WorldWideScience

Sample records for methodologies including confocal

  1. Extending flood damage assessment methodology to include ...

    African Journals Online (AJOL)

    Optimal and sustainable flood plain management, including flood control, can only be achieved when the impacts of flood control measures are considered for both the man-made and natural environments, and the sociological aspects are fully considered. Until now, methods/models developed to determine the influences ...

  2. Methodological challenges when doing research that includes ethnic minorities

    DEFF Research Database (Denmark)

    Morville, Anne-Le; Erlandsson, Lena-Karin

    2016-01-01

    minorities are included. Method: A thorough literature search yielded 21 articles obtained from the scientific databases PubMed, Cinahl, Web of Science and PsychInfo. Analysis followed Arksey and O’Malley’s framework for scoping reviews, applying content analysis. Results: The results showed methodological...

  3. Advanced methodology for generation expansion planning including interconnected systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M; Yokoyama, R; Yasuda, K [Tokyo Metropolitan Univ. (Japan); Sasaki, H [Hiroshima Univ. (Japan); Ogimoto, K [Electric Power Development Co. Ltd., Tokyo (Japan)

    1994-12-31

    This paper reviews advanced methodology for generation expansion planning including interconnected systems developed in Japan, putting focus on flexibility and efficiency in a practical application. First, criteria for evaluating flexibility of generation planning considering uncertainties are introduced. Secondly, the flexible generation mix problem is formulated as a multi-objective optimization with more than two objective functions. The multi-objective optimization problem is then transformed into a single objective problem by using the weighting method, to obtain the Pareto optimal solution, and solved by a dynamics programming technique. Thirdly, a new approach for electric generation expansion planning of interconnected systems is presented, based on the Benders Decomposition technique. That is, large scale generation problem constituted by the general economic load dispatch problem, and several sub problems which are composed of smaller scale isolated system generation expansion plans. Finally, the generation expansion plan solved by an artificial neural network is presented. In conclusion, the advantages and disadvantages of this method from the viewpoint of flexibility and applicability to practical generation expansion planning are presented. (author) 29 refs., 10 figs., 4 tabs.

  4. Nuclear data evaluation methodology including estimates of covariances

    Directory of Open Access Journals (Sweden)

    Smith D.L.

    2010-10-01

    Full Text Available Evaluated nuclear data rather than raw experimental and theoretical information are employed in nuclear applications such as the design of nuclear energy systems. Therefore, the process by which such information is produced and ultimately used is of critical interest to the nuclear science community. This paper provides an overview of various contemporary methods employed to generate evaluated cross sections and related physical quantities such as particle emission angular distributions and energy spectra. The emphasis here is on data associated with neutron induced reaction processes, with consideration of the uncertainties in these data, and on the more recent evaluation methods, e.g., those that are based on stochastic (Monte Carlo techniques. There is no unique way to perform such evaluations, nor are nuclear data evaluators united in their opinions as to which methods are superior to the others in various circumstances. In some cases it is not critical which approaches are used as long as there is consistency and proper use is made of the available physical information. However, in other instances there are definite advantages to using particular methods as opposed to other options. Some of these distinctions are discussed in this paper and suggestions are offered regarding fruitful areas for future research in the development of evaluation methodology.

  5. Virtual pinhole confocal microscope

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Rector, D.M.; Ranken, D.M. [Los Alamos National Lab., NM (United States). Biophysics Group; Peterson, B. [SciLearn Inc. (United States); Kesteron, J. [VayTech Inc. (United States)

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  6. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  7. Confocal Microscopy

    Science.gov (United States)

    Liu, Jian; Tan, Jiubin

    2016-12-01

    The confocal microscope is appropriate for imaging cells or the measurement of industrial artefacts. However, junior researchers and instrument users sometimes misuse imaging concepts and metrological characteristics, such as position resolution in industrial metrology and scale resolution in bio-imaging. And, metrological characteristics or influence factors in 3D measurement such as height assessment error caused by 3D coupling effect are so far not yet identified. In this book, the authors outline their practices by the working experiences on standardization and system design. This book assumes little previous knowledge of optics, but rich experience in engineering of industrial measurements, in particular with profile metrology or areal surface topography will be very helpful to understand the theoretical concerns and value of the technological advances. It should be useful for graduate students or researchers as extended reading material, as well as microscope users alongside their handbook.

  8. Team Dynamics. Essays in the Sociology and Social Psychology of Sport Including Methodological and Epistemological Issues.

    Science.gov (United States)

    Lenk, Hans

    This document contains nine essays on the sociology and social psychology of team dynamics, including methodological and epistemological issues involved in such study. Essay titles are: (1) Conflict and Achievement in Top Athletic Teams--Sociometric Structures of Racing Eight Oar Crews; (2) Top Performance Despite Internal Conflict--An Antithesis…

  9. Improved best estimate plus uncertainty methodology, including advanced validation concepts, to license evolving nuclear reactors

    International Nuclear Information System (INIS)

    Unal, C.; Williams, B.; Hemez, F.; Atamturktur, S.H.; McClure, P.

    2011-01-01

    Research highlights: → The best estimate plus uncertainty methodology (BEPU) is one option in the licensing of nuclear reactors. → The challenges for extending the BEPU method for fuel qualification for an advanced reactor fuel are primarily driven by schedule, the need for data, and the sufficiency of the data. → In this paper we develop an extended BEPU methodology that can potentially be used to address these new challenges in the design and licensing of advanced nuclear reactors. → The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. → The methodology includes a formalism to quantify an adequate level of validation (predictive maturity) with respect to existing data, so that required new testing can be minimized, saving cost by demonstrating that further testing will not enhance the quality of the predictive tools. - Abstract: Many evolving nuclear energy technologies use advanced predictive multiscale, multiphysics modeling and simulation (M and S) capabilities to reduce the cost and schedule of design and licensing. Historically, the role of experiments has been as a primary tool for the design and understanding of nuclear system behavior, while M and S played the subordinate role of supporting experiments. In the new era of multiscale, multiphysics computational-based technology development, this role has been reversed. The experiments will still be needed, but they will be performed at different scales to calibrate and validate the models leading to predictive simulations for design and licensing. Minimizing the required number of validation experiments produces cost and time savings. The use of multiscale, multiphysics models introduces challenges in validating these predictive tools - traditional methodologies will have to be modified to address these challenges. This paper gives the basic aspects of a methodology that can potentially be used to address these new challenges in

  10. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    International Nuclear Information System (INIS)

    Unal, Cetin; Williams, Brian; McClure, Patrick; Nelson, Ralph A.

    2010-01-01

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M and S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for

  11. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Williams, Brian [Los Alamos National Laboratory; Mc Clure, Patrick [Los Alamos National Laboratory; Nelson, Ralph A [IDAHO NATIONAL LAB

    2010-01-01

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M&S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost

  12. Optimization of Gluten-Free Tulumba Dessert Formulation Including Corn Flour: Response Surface Methodology Approach

    Directory of Open Access Journals (Sweden)

    Yildiz Önder

    2017-03-01

    Full Text Available Tulumba dessert is widely preferred in Turkey; however, it cannot be consumed by celiac patients because it includes gluten. The diversity of gluten-free products should be expanded so that celiac patients may meet their daily needs regularly. In this study, corn flour (CF / potato starch (PS blend to be used in the gluten-free tulumba dessert formulation was optimized using the Response Surface Methodology (RSM. Increasing ratio of PS in the CF-PS led to a decrease in hardness of the dessert and to an increase in expansion, viscosity, adhesiveness, yield of dessert both with and without syrup (P0.05, additionally these desserts had a much higher sensory score compared to the control sample in terms of the overall quality and pore structure (P<0.05.

  13. Fluorescence (Multiwave) Confocal Microscopy.

    Science.gov (United States)

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A Novel Water Supply Network Sectorization Methodology Based on a Complete Economic Analysis, Including Uncertainties

    Directory of Open Access Journals (Sweden)

    Enrique Campbell

    2016-04-01

    Full Text Available The core idea behind sectorization of Water Supply Networks (WSNs is to establish areas partially isolated from the rest of the network to improve operational control. Besides the benefits associated with sectorization, some drawbacks must be taken into consideration by water operators: the economic investment associated with both boundary valves and flowmeters and the reduction of both pressure and system resilience. The target of sectorization is to properly balance these negative and positive aspects. Sectorization methodologies addressing the economic aspects mainly consider costs of valves and flowmeters and of energy, and the benefits in terms of water saving linked to pressure reduction. However, sectorization entails other benefits, such as the reduction of domestic consumption, the reduction of burst frequency and the enhanced capacity to detect and intervene over future leakage events. We implement a development proposed by the International Water Association (IWA to estimate the aforementioned benefits. Such a development is integrated in a novel sectorization methodology based on a social network community detection algorithm, combined with a genetic algorithm optimization method and Monte Carlo simulation. The methodology is implemented over a fraction of the WSN of Managua city, capital of Nicaragua, generating a net benefit of 25,572 $/year.

  15. A methodology for including wall roughness effects in k-ε low-Reynolds turbulence models

    International Nuclear Information System (INIS)

    Ambrosini, W.; Pucciarelli, A.; Borroni, I.

    2015-01-01

    Highlights: • A model for taking into account wall roughness in low-Reynolds k-ε models is presented. • The model is subjected to a first validation to show its potential in general applications. • The application of the model in predicting heat transfer to supercritical fluids is also discussed. - Abstract: A model accounting for wall roughness effects in k-ε low-Reynolds turbulence models is described in the present paper. In particular, the introduction in the transport equations of k and ε of additional source terms related to roughness, based on simple assumptions and dimensional relationships, is proposed. An objective of the present paper, in addition to obtaining more realistic predictions of wall friction, is the application of the proposed model to the study of heat transfer to supercritical fluids. A first validation of the model is reported. The model shows the capability of predicting, at least qualitatively, some of the most important trends observed when dealing with rough pipes in very different flow conditions. Qualitative comparisons with some DNS data available in literature are also performed. Further analyses provided promising results concerning the ability of the model in reproducing the trend of friction factor when varying the flow conditions, though improvements are necessary for achieving better quantitative accuracy. First applications of the model in simulating heat transfer to supercritical fluids are also described, showing the capability of the model to affect the predictions of these heat transfer phenomena, in particular in the vicinity of the pseudo-critical conditions. A more extended application of the model to relevant deteriorated heat transfer conditions will clarify the usefulness of this modelling methodology in improving predictions of these difficult phenomena. Whatever the possible success in this particular application that motivated its development, this approach suggests a general methodology for accounting

