evolutionary optimization kernel is used in order to identify the most relevant patterns and generate investment rules. The proposed approach considers several different chromosomes structures in order to achieve better results on the trading platform The methodology presented in this book has great potential on investment markets.

  10. optimization methodologies of mixed electrical generators in algeria ...

    African Journals Online (AJOL)

    ABSTRACT. This article deals of the optimization of renewable energy electric generators, for the alimentation of radio telecommunication systems. The principals' interests of this system are the independence production, and the supplying of electric energy in isolated localities. Have at one's the energetic and economic ...

  11. A stochastic optimal feedforward and feedback control methodology for superagility

    Science.gov (United States)

    Halyo, Nesim; Direskeneli, Haldun; Taylor, Deborah B.

    1992-01-01

    A new control design methodology is developed: Stochastic Optimal Feedforward and Feedback Technology (SOFFT). Traditional design techniques optimize a single cost function (which expresses the design objectives) to obtain both the feedforward and feedback control laws. This approach places conflicting demands on the control law such as fast tracking versus noise atttenuation/disturbance rejection. In the SOFFT approach, two cost functions are defined. The feedforward control law is designed to optimize one cost function, the feedback optimizes the other. By separating the design objectives and decoupling the feedforward and feedback design processes, both objectives can be achieved fully. A new measure of command tracking performance, Z-plots, is also developed. By analyzing these plots at off-nominal conditions, the sensitivity or robustness of the system in tracking commands can be predicted. Z-plots provide an important tool for designing robust control systems. The Variable-Gain SOFFT methodology was used to design a flight control system for the F/A-18 aircraft. It is shown that SOFFT can be used to expand the operating regime and provide greater performance (flying/handling qualities) throughout the extended flight regime. This work was performed under the NASA SBIR program. ICS plans to market the software developed as a new module in its commercial CACSD software package: ACET.

  12. A Novel Consensus-Based Particle Swarm Optimization-Assisted Trust-Tech Methodology for Large-Scale Global Optimization.

    Science.gov (United States)

    Zhang, Yong-Feng; Chiang, Hsiao-Dong

    2017-09-01

    A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.

  13. Optimization of sustained release aceclofenac microspheres using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Rameshwar K.; Naik, Jitendra B., E-mail: jitunaik@gmail.com

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R{sup 2} in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres

  14. Methodologies for optimizing ROP detector layout for CANDU (registered) reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kastanya, Doddy, E-mail: kastanyd@aecl.c [Reactor Core Physics Branch, Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, ON, L5K 1B2 (Canada); Caxaj, Victor [Reactor Core Physics Branch, Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, ON, L5K 1B2 (Canada)

    2011-01-15

    The regional overpower protection (ROP) systems protect CANDU (registered) reactors against overpower in the fuel that would reduce the safety margin-to-dryout. Both a localized power peaking within the core (for example, as a result of certain reactivity device configuration) or a general increase in the core power level during a slow-loss-of-regulation (SLOR) event could cause overpower in the fuel. This overpower could lead to fuel sheath dryout. In the CANDU (registered) 600 MW (CANDU 6) design, there are two ROP systems in the core, one for each fast-acting shutdown systems. Each ROP system includes a number of fast-responding, self-powered flux detectors suitably distributed throughout the core within vertical and horizontal assemblies. Traditionally, the placement of these detectors was done using a method called the detector layout optimization (DLO). A new methodology for designing the detector layout for the ROP system has been developed recently. The new method, called the DETPLASA algorithm, utilizes the simulated annealing (SA) technique to optimize the placement of the detectors in the core. Both methodologies will be discussed in detail in this paper. Numerical examples are employed to better illustrate how each method works. Results from some sensitivity studies on three SA parameters are also presented.

  15. Methodological optimization of tinnitus assessment using prepulse inhibition of the acoustic startle reflex.

    Science.gov (United States)

    Longenecker, R J; Galazyuk, A V

    2012-11-16

    Recently prepulse inhibition of the acoustic startle reflex (ASR) became a popular technique for tinnitus assessment in laboratory animals. This method confers a significant advantage over the previously used time-consuming behavioral approaches utilizing basic mechanisms of conditioning. Although this technique has been successfully used to assess tinnitus in different laboratory animals, many of the finer details of this methodology have not been described enough to be replicated, but are critical for tinnitus assessment. Here we provide detail description of key procedures and methodological issues that provide guidance for newcomers with the process of learning to correctly apply gap detection techniques for tinnitus assessment in laboratory animals. The major categories of these issues include: refinement of hardware for best performance, optimization of stimulus parameters, behavioral considerations, and identification of optimal strategies for data analysis. This article is part of a Special Issue entitled: Tinnitus Neuroscience. Copyright © 2012. Published by Elsevier B.V.

  16. Comparison of methodologic quality and study/report characteristics between quantitative clinical nursing and nursing education research articles.

    Science.gov (United States)

    Schneider, Barbara St Pierre; Nicholas, Jennifer; Kurrus, Jeffrey E

    2013-01-01

    To compare the methodologic quality and study/report characteristics between quantitative clinical nursing and nursing education research articles. The methodologic quality of quantitative nursing education research needs to advance to a higher level. Clinical research can provide guidance for nursing education to reach this level. One hundred quantitative clinical research articles from-high impact journals published in 2007 and 37 education research articles from high impact journals published in 2006 to 2007 were chosen for analysis. Clinical articles had significantly higher quality scores than education articles in three domains: number of institutions studied, type of data, and outcomes. The findings indicate three ways in which nursing education researchers can strengthen the methodologic quality of their quantitative research. With this approach, greater funding may be secured for advancing the science of nursing education.

  17. Optimizing value utilizing Toyota Kata methodology in a multidisciplinary clinic.

    Science.gov (United States)

    Merguerian, Paul A; Grady, Richard; Waldhausen, John; Libby, Arlene; Murphy, Whitney; Melzer, Lilah; Avansino, Jeffrey

    2015-08-01

    Value in healthcare is measured in terms of patient outcomes achieved per dollar expended. Outcomes and cost must be measured at the patient level to optimize value. Multidisciplinary clinics have been shown to be effective in providing coordinated and comprehensive care with improved outcomes, yet tend to have higher cost than typical clinics. We sought to lower individual patient cost and optimize value in a pediatric multidisciplinary reconstructive pelvic medicine (RPM) clinic. The RPM clinic is a multidisciplinary clinic that takes care of patients with anomalies of the pelvic organs. The specialties involved include Urology, General Surgery, Gynecology, and Gastroenterology/Motility. From May 2012 to November 2014 we performed time-driven activity-based costing (TDABC) analysis by measuring provider time for each step in the patient flow. Using observed time and the estimated hourly cost of each of the providers we calculated the final cost at the individual patient level, targeting clinic preparation. We utilized Toyota Kata methodology to enhance operational efficiency in an effort to optimize value. Variables measured included cost, time to perform a task, number of patients seen in clinic, percent value-added time (VAT) to patients (face to face time) and family experience scores (FES). At the beginning of the study period, clinic costs were $619 per patient. We reduced conference time from 6 min/patient to 1 min per patient, physician preparation time from 8 min to 6 min and increased Medical Assistant (MA) preparation time from 9.5 min to 20 min, achieving a cost reduction of 41% to $366 per patient. Continued improvements further reduced the MA preparation time to 14 min and the MD preparation time to 5 min with a further cost reduction to $194 (69%) (Figure). During this study period, we increased the number of appointments per clinic. We demonstrated sustained improvement in FES with regards to the families overall experience with their providers

  18. Review article: Methodology for the 'rapid review' series on musculoskeletal injuries in the emergency department.

    Science.gov (United States)

    Strudwick, Kirsten; McPhee, Megan; Bell, Anthony; Martin-Khan, Melinda; Russell, Trevor

    2018-02-01

    Musculoskeletal injuries are a common presentation to the ED, with significant costs involved in the management of these injuries, variances in care within the ED and associated morbidity. A series of rapid review papers were completed to guide best practice for the assessment and management of common musculoskeletal injuries presenting to the ED. This paper presents the methodology used across the rapid reviews. PubMed, CINAHL, EMBASE, TRIP and the grey literature, including relevant organisational websites, were searched in 2015. The search was repeated consistently for each topic area (injuries of the foot and ankle, knee, hand and wrist, elbow, shoulder, lumbar spine and cervical spine). English-language primary studies, systematic reviews and guidelines that were published in the last 10 years and addressed acute musculoskeletal injury management were considered for inclusion. Data extraction of each included article was conducted, followed by a quality appraisal. The extracted data from each article was synthesised to group similar evidence together. For each rapid review, the evidence has been organised in a way that a clinician can direct their attention to a specific component of the clinical cycle of care in the ED, such as the assessment, diagnostic tests, management and follow-up considerations from ED. The series of rapid reviews are designed to foster evidence-based practice within the ED, targeting the injuries most commonly presenting. The reviews provide clinicians in EDs with rapid access to the best current evidence, which has been synthesised and organised to assist decision-making. © 2017 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  19. An optimization methodology for heterogeneous minor actinides transmutation

    Science.gov (United States)

    Kooyman, Timothée; Buiron, Laurent; Rimpault, Gérald

    2018-04-01

    In the case of a closed fuel cycle, minor actinides transmutation can lead to a strong reduction in spent fuel radiotoxicity and decay heat. In the heterogeneous approach, minor actinides are loaded in dedicated targets located at the core periphery so that long-lived minor actinides undergo fission and are turned in shorter-lived fission products. However, such targets require a specific design process due to high helium production in the fuel, high flux gradient at the core periphery and low power production. Additionally, the targets are generally manufactured with a high content in minor actinides in order to compensate for the low flux level at the core periphery. This leads to negative impacts on the fuel cycle in terms of neutron source and decay heat of the irradiated targets, which penalize their handling and reprocessing. In this paper, a simplified methodology for the design of targets is coupled with a method for the optimization of transmutation which takes into account both transmutation performances and fuel cycle impacts. The uncertainties and performances of this methodology are evaluated and shown to be sufficient to carry out scoping studies. An illustration is then made by considering the use of moderating material in the targets, which has a positive impact on the minor actinides consumption but a negative impact both on fuel cycle constraints (higher decay heat and neutron) and on assembly design (higher helium production and lower fuel volume fraction). It is shown that the use of moderating material is an optimal solution of the transmutation problem with regards to consumption and fuel cycle impacts, even when taking geometrical design considerations into account.

  20. Calibration Modeling Methodology to Optimize Performance for Low Range Applications

    Science.gov (United States)

    McCollum, Raymond A.; Commo, Sean A.; Parker, Peter A.

    2010-01-01

    Calibration is a vital process in characterizing the performance of an instrument in an application environment and seeks to obtain acceptable accuracy over the entire design range. Often, project requirements specify a maximum total measurement uncertainty, expressed as a percent of full-scale. However in some applications, we seek to obtain enhanced performance at the low range, therefore expressing the accuracy as a percent of reading should be considered as a modeling strategy. For example, it is common to desire to use a force balance in multiple facilities or regimes, often well below its designed full-scale capacity. This paper presents a general statistical methodology for optimizing calibration mathematical models based on a percent of reading accuracy requirement, which has broad application in all types of transducer applications where low range performance is required. A case study illustrates the proposed methodology for the Mars Entry Atmospheric Data System that employs seven strain-gage based pressure transducers mounted on the heatshield of the Mars Science Laboratory mission.

  1. Optimization of composite flour biscuits by mixture response surface methodology.

    Science.gov (United States)

    Okpala, Laura C; Okoli, Eric C

    2013-08-01

    Biscuits were produced from blends of pigeon pea, sorghum and cocoyam flours. The study was carried out using mixture response surface methodology as the optimization technique. Using the simplex centroid design, 10 formulations were obtained. Protein and sensory quality of the biscuits were analyzed. The sensory attributes studied were appearance, taste, texture, crispness and general acceptability, while the protein quality indices were biological value and net protein utilization. The results showed that while the addition of pigeon pea improved the protein quality, its addition resulted in reduced sensory ratings for all the sensory attributes with the exception of appearance. Some of the biscuits had sensory ratings, which were not significantly different (p > 0.05) from biscuits made with wheat. Rat feeding experiments indicated that the biological value and net protein utilization values obtained for most of the biscuits were above minimum recommended values. Optimization suggested biscuits containing 75.30% sorghum, 0% pigeon pea and 24.70% cocoyam flours as the best proportion of these components. This sample received good scores for the sensory attributes.

  2. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  3. A Methodology for Optimization in Multistage Industrial Processes: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Piotr Jarosz

    2015-01-01

    Full Text Available The paper introduces a methodology for optimization in multistage industrial processes with multiple quality criteria. Two ways of formulation of optimization problem and four different approaches to solve the problem are considered. Proposed methodologies were tested first on a virtual process described by benchmark functions and next were applied in optimization of multistage lead refining process.

  4. [What is the methodological quality of articles on therapeutic procedures published in Cirugía Española?].

    Science.gov (United States)

    Manterola, Carlos; Busquets, Juli; Pascual, Marta; Grande, Luis

    2006-02-01

    The aim of this study was to determine the methodological quality of articles on therapeutic procedures published in Cirugía Española and to study its association with the publication year, center, and subject-matter. A bibliometric study that included all articles on therapeutic procedures published in Cirugía Española between 2001 and 2004 was performed. All kinds of clinical designs were considered, excluding editorials, review articles, letters to editor, and experimental studies. The variables analyzed were: year of publication, center, design, and methodological quality. Methodological quality was determined by a valid and reliable scale. Descriptive statistics (calculation of means, standard deviation and medians) and analytical statistics (Pearson's chi2, nonparametric, ANOVA and Bonferroni tests) were used. A total of 244 articles were studied (197 case series [81%], 28 cohort studies [12%], 17 clinical trials [7%], 1 cross sectional study and 1 case-control study [0.8%]). The studies were performed mainly in Catalonia and Murcia (22% and 16%, respectively). The most frequent subject areas were soft tissue and hepatobiliopancreatic surgery (23% and 19%, respectively). The mean and median of the methodological quality score calculated for the entire series was 10.2 +/- 3.9 points and 9.5 points, respectively. Methodological quality significantly increased by publication year (p < 0.001). An association between methodological quality and subject area was observed but no association was detected with the center performing the study. The methodological quality of articles on therapeutic procedures published in Cirugía Española between 2001 and 2004 is low. However, a statistically significant trend toward improvement was observed.

  5. Computational optimization of biodiesel combustion using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ganji Prabhakara Rao

    2017-01-01

    Full Text Available The present work focuses on optimization of biodiesel combustion phenomena through parametric approach using response surface methodology. Physical properties of biodiesel play a vital role for accurate simulations of the fuel spray, atomization, combustion, and emission formation processes. Typically methyl based biodiesel consists of five main types of esters: methyl palmitate, methyl oleate, methyl stearate, methyl linoleate, and methyl linolenate in its composition. Based on the amount of methyl esters present the properties of pongamia bio-diesel and its blends were estimated. CONVERGETM computational fluid dynamics software was used to simulate the fuel spray, turbulence and combustion phenomena. The simulation responses such as indicated specific fuel consumption, NOx, and soot were analyzed using design of experiments. Regression equations were developed for each of these responses. The optimum parameters were found out to be compression ratio – 16.75, start of injection – 21.9° before top dead center, and exhaust gas re-circulation – 10.94%. Results have been compared with baseline case.

  6. A word processor optimized for preparing journal articles and student papers.

    Science.gov (United States)

    Wolach, A H; McHale, M A

    2001-11-01

    A new Windows-based word processor for preparing journal articles and student papers is described. In addition to standard features found in word processors, the present word processor provides specific help in preparing manuscripts. Clicking on "Reference Help (APA Form)" in the "File" menu provides a detailed help system for entering the references in a journal article. Clicking on "Examples and Explanations of APA Form" provides a help system with examples of the various sections of a review article, journal article that has one experiment, or journal article that has two or more experiments. The word processor can automatically place the manuscript page header and page number at the top of each page using the form required by APA and Psychonomic Society journals. The "APA Form" submenu of the "Help" menu provides detailed information about how the word processor is optimized for preparing articles and papers.

  7. Model-based Organization Manning, Strategy, and Structure Design via Team Optimal Design (TOD) Methodology

    National Research Council Canada - National Science Library

    Levchuk, Georgiy; Chopra, Kari; Paley, Michael; Levchuk, Yuri; Clark, David

    2005-01-01

    This paper describes a quantitative Team Optimal Design (TOD) methodology and its application to the design of optimized manning for E-10 Multi-sensor Command and Control Aircraft. The E-10 (USAF, 2002...

  8. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-01-01

    Full Text Available The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13 with favorable heating value (44,768 kJ/kg. ©2010 BCREC UNDIP. All rights reserved(Received: 10th July 2010, Revised: 18th September 2010, Accepted: 19th September 2010[How to Cite: I. Istadi, S. Suherman, L. Buchori. (2010. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 103-111. doi:10.9767/bcrec.5.2.797.103-111][DOI: http://dx.doi.org/10.9767/bcrec.5.2.797.103-111 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/797

  9. ''Training plan optimized design'' methodology application to IBERDROLA - Power generation

    International Nuclear Information System (INIS)

    Gil, S.; Mendizabal, J.L.

    1996-01-01

    The trend in both Europe and the United States, towards the understanding that no training plan may be considered suitable if not backed by the results of application of the S.A.T. (Systematic Approach to Training) methodology, led TECNATOM, S.A. to apply thy methodology through development of an application specific to the conditions of the Spanish working system. The requirement that design of the training be coherent with the realities of the working environment is met by systematic application of the SAT methodology as part of the work analysis and job-based task analysis processes, this serving as a basis for design of the training plans

  10. Methodological Proposal for Optimal Location of Emergency Operation Centers through Multi-Criteria Approach

    Directory of Open Access Journals (Sweden)

    Umberto Di Matteo

    2016-01-01

    Full Text Available Territorial vulnerability and risk analysis play a fundamental role in urban planning and emergency management. Requirements analysis of such aspects are possible to define more and more effective risk mitigation strategies providing efficient response plans to events. Many mitigation strategies as well as many response plans have in common the purpose of minimizing response time in order to decrease the level of vulnerability of the concerning area. The response time to a perturbing event is in fact an essential parameter to define the hazard of the considered site and literature is unanimous in considering it. In this context, the article proposes a methodology for the optimization of the location on the territory of emergency operation centers (EOCs, reducing response times and mitigating in this way the vulnerability of the area. The proposed methodology is based on a multi-criteria decision making (MCDM hybrid type AHP (Analytic Hierarchy Process-Electre. This method has been applied in the territory of Bressanone and Vipiteno (Bolzano-Italy, simulating the need to build a new barrack of Fire Department. A campaign of interviews with operators and industry experts and the collection of spatial data from the portals of the concerned authorities has been carried out in order to get the number of necessary data for the implementation of the proposed methodology.

  11. Alternative Fuel Transportation Optimization Tool : Description, Methodology, and Demonstration Scenarios.

    Science.gov (United States)

    2015-09-01

    This report describes an Alternative Fuel Transportation Optimization Tool (AFTOT), developed by the U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe) in support of the Federal Aviation Administration (FAA)....

  12. Fuzzy portfolio optimization advances in hybrid multi-criteria methodologies

    CERN Document Server

    Gupta, Pankaj; Inuiguchi, Masahiro; Chandra, Suresh

    2014-01-01

    This monograph presents a comprehensive study of portfolio optimization, an important area of quantitative finance. Considering that the information available in financial markets is incomplete and that the markets are affected by vagueness and ambiguity, the monograph deals with fuzzy portfolio optimization models. At first, the book makes the reader familiar with basic concepts, including the classical mean–variance portfolio analysis. Then, it introduces advanced optimization techniques and applies them for the development of various multi-criteria portfolio optimization models in an uncertain environment. The models are developed considering both the financial and non-financial criteria of investment decision making, and the inputs from the investment experts. The utility of these models in practice is then demonstrated using numerical illustrations based on real-world data, which were collected from one of the premier stock exchanges in India. The book addresses both academics and professionals pursuin...

  13. Optimal (Solvent) Mixture Design through a Decomposition Based CAMD methodology

    DEFF Research Database (Denmark)

    Achenie, L.; Karunanithi, Arunprakash T.; Gani, Rafiqul

    2004-01-01

    Computer Aided Molecular/Mixture design (CAMD) is one of the most promising techniques for solvent design and selection. A decomposition based CAMD methodology has been formulated where the mixture design problem is solved as a series of molecular and mixture design sub-problems. This approach is...

  14. Article Article

    African Journals Online (AJOL)

    2012-12-03

    Dec 3, 2012 ... Article. The use of standardised patients (SPs) in medical education is well ... those taught using inpatients6 and virtual patients.7 The use of the ..... the reality that principles taught in theory do not always translate into the.

  15. Updating Optimal Decisions Using Game Theory and Exploring Risk Behavior Through Response Surface Methodology

    National Research Council Canada - National Science Library

    Jordan, Jeremy D

    2007-01-01

    .... Methodology is developed that allows a decision maker to change his perceived optimal policy based on available knowledge of the opponents strategy, where the opponent is a rational decision maker...

  16. Drag &Drop, Mixed-Methodology-based Lab-on-Chip Design Optimization Software, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective is to develop a ?mixed-methodology?, drag and drop, component library (fluidic-lego)-based, system design and optimization tool for complex...

  17. Simulation and Optimization Methodologies for Military Transportation Network Routing and Scheduling and for Military Medical Services

    National Research Council Canada - National Science Library

    Rodin, Ervin Y

    2005-01-01

    The purpose of this present research was to develop a generic model and methodology for analyzing and optimizing large-scale air transportation networks including both their routing and their scheduling...

  18. Use of response surface methodology to optimize the drying ...

    African Journals Online (AJOL)

    CHABI

    2016-09-15

    Sep 15, 2016 ... ATCC 27844, methicillin resistant S. aureus (MRSA),. Salmonella typhi R ... count (YM), bacteriocin production (BE) and the antimicrobial activity against indicator .... predicted one from the optimized model by calculating the percentage error to ..... A mathematical model considering variable diffusivity ...

  19. Application of response surface methodology optimization for the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... of CQAs in tobacco waste were identified as three isomers containing chlorogenic acid (5-caffecylquinic acid ... Key words: Caffeic acid, caffeoylquinic acids (CQAs), hydrolysis reaction parameter optimization, response surface ..... Rosmarinic acid and caffeic acid produce antidepressive-like effect in.

  20. A methodology for practical implementation of ICRP recommendations for optimization

    International Nuclear Information System (INIS)

    Webb, G.A.M.; Clarke, R.H.

    1979-01-01

    The system of dose limitation recommended by the Commission has been restated in its most recent recommendations with the requirements implying cost benefit analysis elevated to pride of place. The main subject of this paper is discussion of the problems involved in carrying out differential cost benefit analysis (optimization) studies. The various quantities such as Effective Dose Equivalent and Collective Effective Dose Equivalent Commitment needed to carry out these studies are discussed, their strengths and weaknesses identified and suggestions made as to how they should be used in practice. In particular the implications underlying the use of the collective quantities as the independent variable in these studies are clarified and examined. The need for the maximum realism in calculational models and parameters used in the calculation of collective quantities for optimization studies is stressed, with the corollary of conservative calculations for comparison with dose limits. The methods for calculating costs are examined, both for the plant or equipment installed to reduce doses and for the cost associated with the consequent reduction in health detriment. Some practical problems are cited in both the theory and practice of optimization. It is concluded that optimization is not yet sufficiently developed in either basic formalism or practical application. Some areas are identified where further work is needed. (author)

  1. Development of a methodology for maintenance optimization at Kozloduy NPP

    International Nuclear Information System (INIS)

    Kitchev, E.

    1997-01-01

    The paper presents the overview of a project for development of an applicable strategy and methods for Kozloduy NPP (KNPP) to optimize its maintenance program in order to meet the current risk based maintenance requirements. The strategy in a format of Integrated Maintenance Program (IMP) manual will define the targets of the optimization process, the major stages and elements of this process and their relationships. IMP embodies the aspects of the US NRC Maintenance Rule compliance and facilitates the integration of KNPP programs and processes which impact the plant maintenance and safety. The methods in a format of IMP Instructions (IM-PI) will define how the different IMP stages can be implemented and the IMP targets can be achieved at KNPP environment. (author). 8 refs

  2. Some methodologies for the optimization of radiation protection

    International Nuclear Information System (INIS)

    Oudiz, A.; Uzzan, G.

    1979-01-01

    Optimization of radiation protection in the nuclear power sector calls for decision-making studies with a view to elucidating the balance between expenditure on protection and health risks. The quantitative methods used for reaching such decisions are numerous and the cost-benefit analysis suggested by the ICRP is only one example. Others are cost-effectiveness analysis, multi-attribute analysis, utility functions and so on. The paper summarizes the principles of these different methods and describes the different aspects of a decision study as well as the manner in which they are interrelated. It emerges that optimization, or rather rationalization, of radiation protection options can be approached via many different quantitative methods, some of which differ appreciably from cost-benefit analysis. An exploratory investigation of these methods in particular decision-making contexts may in the future show some to be superior to others and better suited to general use in radiation protection. (author)

  3. Geostatistical methodology for waste optimization of contaminated premises - 59344

    International Nuclear Information System (INIS)

    Desnoyers, Yvon; Dubot, Didier

    2012-01-01

    The presented methodological study illustrates a Geo-statistical approach suitable for radiological evaluation in nuclear premises. The waste characterization is mainly focused on floor concrete surfaces. By modeling the spatial continuity of activities, Geo-statistics provide sound methods to estimate and map radiological activities, together with their uncertainty. The multivariate approach allows the integration of numerous surface radiation measurements in order to improve the estimation of activity levels from concrete samples. This way, a sequential and iterative investigation strategy proves to be relevant to fulfill the different evaluation objectives. Waste characterization is performed on risk maps rather than on direct interpolation maps (due to bias of the selection on kriging results). The use of several estimation supports (punctual, 1 m 2 , room) allows a relevant radiological waste categorization thanks to cost-benefit analysis according to the risk of exceeding a given activity threshold. Global results, mainly total activity, are similarly quantified to precociously lead the waste management for the dismantling and decommissioning project. This paper recalled the geo-statistics principles and demonstrated how this methodology provides innovative tools for the radiological evaluation of contaminated premises. The relevance of this approach relies on the presence of a spatial continuity for radiological contamination. In this case, geo-statistics provides reliable activity estimates, uncertainty quantification and risk analysis, which are essential decision-making tools for decommissioning and dismantling projects of nuclear installations. Waste characterization is then performed taking all relevant information into account: historical knowledge, surface measurements and samples. Thanks to the multivariate processing, the different investigation stages can be rationalized as regards quantity and positioning. Waste characterization is finally

  4. Application of TRIZ Methodology in Diffusion Welding System Optimization

    Science.gov (United States)

    Ravinder Reddy, N.; Satyanarayana, V. V.; Prashanthi, M.; Suguna, N.

    2017-12-01

    Welding is tremendously used in metal joining processes in the manufacturing process. In recent years, diffusion welding method has significantly increased the quality of a weld. Nevertheless, diffusion welding has some extent short research and application progress. Therefore, diffusion welding has a lack of relevant information, concerned with the joining of thick and thin materials with or without interlayers, on welding design such as fixture, parameters selection and integrated design. This article intends to combine innovative methods in the application of diffusion welding design. This will help to decrease trial and error or failure risks in the welding process being guided by the theory of inventive problem solving (TRIZ) design method. This article hopes to provide welding design personnel with innovative design ideas under research and for practical application.

  5. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31.  doi:10.9767/bcrec.4.1.7115.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.7115.23-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7115

  6. Methodology for the optimal design of an integrated first and second generation ethanol production plant combined with power cogeneration.

    Science.gov (United States)

    Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François

    2016-08-01

    The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology

    OpenAIRE

    Lee, Lan-Sook; Lee, Namhyouck; Kim, Young; Lee, Chang-Ho; Hong, Sang; Jeon, Yeo-Won; Kim, Young-Eon

    2013-01-01

    Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 °C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio ...

  8. An Intuitionistic Fuzzy Methodology for Component-Based Software Reliability Optimization

    DEFF Research Database (Denmark)

    Madsen, Henrik; Grigore, Albeanu; Popenţiuvlǎdicescu, Florin

    2012-01-01

    Component-based software development is the current methodology facilitating agility in project management, software reuse in design and implementation, promoting quality and productivity, and increasing the reliability and performability. This paper illustrates the usage of intuitionistic fuzzy...... degree approach in modelling the quality of entities in imprecise software reliability computing in order to optimize management results. Intuitionistic fuzzy optimization algorithms are proposed to be used for complex software systems reliability optimization under various constraints....

  9. Selective methodology of population dynamics for optimizing a multiobjective environment of job shop production

    Directory of Open Access Journals (Sweden)

    Santiago Ruiz

    2015-01-01

    Full Text Available This paper develops a methodology based on population genetics to improve the performance of two or more variables in job shop production systems. The methodology applies a genetic algorithm with special features in the individual selection when they pass from generation to generation. In comparison with the FIFO method, the proposed methodology showed better results in the variables makespan, idle time and energy cost. When compared with NSGA II, the methodology did not showed relevant differences in makespan and idle time; however better performance was obtained in energy cost and, especially, in the number of required iterations to get the optimal makespan.

  10. Optimization of galacto-oligosacharides synthesis using response surface methodology

    Directory of Open Access Journals (Sweden)

    Carević Milica B.

    2017-01-01

    Full Text Available Galacto-oligosaccharides (GOS are important lactose-derived compounds, considered to be a prebiotics, based on abundant scientific evidence about their unique physical properties and physiological effects. This consequently allows their widespread application as supplement in food and feed industry. They are preferably produced by the enzymatic transgalactosylation action of β-galactosidase. However, this enzyme simultaneously performs its primary biological function of lactose hydrolysis, and it is of crucial importance to gain an insight into the influence of different reaction conditions, and provide favorization of transgalactosylation, particularly GOS synthesis reaction. In this study, the response surface methodology (RSM was applied in terms of individual experimental factors effect estimation, their mutual interaction identification and finally, the determination of optimum conditions for highest GOS yield achievement. Having said that, it can be observed that the temperature and pH have no significant impact on the GOS yield, while on the other hand, the lactose concentration of 400 g/l, enzyme concentration of 13.5 g/l and reaction time of 13 min represent the optimum conditions for achieving the highest GOS yields.

  11. The development of a safety analysis methodology for the optimized power reactor 1000

    International Nuclear Information System (INIS)

    Hwang-Yong, Jun; Yo-Han, Kim

    2005-01-01

    Korea Electric Power Research Institute (KEPRI) has been developing inhouse safety analysis methodology based on the delicate codes available to KEPRI to overcome the problems arising from currently used vendor oriented methodologies. For the Loss of Coolant Accident (LOCA) analysis, the KREM (KEPRI Realistic Evaluation Methodology) has been developed based on the RELAP-5 code. The methodology was approved for the Westinghouse 3-loop plants by the Korean regulatory organization and the project to extent the methodology to the Optimized Power Reactor 1000 (OPR1000) has been ongoing since 2001. Also, for the Non-LOCA analysis, the KNAP (Korea Non-LOCA Analysis Package) has been developed using the UNICORN-TM code system. To demonstrate the feasibility of these codes systems and methodologies, some typical cases of the design basis accidents mentioned in the final safety analysis report (FSAR) were analyzed. (author)

  12. Energy optimization methodology of multi-chiller plant in commercial buildings

    International Nuclear Information System (INIS)

    Thangavelu, Sundar Raj; Myat, Aung; Khambadkone, Ashwin

    2017-01-01

    This study investigates the potential energy savings in commercial buildings through optimized operation of a multi-chiller plant. The cooling load contributes 45–60% of total power consumption in commercial and office buildings, especially at tropics. The chiller plant operation is not optimal in most of the existing buildings because the chiller plant is either operated at design condition irrespective of the cooling load or optimized locally due to lack of overall chiller plant behavior. In this study, an overall energy model of chiller plant is developed to capture the thermal behavior of all systems and their interactions including the power consumption. An energy optimization methodology is proposed to derive optimized operation decisions for chiller plant at regular intervals based on building thermal load and weather condition. The benefits of proposed energy optimization methodology are examined using case study problems covering different chiller plant configurations. The case studies result confirmed the energy savings achieved through optimized operations is up to 40% for moderate size chiller plant and around 20% for small chiller plant which consequently reduces the energy cost and greenhouse gas emissions. - Highlights: • Energy optimization methodology improves the performance of multi-chiller plant. • Overall energy model of chiller plant accounts all equipment and the interactions. • Operation decisions are derived at regular interval based on time-varying factors. • Three case studies confirmed 20 to 40% of energy savings than conventional method.

  13. Application of Response Surface Methodology in Optimizing a Three Echelon Inventory System

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Razavi Hajiagha

    2014-01-01

    Full Text Available Inventory control is an important subject in supply chain management. In this paper, a three echelon production, distribution, inventory system composed of one producer, two wholesalers and a set of retailers has been considered. Costumers' demands follow a compound Poisson process and the inventory policy is a kind of continuous review (R, Q. In this paper, regarding the standard cost structure in an inventory model, the cost function of system has been approximated using Response Surface Methodology as a combination of designed experiments, simulation, regression analysis and optimization. The proposed methodology in this paper can be applied as a novel method in optimization of inventory policy of supply chains. Also, the joint optimization of inventory parameters, including reorder point and batch order size, is another advantage of the proposed methodology.

  14. Optimization of CO2 Laser Cutting Process using Taguchi and Dual Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    M. Madić

    2014-09-01

    Full Text Available Selection of optimal cutting parameter settings for obtaining high cut quality in CO2 laser cutting process is of great importance. Among various analytical and experimental optimization methods, the application of Taguchi and response surface methodology is one of most commonly used for laser cutting process optimization. Although the concept of dual response surface methodology for process optimization has been used with success, till date, no experimental study has been reported in the field of laser cutting. In this paper an approach for optimization of CO2 laser cutting process using Taguchi and dual response surface methodology is presented. The goal was to determine the near optimal laser cutting parameter values in order to ensure robust condition for minimization of average surface roughness. To obtain experimental database for development of response surface models, Taguchi’s L25 orthogonal array was implemented for experimental plan. Three cutting parameters, the cutting speed (3, 4, 5, 6, 7 m/min, the laser power (0.7, 0.9, 1.1, 1.3, 1.5 kW, and the assist gas pressure (3, 4, 5, 6, 7 bar, were used in the experiment. To obtain near optimal cutting parameters settings, multi-stage Monte Carlo simulation procedure was performed on the developed response surface models.

  15. [Methodological quality of articles on therapeutic procedures published in Cirugía Española. Evaluation of the period 2005-2008].

    Science.gov (United States)

    Manterola, Carlos; Grande, Luís

    2010-04-01

    To determine methodological quality of therapy articles published in Cirugía Española and to study its association with the publication year, the centre of origin and subjects. A literature study which included all therapy articles published between 2005 and 2008. All kinds of clinical designs were considered, excluding editorials, review articles, letters to editor and experimental studies. Variables analysed included: year of publication, centre of origin, design, and methodological quality of articles. A valid and reliable scale was applied to determine methodological quality. A total of 243 articles [206 series of cases (84.8%), 27 cohort studies (11.1%), 9 clinical trials (3.7%) and 1 case control study (0.4%)] were found. Studies came preferentially from Catalonia and Valencia (22.3% and 12.3% respectively). Thematic areas most frequently found were hepato-bilio-pancreatic and colorectal surgery (20.0% and 16.6%, respectively). Average and median of the methodological quality score calculated for the entire series were 9.5+/-4.3 points and 8 points, respectively. Association between methodological quality and geographical area (p=0.0101), subject area (p=0.0267), and university origin (p=0.0369) was found. A significant increase of methodological quality by publication year was observed (p=0.0004). Methodological quality of therapy articles published in Cirugía Española between 2005 and 2008 is low; but an increase tendency with statistical significance was observed.

  16. Implementation of the cost-optimal methodology according to the EPBD recast

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    2012-01-01

    The EPBD recast states that Member States (MS) must ensure that minimum energy performance requirements for buildings are set “with a view to achieving cost-optimal levels”. The costoptimal level must be calculated in accordance with a comparative methodology.......The EPBD recast states that Member States (MS) must ensure that minimum energy performance requirements for buildings are set “with a view to achieving cost-optimal levels”. The costoptimal level must be calculated in accordance with a comparative methodology....

  17. A performance-oriented power transformer design methodology using multi-objective evolutionary optimization.

    Science.gov (United States)

    Adly, Amr A; Abd-El-Hafiz, Salwa K

    2015-05-01

    Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.

  18. FDTD-based optical simulations methodology for CMOS image sensors pixels architecture and process optimization

    Science.gov (United States)

    Hirigoyen, Flavien; Crocherie, Axel; Vaillant, Jérôme M.; Cazaux, Yvon

    2008-02-01

    This paper presents a new FDTD-based optical simulation model dedicated to describe the optical performances of CMOS image sensors taking into account diffraction effects. Following market trend and industrialization constraints, CMOS image sensors must be easily embedded into even smaller packages, which are now equipped with auto-focus and short-term coming zoom system. Due to miniaturization, the ray-tracing models used to evaluate pixels optical performances are not accurate anymore to describe the light propagation inside the sensor, because of diffraction effects. Thus we adopt a more fundamental description to take into account these diffraction effects: we chose to use Maxwell-Boltzmann based modeling to compute the propagation of light, and to use a software with an FDTD-based (Finite Difference Time Domain) engine to solve this propagation. We present in this article the complete methodology of this modeling: on one hand incoherent plane waves are propagated to approximate a product-use diffuse-like source, on the other hand we use periodic conditions to limit the size of the simulated model and both memory and computation time. After having presented the correlation of the model with measurements we will illustrate its use in the case of the optimization of a 1.75μm pixel.

  19. Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques

    Science.gov (United States)

    2017-11-01

    on Bio -Inspired Optimization Techniques by Canh Ly, Nghia Tran, and Ozlem Kilic Approved for public release; distribution is...Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques by...SUBTITLE Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques 5a. CONTRACT NUMBER

  20. Development of a standard methodology for optimizing remote visual display for nuclear-maintenance tasks

    International Nuclear Information System (INIS)

    Clarke, M.M.; Garin, J.; Preston-Anderson, A.

    1981-01-01

    The aim of the present study is to develop a methodology for optimizing remote viewing systems for a fuel recycle facility (HEF) being designed at Oak Ridge National Laboratory (ORNL). An important feature of this design involves the Remotex concept: advanced servo-controlled master/slave manipulators, with remote television viewing, will totally replace direct human contact with the radioactive environment. Therefore, the design of optimal viewing conditions is a critical component of the overall man/machine system. A methodology has been developed for optimizing remote visual displays for nuclear maintenance tasks. The usefulness of this approach has been demonstrated by preliminary specification of optimal closed circuit TV systems for such tasks

  1. A density-based topology optimization methodology for thermoelectric energy conversion problems

    DEFF Research Database (Denmark)

    Lundgaard, Christian; Sigmund, Ole

    2018-01-01

    , temperature dependent material parameters and relevant objective functions. Comprehensive implementation details of the methodology are provided, and seven different design problems are solved and discussed to demonstrate that the approach is well-suited for optimizing TEGs and TECs. The study reveals new...

  2. Optimization Versus Robustness in Simulation : A Practical Methodology, With a Production-Management Case-Study

    NARCIS (Netherlands)

    Kleijnen, J.P.C.; Gaury, E.G.A.

    2001-01-01

    Whereas Operations Research has always paid much attention to optimization, practitioners judge the robustness of the 'optimum' solution to be of greater importance.Therefore this paper proposes a practical methodology that is a stagewise combination of the following four proven techniques: (1)

  3. Development of a standard methodology for optimizing remote visual display for nuclear maintenance tasks

    Science.gov (United States)

    Clarke, M. M.; Garin, J.; Prestonanderson, A.

    A fuel recycle facility being designed at Oak Ridge National Laboratory involves the Remotex concept: advanced servo-controlled master/slave manipulators, with remote television viewing, will totally replace direct human contact with the radioactive environment. The design of optimal viewing conditions is a critical component of the overall man/machine system. A methodology was developed for optimizing remote visual displays for nuclear maintenance tasks. The usefulness of this approach was demonstrated by preliminary specification of optimal closed circuit TV systems for such tasks.

  4. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology].

    Science.gov (United States)

    Zhang, An-yang; Fan, Tian-yuan

    2009-12-18

    To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.

  5. Optimization Of Methodological Support Of Application Tax Benefits In Regions: Practice Of Perm Region

    Directory of Open Access Journals (Sweden)

    Alexandr Ivanovich Tatarkin

    2015-03-01

    Full Text Available In the article, the problem of the methodological process support of regional tax benefits is reviewed. The method of tax benefits assessment, accepted in Perm Region, was chosen as an analysis object because the relatively long period of application of benefits has allowed to build enough statistics base. In the article, the reliability of budget, economic, investment, and social effectiveness assessments of application benefits, based on the Method, is investigated. The suggestions of its perfection are formulated

  6. A methodology for the optimization of the estimation of tritium in urine by liquid scintillation counting

    International Nuclear Information System (INIS)

    Joseph, S.; Kramer, G.H.

    1982-10-01

    A method has been designed to optimize liquid scintillation (LS) urinalysis with respect to sensitivity and cost. Three related factors, quench, sample composition and counting efficiency, were measured simultaneously and the results plotted in three dimensions to determine the optimum conditions for urinalysis. Picric acid was used to simulate quenching. Subsequent urinalysis experiments showed that quenching by picric acid was analogous to urine quenching. The optimization methodology was applied to ten commercial LS cocktails and a wide divergence in results was obtained. This method can also be used to optimize minimum detectable activities (MDA) but the results show that there is no fixed sample composition that can be used for all the various types of urine samples; however, it is possible to achieve general improvements of at least a factor of 2 in the MDA for Scintiverse (the only one tested for this particular application of the methodology)

  7. An optimization methodology for identifying robust process integration investments under uncertainty

    International Nuclear Information System (INIS)

    Svensson, Elin; Berntsson, Thore; Stroemberg, Ann-Brith; Patriksson, Michael

    2009-01-01

    Uncertainties in future energy prices and policies strongly affect decisions on investments in process integration measures in industry. In this paper, we present a five-step methodology for the identification of robust investment alternatives incorporating explicitly such uncertainties in the optimization model. Methods for optimization under uncertainty (or, stochastic programming) are thus combined with a deep understanding of process integration and process technology in order to achieve a framework for decision-making concerning the investment planning of process integration measures under uncertainty. The proposed methodology enables the optimization of investments in energy efficiency with respect to their net present value or an environmental objective. In particular, as a result of the optimization approach, complex investment alternatives, allowing for combinations of energy efficiency measures, can be analyzed. Uncertainties as well as time-dependent parameters, such as energy prices and policies, are modelled using a scenario-based approach, enabling the identification of robust investment solutions. The methodology is primarily an aid for decision-makers in industry, but it will also provide insight for policy-makers into how uncertainties regarding future price levels and policy instruments affect the decisions on investments in energy efficiency measures. (author)

  8. An optimization methodology for identifying robust process integration investments under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Elin; Berntsson, Thore [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Stroemberg, Ann-Brith [Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg (Sweden); Patriksson, Michael [Department of Mathematical Sciences, Chalmers University of Technology and Department of Mathematical Sciences, University of Gothenburg, SE-412 96 Goeteborg (Sweden)

    2009-02-15

    Uncertainties in future energy prices and policies strongly affect decisions on investments in process integration measures in industry. In this paper, we present a five-step methodology for the identification of robust investment alternatives incorporating explicitly such uncertainties in the optimization model. Methods for optimization under uncertainty (or, stochastic programming) are thus combined with a deep understanding of process integration and process technology in order to achieve a framework for decision-making concerning the investment planning of process integration measures under uncertainty. The proposed methodology enables the optimization of investments in energy efficiency with respect to their net present value or an environmental objective. In particular, as a result of the optimization approach, complex investment alternatives, allowing for combinations of energy efficiency measures, can be analyzed. Uncertainties as well as time-dependent parameters, such as energy prices and policies, are modelled using a scenario-based approach, enabling the identification of robust investment solutions. The methodology is primarily an aid for decision-makers in industry, but it will also provide insight for policy-makers into how uncertainties regarding future price levels and policy instruments affect the decisions on investments in energy efficiency measures. (author)

  9. New well pattern optimization methodology in mature low-permeability anisotropic reservoirs

    Science.gov (United States)

    Qin, Jiazheng; Liu, Yuetian; Feng, Yueli; Ding, Yao; Liu, Liu; He, Youwei

    2018-02-01

    In China, lots of well patterns were designed before people knew the principal permeability direction in low-permeability anisotropic reservoirs. After several years’ production, it turns out that well line direction is unparallel with principal permeability direction. However, traditional well location optimization methods (in terms of the objective function such as net present value and/or ultimate recovery) are inapplicable, since wells are not free to move around in a mature oilfield. Thus, the well pattern optimization (WPO) of mature low-permeability anisotropic reservoirs is a significant but challenging task, since the original well pattern (WP) will be distorted and reconstructed due to permeability anisotropy. In this paper, we investigate the destruction and reconstruction of WP when the principal permeability direction and well line direction are unparallel. A new methodology was developed to quantitatively optimize the well locations of mature large-scale WP through a WPO algorithm on the basis of coordinate transformation (i.e. rotating and stretching). For a mature oilfield, large-scale WP has settled, so it is not economically viable to carry out further infill drilling. This paper circumvents this difficulty by combining the WPO algorithm with the well status (open or shut-in) and schedule adjustment. Finally, this methodology is applied to an example. Cumulative oil production rates of the optimized WP are higher, and water-cut is lower, which highlights the potential of the WPO methodology application in mature large-scale field development projects.

  10. [Optimization of calcium alginate floating microspheres loading aspirin by artificial neural networks and response surface methodology].

    Science.gov (United States)

    Zhang, An-yang; Fan, Tian-yuan

    2010-04-18

    To investigate the preparation and optimization of calcium alginate floating microspheres loading aspirin. A model was used to predict the in vitro release of aspirin and optimize the formulation by artificial neural networks (ANNs) and response surface methodology (RSM). The amounts of the material in the formulation were used as inputs, while the release and floating rate of the microspheres were used as outputs. The performances of ANNs and RSM were compared. ANNs were more accurate in prediction. There was no significant difference between ANNs and RSM in optimization. Approximately 90% of the optimized microspheres could float on the artificial gastric juice over 4 hours. 42.12% of aspirin was released in 60 min, 60.97% in 120 min and 78.56% in 240 min. The release of the drug from the microspheres complied with Higuchi equation. The aspirin floating microspheres with satisfying in vitro release were prepared successfully by the methods of ANNs and RSM.

  11. Biodiesel production from crude cottonseed oil: an optimization process using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xiaohu; Wang, Xi; Chen, Feng

    2011-07-01

    As the depletion of fossil resources continues, the demand for environmentally friendly sources of energy as biodiesel is increasing. Biodiesel is the resulting fatty acid methyl ester (FAME) from an esterification reaction. The use of cottonseed oil to produce biodiesel has been investigated in recent years, but it is difficult to find the optimal conditions of this process since multiple factors are involved. The aim of this study was to optimize the transesterification of cottonseed oil with methanol to produce biodiesel. A response surface methodology (RSM), an experimental method to seek optimal conditions for a multivariable system and reverse phase HPLC was used to analyze the conversion of triglyceride into biodiesel. RSM was successfully applied and the optimal condition was found with a 97% yield.

  12. Optimization of Progressive Freeze Concentration on Apple Juice via Response Surface Methodology

    Science.gov (United States)

    Samsuri, S.; Amran, N. A.; Jusoh, M.

    2018-05-01

    In this work, a progressive freeze concentration (PFC) system was developed to concentrate apple juice and was optimized by response surface methodology (RSM). The effects of various operating conditions such as coolant temperature, circulation flowrate, circulation time and shaking speed to effective partition constant (K) were investigated. Five different level of central composite design (CCD) was employed to search for optimal concentration of concentrated apple juice. A full quadratic model for K was established by using method of least squares. A coefficient of determination (R2) of this model was found to be 0.7792. The optimum conditions were found to be coolant temperature = -10.59 °C, circulation flowrate = 3030.23 mL/min, circulation time = 67.35 minutes and shaking speed = 30.96 ohm. A validation experiment was performed to evaluate the accuracy of the optimization procedure and the best K value of 0.17 was achieved under the optimized conditions.

  13. Optimization of Nanocomposite Modified Asphalt Mixtures Fatigue Life using Response Surface Methodology

    Science.gov (United States)

    Bala, N.; Napiah, M.; Kamaruddin, I.; Danlami, N.

    2018-04-01

    In this study, modelling and optimization of materials polyethylene, polypropylene and nanosilica for nanocomposite modified asphalt mixtures has been examined to obtain optimum quantities for higher fatique life. Response Surface Methodology (RSM) was applied for the optimization based on Box Behnken design (BBD). Interaction effects of independent variables polymers and nanosilica on fatique life were evaluated. The result indicates that the individual effects of polymers and nanosilica content are both important. However, the content of nanosilica used has more significant effect on fatique life resistance. Also, the mean error obtained from optimization results is less than 5% for all the responses, this indicates that predicted values are in agreement with experimental results. Furthermore, it was concluded that asphalt mixture design with high performance properties, optimization using RSM is a very effective approach.

  14. A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system

    International Nuclear Information System (INIS)

    Al-falahi, Monaaf D.A.; Jayasinghe, S.D.G.; Enshaei, H.

    2017-01-01

    Highlights: • Possible combinations and configurations for standalone PV-WT HES were discussed. • Most recently used assessment parameters for standalone PV-WT HES were explained. • Optimization algorithms and software tools were comprehensively reviewed. • The recent trend of using hybrid algorithms over single algorithms was discussed. • Optimization algorithms for sizing standalone PV-WT HES were critically compared. - Abstract: Electricity demand in remote and island areas are generally supplied by diesel or other fossil fuel based generation systems. Nevertheless, due to the increasing cost and harmful emissions of fossil fuels there is a growing trend to use standalone hybrid renewable energy systems (HRESs). Due to the complementary characteristics, matured technologies and availability in most areas, hybrid systems with solar and wind energy have become the popular choice in such applications. However, the intermittency and high net present cost are the challenges associated with solar and wind energy systems. In this context, optimal sizing is a key factor to attain a reliable supply at a low cost through these standalone systems. Therefore, there has been a growing interest to develop algorithms for size optimization in standalone HRESs. The optimal sizing methodologies reported so far can be broadly categorized as classical algorithms, modern techniques and software tools. Modern techniques, based on single artificial intelligence (AI) algorithms, are becoming more popular than classical algorithms owing to their capabilities in solving complex optimization problems. Moreover, in recent years, there has been a clear trend to use hybrid algorithms over single algorithms mainly due to their ability to provide more promising optimization results. This paper aims to present a comprehensive review on recent developments in size optimization methodologies, as well as a critical comparison of single algorithms, hybrid algorithms, and software tools

  15. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    International Nuclear Information System (INIS)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh

    2016-01-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO 4 . 7H 2 O concentration at 13.83 g/L and (NH 4 ) 2 SO 4 concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  16. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh [NSTRI, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School

    2016-08-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO{sub 4} . 7H{sub 2}O concentration at 13.83 g/L and (NH{sub 4}){sub 2}SO{sub 4} concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  17. A methodology for optimal sizing of autonomous hybrid PV/wind system

    International Nuclear Information System (INIS)

    Diaf, S.; Diaf, D.; Belhamel, M.; Haddadi, M.; Louche, A.

    2007-01-01

    The present paper presents a methodology to perform the optimal sizing of an autonomous hybrid PV/wind system. The methodology aims at finding the configuration, among a set of systems components, which meets the desired system reliability requirements, with the lowest value of levelized cost of energy. Modelling a hybrid PV/wind system is considered as the first step in the optimal sizing procedure. In this paper, more accurate mathematical models for characterizing PV module, wind generator and battery are proposed. The second step consists to optimize the sizing of a system according to the loss of power supply probability (LPSP) and the levelized cost of energy (LCE) concepts. Considering various types and capacities of system devices, the configurations, which can meet the desired system reliability, are obtained by changing the type and size of the devices systems. The configuration with the lowest LCE gives the optimal choice. Applying this method to an assumed PV/wind hybrid system to be installed at Corsica Island, the simulation results show that the optimal configuration, which meet the desired system reliability requirements (LPSP=0) with the lowest LCE, is obtained for a system comprising a 125 W photovoltaic module, one wind generator (600 W) and storage batteries (using 253 Ah). On the other hand, the device system choice plays an important role in cost reduction as well as in energy production

  18. A methodology based in particle swarm optimization algorithm for preventive maintenance focused in reliability and cost

    International Nuclear Information System (INIS)

    Luz, Andre Ferreira da

    2009-01-01

    In this work, a Particle Swarm Optimization Algorithm (PSO) is developed for preventive maintenance optimization. The proposed methodology, which allows the use flexible intervals between maintenance interventions, instead of considering fixed periods (as usual), allows a better adaptation of scheduling in order to deal with the failure rates of components under aging. Moreover, because of this flexibility, the planning of preventive maintenance becomes a difficult task. Motivated by the fact that the PSO has proved to be very competitive compared to other optimization tools, this work investigates the use of PSO as an alternative tool of optimization. Considering that PSO works in a real and continuous space, it is a challenge to use it for discrete optimization, in which scheduling may comprise variable number of maintenance interventions. The PSO model developed in this work overcome such difficulty. The proposed PSO searches for the best policy for maintaining and considers several aspects, such as: probability of needing repair (corrective maintenance), the cost of such repairs, typical outage times, costs of preventive maintenance, the impact of maintaining the reliability of systems as a whole, and the probability of imperfect maintenance. To evaluate the proposed methodology, we investigate an electro-mechanical system consisting of three pumps and four valves, High Pressure Injection System (HPIS) of a PWR. Results show that PSO is quite efficient in finding the optimum preventive maintenance policies for the HPIS. (author)

  19. A novel meta-heuristic optimization methodology for solving various types of economic dispatch problem

    Energy Technology Data Exchange (ETDEWEB)

    Fesanghary, M. [Department of Mechanical Engineering, Louisiana State University, 2508 Patrick Taylor Hall, Baton Rouge, LA 70808 (United States); Ardehali, M.M. [Energy Research Center, Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424-Hafez Avenue, 15875-4413 Tehran (Iran)

    2009-06-15

    The increasing costs of fuel and operation of thermal power generating units warrant development of optimization methodologies for economic dispatch (ED) problems. Optimization methodologies that are based on meta-heuristic procedures could assist power generation policy analysts to achieve the goal of minimizing the generation costs. In this context, the objective of this study is to present a novel approach based on harmony search (HS) algorithm for solving ED problems, aiming to provide a practical alternative for conventional methods. To demonstrate the efficiency and applicability of the proposed method and for the purposes of comparison, various types of ED problems are examined. The results of this study show that the new proposed approach is able to find more economical loads than those determined by other methods. (author)

  20. Optimization of Protease Production by Psychrotrophic Rheinheimera sp. with Response Surface Methodology

    OpenAIRE

    Mrayam Mahjoubin-Tehran; Bahar Shahnavaz; Razie Ghazi-Birjandi; Mansour Mashreghi; Jamshid Fooladi

    2016-01-01

    Background and Objectives: Psychrotrophic bacteria can produce enzymes at low temperatures; this provides a wide biotechnological potential, and offers numerous economical advantages over the use of mesophilic bacteria. In this study, extracellular protease production by psychrotrophic Rheinheimera sp. (KM459533) was optimized by the response surface methodology.Materials and Methods: The culture medium was tryptic soy broth containing 1% (w v -1 ) skim milk. First, the effects of variables w...

  1. [Extraction Optimization of Rhizome of Curcuma longa by Response Surface Methodology and Support Vector Regression].

    Science.gov (United States)

    Zhou, Pei-pei; Shan, Jin-feng; Jiang, Jian-lan

    2015-12-01

    To optimize the optimal microwave-assisted extraction method of curcuminoids from Curcuma longa. On the base of single factor experiment, the ethanol concentration, the ratio of liquid to solid and the microwave time were selected for further optimization. Support Vector Regression (SVR) and Central Composite Design-Response Surface Methodology (CCD) algorithm were utilized to design and establish models respectively, while Particle Swarm Optimization (PSO) was introduced to optimize the parameters of SVR models and to search optimal points of models. The evaluation indicator, the sum of curcumin, demethoxycurcumin and bisdemethoxycurcumin by HPLC, were used. The optimal parameters of microwave-assisted extraction were as follows: ethanol concentration of 69%, ratio of liquid to solid of 21 : 1, microwave time of 55 s. On those conditions, the sum of three curcuminoids was 28.97 mg/g (per gram of rhizomes powder). Both the CCD model and the SVR model were credible, for they have predicted the similar process condition and the deviation of yield were less than 1.2%.

  2. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  3. In Vitro Optimization of Enzymes Involved in Precorrin-2 Synthesis Using Response Surface Methodology.

    Science.gov (United States)

    Fang, Huan; Dong, Huina; Cai, Tao; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    In order to maximize the production of biologically-derived chemicals, kinetic analyses are first necessary for predicting the role of enzyme components and coordinating enzymes in the same reaction system. Precorrin-2 is a key precursor of cobalamin and siroheme synthesis. In this study, we sought to optimize the concentrations of several molecules involved in precorrin-2 synthesis in vitro: porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD), uroporphyrinogen III synthase (UROS), and S-adenosyl-l-methionine-dependent urogen III methyltransferase (SUMT). Response surface methodology was applied to develop a kinetic model designed to maximize precorrin-2 productivity. The optimal molar ratios of PBGS, PBGD, UROS, and SUMT were found to be approximately 1:7:7:34, respectively. Maximum precorrin-2 production was achieved at 0.1966 ± 0.0028 μM/min, agreeing with the kinetic model's predicted value of 0.1950 μM/min. The optimal concentrations of the cofactor S-adenosyl-L-methionine (SAM) and substrate 5-aminolevulinic acid (ALA) were also determined to be 200 μM and 5 mM, respectively, in a tandem-enzyme assay. By optimizing the relative concentrations of these enzymes, we were able to minimize the effects of substrate inhibition and feedback inhibition by S-adenosylhomocysteine on SUMT and thereby increase the production of precorrin-2 by approximately five-fold. These results demonstrate the effectiveness of kinetic modeling via response surface methodology for maximizing the production of biologically-derived chemicals.

  4. [Optimization of Formulation and Process of Paclitaxel PEGylated Liposomes by Box-Behnken Response Surface Methodology].

    Science.gov (United States)

    Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting

    2015-12-01

    To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.

  5. Parametric optimization of rice bran oil extraction using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ahmad Syed W.