  16. Socio-cultural determinants of child mortality in southern Peru: including some methodological considerations.

    Science.gov (United States)

    de Meer, K; Bergman, R; Kusner, J S

    1993-02-01

    Among Amerindian children living at high altitude in the Andes in southern Peru, high child mortality rates have been reported in the literature, especially in the perinatal and neonatal period. We compared mortality rates in children calculated from retrospective survey data in 86 rural families from 2 Aymara and 3 Quechua peasant communities living at the same level of altitude (3825 m) in southern Peru. Relations between land tenure, socio-cultural factors and child mortality were studied, and methodological considerations in this field of interest are discussed. Checks on consistency of empirical data showed evidence for underreporting of neonatal female deaths with birth order 3 and more. Perinatal (124 vs 34 per 1000 births) and infant mortality (223 vs 111 per 1000 live births) was significantly higher in Aymara compared with Quechua children, but no difference was found after the first year of life. A short pregnancy interval was associated with an elevated perinatal and infant mortality rate, and a similar albeit insignificant association was found with increased maternal age. Amount of land owned and birth order were not related with child mortality. Although levels of maternal education are generally low in both cultures, a consistent decline in infant and child mortality was found with the amount of years mothers had attended school. However, the results suggest a U-shaped relationship between the amount of years of parental education and perinatal mortality in offspring. Late fetal and early neonatal mortality were particularly high in one Aymara community where mothers were found to have more years of education. Infanticide, a known phenomenon in the highlands of the Andes, is discussed in relation with the findings of the study. Although maternal and child health services are utilized by the majority of families in 4 of 5 study communities, 43 of 51 mothers under the age of 45 years reported that they delivered their last baby in the absence of

  17. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report is based on a metrological investigation on confocal microscopy technique carried out by Uffe Rolf Arlø Theilade and Paolo Bariani. The purpose of the experimental activity was twofold a metrological instrument characterization and application to assessment of rough PP injection moulded...... replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  18. Confocal Laser Endomicroscopy in Inflammatory Bowel Disease

    DEFF Research Database (Denmark)

    Rasmussen, Ditlev Nytoft; Karstensen, John Gásdal; Riis, Lene Buhl

    2015-01-01

    included. Next, eligible studies were analysed with respect to several parameters, such as technique and clinical aim and definitions of outcomes. RESULTS: Confocal laser endomicroscopy has been used for a wide range of purposes in inflammatory bowel disease, covering assessment of inflammatory severity...... of confocal laser endomicroscopy for inflammatory bowel disease. METHODS: Available literature was searched systematically for studies applying confocal laser endomicroscopy in Crohn's disease or ulcerative colitis. Relevant literature was reviewed and only studies reporting original clinical data were...... of histological features such as colonic crypts, epithelial gaps and epithelial leakiness to fluorescein. CONCLUSIONS: Confocal laser endomicroscopy remains an experimental but emerging tool for assessment of inflammatory bowel disease. It is the only method that enables in vivo functional assessment...

  19. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation

    Science.gov (United States)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.

    2016-01-01

    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  20. Confocal laser endomicroscopy

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Săftoiu, Adrian; Brynskov, Jørn

    2016-01-01

    BACKGROUND AND STUDY AIMS: Confocal laser endomicroscopy (CLE) has been shown to predict relapse in ulcerative colitis in remission, but little is currently known about its role in Crohn's disease. The aim of this study was to identify reproducible CLE features in patients with Crohn's disease...

  1. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  2. Molecular confocal laser endomicroscopy

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Klausen, Pia Helene; Saftoiu, Adrian

    2014-01-01

    While flexible endoscopy is essential for macroscopic evaluation, confocal laser endomicroscopy (CLE) has recently emerged as an endoscopic method enabling visualization at a cellular level. Two systems are currently available, one based on miniprobes that can be inserted via a conventional...... during on-going endoscopy), a novel world of molecular evaluation opens up. The method of molecular CLE could potentially be used for estimating the expression of important receptors in carcinomas, subsequently resulting in immediate individualization of treatment regimens, but also for improving...

  3. Confocal microlaparoscope for imaging the fallopian tube

    Science.gov (United States)

    Wu, Tzu-Yu; Rouse, Andrew R.; Chambers, Setsuko K.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2014-11-01

    Recent evidence suggests that ovarian cancer can originate in the fallopian tube. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. A rigid confocal microlaparoscope system designed to image the epithelial surface of the ovary in vivo was previously reported. A new confocal microlaparoscope with an articulating distal tip has been developed to enable in vivo access to human fallopian tubes. The new microlaparoscope is compatible with 5-mm trocars and includes a 2.2-mm-diameter articulating distal tip consisting of a bare fiber bundle and an automated dye delivery system for fluorescence confocal imaging. This small articulating device should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Ex vivo images of animal tissue and human fallopian tube using the new articulating device are presented along with in vivo imaging results using the rigid confocal microlaparoscope system.

  4. Confocal Raman microspectroscopy

    International Nuclear Information System (INIS)

    Puppels, G.J.

    1991-01-01

    Raman spectroscopy is a technique that provides detailed structural information about molecules studied. In the field of molecular biophysics it has been extensively used for characterization of nucleic acids and proteins and for investigation of interactions between these molecules. It was felt that this technique would have great potential if it could be applied for in situ study of these molecules and their interactions, at the level of single living cell or a chromosome. To make this possible a highly sensitive confocal Raman microspectrometer (CRM) was developed. The instrument is described in detail in this thesis. It incorporates a number of recent technological developments. First, it employs a liquid nitrogen cooled CCD-camera. This type of detector, first used in astronomy, is the ultimate detector for Raman spectroscopy because it combines high quantum efficiency light detection with photon-noise limited operation. Second, an important factor in obtaining a high signal throughput of the spectrometer was the development of a new type of Raman notch filter. In the third place, the confocal detection principle was applied in the CRM. This limits the effective measuring volume to 3 . (author). 279 refs., 48 figs., 11 tabs

  5. 3D Image Analysis of Geomaterials using Confocal Microscopy

    Science.gov (United States)

    Mulukutla, G.; Proussevitch, A.; Sahagian, D.

    2009-05-01

    Confocal microscopy is one of the most significant advances in optical microscopy of the last century. It is widely used in biological sciences but its application to geomaterials lingers due to a number of technical problems. Potentially the technique can perform non-invasive testing on a laser illuminated sample that fluoresces using a unique optical sectioning capability that rejects out-of-focus light reaching the confocal aperture. Fluorescence in geomaterials is commonly induced using epoxy doped with a fluorochrome that is impregnated into the sample to enable discrimination of various features such as void space or material boundaries. However, for many geomaterials, this method cannot be used because they do not naturally fluoresce and because epoxy cannot be impregnated into inaccessible parts of the sample due to lack of permeability. As a result, the confocal images of most geomaterials that have not been pre-processed with extensive sample preparation techniques are of poor quality and lack the necessary image and edge contrast necessary to apply any commonly used segmentation techniques to conduct any quantitative study of its features such as vesicularity, internal structure, etc. In our present work, we are developing a methodology to conduct a quantitative 3D analysis of images of geomaterials collected using a confocal microscope with minimal amount of prior sample preparation and no addition of fluorescence. Two sample geomaterials, a volcanic melt sample and a crystal chip containing fluid inclusions are used to assess the feasibility of the method. A step-by-step process of image analysis includes application of image filtration to enhance the edges or material interfaces and is based on two segmentation techniques: geodesic active contours and region competition. Both techniques have been applied extensively to the analysis of medical MRI images to segment anatomical structures. Preliminary analysis suggests that there is distortion in the

  6. Statistical methodology for discrete fracture model - including fracture size, orientation uncertainty together with intensity uncertainty and variability

    International Nuclear Information System (INIS)

    Darcel, C.; Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O.

    2009-11-01

    the other, addresses the issue of the nature of the transition. We develop a new 'mechanistic' model that could help in modeling why and where this transition can occur. The transition between both regimes would occur for a fracture length of 1-10 m and even at a smaller scale for the few outcrops that follow the self-similar density model. A consequence for the disposal issue is that the model that is likely to apply in the 'blind' scale window between 10-100 m is the self-similar model as it is defined for large-scale lineaments. The self-similar model, as it is measured for some outcrops and most lineament maps, is definitely worth being investigated as a reference for scales above 1-10 m. In the rest of the report, we develop a methodology for incorporating uncertainty and variability into the DFN modeling. Fracturing properties arise from complex processes which produce an intrinsic variability; characterizing this variability as an admissible variation of model parameter or as the division of the site into subdomains with distinct DFN models is a critical point of the modeling effort. Moreover, the DFN model encompasses a part of uncertainty, due to data inherent uncertainties and sampling limits. Both effects must be quantified and incorporated into the DFN site model definition process. In that context, all available borehole data including recording of fracture intercept positions, pole orientation and relative uncertainties are used as the basis for the methodological development and further site model assessment. An elementary dataset contains a set of discrete fracture intercepts from which a parent orientation/density distribution can be computed. The elementary bricks of the site, from which these initial parent density distributions are computed, rely on the former Single Hole Interpretation division of the boreholes into sections whose local boundaries are expected to reflect - locally - geology and fracturing properties main characteristics. From that

  7. Fluorescence confocal microscopy for pathologists.

    Science.gov (United States)

    Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni

    2014-03-01

    Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on

  8. Confocal Imaging of porous media

    Science.gov (United States)

    Shah, S.; Crawshaw, D.; Boek, D.

    2012-12-01

    Carbonate rocks, which hold approximately 50% of the world's oil and gas reserves, have a very complicated and heterogeneous structure in comparison with sandstone reservoir rock. We present advances with different techniques to image, reconstruct, and characterize statistically the micro-geometry of carbonate pores. The main goal here is to develop a technique to obtain two dimensional and three dimensional images using Confocal Laser Scanning Microscopy. CLSM is used in epi-fluorescent imaging mode, allowing for the very high optical resolution of features well below 1μm size. Images of pore structures were captured using CLSM imaging where spaces in the carbonate samples were impregnated with a fluorescent, dyed epoxy-resin, and scanned in the x-y plane by a laser probe. We discuss the sample preparation in detail for Confocal Imaging to obtain sub-micron resolution images of heterogeneous carbonate rocks. We also discuss the technical and practical aspects of this imaging technique, including its advantages and limitation. We present several examples of this application, including studying pore geometry in carbonates, characterizing sub-resolution porosity in two dimensional images. We then describe approaches to extract statistical information about porosity using image processing and spatial correlation function. We have managed to obtain very low depth information in z -axis (~ 50μm) to develop three dimensional images of carbonate rocks with the current capabilities and limitation of CLSM technique. Hence, we have planned a novel technique to obtain higher depth information to obtain high three dimensional images with sub-micron resolution possible in the lateral and axial planes.

  9. Statistical methodology for discrete fracture model - including fracture size, orientation uncertainty together with intensity uncertainty and variability

    Energy Technology Data Exchange (ETDEWEB)

    Darcel, C. (Itasca Consultants SAS (France)); Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O. (Geosciences Rennes, UMR 6118 CNRS, Univ. def Rennes, Rennes (France))

    2009-11-15

    the lineament scale (k{sub t} = 2) on the other, addresses the issue of the nature of the transition. We develop a new 'mechanistic' model that could help in modeling why and where this transition can occur. The transition between both regimes would occur for a fracture length of 1-10 m and even at a smaller scale for the few outcrops that follow the self-similar density model. A consequence for the disposal issue is that the model that is likely to apply in the 'blind' scale window between 10-100 m is the self-similar model as it is defined for large-scale lineaments. The self-similar model, as it is measured for some outcrops and most lineament maps, is definitely worth being investigated as a reference for scales above 1-10 m. In the rest of the report, we develop a methodology for incorporating uncertainty and variability into the DFN modeling. Fracturing properties arise from complex processes which produce an intrinsic variability; characterizing this variability as an admissible variation of model parameter or as the division of the site into subdomains with distinct DFN models is a critical point of the modeling effort. Moreover, the DFN model encompasses a part of uncertainty, due to data inherent uncertainties and sampling limits. Both effects must be quantified and incorporated into the DFN site model definition process. In that context, all available borehole data including recording of fracture intercept positions, pole orientation and relative uncertainties are used as the basis for the methodological development and further site model assessment. An elementary dataset contains a set of discrete fracture intercepts from which a parent orientation/density distribution can be computed. The elementary bricks of the site, from which these initial parent density distributions are computed, rely on the former Single Hole Interpretation division of the boreholes into sections whose local boundaries are expected to reflect - locally - geology

  10. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    Science.gov (United States)

    Khadilkar, Aditi B.

    The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied

  11. Submillimeter Confocal Imaging Active Module

    Science.gov (United States)

    Hong, John; Mehdi, Imran; Siegel, Peter; Chattopadhyay, Goutam; Cwik, Thomas; Rowell, Mark; Hacker, John

    2009-01-01

    The term submillimeter confocal imaging active module (SCIAM) denotes a proposed airborne coherent imaging radar system that would be suitable for use in reconnaissance, surveillance, and navigation. The development of the SCIAM would include utilization and extension of recent achievements in monolithic microwave integrated circuits capable of operating at frequencies up to and beyond a nominal radio frequency of 340 GHz. Because the SCIAM would be primarily down-looking (in contradistinction to primarily side-looking), it could be useful for imaging shorter objects located between taller ones (for example, objects on streets between buildings). The SCIAM would utilize a confocal geometry to obtain high cross-track resolution, and would be amenable to synthetic-aperture processing of its output to obtain high along-track resolution. The SCIAM (see figure) would include multiple (two in the initial version) antenna apertures, separated from each other by a cross-track baseline of suitable length (e.g., 1.6 m). These apertures would both transmit the illuminating radar pulses and receive the returns. A common reference oscillator would generate a signal at a controllable frequency of (340 GHz + (Delta)f)/N, where (Delta)f is an instantaneous swept frequency difference and N is an integer. The output of this oscillator would be fed to a frequency- multiplier-and-power-amplifier module to obtain a signal, at 340 GHz + (Delta)f, that would serve as both the carrier signal for generating the transmitted pulses and a local-oscillator (LO) signal for a receiver associated with each antenna aperture. Because duplexers in the form of circulators or transmit/receive (T/R) switches would be lossy and extremely difficult to implement, the antenna apertures would be designed according to a spatial-diplexing scheme, in which signals would be coupled in and out via separate, adjacent transmitting and receiving feed horns. This scheme would cause the transmitted and received beams

  12. A Proposal for a Methodology to Develop a Cyber-Attack Penetration Test Scenario Including NPPs Safety

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hyo [KAIST, Daejeon (Korea, Republic of); Son, Han Seong [Joongbu Univ., Geumsan (Korea, Republic of); Kim, Si Won [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of); Kang, Hyun Gook [Rensselaer Polytechnic Institute, Troy (United States)

    2016-10-15

    Penetration test is a method to evaluate the cyber security of NPPs; so, this approach was performed in some studies. Because they focused on vulnerability finding or test bed construction, scenario based approach was not performed. However, to test the cyber security of NPPs, a proper test scenario should be needed. Ahn et al. developed cyber-attack scenarios but those scenarios couldn't be applied in penetration test because they developed the scenarios based on past incidents of NPPs induced by cyber-attack. That is, those scenarios only covered scenarios which were happened before; so, they couldn't cover other various scenarios and couldn't reflect them into a penetration test. In this study, a method to develop a cyber-attack penetration test scenario of NPPs especially focused on safety point of view is suggested. To evaluate the cyber security of NPPs, penetration test can be a possible way. In this study, a method to develop a penetration test scenario was explained. Especially, the goal of hacker was focused on nuclear fuel integrity deterioration. So, in the methodology, Level 1 PSA results were utilized to reflect plant safety into the security. From the PSA results, basic event was post processed and possible cyber-attacks were reviewed with vulnerabilities of digital control system.

  13. A Proposal for a Methodology to Develop a Cyber-Attack Penetration Test Scenario Including NPPs Safety

    International Nuclear Information System (INIS)

    Lee, In Hyo; Son, Han Seong; Kim, Si Won; Kang, Hyun Gook

    2016-01-01

    Penetration test is a method to evaluate the cyber security of NPPs; so, this approach was performed in some studies. Because they focused on vulnerability finding or test bed construction, scenario based approach was not performed. However, to test the cyber security of NPPs, a proper test scenario should be needed. Ahn et al. developed cyber-attack scenarios but those scenarios couldn't be applied in penetration test because they developed the scenarios based on past incidents of NPPs induced by cyber-attack. That is, those scenarios only covered scenarios which were happened before; so, they couldn't cover other various scenarios and couldn't reflect them into a penetration test. In this study, a method to develop a cyber-attack penetration test scenario of NPPs especially focused on safety point of view is suggested. To evaluate the cyber security of NPPs, penetration test can be a possible way. In this study, a method to develop a penetration test scenario was explained. Especially, the goal of hacker was focused on nuclear fuel integrity deterioration. So, in the methodology, Level 1 PSA results were utilized to reflect plant safety into the security. From the PSA results, basic event was post processed and possible cyber-attacks were reviewed with vulnerabilities of digital control system

  14. Reflectance Confocal Microscopy in Lentigo Maligna.

    Science.gov (United States)

    Gamo, R; Pampín, A; Floristán, U

    2016-12-01

    Lentigo maligna is the most common type of facial melanoma. Diagnosis is complicated, however, as it shares clinical and dermoscopic characteristics with other cutaneous lesions of the face. Reflectance confocal microscopy is an imaging technique that permits the visualization of characteristic features of lentigo maligna. These include a disrupted honeycomb pattern and pagetoid cells with a tendency to show folliculotropism. These cells typically have a dendritic morphology, although they may also appear as round cells measuring over 20μm with atypical nuclei. Poorly defined dermal papillae and atypical cells may be seen at the dermal-epidermal junction and can form bridges resembling mitochondrial structures. Other characteristic findings include junctional swelling with atypical cells located around the follicles, resembling caput medusae. Reflectance confocal microscopy is a very useful tool for diagnosing lentigo maligna. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. BER-3.2 report: Methodology for justification and optimization of protective measures including a case study

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.; Sinkko, K.; Walmod-Larsen, O.; Gjoerup, H.L.; Salo, A.

    1992-07-01

    This report is a part of the Nordic BER-3 project's work to propose and harmonize Nordic intervention levels for countermeasures in case of nuclear accidents. This report focuses on the methodology for justification and optimization of protective measures in case of a reactor accident situation with a large release of fission products to the environment. The down-wind situation is very complicated. The dose to the exposed society is almost unpredictable. The task of the radiation protection experts: To give advice to the decision makers on averted doses by the different actions at hand in the situation - is complicated. That of the decision makers is certainly more: On half of the society they represent, they must decide if they wish to follow the advices from their radiation protection experts or if they wish to add further arguments - economical or political (or personal) - into their considerations before their decisions are taken. Two analysis methods available for handling such situations: cost-benefit analysis and multi-attribute utility analysis are described in principle and are utilized in a case study: The impacts of a Chernobyl-like accident on the Swedish island of Gotland in the Baltic Sea are analyzed with regard to the acute consequences. The use of the intervention principles found in international guidance (IAEA 91, ICRP 91), which can be summarized as the principles of justification, optimization and avoidance of unacceptable doses, are described. How to handle more intangible factors of a psychological or political character is indicated. (au) (6 tabs., 3 ills., 17 refs.)

  16. Nonrandomized studies are not always found even when selection criteria for health systems intervention reviews include them: a methodological study.

    Science.gov (United States)

    Glenton, Claire; Lewin, Simon; Mayhew, Alain; Scheel, Inger; Odgaard-Jensen, Jan

    2013-04-01

    Systematic reviews within the Cochrane Effective Practice and Organisation of Care Group (EPOC) can include both randomized and nonrandomized study designs. We explored how many EPOC reviews consider and identify nonrandomized studies, and whether the proportion of nonrandomized studies identified is linked to the review topic. We recorded the study designs considered in 65 EPOC reviews. For reviews that considered nonrandomized studies, we calculated the proportion of identified studies that were nonrandomized and explored whether there were differences in the proportion of nonrandomized studies according to the review topic. Fifty-one (78.5%) reviews considered nonrandomized studies. Forty-six of these reviews found nonrandomized studies, but the proportion varied a great deal (median, 33%; interquartile range, 25--50%). Reviews of health care delivery interventions had lower proportions of nonrandomized studies than those of financial and governance interventions. Most EPOC reviews consider nonrandomized studies, but the degree to which they find them varies. As nonrandomized studies are believed to be at higher risk of bias and their inclusion entails a considerable effort, review authors should consider whether the benefits justify the inclusion of these designs. Research should explore whether it is more useful to consider nonrandomized studies in reviews of some intervention types than others. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY

    Science.gov (United States)

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  18. Confocal fluorescence techniques in industrial application

    Science.gov (United States)

    Eggeling, Christian; Gall, Karsten; Palo, Kaupo; Kask, Peet; Brand, Leif

    2003-06-01

    The FCS+plus family of evaluation tools for confocal fluorescence spectroscopy, which was developed during recent years, offers a comprehensive view to a series of fluorescence properties. Originating in fluorescence correlation spectroscopy (FCS) and using similar experimental equipment, a system of signal processing methods such as fluorescence intensity distribution analysis (FIDA) was created to analyze in detail the fluctuation behavior of fluorescent particles within a small area of detection. Giving simultaneous access to molecular parameters like concentration, translational and rotational diffusion, molecular brightness, and multicolor coincidence, this portfolio was enhanced by more traditional techniques of fluorescence lifetime as well as time-resolved anisotropy determination. The cornerstones of the FCS+plus methodology will be shortly described. The inhibition of a phosphatase enzyme activity gives a comprehensive industrial application that demonstrates FCS+plus' versatility and its potential for pharmaceutical drug discovery.