    2016-09-01

    Full Text Available Use of bran oil in various edible and nonedible industries is very common. In this research work, efficient and optimized methodology for the recovery of rice bran oil has been investigated. The present statistical study includes parametric optimization, based on experimental results of rice bran oil extraction. In this study, three solvents, acetone, ethanol and solvent mixture (SM [acetone: ethanol (1:1 v/v] were employed in extraction investigations. Response surface methodology (RSM, an optimization technique, was exploited for this purpose. A five level central composite design (CCD consisting four operating parameter, like temperature, stirring rate, solvent-bran ratio and contact time were examined to optimize rice bran oil extraction. Experimental results showed that oil recovery can be enhanced from 71% to 82% when temperature, solvent-bran ratio, stirring rate and contact time were kept at 55°C, 6:1, 180 rpm and 45 minutes, respectively while fixing the pH of the mixture at 7.1.

  6. OPTIMIZATION OF HIBISCUS SABDARIFFA L. (ROSELLE ANTHOCYANIN AQUEOUS-ETHANOL EXTRACTION PARAMETERS USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ANILÚ MIRANDA-MEDINA

    2018-03-01

    Full Text Available Anthocyanins along with protocatechuic acid and quercetin have been recognized as bioactive compounds in Hibiscus sabdariffa L. aqueous extracts. Characteristic anthocyanin absorption in the visible region makes their quantification possible without the interference of the other two compounds, and also can favor its potential application as an alternative to organic-based dye sensitized solar cell, in various forms. In order to optimize measurable factors linked to the extraction of these flavonoids, an optimization was performed using a Box-Behnken experimental design and response surface methodology (RSM. Three levels of ethanol concentration, temperature and solid-solvent ratio (SSR were investigated. The optimization model showed that with 96 % EtOH, 65 °C, and 1:50 SSR, the highest anthocyanin concentration of 150 mg/100 g was obtained.

  7. Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology.

    Science.gov (United States)

    Lee, Lan-Sook; Lee, Namhyouck; Kim, Young Ho; Lee, Chang-Ho; Hong, Sang Pil; Jeon, Yeo-Won; Kim, Young-Eon

    2013-10-31

    Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 ° C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio of (EGCg + ECg)/EGC was identified a major factor contributing to the antioxidant activity of green tea extracts. In this study, ultrasonic extraction showed that the ethanol concentration and extraction time used for antioxidant extraction could be remarkably reduced without a decrease in antioxidant activity compared to the conventional extraction conditions.

  8. Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Lan-Sook Lee

    2013-10-01

    Full Text Available Response surface methodology (RSM has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 °C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio of (EGCg + ECg/EGC was identified a major factor contributing to the antioxidant activity of green tea extracts. In this study, ultrasonic extraction showed that the ethanol concentration and extraction time used for antioxidant extraction could be remarkably reduced without a decrease in antioxidant activity compared to the conventional extraction conditions.

  9. Media optimization for laccase production by Trichoderma harzianum ZF-2 using response surface methodology.

    Science.gov (United States)

    Gao, Huiju; Chu, Xiang; Wang, Yanwen; Zhou, Fei; Zhao, Kai; Mu, Zhimei; Liu, Qingxin

    2013-12-01

    Trichoderma harzianum ZF-2 producing laccase was isolated from decaying samples from Shandong, China, and showed dye decolorization activities. The objective of this study was to optimize its culture conditions using a statistical analysis of its laccase production. The interactions between different fermentation parameters for laccase production were characterized using a Plackett-Burman design and the response surface methodology. The different media components were initially optimized using the conventional one-factor-at-a-time method and an orthogonal test design, and a Plackett-Burman experiment was then performed to evaluate the effects on laccase production. Wheat straw powder, soybean meal, and CuSO4 were all found to have a significant influence on laccase production, and the optimal concentrations of these three factors were then sequentially investigated using the response surface methodology with a central composite design. The resulting optimal medium components for laccase production were determined as follows: wheat straw powder 7.63 g/l, soybean meal 23.07 g/l, (NH4)2SO4 1 g/l, CuSO4 0.51 g/l, Tween-20 1 g/l, MgSO4 1 g/l, and KH2PO4 0.6 g/l. Using this optimized fermentation method, the yield of laccase was increased 59.68 times to 67.258 U/ml compared with the laccase production with an unoptimized medium. This is the first report on the statistical optimization of laccase production by Trichoderma harzianum ZF-2.

  10. Optimization of artemisinin extraction from artemisia annua l. With supercritical carbon dioxide + ethanol using response surface methodology.

    Science.gov (United States)

    Ciftci, Ozan Nazim; Cahyadi, Jessica; Guigard, Selma E; Saldaña, Marleny D A

    2018-05-13

    Malaria is a high priority life-threatening public health concern in developing countries, and therefore there is a growing interest to obtain artemisinin for the production of artemisinin-based combination therapy products. In this study, artemisinin was extracted from the Artemisia annua L. plant using supercritical carbon dioxide (SC-CO 2 ) modified with ethanol. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was employed to investigate and optimize the extraction conditions of pressure (9.9-30 MPa), temperature (33-67°C), and co-solvent (ethanol, 0-12.6 wt.%). Optimum SC-CO 2 extraction conditions were found to be 30 MPa and 33°C. Under optimized conditions, the predicted artemisinin yield was 1.09% whereas the experimental value was 0.71±0.07%. Soxhlet extraction with hexane resulted in higher artemisinin yields and there was no significant difference in the purity of the extracts obtained with SC-CO 2 and Soxhlet extractions. Results indicated that SC-CO 2 and SC-CO 2 +ethanol extraction is a promising alternative for the extraction of artemisinin to eliminate the use of organic solvents, such as hexane and produce extracts that can be used for the production of antimalarial products. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Combined methodology of optimization and life cycle inventory for a biomass gasification based BCHP system

    International Nuclear Information System (INIS)

    Wang, Jiang-Jiang; Yang, Kun; Xu, Zi-Long; Fu, Chao; Li, Li; Zhou, Zun-Kai

    2014-01-01

    Biomass gasification based building cooling, heating, and power (BCHP) system is an effective distributed energy system to improve the utilization of biomass resources. This paper proposes a combined methodology of optimization method and life cycle inventory (LCI) for the biomass gasification based BCHP system. The life cycle models including biomass planting, biomass collection-storage-transportation, BCHP plant construction and operation, and BCHP plant demolition and recycle, are constructed to obtain economic cost, energy consumption and CO 2 emission in the whole service-life. Then, the optimization model for the biomass BCHP system including variables, objective function and solution method are presented. Finally, a biomass BCHP case in Harbin, China, is optimized under different optimization objectives, the life-cycle performances including cost, energy and CO 2 emission are obtained and the grey incidence approach is employed to evaluate their comprehensive performances of the biomass BCHP schemes. The results indicate that the life-cycle cost, energy efficiency and CO 2 emission of the biomass BCHP system are about 41.9 $ MWh −1 , 41% and 59.60 kg MWh −1 respectively. The optimized biomass BCHP configuration to minimize the life-cycle cost is the best scheme to achieve comprehensive benefit including cost, energy consumption, renewable energy ratio, steel consumption, and CO 2 emission. - Highlights: • Propose the combined method of optimization and LCI for biomass BCHP system. • Optimize the biomass BCHP system to minimize the life-cycle cost, energy and emission. • Obtain the optimized life-cycle cost, energy efficiency and CO 2 emission. • Select the best biomass BCHP scheme using grey incidence approach

  12. Evaluation and optimization of hepatocyte culture media factors by design of experiments (DoE) methodology.

    Science.gov (United States)

    Dong, Jia; Mandenius, Carl-Fredrik; Lübberstedt, Marc; Urbaniak, Thomas; Nüssler, Andreas K N; Knobeloch, Daniel; Gerlach, Jörg C; Zeilinger, Katrin

    2008-07-01

    Optimization of cell culture media based on statistical experimental design methodology is a widely used approach for improving cultivation conditions. We applied this methodology to refine the composition of an established culture medium for growth of a human hepatoma cell line, C3A. A selection of growth factors and nutrient supplements were systematically screened according to standard design of experiments (DoE) procedures. The results of the screening indicated that the medium additives hepatocyte growth factor, oncostatin M, and fibroblast growth factor 4 significantly influenced the metabolic activities of the C3A cell line. Surface response methodology revealed that the optimum levels for these factors were 30 ng/ml for hepatocyte growth factor and 35 ng/ml for oncostatin M. Additional experiments on primary human hepatocyte cultures showed high variance in metabolic activities between cells from different individuals, making determination of optimal levels of factors more difficult. Still, it was possible to conclude that hepatocyte growth factor, epidermal growth factor, and oncostatin M had decisive effects on the metabolic functions of primary human hepatocytes.

  13. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology.

    Science.gov (United States)

    Nazir, Sadaf; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad

    2017-05-01

    Aqueous extraction of basil seed mucilage was optimized using response surface methodology. A Central Composite Rotatable Design (CCRD) for modeling of three independent variables: temperature (40-91 °C); extraction time (1.6-3.3 h) and water/seed ratio (18:1-77:1) was used to study the response for yield. Experimental values for extraction yield ranged from 7.86 to 20.5 g/100 g. Extraction yield was significantly ( P  < 0.05) affected by all the variables. Temperature and water/seed ratio were found to have pronounced effect while the extraction time was found to have minor possible effects. Graphical optimization determined the optimal conditions for the extraction of mucilage. The optimal condition predicted an extraction yield of 20.49 g/100 g at 56.7 °C, 1.6 h, and a water/seed ratio of 66.84:1. Optimal conditions were determined to obtain highest extraction yield. Results indicated that water/seed ratio was the most significant parameter, followed by temperature and time.

  14. A methodology for thermo-economic modeling and optimization of solid oxide fuel cell systems

    International Nuclear Information System (INIS)

    Palazzi, Francesca; Autissier, Nordahl; Marechal, Francois M.A.; Favrat, Daniel

    2007-01-01

    In the context of stationary power generation, fuel cell-based systems are being foreseen as a valuable alternative to thermodynamic cycle-based power plants, especially in small scale applications. As the technology is not yet established, many aspects of fuel cell development are currently investigated worldwide. Part of the research focuses on integrating the fuel cell in a system that is both efficient and economically attractive. To address this problem, we present in this paper a thermo-economic optimization method that systematically generates the most attractive configurations of an integrated system. In the developed methodology, the energy flows are computed using conventional process simulation software. The system is integrated using the pinch based methods that rely on optimization techniques. This defines the minimum of energy required and sets the basis to design the ideal heat exchanger network. A thermo-economic method is then used to compute the integrated system performances, sizes and costs. This allows performing the optimization of the system with regard to two objectives: minimize the specific cost and maximize the efficiency. A solid oxide fuel cell (SOFC) system of 50 kW integrating a planar SOFC is modeled and optimized leading to designs with efficiencies ranging from 34% to 44%. The multi-objective optimization strategy identifies interesting system configurations and their performance for the developed SOFC system model. The methods proves to be an attractive tool to be used both as an advanced analysis tool and as support to decision makers when designing new systems

  15. Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology.

    Science.gov (United States)

    Parmar, Indu; Sharma, Sowmya; Rupasinghe, H P Vasantha

    2015-04-01

    The present study investigated five cyclodextrins (CDs) for the extraction of flavonols from apple pomace powder and optimized β-CD based extraction of total flavonols using response surface methodology. A 2(3) central composite design with β-CD concentration (0-5 g 100 mL(-1)), extraction temperature (20-72 °C), extraction time (6-48 h) and second-order quadratic model for the total flavonol yield (mg 100 g(-1) DM) was selected to generate the response surface curves. The optimal conditions obtained were: β-CD concentration, 2.8 g 100 mL(-1); extraction temperature, 45 °C and extraction time, 25.6 h that predicted the extraction of 166.6 mg total flavonols 100 g(-1) DM. The predicted amount was comparable to the experimental amount of 151.5 mg total flavonols 100 g(-1) DM obtained from optimal β-CD based parameters, thereby giving a low absolute error and adequacy of fitted model. In addition, the results from optimized extraction conditions showed values similar to those obtained through previously established solvent based sonication assisted flavonol extraction procedure. To the best of our knowledge, this is the first study to optimize aqueous β-CD based flavonol extraction which presents an environmentally safe method for value-addition to under-utilized bio resources.

  16. Medium optimization for ε-poly-L-lysine production by Streptomyces diastatochromogenes using response surface methodology.

    Science.gov (United States)

    Guo, F; Zheng, H; Cheng, Y; Song, S; Zheng, Z; Jia, S

    2018-02-01

    Poly-ε-L-lysine is a natural homo-polyamide of L-lysine with excellent antimicrobial properties, which can be used as a novel preservative and has a wide range of applications. In this paper, the fermentation medium for ε-PL production by Streptomyces diastatochromogenes 6#-7 was optimized by Response Surface Methodology. The results of Plackett-Burman design showed that glucose, yeast extract and (NH 4 ) 2 SO 4 were the major influencing factors in ε-PL production of S. diastatochromogenes 6#-7. The optimal concentrations of glucose, yeast extract and (NH 4 ) 2 SO 4 were determined to be 60, 7·5 and 7·5 g l -1 according to Box-Behnken experiment and regression analysis, respectively. Under the optimized conditions, the ε-PL yield in shake-flask fermentation was 0·948 ± 0·030 g l -1 , which was in good agreement with the predicted value of 0·970 g l -1 . The yield was improved by 43·1% from that with the initial medium. In 5 l jar-fermenter the ε-PL yield reached 25·5 g l -1 , which was increased by 56·4% from the original medium. In addition, the fermentation time was reduced from 174 to 120 h. Medium optimization is a very practical and valuable tool for fermentation industry to improve product yield and minimize by-products as well as reduce overall manufacturing costs. The response surface methodology is not new, but it is still a very effective method in medium optimization research. This study used ε-polylysine fermentation as an example to demonstrate how the product yield can be significantly increased by medium optimization through surface response methodology. Similar approach can be used in other microbial fermentations such as in pharmaceutical, food, agricultural and energy industries. As an example, ε-polylysine is one of a few newly approved natural food-grade antimicrobials for food and beverages preservations. Yield improvement is economically beneficial to not only ε-polylysine manufacturers but also to their users and

  17. A pattern-based methodology for optimizing stitches in double-patterning technology

    Science.gov (United States)

    Wang, Lynn T.; Madhavan, Sriram; Dai, Vito; Capodieci, Luigi

    2015-03-01

    A pattern-based methodology for optimizing stitches is developed based on identifying stitch topologies and replacing them with pre-characterized fixing solutions in decomposed layouts. A topology-based library of stitches with predetermined fixing solutions is built. A pattern-based engine searches for matching topologies in the decomposed layouts. When a match is found, the engine opportunistically replaces the predetermined fixing solution: only a design rule check error-free replacement is preserved. The methodology is demonstrated on a 20nm layout design that contains over 67 million, first metal layer stitches. Results show that a small library containing 3 stitch topologies improves the stitch area regularity by 4x.

  18. Methodology for the Integration of Safety in the Optimization of the Advanced Reactors Design

    International Nuclear Information System (INIS)

    Grinblat, P.; Schlamp, M.; Brasnarof, D.; Gimenez, M.

    2003-01-01

    In this work a new methodology has been developed and implemented for taking into account the safety levels of the reactor in a design optimization process, by using Design Maps.They represent a new technique for comparing critical variables in case an accidental sequenced happened, with limit values set by the design criteria.So a good balance is achieved, without allowing the economic performance search to cause a too risky reactor, and guaranteeing the competitiveness of it in spite of the safety costs.Up to the moment, there is no design tool able to accomplish this task in an integrated way.A computational tool based on this methodology has been implemented.These tool specially programmed routines allow carrying out the mentioned tasks

  19. Article Review on World Bank Report, Optimal Design for a Minimum Wage Policy in Malaysia

    OpenAIRE

    Nurrachmi, Rininta; Mad-Ahin, Ashanee; Waeowanjit, Phimpaporn; Kareemarif Arif, Naz Abdul

    2012-01-01

    There are many pros and cons with the implementation of minimum wage in Malaysia, since it is the first time. This article review is to analyze the World Bank report on Malaysian minimum wage policy that will be implemented in 2013. There are strength and weakness on the report. Moreover the review will also be analyzed from Islamic perspective since majority population in Malaysia is Muslim.

  20. Deploying response surface methodology (RSM) and glowworm swarm optimization (GSO) in optimizing warpage on a mobile phone cover

    Science.gov (United States)

    Lee, X. N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Shazzuan, S.

    2017-09-01

    Plastic injection moulding is a popular manufacturing method not only it is reliable, but also efficient and cost saving. It able to produce plastic part with detailed features and complex geometry. However, defects in injection moulding process degrades the quality and aesthetic of the injection moulded product. The most common defect occur in the process is warpage. Inappropriate process parameter setting of injection moulding machine is one of the reason that leads to the occurrence of warpage. The aims of this study were to improve the quality of injection moulded part by investigating the optimal parameters in minimizing warpage using Response Surface Methodology (RSM) and Glowworm Swarm Optimization (GSO). Subsequent to this, the most significant parameter was identified and recommended parameters setting was compared with the optimized parameter setting using RSM and GSO. In this research, the mobile phone case was selected as case study. The mould temperature, melt temperature, packing pressure, packing time and cooling time were selected as variables whereas warpage in y-direction was selected as responses in this research. The simulation was carried out by using Autodesk Moldflow Insight 2012. In addition, the RSM was performed by using Design Expert 7.0 whereas the GSO was utilized by using MATLAB. The warpage in y direction recommended by RSM were reduced by 70 %. The warpages recommended by GSO were decreased by 61 % in y direction. The resulting warpages under optimal parameter setting by RSM and GSO were validated by simulation in AMI 2012. RSM performed better than GSO in solving warpage issue.

  1. Multi-objective and multi-physics optimization methodology for SFR core: application to CFV concept

    International Nuclear Information System (INIS)

    Fabbris, Olivier

    2014-01-01

    Nuclear reactor core design is a highly multidisciplinary task where neutronics, thermal-hydraulics, fuel thermo-mechanics and fuel cycle are involved. The problem is moreover multi-objective (several performances) and highly dimensional (several tens of design parameters).As the reference deterministic calculation codes for core characterization require important computing resources, the classical design method is not well suited to investigate and optimize new innovative core concepts. To cope with these difficulties, a new methodology has been developed in this thesis. Our work is based on the development and validation of simplified neutronics and thermal-hydraulics calculation schemes allowing the full characterization of Sodium-cooled Fast Reactor core regarding both neutronics performances and behavior during thermal hydraulic dimensioning transients.The developed methodology uses surrogate models (or meta-models) able to replace the neutronics and thermal-hydraulics calculation chain. Advanced mathematical methods for the design of experiment, building and validation of meta-models allows substituting this calculation chain by regression models with high prediction capabilities.The methodology is applied on a very large design space to a challenging core called CFV (French acronym for low void effect core) with a large gain on the sodium void effect. Global sensitivity analysis leads to identify the significant design parameters on the core design and its behavior during unprotected transient which can lead to severe accidents. Multi-objective optimizations lead to alternative core configurations with significantly improved performances. Validation results demonstrate the relevance of the methodology at the pre-design stage of a Sodium-cooled Fast Reactor core. (author) [fr

  2. [Development of an optimized formulation of damask marmalade with low energy level using Taguchi methodology].

    Science.gov (United States)

    Villarroel, Mario; Castro, Ruth; Junod, Julio

    2003-06-01

    The goal of this present study was the development of an optimized formula of damask marmalade low in calories applying Taguchi methodology to improve the quality of this product. The selection of this methodology lies on the fact that in real life conditions the result of an experiment frequently depends on the influence of several variables, therefore, one expedite way to solve this problem is utilizing factorial desings. The influence of acid, thickener, sweetener and aroma additives, as well as time of cooking, and possible interactions among some of them, were studied trying to get the best combination of these factors to optimize the sensorial quality of an experimental formulation of dietetic damask marmalade. An orthogonal array L8 (2(7)) was applied in this experience, as well as level average analysis was carried out according Taguchi methodology to determine the suitable working levels of the design factors previously choiced, to achieve a desirable product quality. A sensory trained panel was utilized to analyze the marmalade samples using a composite scoring test with a descriptive acuantitative scale ranging from 1 = Bad, 5 = Good. It was demonstrated that the design factors sugar/aspartame, pectin and damask aroma had a significant effect (p < 0.05) on the sensory quality of the marmalade with 82% of contribution on the response. The optimal combination result to be: citric acid 0.2%; pectin 1%; 30 g sugar/16 mg aspartame/100 g, damask aroma 0.5 ml/100 g, time of cooking 5 minutes. Regarding chemical composition, the most important results turned out to be the decrease in carbohydrate content compaired with traditional marmalade with a reduction of 56% in coloric value and also the amount of dietary fiber greater than similar commercial products. Assays of storage stability were carried out on marmalade samples submitted to different temperatures held in plastic bags of different density. Non percetible sensorial, microbiological and chemical changes

  3. Optimization of Protease Production by Psychrotrophic Rheinheimera sp. with Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mrayam Mahjoubin-Tehran

    2016-10-01

    Full Text Available Background and Objectives: Psychrotrophic bacteria can produce enzymes at low temperatures; this provides a wide biotechnological potential, and offers numerous economical advantages over the use of mesophilic bacteria. In this study, extracellular protease production by psychrotrophic Rheinheimera sp. (KM459533 was optimized by the response surface methodology.Materials and Methods: The culture medium was tryptic soy broth containing 1% (w v -1 skim milk. First, the effects of variables were independently evaluated on the microbial growth and protease production by one-factor-at-a-time method within the following ranges: incubation time 24-120 h, temperature 15-37°C, pH 6- 11, skim milk concentration 0-2% (w v -1 , and inoculum size 0.5-3% (v v -1 . The combinational effects of the four major variable including temperature, pH, skim milk concentration, and inoculum size were then evaluated within 96 h using response surface methodology through 27 experiments.Results and Conclusion: In one-factor-at-a-time method, high cell density was detected at 72h, 20°C, pH 7, skim milk 2% (w v -1 , and inoculum size 3% (v v -1 , and maximum enzyme production (533.74 Uml-1 was achieved at 96h, 20°C, pH 9, skim milk 1% (w v -1 , and inoculum size 3% (v v -1 . The response surface methodology study showed that pH is the most effective factor in enzyme production, and among the other variables, only temperature had significant interaction with pH and inoculum size. The determination coefficient (R2 =0.9544 and non-significant lack of fit demonstrated correlation between the experimental and predicted values. The optimal conditions predicted by the response surface methodology for protease production were defined as: 22C, pH 8.5, skim milk 1.1% (w v -1 , and inoculum size 4% (v v -1 . Protease production under these conditions reached to 567.19 Uml-1 . The use of response surface methodology in this study increased protease production by eight times as

  4. A Review of Methodological Approaches for the Design and Optimization of Wind Farms

    DEFF Research Database (Denmark)

    Herbert-Acero, José F.; Probst, Oliver; Réthoré, Pierre-Elouan

    2014-01-01

    This article presents a review of the state of the art of the Wind Farm Design and Optimization (WFDO) problem. The WFDO problem refers to a set of advanced planning actions needed to extremize the performance of wind farms, which may be composed of a few individual Wind Turbines (WTs) up to thou...... and offshore wind farms; and (3) to propose a comprehensive agenda for future research.......This article presents a review of the state of the art of the Wind Farm Design and Optimization (WFDO) problem. The WFDO problem refers to a set of advanced planning actions needed to extremize the performance of wind farms, which may be composed of a few individual Wind Turbines (WTs) up...

  5. Optimization of the extraction of flavonoids from grape leaves by response surface methodology

    International Nuclear Information System (INIS)

    Brad, K.; Liu, W.

    2013-01-01

    The extraction of flavonoids from grape leaves was optimized to maximize flavonoids yield in this study. A central composite design of response surface methodology involving extracting time, power, liquid-solid ratio, and concentration was used, and second-order model for Y was employed to generate the response surfaces. The optimum condition for flavonoids yield was determined as follows: extracting time 24.95 min, power 72.05, ethanol concentration 63.35%, liquid-solid ratio 10.04. Under the optimum condition, the flavonoids yield was 76.84 %. (author)

  6. A methodology for the assessment of potential demand and optimal supply of entrepreneurial microcredit

    Directory of Open Access Journals (Sweden)

    Ayi Gavriel Ayayi

    2012-04-01

    Full Text Available We propose a methodology for the assessment of potential demand and optimal supply for microcredit. We show that the total demand is a combination of the demand that stems from the active poor plus the demand generated by a motivator agent among the entrepreneurial non-motivated poor. We use French data to provide an illustration of the assessment of potential demand for microcredit. We also show that the proportion of the potential demand satisfied by a microfinance institution depends on its objective i.e. either it is socially oriented or a profit maximizer.

  7. Hardness optimization of boride diffusion layer on Astm F-75 alloy using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Arguelles O, J. L.; Corona R, M. A. [Universidad Autonoma de San Luis Potosi, Doctorado Institucional en Ingenieria y Ciencia de Materiales, San Luis Potosi 78000, SLP (Mexico); Marquez H, A.; Saldana R, A. L.; Saldana R, A. [Universidad de Guanajuato, Ingenieria Mecanica Agricola DICIVA, Irapuato, Guanajuato 36500 (Mexico); Moreno P, J., E-mail: amarquez@ugto.mx [Universidad de Guanajuato, Departamento de Minas, Metalurgia y Geologia, Ex-Hacienda San Matias s/n, Guanajuato, Guanajuato 36020 (Mexico)

    2017-11-01

    In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co{sub 2}B, Cr B and Mo{sub 2}B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)

  8. Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Carlo Boaretti

    2015-07-01

    Full Text Available In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate and material (sulfonation degree variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers.

  9. Application of statistical experimental methodology to optimize bioremediation of n-alkanes in aquatic environment

    International Nuclear Information System (INIS)

    Zahed, Mohammad Ali; Aziz, Hamidi Abdul; Mohajeri, Leila; Mohajeri, Soraya; Kutty, Shamsul Rahman Mohamed; Isa, Mohamed Hasnain

    2010-01-01

    Response surface methodology (RSM) was employed to optimize nitrogen and phosphorus concentrations for removal of n-alkanes from crude oil contaminated seawater samples in batch reactors. Erlenmeyer flasks were used as bioreactors; each containing 250 mL dispersed crude oil contaminated seawater, indigenous acclimatized microorganism and different amounts of nitrogen and phosphorus based on central composite design (CCD). Samples were extracted and analyzed according to US-EPA protocols using a gas chromatograph. During 28 days of bioremediation, a maximum of 95% total aliphatic hydrocarbons removal was observed. The obtained Model F-value of 267.73 and probability F < 0.0001 implied the model was significant. Numerical condition optimization via a quadratic model, predicted 98% n-alkanes removal for a 20-day laboratory bioremediation trial using nitrogen and phosphorus concentrations of 13.62 and 1.39 mg/L, respectively. In actual experiments, 95% removal was observed under these conditions.

  10. Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Shi, Jianzhong; Wang, Xiuqing; Wang, Xiaoyin

    2014-01-01

    The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature 290 .deg. C, H 2 O 2 excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process

  11. OPTIMIZATION OF EXTRACELLULAR TANNASE PRODUCTION BY ASPERGILLUS NIGER VAN TIEGHEM USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Hamada Abou-Bakr

    2013-12-01

    Full Text Available Response surface methodology (RSM was used to optimize the production of tannase by a newly isolate of Aspergillus niger Van Tieghem using rotatable central composite design (RCCD. This statistical optimization process was carried out involving four of quantitative growth parameters (variables, namely tannic acid concentration, nitrogen source concentration, initial pH of the medium and inoculum size. A mathematical model expressing the production process of tannase by submerged fermentation (SmF technique was generated statistically in the form of a second order polynomial equation. The model indicated the presence of significant linear, quadratic and interaction effects of the studied variables on tannase production by the fungal isolate. The results showed maximum tannase production (580 U/50 ml medium at 2% tannic acid, 4 g/l sodium nitrate, pH 4 and inoculum size of 5×107 spores/50 ml medium, which was also verified by experimental data.

  12. Response surface methodology for the optimization of alpha amylase production by serratia marcescens SB08

    International Nuclear Information System (INIS)

    Venil, C.K.; Lakshmanaperumalsamy, P.

    2008-01-01

    In this work, central composite design combining with response surface methodology was successfully employed to optimize medium composition for the production of alpha amylase by Serratia marcescens SB08 in submerged fermentation. The process parameters that influence the enzyme production were identified using Plackett- Burman design. Among the various factors screened, inoculum concentration, pH, NaCl and CaCl/sub 2/ were found to be most significant. The optimum level of pH was 5.0, inoculum concentration 3%, NaCl 0.30 g/l and CaCl/sub 2/ 0.13 g/l. The actual enzyme yield before and after optimization was 56.43 U/ml and 87.23 U/ml, respectively. Thus, it is advisable to the microbial industry sponsors to apply such profitable bioprocess to maintain high yield for mass production of alpha amylase. (author)

  13. Enzymatic Transesterification of Ethyl Ferulate with Fish Oil and Its Optimization by Response Surface Methodology

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Glasius, Marianne; Xu, Xuebing

    2012-01-01

    formation of feruloyl fish oil products as well when appropriate amount of glycerol was present in the reaction. Therefore, the addition of equivalent molar amount of glycerol to EF was decided for the practical optimization of the system. The mutual effects of temperature (40 to 70 oC), reaction time (1......The enzymatic transesterification of ethyl ferulate (EF) with cod liver fish oil was investigated with Novozym 435 as catalyst under solvent-free conditions. The purpose of the study is to evaluate the synthesis system for production of feruloyl fish oil in industry. The modified HPLC method...... to 5 days), enzyme load (2 to 20 %) and substrate amount ratio of fish oil/EF (1 to 5) were thus studied with assistance of response surface methodology (RSM) for the purpose of maximizing the formation towards feruloyl fish oil. The models were well fitted and verified. The optimized conditions were...

  14. Optimizing removal of cod from water by catalytic ozonation of cephalexin using response surface methodology

    International Nuclear Information System (INIS)

    Akhtar, J.; Amin, N.S.; Zahoor, M.K.

    2013-01-01

    Response surface methodology (RSM) has been used to optimize the effect of circulation rates, ozone supply, cephalexin (CEX) concentration, and granular activated carbon (GAC) dose on removal of COD from solution. According to statistical analysis, all of the input variables exerted significant influence on COD removal, however, the effect of interaction variables was not found to be significant on comparative basis. Further, the developed quadratic regression model based on obtained results emphasized the significance of individual terms and little of interaction terms. The values of r/sup 2/ (0.959), adjusted r/sup 2/ (0.902) obtained by analysis of variance (ANOVA) indicates the significance of quadratic model in predicting desired response. The maximum of 70% of COD was removed in these experiments and optimized value according to main effect of variables was 60%. (author)

  15. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology.

    Science.gov (United States)

    Deepak, V; Kalishwaralal, K; Ramkumarpandian, S; Babu, S Venkatesh; Senthilkumar, S R; Sangiliyandi, G

    2008-11-01

    Response surface methodology and central composite rotary design (CCRD) was employed to optimize a fermentation medium for the production of Nattokinase by Bacillus subtilis at pH 7.5. The four variables involved in this study were Glucose, Peptone, CaCl2, and MgSO4. The statistical analysis of the results showed that, in the range studied; only peptone had a significant effect on Nattokinase production. The optimized medium containing (%) Glucose: 1, Peptone: 5.5, MgSO4: 0.2 and CaCl2: 0.5 resulted in 2-fold increased level of Nattokinase (3194.25U/ml) production compared to initial level (1599.09U/ml) after 10h of fermentation. Nattokinase production was checked with fibrinolytic activity.

  16. From determinism and probability to chaos: chaotic evolution towards philosophy and methodology of chaotic optimization.

    Science.gov (United States)

    Pei, Yan

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.

  17. From Determinism and Probability to Chaos: Chaotic Evolution towards Philosophy and Methodology of Chaotic Optimization

    Science.gov (United States)

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed. PMID:25879067

  18. From Determinism and Probability to Chaos: Chaotic Evolution towards Philosophy and Methodology of Chaotic Optimization

    Directory of Open Access Journals (Sweden)

    Yan Pei

    2015-01-01

    Full Text Available We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC algorithm, interactive chaotic evolution (ICE that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.

  19. Optimization of deposition conditions of CdS thin films using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Güler, Nuray [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2014-03-15

    Highlights: • Statistical methods used for optimization of CdS deposition parameters. • The morphology of the films was smooth, homogeneous and continuous. • Optimal conditions found as pH 11, stirring speed:361 rpm and deposition time: 55 min. • CdS thin film band gap value was 2.72 eV under the optimum conditions. -- Abstract: Cadmium sulfide (CdS) thin films were prepared on glass substrates by chemical bath deposition (CBD) technique under different pH, stirring speed and deposition time. Response Surface Methodology (RSM) and Central Composite Design (CCD) were used to optimization of deposition parameters of the CdS thin films. RSM and CCD were also used to understand the significance and interaction of the factors affecting the film quality. Variables were determined as pH, stirring speed and deposition time. The band gap was chosen as response in the study. Influences of the variables on the band gap and the film quality were investigated. 5-level-3-factor central composite design was employed to evaluate the effects of the deposition conditions parameters such as pH (10.2–11.8), stirring speed (132–468 rpm) and deposition time (33–67 min) on the band gap of the films. The samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet–visible spectroscopy (UV–vis) measurements. The optimal conditions for the deposition parameters of the CdS thin films have been found to be: pH 11, 361 of stirring speed and 55 min of deposition time. Under the optimal conditions theoretical (predicted) band gap of CdS (2.66 eV) was calculated using optimal coded values from the model and the theoretical value is good agreement with the value (2.72 eV) obtained by verification experiment.

  20. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    International Nuclear Information System (INIS)

    Sim, Chol-Ho

    2016-01-01

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm

  1. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Chol-Ho [Sangji University, Wonju (Korea, Republic of)

    2016-02-15

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm.

  2. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    International Nuclear Information System (INIS)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-01-01

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY H2 , TRE and CR could exhibit up to 14.32 mmol·gTOC −1 , 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H 2 yield (GY H2 ), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY H2 , CR and TRE were established with Box–Behnken design. GY H2 , CR and TRE reached up to 14.32 mmol·gTOC −1 , 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO 2 and H 2 were the most abundant gaseous products. As a product of nitrogen-containing organics, NH 3 has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient

  3. Development, Characterization, and Optimization of Protein Level in Date Bars Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2012-01-01

    Full Text Available This project was designed to produce a nourishing date bar with commercial value especially for school going children to meet their body development requirements. Protein level of date bars was optimized using response surface methodology (RSM. Economical and underutilized sources, that is, whey protein concentrate and vetch protein isolates, were explored for protein supplementation. Fourteen date bar treatments were produced using a central composite design (CCD with 2 variables and 3 levels for each variable. Date bars were then analyzed for nutritional profile. Proximate composition revealed that addition of whey protein concentrate and vetch protein isolates improved the nutritional profile of date bars. Protein level, texture, and taste were considerably improved by incorporating 6.05% whey protein concentrate and 4.35% vetch protein isolates in date bar without affecting any sensory characteristics during storage. Response surface methodology was observed as an economical and effective tool to optimize the ingredient level and to discriminate the interactive effects of independent variables.

  4. Methodological Orientations of Articles Appearing in Allied Health's Top Journals: Who Publishes What and Where

    Science.gov (United States)

    Alderman, Pamela Lea McCloud

    2012-01-01

    This study examined articles published in the major peer-reviewed journals, either hard copy, web, or both formats, in five allied health professions from January 2006 to December 2010. Research journals used in this study include: "Journal of Dental Hygiene," "Journal of the American Dietetic Association," "Journal of…

  5. Analytical methodology for optimization of waste management scenarios in nuclear installation decommissioning process - 16148

    International Nuclear Information System (INIS)

    Zachar, Matej; Necas, Vladimir; Daniska, Vladimir; Rehak, Ivan; Vasko, Marek

    2009-01-01

    The nuclear installation decommissioning process is characterized by production of large amount of various radioactive and non-radioactive waste that has to be managed, taking into account its physical, chemical, toxic and radiological properties. Waste management is considered to be one of the key issues within the frame of the decommissioning process. During the decommissioning planning period, the scenarios covering possible routes of materials release into the environment and radioactive waste disposal, should be discussed and evaluated. Unconditional and conditional release to the environment, long-term storage at the nuclear site, near surface or deep geological disposal and relevant material management techniques for achieving the final status should be taken into account in the analysed scenarios. At the level of the final decommissioning plan, it is desirable to have the waste management scenario optimized for local specific facility conditions taking into account a national decommissioning background. The analytical methodology for the evaluation of decommissioning waste management scenarios, presented in the paper, is based on the materials and radioactivity flow modelling, which starts from waste generation activities like pre-dismantling decontamination, selected methods of dismantling, waste treatment and conditioning, up to materials release or conditioned radioactive waste disposal. The necessary input data for scenarios, e.g. nuclear installation inventory database (physical and radiological data), waste processing technologies parameters or material release and waste disposal limits, have to be considered. The analytical methodology principles are implemented into the standardised decommissioning parameters calculation code OMEGA, developed in the DECOM company. In the paper the examples of the methodology implementation for the scenarios optimization are presented and discussed. (authors)

  6. Response Surface Methodology: An Extensive Potential to Optimize in vivo Photodynamic Therapy Conditions

    International Nuclear Information System (INIS)

    Tirand, Loraine; Bastogne, Thierry; Bechet, Denise M.Sc.; Linder, Michel; Thomas, Noemie; Frochot, Celine; Guillemin, Francois; Barberi-Heyob, Muriel

    2009-01-01

    Purpose: Photodynamic therapy (PDT) is based on the interaction of a photosensitizing (PS) agent, light, and oxygen. Few new PS agents are being developed to the in vivo stage, partly because of the difficulty in finding the right treatment conditions. Response surface methodology, an empirical modeling approach based on data resulting from a set of designed experiments, was suggested as a rational solution with which to select in vivo PDT conditions by using a new peptide-conjugated PS targeting agent, neuropilin-1. Methods and Materials: A Doehlert experimental design was selected to model effects and interactions of the PS dose, fluence, and fluence rate on the growth of U87 human malignant glioma cell xenografts in nude mice, using a fixed drug-light interval. All experimental results were computed by Nemrod-W software and Matlab. Results: Intrinsic diameter growth rate, a tumor growth parameter independent of the initial volume of the tumor, was selected as the response variable and was compared to tumor growth delay and relative tumor volumes. With only 13 experimental conditions tested, an optimal PDT condition was selected (PS agent dose, 2.80 mg/kg; fluence, 120 J/cm 2 ; fluence rate, 85 mW/cm 2 ). Treatment of glioma-bearing mice with the peptide-conjugated PS agent, followed by the optimized PDT condition showed a statistically significant improvement in delaying tumor growth compared with animals who received the PDT with the nonconjugated PS agent. Conclusions: Response surface methodology appears to be a useful experimental approach for rapid testing of different treatment conditions and determination of optimal values of PDT factors for any PS agent.

  7. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    International Nuclear Information System (INIS)

    Jayalal, M.L.; Ramachandran, Suja; Rathakrishnan, S.; Satya Murty, S.A.V.; Sai Baba, M.

    2015-01-01

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  8. An optimization study on transesterification catalyzed by the activated carbide slag through the response surface methodology

    International Nuclear Information System (INIS)

    Liu, Mengqi; Niu, Shengli; Lu, Chunmei; Cheng, Shiqing

    2015-01-01

    Highlights: • New catalyst material for biodiesel production. • New utilization approach of waste carbide slag. • Detailed characterization of carbide slag used as transesterification catalyst. • Optimal parameters for biodiesel production obtained by response surface methodology. • Effect of impurities on catalytic activity of carbide slag in transesterification. - Abstract: After activated at 850 °C under air condition, calcium hydroxide and calcium carbonate in carbide slag are transformed into calcium oxide. The prepared transesterification catalyst, labeled as CS-850, gains surface area of 8.00 m 2 g −1 , functional groups of vanishing O−C−O and O−H bonds, surface morphology of tenuous branch and porous structure and basic strength of 9.8 < H – < 15.0. From aspects of the molar ratio of methanol to oil (γ), the catalyst added amount (ζ) and the reaction temperature (T r ), transesterification catalyzed by CS-850 is optimized through the Box–Behnken design of the response surface methodology (BBD–RSM). A quadratic polynomial model is preferred for transesterification efficiency prediction with coefficient of determination (R 2 ) of 0.9815. The optimal parameters are predicted to be γ = 13.8, ζ = 6.7% and T r = 60 °C with the efficiency of 94.70% and validated by experimental value of 93.83%. Meanwhile, γ is demonstrated to be the most significant variable for the minimum p-value. Besides, CS-850 performs acceptable reusability and for the fifth time reusage, efficiency of 82.61% could still be supplied. Aluminium oxide is proved to have the greatest effect on the catalytic activity of CS-850 among other small quality oxides. Physicochemical properties of the purified biodiesel meet American Society for Testing and Material (ASTM) standard

  9. Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite

    Directory of Open Access Journals (Sweden)

    M. Mourabet

    2017-05-01

    Full Text Available In the present study, Response surface methodology (RSM was employed for the removal of fluoride on Brushite and the process parameters were optimized. Four important process parameters including initial fluoride concentration (40–50 mg/L, pH (4–11, temperature (10–40 °C and B dose (0.05–0.15 g were optimized to obtain the best response of fluoride removal using the statistical Box–Behnken design. The experimental data obtained were analyzed by analysis of variance (ANOVA and fitted to a second-order polynomial equation using multiple regression analysis. Numerical optimization applying desirability function was used to identify the optimum conditions for maximum removal of fluoride. The optimum conditions were found to be initial concentration = 49.06 mg/L, initial solution pH = 5.36, adsorbent dose = 0.15 g and temperature = 31.96 °C. A confirmatory experiment was performed to evaluate the accuracy of the optimization procedure and maximum fluoride removal of 88.78% was achieved under the optimized conditions. Several error analysis equations were used to measure the goodness-of-fit. Kinetic studies showed that the adsorption followed a pseudo-second order reaction. The equilibrium data were analyzed using Langmuir, Freundlich, and Sips isotherm models at different temperatures. The Langmuir model was found to be describing the data. The adsorption capacity from the Langmuir isotherm (QL was found to be 29.212, 35.952 and 36.260 mg/g at 298, 303, and 313 K respectively.

  10. Ethanol production from sweet sorghum bagasse through process optimization using response surface methodology.

    Science.gov (United States)

    Lavudi, Saida; Oberoi, Harinder Singh; Mangamoori, Lakshmi Narasu

    2017-08-01

    In this study, comparative evaluation of acid- and alkali pretreatment of sweet sorghum bagasse (SSB) was carried out for sugar production after enzymatic hydrolysis. Results indicated that enzymatic hydrolysis of alkali-pretreated SSB resulted in higher production of glucose, xylose and arabinose, compared to the other alkali concentrations and also acid-pretreated biomass. Response Surface Methodology (RSM) was, therefore, used to optimize parameters, such as alkali concentration, temperature and time of pretreatment prior to enzymatic hydrolysis to maximize the production of sugars. The independent variables used during RSM included alkali concentration (1.5-4%), pretreatment temperature (125-140 °C) and pretreatment time (10-30 min) were investigated. Process optimization resulted in glucose and xylose concentration of 57.24 and 10.14 g/L, respectively. Subsequently, second stage optimization was conducted using RSM for optimizing parameters for enzymatic hydrolysis, which included substrate concentration (10-15%), incubation time (24-60 h), incubation temperature (40-60 °C) and Celluclast concentration (10-20 IU/g-dwt). Substrate concentration 15%, (w/v) temperature of 60 °C, Celluclast concentration of 20 IU/g-dwt and incubation time of 58 h led to a glucose concentration of 68.58 g/l. Finally, simultaneous saccharification fermentation (SSF) as well as separated hydrolysis and fermentation (SHF) was evaluated using Pichia kudriavzevii HOP-1 for production of ethanol. Significant difference in ethanol concentration was not found using either SSF or SHF; however, ethanol productivity was higher in case of SSF, compared to SHF. This study has established a platform for conducting scale-up studies using the optimized process parameters.

  11. Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis.

    Science.gov (United States)

    Cao, Wenhong; Zhang, Chaohua; Hong, Pengzhi; Ji, Hongwu

    2008-07-01

    Protein hydrolysates were prepared from the head waste of Penaens vannamei, a China seawater major shrimp by autolysis method. Autolysis conditions (viz., temperature, pH and substrate concentration) for preparing protein hydrolysates from the head waste proteins were optimized by response surface methodology (RSM) using a central composite design. Model equation was proposed with regard to the effect of temperature, pH and substrate concentration. Substrate concentration at 23% (w/v), pH at 7.85 and temperature at 50°C were found to be the optimal conditions to obtain a higher degree of hydrolysis close to 45%. The autolysis reaction was nearly finished in the initial 3h. The amino acid compositions of the autolysis hydrolysates prepared using the optimized conditions in different time revealed that the hydrolysates can be used as a functional food ingredient or flavor enhancer. Endogenous enzymes in the shrimp heads had a strong autolysis capacity (AC) for releasing threonine, serine, valine, isoleucine, tyrosine, histidine and tryptophan. Endogenous enzymes had a relatively lower AC for releasing cystine and glycine. Copyright © 2008. Published by Elsevier Ltd.

  12. Optimization of Saccharomyces boulardii production in solid-state fermentation with response surface methodology

    Directory of Open Access Journals (Sweden)

    Yuanliang Hu

    2016-01-01

    Full Text Available Saccharomyces boulardii preparations are promising probiotics and clinical agents for animals and humans. This work focused on optimizing the nutritional conditions for the production of S. boulardii in solid-state fermentation by using classical and statistical methods. In single-factor experiments, the S. boulardii production was significantly increased by the addition of glucoamylase and the optimal carbon and nitrogen sources were found to be soluble starch and NH4Cl, respectively. The effects of the glucoamylase, soluble starch and NH4Cl on S. boulardii production were evaluated by a three-level three-factor Box–Behnken design and response surface methodology (RSM. The maximal yeast count (4.50 ×109CFU/g was obtained under the optimized conditions (198 U/g glucoamylase, 2.37% soluble starch and 0.9% NH4Cl, which was in a good agreement with the predicted value of the model. This study has provided useful information on how to improve the accumulation of yeast cells by RSM.

  13. Optimization of lipase-catalyzed synthesis of ginsenoside Rb1 esters using response surface methodology.

    Science.gov (United States)

    Hu, Jiang-Ning; Lee, Jeung-Hee; Zhu, Xue-Mei; Shin, Jung-Ah; Adhikari, Prakash; Kim, Jae-Kyung; Lee, Ki-Teak

    2008-11-26

    In the lipase (Novozyme 435)-catalyzed synthesis of ginsenoside Rb1 esters, different acyl donors were found to affect not only the degree of conversion but also the regioselectivity. The reaction of acyl donors with short carbon chain was more effective, showing higher conversion than those with long carbon chain. Among the three solvent systems, the reaction in tert-amyl alcohol showed the highest conversion rate, while the reaction in the mixed solvent of t-BuOH and pyridine (1:1) had the lowest conversion rate. To allow the increase of GRb1 lipophilicity, we decided to further study the optimal condition of synthesis of GRb1 with vinyl decanoate with 10 carbon chain fatty acids in tert-amyl alcohol. Response surface methodology (RSM) was employed to optimize the synthesis condition. From the ridge analysis with maximum responses, the maximum GRb1 conversion was predicted to be 61.51% in a combination of factors (40.2 h, 52.95 degrees C, substrate mole ratio 275.57, and enzyme amount 39.81 mg/mL). Further, the adequacy of the predicted model was examined by additional independent experiments at the predicted maximum synthesis conditions. Results showed that the RSM was effective to optimize a combination of factors for lipase-catalyzed synthesis of ginsenoside Rb1 with vinyl decanoate.

  14. Optimization of Selenium-enriched Candida utilis by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    ZHANG Fan

    2014-12-01

    Full Text Available The fermentation conditions of selenium enrichment by Candida utilis were studied. Based on the results of the single factor experiment, three factors including the concentration of sodium selenite, inital pH and incubation temperature were selected. The response surface method was used to optimize the various factors. The optimal conditions were obtained as follows: incubation time was 30 h, time of adding selenium was mid-logarithmic, the sodium selenite concentration was 35 mg·L-1 with inital pH of 6.6, incubation concentration of 10%, incubation temperature of 27 ℃, the medium volume of 150 mL/500 mL, respectively. Under the optimal condition, the biomass was 6.87 g·L-1. The total selenium content of Candida utilis was 12 639.7 μg·L-1, and the selenium content of the cells was 1 839.8 μg·g-1, in which sodium selenite conversion rate was 79.1% and the organic selenium was higher than 90%. The actual value of selenium content was substantially consistent with the theoretical value, and the response surface methodology was applicable for the fermentation conditions of selenium enriched by Candida utilis.

  15. Optimal Corridor Selection for a Road Space Management Strategy: Methodology and Tool

    Directory of Open Access Journals (Sweden)

    Sushant Sharma

    2017-01-01

    Full Text Available Nationwide, there is a growing realization that there are valuable benefits to using the existing roadway facilities to their full potential rather than expanding capacity in a traditional way. Currently, state DOTs are looking for cost-effective transportation solutions to mitigate the growing congestion and increasing funding gaps. Innovative road space management strategies like narrowing of multiple lanes (three or more and shoulder width to add a lane enhance the utilization while eliminating the costs associated with constructing new lanes. Although this strategy (among many generally leads to better mobility, identifying optimal corridors is a challenge and may affect the benefits. Further, there is a likelihood that added capacity may provide localized benefits, at the expense of system level performance measures (travel time and crashes because of the relocation of traffic operational bottlenecks. This paper develops a novel transportation programming and investment decision method to identify optimal corridors for adding capacity in the network by leveraging lane widths. The methodology explicitly takes into consideration the system level benefits and safety. The programming compares two conflicting objectives of system travel time and safety benefits to find an optimal solution.

  16. Electrochemical oxidation of landfill leachate in a flow reactor: optimization using response surface methodology.

    Science.gov (United States)

    Silveira, Jefferson E; Zazo, Juan A; Pliego, Gema; Bidóia, Edério D; Moraes, Peterson B

    2015-04-01

    Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99% of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.

  17. Optimization of Electrochemical Treatment Process Conditions for Distillery Effluent Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    P. Arulmathi

    2015-01-01

    Full Text Available Distillery industry is recognized as one of the most polluting industries in India with a large amount of annual effluent production. In this present study, the optimization of electrochemical treatment process variables was reported to treat the color and COD of distillery spent wash using Ti/Pt as an anode in a batch mode. Process variables such as pH, current density, electrolysis time, and electrolyte dose were selected as operation variables and chemical oxygen demand (COD and color removal efficiency were considered as response variable for optimization using response surface methodology. Indirect electrochemical-oxidation process variables were optimized using Box-Behnken response surface design (BBD. The results showed that electrochemical treatment process effectively removed the COD (89.5% and color (95.1% of the distillery industry spent wash under the optimum conditions: pH of 4.12, current density of 25.02 mA/cm2, electrolysis time of 103.27 min, and electrolyte (NaCl concentration of 1.67 g/L, respectively.

  18. Optimization of Medium Using Response Surface Methodology for Lipid Production by Scenedesmus sp.

    Science.gov (United States)

    Yang, Fangfang; Long, Lijuan; Sun, Xiumei; Wu, Hualian; Li, Tao; Xiang, Wenzhou

    2014-01-01

    Lipid production is an important indicator for assessing microalgal species for biodiesel production. In this work, the effects of medium composition on lipid production by Scenedesmus sp. were investigated using the response surface methodology. The results of a Plackett–Burman design experiment revealed that NaHCO3, NaH2PO4·2H2O and NaNO3 were three factors significantly influencing lipid production, which were further optimized by a Box–Behnken design. The optimal medium was found to contain 3.07 g L−1 NaHCO3, 15.49 mg L−1 NaH2PO4·2H2O and 803.21 mg L−1 NaNO3. Using the optimal conditions previously determined, the lipid production (304.02 mg·L−1) increased 54.64% more than that using the initial medium, which agreed well with the predicted value 309.50 mg L−1. Additionally, lipid analysis found that palmitic acid (C16:0) and oleic acid (C18:1) dominantly constituted the algal fatty acids (about 60% of the total fatty acids) and a much higher content of neutral lipid accounted for 82.32% of total lipids, which strongly proved that Scenedesmus sp. is a very promising feedstock for biodiesel production. PMID:24663113

  19. Application of Response Surface Methodology to Optimize Malachite Green Removal by Cl-nZVI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani

    2017-09-01

    Full Text Available Disposal of effluents containing dyes into natural ecosystems pose serious threats to both the environment and its aquatic life. Malachite green (MG is a basic dye that has extensive industrial applications, especially in aquaculture, throughout the world. This study reports on the application of the central composite design (CCD under the response surface methodology (RSM for the optimization of MG adsorption from aqueous solutions using the clinoptilolite nano-zerovalence iron (Cl-nZVI nanocomposites. The sorbent structures produced are characterized by means of scanning electron micrograph (SEM, energy-dispersive X-ray spectroscopy (EDS, and vibrating sample magnetometer (VSM. The effects of different parameters including pH, initial MG concentration, and sorbent dosage on the removal efficiency (R of MG were studied to find the optimum operating conditions. For this purpose, a total of 20 sets of experiments were designed by the Design Expert.7.0 software and the values of removal efficiency were used as input response to the software. The optimum pH, initial MG concentration, and sorbent dosage were found to be 5.6, 49.21 mg.L-1, and 1.43 g.L-1, respectively. A high MG removal efficiency (57.90% was obtained with optimal process parameters. Moreover, a desirability value of 0.963 was obtained for the optimization process.

  20. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology.

    Science.gov (United States)

    Tabaraki, Reza; Nateghi, Ashraf

    2011-11-01

    Ultrasonic technology was applied for extraction of polyphenols and antioxidants from the rice bran using ethanol as a food grade solvent. Response surface methodology (RSM) was used to optimize experimental conditions for extraction of polyphenols and antioxidants. Three independent variables such as solvent percentage (%), temperature (°C) and time (min) were studied. Effect of ethanol concentration was found to be significant on all responses. Total phenolic content (TPC) varied from 2.37 to 6.35mg gallic acid equivalent/g of dry sample. Antioxidant activity of the extracts was determined by the ferric reducing antioxidant power (FRAP) assay and scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. FRAP and DPPH values varied from 31.74 to 57.23μmol Fe(2+)/g of dry sample and 16.88% to 55.61% inhibition, respectively. Extraction yields ranged from 11 to 20.2%. Optimal ultrasonic-assisted extraction (UAE) conditions were identified as 65-67% ethanol, 51-54°C, 40-45min. The experimental values agreed with those predicted by SRM models, thus indicating suitability of the model employed and the success of RSM in optimizing the extraction conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Optimization of enzymatic clarification of green asparagus juice using response surface methodology.

    Science.gov (United States)

    Chen, Xuehong; Xu, Feng; Qin, Weidong; Ma, Lihua; Zheng, Yonghua

    2012-06-01

    Enzymatic clarification conditions for green asparagus juice were optimized by using response surface methodology (RSM). The asparagus juice was treated with pectinase at different temperatures (35 °C-45 °C), pH values (4.00-5.00), and enzyme concentrations (0.6-1.8 v/v%). The effects of enzymatic treatment on juice clarity and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity were investigated by employing a 3-factor central composite design coupled with RSM. According to response surface analysis, the optimal enzymatic treatment condition was pectinase concentration of 1.45%, incubation temperature of 40.56 °C and pH of 4.43. The clarity, juice yield, and soluble solid contents in asparagus juice were significantly increased by enzymatic treatment at the optimal conditions. DPPH radical-scavenging capacity was maintained at the level close to that of raw asparagus juice. These results indicated that enzymatic treatment could be a useful technique for producing green asparagus juice with high clarity and high-antioxidant activity. Treatment with 1.45% pectinase at 40.56 ° C, pH 4.43, significantly increased the clarity and yield of asparagus juice. In addition, enzymatic treatment maintained antioxidant activity. Thus, enzymatic treatment has the potential for industrial asparagus juice clarification. © 2012 Institute of Food Technologists®

  2. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology

    Directory of Open Access Journals (Sweden)

    Javed Ahamad

    2015-01-01

    Full Text Available Background: Momordica charantia Linn. (Cucurbitaceae fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. Objective: The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Materials and Methods: Response surface methodology (RSM was used for the optimization of ultrasound-assisted extraction (UAE conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD, and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. Results: The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. Conclusions:A facile UAE protocol for a high extraction yield of charantin was developed and validated.

  3. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology.

    Science.gov (United States)

    Ahamad, Javed; Amin, Saima; Mir, Showkat R

    2015-01-01

    Momordica charantia Linn. (Cucurbitaceae) fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Response surface methodology (RSM) was used for the optimization of ultrasound-assisted extraction (UAE) conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD), and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v) at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. A facile UAE protocol for a high extraction yield of charantin was developed and validated.

  4. Optimal color design of psychological counseling room by design of experiments and response surface methodology.

    Science.gov (United States)

    Liu, Wenjuan; Ji, Jianlin; Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients' perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients' impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the 'central point', and three color attributes were optimized to maximize the patients' satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room.

  5. Optimization of Subcritical Water Extraction of Resveratrol from Grape Seeds by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Yajie Tian

    2017-03-01

    Full Text Available The subcritical water extraction (SWE is a high-efficiency and environment-friendly extraction method. The extraction of resveratrol (RES of grape seeds obtained from the wine production process was proposed using subcritical water extraction (SWE. The effects of different extraction process parameters on RES yield were investigated by single factors. Extraction optimization was conducted using response surface methodology (RSM. Extraction temperature was proven to be the most significant factor influencing RES yield. The optimal conditions was as follows: extraction pressure of 1.02 MPa, temperature of 152.32 °C, time of 24.89 min, and a solid/solvent ratio of 1:15 g/mL. Under these optimal conditions, the predicted extraction RES yield was 6.90 μg/g and the recoveries was up to 91.98%. Compared to other previous studies, this method required less pollution and less treatment time to extract RES from grape seeds. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly extraction techniques.

  6. Optimal methodology for a machining process scheduling in spot electricity markets

    International Nuclear Information System (INIS)

    Yusta, J.M.; Torres, F.; Khodr, H.M.

    2010-01-01

    Electricity spot markets have introduced hourly variations in the price of electricity. These variations allow the increase of the energy efficiency by the appropriate scheduling and adaptation of the industrial production to the hourly cost of electricity in order to obtain the maximum profit for the industry. In this article a mathematical optimization model simulates costs and the electricity demand of a machining process. The resultant problem is solved using the generalized reduced gradient approach, to find the optimum production schedule that maximizes the industry profit considering the hourly variations of the price of electricity in the spot market. Different price scenarios are studied to analyze the impact of the spot market prices for electricity on the optimal scheduling of the machining process and on the industry profit. The convenience of the application of the proposed model is shown especially in cases of very high electricity prices.