  19. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    Science.gov (United States)

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  20. Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy.

    Science.gov (United States)

    Sredar, Nripun; Fagbemi, Oladipo E; Dubra, Alfredo

    2018-04-01

    To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers.

  1. Methodology for electrical studies in industrial networks including the study of electric arc; Metodologia para los estudios electricos en redes industriales incluyendo el estudio de arco electrico

    Energy Technology Data Exchange (ETDEWEB)

    Rasgado Casique, Jose Pepe; Silva Farias, Jose Luis [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: jrasgado@iie.org.mx; jlsilva@iie.org.mx

    2010-11-15

    This article presents a methodology for conducting electrical studies in industrial networks. The methodology included the study of arc flash as a very important area of current basic electrical studies, such as power flow, short circuit and coordination. The aim of this study is to determine the Personal Protective Equipment (PPE) and flash protection boundary for personnel working with or near energized equipment, based on the IEEE Std 1584-2004 and NFPA-70E- 2004. Also included are criteria and recommendations to reduce incident energy level (cal/cm{sup 2}). At work we used a distribution network for industrial type test. The studies were carried out using a commercial program for the analysis of electrical networks. [Spanish] En este articulo se presenta una metodologia para llevar a cabo los estudios electricos en redes industriales. En la metodologia se incluye al estudio de arco electrico como un area muy importante de los estudios electricos basicos actuales, como: flujos de potencia, cortocircuito y coordinacion de protecciones. El objetivo de dicho estudio es determinar el Equipo de Proteccion Personal (EPP) apropiado y los limites de proteccion para el personal que opera con o cerca de equipo energizado, con base en las normas IEEE Std. 1584-2004 y la NFPA-70E-2004. Ademas, se incluyen criterios y recomendaciones para disminuir el nivel de energia incidente (cal/cm{sup 2}). En el trabajo se utilizo una red de distribucion tipo industrial de prueba. Los estudios se llevaron a cabo utilizando un programa comercial para el analisis de redes electricas.

  2. Spectral confocal reflection microscopy using a white light source

    Science.gov (United States)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  3. An invertebrate embryologist's guide to routine processing of confocal images.

    Science.gov (United States)

    von Dassow, George

    2014-01-01

    It is almost impossible to use a confocal microscope without encountering the need to transform the raw data through image processing. Adherence to a set of straightforward guidelines will help ensure that image manipulations are both credible and repeatable. Meanwhile, attention to optimal data collection parameters will greatly simplify image processing, not only for convenience but for quality and credibility as well. Here I describe how to conduct routine confocal image processing tasks, including creating 3D animations or stereo images, false coloring or merging channels, background suppression, and compressing movie files for display.

  4. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect

    Energy Technology Data Exchange (ETDEWEB)

    De Beer, M., E-mail: maritz.db@gmail.com [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Du Toit, C.G., E-mail: Jat.DuToit@nwu.ac.za [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Rousseau, P.G., E-mail: pieter.rousseau@uct.ac.za [Department of Mechanical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa)

    2017-04-01

    Highlights: • The radiation and conduction components of the effective thermal conductivity are separated. • Near-wall effects have a notable influence on the effective thermal conductivity. • Effective thermal conductivity is a function of the macro temperature gradient. • The effective thermal conductivity profile shows a characteristic trend. • The trend is a result of the interplay between conduction and radiation. - Abstract: The effective thermal conductivity represents the overall heat transfer characteristics of a packed bed of spheres and must be considered in the analysis and design of pebble bed gas-cooled reactors. During depressurized loss of forced cooling conditions the dominant heat transfer mechanisms for the passive removal of decay heat are radiation and conduction. Predicting the value of the effective thermal conductivity is complex since it inter alia depends on the temperature level and temperature gradient through the bed, as well as the pebble packing structure. The effect of the altered packing structure in the wall region must therefore also be considered. Being able to separate the contributions of radiation and conduction allows a better understanding of the underlying phenomena and the characteristics of the resultant effective thermal conductivity. This paper introduces a purpose-designed test facility and accompanying methodology that combines physical measurements with Computational Fluid Dynamics (CFD) simulations to separate the contributions of radiation and conduction heat transfer, including the wall effects. Preliminary results obtained with the methodology offer important insights into the trends observed in the experimental results and provide a better understanding of the interplay between the underlying heat transfer phenomena.

  5. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    de Luca, G. M. R.; Desclos, E.; Breedijk, R. M. P.; Dolz-Edo, L.; Smits, G. J.; Bielefeld, P.; Picavet, L.; Fitzsimons, C. P.; Hoebe, R.; Manders, E. M. M.

    2017-01-01

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  6. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    De Luca, G.M.R.; Desclos, E.; Breedijk, R.M.P.; Dolz-Edo, L.; Smits, G.J.; Nahidiazar, L.; Bielefeld, P.; Picavet, L.; Fitzsimons, C.P.; Hoebe, R.; Manders, E.M.M.

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  7. Evaluation and purchase of confocal microscopes: numerous factors to consider.

    Science.gov (United States)

    Zucker, Robert M; Chua, Michael

    2010-10-01

    The purchase of a confocal microscope is a difficult decision. Many factors need to be considered, which include hardware, software, company, support, service, and price. These issues are discussed to help guide the purchasing process. © 2010 by John Wiley & Sons, Inc.

  8. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  9. Confocal imaging of butterfly tissue.

    Science.gov (United States)

    Brunetti, Craig R

    2014-01-01

    To understand the molecular events responsible for morphological change requires the ability to examine gene expression in a wide range of organisms in addition to model systems to determine how the differences in gene expression correlate with phenotypic differences. There are approximately 12,000 species of butterflies, most, with distinct patterns on their wings. The most important tool for studying gene expression in butterflies is confocal imaging of butterfly tissue by indirect immunofluorescence using either cross-reactive antibodies from closely related species such as Drosophila or developing butterfly-specific antibodies. In this report, we describe how indirect immunofluorescence protocols can be used to visualize protein expression patterns on the butterfly wing imaginal disc and butterfly embryo.

  10. Confocal Raman Microscopy; applications in tissue engineering

    NARCIS (Netherlands)

    van Apeldoorn, Aart A.

    2005-01-01

    This dissertation describes the use of confocal Raman microscopy and spectroscopy in the field of tissue engineering. Moreover, it describes the combination of two already existing technologies, namely scanning electron microscopy and confocal Raman spectroscopy in one apparatus for the enhancement

  11. Fluorescence confocal endomicroscopy in biological imaging

    Science.gov (United States)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    In vivo fluorescence microscopic imaging of biological systems in human disease states and animal models is possible with high optical resolution and mega pixel point-scanning performance using optimised off-the-shelf turn-key devices. There are however various trade-offs between tissue access and instrument performance when miniaturising in vivo microscopy systems. A miniature confocal scanning technology that was developed for clinical human endoscopy has been configured into a portable device for direct hand-held interrogation of living tissue in whole animal models (Optiscan FIVE-1 system). Scanning probes of 6.3mm diameter with a distal tip diameter of 5.0mm were constructed either in a 150mm length for accessible tissue, or a 300mm probe for laparoscopic interrogation of internal tissues in larger animal models. Both devices collect fluorescence confocal images (excitation 488 nm; emission >505 or >550 nm) comprised of 1024 x 1204 sampling points/image frame, with lateral resolution 0.7um; axial resolution 7um; FOV 475 x 475um. The operator can dynamically control imaging depth from the tissue surface to approx 250um in 4um steps via an internally integrated zaxis actuator. Further miniaturisation is achieved using an imaging contact probe based on scanning the proximal end of a high-density optical fibre bundle (~30,000 fibres) of small animal organs, albeit at lower resolution (30,000 sampling points/image). In rodent models, imaging was performed using various fluorescent staining protocols including fluorescently labelled receptor ligands, labelled antibodies, FITC-dextrans, vital dyes and labelled cells administered topically or intravenously. Abdominal organs of large animals were accessed laparoscopically and contrasted using i.v. fluorescein-sodium. Articular cartilage of sheep and pigs was fluorescently stained with calcein-AM or fluorescein. Surface and sub-surface cellular and sub-cellular details could be readily visualised in vivo at high

  12. Depth-profiling by confocal Raman microscopy (CRM): data correction by numerical techniques.

    Science.gov (United States)

    Tomba, J Pablo; Eliçabe, Guillermo E; Miguel, María de la Paz; Perez, Claudio J

    2011-03-01

    The data obtained in confocal Raman microscopy (CRM) depth profiling experiments with dry optics are subjected to significant distortions, including an artificial compression of the depth scale, due to the combined influence of diffraction, refraction, and instrumental effects that operate on the measurement. This work explores the use of (1) regularized deconvolution and (2) the application of simple rescaling of the depth scale as methodologies to obtain an improved, more precise, confocal response. The deconvolution scheme is based on a simple predictive model for depth resolution and the use of regularization techniques to minimize the dramatic oscillations in the recovered response typical of problem inversion. That scheme is first evaluated using computer simulations on situations that reproduce smooth and sharp sample transitions between two materials and finally it is applied to correct genuine experimental data, obtained in this case from a sharp transition (planar interface) between two polymeric materials. It is shown that the methodology recovers very well most of the lost profile features in all the analyzed situations. The use of simple rescaling appears to be only useful for correcting smooth transitions, particularly those extended over distances larger than those spanned by the operative depth resolution, which limits the strategy to the study of profiles near the sample surface. However, through computer simulations, it is shown that the use of water immersion objectives may help to reduce optical distortions and to expand the application window of this simple methodology, which could be useful, for instance, to safely monitor Fickean sorption/desorption of penetrants in polymer films/coatings in a nearly noninvasive way.

  13. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    Science.gov (United States)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films

  14. Confocal Endomicroscopy of Colorectal Polyps

    Directory of Open Access Journals (Sweden)

    Vivian M. Ussui

    2012-01-01

    Full Text Available Confocal laser endomicroscopy (CLE is one of several novel methods that provide real-time, high-resolution imaging at a micron scale via endoscopes. CLE has the potential to be a disruptive technology in that it can change the current algorithms that depend on biopsy to perform surveillance of high-risk conditions. Furthermore, it allows on-table decision making that has the potential to guide therapy in real time and reduce the need for repeated procedures. CLE and related technologies are often termed “virtual biopsy” as they simulate the images seen in traditional histology. However, the imaging of living tissue allows more than just pragmatic convenience; it also allows imaging of living tissue such as active capillary circulation, cellular death, and vascular and endothelial translocation, thus extending beyond what is capable in traditional biopsy. Immediate potential applications of CLE are to guide biopsy sampling in Barrett's esophagus and inflammatory bowel disease surveillance, evaluation of colorectal polyps, and intraductal imaging of the pancreas and bile duct. Data on these applications is rapidly emerging, and more is needed to clearly demonstrate the optimal applications of CLE. In this paper, we will focus on the role of CLE as applied to colorectal polyps detected during colonoscopy.

  15. Confocal scanning microscope for nuclear photoemulsion

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Kovalev, Yu.S.; Soroko, L.M.

    2005-01-01

    The application of the confocal scanning microscope to the objects in the nuclear photoemulsion is described. An array of 27 microtomograms of single silver grain is shown. The cross sections of the same particle track of diameter 1 μm, detected by means of the confocal scanning microscope with open and annular apertures, are presented. It was shown that the confocal scanning microscope opens indeed new opportunities for the nuclear photoemulsion technique to get previously inaccessible information for physics of the short-living particles

  16. OvidSP Medline-to-PubMed search filter translation: a methodology for extending search filter range to include PubMed's unique content.

    Science.gov (United States)

    Damarell, Raechel A; Tieman, Jennifer J; Sladek, Ruth M

    2013-07-02

    PubMed translations of OvidSP Medline search filters offer searchers improved ease of access. They may also facilitate access to PubMed's unique content, including citations for the most recently published biomedical evidence. Retrieving this content requires a search strategy comprising natural language terms ('textwords'), rather than Medical Subject Headings (MeSH). We describe a reproducible methodology that uses a validated PubMed search filter translation to create a textword-only strategy to extend retrieval to PubMed's unique heart failure literature. We translated an OvidSP Medline heart failure search filter for PubMed and established version equivalence in terms of indexed literature retrieval. The PubMed version was then run within PubMed to identify citations retrieved by the filter's MeSH terms (Heart failure, Left ventricular dysfunction, and Cardiomyopathy). It was then rerun with the same MeSH terms restricted to searching on title and abstract fields (i.e. as 'textwords'). Citations retrieved by the MeSH search but not the textword search were isolated. Frequency analysis of their titles/abstracts identified natural language alternatives for those MeSH terms that performed less effectively as textwords. These terms were tested in combination to determine the best performing search string for reclaiming this 'lost set'. This string, restricted to searching on PubMed's unique content, was then combined with the validated PubMed translation to extend the filter's performance in this database. The PubMed heart failure filter retrieved 6829 citations. Of these, 834 (12%) failed to be retrieved when MeSH terms were converted to textwords. Frequency analysis of the 834 citations identified five high frequency natural language alternatives that could improve retrieval of this set (cardiac failure, cardiac resynchronization, left ventricular systolic dysfunction, left ventricular diastolic dysfunction, and LV dysfunction). Together these terms reclaimed

  17. Confocal Raman Microspectroscopy of Oral Streptococci

    Science.gov (United States)

    Beier, Brooke D.

    Raman spectroscopy has been used in a variety of applications throughout the field of biomedical optics. It has the ability to acquire chemically-specific information in a non-invasive manner, without the need for exogenous markers. This makes it useful in the identification of bacterial species, as well as in the study of tissues and other cells. In this work, a species identification model has been created in order to discriminate between the oral bacterial species Streptococcus sanguinis and Streptococcus mutans. These are two of the most prevalent species within the human mouth and their relative concentrations can be an indicator of a patient's oral health and risk of tooth decay. They are predominantly found within plaque on the tooth's surface. To study a simplified model for dental plaque, we have examined S. sanguinis and S. mutans grown in biofilm forms. Raman spectroscopy has been implemented here through a confocal microscope. The optical system has been equipped with computationally controlled stages to allow for automated scanning, including autofocusing to probe a consistent depth within a sample. A spectrum has been acquired from each position within a scan and sent for spectral preprocessing before being submitted for species identification. This preprocessing includes an algorithm that has been developed to remove fluorescence features from known contaminants within the confocal volume, to include signal from a fluorescent substrate. Species classification has been accomplished using a principal component score-fed logistic regression model constructed from a variety of biofilm samples that have been transferred and allowed to dry, as might occur with the study of plaque samples. This binary classification model has been validated on other samples with identical preparations. The model has also been transferred to determine the species of hydrated biofilms studied in situ. Artificially mixed biofilms have been examined to test the spatial

  18. Diffractive elements performance in chromatic confocal microscopy

    International Nuclear Information System (INIS)

    Garzon, J; Duque, D; Alean, A; Toledo, M; Meneses, J; Gharbi, T

    2011-01-01

    The Confocal Laser Scanning Microscopy (CLSM) has been widely used in the semiconductor industry and biomedicine because of its depth discrimination capability. Subsequent to this technique has been developed in recent years Chromatic Confocal Microscopy. This method retains the same principle of confocal and offers the added advantage of removing the axial movement of the moving system. This advantage is usually accomplished with an optical element that generates a longitudinal chromatic aberration and a coding system that relates the axial position of each point of the sample with the wavelength that is focused on each. The present paper shows the performance of compact chromatic confocal microscope when some different diffractive elements are used for generation of longitudinal chromatic aberration. Diffractive elements, according to the process and manufacturing parameters, may have different diffraction efficiency and focus a specific wavelength in a specific focal position. The performance assessment is carried out with various light sources which exhibit an incoherent behaviour and a broad spectral width.

  19. Aorta Fluorescence Imaging by Using Confocal Microscopy

    OpenAIRE

    Wang, Chun-Yang; Tsai, Jui-che; Chuang, Ching-Cheng; Hsieh, Yao-Sheng; Sun, Chia-Wei

    2011-01-01

    The activated leukocyte attacked the vascular endothelium and the associated increase in VEcadherin number was observed in experiments. The confocal microscopic system with a prism-based wavelength filter was used for multiwavelength fluorescence measurement. Multiwavelength fluorescence imaging based on the VEcadherin within the aorta segment of a rat was achieved. The confocal microscopic system capable of fluorescence detection of cardiovascular tissue is a useful tool for measuring the bi...

  20. Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy.

    Science.gov (United States)

    Longo, Caterina; Lallas, Aimilios; Kyrgidis, Athanassios; Rabinovitz, Harold; Moscarella, Elvira; Ciardo, Silvana; Zalaudek, Iris; Oliviero, Margaret; Losi, Amanda; Gonzalez, Salvador; Guitera, Pascale; Piana, Simonetta; Argenziano, Giuseppe; Pellacani, Giovanni

    2014-10-01

    The current guidelines for the management of basal cell carcinoma (BCC) suggest a different therapeutic approach according to histopathologic subtype. Although dermatoscopic and confocal criteria of BCC have been investigated, no specific studies were performed to evaluate the distinct reflectance confocal microscopy (RCM) aspects of BCC subtypes. To define the specific dermatoscopic and confocal criteria for delineating different BCC subtypes. Dermatoscopic and confocal images of histopathologically confirmed BCCs were retrospectively evaluated for the presence of predefined criteria. Frequencies of dermatoscopic and confocal parameters are provided. Univariate and adjusted odds ratios were calculated. Discriminant analyses were performed to define the independent confocal criteria for distinct BCC subtypes. Eighty-eight BCCs were included. Dermatoscopically, superficial BCCs (n=44) were primarily typified by the presence of fine telangiectasia, multiple erosions, leaf-like structures, and revealed cords connected to the epidermis and epidermal streaming upon RCM. Nodular BCCs (n=22) featured the classic dermatoscopic features and well outlined large basaloid islands upon RCM. Infiltrative BCCs (n=22) featured structureless, shiny red areas, fine telangiectasia, and arborizing vessels on dermatoscopy and dark silhouettes upon RCM. The retrospective design. Dermatoscopy and confocal microscopy can reliably classify different BCC subtypes. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  2. Application of Confocal Laser Scanning Microscopy in Biology and Medicine

    OpenAIRE

    I. A. Volkov; N. V. Frigo; L. F. Znamenskaya; O. R. Katunina

    2014-01-01

    Fluorescence confocal laser scanning microscopy and reflectance confocal laser scanning microscopy are up-to-date highend study methods. Confocal microscopy is used in cell biology and medicine. By using confocal microscopy, it is possible to study bioplasts and localization of protein molecules and other compounds relative to cell or tissue structures, and to monitor dynamic cell processes. Confocal microscopes enable layer-by-layer scanning of test items to create demonstrable 3D models. As...

  3. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    de Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-01-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  4. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    De Luca, G.; Breedijk, R.; Hoebe, R.; Stallinga, S.; Manders, E.

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  5. 3D Volumetric Analysis of Fluid Inclusions Using Confocal Microscopy

    Science.gov (United States)

    Proussevitch, A.; Mulukutla, G.; Sahagian, D.; Bodnar, B.

    2009-05-01

    Fluid inclusions preserve valuable information regarding hydrothermal, metamorphic, and magmatic processes. The molar quantities of liquid and gaseous components in the inclusions can be estimated from their volumetric measurements at room temperatures combined with knowledge of the PVTX properties of the fluid and homogenization temperatures. Thus, accurate measurements of inclusion volumes and their two phase components are critical. One of the greatest advantages of the Laser Scanning Confocal Microscopy (LSCM) in application to fluid inclsion analsyis is that it is affordable for large numbers of samples, given the appropriate software analysis tools and methodology. Our present work is directed toward developing those tools and methods. For the last decade LSCM has been considered as a potential method for inclusion volume measurements. Nevertheless, the adequate and accurate measurement by LSCM has not yet been successful for fluid inclusions containing non-fluorescing fluids due to many technical challenges in image analysis despite the fact that the cost of collecting raw LSCM imagery has dramatically decreased in recent years. These problems mostly relate to image analysis methodology and software tools that are needed for pre-processing and image segmentation, which enable solid, liquid and gaseous components to be delineated. Other challenges involve image quality and contrast, which is controlled by fluorescence of the material (most aqueous fluid inclusions do not fluoresce at the appropriate laser wavelengths), material optical properties, and application of transmitted and/or reflected confocal illumination. In this work we have identified the key problems of image analysis and propose some potential solutions. For instance, we found that better contrast of pseudo-confocal transmitted light images could be overlayed with poor-contrast true-confocal reflected light images within the same stack of z-ordered slices. This approach allows one to narrow

  6. How the confocal laser scanning microscope entered biological research.

    Science.gov (United States)

    Amos, W B; White, J G

    2003-09-01

    A history of the early development of the confocal laser scanning microscope in the MRC Laboratory of Molecular Biology in Cambridge is presented. The rapid uptake of this technology is explained by the wide use of fluorescence in the 80s. The key innovations were the scanning of the light beam over the specimen rather than vice-versa and a high magnification at the level of the detector, allowing the use of a macroscopic iris. These were followed by an achromatic all-reflective relay system, a non-confocal transmission detector and novel software for control and basic image processing. This design was commercialized successfully and has been produced and developed over 17 years, surviving challenges from alternative technologies, including solid-state scanning systems. Lessons are pointed out from the unusual nature of the original funding and research environment. Attention is drawn to the slow adoption of the instrument in diagnostic medicine, despite promising applications.