  7. A feasibility investigation for modeling and optimization of temperature in bone drilling using fuzzy logic and Taguchi optimization methodology.

    Science.gov (United States)

    Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar

    2014-11-01

    Drilling of bone is a common procedure in orthopedic surgery to produce hole for screw insertion to fixate the fracture devices and implants. The increase in temperature during such a procedure increases the chances of thermal invasion of bone which can cause thermal osteonecrosis resulting in the increase of healing time or reduction in the stability and strength of the fixation. Therefore, drilling of bone with minimum temperature is a major challenge for orthopedic fracture treatment. This investigation discusses the use of fuzzy logic and Taguchi methodology for predicting and minimizing the temperature produced during bone drilling. The drilling experiments have been conducted on bovine bone using Taguchi's L25 experimental design. A fuzzy model is developed for predicting the temperature during orthopedic drilling as a function of the drilling process parameters (point angle, helix angle, feed rate and cutting speed). Optimum bone drilling process parameters for minimizing the temperature are determined using Taguchi method. The effect of individual cutting parameters on the temperature produced is evaluated using analysis of variance. The fuzzy model using triangular and trapezoidal membership predicts the temperature within a maximum error of ±7%. Taguchi analysis of the obtained results determined the optimal drilling conditions for minimizing the temperature as A3B5C1.The developed system will simplify the tedious task of modeling and determination of the optimal process parameters to minimize the bone drilling temperature. It will reduce the risk of thermal osteonecrosis and can be very effective for the online condition monitoring of the process. © IMechE 2014.

  8. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology

    Directory of Open Access Journals (Sweden)

    Li Wu

    2017-02-01

    Full Text Available Fusarium mycotoxins deoxynivalenol (DON and zearalenone (ZEN are the most common contaminants in cereals worldwide, causing a wide range of adverse health effects on animals and humans. Many environmental factors can affect the production of these mycotoxins. Here, we have used response surface methodology (RSM to optimize the Fusarium graminearum strain 29 culture conditions for maximal toxin production. Three factors, medium pH, incubation temperature and time, were optimized using a Box-Behnken design (BBD. The optimized conditions for DON production were pH 4.91 and an incubation temperature of 23.75 °C for 28 days, while maximal ZEN production required pH 9.00 and an incubation temperature of 15.05 °C for 28 days. The maximum levels of DON and ZEN production were 2811.17 ng/mL and 23789.70 ng/mL, respectively. Considering the total level of DON and ZEN, desirable yields of the mycotoxins were still obtained with medium pH of 6.86, an incubation temperature of 17.76 °C and a time of 28 days. The corresponding experimental values, from the validation experiments, fitted well with these predictions. This suggests that RSM could be used to optimize Fusarium mycotoxin levels, which are further purified for use as potential mycotoxin standards. Furthermore, it shows that acidic pH is a determinant for DON production, while an alkaline environment and lower temperature (approximately 15 °C are favorable for ZEN accumulation. After extraction, separation and purification processes, the isolated mycotoxins were obtained through a simple purification process, with desirable yields, and acceptable purity. The mycotoxins could be used as potential analytical standards or chemical reagents for routine analysis.

  9. Optimization of a Functional Cookie Formulation by Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Lee, L.Y.; Tan, K.S.; Liew, S.L.

    2011-01-01

    A functional cookie formulation containing oligo fructose, dietary fibre and lower calorie, fat and sugar contents than conventional cookies was optimized using Response Surface Methodology (RSM). Instant N-Oil II was used as a fat replacer, while Raftilose P95 was used as a sugar substitute with the addition of fructose to enhance sweetness. Selection of the optimal formulation was based on caloric content. An optimized formulation, V1, was obtained from the model Y = 4927.70 - 152.34X 1 - 155.42X 3 + 104.20X 3 2 + 151.71X 3 3 - 95.08X 3 4 , where Instant N-Oil II replaced 30 % of butter and 24.4 %, w/w (30.5 g) fructose replaced 40.0 %, w/w (50.0 g) sucrose. Two additional optimized formulations, S1 and S2, were proposed which contained the same ingredients as V1, but both contained 19.0 %, w/w (23.8 g) Raftilose P95. Also, S2 had a higher fat replacement level (42 %). A reference cookie prepared from a conventional recipe received significantly higher scores (P < 0.05) than the functional cookies V1, S1 and S2 in the sensory evaluation. However, when health benefits of the functional cookies were explained to the panel after the sensory evaluation had concluded, majority of the panelists stated that they would prefer S1, had they known of its health benefits. S1 contained 19.04 % fat, 8.62 % fructose and 0.74 % sucrose, namely, significantly lower fat and sucrose levels and higher fructose content than the conventional cookie. (author)

  10. Modeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodology

    Science.gov (United States)

    Amiri, Nafise; Moradi, Ali; Abolghasem Sajjadi Tabasi, Sayyed; Movaffagh, Jebrail

    2018-04-01

    Chitosan-collagen composite nanofiber is of a great interest to researchers in biomedical fields. Since the electrospinning is the most popular method for nanofiber production, having a comprehensive knowledge of the electrospinning process is beneficial. Modeling techniques are precious tools for managing variables in the electrospinning process, prior to the more time- consuming and expensive experimental techniques. In this study, a central composite design of response surface methodology (RSM) was employed to develop a statistical model as well as to define the optimum condition for fabrication of chitosan-collagen nanofiber with minimum diameter. The individual and the interaction effects of applied voltage (10–25 kV), flow rate (0.5–1.5 mL h‑1), and needle to collector distance (15–25 cm) on the fiber diameter were investigated. ATR- FTIR and cell study were done to evaluate the optimized nanofibers. According to the RSM, a two-factor interaction (2FI) model was the most suitable model. The high regression coefficient value (R 2 ≥ 0.9666) of the fitted regression model and insignificant lack of fit (P = 0.0715) indicated that the model was highly adequate in predicting chitosan-collagen nanofiber diameter. The optimization process showed that the chitosan-collagen nanofiber diameter of 156.05 nm could be obtained in 9 kV, 0.2 ml h‑1, and 25 cm which was confirmed by experiment (155.92 ± 18.95 nm). The ATR-FTIR and cell study confirmed the structure and biocompatibility of the optimized membrane. The represented model could assist researchers in fabricating chitosan-collagen electrospun scaffolds with a predictable fiber diameter, and optimized chitosan-collagen nanofibrous mat could be a potential candidate for wound healing and tissue engineering.

  11. Analysis Methodology for Optimal Selection of Ground Station Site in Space Missions

    Science.gov (United States)

    Nieves-Chinchilla, J.; Farjas, M.; Martínez, R.

    2013-12-01

    Optimization of ground station sites is especially important in complex missions that include several small satellites (clusters or constellations) such as the QB50 project, where one ground station would be able to track several spatial vehicles, even simultaneously. In this regard the design of the communication system has to carefully take into account the ground station site and relevant signal phenomena, depending on the frequency band. To propose the optimal location of the ground station, these aspects become even more relevant to establish a trusted communication link due to the ground segment site in urban areas and/or selection of low orbits for the space segment. In addition, updated cartography with high resolution data of the location and its surroundings help to develop recommendations in the design of its location for spatial vehicles tracking and hence to improve effectiveness. The objectives of this analysis methodology are: completion of cartographic information, modelling the obstacles that hinder communication between the ground and space segment and representation in the generated 3D scene of the degree of impairment in the signal/noise of the phenomena that interferes with communication. The integration of new technologies of geographic data capture, such as 3D Laser Scan, determine that increased optimization of the antenna elevation mask, in its AOS and LOS azimuths along the horizon visible, maximizes visibility time with spatial vehicles. Furthermore, from the three-dimensional cloud of points captured, specific information is selected and, using 3D modeling techniques, the 3D scene of the antenna location site and surroundings is generated. The resulting 3D model evidences nearby obstacles related to the cartographic conditions such as mountain formations and buildings, and any additional obstacles that interfere with the operational quality of the antenna (other antennas and electronic devices that emit or receive in the same bandwidth

  12. Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor

    Science.gov (United States)

    Mkhabela, Peter Tshepo

    The research conducted within the framework of this PhD thesis is devoted to the high-fidelity multi-physics (based on neutronics/thermal-hydraulics coupling) analysis of Pebble Bed Modular Reactor (PBMR), which is a High Temperature Reactor (HTR). The Next Generation Nuclear Plant (NGNP) will be a HTR design. The core design and safety analysis methods are considerably less developed and mature for HTR analysis than those currently used for Light Water Reactors (LWRs). Compared to LWRs, the HTR transient analysis is more demanding since it requires proper treatment of both slower and much longer transients (of time scale in hours and days) and fast and short transients (of time scale in minutes and seconds). There is limited operation and experimental data available for HTRs for validation of coupled multi-physics methodologies. This PhD work developed and verified reliable high fidelity coupled multi-physics models subsequently implemented in robust, efficient, and accurate computational tools to analyse the neutronics and thermal-hydraulic behaviour for design optimization and safety evaluation of PBMR concept The study provided a contribution to a greater accuracy of neutronics calculations by including the feedback from thermal hydraulics driven temperature calculation and various multi-physics effects that can influence it. Consideration of the feedback due to the influence of leakage was taken into account by development and implementation of improved buckling feedback models. Modifications were made in the calculation procedure to ensure that the xenon depletion models were accurate for proper interpolation from cross section tables. To achieve this, the NEM/THERMIX coupled code system was developed to create the system that is efficient and stable over the duration of transient calculations that last over several tens of hours. Another achievement of the PhD thesis was development and demonstration of full-physics, three-dimensional safety analysis

  13. OPTIMIZATION OF PRETREATMENT CONDITIONS OF CARROTS TO MAXIMIZE JUICE RECOVERY BY RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    H. K. SHARMA

    2006-12-01

    Full Text Available Carrot juice was expressed in a hydraulic press using a wooden set up. Carrot samples pretreated at different designed combinations, using Central Composite Rotatable Design (CCRD, Response Surface Methodology (RSM, of pH, temperature and time were expressed and juice so obtained was characterized for various physico-chemical parameters which involved yield, TSS and water content, reducing sugars, total sugars and color (absorbance. The study indicated that carrots exposed to the different pretreatment conditions resulted in increased amount of yield than that of the control. The responses were optimized by numerical method and were found to be 78.23% yield, 0.93% color (abs, 3.41% reducing sugars, 5.53% total sugars, 6.69obrix, and 90.50% water content. All the derived mathematical models for the various responses were found to be fit significantly to predict the data.

  14. Methodology for optimization of process integration schemes in a biorefinery under uncertainty

    International Nuclear Information System (INIS)

    Marta Abreu de las Villas (Cuba))" data-affiliation=" (Departamento de Ingeniería Química. Facultad de Química y Farmacia. Universidad Central Marta Abreu de las Villas (Cuba))" >González-Cortés, Meilyn; Marta Abreu de las Villas (Cuba))" data-affiliation=" (Departamento de Ingeniería Química. Facultad de Química y Farmacia. Universidad Central Marta Abreu de las Villas (Cuba))" >Martínez-Martínez, Yenisleidys; Marta Abreu de las Villas (Cuba))" data-affiliation=" (Departamento de Ingeniería Química. Facultad de Química y Farmacia. Universidad Central Marta Abreu de las Villas (Cuba))" >Albernas-Carvajal, Yailet; Marta Abreu de las Villas (Cuba))" data-affiliation=" (Departamento de Ingeniería Química. Facultad de Química y Farmacia. Universidad Central Marta Abreu de las Villas (Cuba))" >Pedraza-Garciga, Julio; Marta Abreu de las Villas (Cuba))" data-affiliation=" (Departamento de Ingeniería Química. Facultad de Química y Farmacia. Universidad Central Marta Abreu de las Villas (Cuba))" >Morales-Zamora, Marlen

    2017-01-01

    The uncertainty has a great impact in the investment decisions, operability of the plants and in the feasibility of integration opportunities in the chemical processes. This paper, presents the steps to consider the optimization of process investment in the processes integration under conditions of uncertainty. It is shown the potentialities of the biomass cane of sugar for the integration with several plants in a biorefinery scheme for the obtaining chemical products, thermal and electric energy. Among the factories with potentialities for this integration are the pulp and paper and sugar factories and other derivative processes. Theses factories have common resources and also have a variety of products that can be exchange between them so certain products generated in a one of them can be raw matter in another plant. The methodology developed guide to obtaining of feasible investment projects under uncertainty. As objective function was considered the maximization of net profitable value in different scenarios that are generated from the integration scheme. (author)

  15. Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology.

    Science.gov (United States)

    Kasankala, Ladislaus M; Xue, Yan; Weilong, Yao; Hong, Sun D; He, Qian

    2007-12-01

    To establish the optimum gelatine extraction conditions from grass carp fish skin, response surface methodology (RSM) was adopted in this study. The effects of concentration of HCl (%, A), pre-treatment time (h, B), extraction temperature ( degrees C, C) and extraction time (h, D) were studied. The responses were yield (%) and gel strength (g). A=1.19%, B=24 h, C=52.61 degrees C and D=5.12h were determined as the optimum conditions while the predicted responses were 19.83% yield and 267 g gel strength. Gelling and melting points were 19.5 degrees C and 26.8 degrees C, respectively. Moreover, grass carp gelatine showed high contents of imino acids (proline and hydroxyproline) 19.47%. RSM provided a powerful tool to optimize the extraction parameters and the results may be adapted for industrial extraction of gelatine from grass carp fish skins.

  16. OPTIMIZATION OF MICROWAVE AND AIR DRYING CONDITIONS OF QUINCE (CYDONIA OBLONGA, MILLER USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cem Baltacioglu

    2015-03-01

    Full Text Available Effects of slice thickness of quince (Cydonia oblonga Miller , microwave incident power and air drying temperature on antioxidant activity and total phenolic content of quince were investigated during drying in microwave and air drying. Optimum conditions were found to be: i for microwave drying, 285 W and 4.14 mm thick (maximum antioxidant activity and 285 W and 6.85 mm thick (maximum total phenolic content, and ii for air drying, 75 ºC and 1.2 mm thick (both maximum antioxidant activity and total phenolic content. Drying conditions were optimized by using the response surface methodology. 13 experiments were carried out considering incident microwave powers from 285 to 795 W, air temperature from 46 to 74 ºC and slice thickness from 1.2 to 6.8 mm.

  17. Optimization of Gluten-Free Tulumba Dessert Formulation Including Corn Flour: Response Surface Methodology Approach

    Directory of Open Access Journals (Sweden)

    Yildiz Önder

    2017-03-01

    Full Text Available Tulumba dessert is widely preferred in Turkey; however, it cannot be consumed by celiac patients because it includes gluten. The diversity of gluten-free products should be expanded so that celiac patients may meet their daily needs regularly. In this study, corn flour (CF / potato starch (PS blend to be used in the gluten-free tulumba dessert formulation was optimized using the Response Surface Methodology (RSM. Increasing ratio of PS in the CF-PS led to a decrease in hardness of the dessert and to an increase in expansion, viscosity, adhesiveness, yield of dessert both with and without syrup (P0.05, additionally these desserts had a much higher sensory score compared to the control sample in terms of the overall quality and pore structure (P<0.05.

  18. Optimization of Total Flavonoids Extraction from Coreopsis tinctoria Nutt. by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Liu, X. F.

    2014-11-01

    Full Text Available Response surface methodology (RSM was applied to predict optimum conditions for extraction of flavonoid from Coreopsis tinctoria Nutt. A central composite design (CCD was used to monitor the effect of extraction temperature, extraction time, and water-to-material ratio on yield of total flavonoids. The optimal extraction conditions were obtained as water-to-material ratio of 55 ml g−1, extraction temperature of 80 °C and extraction time of 70 minutes. Under these conditions, the average total flavonoids yield, according to the mass of raw material, was 9.0 ± 0.6 %, which corresponds to the predicted value of 8.9 %. Thus, the extraction method was applied successfully to extract total flavonoids from C. tinctoria.

  19. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-09-15

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.

  20. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology

    International Nuclear Information System (INIS)

    Rastegar, S.O.; Mousavi, S.M.; Shojaosadati, S.A.; Sheibani, S.

    2011-01-01

    Highlights: ► A UASB was successfully used for treatment of petroleum refinery effluent. ► Response surface methodology was applied to design and analysis of experiments. ► System was modeled between efficient factors include HRT, influent COD and V up . ► UASB was able to remove about 76.3% influent COD at optimum conditions. - Abstract: An upflow anaerobic sludge blanket (UASB) bioreactor was successfully used for the treatment of petroleum refinery effluent. Before optimization, chemical oxygen demand (COD) removal was 81% at a constant organic loading rate (OLR) of 0.4 kg/m 3 d and a hydraulic retention time (HRT) of 48 h. The rate of biogas production was 559 mL/h at an HRT of 40 h and an influent COD of 1000 mg/L. Response surface methodology (RSM) was applied to predict the behaviors of influent COD, upflow velocity (V up ) and HRT in the bioreactor. RSM showed that the best models for COD removal and biogas production rate were the reduced quadratic and cubic models, respectively. The optimum region, identified based on two critical responses, was an influent COD of 630 mg/L, a V up of 0.27 m/h, and an HRT of 21.4 h. This resulted in a 76.3% COD removal efficiency and a 0.25 L biogas/L feed d biogas production rate.

  1. Optimization of cocoa nib roasting based on sensory properties and colour using response surface methodology

    Directory of Open Access Journals (Sweden)

    D.M.H. A.H. Farah

    2012-05-01

    Full Text Available Roasting of cocoa beans is a critical stage for development of its desirable flavour, aroma and colour. Prior to roasting, cocoa bean may taste astringent, bitter, acidy, musty, unclean, nutty or even chocolate-like, depends on the bean sources and their preparations. After roasting, the bean possesses a typical intense cocoa flavour. The Maillard or non-enzymatic browning reactions is a very important process for the development of cocoa flavor, which occurs primarily during the roasting process and it has generally been agreed that the main flavor components, pyrazines formation is associated within this reaction involving amino acids and reducing sugars. The effect of cocoa nib roasting conditions on sensory properties and colour of cocoa beans were investigated in this study. Roasting conditions in terms of temperature ranged from 110 to 160OC and time ranged from 15 to 40 min were optimized by using Response Surface Methodology based on the cocoa sensory characteristics including chocolate aroma, acidity, astringency, burnt taste and overall acceptability. The analyses used 9- point hedonic scale with twelve trained panelist. The changes in colour due to the roasting condition were also monitored using chromameter. Result of this study showed that sensory quality of cocoa liquor increased with the increase in roasting time and temperature up to 160OC and up to 40 min, respectively. Based on the Response Surface Methodology, the optimised operating condition for the roaster was at temperature of 127OC and time of 25 min. The proposed roasting conditions were able to produce superior quality cocoa beans that will be very useful for cocoa manufactures.Key words : Cocoa, cocoa liquor, flavour, aroma, colour, sensory characteristic, response surface methodology.

  2. METHODOLOGY FOR DETERMINING OPTIMAL EXPOSURE PARAMETERS OF A HYPERSPECTRAL SCANNING SENSOR

    Directory of Open Access Journals (Sweden)

    P. Walczykowski

    2016-06-01

    Full Text Available The purpose of the presented research was to establish a methodology that would allow the registration of hyperspectral images with a defined spatial resolution on a horizontal plane. The results obtained within this research could then be used to establish the optimum sensor and flight parameters for collecting aerial imagery data using an UAV or other aerial system. The methodology is based on an user-selected optimal camera exposure parameters (i.e. time, gain value and flight parameters (i.e. altitude, velocity. A push-broom hyperspectral imager- the Headwall MicroHyperspec A-series VNIR was used to conduct this research. The measurement station consisted of the following equipment: a hyperspectral camera MicroHyperspec A-series VNIR, a personal computer with HyperSpec III software, a slider system which guaranteed the stable motion of the sensor system, a white reference panel and a Siemens star, which was used to evaluate the spatial resolution. Hyperspectral images were recorded at different distances between the sensor and the target- from 5m to 100m. During the registration process of each acquired image, many exposure parameters were changed, such as: the aperture value, exposure time and speed of the camera’s movement on the slider. Based on all of the registered hyperspectral images, some dependencies between chosen parameters had been developed: - the Ground Sampling Distance – GSD and the distance between the sensor and the target, - the speed of the camera and the distance between the sensor and the target, - the exposure time and the gain value, - the Density Number and the gain value. The developed methodology allowed us to determine the speed and the altitude of an unmanned aerial vehicle on which the sensor would be mounted, ensuring that the registered hyperspectral images have the required spatial resolution.

  3. Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality

    Science.gov (United States)

    Cheng, Tao; Wu, Youwei; Shen, Xiaoqin; Lai, Wenyong; Huang, Wei

    2018-01-01

    In this work, a simple methodology was developed to enhance the patterning resolution of inkjet printing, involving process optimization as well as substrate modification and treatment. The line width of the inkjet-printed silver lines was successfully reduced to 1/3 of the original value using this methodology. Large-area flexible circuits with delicate patterns and good morphology were thus fabricated. The resultant flexible circuits showed excellent electrical conductivity as low as 4.5 Ω/□ and strong tolerance to mechanical bending. The simple methodology is also applicable to substrates with various wettability, which suggests a general strategy to enhance the printing quality of inkjet printing for manufacturing high-performance large-area flexible electronics. Project supported by the National Key Basic Research Program of China (Nos. 2014CB648300, 2017YFB0404501), the National Natural Science Foundation of China (Nos. 21422402, 21674050), the Natural Science Foundation of Jiangsu Province (Nos. BK20140060, BK20130037, BK20140865, BM2012010), the Program for Jiangsu Specially-Appointed Professors (No. RK030STP15001), the Program for New Century Excellent Talents in University (No. NCET-13-0872), the NUPT "1311 Project" and Scientific Foundation (Nos. NY213119, NY213169), the Synergetic Innovation Center for Organic Electronics and Information Displays, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Leading Talent of Technological Innovation of National Ten-Thousands Talents Program of China, the Excellent Scientific and Technological Innovative Teams of Jiangsu Higher Education Institutions (No. TJ217038), the Program for Graduate Students Research and Innovation of Jiangsu Province (No. KYZZ16-0253), and the 333 Project of Jiangsu Province (Nos. BRA2017402, BRA2015374).

  4. Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design

    Science.gov (United States)

    Iqbal, Liaquat Ullah

    An integrated design and optimization methodology has been developed for the conceptual design of an aircraft. The methodology brings higher fidelity Computer Aided Design, Engineering and Manufacturing (CAD, CAE and CAM) Tools such as CATIA, FLUENT, ANSYS and SURFCAM into the conceptual design by utilizing Excel as the integrator and controller. The approach is demonstrated to integrate with many of the existing low to medium fidelity codes such as the aerodynamic panel code called CMARC and sizing and constraint analysis codes, thus providing the multi-fidelity capabilities to the aircraft designer. The higher fidelity design information from the CAD and CAE tools for the geometry, aerodynamics, structural and environmental performance is provided for the application of the structured design methods such as the Quality Function Deployment (QFD) and the Pugh's Method. The higher fidelity tools bring the quantitative aspects of a design such as precise measurements of weight, volume, surface areas, center of gravity (CG) location, lift over drag ratio, and structural weight, as well as the qualitative aspects such as external geometry definition, internal layout, and coloring scheme early in the design process. The performance and safety risks involved with the new technologies can be reduced by modeling and assessing their impact more accurately on the performance of the aircraft. The methodology also enables the design and evaluation of the novel concepts such as the blended (BWB) and the hybrid wing body (HWB) concepts. Higher fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) allow verification of the claims for the performance gains in aerodynamics and ascertain risks of structural failure due to different pressure distribution in the fuselage as compared with the tube and wing design. The higher fidelity aerodynamics and structural models can lead to better cost estimates that help reduce the financial risks as well. This helps in

  5. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Bambang Tri Nugroho

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31. doi:10.9767/bcrec.4.1.23.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.23.23-31

  6. Optimization of HNO3 leaching of copper from old AMD Athlon processors using response surface methodology.

    Science.gov (United States)

    Javed, Umair; Farooq, Robina; Shehzad, Farrukh; Khan, Zakir

    2018-04-01

    The present study investigates the optimization of HNO 3 leaching of Cu from old AMD Athlon processors under the effect of nitric acid concentration (%), temperature (°C) and ultrasonic power (W). The optimization study is carried out using response surface methodology with central composite rotatable design (CCRD). The ANOVA study concludes that the second degree polynomial model is fitted well to the fifteen experimental runs based on p-value (0.003), R 2 (0.97) and Adj-R 2 (0.914). The study shows that the temperature is the most significant process variable to the leaching concentration of Cu followed by nitric acid concentration. However, ultrasound power shows no significant impact on the leaching concentration. The optimum conditions were found to be 20% nitric acid concentration, 48.89 °C temperature and 5.52 W ultrasound power for attaining maximum concentration of 97.916 mg/l for Cu leaching in solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Statistical optimization for alkali pretreatment conditions of narrow-leaf cattail by response surface methodology

    Directory of Open Access Journals (Sweden)

    Arrisa Ruangmee

    2013-08-01

    Full Text Available Response surface methodology with central composite design was applied to optimize alkali pretreatment of narrow-leafcattail (Typha angustifolia. Joint effects of three independent variables; NaOH concentration (1-5%, temperature (60-100 ºC,and reaction time (30-150 min, were investigated to evaluate the increase in and the improvement of cellulosic componentscontained in the raw material after pretreatment. The combined optimum condition based on the cellulosic content obtainedfrom this study is: a concentration of 5% NaOH, a reaction time of 120 min, and a temperature of 100 ºC. This result has beenanalyzed employing ANOVA with a second order polynomial equation. The model was found to be significant and was able topredict accurately the response of strength at less than 5% error. Under this combined optimal condition, the desirable cellulosic content in the sample increased from 38.5 to 68.3%, while the unfavorable hemicellulosic content decreased from 37.6 to7.3%.

  8. Optimization of Sugar Replacement with Date Syrup in Prebiotic Chocolate Milk Using Response Surface Methodology.

    Science.gov (United States)

    Kazemalilou, Sahar; Alizadeh, Ainaz

    2017-01-01

    Chocolate milk is one of the most commonly used non-fermentative dairy products, which, due to high level of sucrose, could lead to diabetes and tooth decay among children. Therefore, it is important to replace sucrose with other types of sweeteners, especially, natural ones. In this research, response surface methodology (RSM) was used to optimize the ingredients formulation of prebiotic chocolate milk, date syrup as sweetener (4-10%w/w), inulin as prebiotic texturizer (0-0.5%w/w) and carrageenan as thickening agent (0-0.04%w/w) in the formulation of chocolate milk. The fitted models to predict the variables of selected responses such as pH, viscosity, total solid, sedimentation and overall acceptability of chocolate milk showed a high coefficient of determination. The independent effect of carrageenan was the most effective parameter which led to pH and sedimentation decrease but increased viscosity. Moreover, in most treatments, date syrup and inulin variables had significant effects which had a mutual impact. Optimization of the variables, based on the responses surface 3D plots showed that the sample containing 0.48% (w/w) of inulin, 0.04% (w/w) of carrageenan, and 10% of date syrup was selected as the optimum condition.

  9. Optimization of solvent extraction of shea butter (Vitellaria paradoxa) using response surface methodology and its characterization.

    Science.gov (United States)

    Ajala, E O; Aberuagba, F; Olaniyan, A M; Onifade, K R

    2016-01-01

    Shea butter (SB) was extracted from its kernel by using n-hexane as solvent in an optimization study. This was to determine the optima operating variables that would give optimum yield of SB and to study the effect of solvent on the physico-chemical properties and chemical composition of SB extracted using n-hexane. A Box-behnken response surface methodology (RSM) was used for the optimization study while statistical analysis using ANOVA was used to test the significance of the variables for the process. The variables considered for this study were: sample weight (g), solvent volume (ml) and extraction time (min). The physico-chemical properties of SB extracted were determined using standard methods and Fourier Transform Infrared Spectroscopy (FTIR) for the chemical composition. The results of RSM analysis showed that the three variables investigated have significant effect (p food, biodiesel production, cosmetics, medicinal and pharmaceutical purposes than shea butter extracted using solvent extraction method (SBS). Fourier Transform Infrared Spectroscopy (FTIR) results obtained for the two samples were similar to what was obtainable from other vegetable oil.

  10. Optimization of osmotic dehydration of chestnut (Castanea sativa Mill. slices using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Teresa Delgado

    2018-04-01

    Full Text Available Osmotic dehydration of chestnut slices in sucrose was optimized for the first time by Response Surface Methodology (RSM. Experiments were planned according to a three-factor central composite design (α=1.68, studying the influence of sucrose concentration, temperature and time, on the following parameters: volume ratio, water activity, color variation, weight reduction, solids gain, water loss and normalized moisture content, as well as total moisture, ash and fat contents. The experimental data was adequately fitted into second-order polynomial models with coefficients of determination (R2 from 0.716 to 0.976, adjusted-R2 values from 0.460 to 0.954, and non-significant lacks of fit. The optimal osmotic dehydration process conditions for maximum water loss and minimum solids gain and color variation were determined by the “Response Optimizer” option: 83% sucrose concentration, 20 °C and 9.2 hours. Thus, the best operational conditions corresponded to high sugar concentration and low temperature, improving energy saving and decreasing the process costs.

  11. Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: optimization study using the response surface methodology.

    Science.gov (United States)

    Oludemi, Taofiq; Barros, Lillian; Prieto, M A; Heleno, Sandrina A; Barreiro, Maria F; Ferreira, Isabel C F R

    2018-01-24

    The extraction of triterpenoids and phenolic compounds from Ganoderma lucidum was optimized by using the response surface methodology (RSM), using heat and ultrasound assisted extraction techniques (HAE and UAE). The obtained results were compared with that of the standard Soxhlet procedure. RSM was applied using a circumscribed central composite design with three variables (time, ethanol content, and temperature or ultrasonic power) and five levels. The conditions that maximize the responses (extraction yield, triterpenoids and total phenolics) were: 78.9 min, 90.0 °C and 62.5% ethanol and 40 min, 100.0 W and 89.5% ethanol for HAE and UAE, respectively. The latter was the most effective, resulting in an extraction yield of 4.9 ± 0.6% comprising a content of 435.6 ± 21.1 mg g -1 of triterpenes and 106.6 ± 16.2 mg g -1 of total phenolics. The optimized extracts were fully characterized in terms of individual phenolic compounds and triterpenoids by HPLC-DAD-ESI/MS. The recovery of the above-mentioned bioactive compounds was markedly enhanced using the UAE technique.

  12. Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology

    Directory of Open Access Journals (Sweden)

    Vanessa Webber

    2012-12-01

    Full Text Available This study aims to optimize an alternative method of extraction of carrageenan without previous alkaline treatment and ethanol precipitation using Response Surface Methodology (RSM. In order to introduce an innovation in the isolation step, atomization drying was used reducing the time for obtaining dry carrageenan powder. The effects of extraction time and temperature on yield, gel strength, and viscosity were evaluated. Furthermore, the extracted material was submitted to structural analysis, by infrared spectroscopy and nuclear magnetic resonance spectroscopy (¹H-NMR, and chemical composition analysis. Results showed that the generated regression models adequately explained the data variation. Carrageenan yield and gel viscosity were influenced only by the extraction temperature. However, gel strength was influenced by both, extraction time and extraction temperature. Optimal extraction conditions were 74 ºC and 4 hours. In these conditions, the carrageenan extract properties determined by the polynomial model were 31.17%, 158.27 g.cm-2, and 29.5 cP for yield, gel strength, and viscosity, respectively, while under the experimental conditions they were 35.8 ± 4.68%, 112.50 ± 4.96 g.cm-2, and 16.01 ± 1.03 cP, respectively. The chemical composition, nuclear magnetic resonance spectroscopy, and infrared spectroscopy analyses showed that the crude carrageenan extracted is composed mainly of κ-carrageenan.

  13. Aroma profile design of wine spirits: Multi-objective optimization using response surface methodology.

    Science.gov (United States)

    Matias-Guiu, Pau; Rodríguez-Bencomo, Juan José; Pérez-Correa, José R; López, Francisco

    2018-04-15

    Developing new distillation strategies can help the spirits industry to improve quality, safety and process efficiency. Batch stills equipped with a packed column and an internal partial condenser are an innovative experimental system, allowing a fast and flexible management of the rectification. In this study, the impact of four factors (heart-cut volume, head-cut volume, pH and cooling flow rate of the internal partial condenser during the head-cut fraction) on 18 major volatile compounds of Muscat spirits was optimized using response surface methodology and desirability function approaches. Results have shown that high rectification at the beginning of the heart-cut enhances the overall positive aroma compounds of the product, reducing off-flavor compounds. In contrast, optimum levels of heart-cut volume, head-cut volume and pH factors varied depending on the process goal. Finally, three optimal operational conditions (head off-flavors reduction, flowery terpenic enhancement and fruity ester enhancement) were evaluated by chemical and sensory analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    Science.gov (United States)

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  15. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    Science.gov (United States)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  16. Response surface methodology optimization of nickel (II) removal using pigeon pea pod bio sorbent

    International Nuclear Information System (INIS)

    Aravind, J.; Lenin, C.; Nancyflavia, C.; Rashika, P.; Saravanan, S.

    2015-01-01

    Pod of pigeon pea (Cajanus cajan), a cellulose rich agricultural residue, was investigated for its nickel binding efficiency. The influence of key physicochemical parameters such as contact time, initial metal ion concentration, adsorbent dosage and p H on nickel (II) removal was studied. The equilibrium time was found to be 45 min. The optimum Ni (II) removal was obtained at an initial metal ion concentration of 80 mg/l, p H of 9.0 and an adsorbent dose of 400 mg/100 ml. A search for optimal combination of key variables was studied by response surface methodology for maximum removal of nickel. The experiment encompassing 17 runs was established with the aid of Box–Behnken design. Owing to the reasonable agreement between predicted and adjusted R2 value (0.9714), the corresponding quadratic model gives the most appropriate relationship between the variables and response. The optimal point obtained was located in the valid region and the optimum adsorption parameters were predicted as an initial Ni (II) concentration of 60 mg/l, p H value of 9.0 and contact time of 75 min. Under these adsorption conditions, a maximum removal of 96.54 % of initial metal concentration was demonstrated.

  17. OPTIMIZATION OF REACTIVE BLUE 19 DECOLORIZATION BY GANODERMA SP. USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    1M. Mohammadian Fazli, *1A. R. Mesdaghinia, 1K. Naddafi, 1S. Nasseri , 1M. Yunesian, 2M. Mazaheri Assadi, 3S. Rezaie, 4H. Hamzehei

    2010-01-01

    Full Text Available Synthetic dyes are extensively used in different industries. Dyes have adverse impacts such as visual effects, chemical oxygen demand, toxicity, mutagenicity and carcinogenicity characteristics. White rot fungi, due to extracellular enzyme system, are capable to degrade dyes and various xenobiotics. The aim of this study was to optimize decolorization of reactive blue 19 (RB19 dye using Ganoderma sp. fungus. Response Surface Methodology (RSM was used to study the effect of independent variables, namely glycerol concentration (15, 20 and 25 g/L, temperature (27, 30 and 33 oC and pH (5.5, 6.0 and 6.5 on color removal efficiency in aqueous solution. From RSM-generated model, the optimum conditions for RB19 decolorization were identified to be at temperature of 27oC, glycerol concentration of 19.14 mg/L and pH=6.3. At the optimum conditions, predicted decolorization was 95.3 percent. The confirmatory experiments were conducted and confirmed the results by 94.89% color removal. Thus, this statistical approach enabled to improve reactive blue 19 decolorization process by Ganoderma sp. up to 1.27 times higher than non-optimized conditions.

  18. Optimization of biodiesel production from castor oil using response surface methodology.

    Science.gov (United States)

    Jeong, Gwi-Taek; Park, Don-Hee

    2009-05-01

    The short supply of edible vegetable oils is the limiting factor in the progression of biodiesel technology; thus, in this study, we applied response surface methodology in order to optimize the reaction factors for biodiesel synthesis from inedible castor oil. Specifically, we evaluated the effects of multiple parameters and their reciprocal interactions using a five-level three-factor design. In a total of 20 individual experiments, we optimized the reaction temperature, oil-to-methanol molar ratio, and quantity of catalyst. Our model equation predicted that the following conditions would generate the maximum quantity of castor biodiesel (92 wt.%): a 40-min reaction at 35.5 degrees C, with an oil-to-methanol molar ratio of 1:8.24, and a catalyst concentration of 1.45% of KOH by weight of castor oil. Subsequent empirical analyses of the biodiesel generated under the predicted conditions showed that the model equation accurately predicted castor biodiesel yields within the tested ranges. The biodiesel produced from castor oil satisfied the relevant quality standards without regard to viscosity and cold filter plugging point.

  19. Optimization of Baker's Yeast Production on Date Extract Using Response Surface Methodology (RSM).

    Science.gov (United States)

    Kara Ali, Mounira; Outili, Nawel; Ait Kaki, Asma; Cherfia, Radia; Benhassine, Sara; Benaissa, Akila; Kacem Chaouche, Noreddine

    2017-08-07

    This work aims to study the production of the biomass of S. cerevisiae on an optimized medium using date extract as the only carbon source in order to obtain a good yield of the biomass. The biomass production was carried out according to the central composite experimental design (CCD) as a response surface methodology using Minitab 16 software. Indeed, under optimal biomass production conditions, temperature (32.9 °C), pH (5.35) and the total reducing sugar extracted from dates (70.93 g/L), S. cerevisiae produced 40 g/L of their biomass in an Erlenmeyer after only 16 h of fermentation. The kinetic performance of the S. cerevisiae strain was investigated with three unstructured models i.e., Monod, Verhulst, and Tessier. The conformity of the experimental data fitted showed a good consistency with Monod and Tessier models with R² = 0.945 and 0.979, respectively. An excellent adequacy was noted in the case of the Verhulst model ( R² = 0.981). The values of kinetic parameters ( Ks , X m , μ m , p and q ) calculated by the Excel software, confirmed that Monod and Verhulst were suitable models, in contrast, the Tessier model was inappropriately fitted with the experimental data due to the illogical value of Ks (-9.434). The profiles prediction of the biomass production with the Verhulst model, and that of the substrate consumption using Leudeking Piret model over time, demonstrated a good agreement between the simulation models and the experimental data.

  20. Optimization of ultrasound-assisted extraction of polyphenolic compounds from coriander seeds using response surface methodology

    Directory of Open Access Journals (Sweden)

    Zeković Zoran P.

    2016-01-01

    Full Text Available Coriandrum sativum L. (coriander seeds (CS were used for preparation of extracts with high content of biologically active compounds. In order to optimize ultrasoundassisted extraction process, three levels and three variables of Box-Behnken experimental design (BBD in combination with response surface methodology (RSM were applied, yielding maximized total phenolics (TP and flavonoids (TF content and antioxidant activity (IC50 and EC50 values. Independent variables were temperature (40-80oC, extraction time (40-80 min and ultrasonic power (96-216 W. Experimental results were fitted to a second-order polynomial model with multiple regression, while the analysis of variance (ANOVA was employed to assess the model fitness and determine optimal conditions for TP (79.60oC, 49.20 min, 96.69 W, TF (79.40oC, 43.60 min, 216.00 W, IC50 (80.00oC, 60.40 min, 216.00 W and EC50 (78.40oC, 68.60 min, 214.80 W. On the basis of the obtained mathematical models, three-dimensional surface plots were generated. The predicted values for TP, TF, IC50 and EC50 were: 382.68 mg GAE/100 g CS, 216 mg CE/100 g CS, 0.03764 mg/mL and 0.1425 mg/mL, respectively. [Projekat Ministarstva nauke Republike Srbije, br. TR31013

  1. Optimization of mucilage extraction from chia seeds (Salvia hispanica L.) using response surface methodology.

    Science.gov (United States)

    Orifici, Stefania C; Capitani, Marianela I; Tomás, Mabel C; Nolasco, Susana M

    2018-02-25

    Chia mucilage has potential application as a functional ingredient; advances on maximizing its extraction yield could represent a significant technological and economic impact for the food industry. Thus, first, the effect of mechanical agitation time (1-3 h) on the exudation of chia mucilage was analyzed. Then, response surface methodology was used to determine the optimal combination of the independent variables temperature (15-85 °C) and seed: water ratio (1: 12-1: 40.8 w/v) for the 2 h exudation that give maximum chia mucilage yield. Experiments were designed according to central composite rotatable design. A second-order polynomial model predicted the variation in extraction mucilage yield with the variables temperature and seed: water ratio. The optimal operating conditions were found to be temperature 85 °C and a seed: water ratio of 1: 31 (w/v), reaching an experimental extraction yield of 116 ± 0.21 g kg -1 (dry basis). The mucilage obtained exhibited good functional properties, mainly in terms of water-holding capacity, emulsifying activity, and emulsion stability. The results obtained show that temperature, seed: water ratio, and exudation time are important variables of the process that affect the extraction yield and the quality of the chia mucilage, determined according to its physicochemical and functional properties. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  2. Finite Element Based Response Surface Methodology to Optimize Segmental Tunnel Lining

    Directory of Open Access Journals (Sweden)

    A. Rastbood

    2017-04-01

    Full Text Available The main objective of this paper is to optimize the geometrical and engineering characteristics of concrete segments of tunnel lining using Finite Element (FE based Response Surface Methodology (RSM. Input data for RSM statistical analysis were obtained using FEM. In RSM analysis, thickness (t and elasticity modulus of concrete segments (E, tunnel height (H, horizontal to vertical stress ratio (K and position of key segment in tunnel lining ring (θ were considered as input independent variables. Maximum values of Mises and Tresca stresses and tunnel ring displacement (UMAX were set as responses. Analysis of variance (ANOVA was carried out to investigate the influence of each input variable on the responses. Second-order polynomial equations in terms of influencing input variables were obtained for each response. It was found that elasticity modulus and key segment position variables were not included in yield stresses and ring displacement equations, and only tunnel height and stress ratio variables were included in ring displacement equation. Finally optimization analysis of tunnel lining ring was performed. Due to absence of elasticity modulus and key segment position variables in equations, their values were kept to average level and other variables were floated in related ranges. Response parameters were set to minimum. It was concluded that to obtain optimum values for responses, ring thickness and tunnel height must be near to their maximum and minimum values, respectively and ground state must be similar to hydrostatic conditions.

  3. Process optimization of microencapsulation of curcumin in γ-polyglutamic acid using response surface methodology.

    Science.gov (United States)

    Ko, Wen-Ching; Chang, Chao-Kai; Wang, Hsiu-Ju; Wang, Shian-Jen; Hsieh, Chang-Wei

    2015-04-01

    The aim of this study was to develop an optimal microencapsulation method for an oil-soluble component (curcumin) using γ-PGA. The results show that Span80 significantly enhances the encapsulation efficiency (EE) of γ-Na(+)-PGA microcapsules. Therefore, the effects of γ-Na(+)-PGA, curcumin and Span80 concentration on EE of γ-Na(+)-PGA microcapsules were studied by means of response surface methodology (RSM). It was found that the optimal microencapsulation process is achieved by using γ-Na(+)-PGA 6.05%, curcumin 15.97% and Span80 0.61% with a high EE% (74.47 ± 0.20%). Furthermore, the models explain 98% of the variability in the responses. γ-Na(+)-PGA seems to be a good carrier for the encapsulation of curcumin. In conclusion, this simple and versatile approach can potentially be applied to the microencapsulation of various oil-soluble components for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Warpage optimization on a mobile phone case using response surface methodology (RSM)

    Science.gov (United States)

    Lee, X. N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Shazzuan, S.

    2017-09-01

    Plastic injection moulding is a popular manufacturing method not only it is reliable, but also efficient and cost saving. It able to produce plastic part with detailed features and complex geometry. However, defects in injection moulding process degrades the quality and aesthetic of the injection moulded product. The most common defect occur in the process is warpage. Inappropriate process parameter setting of injection moulding machine is one of the reason that leads to the occurrence of warpage. The aims of this study were to improve the quality of injection moulded part by investigating the optimal parameters in minimizing warpage using Response Surface Methodology (RSM). Subsequent to this, the most significant parameter was identified and recommended parameters setting was compared with the optimized parameter setting using RSM. In this research, the mobile phone case was selected as case study. The mould temperature, melt temperature, packing pressure, packing time and cooling time were selected as variables whereas warpage in y-direction was selected as responses in this research. The simulation was carried out by using Autodesk Moldflow Insight 2012. In addition, the RSM was performed by using Design Expert 7.0. The warpage in y direction recommended by RSM were reduced by 70 %. RSM performed well in solving warpage issue.

  5. Model development and optimization of operating conditions to maximize PEMFC performance by response surface methodology

    International Nuclear Information System (INIS)

    Kanani, Homayoon; Shams, Mehrzad; Hasheminasab, Mohammadreza; Bozorgnezhad, Ali

    2015-01-01

    Highlights: • The optimization of the operating parameters in a serpentine PEMFC is done using RSM. • The RSM model can predict the cell power over the wide range of operating conditions. • St-An, St-Ca and RH-Ca have an optimum value to obtain the best performance. • The interactions of the operating conditions affect the output power significantly. • The cathode and anode stoichiometry are the most effective parameters on the power. - Abstract: Optimization of operating conditions to obtain maximum power in PEMFCs could have a significant role to reduce the costs of this emerging technology. In the present experimental study, a single serpentine PEMFC is used to investigate the effects of operating conditions on the electrical power production of the cell. Four significant parameters including cathode stoichiometry, anode stoichiometry, gases inlet temperature, and cathode relative humidity are studied using Design of Experiment (DOE) to obtain an optimal power. Central composite second order Response Surface Methodology (RSM) is used to model the relationship between goal function (power) and considered input parameters (operating conditions). Using this statistical–mathematical method leads to obtain a second-order equation for the cell power. This model considers interactions and quadratic effects of different operating conditions and predicts the maximum or minimum power production over the entire working range of the parameters. In this range, high stoichiometry of cathode and low stoichiometry of anode results in the minimum cell power and contrary the medium range of fuel and oxidant stoichiometry leads to the maximum power. Results show that there is an optimum value for the anode stoichiometry, cathode stoichiometry and relative humidity to reach the best performance. The predictions of the model are evaluated by experimental tests and they are in a good agreement for different ranges of the parameters

  6. Realistic nurse-led policy implementation, optimization and evaluation: novel methodological exemplar.

    Science.gov (United States)

    Noyes, Jane; Lewis, Mary; Bennett, Virginia; Widdas, David; Brombley, Karen

    2014-01-01

    To report the first large-scale realistic nurse-led implementation, optimization and evaluation of a complex children's continuing-care policy. Health policies are increasingly complex, involve multiple Government departments and frequently fail to translate into better patient outcomes. Realist methods have not yet been adapted for policy implementation. Research methodology - Evaluation using theory-based realist methods for policy implementation. An expert group developed the policy and supporting tools. Implementation and evaluation design integrated diffusion of innovation theory with multiple case study and adapted realist principles. Practitioners in 12 English sites worked with Consultant Nurse implementers to manipulate the programme theory and logic of new decision-support tools and care pathway to optimize local implementation. Methods included key-stakeholder interviews, developing practical diffusion of innovation processes using key-opinion leaders and active facilitation strategies and a mini-community of practice. New and existing processes and outcomes were compared for 137 children during 2007-2008. Realist principles were successfully adapted to a shorter policy implementation and evaluation time frame. Important new implementation success factors included facilitated implementation that enabled 'real-time' manipulation of programme logic and local context to best-fit evolving theories of what worked; using local experiential opinion to change supporting tools to more realistically align with local context and what worked; and having sufficient existing local infrastructure to support implementation. Ten mechanisms explained implementation success and differences in outcomes between new and existing processes. Realistic policy implementation methods have advantages over top-down approaches, especially where clinical expertise is low and unlikely to diffuse innovations 'naturally' without facilitated implementation and local optimization. © 2013

  7. Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology

    International Nuclear Information System (INIS)

    Ma, Lingling; Han, Ying; Sun, Kaian; Lu, Jie; Ding, Jincheng

    2015-01-01

    Highlights: • As lipid source, acidified oil are from industrial wastes for renewable energy. • The predicted conversion rate of FFAs was 75.24% under the RSM optimized conditions. • The adsorption system was employed to remove the water produced to shift the equilibrium toward ethyl ester production. • Maximum conversion rate of 98.32% was obtained using adsorption system at optimum process parameters. • Compared with tradition methods, molecular sieve dehydration method improved the conversion rate by 23.08%. - Abstract: The esterification of acidified oil with ethanol catalyzed by sulfonated cation exchange resins (SCER) was optimized using the response surface methodology (RSM). The effects of the molar ratio of ethanol to acidified oil, reaction time and catalyst loading on the conversion rate of free fatty acids (FFAs) were investigated at the temperature of the boiling point of ethanol. Results showed that the highest conversion rate of 75.24% was obtained at the molar ratio of ethanol to acidified oil of 23.2, reaction time of 8.0 h and catalyst loading of 35.0 wt.%. Moreover, the conversion rate of FFAs was increased to 98.32% by using a water adsorption apparatus under the RSM optimized conditions. Scanning electronic microscopic–energy dispersive spectrometric (SEM–EDS), X-ray diffractometric (XRD) and thermogravimetric–derivative thermogravimetric (TG–DTG) analyses confirmed that the morphology of catalysts did not change much and the mechanical and thermal stabilities were still good after the reaction. Furthermore, SCER exhibited a high catalytic activity and stability after being reused for five successive times. The fuel properties of the biodiesel were comparable to that of ASTM, EN and GB biodiesel standard

  8. Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing

    International Nuclear Information System (INIS)

    Zhang, Chunhua; Lu, Xiang; Tan, Yuanyuan; Wang, Yashun

    2015-01-01

    For products with high reliability and long lifetime, accelerated degradation testing (ADT) may be adopted during product development phase to verify whether its reliability satisfies the predetermined level within feasible test duration. The actual degradation from engineering is usually a strictly monotonic process, such as fatigue crack growth, wear, and erosion. However, the method for reliability demonstration by ADT with monotonic degradation process has not been investigated so far. This paper proposes a reliability demonstration methodology by ADT for this kind of product. We first apply Gamma process to describe the monotonic degradation. Next, we present a reliability demonstration method by converting the required reliability level into allowable cumulative degradation in ADT and comparing the actual accumulative degradation with the allowable level. Further, we suggest an analytical optimal ADT design method for more efficient reliability demonstration by minimizing the asymptotic variance of decision variable in reliability demonstration under the constraints of sample size, test duration, test cost, and predetermined decision risks. The method is validated and illustrated with example on reliability demonstration of alloy product, and is applied to demonstrate the wear reliability within long service duration of spherical plain bearing in the end. - Highlights: • We present a reliability demonstration method by ADT for products with monotonic degradation process, which may be applied to verify reliability with long service life for products with monotonic degradation process within feasible test duration. • We suggest an analytical optimal ADT design method for more efficient reliability demonstration, which differs from the existed optimal ADT design for more accurate reliability estimation by different objective function and different constraints. • The methods are applied to demonstrate the wear reliability within long service duration of

  9. Optimization of Solid-Liquid Extraction of Antioxidants from Black Mulberry Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Zoran Zeković

    2012-01-01

    Full Text Available The extraction of active components from natural sources depends on different factors. The knowledge of the effects of different extraction parameters is useful for the optimization of the process, as well for the ability to predict the extraction yield. The aim of this study is to examine the influence of solvent concentration (ethanol/water 40–80 %, by volume, temperature (40–80 °C and solvent/raw material ratio (10–30 mL/g on the extraction yield of phenolic compounds, flavonoids and antioxidant activity from black mulberry (Morus nigra L. leaves. Experimental values of total phenolic content were in the range from 18.6 to 48.7 mg of chlorogenic acid equivalents per g of dried leaves and total flavonoids in the range from 6.0 to 21.4 mg of rutin eqivalents per g of dried leaves. Antioxidant activity expressed as the inhibition concentration at 50 % (IC50 value was in the range from 0.019 to 0.078 mg of mulberry extract per mL. Response surface methodology (RSM was used to determine the optimum extraction conditions and to investigate the effect of different variables on the observed properties of mulberry leaf extracts. The results show a good fit to the proposed model (R˄2>0.90. The optimal conditions for obtaining the highest extraction yield of phenolics and flavonoids were within the experimental range. The experimental values agreed with those predicted, thus indicating suitability of the used model and the success of RSM in optimizing the investigated extraction conditions.

  10. Optimization of a two stage process for biodiesel production from shea butter using response surface methodology

    Directory of Open Access Journals (Sweden)

    E.O. Ajala

    2017-12-01

    Full Text Available The challenges of biodiesel production from high free fatty acid (FFA shea butter (SB necessitated this study. The reduction of %FFA of SB by esterification and its subsequent utilization by transesterification for biodiesel production in a two stage process for optimization studies was investigated using response surface methodology based on a central composite design (CCD. Four operating conditions were investigated to reduce the %FFA of SB and increase the %yield of shea biodiesel (SBD. The operating conditions were temperature (40–60°C, agitation speed (200–1400 rpm, methanol (MeOH: oil mole ratio: 2:1–6:1 (w/w for esterification and 4:1–8:1 (w/w for transesterification and catalyst loading: 1–2% (H2SO4, (v/v for esterification and KOH, (w/w for transesterification. The significance of the parameters obtained in linear and non-linear form from the models were determined using analysis of variance (ANOVA. The optimal operating conditions that gave minimum FFA of 0.26% were 52.19°C, 200 rpm, 2:1 (w/w and 1.5% (v/v, while those that gave maximum yield of 92.16% SBD were 40°C, 800 rpm, 7:1 (w/w and 1% (w/w. The p-value of <0.0001 for each of the stages showed that the models were significant with R2 of 0.96 each. These results indicate the reproducibility of the models and showed that the RSM is suitable to optimize the esterification and transesterification of SB for SBD production. Therefore, RSM is a useful tool that can be employed in industrial scale production of SBD from high FFA SB.

  11. Optimization of Mechanical Expression of Castor Seeds Oil (Ricinus communis using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    J. O. Olaoye

    2017-12-01

    Full Text Available The effect of the processing parameters of Castor seed on its oil yield was investigated. The castor seeds were passed through drying, crushing and separation into seeds and shells. These processing conditions were further succeeded by seed roasting and subsequent mechanical expression of the roasted nut by means of screw press in the course of its preparation for oil expression. Seed samples were conditioned by adding calculated amount of distilled water to obtain different moisture levels from the initial moisture content of the seeds. Samples were roasted at the temperatures of 83.18, 90.00, 100.00, 110.00 and 116.82°C, over periods of 6.59, 10.00, 15.00, 20.00 and 23.41min, seed moisture content of 6.32, 7.00, 8.00, 9.00 and 9.68 % wb, respectively and the oil was expressed using a screw roaster-expeller. Optimization of the oil expression process was achieved by applying Central Composite Rotatable Design of Response Surface Methodology. The optimal conditions for oil yield within the experimental range of the studied variables were 7%, 110°C and 20 min; moisture content, roasting temperature and roasting duration respectively. These values of the optimum process conditions were used to predict optimum value of oil yield to be 25.77%. A second-order model was obtained to predict oil yield as a function of moisture content, heating temperature and duration. Thus the result from this research work has established the optimal conditions for mechanical extraction of oil from castor seed. Closed agreement between experimental and predicted yield was obtained.

  12. Methodology for safety optimization of highway cross-sections for horizontal curves with restricted sight distance.

    Science.gov (United States)

    Ibrahim, Shewkar E; Sayed, Tarek; Ismail, Karim

    2012-11-01

    Several earlier studies have noted the shortcomings with existing geometric design guides which provide deterministic standards. In these standards the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from the standards. To mitigate these shortcomings, probabilistic geometric design has been advocated where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a mechanism for risk measurement to evaluate the safety impact of deviations from design standards. This paper applies reliability analysis for optimizing the safety of highway cross-sections. The paper presents an original methodology to select a suitable combination of cross-section elements with restricted sight distance to result in reduced collisions and consistent risk levels. The purpose of this optimization method is to provide designers with a proactive approach to the design of cross-section elements in order to (i) minimize the risk associated with restricted sight distance, (ii) balance the risk across the two carriageways of the highway, and (iii) reduce the expected collision frequency. A case study involving nine cross-sections that are parts of two major highway developments in British Columbia, Canada, was presented. The results showed that an additional reduction in collisions can be realized by incorporating the reliability component, P(nc) (denoting the probability of non-compliance), in the optimization process. The proposed approach results in reduced and consistent risk levels for both travel directions in addition to further collision reductions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part 1. Evaluation functions

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2009-01-01

    In this study, the optimal seismic design methodology that can consider the structural integrity of not only the piping systems but also elasto-plastic supporting devices is developed. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location, capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Four types of evaluation functions are considered. It is found that the proposed optimal seismic design methodology is very effective and can be applied to the actual seismic design for piping systems supported by elasto-plastic dampers. The effectiveness of the evaluation functions is also clarified. (author)

  14. OPTIMIZATION OF RED PIGMENT PRODUCTION BY MONASCUS PURPUREUS FTC 5356 USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Farhan M. Said

    2018-06-01

    Full Text Available Factors such as environmental conditions and nutrients are significant for successful growth and reproduction of microorganisms. Manipulations of the factors are the most effective way to stimulate the growth of the microorganism, which can be used to optimize the yield of a product. In this study, Central Composite Design (CCD of Response Surface Methodology (RSM was used to optimize the production of red pigment by Monascus purpureus FTC 5356 using the petioles of oil palm fronds (OPF as a substrate in solid state fermentation (SSF. The data was analyzed using Design Expert Software. The optimum combination predicted via RSM was confirmed through experimental work. The interactions between three variables such as initial moisture content (%, initial pH value (pH, and peptone concentration (% were studied and modelled. The statistical analysis of the results showed that the optimal conditions for red pigment production 47 AU/g with the biomass of 425.1 mg/g was at 55% initial moisture content, 3% of peptone, and at pH 3.  The RSM results showed that the initial pH value had a significant effect on red pigment production (P-value <0.05. The validation of these results was also conducted by fermentation with predicted conditions and it was found that there was a discrepancy of 0.39% between the values of the experimental result and those of the predicted values. ABSTRAK: Keadaan persekitaran dan nutrien merupakan faktor-faktor penting dalam pertumbuhan mikroorganisma. Manipulasi faktor-faktor tersebut adalah kaedah terbaik bagi meningkatkan pertumbuhan mikroorganisma dan mengoptimumkan penghasilan produk. Kajian ini mengguna pakai Rekaan Gabungan Pusat (CCD melalui Kaedah Tindak balas Permukaan (RSM bagi penghasilan pigmen merah optimum oleh Monascus purpureus FTC 5356 menggunakan batang pelepah kelapa sawit (OPF sebagai perumah dalam proses penapaian pepejal (SSF. Data telah dianalisis menggunakan perisian Design Expert. Gabungan parameter

  15. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Rastegar, S.O. [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mousavi, S.M., E-mail: mousavi_m@modares.ac.ir [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shojaosadati, S.A. [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Sheibani, S. [R and T Management Department, National Iranian Oil Refining and Distribution Company, Tehran (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer A UASB was successfully used for treatment of petroleum refinery effluent. Black-Right-Pointing-Pointer Response surface methodology was applied to design and analysis of experiments. Black-Right-Pointing-Pointer System was modeled between efficient factors include HRT, influent COD and V{sub up}. Black-Right-Pointing-Pointer UASB was able to remove about 76.3% influent COD at optimum conditions. - Abstract: An upflow anaerobic sludge blanket (UASB) bioreactor was successfully used for the treatment of petroleum refinery effluent. Before optimization, chemical oxygen demand (COD) removal was 81% at a constant organic loading rate (OLR) of 0.4 kg/m{sup 3} d and a hydraulic retention time (HRT) of 48 h. The rate of biogas production was 559 mL/h at an HRT of 40 h and an influent COD of 1000 mg/L. Response surface methodology (RSM) was applied to predict the behaviors of influent COD, upflow velocity (V{sub up}) and HRT in the bioreactor. RSM showed that the best models for COD removal and biogas production rate were the reduced quadratic and cubic models, respectively. The optimum region, identified based on two critical responses, was an influent COD of 630 mg/L, a V{sub up} of 0.27 m/h, and an HRT of 21.4 h. This resulted in a 76.3% COD removal efficiency and a 0.25 L biogas/L feed d biogas production rate.