  7. Assessment of nerve ultrastructure by fibre-optic confocal microscopy.

    Science.gov (United States)

    Cushway, T R; Lanzetta, M; Cox, G; Trickett, R; Owen, E R

    1996-01-01

    Fibre-optic technology combined with confocality produces a microscope capable of optical thin sectioning. In this original study, tibial nerves have been stained in a rat model with a vital dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide, and analysed by fibre-optic confocal microscopy to produce detailed images of nerve ultrastructure. Schwann cells, nodes of Ranvier and longitudinal myelinated sheaths enclosing axons were clearly visible. Single axons appeared as brightly staining longitudinal structures. This allowed easy tracing of multiple signal axons within the nerve tissue. An accurate measurement of internodal lengths was easily accomplished. This technique is comparable to current histological techniques, but does not require biopsy, thin sectioning or tissue fixing. This study offers a standard for further in vivo microscopy, including the possibility of monitoring the progression of nerve regeneration following microsurgical neurorraphy.

  8. Design considerations of a real-time clinical confocal microscope

    Science.gov (United States)

    Masters, Barry R.

    1991-06-01

    A real-time clinical confocal light microscope provides the ophthalmologist with a new tool for the observation of the cornea and the ocular lens. In addition, the ciliary body, the iris, and the sclera can be observed. The real-time light microscopic images have high contrast and resolution. The transverse resolution is about one half micron and the range resolution is one micron. The following observations were made with visible light: corneal epithelial cells, wing cells, basal cells, Bowman's membrane, nerve fibers, basal lamina, fibroblast nuclei, Descemet's membrane, endothelial cells. Observation of the in situ ocular lens showed lens capsule, lens epithelium, lens fibrils, the interior of lens fibrils. The applications of the confocal microscope include: eye banking, laser refractive surgery, observation of wound healing, observation of the iris, the sciera, the ciliary body, the ocular lens, and the intraocular lens. Digital image processing can produce three-dimensional reconstructions of the cornea and the ocular lens.

  9. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Science.gov (United States)

    Narváez, Angela C.; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P.; Kruit, Pieter

    2014-06-01

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  10. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Narváez, Angela C., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Kruit, Pieter [Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands)

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  11. A deep view in cultural heritage - confocal micro X-ray spectroscopy for depth resolved elemental analysis

    International Nuclear Information System (INIS)

    Kanngiesser, B.; Malzer, W.; Mantouvalou, I.; Sokaras, D.; Karydas, A.G.

    2012-01-01

    Quantitative X-ray fluorescence (XRF) and particle induced X-ray emission (PIXE) techniques have been developed mostly for the elemental analysis of homogeneous bulk or very simple layered materials. Further on, the microprobe version of both techniques is applied for 2D elemental mapping of surface heterogeneities. At typical XRF/PIXE fixed geometries and exciting energies (15-25 keV and 2-3 MeV, respectively), the analytical signal (characteristic X-ray radiation) emanates from a variable but rather extended depth within the analyzed material, according to the exciting probe energy, set-up geometry, specimen matrix composition and analyte. Consequently, the in-depth resolution offered by XRF and PIXE techniques is rather limited for the characterization of materials with micrometer-scale stratigraphy or 3D heterogeneous structures. This difficulty has been over-passed to some extent in the case of an X-ray or charged particle microprobe by creating the so-called confocal geometry. The field of view of the X-ray spectrometer is spatially restricted by a polycapillary X-ray lens within a sensitive microvolume formed by the two inter-sectioned focal regions. The precise scanning of the analyzed specimen through the confocal microvolume results in depth-sensitive measurements, whereas the additional 2D scanning microprobe possibilities render to element-specific 3D spatial resolution (3D micro-XRF and 3D micro-PIXE). These developments have contributed since 2003 to a variety of fields of applications in environmental, material and life sciences. In contrast to other elemental imaging methods, no size restriction of the objects investigated and the non-destructive character of analysis have been found indispensable for cultural heritage (CH) related applications. The review presents a summary of the experimental set-up developments at synchrotron radiation beamlines, particle accelerators and desktop spectrometers that have driven methodological developments and

  12. Confocal laser endomicroscopy in ulcerative colitis

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Săftoiu, Adrian; Brynskov, Jørn

    2016-01-01

    BACKGROUND AND AIMS: Confocal laser endomicroscopy enables real-time in vivo microscopy during endoscopy and can predict relapse in patients with inflammatory bowel disease in remission. However, little is known about how endomicroscopic features change with time. The aim of this longitudinal study...... was to correlate colonic confocal laser endomicroscopy (CLE) in ulcerative colitis with histopathology and macroscopic appearance before and after intensification of medical treatment. METHODS: Twenty-two patients with ulcerative colitis in clinical relapse and 7 control subjects referred for colonoscopy were...

  13. Model wavefront sensor for adaptive confocal microscopy

    Science.gov (United States)

    Booth, Martin J.; Neil, Mark A. A.; Wilson, Tony

    2000-05-01

    A confocal microscope permits 3D imaging of volume objects by the inclusion of a pinhole in the detector path which eliminates out of focus light. This configuration is however very sensitive to aberrations induced by the specimen or the optical system and would therefore benefit from an adaptive optics approach. We present a wavefront sensor capable of measuring directly the Zernike components of an aberrated wavefront and show that it is particularly applicable to the confocal microscope since only those wavefronts originating in the focal region contribute to the measured aberration.

  14. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  15. Reflectance confocal microscopy features of thin versus thick melanomas.

    Science.gov (United States)

    Kardynal, Agnieszka; Olszewska, Małgorzata; de Carvalho, Nathalie; Walecka, Irena; Pellacani, Giovanni; Rudnicka, Lidia

    2018-01-24

    In vivo reflectance confocal microscopy (RCM) plays an increasingly important role in differential diagnosis of melanoma. The aim of the study was to assess typical confocal features of thin (≤1mm according to Breslow index) versus thick (>1mm) melanomas. 30 patients with histopathologically confirmed cutaneous melanoma were included in the study. Reflectance confocal microscopy was performed with Vivascope equipment prior to excision. Fifteen melanomas were thin (Breslow thickness ≤ 1mm) and 15 were thick melanomas (Breslow thickness >1mm). In the RCM examination, the following features were more frequently observed in thin compared to thick melanomas: edged papillae (26.7% vs 0%, p=0.032) and areas with honeycomb or cobblestone pattern (33.3% vs 6.7%, p=0.068). Both features are present in benign melanocytic lesions, so in melanoma are good prognostic factors. The group of thick melanomas compared to the group of thin melanomas in the RCM images presented with greater frequency of roundish cells (100% vs 40%, p=0.001), non-edged papillae (100% vs 60%, p=0.006), numerous pagetoid cells (73.3% vs 33.3%, p=0.028), numerous atypical cells at dermal-epidermal junction (53.3% vs 20%, p=0.058) and epidermal disarray (93.3% vs 66.7%, p=0.068). Non-invasive imaging methods helps in deepening of knowledge about the evolution and biology of melanoma. The most characteristic features for thin melanomas in confocal examination are: fragments of cobblestone or honeycomb pattern and edged papillae (as good prognostic factors). The features of thick melanomas in RCM examination are: roundish cells, non-edged papillae, numerous pagetoid cells at dermal-epidermal junction and epidermal disarray.

  16. Confocal endomicroscopy: Is it time to move on?

    Science.gov (United States)

    Robles-Medranda, Carlos

    2016-01-10

    Confocal laser endomicroscopy permits in-vivo microscopy evaluation during endoscopy procedures. It can be used in all the parts of the gastrointestinal tract and includes: Esophagus, stomach, small bowel, colon, biliary tract through and endoscopic retrograde cholangiopancreatography and pancreas through needles during endoscopic ultrasound procedures. Many researches demonstrated a high correlation of results between confocal laser endomicroscopy and histopathology in the diagnosis of gastrointestinal lesions; with accuracy in about 86% to 96%. Moreover, in spite that histopathology remains the gold-standard technique for final diagnosis of any diseases; a considerable number of misdiagnosis rate could be present due to many factors such as interpretation mistakes, biopsy site inaccuracy, or number of biopsies. Theoretically; with the diagnostic accuracy rates of confocal laser endomicroscopy could help in a daily practice to improve diagnosis and treatment management of the patients. However, it is still not routinely used in the clinical practice due to many factors such as cost of the procedure, lack of codification and reimbursement in some countries, absence of standard of care indications, availability, physician image-interpretation training, medico-legal problems, and the role of the pathologist. These limitations are relative, and solutions could be found based on new researches focused to solve these barriers.

  17. Characterization of the main error sources of chromatic confocal probes for dimensional measurement

    International Nuclear Information System (INIS)

    Nouira, H; El-Hayek, N; Yuan, X; Anwer, N

    2014-01-01

    Chromatic confocal probes are increasingly used in high-precision dimensional metrology applications such as roughness, form, thickness and surface profile measurements; however, their measurement behaviour is not well understood and must be characterized at a nanometre level. This paper provides a calibration bench for the characterization of two chromatic confocal probes of 20 and 350 µm travel ranges. The metrology loop that includes the chromatic confocal probe is stable and enables measurement repeatability at the nanometer level. With the proposed system, the major error sources, such as the relative axial and radial motions of the probe with respect to the sample, the material, colour and roughness of the measured sample, the relative deviation/tilt of the probe and the scanning speed are identified. Experimental test results show that the chromatic confocal probes are sensitive to these errors and that their measurement behaviour is highly dependent on them. (paper)

  18. Confocal microscopy imaging of the biofilm matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke L

    2017-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...... the concentration of solutes and the diffusive properties of the biofilm matrix....

  19. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    Science.gov (United States)

    Laser power abstract The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  20. Fluorescence confocal polarizing microscopy: Three-dimensional ...

    Indian Academy of Sciences (India)

    journal of. August 2003 physics pp. 373–384. Fluorescence confocal polarizing ... and focal conic domains in flat samples of lamellar LCs are practically indistinguishable. ... or less) LC layer confined between two transparent plates. ... in studies of electro-optic effects such as the Frederiks effect, defects, surface anchoring,.

  1. Methodological quality of diagnostic accuracy studies on non-invasive coronary CT angiography: influence of QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) items on sensitivity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Sabine; Walther, Stefan; Schuetz, Georg M. [Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Charite Medical School, Department of Radiology, Berlin (Germany); Schlattmann, Peter [University Hospital of Friedrich Schiller University Jena, Department of Medical Statistics, Informatics, and Documentation, Jena (Germany); Dewey, Marc [Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Charite Medical School, Department of Radiology, Berlin (Germany); Charite, Institut fuer Radiologie, Berlin (Germany)

    2013-06-15

    To evaluate the methodological quality of diagnostic accuracy studies on coronary computed tomography (CT) angiography using the QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) tool. Each QUADAS item was individually defined to adapt it to the special requirements of studies on coronary CT angiography. Two independent investigators analysed 118 studies using 12 QUADAS items. Meta-regression and pooled analyses were performed to identify possible effects of methodological quality items on estimates of diagnostic accuracy. The overall methodological quality of coronary CT studies was merely moderate. They fulfilled a median of 7.5 out of 12 items. Only 9 of the 118 studies fulfilled more than 75 % of possible QUADAS items. One QUADAS item (''Uninterpretable Results'') showed a significant influence (P = 0.02) on estimates of diagnostic accuracy with ''no fulfilment'' increasing specificity from 86 to 90 %. Furthermore, pooled analysis revealed that each QUADAS item that is not fulfilled has the potential to change estimates of diagnostic accuracy. The methodological quality of studies investigating the diagnostic accuracy of non-invasive coronary CT is only moderate and was found to affect the sensitivity and specificity. An improvement is highly desirable because good methodology is crucial for adequately assessing imaging technologies. (orig.)

  2. Methodological quality of diagnostic accuracy studies on non-invasive coronary CT angiography: influence of QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) items on sensitivity and specificity

    International Nuclear Information System (INIS)

    Schueler, Sabine; Walther, Stefan; Schuetz, Georg M.; Schlattmann, Peter; Dewey, Marc

    2013-01-01

    To evaluate the methodological quality of diagnostic accuracy studies on coronary computed tomography (CT) angiography using the QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) tool. Each QUADAS item was individually defined to adapt it to the special requirements of studies on coronary CT angiography. Two independent investigators analysed 118 studies using 12 QUADAS items. Meta-regression and pooled analyses were performed to identify possible effects of methodological quality items on estimates of diagnostic accuracy. The overall methodological quality of coronary CT studies was merely moderate. They fulfilled a median of 7.5 out of 12 items. Only 9 of the 118 studies fulfilled more than 75 % of possible QUADAS items. One QUADAS item (''Uninterpretable Results'') showed a significant influence (P = 0.02) on estimates of diagnostic accuracy with ''no fulfilment'' increasing specificity from 86 to 90 %. Furthermore, pooled analysis revealed that each QUADAS item that is not fulfilled has the potential to change estimates of diagnostic accuracy. The methodological quality of studies investigating the diagnostic accuracy of non-invasive coronary CT is only moderate and was found to affect the sensitivity and specificity. An improvement is highly desirable because good methodology is crucial for adequately assessing imaging technologies. (orig.)

  3. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores.

    Science.gov (United States)

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2013-09-01

    Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; Pfiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.

  4. Fungal keratitis - improving diagnostics by confocal microscopy

    DEFF Research Database (Denmark)

    Nielsen, Esben; Heegaard, S; Prause, J U

    2013-01-01

    Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological...... analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience...... with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12...

  5. Integrated Photoacoustic and Fluorescence Confocal Microscopy

    OpenAIRE

    Wang, Yu; Maslov, Konstantin; Kim, Chulhong; Hu, Song; Wang, Lihong V.

    2010-01-01

    We have developed a dual-modality imaging system by integrating optical-resolution photoacoustic microscopy and fluorescence confocal microscopy to provide optical absorption and fluorescence contrasts simultaneously. By sharing the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence images are acquired in a single scan. The micrometer resolution allows imaging of both blood and lymphatic vessels down to the capillary level. Simultaneous photoacoustic...

  6. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  7. A near-infrared confocal scanner

    International Nuclear Information System (INIS)

    Lee, Seungwoo; Yoo, Hongki

    2014-01-01

    In the semiconductor industry, manufacturing of three-dimensional (3D) packages or 3D integrated circuits is a high-performance technique that requires combining several functions in a small volume. Through-silicon vias, which are vertical electrical connections extending through a wafer, can be used to direct signals between stacked chips, thus increasing areal density by stacking and connecting multiple patterned chips. While defect detection is essential in the semiconductor manufacturing process, it is difficult to identify defects within a wafer or to monitor the bonding results between bonded surfaces because silicon and many other semiconductor materials are opaque to visible wavelengths. In this context, near-infrared (NIR) imaging is a promising non-destructive method to detect defects within silicon chips, to inspect bonding between chips and to monitor the chip alignment since NIR transmits through silicon. In addition, a confocal scanner provides high-contrast, optically-sectioned images of the specimen due to its ability to reject out-of-focus noise. In this study, we report an NIR confocal scanner that rapidly acquires high-resolution images with a large field of view through silicon. Two orthogonal line-scanning images can be acquired without rotating the system or the specimen by utilizing two orthogonally configured resonant scanning mirrors. This NIR confocal scanner can be efficiently used as an in-line inspection system when manufacturing semiconductor devices by rapidly detecting defects on and beneath the surface. (paper)

  8. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  9. Microscopia confocal en operados de queratoplastia perforante Confocal microscopy in patients operated from penetrating keratoplasty

    Directory of Open Access Journals (Sweden)

    Zulema Gómez Castillo

    2009-06-01

    Full Text Available La microscopia confocal es un examen exploratorio, práctico y poco invasivo que permite conocer las características microscópicas del tejido corneal después del trasplante, por lo que constituye una herramienta muy útil en el manejo de los pacientes operados de queratoplastia. El presente trabajo tiene como finalidad describir las características del tejido corneal en pacientes operados de este tipo de trasplante, mediante la microscopia confocal in vivo. MÉTODOS: Se realizó un estudio descriptivo, de corte transversal, en 40 ojos de 40 pacientes operados de queratoplastia perforante, en el Servicio de Córnea del Instituto Cubano de Oftalmología "Ramón Pando Ferrer", de marzo de 2006 a marzo de 2007. Se confeccionó una historia clínica oftalmológica y se les realizó a todos el examen de microscopia confocal en el injerto corneal con el microscopio confocal CONFOSCAN 4. RESULTADOS: La queratopatía bullosa pseudofáquica fue la afección más frecuente previa a la cirugía y estuvo presente en el 77,5 % de los pacientes. En el 72,5 % de los intervenidos se encontró una disminución del grosor corneal. El epitelio presentó alteraciones en el 62,5 % de los pacientes. Todos presentaron afectación de la forma y el tamaño celular endotelial. En el 82,5 % de los pacientes se observó ausencia de plexos nerviosos. CONCLUSIONES: La microscopia confocal como nueva ciencia en el campo de la oftalmología, favorece el seguimiento evolutivo de las queratoplastias perforantes y con esto no solo a prevenir la aparición de posibles complicaciones, sino además de garantizar el éxito de la cirugía y la función refractiva de la córnea.Confocal microscopy is a practical, exploratory and less invassive examination that allows finding out the microscopic characteristics of the corneal tissue after transplantation, so it is a very useful tool for the management of patients operated from keratoplasty. The present paper was aimed at describing

  10. Re-scan confocal microscopy: scanning twice for better resolution.

    Science.gov (United States)

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  11. Materials and corrosion characterization using the confocal resonator

    Energy Technology Data Exchange (ETDEWEB)

    Tigges, C.P.; Sorensen, N.R.; Hietala, V.M.; Plut, T.A. [and others

    1997-05-01

    Improved characterization and process control is important to many Sandia and DOE programs related to manufacturing. Many processes/structures are currently under-characterized including thin film growth, corrosion and semiconductor structures, such as implant profiles. A sensitive tool is required that is able to provide lateral and vertical imaging of the electromagnetic properties of a sample. The confocal resonator is able to characterize the surface and near-surface impedance of materials. This device may be applied to a broad range of applications including in situ evaluation of thin film processes, physical defect detection/characterization, the characterization of semiconductor devices and corrosion studies. In all of these cases, the technology should work as a real-time process diagnostic or as a feedback mechanism regarding the quality of a manufacturing process. This report summarizes the development and exploration of several diagnostic applications.

  12. Musculature of Notholca acuminata (Rotifera : Ploima : Brachionidae) revealed by confocal scanning laser microscopy

    DEFF Research Database (Denmark)

    Sørensen, M.V.; Funch, P.; Hooge, M.

    2003-01-01

    The body-wall and visceral musculature of Notholca acuminata was visualized using phalloidin-linked fluorescent dye under confocal laser scanning microscopy. The body-wall musculature includes dorsal, lateral, and ventral pairs of longitudinally oriented body retractor muscles, two pairs of head...

  13. In vivo Diagnosis of Basal Cell Carcinoma Subtype by Reflectance Confocal Microscopy

    NARCIS (Netherlands)

    Peppelman, M.; Wolberink, E.A.W.; Blokx, W.A.M.; Kerkhof, P.C.M. van de; Erp, P.E.J. van; Gerritsen, M.J.P.

    2013-01-01

    Background: Reflectance confocal microscopy (RCM) is a noninvasive imaging technique. Currently, RCM is mainly used for the diagnosis of melanoma and nonmelanoma skin cancer including basal cell carcinoma (BCC). Until now, it has not been possible to distinguish between subtypes of BCC using RCM.

  14. Ex vivo confocal microscopy: an emerging technique in dermatology

    Science.gov (United States)

    Perrot, Jean Luc; Labeille, Bruno; Cambazard, Frédéric; Rubegni, Pietro

    2018-01-01

    This review aims to give an overview of the current available applications of ex vivo confocal microscopy (EVCM) in dermatology. EVCM is a relatively new imaging technique that allows microscopic examination of freshly excised unfixed tissue. It enables a rapid examination of the skin sample directly in the surgery room and thus represents an alternative to the intraoperative micrographic control of the surgical margins of cutaneous tumors by standard microscopic examination on cryopreserved sections during Mohs surgery. Although this technique has mainly been developed for the margin’s control of basal cell carcinoma, many other skin tumors have been studied, including melanoma. Use of EVCM is continuing to evolve, and many possible applications are under investigation, such as the study of nails and hair diseases and the diagnosis of skin infections. PMID:29785327

  15. Evaluation and purchase of confocal microscopes: Numerous factors to consider

    Science.gov (United States)

    The purchase of a confocal microscope can be a complex and difficult decision for an individual scientist, group or evaluation committee. This is true even for scientists that have used confocal technology for many years. The task of reaching the optimal decision becomes almost i...

  16. Digital differential confocal microscopy based on spatial shift transformation.

    Science.gov (United States)

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  17. 4Pi-confocal microscopy of live cells

    Science.gov (United States)

    Bahlmann, Karsten; Jakobs, Stefan; Hell, Stefan W.