  16. A note on “An alternative multiple attribute decision making methodology for solving optimal facility layout design selection problems”

    OpenAIRE

    R. Venkata Rao

    2012-01-01

    A paper published by Maniya and Bhatt (2011) (An alternative multiple attribute decision making methodology for solving optimal facility layout design selection problems, Computers & Industrial Engineering, 61, 542-549) proposed an alternative multiple attribute decision making method named as “Preference Selection Index (PSI) method” for selection of an optimal facility layout design. The authors had claimed that the method was logical and more appropriate and the method gives directly the o...

  17. Incorporating a Constrained Optimization Algorithm into Remote- Sensing/Precision Agriculture Methodology

    Science.gov (United States)

    Morgenthaler, George; Khatib, Nader; Kim, Byoungsoo

    with information to improve their crop's vigor has been a major topic of interest. With world population growing exponentially, arable land being consumed by urbanization, and an unfavorable farm economy, the efficiency of farming must increase to meet future food requirements and to make farming a sustainable occupation for the farmer. "Precision Agriculture" refers to a farming methodology that applies nutrients and moisture only where and when they are needed in the field. The goal is to increase farm revenue by increasing crop yield and decreasing applications of costly chemical and water treatments. In addition, this methodology will decrease the environmental costs of farming, i.e., reduce air, soil, and water pollution. Sensing/Precision Agriculture has not grown as rapidly as early advocates envisioned. Technology for a successful Remote Sensing/Precision Agriculture system is now available. Commercial satellite systems can image (multi-spectral) the Earth with a resolution of approximately 2.5 m. Variable precision dispensing systems using GPS are available and affordable. Crop models that predict yield as a function of soil, chemical, and irrigation parameter levels have been formulated. Personal computers and internet access are in place in most farm homes and can provide a mechanism to periodically disseminate, e.g. bi-weekly, advice on what quantities of water and chemicals are needed in individual regions of the field. What is missing is a model that fuses the disparate sources of information on the current states of the crop and soil, and the remaining resource levels available with the decisions farmers are required to make. This must be a product that is easy for the farmer to understand and to implement. A "Constrained Optimization Feed-back Control Model" to fill this void will be presented. The objective function of the model will be used to maximize the farmer's profit by increasing yields while decreasing environmental costs and decreasing

  18. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production

    International Nuclear Information System (INIS)

    Rashid, Umer; Anwar, Farooq; Ashraf, Muhammad; Saleem, Muhammad; Yusup, Suzana

    2011-01-01

    Highlights: → Biodiesel production from Moringa oil (MO) has been optimized for the first time using RSM. → RSM-optimized reaction conditions gave a high Moringa oil methyl esters (MOMEs) yield (94.3%). → Fuel properties of MOMEs yielded satisfied the ASTM D 6751 and EU 14214 specifications. → Present RSM-model can be useful for predicting optimum biodiesel yield from other oils. - Abstract: Response surface methodology (RSM), with central composite rotatable design (CCRD), was used to explore optimum conditions for the transesterification of Moringa oleifera oil. Effects of four variables, reaction temperature (25-65 deg. C), reaction time (20-90 min), methanol/oil molar ratio (3:1-12:1) and catalyst concentration (0.25-1.25 wt.% KOH) were appraised. The quadratic term of methanol/oil molar ratio, catalyst concentration and reaction time while the interaction terms of methanol/oil molar ratio with reaction temperature and catalyst concentration, reaction time with catalyst concentration exhibited significant effects on the yield of Moringa oil methyl esters (MOMEs)/biodiesel, p < 0.0001 and p < 0.05, respectively. Transesterification under the optimum conditions ascertained presently by RSM: 6.4:1 methanol/oil molar ratio, 0.80% catalyst concentration, 55 deg. C reaction temperature and 71.08 min reaction time offered 94.30% MOMEs yield. The observed and predicted values of MOMEs yield showed a linear relationship. GLC analysis of MOMEs revealed oleic acid methyl ester, with contribution of 73.22%, as the principal component. Other methyl esters detected were of palmitic, stearic, behenic and arachidic acids. Thermal stability of MOMEs produced was evaluated by thermogravimetric curve. The fuel properties such as density, kinematic viscosity, lubricity, oxidative stability, higher heating value, cetane number and cloud point etc., of MOMEs were found to be within the ASTM D6751 and EN 14214 biodiesel standards.

  19. Enzymatic Transesterification of Ethyl Ferulate with Fish Oil and Reaction Optimization by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2012-01-01

    Full Text Available The enzymatic transesterification of ethyl ferulate (EF with fish oil from cod liver was investigated with Novozym® 435 as catalyst under solvent-free conditions. The purpose of the study is to evaluate the synthesis system for the production of feruloyl fish oil in industry. The modified HPLC method was first set up to characterise the reaction products together with liquid chromatography electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF-MS. The influence of the addition of glycerol to the system on the feruloyl acylglycerol profile was investigated in terms of transesterification performance. The bioconversion rate of EF can be significantly increased with the increased formation of feruloyl fish oil products when appropriate amount of glycerol is present in the reaction. Therefore, an equivalent molar amount of glycerol was added to EF for the practical optimization of the system. The mutual effects of temperature (40 to 70 °C, reaction time (1 to 5 days, enzyme load (2 to 20 % and molar ratio of fish oil and EF in the substrate (1 to 5 were thus studied with the assistance of response surface methodology (RSM for the purpose of maximizing the formation of feruloyl fish oil. The models were well fitted and verified. The optimized conditions were found to be: temperature 70 °C, enzyme load 4.3 %, substrate ratio 4.7, and reaction time 5 days. Under these conditions, the maximum conversion of EF reached 92.4 %, and the formation of feruloyl fish oil reached 80.4 %, but the formation of by-product was minimized to 11.4 % only.

  20. Modeling and optimization of ethanol fermentation using Saccharomyces cerevisiae: Response surface methodology and artificial neural network

    Directory of Open Access Journals (Sweden)

    Esfahanian Mehri

    2013-01-01

    Full Text Available In this study, the capabilities of response surface methodology (RSM and artificial neural networks (ANN for modeling and optimization of ethanol production from glucoseusing Saccharomyces cerevisiae in batch fermentation process were investigated. Effect of three independent variables in a defined range of pH (4.2-5.8, temperature (20-40ºC and glucose concentration (20-60 g/l on the cell growth and ethanol production was evaluated. Results showed that prediction accuracy of ANN was apparently similar to RSM. At optimum condition of temperature (32°C, pH (5.2 and glucose concentration (50 g/l suggested by the statistical methods, the maximum cell dry weight and ethanol concentration obtained from RSM were 12.06 and 16.2 g/l whereas experimental values were 12.09 and 16.53 g/l, respectively. The present study showed that using ANN as fitness function, the maximum cell dry weight and ethanol concentration were 12.05 and 16.16 g/l, respectively. Also, the coefficients of determination for biomass and ethanol concentration obtained from RSM were 0.9965 and 0.9853 and from ANN were 0.9975 and 0.9936, respectively. The process parameters optimization was successfully conducted using RSM and ANN; however prediction by ANN was slightly more precise than RSM. Based on experimental data maximum yield of ethanol production of 0.5 g ethanol/g substrate (97 % of theoretical yield was obtained.

  1. Optimization of Chlorination Process for Mature Leachate Disinfection Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Hamzeh Ali Jamali1

    2014-06-01

    Full Text Available Background: leachate from landfill contains high level of microbial pathogens which is considered as one of the most important threats for the environment. One of the common and simple methods for water and wastewater disinfection is chlorination, but it rarely has been used for leachate disinfection. The objective of this study was evaluating the efficiency of chlorine for leachate disinfection and optimization of the effect of concentration and contact time on the death of total and fecal coliforms, as a microbial contamination index. Methods: In this descriptive-analysis study, microbial indices monitoring in leachates initiated from landfill of Qazvin city were conducted for one year. After pre-tests, the range of chlorine concentration and contact time on the inactivation of microbial indices were determined. Central composite design (CCD and response surface methodology (RSM were applied to optimize chlorine concentration and contact time parameters effect on microbial inactivation. 13 runs of tests were performed on samples. Tests were included BOD, COD, total and fecal coliforms. All analytical experiments were according to the standard methods for the examination of water and wastewater. Results: Results of the study showed that microbial indices had relatively high sensitivity to inactivation by chlorination, which in the chlorine concentration of 2 mg/L and contact time of 9 min, and chlorine concentration of 0.5 mg/L and contact time of 12 min, 100% of total and fecal coliforms inactivated, respectively. The RSM method was used for analysis of bacterial inactivation. Analyses showed that in contact time of 9.4 min and chlorine concentration of 2.99 mg/L, the inactivation efficiency of total and fecal coliforms were 89.16% and 100%, respectively. Conclusions: Chlorine could be used for leachate disinfection. However, in high concentrations of organic matter in leachates, due to production potential of chlorination by-products, health

  2. Optimization of extraction parameters of pentacyclic triterpenoids from Swertia chirata stem using response surface methodology.

    Science.gov (United States)

    Pandey, Devendra Kumar; Kaur, Prabhjot

    2018-03-01

    In the present investigation, pentacyclic triterpenoids were extracted from different parts of Swertia chirata by solid-liquid reflux extraction methods. The total pentacyclic triterpenoids (UA, OA, and BA) in extracted samples were determined by HPTLC method. Preliminary studies showed that stem part contains the maximum pentacyclic triterpenoid and was chosen for further studies. Response surface methodology (RSM) has been employed successfully by solid-liquid reflux extraction methods for the optimization of different extraction variables viz., temperature ( X 1 35-70 °C), extraction time ( X 2 30-60 min), solvent composition ( X 3 20-80%), solvent-to-solid ratio ( X 4 30-60 mlg -1 ), and particle size ( X 5 3-6 mm) on maximum recovery of triterpenoid from stem parts of Swertia chirata . A Plackett-Burman design has been used initially to screen out the three extraction factors viz., particle size, temperature, and solvent composition on yield of triterpenoid. Moreover, central composite design (CCD) was implemented to optimize the significant extraction parameters for maximum triterpenoid yield. Three extraction parameters viz., mean particle size (3 mm), temperature (65 °C), and methanol-ethyl acetate solvent composition (45%) can be considered as significant for the better yield of triterpenoid A second-order polynomial model satisfactorily fitted the experimental data with the R 2 values of 0.98 for the triterpenoid yield ( p  < 0.001), implying good agreement between the experimental triterpenoid yield (3.71%) to the predicted value (3.79%).

  3. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology

    Science.gov (United States)

    Ávila-Lara, Abimael I.; Camberos-Flores, Jesus N.; Mendoza-Pérez, Jorge A.; Messina-Fernández, Sarah R.; Saldaña-Duran, Claudia E.; Jimenez-Ruiz, Edgar I.; Sánchez-Herrera, Leticia M.; Pérez-Pimienta, Jose A.

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading. PMID:26442260

  4. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Umer, E-mail: umer.rashid@yahoo.com [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 31750, Tronoh, Perak (Malaysia); Anwar, Farooq, E-mail: fqanwar@yahoo.com [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Ashraf, Muhammad, E-mail: ashrafbot@yahoo.com [Department of Botany, University of Agriculture, Faisalabad 38040 (Pakistan); Department of Botany and Microbiology, King Saud University, Riyadh (Saudi Arabia); Saleem, Muhammad [Department of Statistics, Government College University, Faisalabad 38000 (Pakistan); Yusup, Suzana, E-mail: drsuzana_yusuf@petronas.com.my [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 31750, Tronoh, Perak (Malaysia)

    2011-08-15

    Highlights: {yields} Biodiesel production from Moringa oil (MO) has been optimized for the first time using RSM. {yields} RSM-optimized reaction conditions gave a high Moringa oil methyl esters (MOMEs) yield (94.3%). {yields} Fuel properties of MOMEs yielded satisfied the ASTM D 6751 and EU 14214 specifications. {yields} Present RSM-model can be useful for predicting optimum biodiesel yield from other oils. - Abstract: Response surface methodology (RSM), with central composite rotatable design (CCRD), was used to explore optimum conditions for the transesterification of Moringa oleifera oil. Effects of four variables, reaction temperature (25-65 deg. C), reaction time (20-90 min), methanol/oil molar ratio (3:1-12:1) and catalyst concentration (0.25-1.25 wt.% KOH) were appraised. The quadratic term of methanol/oil molar ratio, catalyst concentration and reaction time while the interaction terms of methanol/oil molar ratio with reaction temperature and catalyst concentration, reaction time with catalyst concentration exhibited significant effects on the yield of Moringa oil methyl esters (MOMEs)/biodiesel, p < 0.0001 and p < 0.05, respectively. Transesterification under the optimum conditions ascertained presently by RSM: 6.4:1 methanol/oil molar ratio, 0.80% catalyst concentration, 55 deg. C reaction temperature and 71.08 min reaction time offered 94.30% MOMEs yield. The observed and predicted values of MOMEs yield showed a linear relationship. GLC analysis of MOMEs revealed oleic acid methyl ester, with contribution of 73.22%, as the principal component. Other methyl esters detected were of palmitic, stearic, behenic and arachidic acids. Thermal stability of MOMEs produced was evaluated by thermogravimetric curve. The fuel properties such as density, kinematic viscosity, lubricity, oxidative stability, higher heating value, cetane number and cloud point etc., of MOMEs were found to be within the ASTM D6751 and EN 14214 biodiesel standards.

  5. Optimization of Baker’s Yeast Production on Date Extract Using Response Surface Methodology (RSM)

    Science.gov (United States)

    Kara Ali, Mounira; Outili, Nawel; Ait Kaki, Asma; Cherfia, Radia; Benhassine, Sara; Benaissa, Akila; Kacem Chaouche, Noreddine

    2017-01-01

    This work aims to study the production of the biomass of S. cerevisiae on an optimized medium using date extract as the only carbon source in order to obtain a good yield of the biomass. The biomass production was carried out according to the central composite experimental design (CCD) as a response surface methodology using Minitab 16 software. Indeed, under optimal biomass production conditions, temperature (32.9 °C), pH (5.35) and the total reducing sugar extracted from dates (70.93 g/L), S. cerevisiae produced 40 g/L of their biomass in an Erlenmeyer after only 16 h of fermentation. The kinetic performance of the S. cerevisiae strain was investigated with three unstructured models i.e., Monod, Verhulst, and Tessier. The conformity of the experimental data fitted showed a good consistency with Monod and Tessier models with R2 = 0.945 and 0.979, respectively. An excellent adequacy was noted in the case of the Verhulst model (R2 = 0.981). The values of kinetic parameters (Ks, Xm, μm, p and q) calculated by the Excel software, confirmed that Monod and Verhulst were suitable models, in contrast, the Tessier model was inappropriately fitted with the experimental data due to the illogical value of Ks (−9.434). The profiles prediction of the biomass production with the Verhulst model, and that of the substrate consumption using Leudeking Piret model over time, demonstrated a good agreement between the simulation models and the experimental data. PMID:28783118

  6. Optimization and evaluation of chelerythrine nanoparticles composed of magnetic multiwalled carbon nanotubes by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Yuan, Yulin [Department of Clinical Laboratory, the People' s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021 (China); Zhou, Zhide; Liang, Jintao; Chen, Zhencheng [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Li, Guiyin, E-mail: liguiyin01@163.com [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China)

    2014-02-15

    In this study, a new chelerythrine nanomaterial targeted drug delivery system (Fe{sub 3}O{sub 4}/MWNTs-CHE) was designed with chelerythrine (CHE) as model of antitumor drug and magnetic multiwalled carbon nanotubes (Fe{sub 3}O{sub 4}/MWNTs) nanocomposites as drug carrier. The process and formulation variables of Fe{sub 3}O{sub 4}/MWNTs-CHE were optimized using response surface methodology (RSM) with a three-level, three-factor Box–Behnken design (BBD). Mathematical equations and response surface plots were used to relate the dependent and independent variables. The experimental results were fitted into second-order response surface model. When Fe{sub 3}O{sub 4}/MWNTs:CHE ratio was 20.6:1, CHE concentration was 172.0 μg/mL, temperature was 34.5 °C, the drug loading content and entrapment efficiency were 3.04 ± 0.17% and 63.68 ± 2.36%, respectively. The optimized Fe{sub 3}O{sub 4}/MWNTs-CHE nanoparticles were characterized by scanning electron microscopy (SEM), Zeta potential, in vitro drug release and MTT assays. The in vitro CHE drug release behavior from Fe{sub 3}O{sub 4}/MWNTs-CHE displayed a biphasic drug release pattern and followed Korsmeyer–Peppas model with Fickian diffusion mechanism for drug release. The results from MTT assays suggested that the Fe{sub 3}O{sub 4}/MWNTs-CHE could effectively inhibit the proliferation of human hepatoma cells (HepG2), which displayed time or concentration-dependent manner. All these preliminary studies were expected to provide a theoretical basis and offer new methods for preparation efficient magnetic targeted drug delivery systems.

  7. Esterification Optimization of Crude African Palm Olein Using Response Surface Methodology and Heterogeneous Acid Catalysis

    Directory of Open Access Journals (Sweden)

    Francisco Anguebes-Franseschi

    2018-01-01

    Full Text Available In this work, the effect of zeolite montmorillonite KSF in the esterification of free fatty acids (FFAs of crude African palm olein (Eleaias guinnesis Jacq was studied. To optimize the esterification of FFAs of the crude African palm olein (CAPO, the response surface methodology (RSM that was based on a central composite rotatable design (CCRD was used. The effects of three parameters were investigated: (a catalyst loading (2.6–9.4 wt %, (b reaction temperature (133.2–166.2 °C, and (c reaction time (0.32–3.68 h. The Analysis of variance (ANOVA indicated that linear terms of catalyst loading (X1, reaction temperature (X2, the quadratic term of catalyst loading ( X 1 2 , temperature reaction ( X 2 2 , reaction time ( X 3 2 , the interaction catalyst loading with reaction time ( X 1 * X3, and the interaction reaction temperature with reaction time ( X 2 * X3 have a significant effect (p < 0.05 with a 95% confidence level on Fatty Methyl Ester (FAME yield. The result indicated that the optimum reaction conditions to esterification of FFAs were: catalyst loading 9.4 wt %, reaction temperature 155.5 °C, and 3.3 h for reaction time, respectively. Under these conditions, the numerical estimation of FAME yield was 91.81 wt %. This result was experimentally validated obtaining a difference of 1.7% FAME yield, with respect to simulated values.

  8. Optimization of enzymatic hydrolysis of guar gum using response surface methodology.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2014-08-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3-7), temperature (20-60 °C), reaction time (1-5 h) and cellulase concentration (0.25-1.25 mg/g) on viscosity during enzymatic hydrolysis of guar (Cyamopsis tetragonolobus) gum. A second order polynomial model was developed for viscosity using regression analysis. Results revealed statistical significance of model as evidenced from high value of coefficient of determination (R(2) = 0.9472) and P < 0.05. Viscosity was primarily affected by cellulase concentration, pH and hydrolysis time. Maximum viscosity reduction was obtained when pH, temperature, hydrolysis time and cellulase concentration were 6, 50 °C, 4 h and 1.00 mg/g, respectively. The study is important in optimizing the enzymatic process for hydrolysis of guar gum as potential source of soluble dietary fiber for human health benefits.

  9. Use of Proteomic Methodology in Optimization of Processing and Quality Control of Food of Animal Origin

    Directory of Open Access Journals (Sweden)

    Dajana Gašo-Sokač

    2011-01-01

    Full Text Available Food of animal origin, namely meat, seafood, milk and milk products, is the main protein source in human nutrition. These types of food are very complex mixtures that contain proteins and other components, and proteomic techniques enable simultaneous study of several hundred up to several thousand proteins. The use of proteomic methodology for quality control and quality assessment in production as well as for the optimization and development of new manufacturing processes is presented. Newly developed, faster and more selective methods for sample preparation followed by more sensitive mass spectrometry for identification of less abundant proteins are discussed. These techniques will help to understand variations in production, and to find markers for food quality criteria. Furthermore, biologically active peptides in food of animal origin have recently been the focus of proteomic and peptidomic investigations. Isolation and production of biologically active proteins and peptides, including the low abundance ones, will also be a focus of future research. The use of proteomics, peptidomics and metabonomics for the determination of product quality and the detection of adulterations in meat production, seafood identification and in the production of milk and milk products is also discussed.

  10. Combining nutrition and exercise to optimize survival and recovery from critical illness: Conceptual and methodological issues.

    Science.gov (United States)

    Heyland, Daren K; Stapleton, Renee D; Mourtzakis, Marina; Hough, Catherine L; Morris, Peter; Deutz, Nicolaas E; Colantuoni, Elizabeth; Day, Andrew; Prado, Carla M; Needham, Dale M

    2016-10-01

    Survivors of critical illness commonly experience neuromuscular abnormalities, including muscle weakness known as ICU-acquired weakness (ICU-AW). ICU-AW is associated with delayed weaning from mechanical ventilation, extended ICU and hospital stays, more healthcare-related hospital costs, a higher risk of death, and impaired physical functioning and quality of life in the months after ICU admission. These observations speak to the importance of developing new strategies to aid in the physical recovery of acute respiratory failure patients. We posit that to maintain optimal muscle mass, strength and physical function, the combination of nutrition and exercise may have the greatest impact on physical recovery of survivors of critical illness. Randomized trials testing this and related hypotheses are needed. We discussed key methodological issues and proposed a common evaluation framework to stimulate work in this area and standardize our approach to outcome assessments across future studies. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Optimization of alkaline and dilute acid pretreatment of agave bagasse by response surface methodology

    Directory of Open Access Journals (Sweden)

    Abimael I. Ávila-Lara

    2015-09-01

    Full Text Available Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA and alkaline (AL catalyst providing specific effects on the physicochemical structure of the biomass such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15% since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification which will be reflected in lower capital costs, however this data is currently limited. In this study, several variables such as catalyst loading, retention time and solids loading, were studied using Response Surface Methodology (RSM based on a factorial Central Composite Design (CCD of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS yield. Pretreated biomass

  12. Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology.

    Science.gov (United States)

    Sun, Guohui; Zhang, Xin; Bao, Zixian; Lang, Xuqian; Zhou, Zhongzheng; Li, Yang; Feng, Chao; Chen, Xiguang

    2018-06-01

    To strengthen the mechanical strength of thermo-sensitive hydroxybutyl chitosan (HBC) hydrogel, chitin whiskers were used as sticker to fabricate reinforced HBC (HBCW) hydrogel by using response surface methodology. Unlike the intrinsic network of HBC hydrogel, HBCW hydrogel showed a laminar shape with firm structure. The preparation condition was optimized by three-factor-three-level Box-Behnken design. The maximum mechanical strength (1011.11 Pa) was achieved at 50 °C, when the concentrations of HBC and chitin whiskers were 5.1 wt% and 2.0 wt%, respectively. The effects of temperature, pH value and NaCl concentration on mechanical strength of HBCW hydrogels were investigated via the oscillatory stress sweeps. The results showed that HBCW hydrogel could reach the maximum stiffness (∼1126 Pa) at 37 °C pH 12.0. Low pH and high salty ions could decrease the stability of hydrogel, while chitin whiskers could increase the stress tolerance and related ruptured strain of HBCW hydrogels. Copyright © 2018. Published by Elsevier Ltd.

  13. Electrochemical treatment of simulated sugar industrial effluent: Optimization and modeling using a response surface methodology

    Directory of Open Access Journals (Sweden)

    P. Asaithambi

    2016-11-01

    Full Text Available The removal of organic compounds from a simulated sugar industrial effluent was investigated through the electrochemical oxidation technique. Effect of various experimental parameters such as current density, concentration of electrolyte and flow rate in a batch electrochemical reactor was studied on the percentage of COD removal and power consumption. The electrochemical reactor performance was analyzed based on with and without recirculation of the effluent having constant inter-electrodes distance. It was found out that the percentage removal of COD increased with the increase of electrolyte concentration and current density. The maximum percentage removal of COD was achieved at 80.74% at a current density of 5 A/dm2 and 5 g/L of electrolyte concentration in the batch electrochemical reactor. The recirculation electrochemical reactor system parameters like current density, concentration of COD and flow rate were optimized using response surface methodology, while COD removal percents were maximized and power consumption minimized. It has been observed from the present analysis that the predicted values are in good agreement with the experimental data with a correlation coefficient of 0.9888.

  14. Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology

    Science.gov (United States)

    2012-01-01

    This paper utilizes a statistical approach, the response surface optimization methodology, to determine the optimum conditions for the Acid Black 172 dye removal efficiency from aqueous solution by electrocoagulation. The experimental parameters investigated were initial pH: 4–10; initial dye concentration: 0–600 mg/L; applied current: 0.5-3.5 A and reaction time: 3–15 min. These parameters were changed at five levels according to the central composite design to evaluate their effects on decolorization through analysis of variance. High R2 value of 94.48% shows a high correlation between the experimental and predicted values and expresses that the second-order regression model is acceptable for Acid Black 172 dye removal efficiency. It was also found that some interactions and squares influenced the electrocoagulation performance as well as the selected parameters. Optimum dye removal efficiency of 90.4% was observed experimentally at initial pH of 7, initial dye concentration of 300 mg/L, applied current of 2 A and reaction time of 9.16 min, which is close to model predicted (90%) result. PMID:23369574

  15. Modeling and optimization of ammonia treatment by acidic biochar using response surface methodology

    Directory of Open Access Journals (Sweden)

    Narong Chaisongkroh

    2012-09-01

    Full Text Available Emission of ammonia (NH3 contaminated waste air to the atmosphere without treatment has affected humans andenvironment. Eliminating NH3 in waste air emitted from industries is considered an environmental requisite. In this study,optimization of NH3 adsorption time using acidic rubber wood biochar (RWBs impregnated with sulfuric acid (H2SO4 wasinvestigated. The central composite design (CCD in response surface methodology (RSM by the Design Expert softwarewas used for designing the experiments as well as the full response surface estimation. The RSM was used to evaluate theeffect of adsorption parameters in continuous mode of fixed bed column including waste air flow rate, inlet NH3 concentration in waste air stream, and H2SO4 concentration for adsorbent surface modification. Based on statistical analysis, the NH3symmetric adsorption time (at 50% NH3 removal efficiency model proved to be very highly significant (p<0.0001. The optimum conditions obtained were 300 ppmv inlet NH3 concentration, 72% H2SO4, and 2.1 l/min waste air flow rate. This resultedin 219 minutes of NH3 adsorption time as obtained from the predicted model, which fitted well with the laboratory verification result. This was supported by the high value of coefficient of determination (R2=0.9137. (NH42SO4, a nitrogen fertilizerfor planting, was the by-product from chemical adsorption between NH3 and H2SO4.

  16. Optimization of enzymatic esterification of dihydrocaffeic acid with hexanol in ionic liquid using response surface methodology.

    Science.gov (United States)

    Gholivand, Somayeh; Lasekan, Ola; Tan, Chin Ping; Abas, Faridah; Wei, Leong Sze

    2017-05-26

    Developing an efficient lipophilization reaction system for phenolic derivatives could enhance their applications in food processing. Low solubility of phenolic acids reduces the efficiency of phenolic derivatives in most benign enzyme solvents. The conversion of phenolic acids through esterification alters their solubility and enhances their use as food antioxidant additives as well as their application in cosmetics. This study has shown that lipase-catalyzed esterification of dihydrocaffeic acid with hexanol in ionic liquid (1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide) was the best approach for esterification reaction. In order to achieve the maximum yield, the process was optimized by response surface methodology (RSM) based on a five-level and four independent variables such as: dosage of enzyme; hexanol/dihydrocaffeic acid mole ratio; temperature and reaction time. The optimum esterification condition (Y = 84.4%) was predicted to be obtained at temperature of 39.4 °C, time of 77.5 h dosage of enzyme at 41.6% and hexanol/dihydrocaffeic acid mole ratio of 2.1. Finally, this study has produced an efficient enzymatic esterification method for the preparation of hexyl dihydrocaffeate in vitro using a lipase in an ionic liquid system. Concentration of hexanol was the most significant (p < 0.05) independent variable that influenced the yield of hexyl dihydrocaffeate. Graphical abstract Synthesis of different Hexyl dihydrocaffeates in ionic liquid.

  17. Optimization of lipase-catalyzed enantioselective production of 1-phenyl 1-propanol using response surface methodology.

    Science.gov (United States)

    Soyer, Asli; Bayraktar, Emine; Mehmetoglu, Ulku

    2010-01-01

    Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min.

  18. Formulation and optimization of mucoadhesive buccal patches of losartan potassium by using response surface methodology

    Science.gov (United States)

    Ikram, Md.; Gilhotra, Neeraj; Gilhotra, Ritu Mehra

    2015-01-01

    Background: This study was undertaken with an aim to systematically design a model of factors that would yield an optimized sustained release dosage form of an anti-hypertensive agent, losartan potassium, using response surface methodology (RSM) by employing 32 full factorial design. Materials and Methods: Mucoadhesive buccal patches were prepared using different grades of hydroxypropyl methylcellulose (HPMC) (K4M and K100M) and polyvinylpyrrolidone-K30 by solvent casting method. The amount of the release retardant polymers – HPMC K4M (X1) and HPMC K100M (X2) was taken as an independent variable. The dependent variables were the burst release in 30 min (Y1), cumulative percentage release of drug after 8 h (Y2) and swelling index (Y3) of the patches. In vitro release and swelling studies were carried out and the data were fitted to kinetic equations. Results: The physicochemical, bioadhesive, and swelling properties of patches were found to vary significantly depending on the viscosity of the polymers and their combination. Patches showed an initial burst release preceding a more gradual sustained release phase following a nonfickian diffusion process. Discussion: The results indicate that suitable bioadhesive buccal patches with desired permeability could be prepared, facilitated with the RSM. PMID:26682205

  19. MAP: an iterative experimental design methodology for the optimization of catalytic search space structure modeling.

    Science.gov (United States)

    Baumes, Laurent A

    2006-01-01

    One of the main problems in high-throughput research for materials is still the design of experiments. At early stages of discovery programs, purely exploratory methodologies coupled with fast screening tools should be employed. This should lead to opportunities to find unexpected catalytic results and identify the "groups" of catalyst outputs, providing well-defined boundaries for future optimizations. However, very few new papers deal with strategies that guide exploratory studies. Mostly, traditional designs, homogeneous covering, or simple random samplings are exploited. Typical catalytic output distributions exhibit unbalanced datasets for which an efficient learning is hardly carried out, and interesting but rare classes are usually unrecognized. Here is suggested a new iterative algorithm for the characterization of the search space structure, working independently of learning processes. It enhances recognition rates by transferring catalysts to be screened from "performance-stable" space zones to "unsteady" ones which necessitate more experiments to be well-modeled. The evaluation of new algorithm attempts through benchmarks is compulsory due to the lack of past proofs about their efficiency. The method is detailed and thoroughly tested with mathematical functions exhibiting different levels of complexity. The strategy is not only empirically evaluated, the effect or efficiency of sampling on future Machine Learning performances is also quantified. The minimum sample size required by the algorithm for being statistically discriminated from simple random sampling is investigated.

  20. Application of Response Surface Methodology for Optimization of Paracetamol Particles Formation by RESS Method

    International Nuclear Information System (INIS)

    Sabet, J.K.; Ghotbi, C.; Dorkoosh, F.

    2012-01-01

    Ultrafine particles of paracetamol were produced by Rapid Expansion of Supercritical Solution (RESS). The experiments were conducted to investigate the effects of extraction temperature (313-353 K), extraction pressure (10-18 MPa), pre expansion temperature (363-403 K), and post expansion temperature (273-323 K) on particles size and morphology of paracetamol particles. The characterization of the particles was determined by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Liquid Chromatography/Mass Spectrometry (LC-MS) analysis. The average particle size of the original paracetamol was 20.8 μm, while the average particle size of paracetamol after nan onization via the RESS process was 0.46 μm depending on the experimental conditions used. Moreover, the morphology of the processed particles changed to spherical and regular while the virgin particles of paracetamol were needle-shape and irregular. Response surface methodology (RSM) was used to optimize the process parameters. The extraction temperature, 347 K; extraction pressure, 12 MPa; pre expansion temperature, 403?K; and post expansion temperature, 322 K was found to be the optimum conditions to achieve the minimum average particle size of paracetamol.

  1. Optimization and Modeling of Process Variables of Biodiesel Production from Marula Oil using Response Surface Methodology

    International Nuclear Information System (INIS)

    Enweremadu, C. C.; Rutto, H. L.

    2015-01-01

    This paper presents an optimization study in the production of biodiesel production from Marula oil. The study was carried out using a central composite design of experiments under response surface methodology. A mathematical model was developed to correlate the transesterification process variables to biodiesel yield. The transesterification reaction variables were methanol to oil ratio, x /sub 1/ (10-50 wt percentage), reaction time, x /sub 2/ (30-90 min), reaction temperature, x /sub 3/ (30-90 Degree C) stirring speed, x /sub 4/ (100-400 rpm) and amount of catalyst, x /sub 5/ (0.5-1.5 g). The optimum conditions for the production of the biodiesel were found to be methanol to oil ratio (29.43 wt percentage), reaction time (59.17 minutes), reaction temperature (58.80 Degree C), stirring speed (325 rpm) and amount of catalyst (1.02 g). The optimum yield of biodiesel that can be produced was 95 percentage. The results revealed that the crucial fuel properties of the biodiesel produced at the optimum conditions met the ASTM biodiesel specifications. (author)

  2. OPTIMIZATION OF POTASSIUM NITRATE BASED SOLID PROPELLANT GRAINS FORMULATION USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Oladipupo Olaosebikan Ogunleye

    2015-08-01

    Full Text Available This study was designed to evaluate the effect of propellant formulation and geometry on the solid propellant grains internal ballistic performance using core, bates, rod and tubular and end-burn geometries. Response Surface Methodology (RSM was used to analyze and optimize the effect of sucrose, potassium nitrate and carbon on the chamber pressure, temperature, thrust and specific impulse of the solid propellant grains through Central Composite Design (CCD of the experiment. An increase in potassium nitrate increased the specific impulse while an increase in sucrose and carbon decreased specific impulse. The coefficient of determination (R2 for models of chamber pressure, temperature, thrust and specific impulse in terms of composition and geometry were 0.9737, 0.9984, 0.9745 and 0.9589, respectively. The optimum specific impulse of 127.89 s, pressure (462201 Pa, temperature (1618.3 K and thrust (834.83 N were obtained using 0.584 kg of sucrose, 1.364 kg of potassium nitrate and 0.052 kg of carbon as well as bate geometry. There was no significant difference between the calculated and experimented ballistic properties at p < 0.05. The bate grain geometry is more efficient for minimizing the oscillatory pressure in the combustion chamber.

  3. Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology.

    Science.gov (United States)

    Xue, Dong-Sheng; Chen, Hui-Yin; Lin, Dong-Qiang; Guan, Yi-Xin; Yao, Shan-Jing

    2012-08-01

    The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase.

  4. METHODOLOGICAL BASES OF THE OPTIMIZATION OF ORGANIZATIONAL MANAGEMENT STRUCTURE AT IMPLEMENTING THE MAJOR CONSTRUCTION ENTERPRISE STRATEGY

    Directory of Open Access Journals (Sweden)

    Rodionova Svetlana Vladimirovna

    2015-09-01

    Full Text Available Planning and implementation of innovations on the microlevel of management and on the higher levels is a process of innovative projects portfolio implementation. Project management is aimed at some goal; therefore, defining the mission and aims of implementation is of primary importance. These are the part of the notion of development strategy of an enterprise. Creating a strategy for big construction holding companies is complicated by the necessity to account for different factors effecting each business-block and subsidiary companies. The authors specify an algorithm of development and implementation of the activity strategy of a big construction enterprise. A special importance of the correspondence of organizational management structure to the implemented strategy is shown. The innovative character of organizational structure change is justified. The authors offer methods to optimize the organizational management structure based on communication approach with the use of the elements graph theory. The offered methodological provisions are tested on the example of the Russian JSC “RZhDstroy”.

  5. Numerical thermal analysis and optimization of multi-chip LED module using response surface methodology and genetic algorithm

    NARCIS (Netherlands)

    Tang, Hong Yu; Ye, Huai Yu; Chen, Xian Ping; Qian, Cheng; Fan, Xue Jun; Zhang, G.Q.

    2017-01-01

    In this paper, the heat transfer performance of the multi-chip (MC) LED module is investigated numerically by using a general analytical solution. The configuration of the module is optimized with genetic algorithm (GA) combined with a response surface methodology. The space between chips, the

  6. Optimization of a High Temperature PEMFC micro-CHP System by Formulation and Application of a Process Integration Methodology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2013-01-01

    A 1 kWe micro combined heat and power (CHP) system based on high temperature proton exchange membrane fuel cell (PEMFC) technology is modeled and optimized by formulation and application of a process integration methodology. The system can provide heat and electricity for a singlefamily household...

  7. A generic methodology for the optimisation of sewer systems using stochastic programming and self-optimizing control

    DEFF Research Database (Denmark)

    Maurico-Iglesias, Miguel; Castro, Ignacio Montero; Mollerup, Ane Loft

    2015-01-01

    . Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current......The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems...

  8. A generic methodology for the optimisation of sewer systems using stochastic programming and self-optimizing control.

    Science.gov (United States)

    Mauricio-Iglesias, Miguel; Montero-Castro, Ignacio; Mollerup, Ane L; Sin, Gürkan

    2015-05-15

    The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current rain event as well as the expected overflow given the probability of a future rain event. The methodology is successfully applied to design an optimising control strategy for a subcatchment area in Copenhagen. The results are promising and expected to contribute to the advance of the operation and control problem of sewer systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. [Optimization of enzymatic extraction of polysaccharide from Dendrobium officinale by box-Behnken design and response surface methodology].

    Science.gov (United States)

    Hu, Jian-mei; Li, Jing-ling; Feng, Peng; Zhang, Xiang-dong; Zhong, Ming

    2014-01-01

    To optimize the processing of enzymatic extraction of polysaccharide from Dendrobium officinale. With phenol-sulfuric acid method and the DNS determination polysaccharide, Box-Behnken response surface methodology was used to optimize different enzyme dosage, reaction temperature and reaction time by using Design-Expert 8.05 software for data analysis and processing. According to Box-Behnken response, the best extraction conditions for the polysaccharide from Dendrobium officinale were as follows: the amount of enzyme complex was 3.5 mg/mL, hydrolysis temperature was 53 degrees C, and reaction time was 70 min. In accordance with the above process, the polysaccharide yield was 16.11%. Box-Behnken response surface methodology is used to optimize the enzymatic extraction process for the polysaccharide in this study, which is effective, stable and feasible.

  10. [Optimization of Polysaccharide Extraction from Spirodela polyrrhiza by Plackett-Burman Design Combined with Box-Behnken Response Surface Methodology].

    Science.gov (United States)

    Jiang, Zheng; Wang, Hong; Wu, Qi-nan

    2015-06-01

    To optimize the processing of polysaccharide extraction from Spirodela polyrrhiza. Five factors related to extraction rate of polysaccharide were optimized by the Plackett-Burman design. Based on this study, three factors, including alcohol volume fraction, extraction temperature and ratio of material to liquid, were regarded as investigation factors by Box-Behnken response surface methodology. The effect order of three factors on the extraction rate of polysaccharide from Spirodela polyrrhiza were as follows: extraction temperature, alcohol volume fraction,ratio of material to liquid. According to Box-Behnken response, the best extraction conditions were: alcohol volume fraction of 81%, ratio of material to liquid of 1:42, extraction temperature of 100 degrees C, extraction time of 60 min for four times. Plackett-Burman design and Box-Behnken response surface methodology used to optimize the extraction process for the polysaccharide in this study is effective and stable.

  11. Clarification of Pharmaceutical Wastewater with Moringa Oleifera: Optimization Through Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Iva Rustanti Eri

    2018-05-01

    Full Text Available Herbal pharmaceutical industrial wastewater contains a high amount of suspended solids and alkaline (pH > 8; therefore it requires approprite coagulant and flocculant compounds for its wastewater treatment. The most widely used flocculant is a synthetic that has certain problems such as non-biodegradability and releases of toxic residual monomers. The use of eco-friendly flocculants as alternative materials for conventional flocculant in water and wastewater treatments is increasing. Numerous factors influence the performance of coagulation-flocculation process, such as coagulant dosage, flocculant dosage, initial potential of hydrogen (pH and velocity gradient of coagulation-flocculation. The main aim of this research is to evaluate the capability and effectiveness of Moringa oleifera extract for removal of suspended solid in herbal pharmaceutical industry. A coagulation-flocculation test was done by performing jar test at various speeds, according to the variation of the conducted treatment research. In this study, response surface methodology (RSM approach was used to optimize the concentration of coagulant dosage, flocculant dosage and flocculation velocity gradient (G, and the results were measured as maximum percentage of suspended solid removal. The wastewater used in this research originally came from the inlet of herbal pharmaceutical industry wastewater treatment plant, which was collected over 3 days. The wastewater has a total suspended solids of more than 1250 mg/L, and was alkaline (pH 9-10. The moringa extract was made from the extraction of a fat free moringa powder with a salt solution in a certain ratio. The percentage removal of suspended solid was 93.42-99.54%. The final results of the analysis of response surface showed that the variables of flocculant dosage and the flocculation velocity gradient (G have a huge impact on the amount of suspended solid removal, compared with the coagulant dosage. The model generated from the

  12. Incorporating a constrained optimization algorithm into remote sensing/precision agriculture methodology

    Science.gov (United States)

    Moreenthaler, George W.; Khatib, Nader; Kim, Byoungsoo

    2003-08-01

    For two decades now, the use of Remote Sensing/Precision Agriculture to improve farm yields while reducing the use of polluting chemicals and the limited water supply has been a major goal. With world population growing exponentially, arable land being consumed by urbanization, and an unfavorable farm economy, farm efficiency must increase to meet future food requirements and to make farming a sustainable, profitable occupation. "Precision Agriculture" refers to a farming methodology that applies nutrients and moisture only where and when they are needed in the field. The real goal is to increase farm profitability by identifying the additional treatments of chemicals and water that increase revenues more than they increase costs and do no exceed pollution standards (constrained optimization). Even though the economic and environmental benefits appear to be great, Remote Sensing/Precision Agriculture has not grown as rapidly as early advocates envisioned. Technology for a successful Remote Sensing/Precision Agriculture system is now in place, but other needed factors have been missing. Commercial satellite systems can now image the Earth (multi-spectrally) with a resolution as fine as 2.5 m. Precision variable dispensing systems using GPS are now available and affordable. Crop models that predict yield as a function of soil, chemical, and irrigation parameter levels have been developed. Personal computers and internet access are now in place in most farm homes and can provide a mechanism for periodically disseminating advice on what quantities of water and chemicals are needed in specific regions of each field. Several processes have been selected that fuse the disparate sources of information on the current and historic states of the crop and soil, and the remaining resource levels available, with the critical decisions that farmers are required to make. These are done in a way that is easy for the farmer to understand and profitable to implement. A "Constrained

  13. Research on optimization design of conformal cooling channels in hot stamping tool based on response surface methodology and multi-objective optimization

    Directory of Open Access Journals (Sweden)

    He Bin

    2016-01-01

    Full Text Available In order to optimize the layout of the conformal cooling channels in hot stamping tools, a response surface methodology and multi-objective optimization technique are proposed. By means of an Optimal Latin Hypercube experimental design method, a design matrix with 17 factors and 50 levels is generated. Three kinds of design variables, the radius Rad of the cooling channel, the distance H from the channel center to tool work surface and the ratio rat of each channel center, are optimized to determine the layout of cooling channels. The average temperature and temperature deviation of work surface are used to evaluate the cooling performance of hot stamping tools. On the basis of the experimental design results, quadratic response surface models are established to describe the relationship between the design variables and the evaluation objectives. The error analysis is performed to ensure the accuracy of response surface models. Then the layout of the conformal cooling channels is optimized in accordance with a multi-objective optimization method to find the Pareto optimal frontier which consists of some optimal combinations of design variables that can lead to an acceptable cooling performance.

  14. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology.

    Science.gov (United States)

    Pandit, Priti R; Fulekar, M H

    2017-08-01

    Worldwide consumption of hen eggs results in availability of large amount of discarded egg waste particularly egg shells. In the present study, the waste shells were utilized for the synthesis of highly active heterogeneous calcium oxide (CaO) nanocatalyst to transesterify dry biomass into methyl esters (biodiesel). The CaO nanocatalyst was synthesied by calcination-hydration-dehydration technique and fully characterized by infrared spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), brunauer-emmett-teller (BET) elemental and thermogravimetric analysis. TEM image showed that the nano catalyst had spherical shape with average particle size of 75 nm. BET analysis indicated that the catalyst specific surface area was 16.4 m 2  g -1 with average pore diameter of 5.07 nm. The effect of nano CaO catalyst was investigated by direct transesterification of dry biomass into biodiesel along with other reaction parameters such as catalyst ratio, reaction time and stirring rate. The impact of the transesterification reaction parameters and microalgal biodiesel yield were analyzed by response surface methodology based on a full factorial, central composite design. The significance of the predicted mode was verified and 86.41% microalgal biodiesel yield was reported at optimal parameter conditions 1.7% (w/w), catalyst ratio, 3.6 h reaction time and stirring rate of 140.6 rpm. The biodiesel conversion was determined by 1 H nuclear magnetic resonance spectroscopy (NMR). The fuel properties of prepared biodiesel were found to be highly comply with the biodiesel standard ASTMD6751 and EN14214. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    Science.gov (United States)

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  16. A New Methodology to Select the Preferred Solutions from the Pareto-optimal Set: Application to Polymer Extrusion

    International Nuclear Information System (INIS)

    Ferreira, Jose C.; Gaspar-Cunha, Antonio; Fonseca, Carlos M.

    2007-01-01

    Most of the real world optimization problems involve multiple, usually conflicting, optimization criteria. Generating Pareto optimal solutions plays an important role in multi-objective optimization, and the problem is considered to be solved when the Pareto optimal set is found, i.e., the set of non-dominated solutions. Multi-Objective Evolutionary Algorithms based on the principle of Pareto optimality are designed to produce the complete set of non-dominated solutions. However, this is not allays enough since the aim is not only to know the Pareto set but, also, to obtain one solution from this Pareto set. Thus, the definition of a methodology able to select a single solution from the set of non-dominated solutions (or a region of the Pareto frontier), and taking into account the preferences of a Decision Maker (DM), is necessary. A different method, based on a weighted stress function, is proposed. It is able to integrate the user's preferences in order to find the best region of the Pareto frontier accordingly with these preferences. This method was tested on some benchmark test problems, with two and three criteria, and on a polymer extrusion problem. This methodology is able to select efficiently the best Pareto-frontier region for the specified relative importance of the criteria

  17. Optimizing the bulk copolymerization of D,L-lactide and glycolide by response surface methodology

    Directory of Open Access Journals (Sweden)

    J. F. Rodriguez

    2013-11-01

    Full Text Available Poly(D,L-lactide-co-glycolide, PLGA, is a biodegradable polyester with high interest in medical industry, especially when zinc (II 2-ethylhexanoate (ZnOct2 is used as catalyst substitute in polymerization processes as a substitute of the toxic tin (II 2-ethylhexanoate (SnOct2 together an initiator such as methanol to improve the reaction rate. This article shows the optimization of the bulk copolymerization method by using a factorial design approach on three experimental parameters: temperature (T, molar ratio monomers/catalyst (MC ratio and molar ratio initiator/catalyst (IC ratio. Their influence on mass conversion (X and number-average molecular weight (Mn was also discussed. Also it provides a useful tool to select in a fast way the proper experimental conditions for the obtaining of this polymer as a previous stage in the synthesis and impregnation of biodegradable scaffolds. This analysis revealed that the most relevant variable in the process is the temperature, being desirable to use the high value (160ºC in order to obtain high values of conversion and molecular weight.

  18. A Review of Methodological Approaches for the Design and Optimization of Wind Farms

    Directory of Open Access Journals (Sweden)

    José F. Herbert-Acero

    2014-10-01

    Full Text Available This article presents a review of the state of the art of the Wind Farm Design and Optimization (WFDO problem. The WFDO problem refers to a set of advanced planning actions needed to extremize the performance of wind farms, which may be composed of a few individual Wind Turbines (WTs up to thousands of WTs. The WFDO problem has been investigated in different scenarios, with substantial differences in main objectives, modelling assumptions, constraints, and numerical solution methods. The aim of this paper is: (1 to present an exhaustive survey of the literature covering the full span of the subject, an analysis of the state-of-the-art models describing the performance of wind farms as well as its extensions, and the numerical approaches used to solve the problem; (2 to provide an overview of the available knowledge and recent progress in the application of such strategies to real onshore and offshore wind farms; and (3 to propose a comprehensive agenda for future research.

  19. The Use of Response Surface Methodology to Optimize the Ultrasound-Assisted Extraction of Five Anthraquinones from Rheum palmatum L.

    Directory of Open Access Journals (Sweden)

    Xianghua Xia

    2011-07-01

    Full Text Available In this paper, ultrasound-assisted extraction (UAE was applied to the extraction of anthraquinones (aloe-emodin, rhein, emodin, chrysophanol and physcion from Rheum palmatum L. The five anthraquinones were quantified and analyzed by high performance liquid chromatography coupled with UV detection (HPLC-UV. The extraction solvent, extraction temperature and extraction time parameters, the three main factors for UAE, were optimized with response surface methodology (RSM to obtain the highest extraction efficiency. The optimal conditions were the use of 84% methanol as solvent, an extraction time of 33 min and an extraction temperature of 67 °C. Under these optimal conditions, the experimental values agreed closely with the predicted values. The analysis of variance indicated a high goodness of model fit and the success of RSM method for optimizing anthraquinones extraction in Rheum palmatum L.

  20. On the application of artificial bee colony (ABC algorithm for optimization of well placements in fractured reservoirs; efficiency comparison with the particle swarm optimization (PSO methodology

    Directory of Open Access Journals (Sweden)

    Behzad Nozohour-leilabady

    2016-03-01

    Full Text Available The application of a recent optimization technique, the artificial bee colony (ABC, was investigated in the context of finding the optimal well locations. The ABC performance was compared with the corresponding results from the particle swarm optimization (PSO algorithm, under essentially similar conditions. Treatment of out-of-boundary solution vectors was accomplished via the Periodic boundary condition (PBC, which presumably accelerates convergence towards the global optimum. Stochastic searches were initiated from several random staring points, to minimize starting-point dependency in the established results. The optimizations were aimed at maximizing the Net Present Value (NPV objective function over the considered oilfield production durations. To deal with the issue of reservoir heterogeneity, random permeability was applied via normal/uniform distribution functions. In addition, the issue of increased number of optimization parameters was address, by considering scenarios with multiple injector and producer wells, and cases with deviated wells in a real reservoir model. The typical results prove ABC to excel PSO (in the cases studied after relatively short optimization cycles, indicating the great premise of ABC methodology to be used for well-optimization purposes.

  1. Information System Design Methodology Based on PERT/CPM Networking and Optimization Techniques.

    Science.gov (United States)

    Bose, Anindya

    The dissertation attempts to demonstrate that the program evaluation and review technique (PERT)/Critical Path Method (CPM) or some modified version thereof can be developed into an information system design methodology. The methodology utilizes PERT/CPM which isolates the basic functional units of a system and sets them in a dynamic time/cost…

  2. A Methodology for the Optimization of Flow Rate Injection to Looped Water Distribution Networks through Multiple Pumping Stations

    Directory of Open Access Journals (Sweden)

    Christian León-Celi

    2016-12-01

    Full Text Available The optimal function of a water distribution network is reached when the consumer demands are satisfied using the lowest quantity of energy, maintaining the minimal pressure required at the same time. One way to achieve this is through optimization of flow rate injection based on the use of the setpoint curve concept. In order to obtain that, a methodology is proposed. It allows for the assessment of the flow rate and pressure head that each pumping station has to provide for the proper functioning of the network while the minimum power consumption is kept. The methodology can be addressed in two ways: the discrete method and the continuous method. In the first method, a finite set of combinations is evaluated between pumping stations. In the continuous method, the search for the optimal solution is performed using optimization algorithms. In this paper, Hooke–Jeeves and Nelder–Mead algorithms are used. Both the hydraulics and the objective function used by the optimization are solved through EPANET and its Toolkit. Two case studies are evaluated, and the results of the application of the different methods are discussed.

  3. Optimization of ultrasonic assisted extraction of antioxidants from black soybean (Glycine max var) sprouts using response surface methodology.

    Science.gov (United States)

    Lai, Jixiang; Xin, Can; Zhao, Ya; Feng, Bing; He, Congfen; Dong, Yinmao; Fang, Yun; Wei, Shaomin

    2013-01-16

    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of antioxidants from black soybean (Glycine max var) sprouts. Three influencing factors: liquid-solid ratio, period of ultrasonic assisted extraction and extraction temperature were investigated in the ultrasonic aqueous extraction. Then Response Surface Methodology (RSM) was applied to optimize the extraction process focused on DPPH radical-scavenging capacity of the antioxidants with respect to the above influencing factors. The best combination of each significant factor was determined by RSM design and optimum pretreatment conditions for maximum radical-scavenging capacity were established to be liquid-solid ratio of 29.19:1, extraction time of 32.13 min, and extraction temperature of 30 °C. Under these conditions, 67.60% of DPPH radical-scavenging capacity was observed experimentally, similar to the theoretical prediction of 66.36%.

  4. METHODOLOGY FOR DETERMINING THE OPTIMAL CLEANING PERIOD OF HEAT EXCHANGERS BY USING THE CRITERIA OF MINIMUM COST

    Directory of Open Access Journals (Sweden)

    Yanileisy Rodríguez Calderón

    2015-04-01

    Full Text Available One of the most serious problems of the Process Industry is that when planning the maintenance of the heat exchangers is not applied the methodologies based on economic criteria to optimize periods of cleaning surfaces resulting in additional costs for the company and for the country. This work develops and proposes a methodical based on the criterion of Minimum Cost for determining the optimal cleaning period. It is given an example of application of this method to the case of intercoolers of a centrifugal compressor with a high fouling level.It occurs this because is used sea water with many microorganisms as cooling agent which severely embeds transfer surfaces of side water. The methodology employed can be generalized to other applications.

  5. Chemical Flooding in Heavy-Oil Reservoirs: From Technical Investigation to Optimization Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Si Le Van

    2016-09-01

    rather than using a water slug in between. The results of the pre-evaluation show that two sequences of the ASP group have the highest NPV corresponding to the dissimilar applied oil prices. In the post-evaluation, the successful use of response surface methodology (RSM in the estimation and optimization procedures with coefficients of determination R2 greater than 0.97 shows that the project can possibly gain 4.47 $MM at a mean oil price of 46.5 $/bbl with the field scale of a quarter five-spot pattern. Further, with the novel assumption of normal distribution for the oil price variation, the chemical flooding sequence of concurrent alkali-surfactant-polymer injection with a buffering polymer solution is evaluated as the most feasible scheme owing to the achievement of the highest NPV at the highly possible oil price of 40–55 $/bbl compared to the other scheme.

  6. Development of Geometry Optimization Methodology with In-house CFD code, and Challenge in Applying to Fuel Assembly

    International Nuclear Information System (INIS)

    Jeong, J. H.; Lee, K. L.

    2016-01-01

    The wire spacer has important roles to avoid collisions between adjacent rods, to mitigate a vortex induced vibration, and to enhance convective heat transfer by wire spacer induced secondary flow. Many experimental and numerical works has been conducted to understand the thermal-hydraulics of the wire-wrapped fuel bundles. There has been enormous growth in computing capability. Recently, a huge increase of computer power allows to three-dimensional simulation of thermal-hydraulics of wire-wrapped fuel bundles. In this study, the geometry optimization methodology with RANS based in-house CFD (Computational Fluid Dynamics) code has been successfully developed in air condition. In order to apply the developed methodology to fuel assembly, GGI (General Grid Interface) function is developed for in-house CFD code. Furthermore, three-dimensional flow fields calculated with in-house CFD code are compared with those calculated with general purpose commercial CFD solver, CFX. The geometry optimization methodology with RANS based in-house CFD code has been successfully developed in air condition. In order to apply the developed methodology to fuel assembly, GGI function is developed for in-house CFD code as same as CFX. Even though both analyses are conducted with same computational meshes, numerical error due to GGI function locally occurred in only CFX solver around rod surface and boundary region between inner fluid region and outer fluid region.

  7. A generic methodology for the design of sustainable carbon dioxide utilization processes using superstructure optimization

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Gani, Rafiqul

    , including as an extractive agent or raw material. Chemical conversion, an important element of utilization, involves the use of carbon dioxide as a reactant in the production of chemical compounds [2]. However, for feasible implementation, a systematic methodology is needed for the design of the utilization......, especially chemical conversion, processes. To achieve this, a generic methodology has been developed, which adopts a three-stage approach consisting in (i) process synthesis, (ii) process design, and (iii) innovative and sustainable design [3]. This methodology, with the individual steps and associated...... methods and tools, has been developed and applied to carbon dioxide utilization networks. This work will focus on the first stage, process synthesis, of this three-stage methodology; process synthesis is important in determining the appropriate processing route to produce products from a selection...

  8. Optimization on Preparation Condition of Propolis Flavonoids Liposome by Response Surface Methodology and Research of Its Immunoenhancement Activity

    Directory of Open Access Journals (Sweden)

    Ju Yuan

    2013-01-01

    Full Text Available The aim of this study is to prepare propolis flavonoids liposome (PFL and optimize the preparation condition and to investigate further whether liposome could promote the immunoenhancement activity of propolis flavonoids (PF. PFL was prepared with ethanol injection method, and the preparation conditions of PFL were optimized with response surface methodology (RSM. Moreover, the immunoenhancement activity of PFL and PF in vitro was determined. The result showed that the optimal preparation conditions for PFL by response surface methodology were as follows: ratio of lipid to drug (w/w 9.6 : 1, ratio of soybean phospholipid to cholesterol (w/w 8.5 : 1, and speed of injection 0.8 mL·min−1. Under these conditions, the experimental encapsulation efficiency of PFL was 91.67 ± 0.21%, which was close to the predicted value. Therefore, the optimized preparation condition is very reliable. Moreover, the results indicated that PFL could not only significantly promote lymphocytes proliferation singly or synergistically with PHA, but also increase expression level of IL-2 and IFN-γ mRNA. These indicated that liposome could significantly improve the immunoenhancement activity of PF. PFL demonstrates the significant immunoenhancement activity, which provides the theoretical basis for the further experiment in vivo.

  9. Optimization of the production of extracellular α-amylase by Kluyveromyces marxianus IF0 0288 by response surface methodology

    Directory of Open Access Journals (Sweden)

    Panagiota-Yiolanda Stergiou

    2014-06-01

    Full Text Available The aim of this work was to study the production of extracellular α-amylase by Kluyveromyces marxianus IF0 0288 using optimized nutritional and cultural conditions in a complex yeast medium under aerobic batch fermentation. By applying the conventional "one-variable-at-a-time" approach and the response surface methodology, the effect of four fermentation parameters (type of carbon source, initial culture pH, temperature, and incubation time on the growth and α-amylase production was evaluated. The production of α-amylase during 60 h of fermentation increased 13-fold under optimized conditions (1% starch, pH 6.0, 30ºC in comparison to the conventional optimization method. The initial pH value of 6.13 and temperature of 30.3ºC were optimal conditions by the response surface methodology, leading to further improvement (up to 13-fold in the production of extracellular α-amylase. These results constituted first evidence that K. marxianus could be potentially used as an effective source of extracellular α-amylase.

  10. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology.

    Science.gov (United States)

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20-60°C), time (20-40 min) and power (200-350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. The results of quantification showed that the guava leaves are the potential source of antioxidant compounds.

  11. Statistical Optimization of the Induction of Phytase Production by Arabinose in a recombinant E. coli using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Abd-El Aziem Farouk

    2017-11-01

    Full Text Available The production of phytase in a recombinant E.coli using the pBAD expression  system was optimized using response surface methodology with full-factorial faced centered central composite design. The ampicilin and arabinose concentration in the cultivation media and the incubation temperature were optimized in order to maximize phytase production using 2 3  central composite experimental design. With this design the number of actual experiment performed could be reduced while allowing eludidation of possible interactions among these factors. The most significant parameter was shown to be the linear and quadratic effect of the incubation temperature.  Optimal conditions for phytase production were determined to be 100 µg/ml ampicilin, 0.2 % arabinose and an incubation temperature of 37ºC. The production of phytase in the recombinant E. coli was scaled up to 100 ml and 1000 ml.

  12. Cost optimal building performance requirements. Calculation methodology for reporting on national energy performance requirements on the basis of cost optimality within the framework of the EPBD

    Energy Technology Data Exchange (ETDEWEB)

    Boermans, T.; Bettgenhaeuser, K.; Hermelink, A.; Schimschar, S. [Ecofys, Utrecht (Netherlands)

    2011-05-15

    On the European level, the principles for the requirements for the energy performance of buildings are set by the Energy Performance of Buildings Directive (EPBD). Dating from December 2002, the EPBD has set a common framework from which the individual Member States in the EU developed or adapted their individual national regulations. The EPBD in 2008 and 2009 underwent a recast procedure, with final political agreement having been reached in November 2009. The new Directive was then formally adopted on May 19, 2010. Among other clarifications and new provisions, the EPBD recast introduces a benchmarking mechanism for national energy performance requirements for the purpose of determining cost-optimal levels to be used by Member States for comparing and setting these requirements. The previous EPBD set out a general framework to assess the energy performance of buildings and required Member States to define maximum values for energy delivered to meet the energy demand associated with the standardised use of the building. However it did not contain requirements or guidance related to the ambition level of such requirements. As a consequence, building regulations in the various Member States have been developed by the use of different approaches (influenced by different building traditions, political processes and individual market conditions) and resulted in different ambition levels where in many cases cost optimality principles could justify higher ambitions. The EPBD recast now requests that Member States shall ensure that minimum energy performance requirements for buildings are set 'with a view to achieving cost-optimal levels'. The cost optimum level shall be calculated in accordance with a comparative methodology. The objective of this report is to contribute to the ongoing discussion in Europe around the details of such a methodology by describing possible details on how to calculate cost optimal levels and pointing towards important factors and

  13. Research Article Special Issue

    African Journals Online (AJOL)

    pc

    2018-02-01

    Feb 1, 2018 ... The main goal of this article is to analyze methodological issues in .... methodology and theory and historiology (theory of historic process) whose goal is to .... internal branches of sociology and interdisciplinary links of ...

  14. Determination of Optimal Parameters for Diffusion Bonding of Semi-Solid Casting Aluminium Alloy by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kaewploy Somsak

    2015-01-01

    Full Text Available Liquid state welding techniques available are prone to gas porosity problems. To avoid this solid state bonding is usually an alternative of preference. Among solid state bonding techniques, diffusion bonding is often employed in aluminium alloy automotive parts welding in order to enhance their mechanical properties. However, there has been no standard procedure nor has there been any definitive criterion for judicious welding parameters setting. It is thus a matter of importance to find the set of optimal parameters for effective diffusion bonding. This work proposes the use of response surface methodology in determining such a set of optimal parameters. Response surface methodology is more efficient in dealing with complex process compared with other techniques available. There are two variations of response surface methodology. The one adopted in this work is the central composite design approach. This is because when the initial upper and lower bounds of the desired parameters are exceeded the central composite design approach is still capable of yielding the optimal values of the parameters that appear to be out of the initially preset range. Results from the experiments show that the pressing pressure and the holding time affect the tensile strength of jointing. The data obtained from the experiment fits well to a quadratic equation with high coefficient of determination (R2 = 94.21%. It is found that the optimal parameters in the process of jointing semi-solid casting aluminium alloy by using diffusion bonding are the pressing pressure of 2.06 MPa and 214 minutes of the holding time in order to achieve the highest tensile strength of 142.65 MPa

  15. Mixed oxidizer hybrid propulsion system optimization under uncertainty using applied response surface methodology and Monte Carlo simulation

    Science.gov (United States)

    Whitehead, James Joshua

    The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in

  16. Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellations

    Science.gov (United States)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2017-01-01

    Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel.

  17. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty-A pulp mill example

    International Nuclear Information System (INIS)

    Svensson, Elin; Berntsson, Thore; Stroemberg, Ann-Brith

    2009-01-01

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO 2 emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, (doi:10.1016/j.enpol.2008.10.023)] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO 2 emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives

  18. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty-A pulp mill example

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Elin [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)], E-mail: elin.svensson@chalmers.se; Berntsson, Thore [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Stroemberg, Ann-Brith [Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg (Sweden)

    2009-03-15

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO{sub 2} emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, (doi:10.1016/j.enpol.2008.10.023)] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO{sub 2} emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives.

  19. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty. A pulp mill example

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Elin; Berntsson, Thore [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Stroemberg, Ann-Brith [Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg (Sweden)

    2009-03-15

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO{sub 2} emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, doi:10.1016/j.enpol.2008.10.023] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO{sub 2} emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives. (author)

  20. SWANS: A Prototypic SCALE Criticality Sequence for Automated Optimization Using the SWAN Methodology

    International Nuclear Information System (INIS)

    Greenspan, E.

    2001-01-01

    SWANS is a new prototypic analysis sequence that provides an intelligent, semi-automatic search for the maximum k eff of a given amount of specified fissile material, or of the minimum critical mass. It combines the optimization strategy of the SWAN code with the composition-dependent resonance self-shielded cross sections of the SCALE package. For a given system composition arrived at during the iterative optimization process, the value of k eff is as accurate and reliable as obtained using the CSAS1X Sequence of SCALE-4.4. This report describes how SWAN is integrated within the SCALE system to form the new prototypic optimization sequence, describes the optimization procedure, provides a user guide for SWANS, and illustrates its application to five different types of problems. In addition, the report illustrates that resonance self-shielding might have a significant effect on the maximum k eff value a given fissile material mass can have

  1. OPTIMIZATION AND CHARACTERIZATION OF 5-FLUOROURACIL TRANSETHOSOMES FOR SKIN CANCER THERAPY USING RESPONSE SURFACE METHODOLOGY.

    OpenAIRE

    Jessy Shaji; Rinki Bajaj.

    2018-01-01

    The purpose of the present study was to develop, optimize and characterize 5-Fluorouracil transethosomes for skin cancer targeting. 5- Fluorouracil transethosomes were prepared by cold method using phospholipon 90G as the lipid and sodium cholate as edge activator. The size reduction was done by probe sonication. Central composite design was used for optimization procedure with different concentration of phospholipon 90G and sodium cholate as independent variables. The response variables sele...

  2. Optimization of lysine production in Corynebacteriumglutamicum ATCC15032 by Response surface methodology

    Directory of Open Access Journals (Sweden)

    Mehrnaz Haghi

    2017-03-01

    Discussion and conclusion: According to the results, the proposed culture media by response surface methodology causes 1400 times increase in the lysine production compared with M9 culture media and methionine had an important role in the production of lysine, probably by inhibiting the other metabolic pathway which has common metabolic precursor with lysine production metabolic pathway.

  3. CSA C873 Building Energy Estimation Methodology - A simplified monthly calculation for quick building optimization

    NARCIS (Netherlands)

    Legault, A.; Scott, L.; Rosemann, A.L.P.; Hopkins, M.

    2014-01-01

    CSA C873 Building Energy Estimation Methodology (BEEM) is a new series of (10) standards that is intended to simplify building energy calculations. The standard is based upon the German DIN Standard 18599 that has 8 years of proven track record and has been modified for the Canadian market. The BEEM

  4. A Comparative Analysis of Taguchi Methodology and Shainin System DoE in the Optimization of Injection Molding Process Parameters

    Science.gov (United States)

    Khavekar, Rajendra; Vasudevan, Hari, Dr.; Modi, Bhavik

    2017-08-01

    Two well-known Design of Experiments (DoE) methodologies, such as Taguchi Methods (TM) and Shainin Systems (SS) are compared and analyzed in this study through their implementation in a plastic injection molding unit. Experiments were performed at a perfume bottle cap manufacturing company (made by acrylic material) using TM and SS to find out the root cause of defects and to optimize the process parameters for minimum rejection. Experiments obtained the rejection rate to be 8.57% from 40% (appx.) during trial runs, which is quiet low, representing successful implementation of these DoE methods. The comparison showed that both methodologies gave same set of variables as critical for defect reduction, but with change in their significance order. Also, Taguchi methods require more number of experiments and consume more time compared to the Shainin System. Shainin system is less complicated and is easy to implement, whereas Taguchi methods is statistically more reliable for optimization of process parameters. Finally, experimentations implied that DoE methods are strong and reliable in implementation, as organizations attempt to improve the quality through optimization.

  5. Optimization of the Medium for the Production of Cellulase by the Mutant Trichoderma reesei WX-112 Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Xue-Cai Hao

    2006-01-01

    Full Text Available The mutant strain Trichoderma reesei WX-112 with high cellulase activity was isolated by a newly invented plate. The mutant’s ability to produce cellulase increased 1.95 times after the treatment with UV and N-methyl-N’-nitro-N-nitrosoguanidine (MNNG. Also, the medium composition was optimized using response surface methodology (RSM. A fractional factorial design (26–2 was applied to elucidate the medium components that significantly affect cellulase production. The concentration of Avicel and soybean cake flour in the medium were significant factors. The steepest ascent method was used to locate the optimal domain and a central composite design was used to estimate the quadratic response surface from which the factor levels for maximum production of cellulase were determined. The composition of fermentation medium optimized with response surface methodology was (in g/L: wheat bran 30, Avicel 36.4, soybean cake flour 24.7, KH2PO4 4 and corn steep flour 5. Compared to the original medium, the cellulase activity increased from 7.2 to 10.6 IU/mL.

  6. Optimization of fermentation conditions for 1,3-propanediol production by marine Klebsiella pneumonia HSL4 using response surface methodology

    Science.gov (United States)

    Li, Lili; Zhou, Sheng; Ji, Huasong; Gao, Ren; Qin, Qiwei

    2014-09-01

    The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was followed to determine and optimize fermentation conditions for the maximum production of 1,3-PDO using marine-derived Klebsiella pneumoniae HSL4. Four nutritional supplements together with three independent culture conditions were optimized as follows: 29.3 g/L glycerol, 8.0 g/L K2 HPO4, 7.6 g/L (NH4)2 SO4, 3.0 g/L KH2 PO4, pH 7.1, cultivation at 35°C for 12 h. Under the optimal conditions, a maximum 1,3-PDO concentration of 14.5 g/L, a productivity of 1.21 g/(L·h) and a conversion of glycerol of 0.49 g/g were obtained. In comparison with the control conditions, fermentation under the optimized conditions achieved an increase of 38.8% in 1,3-PDO concentration, 39.0% in productivity and 25.7% in glycerol conversion in flask. This enhancement trend was further confirmed when the fermentation was conducted in a 5-L fermentor. The optimized fermentation conditions could be an important basis for developing lowcost, large-scale methods for industrial production of 1,3-PDO in the future.

  7. A logical approach to optimize the nanostructured lipid carrier system of irinotecan: efficient hybrid design methodology

    International Nuclear Information System (INIS)

    Negi, Lalit Mohan; Talegaonkar, Sushama; Jaggi, Manu

    2013-01-01

    Development of an effective formulation involves careful optimization of a number of excipient and process variables. Sometimes the number of variables is so large that even the most efficient optimization designs require a very large number of trials which put stress on costs as well as time. A creative combination of a number of design methods leads to a smaller number of trials. This study was aimed at the development of nanostructured lipid carriers (NLCs) by using a combination of different optimization methods. A total of 11 variables were first screened using the Plackett–Burman design for their effects on formulation characteristics like size and entrapment efficiency. Four out of 11 variables were found to have insignificant effects on the formulation parameters and hence were screened out. Out of the remaining seven variables, four (concentration of tween-80, lecithin, sodium taurocholate, and total lipid) were found to have significant effects on the size of the particles while the other three (phase ratio, drug to lipid ratio, and sonication time) had a higher influence on the entrapment efficiency. The first four variables were optimized for their effect on size using the Taguchi L9 orthogonal array. The optimized values of the surfactants and lipids were kept constant for the next stage, where the sonication time, phase ratio, and drug:lipid ratio were varied using the Box–Behnken design response surface method to optimize the entrapment efficiency. Finally, by performing only 38 trials, we have optimized 11 variables for the development of NLCs with a size of 143.52 ± 1.2 nm, zeta potential of −32.6 ± 0.54 mV, and 98.22 ± 2.06% entrapment efficiency. (paper)

  8. Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants - response surface methodology approach.

    Science.gov (United States)

    Zeković, Zoran; Vladić, Jelena; Vidović, Senka; Adamović, Dušan; Pavlić, Branimir

    2016-10-01

    Microwave-assisted extraction (MAE) of polyphenols from coriander seeds was optimized by simultaneous maximization of total phenolic (TP) and total flavonoid (TF) yields, as well as maximized antioxidant activity determined by 1,1-diphenyl-2-picrylhydrazyl and reducing power assays. Box-Behnken experimental design with response surface methodology (RSM) was used for optimization of MAE. Extraction time (X1 , 15-35 min), ethanol concentration (X2 , 50-90% w/w) and irradiation power (X3 , 400-800 W) were investigated as independent variables. Experimentally obtained values of investigated responses were fitted to a second-order polynomial model, and multiple regression analysis and analysis of variance were used to determine fitness of the model and optimal conditions. The optimal MAE conditions for simultaneous maximization of polyphenol yield and increased antioxidant activity were an extraction time of 19 min, an ethanol concentration of 63% and an irradiation power of 570 W, while predicted values of TP, TF, IC50 and EC50 at optimal MAE conditions were 311.23 mg gallic acid equivalent per 100 g dry weight (DW), 213.66 mg catechin equivalent per 100 g DW, 0.0315 mg mL(-1) and 0.1311 mg mL(-1) respectively. RSM was successfully used for multi-response optimization of coriander seed polyphenols. Comparison of optimized MAE with conventional extraction techniques confirmed that MAE provides significantly higher polyphenol yields and extracts with increased antioxidant activity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Optimizing the Entrainment Geometry of a Dry Powder Inhaler: Methodology and Preliminary Results.

    Science.gov (United States)

    Kopsch, Thomas; Murnane, Darragh; Symons, Digby

    2016-11-01

    For passive dry powder inhalers (DPIs) entrainment and emission of the aerosolized drug dose depends strongly on device geometry and the patient's inhalation manoeuvre. We propose a computational method for optimizing the entrainment part of a DPI. The approach assumes that the pulmonary delivery location of aerosol can be determined by the timing of dose emission into the tidal airstream. An optimization algorithm was used to iteratively perform computational fluid dynamic (CFD) simulations of the drug emission of a DPI. The algorithm seeks to improve performance by changing the device geometry. Objectives were to achieve drug emission that was: A) independent of inhalation manoeuvre; B) similar to a target profile. The simulations used complete inhalation flow-rate profiles generated dependent on the device resistance. The CFD solver was OpenFOAM with drug/air flow simulated by the Eulerian-Eulerian method. To demonstrate the method, a 2D geometry was optimized for inhalation independence (comparing two breath profiles) and an early-bolus delivery. Entrainment was both shear-driven and gas-assisted. Optimization for a delay in the bolus delivery was not possible with the chosen geometry. Computational optimization of a DPI geometry for most similar drug delivery has been accomplished for an example entrainment geometry.

  10. Response surface methodology for the optimization of sludge solubilization by ultrasonic pre-treatment

    Science.gov (United States)

    Zheng, Mingyue; Zhang, Xiaohui; Lu, Peng; Cao, Qiguang; Yuan, Yuan; Yue, Mingxing; Fu, Yiwei; Wu, Libin

    2018-02-01

    The present study examines the optimization of the ultrasonic pre-treatment conditions with response surface experimental design in terms of sludge disintegration efficiency (solubilisation of organic components). Ultrasonic pre-treatment for the maximum solubilization with residual sludge enhanced the SCOD release. Optimization of the ultrasonic pre-treatment was conducted through a Box-Behnken design (three variables, a total of 17 experiments) to determine the effects of three independent variables (power, residence time and TS) on COD solubilization of sludge. The optimal COD was obtained at 17349.4mg/L, when the power was 534.67W, the time was 10.77, and TS was 2%, while the SE of this condition was 28792J/kg TS.

  11. Optimizing the conditions for hydrothermal liquefaction of barley straw for bio-crude oil production using response surface methodology

    DEFF Research Database (Denmark)

    Zhu, Zhe; Rosendahl, Lasse Aistrup; Toor, Saqib Sohail

    2018-01-01

    The present paper examines the conversion of barley straw to bio-crude oil (BO) via hydrothermal liquefaction. Response surface methodology based on central composite design was utilized to optimize the conditions of four independent variables including reaction temperature (factor X1, 260-340 oC...... phenols and their derivatives, acids, aromatic hydrocarbon, ketones, N-contained compounds and alcohols, which makes it a promising material in the applications of either bio-fuel or as a phenol substitute in bio-phenolic resins....

  12. Application of Response Surface Methodology (RSM for Optimization of Operating Parameters and Performance Evaluation of Cooling Tower Cold Water Temperature

    Directory of Open Access Journals (Sweden)

    Ramkumar RAMAKRISHNAN

    2012-01-01

    Full Text Available The performance of a cooling tower was analyzed with various operating parameters tofind the minimum cold water temperature. In this study, optimization of operating parameters wasinvestigated. An experimental design was carried out based on central composite design (CCD withresponse surface methodology (RSM. This paper presents optimum operating parameters and theminimum cold water temperature using the RSM method. The RSM was used to evaluate the effectsof operating variables and their interaction towards the attainment of their optimum conditions.Based on the analysis, air flow, hot water temperature and packing height were high significanteffect on cold water temperature. The optimum operating parameters were predicted using the RSMmethod and confirmed through experiment.

  13. Production of specifically structured lipids by enzymatic interesterification in a pilot enzyme bed reactor: process optimization by response surface methodology

    DEFF Research Database (Denmark)

    Xu, Xuebing; Mu, Huiling; Høy, Carl-Erik

    1999-01-01

    Pilot production of specifically structured lipids by Lipozyme IM-catalyzed interesterification was carried out in a continuous enzyme bed reactor without the use of solvent. Medium chain triacylglycerols and oleic acid were used as model substrates. Response surface methodology was applied...... and the production of mono-incorporated and di-incorporated structured lipids with multiple regression and backward elimination. The coefficient of determination (R2) for the incorporation was 0.93, and that for the di-incorporated products was 0.94. The optimal conditions were flow rate, 2 ml/min; temperature, 65...

  14. Use of biolog methodology for optimizing the degradation of hydrocarbons by bacterial consortia.

    Science.gov (United States)

    Ambrosoli, R; Bardi, L; Minati, J L; Belviso, S; Ricci, R; Marzona, M

    2003-01-01

    Biolog methodology was used for the preliminary screening of different cultural conditions in order to detect the best combination/s of factors influencing the metabolic performance of bacterial consortia active in the degradation of hydrocarbons. Two microbial consortia were tested for their activity on 2 hydrocarbons (nonadecane and eicosane) in presence of the following cultural coadjuvants: vegetal oil, beta-cyclodextrine, sodium acetate, mineral solution. Tests were conducted in Biolog MT plates, where only the redox indicator of microbial growth (tetrazolium violet) and no carbon sources are provided. The microwells were filled with various combinations of hydrocarbons, microbial inoculum and coadjuvants. Blanks were prepared with the same combinations but without hydrocarbons. The results obtained show the suitability of the methodology developed to identify the most active consortium and the conditions for its best degradation performance. The efficacy of Biolog methodology (Biolog Inc., USA) for the characterization of microbial communities on the basis of the metabolic profiles obtained on specific carbon sources in the microwells of Elisa-type plates, is widely acknowledged (Garland, 1997; Pietikäinen et al., 2000; Dauber and Wolters, 2000). Due to its aptitude to simultaneously evaluate multiple microbial responses and directly organize the results, it can be adapted to meet specific study purposes (Gamo and Shji, 1999). In the present research Biolog methodology was fitted for the preliminary screening of different cultural conditions, in order to detect the best combination/s of factors influencing the metabolic performance of bacterial consortia active in the degradation of aliphatic hydrocarbons, in view of their utilization for the bioremediation of polluted sites.

  15. In search for an optimal methodology to calculate the valence electron affinities of temporary anions.

    Science.gov (United States)

    Puiatti, Marcelo; Vera, D Mariano A; Pierini, Adriana B

    2009-10-28

    Recently, we have proposed an approach for finding the valence anion ground state, based on the stabilization exerted by a polar solvent; the methodology used standard DFT methods and relatively inexpensive basis sets and yielded correct electron affinity (EA) values by gradually decreasing the dielectric constant of the medium. In order to address the overall performance of the new methodology, to find the best conditions for stabilizing the valence state and to evaluate its scope and limitations, we gathered a pool of 60 molecules, 25 of them bearing the conventional valence state as the ground anion and 35 for which the lowest anion state found holds the extra electron in a diffuse orbital around the molecule (non valence state). The results obtained by testing this representative set suggest a very good performance for most species having an experimental EA less negative than -3.0 eV; the correlation at the B3LYP/6-311+G(2df,p) level being y = 1.01x + 0.06, with a correlation index of 0.985. As an alternative, the time dependent DFT (TD-DFT) approach was also tested with both B3LYP and PBE0 functionals. The methodology we proposed shows a comparable or better accuracy with respect to TD-DFT, although the TD-DFT approach with the PBE0 functional is suggested as a suitable estimate for species with the most negative EAs (ca.-2.5 to -3.5 eV), for which stabilization strategies can hardly reach the valence state. As an application, a pool of 8 compounds of key biological interest with EAs which remain unknown or unclear were predicted using the new methodology.

  16. Development of a Pattern Recognition Methodology for Determining Operationally Optimal Heat Balance Instrumentation Calibration Schedules

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Beran; John Christenson; Dragos Nica; Kenny Gross

    2002-12-15

    The goal of the project is to enable plant operators to detect with high sensitivity and reliability the onset of decalibration drifts in all of the instrumentation used as input to the reactor heat balance calculations. To achieve this objective, the collaborators developed and implemented at DBNPS an extension of the Multivariate State Estimation Technique (MSET) pattern recognition methodology pioneered by ANAL. The extension was implemented during the second phase of the project and fully achieved the project goal.

  17. Numerical Optimization of Impeller for Backward-Curved Centrifugal Fan by Response Surface Methodology (RSM)

    OpenAIRE

    Fannian Meng; Quanlin Dong; Yan Wang; Pengfei Wang; Chunxi Zhang

    2013-01-01

    A numerical optimum study on three-dimensional unsteady viscous flow in a centrifugal fan with backward-curved blades was performed. The influence of the inlet angle, the outlet blade angle and blade number on aerodynamic performance of the centrifugal fan was analyzed concerning the whole impeller-volute configuration. Response Surface Methodology (RSM) based on a three-level, three -variable Box-Behnken Design (BBD) was used to evaluate the interactive effects of factors such as inlet blade...

  18. Lead optimization attrition analysis (LOAA): a novel and general methodology for medicinal chemistry.

    Science.gov (United States)

    Munson, Mark; Lieberman, Harvey; Tserlin, Elina; Rocnik, Jennifer; Ge, Jie; Fitzgerald, Maria; Patel, Vinod; Garcia-Echeverria, Carlos

    2015-08-01

    Herein, we report a novel and general method, lead optimization attrition analysis (LOAA), to benchmark two distinct small-molecule lead series using a relatively unbiased, simple technique and commercially available software. We illustrate this approach with data collected during lead optimization of two independent oncology programs as a case study. Easily generated graphics and attrition curves enabled us to calibrate progress and support go/no go decisions on each program. We believe that this data-driven technique could be used broadly by medicinal chemists and management to guide strategic decisions during drug discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A methodology for finding the optimal iteration number of the SIRT algorithm for quantitative Electron Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Okariz, Ana, E-mail: ana.okariz@ehu.es [eMERG, Fisika Aplikatua I Saila, Faculty of Engineering, University of the Basque Country, UPV/EHU, Rafael Moreno “Pitxitxi” Pasealekua 3, 48013 Bilbao (Spain); Guraya, Teresa [eMERG, Departamento de Ingeniería Minera y Metalúrgica y Ciencia de los Materiales, Faculty of Engineering, University of the Basque Country, UPV/EHU, Rafael Moreno “Pitxitxi” Pasealekua 3, 48013 Bilbao (Spain); Iturrondobeitia, Maider [eMERG, Departamento de Expresión Gráfica y Proyectos de Ingeniería, Faculty of Engineering, University of the Basque Country, UPV/EHU, Rafael Moreno “Pitxitxi” Pasealekua 3, 48013 Bilbao (Spain); Ibarretxe, Julen [eMERG, Fisika Aplikatua I Saila, Faculty of Engineering,University of the Basque Country, UPV/EHU, Rafael Moreno “Pitxitxi” Pasealekua 2, 48013 Bilbao (Spain)

    2017-02-15

    The SIRT (Simultaneous Iterative Reconstruction Technique) algorithm is commonly used in Electron Tomography to calculate the original volume of the sample from noisy images, but the results provided by this iterative procedure are strongly dependent on the specific implementation of the algorithm, as well as on the number of iterations employed for the reconstruction. In this work, a methodology for selecting the iteration number of the SIRT reconstruction that provides the most accurate segmentation is proposed. The methodology is based on the statistical analysis of the intensity profiles at the edge of the objects in the reconstructed volume. A phantom which resembles a a carbon black aggregate has been created to validate the methodology and the SIRT implementations of two free software packages (TOMOJ and TOMO3D) have been used. - Highlights: • The non uniformity of the resolution in electron tomography reconstructions has been demonstrated. • An overall resolution for the evaluation of the quality of electron tomography reconstructions has been defined. • Parameters for estimating an overall resolution across the reconstructed volume have been proposed. • The overall resolution of the reconstructions of a phantom has been estimated from the probability density functions. • It has been proven that reconstructions with the best overall resolutions have provided the most accurate segmentations.

  20. A methodology for finding the optimal iteration number of the SIRT algorithm for quantitative Electron Tomography

    International Nuclear Information System (INIS)

    Okariz, Ana; Guraya, Teresa; Iturrondobeitia, Maider; Ibarretxe, Julen

    2017-01-01

    The SIRT (Simultaneous Iterative Reconstruction Technique) algorithm is commonly used in Electron Tomography to calculate the original volume of the sample from noisy images, but the results provided by this iterative procedure are strongly dependent on the specific implementation of the algorithm, as well as on the number of iterations employed for the reconstruction. In this work, a methodology for selecting the iteration number of the SIRT reconstruction that provides the most accurate segmentation is proposed. The methodology is based on the statistical analysis of the intensity profiles at the edge of the objects in the reconstructed volume. A phantom which resembles a a carbon black aggregate has been created to validate the methodology and the SIRT implementations of two free software packages (TOMOJ and TOMO3D) have been used. - Highlights: • The non uniformity of the resolution in electron tomography reconstructions has been demonstrated. • An overall resolution for the evaluation of the quality of electron tomography reconstructions has been defined. • Parameters for estimating an overall resolution across the reconstructed volume have been proposed. • The overall resolution of the reconstructions of a phantom has been estimated from the probability density functions. • It has been proven that reconstructions with the best overall resolutions have provided the most accurate segmentations.

  1. Optimization of the Extraction of Antioxidants and Caffeine from Maté (Ilex paraguariensis Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Vanessa Graciela Hartwig

    2013-04-01

    Full Text Available Optimal conditions for the industrial extraction of total polyphenols from maté (Ilex paraguariensis were determined using response surface methodology, with two independent variables: ethanol percentage of the extraction solution and liquid to solid ratio. Response variables were total polyphenol content, antioxidant capacity, concentration of total polyphenols and caffeine content. The optimal conditions found were a liquid to solid ratio from 8 - 9 w w-1 and ethanol percentage of the extraction solution from 30 -50 % w w-1. Under these conditions the main predicted values corresponding to leaf extracts were 40 μg chlorogenic acid equivalents mL-1 of original extract, 13 g chlorogenic acid equivalents per 100 g dry matter for total polyphenol content, 22 g Trolox equivalents and 15.5 g ascorbic acid equivalents per 100 g dry matter for antioxidant capacity. The total polyphenol content of twig extracts was 36% lower than that in the leaf extracts.

  2. An effective vacuum assisted extraction method for the optimization of labdane diterpenoids from Andrographis paniculata by response surface methodology.

    Science.gov (United States)

    Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming

    2014-12-31

    An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  3. Synthesis of structured triacylglycerols containing caproic acid by lipase-catalyzed acidolysis: Optimization by response surface methodology

    DEFF Research Database (Denmark)

    Zhou, D.Q.; Xu, Xuebing; Mu, Huiling

    2001-01-01

    Production in a batch reactor with a solvent-free system of structured triacylglycerols containing short-chain fatty acids by Lipozyme RM IM-catalyzed acidolysis between rapeseed oil and caproic acid was optimized using response surface methodology (RSM). Reaction time (t(r)), substrate ratio (S......-r = 2-6 mol/mol; and W-c = 2-12 wt %. The biocatalyst was Lipozyme RM IM, in which Rhizomucor miehei lipase is immobilized on a resin. The incorporation of caproic acid into rapeseed oil was the main monitoring response. In addition, the contents of mono-incorporated structured triacylglycerols and di......-incorporated structured triacylglycerols were also evaluated. The optimal reaction conditions for the incorporation of caproic acid and the content of di-incorporated structured triacylglycerols were as follows: t(r) = 17 h; 8, = 5; E-1 = 14 wt %; W-c = 10 wt %; T-e = 65 degreesC. At these conditions, products with 55...

  4. An Effective Vacuum Assisted Extraction Method for the Optimization of Labdane Diterpenoids from Andrographis paniculata by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ya-Qi Wang

    2014-12-01

    Full Text Available An effective vacuum assisted extraction (VAE technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM. Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  5. Production of Heat Sensitive Monoacylglycerols by Enzymatic Glycerolysis in Tert-pentanol: Process Optimization by Response Surface Methodology

    DEFF Research Database (Denmark)

    Damstrup, Marianne L.; Jensen, Tine; Sparsø, Flemming V.

    2006-01-01

    The aim of this study was to optimize production of MAG by lipase-catalyzed glycerolysis in a tert-pentanol system. Twenty-nine batch reactions consisting of glycerol, sunflower oil, tert-pentanol, and commercially available lipase (Novozym®435) were carried out, with four process parameters being...... varied: Enzyme load, reaction time, substrate ratio of glycerol to oil, and solvent amount. Response surface methodology was applied to optimize the reaction system based on the experimental data achieved. MAG, DAG, and TAG contents, measured after a selected reaction time, were used as model responses....... Well-fitting quadratic models were obtained for MAG, DAG, and TAG contents as a function of the process parameters with determination coefficients (R2) of 0.89, 0.88, and 0.92, respectively. Of the main effects examined, only enzyme load and reaction time significantly influenced MAG, DAG, and TAG...

  6. Optimization methodology for large scale fin geometry on the steel containment of a Public Acceptable Simple SMR (PASS)

    International Nuclear Information System (INIS)

    Kim, Do Yun; NO, Hee Cheon; Kim, Ho Sik

    2015-01-01

    Highlights: • Optimization methodology for fin geometry on the steel containment is established. • Optimum spacing is 7 cm in PASS containment. • Optimum thickness is 0.9–1.8 cm when a fin height is 10–25 cm. • Optimal fin geometry is determined in given fin height by overall effectiveness correlation. • 13% of material volume and 43% of containment volume are reduced by using fins. - Abstracts: Heat removal capability through a steel containment is important in accident situations to preserve the integrity of a nuclear power plant which adopts a steel containment concept. A heat transfer rate will be enhanced by using fins on the external surface of the steel containment. The fins, however, cause to increase flow resistance and to deteriorate the heat transfer rate at the same time. Therefore, this study investigates an optimization methodology of large scale fin geometry for a vertical base where a natural convection flow regime is turbulent. Rectangular plate fins adopted in the steel containment of a Public Acceptable Simple SMR (PASS) is used as a reference. The heat transfer rate through the fins is obtained from CFD tools. In order to optimize fin geometry, an overall effectiveness concept is introduced as a fin performance parameter. The optimizing procedure is starting from finding optimum spacing. Then, optimum thickness is calculated and finally optimal fin geometry is suggested. Scale analysis is conducted to show the existence of an optimum spacing which turns out to be 7 cm in case of PASS. Optimum thickness is obtained by the overall effectiveness correlation, which is derived from a total heat transfer coefficient correlation. The total heat transfer coefficient correlation of a vertical fin array is suggested considering both of natural convection and radiation. However, the optimum thickness is changed as a fin height varies. Therefore, optimal fin geometry is obtained as a function of a fin height. With the assumption that the heat

  7. Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology

    International Nuclear Information System (INIS)

    Dharma, S.; Masjuki, H.H.; Ong, Hwai Chyuan; Sebayang, A.H.; Silitonga, A.S.; Kusumo, F.; Mahlia, T.M.I.

    2016-01-01

    Highlights: • Jatropha curcas and Ceiba pentandra are potential feedstock for biodiesel. • Optimization of biodiesel production by response surface methodology. • Jatropha curcas–Ceiba pentandra mixed biodiesel yield was 93.33%. • The properties of mixed biodiesel fulfill ASTM (D6751) standard. - Abstract: Exploring and improvement of biodiesel production from non-edible vegetable oil is one of the effective ways to solve limited amount of traditional raw materials and their high prices. The main objective of this study is to optimize the biodiesel production process parameters (methanol-to-oil ratio, agitation speed and concentration of the potassium hydroxide catalyst) of a biodiesel derived from non-edible feedstocks, namely Jatropha curcas and Ceiba pentandra, using response surface methodology based on Box–Behnken experimental design. Based on the results, the optimum operating parameters for transesterification of the J50C50 oil mixture at 60 °C over a period of 2 h are as follows: methanol-to-oil ratio: 30%, agitation speed: 1300 rpm and catalyst concentration: 0.5 wt.%. These optimum operating parameters gives the highest yield for the J50C50 biodiesel with a value of 93.33%. The results show that there is a significant improvement in the physicochemical properties of the J50C50 biodiesel after optimization, whereby the kinematic viscosity at 40 °C, density at 15 °C, calorific value, acid value and oxidation stability is 3.950 mm"2/s, 831.2 kg/m"3, 40.929 MJ/kg, 0.025 mg KOH/g and 10.01 h, respectively. The physicochemical properties of the optimized J50C50 biodiesel fulfill the requirements given in the ASTM (D6751) and (EN14214) standards.

  8. The Response Surface Methodology speeds up the search for optimal parameters in the photoinactivation of E. coli by Photodynamic Therapy.

    Science.gov (United States)

    Amaral, Larissa S; Azevedo, Eduardo B; Perussi, Janice R

    2018-02-27

    Antimicrobial Photodynamic Inactivation (a-PDI) is based on the oxidative destruction of biological molecules by reactive oxygen species generated by the photo-excitation of a photosensitive molecule. When the a-PDT is performed along with the use of mathematical models, the optimal conditions for maximum inactivation are easily found. Experimental designs allow a multivariate analysis of the experimental parameters. This is usually made using a univariate approach, which demands a large number of experiments, being time and money consuming. This paper presents the use of the response surface methodology for improving the search for the best conditions to reduce E. coli survival levels by a-PDT using methylene blue (MB) and toluidine blue (TB) as photosensitizers and white light. The goal was achieved by analyzing the effects and interactions of the three main parameters involved in the process: incubation time (IT), photosensitizer concentration (C PS ), and light dose (LD). The optimization procedure began with a full 2 3 factorial design, followed by a central composite one, in which the optimal conditions were estimated. For MB, C PS was the most important parameter followed by LD and IT whereas, for TB, the main parameter was LD followed by C PS and IT. Using the estimated optimal conditions for inactivation, MB was able to inactivate 99.999999% CFU mL -1 of E. coli with IT of 28 min, LD of 31 J cm -2 , and C PS of 32 μmol L -1 , while TB required 18 min, 39 J cm -2 , and 37 μmol L -1 . The feasibility of using the response surface methodology with a-PDT was demonstrated, enabling enhanced photoinactivation efficiency and fast results with a minimal number of experiments. Copyright © 2018. Published by Elsevier B.V.

  9. Optimization of dyeing wool fibers procedure with Isatis tinctoria by Response Surface Methodology

    NARCIS (Netherlands)

    Barani, H.; Nasiriboroumand, Majid; Haji, A.; Kazemipour, M.

    2012-01-01

    The response surface method (RMS) was used to optimize the color strength (K/S) of the wool fibers dyed with Isatis tinctoria. The eight independent variable terms, in which two of them are categorical and the other six numerical, were selected at two levels (low and high). The ANOVA test results of

  10. SWANS: A Prototypic SCALE Criticality Sequence for Automated Optimization Using the SWAN Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, E.

    2001-01-11

    SWANS is a new prototypic analysis sequence that provides an intelligent, semi-automatic search for the maximum k{sub eff} of a given amount of specified fissile material, or of the minimum critical mass. It combines the optimization strategy of the SWAN code with the composition-dependent resonance self-shielded cross sections of the SCALE package. For a given system composition arrived at during the iterative optimization process, the value of k{sub eff} is as accurate and reliable as obtained using the CSAS1X Sequence of SCALE-4.4. This report describes how SWAN is integrated within the SCALE system to form the new prototypic optimization sequence, describes the optimization procedure, provides a user guide for SWANS, and illustrates its application to five different types of problems. In addition, the report illustrates that resonance self-shielding might have a significant effect on the maximum k{sub eff} value a given fissile material mass can have.

  11. Optimization of MR fluid Yield stress using Taguchi Method and Response Surface Methodology Techniques

    Science.gov (United States)

    Mangal, S. K.; Sharma, Vivek

    2018-02-01

    Magneto rheological fluids belong to a class of smart materials whose rheological characteristics such as yield stress, viscosity etc. changes in the presence of applied magnetic field. In this paper, optimization of MR fluid constituents is obtained with on-state yield stress as response parameter. For this, 18 samples of MR fluids are prepared using L-18 Orthogonal Array. These samples are experimentally tested on a developed & fabricated electromagnet setup. It has been found that the yield stress of MR fluid mainly depends on the volume fraction of the iron particles and type of carrier fluid used in it. The optimal combination of the input parameters for the fluid are found to be as Mineral oil with a volume percentage of 67%, iron powder of 300 mesh size with a volume percentage of 32%, oleic acid with a volume percentage of 0.5% and tetra-methyl-ammonium-hydroxide with a volume percentage of 0.7%. This optimal combination of input parameters has given the on-state yield stress as 48.197 kPa numerically. An experimental confirmation test on the optimized MR fluid sample has been then carried out and the response parameter thus obtained has found matching quite well (less than 1% error) with the numerically obtained values.

  12. Design and statistical optimization of glipizide loaded lipospheres using response surface methodology.

    Science.gov (United States)

    Shivakumar, Hagalavadi Nanjappa; Patel, Pragnesh Bharat; Desai, Bapusaheb Gangadhar; Ashok, Purnima; Arulmozhi, Sinnathambi

    2007-09-01

    A 32 factorial design was employed to produce glipizide lipospheres by the emulsification phase separation technique using paraffin wax and stearic acid as retardants. The effect of critical formulation variables, namely levels of paraffin wax (X1) and proportion of stearic acid in the wax (X2) on geometric mean diameter (dg), percent encapsulation efficiency (% EE), release at the end of 12 h (rel12) and time taken for 50% of drug release (t50), were evaluated using the F-test. Mathematical models containing only the significant terms were generated for each response parameter using the multiple linear regression analysis (MLRA) and analysis of variance (ANOVA). Both formulation variables studied exerted a significant influence (p optimization using the desirability approach was employed to develop an optimized formulation by setting constraints on the dependent and independent variables. The experimental values of dg, % EE, rel12 and t50 values for the optimized formulation were found to be 57.54 +/- 1.38 mum, 86.28 +/- 1.32%, 77.23 +/- 2.78% and 5.60 +/- 0.32 h, respectively, which were in close agreement with those predicted by the mathematical models. The drug release from lipospheres followed first-order kinetics and was characterized by the Higuchi diffusion model. The optimized liposphere formulation developed was found to produce sustained anti-diabetic activity following oral administration in rats.

  13. Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Wan Daud, W.M.A.; Sahu, J.N.

    2011-01-01

    In this work palm shell waste was pyrolyzed to produces bio-oil. The effects of several parameters on the pyrolysis efficiency were tested to identify the optimal bio-oil production conditions. The tested parameters include temperature, N 2 flow rate, feed-stock particle size, and reaction time. The experiments were conducted using a fix-bed reactor. The efficient response surface methodology (RSM), with a central composite design (CCD), were used for modeling and optimization the process parameters. The results showed that the second-order polynomial equation explains adequately the non-linear nature of the modeled response. An R 2 value of 0.9337 indicates a sufficient adjustment of the model with the experimental data. The optimal conditions found to be at the temperature of 500 o C, N 2 flow rate of 2 L/min, particle size of 2 mm and reaction time of 60 min and yield of bio-oil was approximately obtained 46.4 wt %. In addition, Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) were used to characterize the gained bio-oil under the optimum condition. -- Highlights: → The RSM, with a CCD, was used for modeling and optimization for bio-oil synthesis. → The obtained model explains adequately the non-linear nature. → An R 2 value of 0.9337 ensures a sufficient adjustment of the model. → It explains the importance of the experimental factors, their interactions.

  14. Optimization of Goat Milk with ACE Inhibitory Peptides Fermented by Lactobacillus bulgaricus LB6 Using Response Surface Methodology.

    Science.gov (United States)

    Shu, Guowei; Shi, Xiaoyu; Chen, He; Ji, Zhe; Meng, Jiangpeng

    2017-11-21

    In the present study, the incubation conditions of goat milk fermented by Lactobacillus bulgaricus LB6 were optimized to increase the angiotensin converting enzyme (ACE, EC 3.4.15.1) inhibitory activity by Box-Behnken design of response surface methodology. Incubation temperature, whey powder, and calcium lactate had significant effects on ACE inhibition rate and viable counts of LB6 during incubation. The results showed that optimal conditions of fermentation were found to be 37.05 °C, 0.8% ( w / w ) whey powder and 0.50% ( w / w ) calcium lactate. ACE inhibition rate increased significantly from 71.04 ± 0.37% to 83.31 ± 0.45% and the viable counts of Lactobacillus bulgaricus LB6 reached to 8.03 × 10⁷ cfu·mL -1 under the optimal conditions, which approached the predicted values 83.25% and 8.04 × 10⁷ cfu·mL -1 . The optimal fermentation conditions can be a good reference for preparing ACE inhibitory peptides from goat milk.

  15. Optimization of Goat Milk with ACE Inhibitory Peptides Fermented by Lactobacillus bulgaricus LB6 Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Guowei Shu

    2017-11-01

    Full Text Available In the present study, the incubation conditions of goat milk fermented by Lactobacillus bulgaricus LB6 were optimized to increase the angiotensin converting enzyme (ACE, EC 3.4.15.1 inhibitory activity by Box–Behnken design of response surface methodology. Incubation temperature, whey powder, and calcium lactate had significant effects on ACE inhibition rate and viable counts of LB6 during incubation. The results showed that optimal conditions of fermentation were found to be 37.05 °C, 0.8% (w/w whey powder and 0.50% (w/w calcium lactate. ACE inhibition rate increased significantly from 71.04 ± 0.37% to 83.31 ± 0.45% and the viable counts of Lactobacillus bulgaricus LB6 reached to 8.03 × 107 cfu·mL−1 under the optimal conditions, which approached the predicted values 83.25% and 8.04 × 107 cfu·mL−1. The optimal fermentation conditions can be a good reference for preparing ACE inhibitory peptides from goat milk.

  16. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM).

    Science.gov (United States)

    Belwal, Tarun; Dhyani, Praveen; Bhatt, Indra D; Rawal, Ranbeer Singh; Pande, Veena

    2016-09-15

    This study for the first time designed to optimize the extraction of phenolic compounds and antioxidant potential of Berberis asiatica fruits using response surface methodology (RSM). Solvent selection was done based on the preliminary experiments and a five-factors-three-level, Central Composite Design (CCD). Extraction temperature (X1), sample to solvent ratio (X3) and solvent concentration (X5) significantly affect response variables. The quadratic model well fitted for all the responses. Under optimal extraction conditions, the dried fruit sample mixed with 80% methanol having 3.0 pH in a ratio of 1:50 and the mixture was heated at 80 °C for 30 min; the measured parameters was found in accordance with the predicted values. High Performance Liquid Chromatography (HPLC) analysis at optimized condition reveals 6 phenolic compounds. The results suggest that optimization of the extraction conditions is critical for accurate quantification of phenolics and antioxidants in Berberis asiatica fruits, which may further be utilized for industrial extraction procedure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF Juice Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Muhamad Nasrah Nur Syazana

    2017-01-01

    Full Text Available The interaction between incubation temperature, yeast extract concentration and inoculum size was investigated to optimize critical environmental parameters for production of biobutanol from oil palm frond (OPF juice by Clostridium acetobutylicum ATCC 824 using response surface methodology (RSM. A central composite design (CCD was applied as the experimental design and a polynomial regression model with quadratic term was used to analyse the experimental data using analysis of variance (ANOVA. ANOVA analysis showed that the model was very significant (p < 0.0001 for the biobutanol production. The incubation temperature, yeast extract concentration and inoculum size showed significant value at p < 0.005. The results of optimization process showed that a maximum biobutanol production was obtained under the condition of temperature 37 °C, yeast extract concentration 5.5 g/L and inoculum size 10%. Under these optimized conditions, the highest biobutanol yield was 0.3054 g/g after 144 hours of incubation period. The model was validated by applying the optimized conditions and 0.2992 g/g biobutanol yield was obtained. These experimental findings were in close agreement with the model prediction, with a difference of only 9.76%.

  18. Optimization of enzymatic hydrolysis of guar gum using response surface methodology

    OpenAIRE

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B. S.

    2012-01-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3–7), temperature (20–60 °C), reaction time (1–5 h) and cellulase concentration (0.25–1.25 mg/g) on viscosity d...

  19. Optimization of methodology to analyze ascorbic and dehydroascorbic acid in vegetables

    Directory of Open Access Journals (Sweden)

    Flávia Milagres Campos

    2009-01-01

    Full Text Available In this study, different solutions to extract vitamin C were tested. High-performance liquid chromatography was chosen and the conditions were based on isocratic elution in reverse phase column. Dehydroascorbic acid was determined indirectly after its reduction using dithiothreitol. The use of metaphosphoric acid to stabilize the vitamin C was shown to be required and it was necessary to neutralize the pH of the extract to apply dithiothreitol. The average recovery was 90% in collard and tomato samples. The presence of oil did not interfere in extraction and the methodology can be used to analyze stir fried vegetables.

  20. Building an integrated methodology of learning that can optimally support improvements in healthcare.

    Science.gov (United States)

    Lynn, Joanne

    2011-04-01

    The methods for healthcare reform are strikingly underdeveloped, with much reliance on political power. A methodology that combined methods from sources such as clinical trials, experience-based wisdom, and improvement science could be among the aims of the upcoming work in the USA on comparative effectiveness and on the agenda of the Center for Medicare and Medicaid Innovation in the Centers for Medicare and Medicaid Services. Those working in quality improvement have an unusual opportunity to generate substantial input into these processes through professional organisations such as the Academy for Healthcare Improvement and dominant leadership organisations such as the Institute for Healthcare Improvement.

  1. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Economopoulou, M.A. [Hellenic Statistical Authority, Pireos 46 and Eponiton, Pireus 185 10 (Greece); Economopoulou, A.A. [Ministry of Environment, Energy and Climatic Change, 15 Amaliados Street, Athens 11523 (Greece); Economopoulos, A.P., E-mail: eco@otenet.gr [Environmental Engineering Dept., Technical University of Crete, Chania 73100 (Greece)

    2013-11-15

    Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/or wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to

  2. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece

    International Nuclear Information System (INIS)

    Economopoulou, M.A.; Economopoulou, A.A.; Economopoulos, A.P.

    2013-01-01

    Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/or wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to

  3. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ali [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Arkan, Elham [Nano Drug Delivery Research Center Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Hosseinzadeh, Leila [Novel Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Abdollahi, Hamid, E-mail: abd@iasbs.ac.ir [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2015-02-01

    Herein, a facile hydrothermal treatment of lime juice to prepare biocompatible nitrogen-doped carbon quantum dots (N-CQDs) in the presence of ammonium bicarbonate as a nitrogen source has been presented. The resulting N-CQDs exhibited excitation and pH independent emission behavior; with the quantum yield (QY) up to 40%, which was several times greater than the corresponding value for CQDs with no added nitrogen source. The N-CQDs were applied as a fluorescent probe for the sensitive and selective detection of Hg{sup 2+} ions with a detection limit of 14 nM. Moreover, the cellular uptake and cytotoxicity of N-CQDs at different concentration ranges from 0.0 to 0.8 mg/ml were investigated by using PC12 cells as a model system. Response surface methodology was used for optimization and systematic investigation of the main variables that influence the QY, including reaction time, reaction temperature, and ammonium bicarbonate weight. - Highlights: • High fluorescent N-doped CQDs from lime juice have been prepared. • Response surface methodology was used to optimize and model the main factors. • N-doped CQDs were used in the selective and sensitive detection of Hg(II). • The biocompatibility of prepared N-doped CQDs was conformed using PC12 cells.

  4. Determination of proline in honey: comparison between official methods, optimization and validation of the analytical methodology.

    Science.gov (United States)

    Truzzi, Cristina; Annibaldi, Anna; Illuminati, Silvia; Finale, Carolina; Scarponi, Giuseppe

    2014-05-01

    The study compares official spectrophotometric methods for the determination of proline content in honey - those of the International Honey Commission (IHC) and the Association of Official Analytical Chemists (AOAC) - with the original Ough method. Results show that the extra time-consuming treatment stages added by the IHC method with respect to the Ough method are pointless. We demonstrate that the AOACs method proves to be the best in terms of accuracy and time saving. The optimized waiting time for the absorbance recording is set at 35min from the removal of reaction tubes from the boiling bath used in the sample treatment. The optimized method was validated in the matrix: linearity up to 1800mgL(-1), limit of detection 20mgL(-1), limit of quantification 61mgL(-1). The method was applied to 43 unifloral honey samples from the Marche region, Italy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A methodological model to assist in the optimization and risk management of mining investment decisions

    International Nuclear Information System (INIS)

    Botin, Jose A; Guzman, Ronald R; Smith, Martin L

    2011-01-01

    Identifying, quantifying, and minimizing technical risks associated with investment decisions is a key challenge for mineral industry decision makers and investors. However, risk analysis in most bankable mine feasibility studies are based on the stochastic modeling of project N et Present Value (NPV)which, in most cases, fails to provide decision makers with a truly comprehensive analysis of risks associated with technical and management uncertainty and, as a result, are of little use for risk management and project optimization. This paper presents a value-chain risk management approach where project risk is evaluated for each step of the project life cycle, from exploration to mine closure, and risk management is performed as a part of a stepwise value-added optimization process.

  6. RESPONSE SURFACE METHODOLOGY FOR OPTIMIZATION OF THE EXTRACTION OF FLAX (LINUM USITATISSIMUM SEED OIL

    Directory of Open Access Journals (Sweden)

    Tibor Maliar

    2011-12-01

    Full Text Available Flax seed is an important source of ω-3 polyunsaturated fatty acids essential for human physiology. The aim of this paper is to investigate the effects of major parameters of the lipid extraction from flax seed, in relation to the recovery of oil as well as the oil quality properties. The independent variables of extraction were proposed as: organic solvents, temperature, extraction time and solid-liquid ratio. The following quantitative and qualitative parameters were chosen as dependent variables: yield of the lipid fraction, acid value of oil and the absorbance at 490 nm. After calculating the optimal values of the extraction, the validation analysis was carried out and it was found out that the predicted and experimentally verified dependent variables were in agreement with the optimal extraction parameters.doi:10.5219/168

  7. Optimization of Reactive Blue 21 removal by Nanoscale Zero-Valent Iron using response surface methodology

    Directory of Open Access Journals (Sweden)

    Mahmood Reza Sohrabi

    2016-07-01

    Full Text Available Since Reactive Blue 21 (RB21 is one of the dye compounds which is harmful to human life, a simple and sensitive method to remove this pollutant from wastewater is using Nano Zero-Valent Iron (NZVI catalyst. In this paper, a Central Composite Rotatable Design (CCRD was employed for response surface modeling to optimize experimental conditions of the RB21 removal from aqueous solution. The significance and adequacy of the model were analyzed using analysis of variance (ANOVA. Four independent variables—including catalyst amount (0.1–0.9 g, pH (3.5–9.5, removal time (30–150 s and dye concentration (10–50 mg/L—were transformed to coded values and consequently second order quadratic model was built to predict the responses. The result showed that under optimized experimental conditions the removal of RB21 was over 95%.

  8. Optimization-based methodology for wastewater treatment plant synthesis – a full scale retrofitting case study

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Gernaey, Krist; Sin, Gürkan

    2015-01-01

    Existing wastewater treatment plants (WWTP) need retrofitting in order to better handle changes in the wastewater flow and composition, reduce operational costs as well as meet newer and stricter regulatory standards on the effluent discharge limits. In this study, we use an optimization based...... technologies. The superstructure optimization problem is formulated as a Mixed Integer (non)Linear Programming problem and solved for different scenarios - represented by different objective functions and constraint definitions. A full-scale domestic wastewater treatment plant (265,000 PE) is used as a case...... framework to manage the multi-criteria WWTP design/retrofit problem for domestic wastewater treatment. The design space (i.e. alternative treatment technologies) is represented in a superstructure, which is coupled with a database containing data for both performance and economics of the novel alternative...

  9. The Optimal Time for Claiming Social Security Benefits: A Methodological Note

    OpenAIRE

    Joseph Friedman

    2014-01-01

    The optimal age for initiating Social Security benefits and the initiation versus postponement of benefits decision are the subjects of a number of recent papers. It is generally agreed that an initiation versus postponement of benefits decision may have significant consequences, but there is less agreement about how to model the problem or measure its financial implications. By law benefits are paid only to live beneficiaries. Thus, the anticipated future benefits should be weighted by the r...

  10. OPTIMIZATION OF HIBISCUS SABDARIFFA L. (ROSELLE) ANTHOCYANIN AQUEOUS-ETHANOL EXTRACTION PARAMETERS USING RESPONSE SURFACE METHODOLOGY

    OpenAIRE

    ANILÚ MIRANDA-MEDINA; PATRICIA M. HAYWARD-JONES; OCTAVIO CARVAJAL-ZARRABAL; LUZ DEL ALBA LADRÓN DE GUEVARA-VELA; YERIKC DAVID RAMÍREZ-VILLAGÓMEZ; DULCE M. BARRADAS-DERMITZ; GEORGINA LUNA-CARRILLO; MARÍA G. AGUILAR-USCANGA

    2018-01-01

    Anthocyanins along with protocatechuic acid and quercetin have been recognized as bioactive compounds in Hibiscus sabdariffa L. aqueous extracts. Characteristic anthocyanin absorption in the visible region makes their quantification possible without the interference of the other two compounds, and also can favor its potential application as an alternative to organic-based dye sensitized solar cell, in various forms. In order to optimize measurable factors linked to the extraction of these fla...

  11. Methodology optimizing SAGE library tag-to-gene mapping: application to Leishmania

    Directory of Open Access Journals (Sweden)

    Smandi Sondos

    2012-01-01

    Full Text Available Abstract Background Leishmaniasis are widespread parasitic-diseases with an urgent need for more active and less toxic drugs and for effective vaccines. Understanding the biology of the parasite especially in the context of host parasite interaction is a crucial step towards such improvements in therapy and control. Several experimental approaches including SAGE (Serial analysis of gene expression have been developed in order to investigate the parasite transcriptome organisation and plasticity. Usual SAGE tag-to-gene mapping techniques are inadequate because almost all tags are normally located in the 3'-UTR outside the CDS, whereas most information available for Leishmania transcripts is restricted to the CDS predictions. The aim of this work is to optimize a SAGE libraries tag-to-gene mapping technique and to show how this development improves the understanding of Leishmania transcriptome. Findings The in silico method implemented herein was based on mapping the tags to Leishmania genome using BLAST then mapping the tags to their gene using a data-driven probability distribution. This optimized tag-to-gene mappings improved the knowledge of Leishmania genome structure and transcription. It allowed analyzing the expression of a maximal number of Leishmania genes, the delimitation of the 3' UTR of 478 genes and the identification of biological processes that are differentially modulated during the promastigote to amastigote differentiation. Conclusion The developed method optimizes the assignment of SAGE tags in trypanosomatidae genomes as well as in any genome having polycistronic transcription and small intergenic regions.

  12. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Mushtaq, Z.; Adnan, A.; Mehmood, Z.

    2014-01-01

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  13. Optimization of the pharmaceutical care system for diabetes patients using modern pharmaceutical informatics methodology

    Directory of Open Access Journals (Sweden)

    Андрій Ігорович Бойко

    2016-04-01

    Full Text Available Aim. Implementation of pharmaceutical informatics methods in the system of pharmaceutical care for diabetes patients in Ukraine.Methods. System method was used for the analysis of status and reforming the pharmaceutical care for patients with diabetes; program-oriented management at informatization project realization; pharmaceutical informatics in the creation of computer pharmaceutical knowledge bases; methods of data synthesis and summarizing.Results. System analysis of the basic directions of reforming the pharmaceutical care for patients with diabetes in Ukraine was carried out. Ways of it’s of optimization were processed: establishment of specialized pharmacies with implementation of modern information technologies and special postgraduate education for pharmacists. Structure and information providing of computer knowledge base “Pharmaceutical care for patients with diabetes” was substantiated.Conclusion. Based on the regional project “Informatization of prescription antidiabetic drugs circulation in Ukraine” realization, the necessity of establishment of specialized pharmacies providing pharmaceutical care for patients with diabetes was substantiated. Ways for optimization of postgraduate education for pharmacists of the specialized pharmacies by implementation of special thematic improvement cycles were proceed. Computer knowledge base as an effective tool for optimization of pharmaceutical care for patients with diabetes was realized

  14. ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining

    Science.gov (United States)

    Chandrasekaran, Muthumari; Tamang, Santosh

    2017-08-01

    Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.

  15. Decision-making methodology of optimal shielding materials by using fuzzy linear programming

    International Nuclear Information System (INIS)

    Kanai, Y.; Miura, T.; Hirao, Y.

    2000-01-01

    The main purpose of our studies are to select materials and determine the ratio of constituent materials as the first stage of optimum shielding design to suit the individual requirements of nuclear reactors, reprocessing facilities, casks for shipping spent fuel, etc. The parameters of the shield optimization are cost, space, weight and some shielding properties such as activation rates or individual irradiation and cooling time, and total dose rate for neutrons (including secondary gamma ray) and for primary gamma ray. Using conventional two-valued logic (i.e. crisp) approaches, huge combination calculations are needed to identify suitable materials for optimum shielding design. Also, re-computation is required for minor changes, as the approach does not react sensitively to the computation result. Present approach using a fuzzy linear programming method is much of the decision-making toward the satisfying solution might take place in fuzzy environment. And it can quickly and easily provide a guiding principle of optimal selection of shielding materials under the above-mentioned conditions. The possibility or reducing radiation effects by optimizing the ratio of constituent materials is investigated. (author)

  16. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks.

    Science.gov (United States)

    Hosseini, Marjan; Kerachian, Reza

    2017-09-01

    This paper presents a new methodology for analyzing the spatiotemporal variability of water table levels and redesigning a groundwater level monitoring network (GLMN) using the Bayesian Maximum Entropy (BME) technique and a multi-criteria decision-making approach based on ordered weighted averaging (OWA). The spatial sampling is determined using a hexagonal gridding pattern and a new method, which is proposed to assign a removal priority number to each pre-existing station. To design temporal sampling, a new approach is also applied to consider uncertainty caused by lack of information. In this approach, different time lag values are tested by regarding another source of information, which is simulation result of a numerical groundwater flow model. Furthermore, to incorporate the existing uncertainties in available monitoring data, the flexibility of the BME interpolation technique is taken into account in applying soft data and improving the accuracy of the calculations. To examine the methodology, it is applied to the Dehgolan plain in northwestern Iran. Based on the results, a configuration of 33 monitoring stations for a regular hexagonal grid of side length 3600 m is proposed, in which the time lag between samples is equal to 5 weeks. Since the variance estimation errors of the BME method are almost identical for redesigned and existing networks, the redesigned monitoring network is more cost-effective and efficient than the existing monitoring network with 52 stations and monthly sampling frequency.

  17. DATA MINING METHODOLOGY FOR DETERMINING THE OPTIMAL MODEL OF COST PREDICTION IN SHIP INTERIM PRODUCT ASSEMBLY

    Directory of Open Access Journals (Sweden)

    Damir Kolich

    2016-03-01

    Full Text Available In order to accurately predict costs of the thousands of interim products that are assembled in shipyards, it is necessary to use skilled engineers to develop detailed Gantt charts for each interim product separately which takes many hours. It is helpful to develop a prediction tool to estimate the cost of interim products accurately and quickly without the need for skilled engineers. This will drive down shipyard costs and improve competitiveness. Data mining is used extensively for developing prediction models in other industries. Since ships consist of thousands of interim products, it is logical to develop a data mining methodology for a shipyard or any other manufacturing industry where interim products are produced. The methodology involves analysis of existing interim products and data collection. Pre-processing and principal component analysis is done to make the data “user-friendly” for later prediction processing and the development of both accurate and robust models. The support vector machine is demonstrated as the better model when there are a lower number of tuples. However as the number of tuples is increased to over 10000, then the artificial neural network model is recommended.

  18. Applying rigorous decision analysis methodology to optimization of a tertiary recovery project

    International Nuclear Information System (INIS)

    Wackowski, R.K.; Stevens, C.E.; Masoner, L.O.; Attanucci, V.; Larson, J.L.; Aslesen, K.S.

    1992-01-01

    This paper reports that the intent of this study was to rigorously look at all of the possible expansion, investment, operational, and CO 2 purchase/recompression scenarios (over 2500) to yield a strategy that would maximize net present value of the CO 2 project at the Rangely Weber Sand Unit. Traditional methods of project management, which involve analyzing large numbers of single case economic evaluations, was found to be too cumbersome and inaccurate for an analysis of this scope. The decision analysis methodology utilized a statistical approach which resulted in a range of economic outcomes. Advantages of the decision analysis methodology included: a more organized approach to classification of decisions and uncertainties; a clear sensitivity method to identify the key uncertainties; an application of probabilistic analysis through the decision tree; and a comprehensive display of the range of possible outcomes for communication to decision makers. This range made it possible to consider the upside and downside potential of the options and to weight these against the Unit's strategies. Savings in time and manpower required to complete the study were also realized

  19. Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer.

    Science.gov (United States)

    Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad

    2018-06-01

    The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.

  20. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b.

    Science.gov (United States)

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-06-01

    Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections.

  1. Response Surface Methodology Optimization of Ultrasonic-Assisted Extraction of Acer Truncatum Leaves for Maximal Phenolic Yield and Antioxidant Activity.

    Science.gov (United States)

    Yang, Lingguang; Yin, Peipei; Fan, Hang; Xue, Qiang; Li, Ke; Li, Xiang; Sun, Liwei; Liu, Yujun

    2017-02-04

    This study is the first to report the use of response surface methodology to improve phenolic yield and antioxidant activity of Acer truncatum leaves extracts (ATLs) obtained by ultrasonic-assisted extraction. The phenolic composition in ATLs extracted under the optimized conditions were characterized by UPLC-QTOF-MS/MS. Solvent and extraction time were selected based on preliminary experiments, and a four-factors-three-levels central composite design was conducted to optimize solvent concentration ( X ₁), material-to-liquid ratio ( X ₂), ultrasonic temperature ( X ₃) and power ( X ₄) for an optimal total phenol yield ( Y ₁) and DPPH• antioxidant activity ( Y ₂). The results showed that the optimal combination was ethanol:water ( v : v ) 66.21%, material-to-liquid ratio 1:15.31 g/mL, ultrasonic bath temperature 60 °C, power 267.30 W, and time 30 min with three extractions, giving a maximal total phenol yield of 7593.62 mg gallic acid equivalent/100 g d.w. and a maximal DPPH• antioxidant activity of 74,241.61 μmol Trolox equivalent/100 g d.w. Furthermore, 22 phenolics were first identified in ATL extract obtained under the optimized conditions, indicating that gallates, gallotannins, quercetin, myricetin and chlorogenic acid derivatives were the main phenolic components in ATL. What's more, a gallotannins pathway existing in ATL from gallic acid to penta- O -galloylglucoside was proposed. All these results provide practical information aiming at full utilization of phenolics in ATL, together with fundamental knowledge for further research.

  2. Methodology for logistic planning of forest roads for harvesting Eucalyptus globulus Labill. using optimization tools

    International Nuclear Information System (INIS)

    Leal Robert, Orlando; Lopez, Cesar Amilcar

    2011-01-01

    Using an un capacitated and non directed network model, we propose a methodology for the preliminary design of second order forests roads to extract products from Eucalyptus globulus plantations using an aerial cable system to minimize road network construction costs. The model takes into account topographical conditions and road construction costs related to the terrain slope. In order to solve the problem the Dijstrak algorithm was used, in which the minimum cost of the shortest paths that connect all the stockyards are defined. In addition, the Kruskal algorithm was used to obtain the minimum spanning tree. Finally, the network was connected to an open road for the timber to be taken to consumption centers. In order to develop the algorithms mentioned above, an application on Mat lab was designed, which gave an easier handling of the cartography data obtained from these algorithms.

  3. Optimization of biosurfactant production by Bacillus brevis using response surface methodology

    Directory of Open Access Journals (Sweden)

    Foukia E. Mouafi

    2016-03-01

    Full Text Available The present study aims to evaluate and validate a statistical model for maximizing biosurfactant productivity by Bacillus brevis using response surface methodology. In this respect, twenty bacterial isolates were screened for biosurfactant production using hemolytic activity, oil spreading technique, and emulsification index (E24. The most potent biosurfactant-producing bacterium (B. brevis was used for construction of the statistical response surface model. The optimum conditions for biosurfactant production by B. brevis were: 33 °C incubation temperature at pH 8 for 10 days incubation period and 8.5 g/L glucose concentration as a sole carbon source. The produced biosurfactant (BS (73% exhibited foaming activity, thermal stability in the range 30–80 °C for 30 min., pH stability, from 4 to 9 and antimicrobial activity against (Escherichia coli. The BS gave a good potential application as an emulsifier.

  4. APPLICATION OF AN EXPERIMENTAL METHODOLOGY IN THE OPTIMIZATION OF A TUNGSTEN CONCENTRATION PROCESS BY MICROEMULSIONS

    Directory of Open Access Journals (Sweden)

    A.C.S. RAMOS

    1997-06-01

    Full Text Available Abstract - In this work, we applied an experimental planning methodology in order to correlate the necessary amounts with the description of the a tungsten extraction process by microemulsions. The result is a mathematical modelling carried out using the Sheffe Net method, where the mixtures concentration values are represented inside an equilateral triangle. The tungsten concentration process occurs in two stages: extraction and reextraction. The extraction stage was determined by monitoring: phase relative volume (Vr, extraction percentage (%E and tungsten concentration in the microemulsion phase (Ctm e. The reextraction phase was determined by monitoring: reextraction percentage (%Re and tungsten concentration in the aqueous phase (Ctaq. Finally, we obtained equations that relate the extraction / reextraction properties to the composition of specific points inside the extraction region, obeying the error limits specified for the acceptance of each parameter. The results were evaluated through the construction of isoresponse diagrams and correlation graphics between experimental values and those obtained through use of equations.

  5. Optimization of maltodextrin production from avocado seed starch by response surface methodology

    Science.gov (United States)

    Nguyen, Thanh Viet; Ma, Tuyen-Hoang Nguyen; Nguyen, Tha Thi; Ho, Vinh-Nghi Kim; Vo, Hau Tan

    2018-04-01

    A process for maltodextrin production from avocado seed starch was reported in this study. Response surface methodology was used to investigate the effects of three independent variables for hydrolysis of the starch using a commercial food-grade α-amylase, Termamyl SC. These variables included enzyme concentration (0.05 - 0.15% starch), pH (5.0 - 6.0) and hydrolysis time (1.0 - 3.0 h), while the temperature fixed at 95°C. The result showed that the optimum conditions were using enzyme concentration at 0.12%, pH at 5.5 and 2.75 h of the incubation time. Under the optimum conditions, the recovered starch yield was 79.8% and the maltodextrin powder had 15.8 of dextrose equivalent.

  6. Optimization of castor seed oil extraction process using response surface methodology

    Directory of Open Access Journals (Sweden)

    J. D. Mosquera-Artamonov

    2016-09-01

    Full Text Available This work focuses on the study of the oil extraction yield from castor seed using three different seed conditions: whole, minced and bare endosperm. Taguchi design was used to determine the contribution of the following parameters: seed condition, seed load in the extractor, temperature, and pressure. It was proved that it is necessary to introduce the whole seed and that the presence of the pericarp increases the extraction yield. The contribution of the control factors has an extraction yield limit. After determining which factors contributed to the process, these were left at their optimum levels aiming to reduce the control factors to only two. The complete analysis was done using a surface response methodology giving the best parameter for temperature and pressure that allows a better yielding mechanical extraction. The oil extraction yield can be kept up to 35% of the seed.

  7. Policosanol fabrication from insect wax and optimization by response surface methodology.

    Science.gov (United States)

    Ma, Jinju; Ma, Liyi; Zhang, Hong; Zhang, Zhongquan; Wang, Youqiong; Li, Kai; Chen, Xiaoming

    2018-01-01

    Insect wax is a famous biological resource for the role in economic production in China. Insect wax is a good source of policosanol, which may is a candidate supplement in foodstuff and pharmaceuticals that has important physiological activities. Therefore, this work aims to investigate a high-yield and rapid method for policosanol fabrication from insect wax. The conditions for policosanol fabrication were optimized as follows: an oil bath temperature of 112.7°C and reductant dosage of 0.97 g (used for the reduction of 10.00 g of insect wax). The yield of policosanol reached 83.20%, which was 4 times greater than that of existing methods, such as saponification. The total content of policosanol obtained under the optimal conditions reached 87%. In other words, a high yield of policosanol was obtained from insect wax (723.84 mg/g), that was 55 times higher than that generated from beeswax-brown via saponification. The concentrations of metal residues in policosanol were within the limits of the European Union regulations and EFSA stipulation. The LD50 values for oral doses of insect wax and policosanol were both > 5 g/kg. Policosanol was fabricated via solvent-free reduction from insect wax using LiAlH4 at a high yield. The fabrication conditions were optimized. Policosanol and insect wax showed high security, which made them potential candidates as supplements in foods, pharmaceuticals and cosmetics. The rapid and high-yield method has great potential for commercial manufacturing of policosanol.

  8. Novel methodology for optimal reconfiguration of distribution networks with distributed energy resources

    DEFF Research Database (Denmark)

    Chittur Ramaswamy, Parvathy; Tant, Jeroen; Pillai, Jayakrishnan Radhakrishna

    2015-01-01

    is that it avoids the need to pre-define the period of change of configuration. The methods vary in their degree of robustness and conservatism. A robust configuration will not violate the constraints under any of the predicted DER variations called scenarios. A non-conservative configuration exploits better...... benefits with respect to the objective of reconfiguration under all scenarios. Depending on the desired level of robustness and non-conservatism, one of the three methods developed in this paper can be used to find the optimal configuration. The methods can be used for planning as well as for operation...

  9. Laccase production by Coriolopsis caperata RCK2011: Optimization under solid state fermentation by Taguchi DOE methodology

    Science.gov (United States)

    Nandal, Preeti; Ravella, Sreenivas Rao; Kuhad, Ramesh Chander

    2013-01-01

    Laccase production by Coriolopsis caperata RCK2011 under solid state fermentation was optimized following Taguchi design of experiment. An orthogonal array layout of L18 (21 × 37) was constructed using Qualitek-4 software with eight most influensive factors on laccase production. At individual level pH contributed higher influence, whereas, corn steep liquor (CSL) accounted for more than 50% of the severity index with biotin and KH2PO4 at the interactive level. The optimum conditions derived were; temperature 30°C, pH 5.0, wheat bran 5.0 g, inoculum size 0.5 ml (fungal cell mass = 0.015 g dry wt.), biotin 0.5% w/v, KH2PO4 0.013% w/v, CSL 0.1% v/v and 0.5 mM xylidine as an inducer. The validation experiments using optimized conditions confirmed an improvement in enzyme production by 58.01%. The laccase production to the level of 1623.55 Ugds−1 indicates that the fungus C. caperata RCK2011 has the commercial potential for laccase. PMID:23463372

  10. State-of-The-Art of Modeling Methodologies and Optimization Operations in Integrated Energy System

    Science.gov (United States)

    Zheng, Zhan; Zhang, Yongjun

    2017-08-01

    Rapid advances in low carbon technologies and smart energy communities are reshaping future patterns. Uncertainty in energy productions and demand sides are paving the way towards decentralization management. Current energy infrastructures could not meet with supply and consumption challenges, along with emerging environment and economic requirements. Integrated Energy System(IES) whereby electric power, natural gas, heating couples with each other demonstrates that such a significant technique would gradually become one of main comprehensive and optimal energy solutions with high flexibility, friendly renewables absorption and improving efficiency. In these global energy trends, we summarize this literature review. Firstly the accurate definition and characteristics of IES have been presented. Energy subsystem and coupling elements modeling issues are analyzed. It is pointed out that decomposed and integrated analysis methods are the key algorithms for IES optimization operations problems, followed by exploring the IES market mechanisms. Finally several future research tendencies of IES, such as dynamic modeling, peer-to-peer trading, couple market design, sare under discussion.

  11. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology.

    Science.gov (United States)

    Karichappan, Thirugnanasambandham; Venkatachalam, Sivakumar; Jeganathan, Prakash Maran

    2014-01-10

    Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4-8), current density (10-30 mA/cm2), electrode distance (4-6 cm) and electrolysis time (5-25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC.

  12. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology

    Science.gov (United States)

    2014-01-01

    Background Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. Methods In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4–8), current density (10–30 mA/cm2), electrode distance (4–6 cm) and electrolysis time (5–25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. Results The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. Conclusion These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC. PMID:24410752

  13. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sudarjanto, Gatut [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller-Lehmann, Beatrice [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller, Jurg [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia)]. E-mail: j.keller@awmc.uq.edu.au

    2006-11-02

    The integrated chemical-biological degradation combining advanced oxidation by UV/H{sub 2}O{sub 2} followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H{sub 2}O{sub 2}/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required.

  14. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    International Nuclear Information System (INIS)

    Sudarjanto, Gatut; Keller-Lehmann, Beatrice; Keller, Jurg

    2006-01-01

    The integrated chemical-biological degradation combining advanced oxidation by UV/H 2 O 2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H 2 O 2 /L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required

  15. Optimization of Process Variables for Grinding of Ibuprofen using Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Chol-Ho [Sangji University, Wonju (Korea, Republic of)

    2013-12-15

    Ibuprofen, non-steroidal anti-inflammatory drugs; NSAIDs, is a highly crystalline substance with the pharmaceutical properties of poor solubility and low bioavailability. The size reduction of ibuprofen is needed to improve the solubility. The objective of this study is to optimize the grinding condition of ibuprofen. Grinding of ibuprofen was carried out using a planetary mill. Grinding parameters were optimized using Box-Behnken experimental design method. The physical characteristics of ground ibuprofen were investigated for the particle size by particle size analyzer, for the crystal size by X-ray diffraction (XRD), and for the tensile strength by tensile/compression tester. The optimum conditions for the milling of ibuprofen were 290 rpm of the revolution number of mill, 24.6 g of the weight of sample, and 10minutes of grinding time. The measured value of the particle size of ground ibuprofen at these optimum conditions was 13.5 µm. The results showed that the crystal size of ibuprofen was reduced by the planetary milling process. In case the relative density of the tablets formulated of ground ibuprofen was range of 0.85-0.90, the tensile strength of them was range of 12-14 Kg{sub f}/cm{sup 2}.

  16. Inulin blend as prebiotic and fat replacer in dairy desserts: optimization by response surface methodology.

    Science.gov (United States)

    Arcia, P L; Costell, E; Tárrega, A

    2011-05-01

    The purpose of this work was to optimize the formulation of a prebiotic dairy dessert with low fat content (dessert were prepared, varying inulin concentration (3 to 9 g/100g), sucrose concentration (4 to 16 g/100g), and lemon flavor concentration (25 to 225 mg/kg). Sample acceptability evaluated by 100 consumers varied mainly in terms of inulin and sucrose concentrations and, to a lesser extent, of lemon flavor content. An interaction effect among inulin and sucrose concentration was also found. According to the model obtained, the formulation with 5.5 g/100g inulin, 10 g/100g sucrose and 60 mg/kg of lemon flavor was selected. Finally, this sample was compared sensorially with the regular fat content (2.8 g/100g) sample previously optimized in terms of lemon flavor (146 mg/kg) and sucrose (11.4 g/100g). No significant difference in acceptability was found between them but the low-fat sample with inulin possessed stronger lemon flavor and greater thickness and creaminess. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Optimization of Process Variables for Grinding of Ibuprofen using Response Surface Methodology

    International Nuclear Information System (INIS)

    Sim, Chol-Ho

    2013-01-01

    Ibuprofen, non-steroidal anti-inflammatory drugs; NSAIDs, is a highly crystalline substance with the pharmaceutical properties of poor solubility and low bioavailability. The size reduction of ibuprofen is needed to improve the solubility. The objective of this study is to optimize the grinding condition of ibuprofen. Grinding of ibuprofen was carried out using a planetary mill. Grinding parameters were optimized using Box-Behnken experimental design method. The physical characteristics of ground ibuprofen were investigated for the particle size by particle size analyzer, for the crystal size by X-ray diffraction (XRD), and for the tensile strength by tensile/compression tester. The optimum conditions for the milling of ibuprofen were 290 rpm of the revolution number of mill, 24.6 g of the weight of sample, and 10minutes of grinding time. The measured value of the particle size of ground ibuprofen at these optimum conditions was 13.5 µm. The results showed that the crystal size of ibuprofen was reduced by the planetary milling process. In case the relative density of the tablets formulated of ground ibuprofen was range of 0.85-0.90, the tensile strength of them was range of 12-14 Kg f /cm 2

  18. Optimal methodologies for terahertz time-domain spectroscopic analysis of traditional pigments in powder form

    Science.gov (United States)

    Ha, Taewoo; Lee, Howon; Sim, Kyung Ik; Kim, Jonghyeon; Jo, Young Chan; Kim, Jae Hoon; Baek, Na Yeon; Kang, Dai-ill; Lee, Han Hyoung

    2017-05-01

    We have established optimal methods for terahertz time-domain spectroscopic analysis of highly absorbing pigments in powder form based on our investigation of representative traditional Chinese pigments, such as azurite [blue-based color pigment], Chinese vermilion [red-based color pigment], and arsenic yellow [yellow-based color pigment]. To accurately extract the optical constants in the terahertz region of 0.1 - 3 THz, we carried out transmission measurements in such a way that intense absorption peaks did not completely suppress the transmission level. This required preparation of pellet samples with optimized thicknesses and material densities. In some cases, mixing the pigments with polyethylene powder was required to minimize absorption due to certain peak features. The resulting distortion-free terahertz spectra of the investigated set of pigment species exhibited well-defined unique spectral fingerprints. Our study will be useful to future efforts to establish non-destructive analysis methods of traditional pigments, to construct their spectral databases, and to apply these tools to restoration of cultural heritage materials.

  19. Convective heat transfer enhancement by diamond shaped micro-protruded patterns for heat sinks: Thermal fluid dynamic investigation and novel optimization methodology

    International Nuclear Information System (INIS)

    Ventola, Luigi; Dialameh, Masoud; Fasano, Matteo; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Highlights: • A novel methodology for optimal design of patterned heat sink surfaces is proposed. • Heat transfer enhancement by patterned surfaces is measured experimentally. • Role of fluid dynamics and geometrical scales on heat transfer is clarified. - Abstract: In the present work, micro-protruded patterns on flush mounted heat sinks for convective heat transfer enhancement are investigated and a novel methodology for thermal optimization is proposed. Patterned heat sinks are experimentally characterized in fully turbulent regime, and the role played by geometrical parameters and fluid dynamic scales is discussed. A methodology specifically suited for micro-protruded pattern optimization is designed, leading to 73% enhancement in thermal performance respect to commercially available heat sinks, at fixed costs. This work is expected to introduce a new methodological approach for a more systematic and efficient development of solutions for electronics cooling.

  20. OPTIMIZATION OF PATCHOULI OIL (POGOSTEMON CABLIN, BENTH WITH STEAM DISTILLATION ASSISTED BY PULSED ELECTRIC FIELD VIA RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    SUKARDI

    2017-08-01

    Full Text Available The study was aimed to determine the role of pulsed electric field (PEF treatment before hydro-distillation of the patchouli oil. Response Surface Methodology (RSM was employed to optimize PEF treatment (voltages, frequencies and times of distillation of patchouli oil from dried patchouli crops. The experimental design and analysis the result to obtain the optimal processing parameters was a Box-Behnken Design (BBD. Three variables were examined in this study: voltages (1,000-2,000 volt; frequencies (1,000-2,000 Hz; and distillation time (4-8 hours. The results showed that the voltage greatly affects the volume of patchouli oil obtained and optimum condition of PEF was voltages of 2,000 volts, frequencies of 1,874 Hz, and 8 hours distillation. The patchouli oil obtained is 8.037 ml of 300 g of dry material (±2.7%. The verification of the model shows that 96.6% (7.76±0.15 ml can adequately for reflecting the expected optimization.

  1. Optimization of edible coating formulations for improving postharvest quality and shelf life of pear fruit using response surface methodology.

    Science.gov (United States)

    Nandane, A S; Dave, Rudri K; Rao, T V Ramana

    2017-01-01

    The effect of composite edible films containing soy protein isolate (SPI) in combination with additives like hydroxypropyl methylcellulose (HPMC) and olive oil on 'Babughosha' pear ( Pyrus communis L.) stored at ambient temperature (28 ± 5 °C and 60 ± 10% RH) was evaluated using Response surface methodology (RSM). A total of 30 edible coating formulations comprising of SPI (2-6%, w/v), olive oil (0.7-1.1%, v/v), HPMC (0.1-0.5%, w/v) and potassium sorbate (0-0.4% w/v) were evaluated for optimizing the most suitable combination. Quality parameters like weight loss%, TSS, pH and titrable acidity of the stored pears were selected as response variables for optimization. The optimization procedure was carried out using RSM. It was observed that the response variables were mainly effected by concentration of SPI and olive oil in the formulation. Edible coating comprising of SPI 5%, HPMC 0.40%, olive oil 1% and potassium sorbate 0.22% was found to be most suitable combination for pear fruit with predicted values of response variables indicated as weight loss% 3.50, pH 3.41, TSS 11.13 and TA% 0.513.

  2. Optimization of formulation of soy-cakes baked in infrared-microwave combination oven by response surface methodology.

    Science.gov (United States)

    Şakıyan, Özge

    2015-05-01

    The aim of present work is to optimize the formulation of a functional cake (soy-cake) to be baked in infrared-microwave combination oven. For this optimization process response surface methodology was utilized. It was also aimed to optimize the processing conditions of the combination baking. The independent variables were the baking time (8, 9, 10 min), the soy flour concentration (30, 40, 50 %) and the DATEM (diacetyltartaric acid esters of monoglycerides) concentration (0.4, 0.6 and 0.8 %). The quality parameters that were examined in the study were specific volume, weight loss, total color change and firmness of the cake samples. The results were analyzed by multiple regression; and the significant linear, quadratic, and interaction terms were used in the second order mathematical model. The optimum baking time, soy-flour concentration and DATEM concentration were found as 9.5 min, 30 and 0.72 %, respectively. The corresponding responses of the optimum points were almost comparable with those of conventionally baked soy-cakes. So it may be declared that it is possible to produce high quality soy cakes in a very short time by using infrared-microwave combination oven.

  3. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants and rosmarinic acid from perilla leaves using response surface methodology

    Directory of Open Access Journals (Sweden)

    Hui-Zhen LI

    Full Text Available Abstract Response surface methodology (RSM was used to optimize ultrasound-assisted extraction (UAE of functional components from perilla leaves. The factors investigated were ethanol concentration, extraction temperature, and extraction time. The results revealed that ethanol concentration had significant effects on all extraction parameters. Based on the RSM results, the optimal conditions were an ethanol concentration of 56%, a UAE temperature of 54 °C, and a UAE time of 55 min. Under these conditions, the experimental TPC (total phenolic content, RA (rosmarinic acid, FRAP (ferric reducing antioxidant power and DPPH (1,1-diphenyl-2-picrylhydrazyl values were 48.85 mg GAE/g DW (mg gallic acid equivalent /g of dry weight, 31.02 mg/g DW, 85.55 μmol Fe2+/g DW and 73.35%, respectively. The experimental values were in agreement with those predicted by RSM models, confirming suitability of the model employed and the success of RSM for optimization of the extraction conditions.

  4. Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology.

    Science.gov (United States)

    Jeong, Ji Yeon; Liu, Qing; Kim, Seon Beom; Jo, Yang Hee; Mo, Eun Jin; Yang, Hyo Hee; Song, Dae Hye; Hwang, Bang Yeon; Lee, Mi Kyeong

    2015-05-14

    Melanin is a natural pigment that plays an important role in the protection of skin, however, hyperpigmentation cause by excessive levels of melatonin is associated with several problems. Therefore, melanogenesis inhibitory natural products have been developed by the cosmetic industry as skin medications. The leaves of Morus alba (Moraceae) have been reported to inhibit melanogenesis, therefore, characterization of the melanogenesis inhibitory constituents of M. alba leaves was attempted in this study. Twenty compounds including eight benzofurans, 10 flavonoids, one stilbenoid and one chalcone were isolated from M. alba leaves and these phenolic constituents were shown to significantly inhibit tyrosinase activity and melanin content in B6F10 melanoma cells. To maximize the melanogenesis inhibitory activity and active phenolic contents, optimized M. alba leave extraction conditions were predicted using response surface methodology as a methanol concentration of 85.2%; an extraction temperature of 53.2 °C and an extraction time of 2 h. The tyrosinase inhibition and total phenolic content under optimal conditions were found to be 74.8% inhibition and 24.8 μg GAE/mg extract, which were well-matched with the predicted values of 75.0% inhibition and 23.8 μg GAE/mg extract. These results shall provide useful information about melanogenesis inhibitory constituents and optimized extracts from M. alba leaves as cosmetic therapeutics to reduce skin hyperpigmentation.

  5. Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ji Yeon Jeong

    2015-05-01

    Full Text Available Melanin is a natural pigment that plays an important role in the protection of skin, however, hyperpigmentation cause by excessive levels of melatonin is associated with several problems. Therefore, melanogenesis inhibitory natural products have been developed by the cosmetic industry as skin medications. The leaves of Morus alba (Moraceae have been reported to inhibit melanogenesis, therefore, characterization of the melanogenesis inhibitory constituents of M. alba leaves was attempted in this study. Twenty compounds including eight benzofurans, 10 flavonoids, one stilbenoid and one chalcone were isolated from M. alba leaves and these phenolic constituents were shown to significantly inhibit tyrosinase activity and melanin content in B6F10 melanoma cells. To maximize the melanogenesis inhibitory activity and active phenolic contents, optimized M. alba leave extraction conditions were predicted using response surface methodology as a methanol concentration of 85.2%; an extraction temperature of 53.2 °C and an extraction time of 2 h. The tyrosinase inhibition and total phenolic content under optimal conditions were found to be 74.8% inhibition and 24.8 μg GAE/mg extract, which were well-matched with the predicted values of 75.0% inhibition and 23.8 μg GAE/mg extract. These results shall provide useful information about melanogenesis inhibitory constituents and optimized extracts from M. alba leaves as cosmetic therapeutics to reduce skin hyperpigmentation.

  6. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications. [computational fluid dynamics

    Science.gov (United States)

    Taylor, Arthur C., III; Hou, Gene W.

    1992-01-01

    Fundamental equations of aerodynamic sensitivity analysis and approximate analysis for the two dimensional thin layer Navier-Stokes equations are reviewed, and special boundary condition considerations necessary to apply these equations to isolated lifting airfoils on 'C' and 'O' meshes are discussed in detail. An efficient strategy which is based on the finite element method and an elastic membrane representation of the computational domain is successfully tested, which circumvents the costly 'brute force' method of obtaining grid sensitivity derivatives, and is also useful in mesh regeneration. The issue of turbulence modeling is addressed in a preliminary study. Aerodynamic shape sensitivity derivatives are efficiently calculated, and their accuracy is validated on two viscous test problems, including: (1) internal flow through a double throat nozzle, and (2) external flow over a NACA 4-digit airfoil. An automated aerodynamic design optimization strategy is outlined which includes the use of a design optimization program, an aerodynamic flow analysis code, an aerodynamic sensitivity and approximate analysis code, and a mesh regeneration and grid sensitivity analysis code. Application of the optimization methodology to the two test problems in each case resulted in a new design having a significantly improved performance in the aerodynamic response of interest.

  7. Optimization of methanol crystallization for highly efficient separation of palmitic acid from palm fatty acid mixture using response surface methodology

    Directory of Open Access Journals (Sweden)

    A. A.W. Japir

    2018-01-01

    Full Text Available The objective of the current study was to develop parameters for the separation of palmitic acid (PA from a crude palm oil saturated fatty acid (SFAs mixture by using the methanol crystallization method. The conditions of methanol crystallization were optimized by the response surface methodology (RSM with the D-optimal design. The procedure of developing the solvent crystallization method was based on various different parameters. The fatty acid composition was carried out using a gas chromatography flame ionization detector (GC-FID as fatty acid methyl esters. The highest percentage of SFAs was more than 96% with the percentage yield of 87.5% under the optimal conditions of fatty acids-to-methanol ratio of 1: 20 (w/v, the crystallization temperature of -15 °C, and the crystallization time of 24 hours, respectively. The composition of separated SFAs in the solid fraction contains 96.7% of palmitic acid (C16:0 as a dominant component and 3.3% of stearic acid (C18:0. The results showed that utilizing methanol as a crystallization solvent is recommended because of its high efficiency, low cost, stability, availability, comparative ease of recovery and its ability to form needle-like crystals which have good filtering and washing characteristics.

  8. Optimization of methanol crystallization for highly efficient separation of palmitic acid from palm fatty acid mixture using response surface methodology

    International Nuclear Information System (INIS)

    Japir, A.A.W.; Salimon, J.; Derawi, D.; Yahaya, B.H.; Jamil, M.S.M.; Yusop, M.R.

    2017-01-01

    The objective of the current study was to develop parameters for the separation of palmitic acid (PA) from a crude palm oil saturated fatty acid (SFAs) mixture by using the methanol crystallization method. The conditions of methanol crystallization were optimized by the response surface methodology (RSM) with the D-optimal design. The procedure of developing the solvent crystallization method was based on various different parameters. The fatty acid composition was carried out using a gas chromatography flame ionization detector (GC-FID) as fatty acid methyl esters. The highest percentage of SFAs was more than 96% with the percentage yield of 87.5% under the optimal conditions of fatty acids-to-methanol ratio of 1: 20 (w/v), the crystallization temperature of -15 °C, and the crystallization time of 24 hours, respectively. The composition of separated SFAs in the solid fraction contains 96.7% of palmitic acid (C16:0) as a dominant component and 3.3% of stearic acid (C18:0). The results showed that utilizing methanol as a crystallization solvent is recommended because of its high efficiency, low cost, stability, availability, comparative ease of recovery and its ability to form needle-like crystals which have good filtering and washing characteristics. [es

  9. Integrated management model. Methodology and software-enabled tood designed to assist a utility in developing a station-wide optimization

    International Nuclear Information System (INIS)

    Llovet, R.; Ibanez, R.; Woodcock, J.

    2005-01-01

    A key concern for utilities today is optimizing station aging and realibility management activities in a manner that maximizes the value of those activities withing an affordable budget. The Westinghouse Proactive Asset Management Model is a methodology and software-enabled tood designed to assist a utility in developing a station-wide optimization of those activities. The process and tool support the development of an optimized, station-wide plan for inspection, testing, maintenance, repaor and replacement of aging components. The optimization identifies the benefit and optimal timing of those activities based on minimizing unplanned outage costs (avoided costs) and maximizing station Net Present Value. (Author)

  10. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part. 2. Applicability for seismic waves with various frequency characteristics

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2010-01-01

    In this study, the applicability of a previously developed optimal seismic design methodology, which can consider the structural integrity of not only piping systems but also elasto-plastic supporting devices, is studied for seismic waves with various frequency characteristics. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location and the capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Numerical simulations are performed using a simple piping system model. As a result, it is shown that the proposed optimal seismic design methodology is applicable to the seismic design of piping systems subjected to seismic waves with various frequency characteristics. The mechanism of optimization is also clarified. (author)

  11. Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology

    Science.gov (United States)

    Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy

    2016-05-10

    A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.

  12. Optimization of marine waste based-growth media for microbial lipase production using mixture design methodology.

    Science.gov (United States)

    Sellami, Mohamed; Kedachi, Samiha; Frikha, Fakher; Miled, Nabil; Ben Rebah, Faouzi

    2013-01-01

    Lipase production by Staphylococcus xylosus and Rhizopus oryzae was investigated using a culture medium based on a mixture of synthetic medium and supernatants generated from tuna by-products and Ulva rigida biomass. The proportion of the three medium components was optimized using the simplex-centroid mixture design method (SCMD). Results indicated that the experimental data were in good agreement with predicted values, indicating that SCMD was a reliable method for determining the optimum mixture proportion of the growth medium. Maximal lipase activities of 12.5 and 23.5 IU/mL were obtained with a 50:50 (v:v) mixture of synthetic medium and tuna by-product supernatant for Staphylococcus xylosus and Rhizopus oryzae, respectively. The predicted responses from these mixture proportions were also validated experimentally.

  13. Loteprednol Etabonate Nanoparticles: Optimization via Box-Behnken Design Response Surface Methodology and Physicochemical Characterization.

    Science.gov (United States)

    Sah, Abhishek K; Suresh, Preeti K

    2017-01-01

    Abstract: The objective of the present work was to prepare and optimize the loteprednoletabonate (LE) loaded poly (D,L-lactide co-glycolide) (PLGA) polymer based nanoparticle carrier. The review on recent patents (US9006241, US20130224302A1, US2012/0028947A1) assisted in the selection of drug and polymer for designing nanoparticles for ocular delivery applications. The nanoparticles were prepared by solvent evaporation followed by high speed homogenization. Biodegradable polymer PLGA (50:50) grade was utilized to develop various formulations with different drug:polymer ratio. A Box-Behnken design with 33 factorial design was selected for the present study and 17 runs were carried out in totality. The influence of various process variables (viz., polymer concentration, homogenization speed and sonication time) on the characteristics of nanoparticles including the in vitro drug release profile were studied. The nanoparticulate formulations were evaluated for mean spherical diameter, polydispersity index (PDI), zeta potential, surface morphology, drug entrapment and in-vitro drug release profile. The entrapment efficiency, drug loading and mean particle size were found to be 96.31±1.68 %, 35.46±0.35 % and 167.6±2.1 nm respectively. The investigated process and formulation variables were found to have significant effect on the particle size, drug loading (DL), entrapment efficiency (EE), and in vitro drug release profile. A biphasic in vitro drug release profile was apparent from the optimized nanoparticles (NPs) for 24 hours. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Application of response surface methodology for optimization of parameters for microwave heating of rare earth carbonates

    Science.gov (United States)

    Yin, Shaohua; Lin, Guo; Li, Shiwei; Peng, Jinhui; Zhang, Libo

    2016-09-01

    Microwave heating has been applied in the field of drying rare earth carbonates to improve drying efficiency and reduce energy consumption. The effects of power density, material thickness and drying time on the weight reduction (WR) are studied using response surface methodology (RSM). The results show that RSM is feasible to describe the relationship between the independent variables and weight reduction. Based on the analysis of variance (ANOVA), the model is in accordance with the experimental data. The optimum experiment conditions are power density 6 w/g, material thickness 15 mm and drying time 15 min, resulting in an experimental weight reduction of 73%. Comparative experiments show that microwave drying has the advantages of rapid dehydration and energy conservation. Particle analysis shows that the size distribution of rare earth carbonates after microwave drying is more even than those in an oven. Based on these findings, microwave heating technology has an important meaning to energy-saving and improvement of production efficiency for rare earth smelting enterprises and is a green heating process.

  15. Quantum-Mechanics Methodologies in Drug Discovery: Applications of Docking and Scoring in Lead Optimization.

    Science.gov (United States)

    Crespo, Alejandro; Rodriguez-Granillo, Agustina; Lim, Victoria T

    2017-01-01

    The development and application of quantum mechanics (QM) methodologies in computer- aided drug design have flourished in the last 10 years. Despite the natural advantage of QM methods to predict binding affinities with a higher level of theory than those methods based on molecular mechanics (MM), there are only a few examples where diverse sets of protein-ligand targets have been evaluated simultaneously. In this work, we review recent advances in QM docking and scoring for those cases in which a systematic analysis has been performed. In addition, we introduce and validate a simplified QM/MM expression to compute protein-ligand binding energies. Overall, QMbased scoring functions are generally better to predict ligand affinities than those based on classical mechanics. However, the agreement between experimental activities and calculated binding energies is highly dependent on the specific chemical series considered. The advantage of more accurate QM methods is evident in cases where charge transfer and polarization effects are important, for example when metals are involved in the binding process or when dispersion forces play a significant role as in the case of hydrophobic or stacking interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Christoph Silow

    2017-02-01

    Full Text Available Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50–200 and the final thickness (1.0–3.5 mm of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK and Multiple Puncture Probe (MPP, the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30% puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt % products. A sensory acceptance test revealed no significant differences in taste of fatness or ‘liking of mouthfeel’. Additionally, the fat-reduced puff pastry resulted in a significant (p < 0.05 positive correlation to ‘liking of flavor’ and overall acceptance by the assessors.

  17. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology.

    Science.gov (United States)

    Silow, Christoph; Zannini, Emanuele; Axel, Claudia; Belz, Markus C E; Arendt, Elke K

    2017-02-22

    Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM) was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50-200) and the final thickness (1.0-3.5 mm) of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK) and Multiple Puncture Probe (MPP), the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30%) puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt %) products. A sensory acceptance test revealed no significant differences in taste of fatness or 'liking of mouthfeel'. Additionally, the fat-reduced puff pastry resulted in a significant ( p < 0.05) positive correlation to 'liking of flavor' and overall acceptance by the assessors.

  18. An alternative methodology for optimizing the data input for cadastral systems

    Directory of Open Access Journals (Sweden)

    Guilherme H. B. de Souza

    2004-07-01

    Full Text Available Nowadays, most of the city governments that have started the process of implementing a GIS use two types of database: one for the cadaster system and another for GIS. Therefore, a lot of time is spent, on both systems databases updating. So that, the cadaster system database is usually priorized, once tax collection is necessary for the city expenditure. Manipulating this data for different purposes, within only one database, it’s extremely effective, because the data may be updated easilier, besides not presenting duplicity. This paper presents a set of applications developed, having as the main objective the integration of the cadaster database, implanted for property tax and other taxes calculus, with a relational database, which may be used for analysis in strategical planning. The importance of such work is in the fact of the possibility for availability of systematized information with more efficiency and at a lower cost. Besides that, the methodology developed will provide better conditions for periodic cadaster updating. This is effective through of the use of an optical reading device of the cadaster information reports. Such procedure will naturally reduce cost, enabling the operation. The cadaster information being updated in short periods of time, increases the reliability of the system, providing more confidence for information availability, besides amplify the opportunity of offering services through the internet.

  19. Optimization of Extraction Parameters of Phenolic Compounds from Sarcopoterium spinosum Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ceren Sunguc

    2017-07-01

    Full Text Available The shrublands are very common in Urla-Çeşme-Karaburun peninsula located in the western point of Turkey. Prickly shrubby burnet (Sarcopoterium spinosum L. is one of the common weed which has intensive thorns making its consumption for the local domestic animals. However, Sarcopoterium spinosum is a valuable and common medicinal plant in the Mediterranean region. Crude extract of S. spinosum leaves exhibited higher antioxidant activity, as 3143.5± 238.5 µM TEAC (Trolox Equivalent Antioxidant Capacity/g dry weight (DW, when compared to other medicinal plants found in the literature. The aim of this study was to determine the effect of extraction parameters on the content and biological activity of the extract by response surface methodology (RSM as well as to identify its major compounds. High Performance Liquid Chromatography (HPLC was employed to investigate the phenolic content of S. spinosum extract. The composition of the phenolic contents including hyperoside and isoquercetin, the latter being the major component, in S. spinosum extract has been shown for the first time by HPLC. Antimicrobial activity of S. spinosum extract, identified by minimum inhibition concentration (MIC assay, indicated that the crude extract had antifungal activity against Candida albicans.

  20. Optimization of a novel improver gel formulation for Barbari flat bread using response surface methodology.

    Science.gov (United States)

    Pourfarzad, Amir; Haddad Khodaparast, Mohammad Hossein; Karimi, Mehdi; Mortazavi, Seyed Ali

    2014-10-01

    Nowadays, the use of bread improvers has become an essential part of improving the production methods and quality of bakery products. In the present study, the Response Surface Methodology (RSM) was used to determine the optimum improver gel formulation which gave the best quality, shelf life, sensory and image properties for Barbari flat bread. Sodium stearoyl-2-lactylate (SSL), diacetyl tartaric acid esters of monoglyceride (DATEM) and propylene glycol (PG) were constituents of the gel and considered in this study. A second-order polynomial model was fitted to each response and the regression coefficients were determined using least square method. The optimum gel formulation was found to be 0.49 % of SSL, 0.36 % of DATEM and 0.5 % of PG when desirability function method was applied. There was a good agreement between the experimental data and their predicted counterparts. Results showed that the RSM, image processing and texture analysis are useful tools to investigate, approximate and predict a large number of bread properties.

  1. Microencapsulation of Theobroma cacao L. waste extract: optimization using response surface methodology.

    Science.gov (United States)

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Carréra Silva Júnior, José Otávio; Ribeiro Costa, Roseane Maria; Converti, Attilio

    2017-03-01

    The cocoa extract (Theobroma cacao L.) has a significant amount of polyphenols (TP) with potent antioxidant activity (AA). This study aims to optimise microencapsulation of the extract of cocoa waste using chitosan and maltodextrin. Microencapsulation tests were performed according to a Box-Behnken factorial design, and the results were evaluated by response surface methodology with temperature, maltodextrin concentration (MD) and extract flowrate (EF) as independent variables, and the fraction of encapsulated TP, TP encapsulation yield, AA, yield of drying and solubility index as responses. The optimum conditions were: inlet temperature of 170 °C, MD of 5% and EF of 2.5 mL/min. HPLC analysis identified epicatechin as the major component of both the extract and microparticles. TP release was faster at pH 3.5 than in water. These results as a whole suggest that microencapsulation was successful and the final product can be used as a nutrient source for aquatic animal feed. Highlights Microencapsulation is optimised according to a factorial design of the Box-Behnken type. Epicatechin is the major component of both the extract and microcapsules. The release of polyphenols from microcapsules is faster at pH 3.5 than in water.

  2. Optimization of microwave-assisted extraction (MAP) for ginseng components by response surface methodology.

    Science.gov (United States)

    Kwon, Joong-Ho; Bélanger, Jacqueline M R; Paré, J R Jocelyn

    2003-03-26

    Response surface methodology (RSM) was applied to predict optimum conditions for microwave-assisted extraction-a MAP technology-of saponin components from ginseng roots. A central composite design was used to monitor the effect of ethanol concentration (30-90%, X(1)) and extraction time (30-270 s, X(2)) on dependent variables, such as total extract yield (Y(1)), crude saponin content (Y(2)), and saponin ratio (Y(3)), under atmospheric pressure conditions when focused microwaves were applied at an emission frequency of 2450 MHz. In MAP under pre-established conditions, correlation coefficients (R (2)) of the models for total extract yield and crude saponin were 0.9841 (p extraction conditions were predicted for each variable as 52.6% ethanol and 224.7 s in extract yield and as 77.3% ethanol and 295.1 s in crude saponins, respectively. Estimated maximum values at predicted optimum conditions were in good agreement with experimental values.

  3. Optimization of Fenton's oxidation of herbicide dicamba in water using response surface methodology

    Science.gov (United States)

    Sangami, Sanjeev; Manu, Basavaraju

    2017-12-01

    In this study Fenton's oxidation of dicamba in aqueous medium was investigated by using the response surface methodology. The influence of H2O2/COD ( A), H2O2/Fe2+ ( B), pH ( C) and reaction time ( D) as independent variables were studied on two responses (COD and dicamba removal efficiency). The dosage of H2O2 (5.35-17.4 mM) and Fe2+ (0.09-2.13 mM) were varied and optimum percentage removal of dicamba of 84.01% with H2O2 and Fe2+ dosage of 11.38 and 0.33 mM respectively. The whole oxidation process was monitored by high performance liquid chromatography (HPLC) along with liquid chromatography/mass spectrometry (LC/MS). It was found that 82% of dicamba was mineralized to oxalic acid, chloride ion, CO2 and H2O, which was confirmed with COD removal of 81.53%. The regression analysis was performed, in which standard deviation (2.74), coefficient of correlation ( R 2 = R_{adj}2) and adequate precision (>12) were in good agreement with model values. Finally, the treatment process was validated by performing the additional experiments.

  4. Combining a 2-D multiphase CFD model with a Response Surface Methodology to optimize the gasification of Portuguese biomasses

    International Nuclear Information System (INIS)

    Silva, Valter; Rouboa, Abel

    2015-01-01

    Highlights: • A multiphase CFD model was combined with RSM. • Gasification optimal operating conditions were found in a pilot scale reactor. • Syngas quality indices were optimized in a biomass gasification process. • Propagation of error methodology was combined with a CFD model and RSM. - Abstract: This paper presents a study to evaluate the potential of Portuguese biomasses (coffee husks, forest residues and vine pruning residues) to produce syngas for different applications. By using a 2-D Eulerian–Eulerian approach within the CFD framework, a design of several computer experiments was developed and were used as analysis tools the response surface method (RSM) and the propagation of error (POE) approach. The CFD model was validated under experimental results collected at a semi-industrial reactor. For design purposes, temperature, steam to biomass ratio (SBR) and the type of biomass were selected as input factors. The responses were the H 2 generation, the H 2 /CO ratio, the CH 4 /H 2 ratio, the carbon conversion and the cold gas efficiency. It was concluded that after an optimization procedure to determine the operating conditions, vine pruning residues could show very promising results considering some of the typical syngas indice standards for commercial purposes. From the optimization procedure, it was also concluded that forest residues are preferable for domestic natural gas applications and vine pruning residues for fuel cells and integrated gasification systems application. By using the RSM combined with POE, it was verified that the operating conditions to get higher performances do not always coincide with those necessary to obtain a stable syngas composition

  5. Optimization of microwave-assisted extraction and supercritical fluid extraction of carbamate pesticides in soil by experimental design methodology.

    Science.gov (United States)

    Sun, Lei; Lee, Hian Kee

    2003-10-03

    Orthogonal array design (OAD) was applied for the first time to optimize microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) conditions for the analysis of four carbamates (propoxur, propham, methiocarb, chlorpropham) from soil. The theory and methodology of a new OA16 (4(4)) matrix derived from a OA16 (2(15)) matrix were developed during the MAE optimization. An analysis of variance technique was employed as the data analysis strategy in this study. Determinations of analytes were completed using high-performance liquid chromatography (HPLC) with UV detection. Four carbamates were successfully extracted from soil with recoveries ranging from 85 to 105% with good reproducibility (approximately 4.9% RSD) under the optimum MAE conditions: 30 ml methanol, 80 degrees C extraction temperature, and 6-min microwave heating. An OA8 (2(7)) matrix was employed for the SFE optimization. The average recoveries and RSD of the analytes from spiked soil by SFE were 92 and 5.5%, respectively except for propham (66.3+/-7.9%), under the following conditions: heating for 30 min at 60 degrees C under supercritical CO2 at 300 kg/cm2 modified with 10% (v/v) methanol. The composition of the supercritical fluid was demonstrated to be a crucial factor in the extraction. The addition of a small volume (10%) of methanol to CO2 greatly enhanced the recoveries of carbamates. A comparison of MAE with SFE was also conducted. The results indicated that >85% average recoveries were obtained by both optimized extraction techniques, and slightly higher recoveries of three carbamates (propoxur, propham and methiocarb) were achieved using MAE. SFE showed slightly higher recovery for chlorpropham (93 vs. 87% for MAE). The effects of time-aged soil on the extraction of analytes were examined and the results obtained by both methods were also compared.

  6. Design and optimization of hydrogen production from hydrothermally pretreated sugarcane bagasse using response surface methodology.

    Science.gov (United States)

    Soares, Lais Américo; Braga, Juliana Kawanishi; Motteran, Fabrício; Sakamoto, Isabel Kimiko; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio

    2017-07-01

    Hydrogen production from hydrothermally pretreated (200 °C for 10 min at 16 bar) sugarcane bagasse was analyzed using response surface methodology. The yeast extract concentration and the temperature had a significant influence for hydrogen production (p-value 0.027 and 0.009, respectively). Maximum hydrogen production (17.7 mmol/L) was observed with 3 g/L yeast extract at 60 °C (C10). In this conditions were produced acetic acid (50.44 mg/L), butyric acid (209.71 mg/L), ethanol (38.4 mg/L), and methane (6.27 mmol/L). Lower hydrogen productions (3.5 mmol/L and 3.9 mmol/L) were observed under the conditions C7 (2 g/L of yeast extract, 35.8 °C) and C9 (1 g/L of yeast extract, 40 °C), respectively. The low yeast extract concentration and low temperature caused a negative effect on the hydrogen production. By means of denaturing gradient gel electrophoresis 20% of similarity was observed between the archaeal population of mesophilic (35 and 40 °C) and thermophilic (50, 60 and 64 °C) reactors. Likewise, similarity of 22% was noted between the bacterial population for the reactors with the lowest hydrogen production (3.5 mmol/L), at 35.8 °C and with the highest hydrogen production (17.7 mmol/L) at 60 °C demonstrating that microbial population modification was a function of incubation temperature variation.

  7. Medium optimization for the production of recombinant nattokinase by Bacillus subtilis using response surface methodology.

    Science.gov (United States)

    Chen, Po Ting; Chiang, Chung-Jen; Chao, Yun-Peng

    2007-01-01

    Nattokinase is a potent fibrinolytic enzyme with the potential for fighting cardiovascular diseases. Most recently, a new Bacillus subtilis/Escherichia coli (B. subtilis/E. coli) shuttle vector has been developed to achieve stable production of recombinant nattokinase in B. subtilis (Chen; et al. 2007, 23, 808-813). With this developed B. subtilis strain, the design of an optimum but cost-effective medium for high-level production of recombinant nattokinase was attempted by using response surface methodology. On the basis of the Plackett-Burman design, three critical medium components were selected. Subsequently, the optimum combination of selected factors was investigated by the Box-Behnken design. As a result, it gave the predicted maximum production of recombinant nattokinase with 71 500 CU/mL for shake-flask cultures when the concentrations of soybean hydrolysate, potassium phosphate, and calcium chloride in medium were at 6.100, 0.415, and 0.015%, respectively. This was further verified by a duplicated experiment. Moreover, the production scheme based on the optimum medium was scaled up in a fermenter. The batch fermentation of 3 L was carried out by controlling the condition at 37 degrees C and dissolved oxygen reaching 20% of air saturation level while the fermentation pH was initially set at 8.5. Without the need for controlling the broth pH, recombinant nattokinase production with a yield of 77 400 CU/mL (corresponding to 560 mg/L) could be obtained in the culture broth within 24 h. In particular, the recombinant B. subtilis strain was found fully stable at the end of fermentation when grown on the optimum medium. Overall, it indicates the success of this experimental design approach in formulating a simple and cost-effective medium, which provides the developed strain with sufficient nutrient supplements for stable and high-level production of recombinant nattokinase in a fermenter.

  8. Equity portfolio optimization: A DEA based methodology applied to the Zagreb Stock Exchange

    Directory of Open Access Journals (Sweden)

    Margareta Gardijan

    2015-10-01

    Full Text Available Most strategies for selection portfolios focus on utilizing solely market data and implicitly assume that stock markets communicate all relevant information to all market stakeholders, and that these markets cannot be influenced by investor activities. However convenient, this is a limited approach, especially when applied to small and illiquid markets such as the Croatian market, where such assumptions are hardly realistic. Thus, there is a demand for including other sources of data, such as financial reports. Research poses the question of whether financial ratios as criteria for stock selection are of any use to Croatian investors. Financial and market data from selected publicly companies listed on the Croatian capital market are used. A two-stage portfolio selection strategy is applied, where the first stage involves selecting stocks based on the respective Data Envelopment Analysis (DEA efficiency scores. DEA models are becoming popular in stock portfolio selection given that the methodology includes numerous models that provide a great flexibility in selecting inputs and outputs, which in turn are considered as criteria for portfolio selection. Accordingly, there is much room for improvement of the current proposed strategies for selecting portfolios. In the second stage, two portfolio-weighting strategies are applied using equal proportions and score-weighting. To show whether these strategies create outstanding out–of–sample portfolios in time, time-dependent DEA Window Analysis is applied using a reference time of one year, and portfolio returns are compared with the market portfolio for each period. It is found that the financial data are a significant indicator of the future performance of a stock and a DEA-based portfolio strategy outperforms market return.

  9. Parametric optimization for floating drum anaerobic bio-digester using Response Surface Methodology and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    S. Sathish

    2016-12-01

    Full Text Available The main purpose of this study to increase the optimal conditions for biogas yield from anaerobic digestion of agricultural waste (Rice Straw using Response Surface Methodology (RSM and Artificial Neural Network (ANN. In the development of predictive models temperature, pH, substrate concentration and agitation time are conceived as model variables. The experimental results show that the liner model terms of temperature, substrate concentration and pH, agitation time have significance of interactive effects (p < 0.05. The results manifest that the optimum process parameters affected on biogas yield increase from the ANN model when compared to RSM model. The ANN model indicates that it is much more accurate and reckons the values of maximum biogas yield when compared to RSM model.

  10. Optimization of extraction of linarin from Flos chrysanthemi indici by response surface methodology and artificial neural network.

    Science.gov (United States)

    Pan, Hongye; Zhang, Qing; Cui, Keke; Chen, Guoquan; Liu, Xuesong; Wang, Longhu

    2017-05-01

    The extraction of linarin from Flos chrysanthemi indici by ethanol was investigated. Two modeling techniques, response surface methodology and artificial neural network, were adopted to optimize the process parameters, such as, ethanol concentration, extraction period, extraction frequency, and solvent to material ratio. We showed that both methods provided good predictions, but artificial neural network provided a better and more accurate result. The optimum process parameters include, ethanol concentration of 74%, extraction period of 2 h, extraction three times, solvent to material ratio of 12 mL/g. The experiment yield of linarin was 90.5% that deviated less than 1.6% from that obtained by predicted result. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure

    DEFF Research Database (Denmark)

    Lymperatou, Anna; Gavala, Hariklia N.; Skiadas, Ioannis

    2017-01-01

    Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving...... to be optimal (7% w/w NH3, 96 hours, and 0.16 kg/l) in combination to a significant increase of the short term CH4 yield (244% in 17 days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant...... the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH3 concentration, duration and solid-to-liquid ratio. The mild conditions found...

  12. Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using Box-Behnken design and response surface methodology.

    Science.gov (United States)

    Gidwani, Bina; Vyas, Amber

    2016-01-01

    The objective of the present study was to prepare solid lipid nanoparticles (SLNs) of altretamine (ALT) by the hot homogenization and ultrasonication method. The study was conducted using the Box-Behnken design (BBD), with a 3(3) design and a total of 17 experimental runs, performed in combination with response surface methodology (RSM). The SLNs were evaluated for mean particle size, entrapment efficiency, and drug-loading. The optimized formulation, with a desirability factor of 0.92, was selected and characterized. In vitro release studies showed a biphasic release pattern from the SLNs for up to 24 h. The results of % EE (93.21 ± 1.5), %DL (1.15 ± 0.6), and mean diameter of (100.6 ± 2.1) nm, were very close to the predicted values.

  13. Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology

    Science.gov (United States)

    Loqman, Amal; El Bali, Brahim; Lützenkirchen, Johannes; Weidler, Peter G.; Kherbeche, Abdelhak

    2017-11-01

    The current study relates to the removal of a dye [crystal violet (CV)] from aqueous solutions through batch adsorption experiment onto a local clay from Morocco. The clay was characterized by X-ray diffraction, IR spectroscopy, X-ray fluorescence, scanning electron microscope, Brunauer-Emmett-Teller analysis and Fraunhofer diffraction method. The influence of independent variables on the removal efficiency was determined and optimized by response surface methodology using the Box-Behnken surface statistical design. The model predicted maximum adsorption of 81.62% under the optimum conditions of operational parameters (125 mg L-1 initial dye concentration, 2.5 g L-1 adsorbent dose and time of 43 min). Practically, the removal ranges in 27.4-95.3%.

  14. Enzymatic scavenging of oxygen dissolved in water: Application of response surface methodology in optimization of conditions

    Directory of Open Access Journals (Sweden)

    Karimi Afzal

    2012-01-01

    Full Text Available In this work, removal of dissolved oxygen in water through reduction by glucose, which was catalyzed by glucose oxidase – catalase enzyme, was studied. Central composite design (CCD technique was applied to achieve optimum conditions for dissolved oxygen scavenging. Linear, square and interactions between effective parameters were obtained to develop a second order polynomial equation. The adequacy of the obtained model was evaluated by the residual plots, probability-value, coefficient of determination, and Fisher’s variance ratio test. Optimum conditions for activity of two enzymes in water deoxygenation were obtained as follows: pH=5.6, T=40°C, initial substrate concentration [S] = 65.5 mmol/L and glucose oxidase activity [E] = 252 U/Lat excess amount of catalase. The deoxygenation process during 30 seconds, in the optimal conditions, was predicted 98.2%. Practical deoxygenation in the predicted conditions was achieved to be 95.20% which was close to the model prediction.

  15. A reliability as an independent variable (RAIV) methodology for optimizing test planning for liquid rocket engines

    Science.gov (United States)

    Strunz, Richard; Herrmann, Jeffrey W.

    2011-12-01

    The hot fire test strategy for liquid rocket engines has always been a concern of space industry and agency alike because no recognized standard exists. Previous hot fire test plans focused on the verification of performance requirements but did not explicitly include reliability as a dimensioning variable. The stakeholders are, however, concerned about a hot fire test strategy that balances reliability, schedule, and affordability. A multiple criteria test planning model is presented that provides a framework to optimize the hot fire test strategy with respect to stakeholder concerns. The Staged Combustion Rocket Engine Demonstrator, a program of the European Space Agency, is used as example to provide the quantitative answer to the claim that a reduced thrust scale demonstrator is cost beneficial for a subsequent flight engine development. Scalability aspects of major subsystems are considered in the prior information definition inside the Bayesian framework. The model is also applied to assess the impact of an increase of the demonstrated reliability level on schedule and affordability.

  16. METHODOLOGY AND ALGORITHM OF OPTIMIZATION OF THE NEED OF SETTLEMENTS FOR TECHNICAL INSPECTION LINES FOR VEHICLES

    Directory of Open Access Journals (Sweden)

    Maslennikov Valeriy Aleksandrovich

    2016-06-01

    Full Text Available The current methods of predicting the demand of the community for the lines of technical inspection of vehicles do not fully take into account the probabilistic and statistical nature of the complaints of car owners. This results in significant mistakes in the determination of the number of such lines, accompanied by insufficient rhythm of their operation. The design errors related to the complexity of accurate account for calendar fluctuations of the number of appeals can be partially or completely eliminated by using mathematical apparatus of the queuing theory. In this case, the complex technical system is considered as an open multi-channel queuing system with limited queue length. The received flows and serviced requests are considered to be the simplest. From a practical point of view, the replacement of one type of computational model by the other allows ensuring a more sustainable mode of calculating operations using the computer. The paper also provides a calculation expression for defining the lower and upper confidence limits of the dispersion of the average values of the number of arrivals of vehicles at the technical inspection that allows setting the interval of uncertainty for searching the optimal solution.

  17. Sustained release biodegradable solid lipid microparticles: Formulation, evaluation and statistical optimization by response surface methodology

    Directory of Open Access Journals (Sweden)

    Hanif Muhammad

    2017-12-01

    Full Text Available For preparing nebivolol loaded solid lipid microparticles (SLMs by the solvent evaporation microencapsulation process from carnauba wax and glyceryl monostearate, central composite design was used to study the impact of independent variables on yield (Y1, entrapment efficiency (Y2 and drug release (Y3. SLMs having a 10-40 μm size range, with good rheological behavior and spherical smooth surfaces, were produced. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry pointed to compatibility between formulation components and the zeta-potential study confirmed better stability due to the presence of negative charge (-20 to -40 mV. The obtained outcomes for Y1 (29-86 %, Y2 (45-83 % and Y3 (49-86 % were analyzed by polynomial equations and the suggested quadratic model were validated. Nebivolol release from SLMs at pH 1.2 and 6.8 was significantly (p 0.85 value (Korsmeyer- Peppas suggested slow erosion along with diffusion. The optimized SLMs have the potential to improve nebivolol oral bioavailability.

  18. Sustained release biodegradable solid lipid microparticles: Formulation, evaluation and statistical optimization by response surface methodology.

    Science.gov (United States)

    Hanif, Muhammad; Khan, Hafeez Ullah; Afzal, Samina; Mahmood, Asif; Maheen, Safirah; Afzal, Khurram; Iqbal, Nabila; Andleeb, Mehwish; Abbas, Nazar

    2017-12-20

    For preparing nebivolol loaded solid lipid microparticles (SLMs) by the solvent evaporation microencapsulation process from carnauba wax and glyceryl monostearate, central composite design was used to study the impact of independent variables on yield (Y1), entrapment efficiency (Y2) and drug release (Y3). SLMs having a 10-40 μm size range, with good rheological behavior and spherical smooth surfaces, were produced. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry pointed to compatibility between formulation components and the zeta-potential study confirmed better stability due to the presence of negative charge (-20 to -40 mV). The obtained outcomes for Y1 (29-86 %), Y2 (45-83 %) and Y3 (49-86 %) were analyzed by polynomial equations and the suggested quadratic model were validated. Nebivolol release from SLMs at pH 1.2 and 6.8 was significantly (p 0.85 value (Korsmeyer- Peppas) suggested slow erosion along with diffusion. The optimized SLMs have the potential to improve nebivolol oral bioavailability.

  19. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    Science.gov (United States)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  20. Enzymatic Phorbol Esters Degradation using the Germinated Jatropha Curcas Seed Lipase as Biocatalyst: Optimization Process Conditions by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Avita Kusuma Wardhani

    2016-10-01

    Full Text Available Utilization of Jatropha curcas seed cake is limited by the presence of phorbol esters (PE, which are the main toxic compound and heat stable. The objective of this research was to optimize the reaction conditions of the enzymatic PE degradation of the defatted Jatropha curcas seed cake (DJSC using the acetone-dried lipase from the germinated Jatropha curcas seeds as a biocatalyst. Response Surface Methodology (RSM using three-factors-three-levels Box-Behnken design was used to evaluate the effects of the reaction time, the ratio of buffer volume to DJSC, and the ratio of enzyme to DJSC on PE degradation. The results showed that the optimum conditions of PE degradation were 29.33 h, 51.11 : 6 (mL/g, and 30.10 : 5 (U/g cake for the reaction time, the ratio of buffer volume to DJSC, and the ratio of enzyme to DJSC, respectively. The predicted degradation of PE was 98.96% and not significantly different with the validated data of PE degradation. PE content was 0.035 mg/g, in which it was lower than PE in non-toxic Jatropha seeds. The results indicated that enzymatic degradation of PE might be a promising method for degradation of PE.  Copyright © 2016 BCREC GROUP. All rights reserved Received: 22nd December 2015; Revised: 1st April 2016; Accepted: 14th April 2016 How to Cite: Wardhani, A.K., Hidayat, C., Hastuti, P. (2016. Enzymatic Phorbol Esters Degradation using the Germinated Jatropha Curcas Seed Lipase as Biocatalyst: Optimization Process Conditions by Response Surface Methodology. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 346-353 (doi:10.9767/bcrec.11.3.574.346-353 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.574.346-353

  1. Biodiesel Production from Non-Edible Beauty Leaf (Calophyllum inophyllum Oil: Process Optimization Using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Mohammad I. Jahirul

    2014-08-01

    Full Text Available In recent years, the beauty leaf plant (Calophyllum Inophyllum is being considered as a potential 2nd generation biodiesel source due to high seed oil content, high fruit production rate, simple cultivation and ability to grow in a wide range of climate conditions. However, however, due to the high free fatty acid (FFA content in this oil, the potential of this biodiesel feedstock is still unrealized, and little research has been undertaken on it. In this study, transesterification of beauty leaf oil to produce biodiesel has been investigated. A two-step biodiesel conversion method consisting of acid catalysed pre-esterification and alkali catalysed transesterification has been utilized. The three main factors that drive the biodiesel (fatty acid methyl ester (FAME conversion from vegetable oil (triglycerides were studied using response surface methodology (RSM based on a Box-Behnken experimental design. The factors considered in this study were catalyst concentration, methanol to oil molar ratio and reaction temperature. Linear and full quadratic regression models were developed to predict FFA and FAME concentration and to optimize the reaction conditions. The significance of these factors and their interaction in both stages was determined using analysis of variance (ANOVA. The reaction conditions for the largest reduction in FFA concentration for acid catalysed pre-esterification was 30:1 methanol to oil molar ratio, 10% (w/w sulfuric acid catalyst loading and 75 °C reaction temperature. In the alkali catalysed transesterification process 7.5:1 methanol to oil molar ratio, 1% (w/w sodium methoxide catalyst loading and 55 °C reaction temperature were found to result in the highest FAME conversion. The good agreement between model outputs and experimental results demonstrated that this methodology may be useful for industrial process optimization for biodiesel production from beauty leaf oil and possibly other industrial processes as well.

  2. Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology

    International Nuclear Information System (INIS)

    Garcia-Segura, Sergi; Almeida, Lucio Cesar; Bocchi, Nerilso; Brillas, Enric

    2011-01-01

    Highlights: → The herbicide MCPA is quickly mineralized by solar photoelectro-Fenton. → A CCRD allowed the optimization of current, Fe 2+ content and solution pH. → TOC, MCE and energy consumption are described by response surface methodology. → Generated hydroxyl radical destroys MCPA and its aromatic oxidation by-products. → UV light of solar irradiation photolyzes the Fe(III)-carboxylate complexes produced. - Abstract: A central composite rotatable design and response surface methodology (RSM) were used to optimize the experimental variables of the solar photoelectro-Fenton (SPEF) treatment of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). The experiments were made with a flow plant containing a Pt/air-diffusion reactor coupled to a solar compound parabolic collector (CPC) under recirculation of 10 L of 186 mg L -1 MCPA solutions in 0.05 M Na 2 SO 4 at a liquid flow rate of 180 L h -1 with an average UV irradiation intensity of about 32 W m -2 . The optimum variables found for the SPEF process were 5.0 A, 1.0 mM Fe 2+ and pH 3.0 after 120 min of electrolysis. Under these conditions, 75% of mineralization with 71% of current efficiency and 87.7 kWh kg -1 TOC of energy consumption were obtained. MCPA decayed under the attack of generated hydroxyl radicals following a pseudo-first-order kinetics. Hydroxyl radicals also destroyed 4-chloro-2-methylphenol, methylhydroquinone and methyl-p-benzoquinone detected as aromatic by-products. Glycolic, maleic, fumaric, malic, succinic, tartronic, oxalic and formic acids were identified as generated carboxylic acids, which form Fe(III) complexes that are quickly photodecarboxylated by the UV irradiation of sunlight at the CPC photoreactor. A reaction sequence for the SPEF degradation of MCPA was proposed.

  3. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology.

    Science.gov (United States)

    Sun, Wen-Jing; Zhao, Hong-Xia; Cui, Feng-Jie; Li, Yun-Hong; Yu, Si-Lian; Zhou, Qiang; Qian, Jing-Ya; Dong, Ying

    2013-07-08

    Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid's oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One-factor-at-a-time experiments and response surface methodology (RSM). The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from "one-factor-at-a-time" experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time. The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives.

  4. Immobilized Rhizopus oryzae lipase catalyzed synthesis of palm stearin and cetyl alcohol wax esters: Optimization by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Gargouri Youssef

    2011-06-01

    Full Text Available Abstract Background Waxes are esters of long-chain fatty acids and long-chain alcohols. Their principal natural sources are animals (sperm whale oil and vegetables (jojoba which are expensive and not easily available. Wax esters synthesized by enzymatic transesterification, using palm stearin as raw material, can be considered as an alternative to natural ones. Results Palm stearin is a solid fraction obtained by fractionation of palm oil. Palm stearin was esterified with cetyl alcohol to produce a mixture of wax esters. A non-commercial immobilized lipase from Rhizopus oryzae was used as biocatalyst. Response surface methodology was employed to determine the effects of the temperature (30-50°C, the enzyme concentration (33.34-300 IU/mL, the alcohol/palm stearin molar ratio (3-7 mol/mol and the substrate concentration (0.06-0.34 g/mL on the conversion yield of palm stearin. Under optimal conditions (temperature, 30°C; enzyme concentration, 300 IU/mL; molar ratio 3 and substrate concentration 0.21 g/mL a high conversion yield of 98.52% was reached within a reaction time of 2 h. Conclusions Response surface methodology was successfully applied to determine the optimum operational conditions for synthesis of palm stearin based wax esters. This study may provide useful tools to develop economical and efficient processes for the synthesis of wax esters.

  5. Towards the methodological optimization of the moss bag technique in terms of contaminants concentrations and replicability values

    Science.gov (United States)

    Ares, A.; Fernández, J. A.; Carballeira, A.; Aboal, J. R.

    2014-09-01

    The moss bag technique is a simple and economical environmental monitoring tool used to monitor air quality. However, routine use of the method is not possible because the protocols involved have not yet been standardized. Some of the most variable methodological aspects include (i) selection of moss species, (ii) ratio of moss weight to surface area of the bag, (iii) duration of exposure, and (iv) height of exposure. In the present study, the best option for each of these aspects was selected on the basis of the mean concentrations and data replicability of Cd, Cu, Hg, Pb and Zn measured during at least two exposure periods in environments affected by different degrees of contamination. The optimal choices for the studied aspects were the following: (i) Sphagnum denticulatum, (ii) 5.68 mg of moss tissue for each cm-2 of bag surface, (iii) 8 weeks of exposure, and (iv) 4 m height of exposure. Duration of exposure and height of exposure accounted for most of the variability in the data. The aim of this methodological study was to provide data to help establish a standardized protocol that will enable use of the moss bag technique by public authorities.

  6. Process Optimization of Eco-Friendly Flame Retardant Finish for Cotton Fabric: a Response Surface Methodology Approach

    Science.gov (United States)

    Yasin, Sohail; Curti, Massimo; Behary, Nemeshwaree; Perwuelz, Anne; Giraud, Stephane; Rovero, Giorgio; Guan, Jinping; Chen, Guoqiang

    The n-methylol dimethyl phosphono propionamide (MDPA) flame retardant compounds are predominantly used for cotton fabric treatments with trimethylol melamine (TMM) to obtain better crosslinking and enhanced flame retardant properties. Nevertheless, such treatments are associated with a toxic issue of cancer-causing formaldehyde release. An eco-friendly finishing was used to get formaldehyde-free fixation of flame retardant to the cotton fabric. Citric acid as a crosslinking agent along with the sodium hypophosphite as a catalyst in the treatment was utilized. The process parameters of the treatment were enhanced for optimized flame retardant properties, in addition, low mechanical loss to the fabric by response surface methodology using Box-Behnken statistical design experiment methodology was achieved. The effects of concentrations on the fabric’s properties (flame retardancy and mechanical properties) were evaluated. The regression equations for the prediction of concentrations and mechanical properties of the fabric were also obtained for the eco-friendly treatment. The R-squared values of all the responses were above 0.95 for the reagents used, indicating the degree of relationship between the predicted values by the Box-Behnken design and the actual experimental results. It was also found that the concentration parameters (crosslinking reagents and catalysts) in the treatment formulation have a prime role in the overall performance of flame retardant cotton fabrics.

  7. Optimization of the ethanolysis of Raphanus sativus (L. Var.) crude oil applying the response surface methodology.

    Science.gov (United States)

    Domingos, Anderson Kurunczi; Saad, Emir Bolzani; Wilhelm, Helena Maria; Ramos, Luiz Pereira

    2008-04-01

    Raphanus sativus (L. Var) is a perennial plant of the Brassicaceae (or Cruciferae) family whose oil has not been investigated in detail for biodiesel production, particularly when ethanol is used as the alcoholysis agent. In this work, response surface methodology (RSM) was used to determine the optimum condition for the ethanolysis of R. sativus crude oil. Three process variables were evaluated at two levels (2(3) experimental design): the ethanol:oil molar ratio (6:1 and 12:1), the catalyst concentration in relation to oil mass (0.4 and 0.8 wt% NaOH) and the alcoholysis temperature (45 and 65 degrees C). When the experimental results were tentatively adjusted by linear regression, only 58.15% of its total variance was explained. Therefore, a quadratic model was investigated to improve the poor predictability of the linear model. To apply the quadratic model, the 2(3) experimental design had to be expanded to a circumscribed central composite design. This allowed the development of a response surface that was able to predict 97.75% of the total variance of the system. Validation was obtained by performing one ethanolysis experiment at the conditions predicted by the model (38 degrees C, ethanol:oil molar ratio of 11.7:1 and 0.6 wt% NaOH). The resulting ester yield (104.10 wt% or 99.10% of the theoretical yield of 105.04 wt%) was shown to be the highest among all conditions tested in this study. The second ethanolysis stage of the best RSM product required 50% less ethanol and 90% less catalyst consumption. The amount of ethyl esters obtained after this procedure reached 94.5% of the theoretical yield. The resulting ethyl esters were shown to comply with most of the Brazilian biodiesel specification parameters except for oxidation stability. Addition of 500 ppm of BHT to the esters, however, complied with the specification target of 6h. The application of 2 wt% Magnesol after the second ethanolysis stage eliminated the need for water washing and helped generate a

  8. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of multi-biomass supply chains and biomass to biofuel processing technologies. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  9. Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Laureano Costarrosa

    2018-01-01

    Full Text Available Nowadays, biodiesel has become a very promising alternative to fossil diesel fuel, regarding environmental concerns and fuel resource depletion. Biodiesel is usually produced through homogeneous or heterogeneous transesterification of different fatty raw materials. Although main research has been carried out with homogenous catalysts, heterogeneous catalysts may be of interest due to ease of recovery and recycling, as well as readiness for continuous processing. In this work, calcined Mg-Al hydrotalcite (HT was used for the heterogeneous transesterification of waste cooking oil. Three reaction parameters, namely, reaction time, amount of catalyst, and methanol-to-oil molar ratio, were optimized by means of Response Surface Methodology (RSM at constant temperature (65 °C, using a Box-Behnken design. Optimal fatty acid methyl ester (FAME content (86.23% w/w FAME/sample was predicted by the model with an R-squared value of 98.45%, using 3.39 g of HT (8.5% w/w oil and an 8:1 methanol-oil molar ratio, for a duration of 3.12 h. It was observed that calcination of HT, while avoiding the previous washing step, allowed the presence of chemical species that enhanced the effect of the catalyst. It can be concluded from this field trial that calcined and nonwashed Mg-Al hydrotalcite may be considered an effective basic catalyst for the production of biodiesel from waste cooking oil. Also, RSM proved to be a useful tool for predicting biodiesel yield.

  10. Optimization of conditions for probiotic curd formulation by Enterococcus faecium MTCC 5695 with probiotic properties using response surface methodology.

    Science.gov (United States)

    Ramakrishnan, Vrinda; Goveas, Louella Concepta; Prakash, Maya; Halami, Prakash M; Narayan, Bhaskar

    2014-11-01

    Enterococcus faecium MTCC 5695 possessing potential probiotic properties as well as enterocin producing ability was used as starter culture. Effect of time (12-24 h) and inoculum level (3-7 % v/v) on cell growth, bacteriocin production, antioxidant property, titrable acidity and pH of curd was studied by response surface methodology (RSM). The optimized conditions were 26.48 h and 2.17%v/v inoculum and the second order model validated. Co cultivation studies revealed that the formulated product had the ability to prevent growth of foodborne pathogens that affect keeping quality of the product during storage. The results indicated that application of E. faecium MTCC 5695 along with usage of optimized conditions attributed to the formation of highly consistent well set curd with bioactive and bioprotective properties. Formulated curd with potential probiotic attributes can be used as therapeutic agent for the treatment of foodborne diseases like Traveler's diarrhea and gastroenteritis which thereby help in improvement of bowel health.

  11. Optimization of the production of bio diesel from egusi melon (Colocynthis Citrullus L.) oil using response surface methodology

    International Nuclear Information System (INIS)

    Giwa, S.O.; Chuah, L.A.; Nor Mariah Adam

    2009-01-01

    Full text: In the present work, the response surface methodology (RSM), based on a central composite design (CCD), was used to determine the optimum conditions for the transesterification of crude egusi melon (Colocynthis citrullus L.) seed oil. Three process factors were evaluated at three levels (2 3 experimental design): the oil/ methanol molar ratio, the amount of catalyst in relation to the oil mass, and the reaction temperature. The amounts of catalyst and reaction temperature were the most significant (P 2 = 0.98). Using multiple regression analysis a quadratic polynomial equation was obtained for predicting methyl ester yield of the transesterification reaction. The squared terms of catalyst amount (P < 0.0001) and oil/ methanol molar ratio (P < 0.0072) showed significant effects on esters yield. The optimum reaction conditions for synthesis of EMOME were 1:6.55 oil-to-methanol molar ratio, 1.22 % catalyst amounts, and 65 degree Celsius reaction temperature resulting in a yield of 84.01 %. Using these optimal factor values under experimental conditions a methyl esters yield of 84.04 % was obtained on an average, and this value was well within the range predicted by the model. RSM was found to be a suitable technique for optimizing transesterification of egusi melon seed oil. Fuel properties of EMOME measured according to accepted methods were found to satisfy all prescribed ASTM (D 6751) and EN 14214 specifications. (author)

  12. Response surface methodology optimization of lipase catalyzed transesterification of Jatropha curcas L. seed oil for biodiesel production

    International Nuclear Information System (INIS)

    Li, Yingxia; Wang, Yun; Guan, Xiu Li; Yu, Dong Dong

    2013-01-01

    The immobilized lipase-catalyzed transesterification of Jatropha curcas L. seed oil and methanol for biodiesel production in tert-butanol was investigated. The effects of different tert-butanol volume, methanol molar ratio, reaction temperature, reaction time and immobilized lipase amount on the total conversion were systematically analyzed by response surface methodology (RSM). RSM analysis showed good correspondence between experimental and predicted values. The optimal conditions for the transesterification were a reaction time of 17.355 h, a reaction temperature of 34.868 °C, an immobilized lipase amount of 12.435 %, a methanol molar ratio of 5.282:1, a tert-butanol volume ratio of 0.577:1. The optimal predicted yield of fatty acid methyl esters (FAME) was 88.5 % and the actual value was 88.1 %. The predicted yield of fatty acid esters and the real one was very close, indicating that the RSM based on central composite design (CCD) was adaptable for a FAME study for the present transesterification system. Moreover, the infrared spectrum of biodiesel showed the characteristic bands of C=O, O–C–O, C=C and –(CH_2)n–. Furthermore, GC-linked mass spectrometry showed that biodiesel was mainly composed of the methyl esters of hexadecanoic, 9,12-octadecadienoic and 9-octadecadienoic acid

  13. Response Surface Methodology to Optimize Enzymatic Preparation of Deapio-Platycodin D and Platycodin D from Radix Platycodi

    Directory of Open Access Journals (Sweden)

    Jian Liang

    2012-03-01

    Full Text Available In the present work, we reported the enzymatic preparation of deapio-platycodin D (dPD and platycodin D (PD optimized by response surface methodology (RSM from Radix Platycodi. During investigation of the hydrolysis of crude platycosides by various glycoside hydrolases, snailase showed a strong ability to transform deapio-platycoside E (dPE and platycoside E (PE into dPD and PD with 100% conversion. RSM was used to optimize the effects of the reaction temperature (35–45 °C, enzyme load (5–20%, and reaction time (4–24 h on the conversion process. Validation of the RSM model was verified by the good agreement between the experimental and the predicted values of dPD and PD conversion yield. The optimum preparation conditions were as follows: temperature, 43 °C; enzyme load, 15%; reaction time, 22 h. The biotransformation pathways were dPE→dPD3→dPD and PE→PD3→PD, respectively. The determined method may be highly applicable for the enzymatic preparation of dPD and PD for medicinal purposes and also for commercial use.

  14. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology.

    Science.gov (United States)

    Xu, Dong-Ping; Zhou, Yue; Zheng, Jie; Li, Sha; Li, An-Na; Li, Hua-Bin

    2015-12-24

    An ultrasound-assisted extraction (UAE) method was developed for the efficient extraction of natural antioxidants from the flowers of Jatropha integerrima. Four independent variables, including ethanol concentration, solvent/material ratio, ultrasound irradiation time and temperature were studied by single factor experiments. Then, the central composite rotatable design and response surface methodology were employed to investigate the effect of three key parameters (ethanol concentration, solvent/material ratio, and ultrasound irradiation time) on the antioxidant activities of the flower extracts. The optimal extraction conditions were an ethanol concentration of 59.6%, solvent/material ratio of 50:1, ultrasound irradiation time of 7 min, and ultrasound irradiation temperature of 40 °C. Under these conditions, the optimized experimental value was 1103.38 ± 16.11 µmol Trolox/g dry weight (DW), which was in accordance with the predicted value (1105.49 µmol Trolox/g DW). Furthermore, the antioxidant activities of flower extracts obtained by UAE were compared with those produced by the traditional maceration and Soxhlet extraction methods, and UAE resulted in higher antioxidant activities after a shorter time at a lower temperature. The results obtained are helpful for the full utilization of Jatropha integerrima, and also indicate that ultrasound-assisted extraction is an efficient method for the extraction of natural antioxidants from plant materials.

  15. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Dong-Ping Xu

    2015-12-01

    Full Text Available An ultrasound-assisted extraction (UAE method was developed for the efficient extraction of natural antioxidants from the flowers of Jatropha integerrima. Four independent variables, including ethanol concentration, solvent/material ratio, ultrasound irradiation time and temperature were studied by single factor experiments. Then, the central composite rotatable design and response surface methodology were employed to investigate the effect of three key parameters (ethanol concentration, solvent/material ratio, and ultrasound irradiation time on the antioxidant activities of the flower extracts. The optimal extraction conditions were an ethanol concentration of 59.6%, solvent/material ratio of 50:1, ultrasound irradiation time of 7 min, and ultrasound irradiation temperature of 40 °C. Under these conditions, the optimized experimental value was 1103.38 ± 16.11 µmol Trolox/g dry weight (DW, which was in accordance with the predicted value (1105.49 µmol Trolox/g DW. Furthermore, the antioxidant activities of flower extracts obtained by UAE were compared with those produced by the traditional maceration and Soxhlet extraction methods, and UAE resulted in higher antioxidant activities after a shorter time at a lower temperature. The results obtained are helpful for the full utilization of Jatropha integerrima, and also indicate that ultrasound-assisted extraction is an efficient method for the extraction of natural antioxidants from plant materials.

  16. A methodology for justification and optimization of countermeasures for milk after a nuclear accident and its application

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Han, Moon Hee; Kim, Eun Han; Cho, Gyu Seong

    1998-01-01

    The methodology for justification and optimization of the countermeasures related with contamination management of milk was designed based on the cost and benefit analysis. The application results were discussed for the deposition on August 15, when pasture is fully developed in Korean agricultural conditions. A dynamic food chain model DYNACON was used to estimate the time-dependent radioactivity of milk after the deposition. The considered countermeasures are (1) the ban of milk consumption (2) the substitution of clean fodder, which are effective in reducing the ingestion dose as well as simple and easy to carry out in the first year after the deposition. The total costs of the countermeasures were quantitatively estimated in terms of cost equivalent of doses and monetary costs. It is obvious that a fast reaction after the deposition is an important factor in cost effectiveness of the countermeasures. In most cases, the substitution of clean fodder was more effectiveness of the countermeasures. In most cases, the substitution of clean fodder was more effective countermeasure than the ban of consumption. A fast reaction after the deposition made longer justifiable/optimal duration of the countermeasure

  17. Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology.

    Science.gov (United States)

    Radaei, Payam; Mashayekhan, Shohreh; Vakilian, Saeid

    2017-06-01

    Electrospray ionization is a wide spread technique for producing polymeric microcarriers (MCs) by applying electrostatic force and ionic cross-linker, simultaneously. In this study, fabrication process of gelatin-chitosan MCs and its optimization using the Response Surface Methodology (RSM) is reported. Gelatin/chitosan (G/C) blend ratio, applied voltage and feeding flow rate, their individual and interaction effects on the diameter and mechanical strength of the MCs were investigated. The obtained models for diameter and mechanical strength of MCs have a quadratic relationship with G/C blend ratio, applied voltage and feeding flow rate. Using the desirability curve, optimized G/C blend ratios that are introduced, include the desirable quantities for MCs diameter and mechanical strength. MCs of the same desirable diameter (350μm) and different G/C blend ratio (1, 2, and 3) were fabricated and their elasticity was investigated via Atomic Force Microscopy (AFM). The biocompatibility of the MCs was evaluated using MTT assay. The results showed that human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) could attach and proliferate on fabricated MCs during 7days of culturing especially on those prepared with G/C blend ratios of 1 and 2. Such gelatin-chitosan MCs may be considered as a promising candidate for injectable tissue engineering scaffolds, supporting attachment and proliferation of hUCMSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Optimization of process variables on flexural properties of epoxy/organo-montmorillonite nanocomposite by response surface methodology

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available This study attempted to investigate the preparation and optimization of the flexural properties for epoxy/organomontmorillonite (OMMT nanocomposites. In-situ polymerization method was used to prepare epoxy/OMMT nanocomposites. The diglycidyl ether bisphenol A (DGEBA and curing agent were mixed first, followed by the addition of OMMT. In this study, computer aided statistical methods of experimental design (Response Surface Methodology, RSM was used to investigate the process variables on the flexural properties of epoxy/4wt% OMMT nanocomposites. Speed of mechanical stirrer, post-curing time and post-curing temperature were chosen as process variables in the experimental design. Results showed that the speed of mechanical stirrer, post-curing time and post-curing temperature were able to influence the flexural modulus and flexural yield stress of epoxy/4 wt% OMMT nanocomposites. The results of optimization showed that the design of experiment (DOE has six combination of operating variables which have been obtained in order to attain the greatest overall desirability.

  19. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure.

    Science.gov (United States)

    Lymperatou, Anna; Gavala, Hariklia N; Skiadas, Ioannis V

    2017-11-01

    Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH 3 concentration, duration and solid-to-liquid ratio. The mild conditions found to be optimal (7%w/w NH 3 , 96h, and 0.16kg/L) in combination to a significant increase of the short term CH 4 yield (244% in 17days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant solubilization of hemicellulose, while no lignin removal or loss of cellulose occurred under optimal conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology

    International Nuclear Information System (INIS)

    Zhang Zhanmei; Zheng Huaili

    2009-01-01

    Response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the operating conditions in decolorization of acid green 20 (AG 20) by ultrasonic irradiation in the presence of H 2 O 2 . The effects of three operating variables, ultrasonic power density, initial pH value of dye solution and H 2 O 2 concentration on the decolorization efficiency of AG 20 were evaluated. A quadratic model for AG 20 decolorization was proposed. Analysis of variance (ANOVA) indicated that the proposed quadratic model could be used to navigate the design space. The proposed model was approximately in accordance with the experimental case with correlation coefficients R 2 and R adj 2 of 0.9995 and 0.9984, respectively. The optimum operating conditions for AG 20 decolorization were found to be 1.08 W/mL of ultrasonic power density, 4.85 of initial pH and 1.94 mM of H 2 O 2 concentration, respectively. The predicted decolorization rate under the optimum conditions determined by RSM was 96.8%. Confirmatory tests were carried out under the optimum conditions and the decolorization rate of 96.3% was observed, which closely agreed with the predicted value. The results confirmed that RSM based on Box-Behnken design was an accurate and reliable method to optimize the operating conditions of AG 20 decolorization.

  1. Optimization of Maillard reaction with ribose for enhancing anti-allergy effect of fish protein hydrolysates using response surface methodology.

    Science.gov (United States)

    Yang, Sung-Yong; Kim, Se-Wook; Kim, Yoonsook; Lee, Sang-Hoon; Jeon, Hyeonjin; Lee, Kwang-Won

    2015-06-01

    Halibut is served on sushi and as sliced raw fish fillets. We investigated the optimal conditions of the Maillard reaction (MR) with ribose using response surface methodology to reduce the allergenicity of its protein. A 3-factored and 5-leveled central composite design was used, where the independent variables were substrate (ribose) concentration (X1, %), reaction time (X2, min), and pH (X3), while the dependent variables were browning index (Y1, absorbance at 420nm), DPPH scavenging (Y2, EC50 mg/mL), FRAP (Y3, mM FeSO4/mg extract) and β-hexosaminidase release (Y4, %). The optimal conditions were obtained as follows: X1, 28.36%; X2, 38.09min; X3, 8.26. Maillard reaction products of fish protein hydrolysate (MFPH) reduced the amount of nitric oxide synthesis compared to the untreated FPH, and had a significant anti-allergy effect on β-hexosaminidase and histamine release, compared with that of the FPH control. We concluded that MFPH, which had better antioxidant and anti-allergy activities than untreated FPH, can be used as an improved dietary source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Optimization of free radical scavenging capacity and pH of Hylocereus polyrhizus peel by Response Surface Methodology

    Science.gov (United States)

    Putranto, A. W.; Dewi, S. R.; Puspitasari, Y.; Nuriah, F. A.

    2018-03-01

    Red dragon fruit (Hylocereus polyrhizus) peel, a by-product of juice processing, contains a high antioxidant that can be used for nutraceuticals. Hence, it is important to extract and investigate its antioxidant stability. The aim of this study was to optimize the free radical scavenging capacity and pH of H. polyrhizus peel extract using Central Composite Design (CCD) under Response Surface Methodology (RSM). The extraction of H. polyrhizus peel was done by using green-Pulsed Electric Field (PEF)-assisted extraction method. Factors optimized were electric field strength (kV/cm) and extraction time (seconds). The result showed that the correlation between responses (free radical-scavenging capacity and pH) and two factors was quadratic model. The optimum conditions was obtained at the electric field strength of 3.96 kV/cm, and treatment time of 31.9 seconds. Under these conditions, the actual free radical-scavenging capacity and pH were 75.86 ± 0.2 % and 4.8, respectively. The verification model showed that the actual values are in accordance with the predicted values, and have error rate values of free radical-scavenging capacity and pH responses were 0.1% and 3.98%, respectively. We suggest to extract the H. polyrhizus peel using a green and non-thermal extraction technology, PEF-assisted extraction, for research, food applications and nutraceuticals industry.

  3. Sorption of phenol from synthetic aqueous solution by activated saw dust: Optimizing parameters with response surface methodology

    Directory of Open Access Journals (Sweden)

    Omprakash Sahu

    2017-12-01

    Full Text Available Organic pollutants have an adverse effect on the neighboring environment. Industrial activates are the major sources of different organic pollutants. These primary pollutants react with surrounding and forms secondary pollutant, which persists for a long time. The present investigation has been carried out on the surface of activated sawdust for phenol eliminations. The process parameters initial concentration, contact time, adsorbent dose and pH were optimized by the response surface methodology (RSM. The numerical optimization of sawdust (SD, initial concentration 10 mg/l, contact time 1.5 h, adsorbent dose 4 g and pH 2, the optimum response result was 78.3% adsorption. Analysis of variance (ANOVA was used to judge the adequacy of the central composite design and quadratic model found to be suitable. The coefficient of determination values was found to be maximum Adj R2 0.7223, and Pre R2 0.5739 and significant regression at 95% confidence level values.

  4. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin; Beleli, Buse [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2015-09-05

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model.

  5. Optimization of sulfamethoxazole degradation by TiO2/hydroxyapatite composite under ultraviolet irradiation using response surface methodology

    International Nuclear Information System (INIS)

    Chun, Suk Young; Kim, Ji Tae; Chang, Soon Woong; An, Sang Woo; Lee, Si Jin

    2014-01-01

    A titanium dioxide/hydroxyapatite/ultraviolet (TiO 2 /HAP/UV-A) system was used to remove sulfamethoxazole (SMX) from water in a second-order response surface methodology (RSM) experiment with a three-level Box-Behnken design (BBD) for optimization. The effects of both the primary and secondary interaction effects of three photocatalytic reaction variables were examined: the concentration of SMX (X 1 ), dose of TiO 2 /HAP composite (X 2 ), and UV intensity (X 3 ). The UV intensity and TiO 2 /HAP dose significantly influence the SMX and total organic carbon (TOC) removal (p<0.001). However, the SMX and TOC removal are enhanced with increasing TiO 2 /HAP dose up to certain levels, and further increases in the TiO 2 /HAP dose result in adverse effects due to hydroxyl radical scavenging at higher catalyst concentrations. Complete removal of SMX was achieved upon UV-A irradiation for 180 min. Under optimal conditions, 51.2% of the TOC was removed, indicating the formation of intermediate products during SMX degradation. The optimal ratio of SMX (mg L -1 ) to TiO 2 /HAP (g L -1 ) to UV (W/L) was 5.4145 mg L -1 to 1.4351 g L -1 to 18 W for both SMX and TOC removal. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for SMX and TOC removal of 99.89% and 51.01%, respectively

  6. Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Radaei, Payam [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639 (Iran, Islamic Republic of); Mashayekhan, Shohreh, E-mail: mashayekhan@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639 (Iran, Islamic Republic of); Vakilian, Saeid [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639 (Iran, Islamic Republic of); Stem Cell Technology Research Center, Tehran 1997775555 (Iran, Islamic Republic of)

    2017-06-01

    Electrospray ionization is a wide spread technique for producing polymeric microcarriers (MCs) by applying electrostatic force and ionic cross-linker, simultaneously. In this study, fabrication process of gelatin-chitosan MCs and its optimization using the Response Surface Methodology (RSM) is reported. Gelatin/chitosan (G/C) blend ratio, applied voltage and feeding flow rate, their individual and interaction effects on the diameter and mechanical strength of the MCs were investigated. The obtained models for diameter and mechanical strength of MCs have a quadratic relationship with G/C blend ratio, applied voltage and feeding flow rate. Using the desirability curve, optimized G/C blend ratios that are introduced, include the desirable quantities for MCs diameter and mechanical strength. MCs of the same desirable diameter (350 μm) and different G/C blend ratio (1, 2, and 3) were fabricated and their elasticity was investigated via Atomic Force Microscopy (AFM). The biocompatibility of the MCs was evaluated using MTT assay. The results showed that human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) could attach and proliferate on fabricated MCs during 7 days of culturing especially on those prepared with G/C blend ratios of 1 and 2. Such gelatin-chitosan MCs may be considered as a promising candidate for injectable tissue engineering scaffolds, supporting attachment and proliferation of hUCMSCs. - Highlights: • Gelatin-chitosan Micro-carriers fabricated by electrospray ionization method. • The effects of blend ratio, the syringe feeding rate, and voltage on micro-carrier optimization were investigated via RSM. • Both diameter and mechanical strength of Micro-carriers have a quadratic relationship with selected parameters. • The optimum conditions with fixed diameter of 350μm and maximized strength in different blend ratios were achieved. • The elasticity and biocompatibility of desirable fabricated micro-carriers characterized.

  7. Optimization of sulfamethoxazole degradation by TiO{sub 2}/hydroxyapatite composite under ultraviolet irradiation using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Suk Young; Kim, Ji Tae; Chang, Soon Woong [Kyonggi University, Suwon (Korea, Republic of); An, Sang Woo [Hanyang University, Seoul (Korea, Republic of); Lee, Si Jin [Korea Environment Corporation, Incheon (Korea, Republic of)

    2014-06-15

    A titanium dioxide/hydroxyapatite/ultraviolet (TiO{sub 2}/HAP/UV-A) system was used to remove sulfamethoxazole (SMX) from water in a second-order response surface methodology (RSM) experiment with a three-level Box-Behnken design (BBD) for optimization. The effects of both the primary and secondary interaction effects of three photocatalytic reaction variables were examined: the concentration of SMX (X{sub 1}), dose of TiO{sub 2}/HAP composite (X{sub 2}), and UV intensity (X{sub 3}). The UV intensity and TiO{sub 2}/HAP dose significantly influence the SMX and total organic carbon (TOC) removal (p<0.001). However, the SMX and TOC removal are enhanced with increasing TiO{sub 2}/HAP dose up to certain levels, and further increases in the TiO{sub 2}/HAP dose result in adverse effects due to hydroxyl radical scavenging at higher catalyst concentrations. Complete removal of SMX was achieved upon UV-A irradiation for 180 min. Under optimal conditions, 51.2% of the TOC was removed, indicating the formation of intermediate products during SMX degradation. The optimal ratio of SMX (mg L{sup -1}) to TiO{sub 2}/HAP (g L{sup -1}) to UV (W/L) was 5.4145 mg L{sup -1} to 1.4351 g L{sup -1} to 18 W for both SMX and TOC removal. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for SMX and TOC removal of 99.89% and 51.01%, respectively.

  8. PRODUCTION OF MEDIUM-CHAIN ACYLGLYCEROLS BY LIPASE ESTERIFICATION IN PACKED BED REACTOR: PROCESS OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ZANARIAH MOHD DOM

    2014-06-01

    Full Text Available Medium-chain acylglycerols (or glycerides are formed of mono-, di- and triacylglycerol classes. In this study, an alternative method to produce MCA from esterifying palm oil fatty acid distillate (PFAD with the presence of oil palm mesocarp lipase (OPML which is a plant-sourced lipase and PFAD is also cheap by-product is developed in a packed bed reactor. The production of medium-chain acylglycerols (MCA by lipase-catalysed esterification of palm oil fatty acid distillate with glycerol are optimize in order to determine the factors that have significant effects on the reaction condition and high yield of MCA. Response surface methodology (RSM was applied to optimize the reaction conditions. The reaction conditions, namely, the reaction time (30-240 min, enzyme load (0.5-1.5 kg, silica gel load (0.2-1.0 kg, and solvent amount (200-600 vol/wt. Reaction time, enzyme loading and solvent amount strongly effect MCA synthesis (p0.05 influence on MCA yield. Best-fitting models were successfully established for MCA yield (R 2 =0.9133. The optimum MCA yield were 75% from the predicted value and 75.4% from the experimental data for 6 kg enzyme loading, a reaction time of 135min and a solvent amount of 350 vol/wt at 65ºC reaction temperature. Verification of experimental results under optimized reaction conditions were conducted, and the results agreed well with the predicted range. Esterification products (mono-, di- and triacylglycerol from the PBR were identified using Thin Layer Chromatography method. The chromatograms showed the successful fractionation of esterified products in this alternative method of process esterification.

  9. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    International Nuclear Information System (INIS)

    Yücel, Ersin; Yücel, Yasin; Beleli, Buse

    2015-01-01

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model

  10. Optimization of oil yield from Hevea brasiliensis seeds through ultrasonic-assisted solvent extraction via response surface methodology

    Directory of Open Access Journals (Sweden)

    Val Irvin F. Mabayo

    2018-01-01

    Full Text Available The demand for oil has been increasing vastly over time, and the source of this has slowly been diminishing. The use of non-food feedstock is seen as a promising alternative source for the production of bio-based fuel. In this study, rubber (Hevea brasiliensis seeds were utilized as biomass in bio-oil production considering that these are non-edible and considered wastes in rubber tree plantations. In the oil extraction process, the rubber seed kernels were oven dried at 100 °C for 24 h, powdered and then dried further at 105 °C for 4 h. After characterization, optimization study was done using Design Expert 7.0 software through central composite design of the response surface methodology. Ultrasonication technology was employed in the oil extraction process which significantly reduced the reaction time needed for extraction to 15 min compared the conventional extraction method of at least 8 h. An optimum rubber seed oil (RSO yield of 30.3 ± 0.3% was obtained using 15 g biomass, 5:1 n-hexane to biomass (mL g−1 ratio, 50 μm resonance amplitude and 60 ± 5 °C temperature at 15 min reaction time. The oil yield at optimum condition was found to have 0.89 g mL−1 density at room temperature, 26.7 cSt kinematic viscosity at 40 °C and high heating value of 39.2 MJ kg−1. The Fourier Transform Infrared Radiation spectroscopy analysis of the RSO, at optimum condition, showed the presence of carboxylic acid and ester carbonyl functional groups which are good indicators as a potential source of biodiesel. Keywords: Hevea brasiliensis, Oil extraction, Optimization, Response surface methodology, Rubber seed oil, Ultrasonic-assisted solvent extraction

  11. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Sohrab [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Nik Ab Rahman, Nik Norulaini [School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia); Balakrishnan, Venugopal [Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang (Malaysia); Alkarkhi, Abbas F.M. [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Ahmad Rajion, Zainul [School of Dental Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Ab Kadir, Mohd Omar, E-mail: akmomar@usm.my [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-15

    Highlights: • Supercritical carbon dioxide sterilization of clinical solid waste. • Inactivation of bacteria in clinical solid waste using supercritical carbon dioxide. • Reduction of the hazardous exposure of clinical solid waste. • Optimization of the supercritical carbon dioxide experimental conditions. - Abstract: Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO{sub 2}) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and gram-negative Escherichia coli in CSW. The effects of SC-CO{sub 2} sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO{sub 2}-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO{sub 2} exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials.

  12. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology.

    Science.gov (United States)

    Shafiee, Fatemeh; Rabbani, Mohammad; Jahanian-Najafabadi, Ali

    2017-01-01

    The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli ( E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3), followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM). Finally, the best culture medium was selected. Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml). Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  13. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Fatemeh Shafiee

    2017-01-01

    Full Text Available Background: The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Materials and Methods: Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli (E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3, followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM. Finally, the best culture medium was selected. Results: Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml. Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. Conclusion: In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  14. Dechlorination of Hexachlorobenzene in Contaminated Soils Using a Nanometallic Al/CaO Dispersion Mixture: Optimization through Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Yuhui Jiang

    2018-04-01

    Full Text Available Hexachlorobenzene (HCB contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time and the interactions between these variables under the Box-Behnken Design (BBD. A high regression coefficient value (R2 = 0.9807 and low p value (<0.0001 of the quadratic model indicated that the model was accurate in predicting the experimental results. The optimal soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m, 17.7% (m/m, and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB → 1,2,3,4-tetrachlorobenzene (TeCB and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils.

  15. BER-3.2 report: Methodology for justification and optimization of protective measures including a case study

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.; Sinkko, K.; Walmod-Larsen, O.; Gjoerup, H.L.; Salo, A.

    1992-07-01

    This report is a part of the Nordic BER-3 project's work to propose and harmonize Nordic intervention levels for countermeasures in case of nuclear accidents. This report focuses on the methodology for justification and optimization of protective measures in case of a reactor accident situation with a large release of fission products to the environment. The down-wind situation is very complicated. The dose to the exposed society is almost unpredictable. The task of the radiation protection experts: To give advice to the decision makers on averted doses by the different actions at hand in the situation - is complicated. That of the decision makers is certainly more: On half of the society they represent, they must decide if they wish to follow the advices from their radiation protection experts or if they wish to add further arguments - economical or political (or personal) - into their considerations before their decisions are taken. Two analysis methods available for handling such situations: cost-benefit analysis and multi-attribute utility analysis are described in principle and are utilized in a case study: The impacts of a Chernobyl-like accident on the Swedish island of Gotland in the Baltic Sea are analyzed with regard to the acute consequences. The use of the intervention principles found in international guidance (IAEA 91, ICRP 91), which can be summarized as the principles of justification, optimization and avoidance of unacceptable doses, are described. How to handle more intangible factors of a psychological or political character is indicated. (au) (6 tabs., 3 ills., 17 refs.)

  16. Application of electrochemical peroxidation (ECP) process for waste-activated sludge stabilization and system optimization using response surface methodology (RSM).

    Science.gov (United States)

    Gholikandi, Gagik Badalians; Kazemirad, Khashayar

    2018-03-01

    In this study, the performance of the electrochemical peroxidation (ECP) process for removing the volatile suspended solids (VSS) content of waste-activated sludge was evaluated. The Fe 2+ ions required by the process were obtained directly from iron electrodes in the system. The performance of the ECP process was investigated in various operational conditions employing a laboratory-scale pilot setup and optimized by response surface methodology (RSM). According to the results, the ECP process showed its best performance when the pH value, current density, H 2 O 2 concentration and the retention time were 3, 3.2 mA/cm 2 , 1,535 mg/L and 240 min, respectively. In these conditions, the introduced Fe 2+ concentration was approximately 500 (mg/L) and the VSS removal efficiency about 74%. Moreover, the results of the microbial characteristics of the raw and the stabilized sludge demonstrated that the ECP process is able to remove close to 99.9% of the coliforms in the raw sludge during the stabilization process. The energy consumption evaluation showed that the required energy of the ECP reactor (about 1.8-2.5 kWh (kg VSS removed) -1 ) is considerably lower than for aerobic digestion, the conventional waste-activated sludge stabilization method (about 2-3 kWh (kg VSS removed) -1 ). The RSM optimization process showed that the best operational conditions of the ECP process comply with the experimental results, and the actual and the predicted results are in good conformity with each other. This feature makes it possible to predict the introduced Fe 2+ concentrations into the system and the VSS removal efficiency of the process precisely.

  17. Employing Response Surface Methodology for the Optimization of Ultrasound Assisted Extraction of Lutein and β-Carotene from Spinach

    Directory of Open Access Journals (Sweden)

    Ammar Altemimi

    2015-04-01

    Full Text Available The extraction of lutein and β-carotene from spinach (Spinacia oleracea L. leaves is important to the dietary supplement industry. A Box-Behnken design and response surface methodology (RSM were used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE of lutein and β-carotene from spinach. Three independent variables, extraction temperature (°C, extraction power (% and extraction time (min were studied. Thin-layer chromatography (TLC followed by UV visualization and densitometry was used as a simple and rapid method for both identification and quantification of lutein and β-carotene during UAE. Methanol extracts of leaves from spinach and authentic standards of lutein and β-carotene were separated by normal-phase TLC with ethyl acetate-acetone (5:4 (v/v as the mobile phase. In this study, the combination of TLC, densitometry, and Box–Behnken with RSM methods were effective for the quantitative analysis of lutein and β-carotene from spinach extracts. The resulting quadratic polynomial models for optimizing lutein and β-carotene from spinach had high coefficients of determination of 0.96 and 0.94, respectively. The optimal UAE settings for output of lutein and β-carotene simultaneously from spinach extracts were an extraction temperature of 40 °C, extraction power of 40% (28 W/cm3 and extraction time of 16 min. The identity and purity of each TLC spot was measured using time-of-flight mass spectrometry. Therefore, UAE assisted extraction of carotenes from spinach can provide a source of lutein and β-carotene for the dietary supplement industry.

  18. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology

    International Nuclear Information System (INIS)

    Hossain, Md. Sohrab; Nik Ab Rahman, Nik Norulaini; Balakrishnan, Venugopal; Alkarkhi, Abbas F.M.; Ahmad Rajion, Zainul; Ab Kadir, Mohd Omar

    2015-01-01

    Highlights: • Supercritical carbon dioxide sterilization of clinical solid waste. • Inactivation of bacteria in clinical solid waste using supercritical carbon dioxide. • Reduction of the hazardous exposure of clinical solid waste. • Optimization of the supercritical carbon dioxide experimental conditions. - Abstract: Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO 2 ) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and gram-negative Escherichia coli in CSW. The effects of SC-CO 2 sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO 2 -treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO 2 exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials

  19. Microwave-Assisted Extraction of Cannabinoids in Hemp Nut Using Response Surface Methodology: Optimization and Comparative Study

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chang

    2017-11-01

    Full Text Available Hemp nut is commonly incorporated into several food preparations; however, most countries set regulations for hemp products according to their cannabinoid content. In this study, we have developed an efficient microwave-assisted extraction (MAE method for cannabinoids (i.e., Δ9-tetrahydrocannabinol, cannabidiol, and cannabinol in hemp nut. Optimization of the MAE procedure was conducted through single factor experiments and response surface methodology (RSM. A comparative study was also conducted to determine the differences in the extraction yields and morphology of hemp nut between MAE and reference extraction methods, namely heat reflux extraction (HRE, Soxhlet extraction (SE, supercritical fluid extraction (SFE, and ultrasound-assisted extraction (UAE. Among the independent variables in RSM, the temperature was the most significant parameter. The optimal conditions of MAE were as follows: extraction solvent of methanol, microwave power of 375 W, temperature of 109 °C, and extraction time of 30 min. Compared with reference extraction methods, MAE achieved the highest extraction yields of total cannabinoids in hemp nut (6.09 μg/g for MAE; 4.15 μg/g for HRE; 5.81 μg/g for SE; 3.61 μg/g for SFE; 3.73 μg/g for UAE with the least solvent consumption and shortest time. Morphological observations showed that substantial cell rupturing occurred in the microstructure of hemp nut after MAE, indicating enhanced dissolution of the target compounds during the extraction process. The MAE method is thus a rapid, economic, and environmentally friendly extraction method that is both effective and practical for industrial applications.

  20. Batch versus column modes for the adsorption of radioactive metal onto rice husk waste: conditions optimization through response surface methodology.

    Science.gov (United States)

    Kausar, Abida; Bhatti, Haq Nawaz; Iqbal, Munawar; Ashraf, Aisha

    2017-09-01

    Batch and column adsorption modes were compared for the adsorption of U(VI) ions using rice husk waste biomass (RHWB). Response surface methodology was employed for the optimization of process variables, i.e., (pH (A), adsorbent dose (B), initial ion concentration (C)) in batch mode. The B, C and C 2 affected the U(VI) adsorption significantly in batch mode. The developed quadratic model was found to be validated on the basis of regression coefficient as well as analysis of variance. The predicted and actual values were found to be correlated well, with negligible residual value, and B, C and C 2 were significant terms. The column study was performed considering bed height, flow rate and initial metal ion concentration, and adsorption efficiency was evaluated through breakthrough curves and bed depth service time and Thomas models. Adsorption was found to be dependent on bed height and initial U(VI) ion concentration, and flow rate decreased the adsorption capacity. Thomas models fitted well to the U(VI) adsorption onto RHWB. Results revealed that RHWB has potential to remove U(VI) ions and batch adsorption was found to be efficient versus column mode.

  1. Optimization of Ultrasound-Assisted Extraction of Antioxidants from Apium graveolens L. Seeds using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Şule Dinç Zor

    2017-09-01

    Full Text Available In this study, optimum conditions for ultrasound-assisted extraction (UAE of antioxidants from Apium graveolens L. seeds were investigated by Response Surface Methodology (RSM. A Box-Behnken Design (BBD was used to evaluate the effect of sonication time (5, 10, 15 min, ultrasound power (60, 120, 180 W and the ratio of extraction solvent in terms of methanol (0, 50, 100% on antioxidant capacity. The optimal UAE conditions for the parameters investigated were 11 min of sonication time, ultrasound power of 131 W and 100% methanol as an extraction solvent. Under these conditions, UAE of antioxidants from the seeds achieved a maximum of 95.08% in respect to 1,1-diphenyl-2-picryl hydrazyl (DPPH radical scavenging activity. Additionally, the high value of the adjusted coefficient of determination (R2adj = 0.9192 and the non-significant difference between experimental and predicted values confirmed the validity of the quadratic polynomial model. Hence, UAE is a suitable, fast, economical and practical technique for the extraction of antioxidants from Apium graveolens L. seeds.

  2. Computational model and performance optimization methodology of a compact design heat exchanger used as an IHX in HTGR

    International Nuclear Information System (INIS)

    De la Torre V, R.; Francois L, J. L.

    2017-09-01

    The intermediate heat exchangers (IHX) present in high-temperature gas-cooled reactor (HTGR) present complex operating conditions, characterized by temperature values higher than 1073 K. Conventional designs of tubes and shell have shown disadvantages with respect to compact designs. In this work, computational models of a compact heat exchanger design, the printed circuit, were built under IHX conditions in a HTGR installation. In these models, a detailed geometry was considered in three dimensions, corresponding to a transfer unit of the heat exchanger. Computational fluid dynamics techniques and finite element methods were used to study the thermo-hydraulic and mechanical functioning of the equipment, respectively. The properties of the materials were defined as temperature functions. The thermo-hydraulic results obtained were established as operating conditions in the structural calculations. A methodology was developed based on the analysis of capital and operating costs, which takes into account the heat transfer, pressure drop and the mechanical behavior of the structure, in a single optimization variable. By analyzing the experimental results of other authors, a relationship was obtained between the operation time of the equipment and the maximum effort in the structure, which was used in the model. The results show that the model that allows a greater thermal efficiency differs from the one that has lower total cost per year. (Author)

  3. Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology.

    Science.gov (United States)

    Garcia-Segura, Sergi; Almeida, Lucio Cesar; Bocchi, Nerilso; Brillas, Enric

    2011-10-30

    A central composite rotatable design and response surface methodology (RSM) were used to optimize the experimental variables of the solar photoelectro-Fenton (SPEF) treatment of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). The experiments were made with a flow plant containing a Pt/air-diffusion reactor coupled to a solar compound parabolic collector (CPC) under recirculation of 10 L of 186 mg L(-1) MCPA solutions in 0.05 M Na(2)SO(4) at a liquid flow rate of 180 L h(-1) with an average UV irradiation intensity of about 32 Wm(-2). The optimum variables found for the SPEF process were 5.0 A, 1.0mM Fe(2+) and pH 3.0 after 120 min of electrolysis. Under these conditions, 75% of mineralization with 71% of current efficiency and 87.7 k Wh kg(-1) TOC of energy consumption were obtained. MCPA decayed under the attack of generated hydroxyl radicals following a pseudo-first-order kinetics. Hydroxyl radicals also destroyed 4-chloro-2-methylphenol, methylhydroquinone and methyl-p-benzoquinone detected as aromatic by-products. Glycolic, maleic, fumaric, malic, succinic, tartronic, oxalic and formic acids were identified as generated carboxylic acids, which form Fe(III) complexes that are quickly photodecarboxylated by the UV irradiation of sunlight at the CPC photoreactor. A reaction sequence for the SPEF degradation of MCPA was proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Evaluation and optimization of ethanol production from carob pod extract by Zymomonas mobilis using response surface methodology.

    Science.gov (United States)

    Vaheed, Hossein; Shojaosadati, Seyed Abbas; Galip, Hasan

    2011-01-01

    In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett-Burman (P-B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g(-1) initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g(-1) initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.

  5. Optimization of Lactide synthesis from Lactic Acid in biorefinery of palm oil waste using Response Surface Methodology

    Science.gov (United States)

    Gozan, M.; Kamilah, F.; Whulanza, Y.; Rahmayetty

    2018-03-01

    Ring open polymerization is one of the production polylactic acid by formation of monomer before. Lactic acid is converted into lactide in two stages, polycondensation and depolymerization. Yield lactide will determine the molecular weight which produced. This study is to optimize the lactide production from lactic acid 90% by the variations of temperature (190-220°C), vacuum pressure (5-15 cmHg), and zinc acetate catalyst (0,3-0,6% w/w). As the temperature, vacuum pressure, and catalyst is increased, lactide that is produced also increases. Optimum condition of lactide production is obtained by Response surface methodology at the temperature 220°C, catalyst 0,45%w/w, and 10 cmHg in vacuum pressure. Equation or model from this study by using RSM is yield lactide = -258,75 + 7,79A + 2,90B + 3,51C + 0,48AB - 0,06AC – 3,97x10-3BC – 105,42A2 – 7,17B2– 0,10C2(A:catalyst; B:temperature; C:pressure).

  6. Optimization of pressurized liquid extraction by response surface methodology of Goji berry (Lycium barbarum L.) phenolic bioactive compounds.

    Science.gov (United States)

    Tripodo, Giusy; Ibáñez, Elena; Cifuentes, Alejandro; Gilbert-López, Bienvenida; Fanali, Chiara

    2018-01-03

    Pressurized liquid extraction (PLE) has been used for the first time in this work to extract phenolic compounds from Goji berries according to a multilevel factorial design using response surface methodology. The global yield (% w/dw, weight/dry-weight), total phenolic content (TPC), total flavonoid (TF) and antioxidant activity (determined via ABTS assay, expressed as TEAC value) were used as response variables to study the effects of temperature (50-180°C) and green solvent composition (mixtures of ethanol/water). Phenolic compounds characterization was performed by high performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS). The optimum PLE conditions predicted by the model were as follows: 180°C and 86% ethanol in water with a good desirability value of 0.815. The predicted conditions were confirmed experimentally and once the experimental design was validated for commercial fruit samples, the PLE extraction of phenolic compounds from three different varieties of fruit samples (Selvatico mongolo, Bigol, and Polonia) was performed. Nine phenolic compounds were tentatively identified in these extracts, including phenolic acids and their derivatives, and flavonols. The optimized PLE conditions were compared to a conventional solid-liquid extraction, demonstrating that PLE is a useful alternative to extract phenolic compounds from Goji berry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Statistical optimization of ultraviolet irradiate conditions for vitamin D₂ synthesis in oyster mushrooms (Pleurotus ostreatus using response surface methodology.

    Directory of Open Access Journals (Sweden)

    Wei-Jie Wu

    Full Text Available Response surface methodology (RSM was used to determine the optimum vitamin D2 synthesis conditions in oyster mushrooms (Pleurotus ostreatus. Ultraviolet B (UV-B was selected as the most efficient irradiation source for the preliminary experiment, in addition to the levels of three independent variables, which included ambient temperature (25-45°C, exposure time (40-120 min, and irradiation intensity (0.6-1.2 W/m2. The statistical analysis indicated that, for the range which was studied, irradiation intensity was the most critical factor that affected vitamin D2 synthesis in oyster mushrooms. Under optimal conditions (ambient temperature of 28.16°C, UV-B intensity of 1.14 W/m2, and exposure time of 94.28 min, the experimental vitamin D2 content of 239.67 µg/g (dry weight was in very good agreement with the predicted value of 245.49 µg/g, which verified the practicability of this strategy. Compared to fresh mushrooms, the lyophilized mushroom powder can synthesize remarkably higher level of vitamin D2 (498.10 µg/g within much shorter UV-B exposure time (10 min, and thus should receive attention from the food processing industry.

  8. Optimization of microwave-assisted drying of Jerusalem artichokes (Helianthus tuberosus L. by response surface methodology and genetic algorithm

    Directory of Open Access Journals (Sweden)

    E. KARACABEY

    2016-03-01

    Full Text Available The objective of the present study was to investigate microwave-assisted drying of Jerusalem artichoke tubers to determine the effects of the processing conditions. Drying time (DT and effectivemoisture diffusivity (EMD were determined to evaluate the drying process in terms of dehydration performance, whereas the rehydration ratio (RhR was considered as a significant quality index. A pretreatment of soaking in a NaCl solution was applied before all trials. The output power of the microwave oven, slice thickness and NaCl concentration of the pretreatment solution werethe three investigated parameters. The drying process was accelerated by altering the conditions while obtaining a higher quality product. For optimization of the drying process, response surface methodology (RSM and genetic algorithms (GA were used. Model adequacy was evaluated for each corresponding mathematical expression developed for interested responses by RSM. The residual of the model obtained by GA was compared to that of the RSM model. The GA was successful in high-performance prediction and produced results similar to those of RSM. The analysis and results of the present study show that both RSM and GA models can be used in cohesion to gain insight into the bioprocessing system.

  9. Aluminum nitride coatings using response surface methodology to optimize the thermal dissipated performance of light-emitting diode modules

    Science.gov (United States)

    Jean, Ming-Der; Lei, Peng-Da; Kong, Ling-Hua; Liu, Cheng-Wu

    2018-05-01

    This study optimizes the thermal dissipation ability of aluminum nitride (AlN) ceramics to increase the thermal performance of light-emitting diode (LED) modulus. AlN powders are deposited on heat sink as a heat interface material, using an electrostatic spraying process. The junction temperature of the heat sink is developed by response surface methodology based on Taguchi methods. In addition, the structure and properties of the AlN coating are examined using X-ray photoelectron spectroscopy (XPS). In the XPS analysis, the AlN sub-peaks are observed at 72.79 eV for Al2p and 398.88 eV for N1s, and an N1s sub-peak is assigned to N-O at 398.60eV and Al-N bonding at 395.95eV, which allows good thermal properties. The results have shown that the use of AlN ceramic material on a heat sink can enhance the thermal performance of LED modules. In addition, the percentage error between the predicted and experimental results compared the quadric model with between the linear and he interaction models was found to be within 7.89%, indicating that it was a good predictor. Accordingly, RSM can effectively enhance the thermal performance of an LED, and the beneficial heat dissipation effects for AlN are improved by electrostatic spraying.

  10. Optimization of critical factors to enhance polyhydroxyalkanoates (PHA) synthesis by mixed culture using Taguchi design of experimental methodology.

    Science.gov (United States)

    Venkata Mohan, S; Venkateswar Reddy, M

    2013-01-01

    Optimizing different factors is crucial for enhancement of mixed culture bioplastics (polyhydroxyalkanoates (PHA)) production. Design of experimental (DOE) methodology using Taguchi orthogonal array (OA) was applied to evaluate the influence and specific function of eight important factors (iron, glucose concentration, VFA concentration, VFA composition, nitrogen concentration, phosphorous concentration, pH, and microenvironment) on the bioplastics production. Three levels of factor (2(1) × 3(7)) variation were considered with symbolic arrays of experimental matrix [L(18)-18 experimental trails]. All the factors were assigned with three levels except iron concentration (2(1)). Among all the factors, microenvironment influenced bioplastics production substantially (contributing 81%), followed by pH (11%) and glucose concentration (2.5%). Validation experiments were performed with the obtained optimum conditions which resulted in improved PHA production. Good substrate degradation (as COD) of 68% was registered during PHA production. Dehydrogenase and phosphatase enzymatic activities were monitored during process operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Optimization of the Conditions for Extraction of Serine Protease from Kesinai Plant (Streblus asper Leaves Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2011-11-01

    Full Text Available Response surface methodology (RSM using a central composite design (CCD was employed to optimize the conditions for extraction of serine protease from kesinai (Streblus asper leaves. The effect of independent variables, namely temperature (42.5,47.5, X1, mixing time (2–6 min, X2, buffer content (0–80 mL, X3 and buffer pH (4.5–10.5, X4 on specific activity, storage stability, temperature and oxidizing agent stability of serine protease from kesinai leaves was investigated. The study demonstrated that use of the optimum temperature, mixing time, buffer content and buffer pH conditions protected serine protease during extraction, as demonstrated by low activity loss. It was found that the interaction effect of mixing time and buffer content improved the serine protease stability, and the buffer pH had the most significant effect on the specific activity of the enzyme. The most desirable conditions of 2.5 °C temperature, 4 min mixing time, 40 mL buffer at pH 7.5 was established for serine protease extraction from kesinai leaves.

  12. Low-fat meat sausages with fish oil: optimization of milk proteins and carrageenan contents using response surface methodology.

    Science.gov (United States)

    Marchetti, L; Andrés, S C; Califano, A N

    2014-03-01

    Response surface methodology was used to analyze the effect of milk proteins and 2:1 κ:ι-carrageenans on cooking loss (CL), weight lost by centrifugation (WLC) and texture attributes of low-fat meat sausages with pre-emulsified fish oil. A central-composite design was used to develop models for the objective responses. Changes in carrageenans affected more the responses than milk proteins levels. Convenience functions were calculated for CL, WLC, hardness, and springiness of the product. Responses were optimized simultaneously minimizing CL and WLC; ranges for hardness and springiness corresponded to commercial products (20 g of pork fat/100 g). The optimum corresponded to 0.593 g of carrageenans/100 g and 0.320 g of milk proteins and its total lipid content was 6.3 g/100 g. This formulation was prepared and evaluated showing a good agreement between predicted and experimental responses. These additives could produce low-fat meat sausages with pre-emulsified fish oil with good nutritional quality and similar characteristics than traditional ones. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Green chemistry focus on optimization of silver nanoparticles using response surface methodology (RSM) and mosquitocidal activity: Anopheles stephensi (Diptera: Culicidae).

    Science.gov (United States)

    Ondari Nyakundi, Erick; Padmanabhan, M Nalini

    2015-01-01

    There is an exigent necessity for development of environmental friendly bio-control agent(s) for elimination of mosquito due to increased resistance resurgence against synthetic control agents. Mosquito control strategy will lay a strong foundation to malaria exclusion or it can be curbed to certain level especially in the developing nations. In this study, silver nanoparticles were synthesized by green chemistry approach using Tridax procumbens leaf extract as a reducing agent. The reaction medium involved in the synthesis process was optimized by statistical experimental design using response surface methodology to obtain better yield, uniform size, shape and stability. Further, these synthesized nanoparticles were confirmed through UV-Visible, FT-IR spectroscopy, PSA and SEM Subsequently, the bioefficacy of these particles were investigated on Anopheles stephensi for larvicidal and pupicidal activity. Interestingly, time period of 90 min, temperature of 76±2 °C, pH 7.2±2, 2 mM silver nitrate (AgNO3), 3mM PEG and 2mM PVP showed excellent parameters for bioprocess design for large scale production of stabilized nanoparticles. A concentration of 5 ppm of PVP stabilized nanoparticles exhibited 100% mortality. Thus, the obtained results clearly suggest that silver nanoparticles stabilized by PEG and PVP may have important function as stabilizers, dispersants as well as larvicides for mosquito control. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption.

    Science.gov (United States)

    Wang, Chongqing; Wang, Hui; Gu, Guohua

    2018-02-15

    Alkali treatment of lignocellulosic biomass is conducted to remove hemi-cellulose and lignin, further increasing the reactivity and accessibility of cellulose. Ultrasound-assisted xanthation of alkali cellulose is optimized by response surface methodology (RSM) with a Box-Behnken design. A predicting mathematical model is obtained by fitting experimental data, and it is verified by analysis of variance. Response surface plots and the contour plots obtained from the model are applied to determine the interactions of experimental variables. The optimum conditions are NaOH concentration 1.3mol/L, ultrasonic time 71.6min and CS 2 dosage 1.5mL. FTIR, SEM and XPS characterizations confirm the synthesis and sorption mechanism of cellulose xanthate (CX). Biosorption of Pb (II) onto CX obeys pseudo-second order model and Langmuir model. The sorption mechanism is attributed to surface complexation or ion exchange. CX shows good reusability for Pb (II) sorption. The maximum sorption capacity of Pb(II) is 134.41mg/g, higher than that of other biosorbents. CX has great potential as an efficient and low-cost biosorbent for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rapid adsorption of heavy metals by Fe3O4/talc nanocomposite and optimization study using response surface methodology.

    Science.gov (United States)

    Kalantari, Katayoon; Ahmad, Mansor B; Masoumi, Hamid Reza Fard; Shameli, Kamyar; Basri, Mahiran; Khandanlou, Roshanak

    2014-07-21

    Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions.

  16. Optimization of lactic acid production by pellet-form Rhizopus oryzae in 3-L airlift bioreactor using response surface methodology.

    Science.gov (United States)

    Maneeboon, Thanapoom; Vanichsriratana, Wirat; Pomchaitaward, Chaiyaporn; Kitpreechavanich, Vichien

    2010-05-01

    The influence of two key environmental factors, pH and oxygen transfer coefficient (k(L)a), was evaluated on the lactic acid production as the main answer and, on the size of cell pellets of the fungal strain Rhizopus oryzae KPS106, as second dependant answer by response surface methodology using a central composite design. The results of the analysis of variance and modeling demonstrated that pH and k(L)a had a significant effect on lactic acid production by this strain. However, no interaction was observed between these two experimental factors. pH and k(L)a had no significant influence on the pellet size. Optimal pH and k(L)a of the fermentation medium for lactic acid production from response surface analysis was 5.85 and of 3.6 h(-1), respectively. The predicted and experimental lactic acid maximal values were 75.4 and 72.0 g/l, respectively, with pellets of an average of 2.54 +/- 0.41 mm. Five repeated batches in series were conducted with a mean lactic acid production of 77.54 g/l. The productivity was increased from 0.75 in the first batch to 0.99 g/l h in the last fifth batch.

  17. Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion.

    Science.gov (United States)

    Xu, Enbo; Pan, Xiaowei; Wu, Zhengzong; Long, Jie; Li, Jingpeng; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2016-12-01

    For the purpose of investigating the effect of enzyme concentration (EC), barrel temperature (BT), moisture content (MC), and screw speed (SS) on processing parameters (product temperature, die pressure and special mechanical energy (SME)) and product responses (extent of gelatinization (GE), retention rate of total phenolic content (TPC-RR)), rice flour extruded with thermostable α-amylase was analyzed by response surface methodology. Stepwise regression models were computed to generate response surface and contour plots, revealing that both TPC-RR and GE increased as increasing MC while expressed different sensitivities to BT during enzymatic extrusion. Phenolics preservation was benefited from low SME. According to multiple-factor optimization, the conditions required to obtain the target SME (10kJ/kg), GE (100%) and TPC-RR (85%) were: EC=1.37‰, BT=93.01°C, MC=44.30%, and SS=171.66rpm, with the actual values (9.49kJ/kg, 99.96% and 87.10%, respectively) showing a good fit to the predicted values. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  18. Optimization of the general acceptability though affective tests and response surface methodology of a dry cacao powder mixture based beverage

    Directory of Open Access Journals (Sweden)

    Elena Chau Loo Kung

    2013-09-01

    Full Text Available This research work had as main objective optimizing the general acceptability though affective tests and response surface methodology of a dry cacao powder mixture based beverage. We obtained formulations of mixtures of cacao powder with different concentrations of 15%, 17.5% and 20%, as well as lecithin concentrations of 0.1%; 0.3%; and 0.5% maintaining a constant content of sugar (25 %, Vanillin (1% that included cacao powder with different pH values: natural (pH 5 and alkalinized (pH 6.5 and pH 8 and water by difference to 100%, generating a total of fifteen treatments to be evaluated, according to the Box-Behnen design for three factors. The treatments underwent satisfaction level tests to establish the general acceptability. The treatment that included cacao powder with a concentration of 17.5 %, pH 6.5 and lecithin concentration of 0.3 % obtained the best levels of acceptability. The software Statgraphics Plus 5.1 was used to obtain the treatment with maximum acceptability that corresponded to cacao powder with pH 6.81, with a concentration of 18.24 % and soy lecithin in 0.28% with a tendency to what was obtained in the satisfaction levels tests. Finally we characterized in a physical-chemistry and microbiological way the optimum formulation as well as evaluated sensitively obtaining an acceptability of 6.17.

  19. Methodological framework for economical and controllable design of heat exchanger networks: Steady-state analysis, dynamic simulation, and optimization

    International Nuclear Information System (INIS)

    Masoud, Ibrahim T.; Abdel-Jabbar, Nabil; Qasim, Muhammad; Chebbi, Rachid

    2016-01-01

    Highlights: • HEN total annualized cost, heat recovery, and controllability are considered in the framework. • Steady-state and dynamic simulations are performed. • Effect of bypass on total annualized cost and controllability is reported. • Optimum bypass fractions are found from closed and open-loop efforts. - Abstract: The problem of interaction between economic design and control system design of heat exchanger networks (HENs) is addressed in this work. The controllability issues are incorporated in the classical design of HENs. A new methodological framework is proposed to account for both economics and controllability of HENs. Two classical design methods are employed, namely, Pinch and superstructure designs. Controllability measures such as relative gain array (RGA) and singular value decomposition (SVD) are used. The proposed framework also presents a bypass placement strategy for optimal control of the designed network. A case study is used to test the applicability of the framework and to assess both economics and controllability. The results indicate that the superstructure design is more economical and controllable compared to the Pinch design. The controllability of the designed HEN is evaluated using Aspen-HYSYS closed-loop dynamic simulator. In addition, a sensitivity analysis is performed to study the effect of bypass fractions on the total annualized cost and controllability of the designed HEN. The analysis shows that increasing any bypass fraction increases the total annualized cost. However, the trend with the total annualized cost was not observed with respect to the control effort manifested by minimizing the integral of the squared errors (ISE) between the controlled stream temperatures and their targets (set-points). An optimal ISE point is found at a certain bypass fraction, which does not correspond to the minimal total annualized cost. The bypass fractions are validated via open-loop simulation and the additional cooling and

  20. Optimizing of Nitrogen, Phosphorus and Cattle Manure Fertilizers Application in Winter Wheat Production Using Response-Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    M. jahan

    2016-02-01

    low levels of manure were determined based on nutrient content and local recommendations. Response of measured variables (y to experimental factors (X was estimated by using second order polynomials with interaction (Equation 1: (1 Where 0 is constant and i, ij and ii are coefficients for linear, interaction and quadratic terms, respectively. After simulation, using statistical methods, the result is a second order polynomial which states the estimated of response (yield as a function of inputs variables. Finally, after optimizing of resulted function and eliminating of low effect terms, using statistical tests and criteria such as, F test, lack of fit test, coefficient of determination (R2, a final function to predict yield and other expected variables was calculated (Equation 2: (2 In this function, Y is a dependent variable, X is the independent variable of N fertilizer, X2 is independent variable of P fertilizer, X3 is independent variable of manure, and a0 to a9 are coefficients of function. The equation is functional only in the defined range of input variables and could not predict values out of the range. The optimized rates of N, P and manure, determined considering 3 scenarios including: economic, environmental and eco-environmental, which seed yield, N loss and NUE and N loss were the main determining factors, respectively. To obtain optimized levels, response-surface methodology was used. Finally, the fitted values compared to observed values then validity of regression models evaluated by RMSE test (Equation 3 and 1:1 regression line. (3 RMSE (% Results and Discussion Optimization of nitrogen, phosphorus and manure fertilization were done according to 3 scenarios of economic, environmental and eco-environmental. In economic scenario, wheat seed yield was considered as the main determining factor of optimized resource, thus the result showed by applying of 145.45 kg ha-1 N, 200 kg ha-1 P and 18.48 tones ha-1 manure, it would be attained the

  1. Life-cycle cost as basis to optimize waste collection in space and time: A methodology for obtaining a detailed cost breakdown structure.

    Science.gov (United States)

    Sousa, Vitor; Dias-Ferreira, Celia; Vaz, João M; Meireles, Inês

    2018-05-01

    Extensive research has been carried out on waste collection costs mainly to differentiate costs of distinct waste streams and spatial optimization of waste collection services (e.g. routes, number, and location of waste facilities). However, waste collection managers also face the challenge of optimizing assets in time, for instance deciding when to replace and how to maintain, or which technological solution to adopt. These issues require a more detailed knowledge about the waste collection services' cost breakdown structure. The present research adjusts the methodology for buildings' life-cycle cost (LCC) analysis, detailed in the ISO 15686-5:2008, to the waste collection assets. The proposed methodology is then applied to the waste collection assets owned and operated by a real municipality in Portugal (Cascais Ambiente - EMAC). The goal is to highlight the potential of the LCC tool in providing a baseline for time optimization of the waste collection service and assets, namely assisting on decisions regarding equipment operation and replacement.

  2. Effect of microemulsions on transdermal delivery of citalopram: optimization studies using mixture design and response surface methodology

    Directory of Open Access Journals (Sweden)

    Huang CT

    2013-06-01

    Full Text Available Chi-Te Huang,1 Ming-Jun Tsai,2,3 Yu-Hsuan Lin,1 Yaw-Sya Fu,4 Yaw-Bin Huang,5 Yi-Hung Tsai,5 Pao-Chu Wu11School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, 2Department of Neurology, China Medical University Hospital, Taichung, 3School of Medicine, Medical College, China Medical University, Taichung, 4Faculty of Biomedical Science and Environmental Biology, 5Graduate Institute of Clinical Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of ChinaAbstract: The aim of this study was to evaluate the potential of microemulsions as a drug vehicle for transdermal delivery of citalopram. A computerized statistical technique of response surface methodology with mixture design was used to investigate and optimize the influence of the formulation compositions including a mixture of Brij 30/Brij 35 surfactants (at a ratio of 4:1, 20%–30%, isopropyl alcohol (20%–30%, and distilled water (40%–50% on the properties of the drug-loaded microemulsions, including permeation rate (flux and lag time. When microemulsions were used as a vehicle, the drug permeation rate increased significantly and the lag time shortened significantly when compared with the aqueous control of 40% isopropyl alcohol solution containing 3% citalopram, demonstrating that microemulsions are a promising vehicle for transdermal application. With regard to the pharmacokinetic parameters of citalopram, the flux required for the transdermal delivery system was about 1280 µg per hour. The microemulsions loaded with citalopram 3% and 10% showed respective flux rates of 179.6 µg/cm2 and 513.8 µg/cm2 per hour, indicating that the study formulation could provide effective therapeutic concentrations over a practical application area. The animal study showed that the optimized formulation (F15 containing 3% citalopram with an application area of 3.46 cm2 is able to reach a minimum effective therapeutic concentration with no erythematous reaction

  3. Development of a methodology to determine optimized therapeutic doses of {sup 131}I for the treatment of hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Francisco de; Santas, Bernardo Maranhao; Dantas, Ana Leticia Almeida; Lucena, Eder Augusto [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: faraujo@ird.gov.br; Melo, Rossana Corbo de; Rebelo, Ana Maria de Oliveira [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Medicina

    2007-07-01

    Several methods can be used to determine the activity of {sup 131}I to be administered for the treatment of hyperthyroidism. However, some of them do not take into consideration the dose absorbed by the thyroid, while others do not consider all the parameters necessary for dose calculation. The relationship between the dose absorbed by the thyroid and the activity administered depends basically on three parameters: mass of the organ, iodine uptake and effective half-life of iodine in the thyroid. Such parameters should be individually determined for each patient in order to optimize the administered activity. The objective of this work is to develop a methodology to evaluate therapeutic doses through the determination of biokinetic parameters and the activity of {sup 131}I deposited in the thyroid of patients submitted to the treatment of hyperthyroidism with {sup 131}I. A neck-thyroid phantom developed at the In Vivo Monitoring Laboratory of IRD, containing a known amount of {sup 131}I, was used to calibrate a scintillation camera and a uptake probe available at the Nuclear Medicine Center of the University Hospital of Rio de Janeiro. The optimization of the counting geometry was carried out by the determination of the characteristic curves of the view angle of the collimator-detector assembly. The calculation of the calibration factor of the scintillation camera allows the determination of activities in the thyroid of patients in pre-established time periods through a 48-hours uptake curve. The view angle of the collimator-detector assembly presented values compatible with the size of the organ for distances of 25 cm (uptake probe) and 45.8 cm (scintillation camera). The calibration factors (in cpm/kBq) and the associated uncertainty related to these distances were 39.3 {+-} 0.8 and 4.3 {+-} 0.2 respectively. The time period between 14 and 30 hours of the retention curve allows the calculation of the activity between those two points. It is concluded that the use

  4. Development of a methodology to determine optimized therapeutic doses of {sup 131}I for the treatment of hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, F.; Moura, M.B.; Pereira, A.C., E-mail: faraujo@ird.gov.br [Instituto de Medicna Nuclear (IMEN), Goiania, GO (Brazil); Dantas, B.M.; Dantas, A.L.A.; Lucena, E.A. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Melo, R.C.; Rebelo, A.M.O. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Faculdade de Medicina

    2008-07-01

    Several methods can be used to determine the activity of {sup 131}I to be administered for the treatment of hyperthyroidism. However, some of them do not take into consideration the dose absorbed by the thyroid, while others do not consider all the parameters necessary for dose calculation. The relationship between the dose absorbed by the thyroid and the activity administered depends basically on three parameters: mass of the organ, iodine uptake and effective half-life of iodine in the thyroid. Such parameters should be individually determined for each patient in order to optimize the administered activity. The objective of this work is to develop a methodology for individualized treatment with {sup 131}I in patients with hyperthyroidism of the Grave's Disease. A neck-thyroid phantom developed at the In Vivo Monitoring Laboratory of IRD, containing a known amount of {sup 131}I, was used to calibrate a scintillation camera and a uptake probe available at the Nuclear Medicine Center of the University Hospital of Rio de Janeiro and Instituto de Medicina Nuclear - IMEN, of Goiania. The optimization of the counting geometry was carried out by the determination of the characteristic curves of the view angle of the collimator-detector assembly. The view angle of the collimator-detector assembly presented values compatible with the size of the organ for distances of 25 cm (uptake probe) and 45.8 cm (scintillation camera). The calibration factors (in cpm/kBq) and the associated uncertainty related to these distances were (39.3 ± 0.78), (58.1 ± 2.38) to uptake probe SCT-13004 e 13002, respectively and 4.3 ± 0.17 to scintillation camera. The time period between 14 and 30 hours of the retention curve allows the calculation of the activity between those two points. It is concluded that the use of diagnose equipment available at the hospital (scintillation camera and uptake probe) has shown to be a suitable procedure in terms of effectiveness, simplicity and cost

  5. Investigation on the Effects of Process Parameters on Laser Percussion Drilling Using Finite Element Methodology; Statistical Modelling and Optimization

    Directory of Open Access Journals (Sweden)

    Mahmoud Moradi

    Full Text Available Abstract In the present research, the simulation of the Nickel-base superalloy Inconel 718 fiber-laser drilling process with the thickness of 1mm is investigated through the Finite Element Method. In order to specify the appropriate Gaussian distribution of laser beam, the results of an experimental research on glass laser drilling were simulated using three types of Gaussian distribution. The DFLUX subroutine was used to implement the laser heat sources of the models using the Fortran language. After the appropriate Gaussian distribution was chosen, the model was validated with the experimental results of the Nickel-base superalloy Inconel 718 laser drilling process. The negligible error percentage among the experimental and simulation results demonstrates the high accuracy of this model. The experiments were performed based on the Response Surface Methodology (RSM as a statistical design of experiment (DOE approach to investigate the influence of process parameters on the responses, obtaining the mathematical regressions and predicting the new results. Four parameters i.e. laser pulse frequency (150 to 550 Hz, laser power (200 to 500 watts, laser focal plane position (-0.5 to +0.5 mm and the duty cycle (30 to 70% were considered to be the input variables in 5 levels and four external parameters i.e. the hole's entrance and exit diameters, hole taper angle and the weight of mass removed from the hole, were observed to be the process output responses of this central composite design. By performing the statistical analysis, the input and output parameters were found to have a direct relation with each other. By an increase in each of the input variables, the entrance and exit hole diameters, the hole taper angel, and the weight of mass removed from the hole increase. Finally, the results of the conducted simulations and statistical analyses having been used, the laser drilling process was optimized by means of the desire ability approach. Good

  6. Development of a methodology to determine optimized therapeutic doses of 131I for the treatment of hyperthyroidism

    International Nuclear Information System (INIS)

    Araujo, F.; Moura, M.B.; Pereira, A.C.; Dantas, B.M.; Dantas, A.L.A.; Lucena, E.A.; Melo, R.C.; Rebelo, A.M.O.

    2008-01-01

    Several methods can be used to determine the activity of 131 I to be administered for the treatment of hyperthyroidism. However, some of them do not take into consideration the dose absorbed by the thyroid, while others do not consider all the parameters necessary for dose calculation. The relationship between the dose absorbed by the thyroid and the activity administered depends basically on three parameters: mass of the organ, iodine uptake and effective half-life of iodine in the thyroid. Such parameters should be individually determined for each patient in order to optimize the administered activity. The objective of this work is to develop a methodology for individualized treatment with 131 I in patients with hyperthyroidism of the Grave's Disease. A neck-thyroid phantom developed at the In Vivo Monitoring Laboratory of IRD, containing a known amount of 131 I, was used to calibrate a scintillation camera and a uptake probe available at the Nuclear Medicine Center of the University Hospital of Rio de Janeiro and Instituto de Medicina Nuclear - IMEN, of Goiania. The optimization of the counting geometry was carried out by the determination of the characteristic curves of the view angle of the collimator-detector assembly. The view angle of the collimator-detector assembly presented values compatible with the size of the organ for distances of 25 cm (uptake probe) and 45.8 cm (scintillation camera). The calibration factors (in cpm/kBq) and the associated uncertainty related to these distances were (39.3 ± 0.78), (58.1 ± 2.38) to uptake probe SCT-13004 e 13002, respectively and 4.3 ± 0.17 to scintillation camera. The time period between 14 and 30 hours of the retention curve allows the calculation of the activity between those two points. It is concluded that the use of diagnose equipment available at the hospital (scintillation camera and uptake probe) has shown to be a suitable procedure in terms of effectiveness, simplicity and cost. (author)

  7. Dechlorination of Hexachlorobenzene in Contaminated Soils Using a Nanometallic Al/CaO Dispersion Mixture: Optimization through Response Surface Methodology

    Science.gov (United States)

    Jiang, Yuhui; Shang, Yixuan; Yu, Shuyao; Liu, Jianguo

    2018-01-01

    Hexachlorobenzene (HCB) contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO) dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM) was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time) and the interactions between these variables under the Box-Behnken Design (BBD). A high regression coefficient value (R2 = 0.9807) and low p value (soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m), 17.7% (m/m), and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB) → 1,2,3,4-tetrachlorobenzene (TeCB) and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils. PMID:29702570

  8. Sequential injection analysis for automation of the Winkler methodology, with real-time SIMPLEX optimization and shipboard application

    Energy Technology Data Exchange (ETDEWEB)

    Horstkotte, Burkhard; Tovar Sanchez, Antonio; Duarte, Carlos M. [Department of Global Change Research, IMEDEA (CSIC-UIB) Institut Mediterrani d' Estudis Avancats, Miquel Marques 21, 07190 Esporles (Spain); Cerda, Victor, E-mail: Victor.Cerda@uib.es [University of the Balearic Islands, Department of Chemistry Carreterra de Valldemossa km 7.5, 07011 Palma de Mallorca (Spain)

    2010-01-25

    A multipurpose analyzer system based on sequential injection analysis (SIA) for the determination of dissolved oxygen (DO) in seawater is presented. Three operation modes were established and successfully applied onboard during a research cruise in the Southern ocean: 1st, in-line execution of the entire Winkler method including precipitation of manganese (II) hydroxide, fixation of DO, precipitate dissolution by confluent acidification, and spectrophotometric quantification of the generated iodine/tri-iodide (I{sub 2}/I{sub 3}{sup -}), 2nd, spectrophotometric quantification of I{sub 2}/I{sub 3}{sup -} in samples prepared according the classical Winkler protocol, and 3rd, accurate batch-wise titration of I{sub 2}/I{sub 3}{sup -} with thiosulfate using one syringe pump of the analyzer as automatic burette. In the first mode, the zone stacking principle was applied to achieve high dispersion of the reagent solutions in the sample zone. Spectrophotometric detection was done at the isobestic wavelength 466 nm of I{sub 2}/I{sub 3}{sup -}. Highly reduced consumption of reagents and sample compared to the classical Winkler protocol, linear response up to 16 mg L{sup -1} DO, and an injection frequency of 30 per hour were achieved. It is noteworthy that for the offline protocol, sample metering and quantification with a potentiometric titrator lasts in general over 5 min without counting sample fixation, incubation, and glassware cleaning. The modified SIMPLEX methodology was used for the simultaneous optimization of four volumetric and two chemical variables. Vertex calculation and consequent application including in-line preparation of one reagent was carried out in real-time using the software AutoAnalysis. The analytical system featured high signal stability, robustness, and a repeatability of 3% RSD (1st mode) and 0.8% (2nd mode) during shipboard application.

  9. Sequential injection analysis for automation of the Winkler methodology, with real-time SIMPLEX optimization and shipboard application

    International Nuclear Information System (INIS)

    Horstkotte, Burkhard; Tovar Sanchez, Antonio; Duarte, Carlos M.; Cerda, Victor

    2010-01-01

    A multipurpose analyzer system based on sequential injection analysis (SIA) for the determination of dissolved oxygen (DO) in seawater is presented. Three operation modes were established and successfully applied onboard during a research cruise in the Southern ocean: 1st, in-line execution of the entire Winkler method including precipitation of manganese (II) hydroxide, fixation of DO, precipitate dissolution by confluent acidification, and spectrophotometric quantification of the generated iodine/tri-iodide (I 2 /I 3 - ), 2nd, spectrophotometric quantification of I 2 /I 3 - in samples prepared according the classical Winkler protocol, and 3rd, accurate batch-wise titration of I 2 /I 3 - with thiosulfate using one syringe pump of the analyzer as automatic burette. In the first mode, the zone stacking principle was applied to achieve high dispersion of the reagent solutions in the sample zone. Spectrophotometric detection was done at the isobestic wavelength 466 nm of I 2 /I 3 - . Highly reduced consumption of reagents and sample compared to the classical Winkler protocol, linear response up to 16 mg L -1 DO, and an injection frequency of 30 per hour were achieved. It is noteworthy that for the offline protocol, sample metering and quantification with a potentiometric titrator lasts in general over 5 min without counting sample fixation, incubation, and glassware cleaning. The modified SIMPLEX methodology was used for the simultaneous optimization of four volumetric and two chemical variables. Vertex calculation and consequent application including in-line preparation of one reagent was carried out in real-time using the software AutoAnalysis. The analytical system featured high signal stability, robustness, and a repeatability of 3% RSD (1st mode) and 0.8% (2nd mode) during shipboard application.

  10. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures

    DEFF Research Database (Denmark)

    Karunanithi, A.T.; Achenie, L.E.K.; Gani, Rafiqul

    2005-01-01

    This paper presents a novel computer-aided molecular/mixture design (CAMD) methodology for the design of optimal solvents and solvent mixtures. The molecular/mixture design problem is formulated as a mixed integer nonlinear programming (MINLP) model in which a performance objective is to be optim......This paper presents a novel computer-aided molecular/mixture design (CAMD) methodology for the design of optimal solvents and solvent mixtures. The molecular/mixture design problem is formulated as a mixed integer nonlinear programming (MINLP) model in which a performance objective...... is to be optimized subject to structural, property, and process constraints. The general molecular/mixture design problem is divided into two parts. For optimal single-compound design, the first part is solved. For mixture design, the single-compound design is first carried out to identify candidates...... and then the second part is solved to determine the optimal mixture. The decomposition of the CAMD MINLP model into relatively easy to solve subproblems is essentially a partitioning of the constraints from the original set. This approach is illustrated through two case studies. The first case study involves...

  11. Feature Article

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Feature Article. Articles in Resonance – Journal of Science Education. Volume 1 Issue 1 January 1996 pp 80-85 Feature Article. What's New in Computers Windows 95 · Vijnan Shastri · More Details Fulltext PDF. Volume 1 Issue 1 January 1996 pp 86-89 Feature ...

  12. Optimization of an A(2)/O process for tetracycline removal via response surface methodology coupled with a Box-Behnken design.

    Science.gov (United States)

    Qi, Fang-Fang; Huang, Man-Hong; Zheng, Yu; Xu, Qi

    2015-01-01

    Response surface methodology (RSM) was used to optimize the operating conditions of an anaerobic-anoxic-oxic (A(2)/O) process by maximizing the removal efficiency of tetracycline (TC). Solid retention time (SRT), hydraulic retention time (HRT) and initial TC concentration (CTC, in) were selected as independent variables for incorporation in the Box-Behnken design. The results showed SRT and CTC, in were more significant parameters than HRT for the removal efficiency of TC. TC could be completely removed under the optimal conditions of an SRT of 15.5 days, an HRT of 9.9 h and a CTC, in of 283.3 μg L(-1). TC removal efficiencies of 99% and 96% were attained for synthetic and real wastewater, respectively, under the optimal conditions. This indicated the constructed model was validated and reliable for optimizing the A(2)/O process for TC removal.

  13. Methodological guide for the implementation of a workstation radiation protection optimization approach: case of the external exposure of the whole body. Report nr 305

    International Nuclear Information System (INIS)

    Bataille, C.; Boucher, A.; Schieber, C.

    2008-02-01

    The first part of this report presents the different steps of the radiation protection optimization approach and proposes some methodological elements for its implementation when designing a maintenance or modification operation. For each step of this optimization approach, the guide presents objectives, peculiarities, recommendations to deepen the approach. The second part proposes a set of technical forms related to the study and the implementation of some actions aimed at dose reduction. These actions are notably: circuit rinsing, decontamination of an irradiation source, setting up of biological protections, removal of an irradiating component, tele-dosimetry, and so on

  14. Optimization of supercritical carbon dioxide (CO2 extraction of sardine (Sardinella lemuru Bleeker oil using response surface methodology (RSM

    Directory of Open Access Journals (Sweden)

    Gedi, M. A.

    2015-06-01

    Full Text Available Oil was extracted from freeze-dried sardine (Sardinella lemur fillets using supercritical carbon dioxide (SC-CO2 and a few milliliters of ethanol were optimized with response surface methodology (RSM. The impact of extraction pressure (200–400 bars and temperature (40–70 °C were studied on the total extraction yields, ratios of Eicosapentaenoic acid (EPA and Docosahexaenoic acid (DHA. The results were compared with those of Soxhlet and modified Kinsella methods (MKM. The oils obtained using the SC-CO2 and MKM methods were significantly (P El aceite se extrae de filetes de sardinas (Sardinella lemur liofilizando, mediante dióxido de carbono supercrítico (SC-CO2 y unos mililitros de etanol, optimizándose mediante la metodología de superficie de respuesta (RSM. Se ha estudiado la influencia de la presión de extracción (200–400 bars y la temperatura (40–70 °C sobre los rendimientos de extracción total, y sobre las relaciones de ácido eicosapentaenoico (EPA y ácido docosahexaenoico (DHA. Los resultados se compararon con los obtenidos mediante extracción con Soxhlet y el método de Kinsella modificado (MKM. Los aceites obtenidos mediante SC-CO2 y métodos MKM fueron significativamente (P < 0.05 superiores en rendimientos de aceite (8,04% y 6,83%, EPA (5,43% y 5,45% y DHA (18,76% y 18,54%, respectivamente, en comparación con rendimientos mediante Soxhlet (5,10%, EPA (2,17% y DHA (06,46%. De las dos variables independientes, la presión tuvo un efecto crítico sobre el rendimiento, mientras que los porcentajes de EPA y DHA estuvieron notablemente influenciados por la temperatura. Los valores óptimos fueron para una presión de 328 bar y una temperatura de 40 °C, y sus correspondientes respuestas fueron 7,20%, 5,68% y 20,09% para el rendimiento, EPA y DHA, respectivamente. Los valores experimentales de este estudio fueron los previstos y son comparables razonablemente con sus homólogos.

  15. [Optimization of process of icraiin be hydrolyzed to Baohuoside I by cellulase based on Plackett-Burman design combined with CCD response surface methodology].

    Science.gov (United States)

    Song, Chuan-xia; Chen, Hong-mei; Dai, Yu; Kang, Min; Hu, Jia; Deng, Yun

    2014-11-01

    To optimize the process of Icraiin be hydrolyzed to Baohuoside I by cellulase by Plackett-Burman design combined with Central Composite Design (CCD) response surface methodology. To select the main influencing factors by Plackett-Burman design, using CCD response surface methodology to optimize the process of Icraiin be hydrolyzed to Baohuoside I by cellulase. Taking substrate concentration, the pH of buffer and reaction time as independent variables, with conversion rate of icariin as dependent variable,using regression fitting of completely quadratic response surface between independent variable and dependent variable,the optimum process of Icraiin be hydrolyzed to Baohuoside I by cellulase was intuitively analyzed by 3D surface chart, and taking verification tests and predictive analysis. The best enzymatic hydrolytic process was as following: substrate concentration 8. 23 mg/mL, pH 5. 12 of buffer,reaction time 35. 34 h. The optimum process of Icraiin be hydrolyzed to Baohuoside I by cellulase is determined by Plackett-Burman design combined with CCD response surface methodology. The optimized enzymatic hydrolytic process is simple, convenient, accurate, reproducible and predictable.

  16. ARTICLES RECEIVED

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    The following articles have been submitted for possible publication in Teaching English in China. For reasons of space or priority they have not been able to be included. If you are interested in further information about an article please contact the author direct at the address given below.

  17. Methodological Article: A Brief Taxometrics Primer

    Science.gov (United States)

    Beauchaine, Theodore P.

    2007-01-01

    Taxometric procedures provide an empirical means of determining which psychiatric disorders are typologically distinct from normal behavioral functioning. Although most disorders reflect extremes along continuously distributed behavioral traits, identifying those that are discrete has important implications for accurate diagnosis, effective…

  18. ORIGINAL ARTICLES

    African Journals Online (AJOL)

    means simple. People ... items, and asked respondents to estimate answers if such data were not ... hospital units in each province serving this population. A stratified random sample of hospital units and clinics was then .... Optimal hospital.

  19. ORIGINAL ARTICLES

    African Journals Online (AJOL)

    Based on less than optimal availability of ... Cape Town city centre and has an estimated population of. 325 000. ... the monitoring database, and we report point estimates (means ..... counts. The stratification of patients by type of ADI and.

  20. UTILIZATION OF RESPONSE SURFACE METHODOLOGY IN THE OPTIMIZATION OF ROSELLE ICE CREAM MAKING [Penggunaan Response Surface Methodology dalam Optimisasi Pembuatan Es Krim Rosella

    Directory of Open Access Journals (Sweden)

    Jeremia Manuel*

    2014-12-01

    Full Text Available This research was carried out to develop a functional ice cream product with natural colorant derived from an optimum set of roselle calyces extract and citric acid concentrations. Although citric acid can improve red color stability of rosella, its addition is limited due to the acidic and bitter aftertaste it imparts. Response surface methodology (RSM was employed to analyze the effect of roselle calyces extract and citric acid on physico-chemical characteristics and sensory acceptance of an ice cream. A central composite design consisting of two independent variables (roselle calyces extract and citric acid cocentrations at five levels (-1.41421, -1, 0, +1, and +1.41421 with 13 runs (formulations was prepared to establish the optimum set of variables. Higher concentration of roselle calyces extract significantly increased the total anthocyanin content and color acceptance, while decreased the ºHue and pH of the ice cream. Higher concentration of citric acid significantly increased the overrun and color acceptance, but decreased the viscosity, ºHue, pH, texture, taste acceptance, and overall acceptance of ice cream. The optimum scores of consumer sensory acceptance were met at 11.5% roselle calyces extract and 1.5% citric acid concentrations.

  1. Multi-Objective Optimization of Moving-magnet Linear Oscillatory Motor Using Response Surface Methodology with Quantum-Behaved PSO Operator

    Science.gov (United States)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    To reduce the difficulty of manufacturing and increase the magnetic thrust density, a moving-magnet linear oscillatory motor (MMLOM) without inner-stators was Proposed. To get the optimal design of maximum electromagnetic thrust with minimal permanent magnetic material, firstly, the 3D finite element analysis (FEA) model of the MMLOM was built and verified by comparison with prototype experiment result. Then the influence of design parameters of permanent magnet (PM) on the electromagnetic thrust was systematically analyzed by the 3D FEA to get the design parameters. Secondly, response surface methodology (RSM) was employed to build the response surface model of the new MMLOM, which can obtain an analytical model of the PM volume and thrust. Then a multi-objective optimization methods for design parameters of PM, using response surface methodology (RSM) with a quantum-behaved PSO (QPSO) operator, was proposed. Then the way to choose the best design parameters of PM among the multi-objective optimization solution sets was proposed. Then the 3D FEA of the optimal design candidates was compared. The comparison results showed that the proposed method can obtain the best combination of the geometric parameters of reducing the PM volume and increasing the thrust.

  2. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics.

    Science.gov (United States)

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2013-04-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  3. Optimization of Xylanase Production through Response Surface Methodology by Fusarium sp. BVKT R2 Isolated from forest soil and its applications in saccharification

    Directory of Open Access Journals (Sweden)

    Ramanjaneyulu Golla

    2016-09-01

    Full Text Available AbstractXylanses are hydrolytic enzymes with wide applications in several industries like biofuels, paper and pulp, deinking, food and feed. The present study was aimed at hitting at high yield xylanase producing fungi from natural resources. Two highest xylanase producing fungal isolates - Q12 and L1were picked from collection of 450 fungal cultures for the utilization of xylan. These fungal isolates - Q12 and L1 were identified basing on ITS gene sequencing analysis as Fusarium sp. BVKT R2 (KT119615 and Fusarium strain BRR R6 (KT119619, respectively with construction of phylogenetic trees. Fusarium sp. BVKT R2 was further optimized for maximum xylanase production and the interaction effects between variables on production of xylanase were studied through response surface methodology. The optimal conditions for maximal production of xylanase were sorbitol 1.5%, yeast extract 1.5%, pH of 5.0, Temperature of 32.5ºC, and agitation of 175 rpm. Under optimal conditions, the yields of xylanase production by Fusarium sp. BVKT R2 was as high as 4560 U/ml in SmF. Incubation of different lignocellulosic biomasses with crude enzyme of Fusarium sp. BVKT R2 at 37°C for 72 h could achieve about 45% saccharification. The results suggest that Fusarium sp. BVKT R2 has potential applications in saccharification process of biomass.Key words: Fusarium sp., Optimization, Response Surface Methodology, Saccharification, Submerged fermentation, Xylanase

  4. Multi-objective parametric optimization of Inertance type pulse tube refrigerator using response surface methodology and non-dominated sorting genetic algorithm

    Science.gov (United States)

    Rout, Sachindra K.; Choudhury, Balaji K.; Sahoo, Ranjit K.; Sarangi, Sunil K.

    2014-07-01

    The modeling and optimization of a Pulse Tube Refrigerator is a complicated task, due to its complexity of geometry and nature. The aim of the present work is to optimize the dimensions of pulse tube and regenerator for an Inertance-Type Pulse Tube Refrigerator (ITPTR) by using Response Surface Methodology (RSM) and Non-Sorted Genetic Algorithm II (NSGA II). The Box-Behnken design of the response surface methodology is used in an experimental matrix, with four factors and two levels. The diameter and length of the pulse tube and regenerator are chosen as the design variables where the rest of the dimensions and operating conditions of the ITPTR are constant. The required output responses are the cold head temperature (Tcold) and compressor input power (Wcomp). Computational fluid dynamics (CFD) have been used to model and solve the ITPTR. The CFD results agreed well with those of the previously published paper. Also using the results from the 1-D simulation, RSM is conducted to analyse the effect of the independent variables on the responses. To check the accuracy of the model, the analysis of variance (ANOVA) method has been used. Based on the proposed mathematical RSM models a multi-objective optimization study, using the Non-sorted genetic algorithm II (NSGA-II) has been performed to optimize the responses.

  5. Optimization protocol for the extraction of 6-gingerol and 6-shogaol from Zingiber officinale var. rubrum Theilade and improving antioxidant and anticancer activity using response surface methodology.

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2015-07-30

    Analysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations. Response surface methodology is a collection of statistical and mathematical techniques that are used to optimize the range of variables in various experimental processes to reduce the number of experimental runs, cost , and time, compared to other methods. Response surface methodology was applied for optimizing reflux extraction conditions for achieving high 6-gingerol and 6-shogaol contents, and high antioxidant activity in Zingiber officinale var. rubrum Theilade . The two-factor central composite design was employed to determine the effects of two independent variables, namely extraction temperature (X1: 50-80 °C) and time (X2: 2-4 h), on the properties of the extracts. The 6-gingerol and 6-shogaol contents were measured using ultra-performance liquid chromatography. The antioxidant activity of the rhizome extracts was determined by means of the 1,1-diphenyl-2-picrylhydrazyl assay. Anticancer activity of optimized extracts against HeLa cancer cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Increasing the extraction temperature and time induced significant response of the variables. The optimum extraction condition for all responses was at 76.9 °C for 3.4 h. Under the optimum condition, the corresponding predicted response values for 6-gingerol, 6-shogaol, and the antioxidant activity were 2.89 mg/g DW, 1.85 mg/g DW, and 84.3%, respectively. 6-gingerol and 6-shogaol were extracted under optimized condition to check the viability of the models. The values were 2.92 and 1.88 mg/g DW, and 84.0% for 6-gingerol, 6-shogaol, and the antioxidant activity respectively. The experimental values agreed with those predicted, thus indicating suitability of the models employed and the success of RSM in optimizing the extraction condition. With optimizing of reflux extraction

  6. Review Article

    African Journals Online (AJOL)

    2012-09-27

    Sep 27, 2012 ... rationalism vs. irrationalism and emancipation vs. deconstruction. This article tries to critically .... conceptions of time, limitations of modern culture, exaggerated rationality ... and organizational mastery of empirical processes” ...

  7. Research Article

    African Journals Online (AJOL)

    2016-06-13

    Jun 13, 2016 ... emerging drug-resistant pathogens in research programme around the world. This article reviews the history of antibiotics, different types of antibiotics, .... of the plasma membrane; these changes result in the loss of important ...

  8. Original Article

    African Journals Online (AJOL)

    Administratör

    Original Article. Prevalence of Gall Bladder Stones among Type 2 Diabetic ... Increasing age, female gender, overweight, familial history of the disease and type 2 diabetes mellitus is all associated ... GBS development in diabetics. An Italian ...

  9. Communications article

    KAUST Repository

    Fariborzi, Hossein

    2017-01-01

    Seamless, covert communications using a communications system integrated or incorporated within an article of clothing is described. In one embodiment, the communications system is integrated or incorporated into a shoe insole and includes a haptic

  10. ORIGINAL ARTICLE

    African Journals Online (AJOL)

    User

    (with and without its frailty) in Estimating Survival Time of Patients with Colorectal Cancer ..... ACKNOWLEDGMENT. This article is a part of research project approved ... rectal cancer survival trends in Norway 1958. –1997. European Journal of ...

  11. Research Article

    African Journals Online (AJOL)

    2016-06-18

    Jun 18, 2016 ... In the present article, aspect oriented programming and design patterns are ... works have been devoted to solve the problems it is going to face. ... utilized as an architecture concept in C++ language and then the book GOF ...

  12. Modeling and optimization of fermentation variables for enhanced production of lactase by isolated Bacillus subtilis strain VUVD001 using artificial neural networking and response surface methodology.

    Science.gov (United States)

    Venkateswarulu, T C; Prabhakar, K Vidya; Kumar, R Bharath; Krupanidhi, S

    2017-07-01

    Modeling and optimization were performed to enhance production of lactase through submerged fermentation by Bacillus subtilis VUVD001 using artificial neural networks (ANN) and response surface methodology (RSM). The effect of process parameters namely temperature (°C), pH, and incubation time (h) and their combinational interactions on production was studied in shake flask culture by Box-Behnken design. The model was validated by conducting an experiment at optimized process variables which gave the maximum lactase activity of 91.32 U/ml. Compared to traditional activity, 3.48-folds improved production was obtained after RSM optimization. This study clearly shows that both RSM and ANN models provided desired predictions. However, compared with RSM (R 2  = 0.9496), the ANN model (R 2  = 0.99456) gave a better prediction for the production of lactase.

  13. Extraction of gelatin from salmon (Salmo salar) fish skin using trypsin-aided process: optimization by Plackett-Burman and response surface methodological approaches.

    Science.gov (United States)

    Fan, HuiYin; Dumont, Marie-Josée; Simpson, Benjamin K

    2017-11-01

    Gelatin from salmon ( Salmo salar ) skin with high molecular weight protein chains ( α -chains) was extracted using trypsin-aided process. Response surface methodology was used to optimise the extraction parameters. Yield, hydroxyproline content and protein electrophoretic profile via sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of gelatin were used as responses in the optimization study. The optimum conditions were determined as: trypsin concentration at 1.49 U/g; extraction temperature at 45 °C; and extraction time at 6 h 16 min. This response surface optimized model was significant and produced an experimental value (202.04 ± 8.64%) in good agreement with the predicted value (204.19%). Twofold higher yields of gelatin with high molecular weight protein chains were achieved in the optimized process with trypsin treatment when compared to the process without trypsin.

  14. Statistical optimization of beta-carotene production by Arthrobacter agilis A17 using response surface methodology and Box-Behnken design

    Science.gov (United States)

    Özdal, Murat; Özdal, Özlem Gür; Gürkök, Sümeyra

    2017-04-01

    β-carotene is a commercially important natural pigment and has been widely applied in the medicine, pharmaceutical, food, feed and cosmetic industries. The current study aimed to investigate the usability of molasses for β-carotene production by Arthrobacter agilis A17 (KP318146) and to optimize the production process. Box-Behnken Design of Response Surface Methodology was used to determine the optimum levels and the interactions of three independent variables namely molasses, yeast extract and KH2PO4 at three different levels. β-carotene yield in optimized medium containing 70 g/l molasses, 25 g/l yeast extract and 0.96 g/l KH2PO4, reached up to 100 mg/l, which is approximately 2.5-fold higher than the yield, obtained from control cultivation. A remarkable β-carotene production on inexpensive carbon source was achieved with the use of statistical optimization.

  15. Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the Response Surface Methodology as the optimization tool.

    Science.gov (United States)

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2012-01-01

    The Response Surface Methodology (RSM) was applied as a tool for the optimization of the operational conditions of the photo-degradation of highly concentrated PY12 wastewater, resulting from a textile industry located in the suburbs of Medellin (Colombia). The Box-Behnken experimental Design (BBD) was chosen for the purpose of response optimization. The photo-Fenton process was carried out in a laboratory-scale batch photo-reactor. A multifactorial experimental design was proposed, including the following variables: the initial dyestuff concentration, the H(2)O(2) and the Fe(+2) concentrations, as well as the UV wavelength radiation. The photo-Fenton process performed at the optimized conditions resulted in ca. 100% of dyestuff decolorization, 92% of COD and 82% of TOC degradation. A kinetic study was accomplished, including the identification of some intermediate compounds generated during the oxidation process. The water biodegradability reached a final DBO(5)/DQO = 0.86 value.

  16. Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network-genetic algorithm.

    Science.gov (United States)

    Wei, Peilian; Si, Zhenjun; Lu, Yao; Yu, Qingfei; Huang, Lei; Xu, Zhinan

    2017-08-09

    Methylobacillus sp. zju323 was adopted to improve the biosynthesis of pyrroloquinoline quinone (PQQ) by systematic optimization of the fermentation medium. The Plackett-Burman design was implemented to screen for the key medium components for the PQQ production. CoCl 2  · 6H 2 O, ρ-amino benzoic acid, and MgSO 4  · 7H 2 O were found capable of enhancing the PQQ production most significantly. A five-level three-factor central composite design was used to investigate the direct and interactive effects of these variables. Both response surface methodology (RSM) and artificial neural network-genetic algorithm (ANN-GA) were used to predict the PQQ production and to optimize the medium composition. The results showed that the medium optimized by ANN-GA was better than that by RSM in maximizing PQQ production and the experimental PQQ concentration in the ANN-GA-optimized medium was improved by 44.3% compared with that in the unoptimized medium. Further study showed that this ANN-GA-optimized medium was also effective in improving PQQ production by fed-batch mode, reaching the highest PQQ accumulation of 232.0 mg/L, which was about 47.6% increase relative to that in the original medium. The present work provided an optimized medium and developed a fed-batch strategy which might be potentially applicable in industrial PQQ production.

  17. [Optimization of dissolution process for superfine grinding technology on total saponins of Panax ginseng fibrous root by response surface methodology].

    Science.gov (United States)

    Zhao, Ya; Lai, Xiao-Pin; Yao, Hai-Yan; Zhao, Ran; Wu, Yi-Na; Li, Geng

    2014-03-01

    To investigate the effects of superfine comminution extraction technology of ginseng total saponins from Panax ginseng fi