    2002-06-01

    By coherently adding the spherical wavefronts of two opposing lenses, two-photon excitation 4Pi-confocal fluorescence microscopy has achieved three-dimensional imaging with an axial resolution 3-7 times better than confocal microscopy. So far this improvement was possible only in glycerol-mounted, fixed cells. Here we report 4Pi-confocal microscopy of watery objects and its application to the imaging of live cells. Water immersion 4Pi-confocal microscopy of membrane stained live Escherichia coli bacteria attains a 4.3 fold better axial resolution as compared to the best water immersion confocal microscope. The resolution enhancement results into a vastly improved three-dimensional representation of the bacteria. The first images of live biological samples with an all-directional resolution in the 190-280 nm range are presented here, thus establishing a new resolution benchmark in live cell microscopy.

  18. New methodology for studying the structural ecology of occlusal caries

    DEFF Research Database (Denmark)

    Dige, Irene; Grønkjær, Lene; Nyvad, Bente

    Microbiological studies of occlusal dental biofilms have hitherto been hampered by inaccessibility to the sampling site and demolition of the original biofilm architecture. The aim of the present study was to explore the spatial distribution of bacterial taxa in vivo at various stages of occusal...... caries, applying a new methodology involving preparation of embedded hard dental tissue slices for fluorescence in situ hybridization (FISH) and confocal microscopy. 11 extracted teeth were included in the study and classified according to their occlusal caries status (active/inactive/sound; cavitated......-bacterial origin resembling developmental protein, calculus and/or dead bacteria. Bacterial invasion with penetration into the dentinal tubules was seen only at advanced stages of the caries process with manifest cavity formation. It is concluded that the new methodology represents a valuable supplement...

  19. In vivo confocal microscopy for the oral cavity: Current state of the field and future potential.

    Science.gov (United States)

    Maher, N G; Collgros, H; Uribe, P; Ch'ng, S; Rajadhyaksha, M; Guitera, P

    2016-03-01

    Confocal microscopy (CM) has been shown to correlate with oral mucosal histopathology in vivo. The purposes of this review are to summarize what we know so far about in vivo CM applications for oral mucosal pathologies, to highlight some current developments with CM devices relevant for oral applications, and to formulate where in vivo CM could hold further application for oral mucosal diagnosis and management. Ovid Medline® and/or Google® searches were performed using the terms 'microscopy, confocal', 'mouth neoplasms', 'mouth mucosa', 'leukoplakia, oral', 'oral lichen planus', 'gingiva', 'cheilitis', 'taste', 'inflammatory oral confocal', 'mucosal confocal' and 'confocal squamous cell oral'. In summary, inclusion criteria were in vivo use of any type of CM for the human oral mucosa and studies on normal or pathological oral mucosa. Experimental studies attempting to identify proteins of interest and microorganisms were excluded. In total 25 relevant articles were found, covering 8 main topics, including normal oral mucosal features (n=15), oral dysplasia or neoplasia (n=7), inflamed oral mucosa (n=3), taste impairment (n=3), oral autoimmune conditions (n=2), pigmented oral pathology/melanoma (n=1), delayed type hypersensitivity (n=1), and cheilitis glandularis (n=1). The evidence for using in vivo CM in these conditions is poor, as it is limited to mainly small descriptive studies. Current device developments for oral CM include improved probe design. The authors propose that future applications for in vivo oral CM may include burning mouth syndrome, intra-operative mapping for cancer surgery, and monitoring and targeted biopsies within field cancerization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Three-dimensional imaging of porous media using confocal laser scanning microscopy.

    Science.gov (United States)

    Shah, S M; Crawshaw, J P; Boek, E S

    2017-02-01

    In the last decade, imaging techniques capable of reconstructing three-dimensional (3-D) pore-scale model have played a pivotal role in the study of fluid flow through complex porous media. In this study, we present advances in the application of confocal laser scanning microscopy (CLSM) to image, reconstruct and characterize complex porous geological materials with hydrocarbon reservoir and CO 2 storage potential. CLSM has a unique capability of producing 3-D thin optical sections of a material, with a wide field of view and submicron resolution in the lateral and axial planes. However, CLSM is limited in the depth (z-dimension) that can be imaged in porous materials. In this study, we introduce a 'grind and slice' technique to overcome this limitation. We discuss the practical and technical aspects of the confocal imaging technique with application to complex rock samples including Mt. Gambier and Ketton carbonates. We then describe the complete workflow of image processing to filtering and segmenting the raw 3-D confocal volumetric data into pores and grains. Finally, we use the resulting 3-D pore-scale binarized confocal data obtained to quantitatively determine petrophysical pore-scale properties such as total porosity, macro- and microporosity and single-phase permeability using lattice Boltzmann (LB) simulations, validated by experiments. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  1. Methodology to include a correction for offset in the calibration of a Diode-based 2D verification device; Metodologia para incluir una correccion por offset en la calibracion de un dispositivo de verificacion 2D basado en diodos

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Ros, J. C.; Pamos Urena, M.; Jerez Sainz, M.; Lobato Munoz, M.; Jodar Lopez, C. A.; Ruiz Lopez, M. a.; Carrasco Rodriguez, J. L.

    2013-07-01

    We propose a methodology to correct doses of device verification 2D MapChek2 planes by offset. This methodology provides an array of correction by Offset applied to the calibration per dose due to the Offset of the diode Central as well as the correction of the Offset of each diode on each acquisition. (Author)

  2. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Kobayashi A

    2014-02-01

    Full Text Available Akira Kobayashi, Tomomi Higashide, Hideaki Yokogawa, Natsuko Yamazaki, Toshinori Masaki, Kazuhisa Sugiyama Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan Objective: To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI with special attention to the abnormality of Bowman's layer and sub-Bowman's fibrous structures (K-structures. Patients and methods: Two patients (67-year-old male and his 26-year-old son with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Results: Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 µm oculus dexter (OD (the right eye and 384 µm oculus sinister (OS (the left eye in the father and 430 µm OD and 425 µm OS in the son. In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman's layer; a trace of a presumed Bowman's layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. Conclusion: The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman's layer in these OI patients. Keywords: osteogenesis imperfecta, K-structure, confocal microscopy, Bowman's layer

  3. Methodological guidelines

    International Nuclear Information System (INIS)

    Halsnaes, K.; Callaway, J.M.; Meyer, H.J.

    1999-01-01

    The guideline document establishes a general overview of the main components of climate change mitigation assessment. This includes an outline of key economic concepts, scenario structure, common assumptions, modelling tools and country study assumptions. The guidelines are supported by Handbook Reports that contain more detailed specifications of calculation standards, input assumptions and available tools. The major objectives of the project have been provided a methodology, an implementing framework and a reporting system which countries can follow in meeting their future reporting obligations under the FCCC and for GEF enabling activities. The project builds upon the methodology development and application in the UNEP National Abatement Coasting Studies (UNEP, 1994a). The various elements provide countries with a road map for conducting climate change mitigation studies and submitting national reports as required by the FCCC. (au) 121 refs

  4. Methodological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Callaway, J.M.; Meyer, H.J.

    1999-04-01

    The guideline document establishes a general overview of the main components of climate change mitigation assessment. This includes an outline of key economic concepts, scenario structure, common assumptions, modelling tools and country study assumptions. The guidelines are supported by Handbook Reports that contain more detailed specifications of calculation standards, input assumptions and available tools. The major objectives of the project have been provided a methodology, an implementing framework and a reporting system which countries can follow in meeting their future reporting obligations under the FCCC and for GEF enabling activities. The project builds upon the methodology development and application in the UNEP National Abatement Coasting Studies (UNEP, 1994a). The various elements provide countries with a road map for conducting climate change mitigation studies and submitting national reports as required by the FCCC. (au) 121 refs.

  5. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Yunhai Zhang

    2013-01-01

    Full Text Available We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments.

  6. Confocal endomicroscopy for in vivo microscopic analysis of upper gastrointestinal tract premalignant and malignant lesions.

    Science.gov (United States)

    Gheorghe, Cristian; Iacob, Razvan; Becheanu, Gabriel; Dumbrav Abreve, Mona

    2008-03-01

    Confocal LASER endomicroscopy (CLE) is a new endoscopic technique which allows subsurface in vivo microscopic analysis during ongoing endoscopy, using systemically or topically administered fluorescent agents. It allows targeted biopsies to be taken, potentially improving the diagnostic rate in certain gastrointestinal diseases. Worldwide experience with CLE for upper gastrointestinal malignant and premalignant lesions is still reduced. Potential clinical applications are presented, including diagnosis of NERD, Barrett's esophagus, atrophic gatritis, gastric intestinal metaplasia and dysplasia, gastric adenomatous or hyperplastic polyps, gastric cancer.

  7. Dual filtered backprojection for micro-rotation confocal microscopy

    International Nuclear Information System (INIS)

    Laksameethanasan, Danai; Brandt, Sami S; Renaud, Olivier; Shorte, Spencer L

    2009-01-01

    Micro-rotation confocal microscopy is a novel optical imaging technique which employs dielectric fields to trap and rotate individual cells to facilitate 3D fluorescence imaging using a confocal microscope. In contrast to computed tomography (CT) where an image can be modelled as parallel projection of an object, the ideal confocal image is recorded as a central slice of the object corresponding to the focal plane. In CT, the projection images and the 3D object are related by the Fourier slice theorem which states that the Fourier transform of a CT image is equal to the central slice of the Fourier transform of the 3D object. In the micro-rotation application, we have a dual form of this setting, i.e. the Fourier transform of the confocal image equals the parallel projection of the Fourier transform of the 3D object. Based on the observed duality, we present here the dual of the classical filtered back projection (FBP) algorithm and apply it in micro-rotation confocal imaging. Our experiments on real data demonstrate that the proposed method is a fast and reliable algorithm for the micro-rotation application, as FBP is for CT application

  8. Fused oblique incidence reflectometry and confocal fluorescence microscopy

    Science.gov (United States)

    Risi, Matthew D.; Rouse, Andrew R.; Gmitro, Arthur F.

    2011-03-01

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure, but relies on exogenous fluorophores, has a relatively limited penetration depth (100 μm) and field of view (700 μm), and produces a high rate of detailed information to the user. A new catheter based multi-modal system has been designed that combines confocal imaging and oblique incidence reflectometry (OIR), which is a non-invasive method capable of rapidly extracting tissue absorption, μa, and reduced scattering, μ's, spectra from tissue. The system builds on previous developments of a custom slit-scan multi-spectral confocal microendoscope and is designed to rapidly switch between diffuse spectroscopy and confocal fluorescence imaging modes of operation. An experimental proof-of-principle catheter has been developed that consists of a fiber bundle for traditional confocal fluorescence imaging and a single OIR source fiber which is manually redirected at +/- 26 degrees. Diffusely scattered light from each orientation of the source fiber is collected via the fiber bundle, with a frame of data representing spectra collected at a range of distances from the OIR source point. Initial results with intralipid phantoms show good agreement to published data over the 550-650 nm spectral range. We successfully imaged and measured the optical properties of rodent cardiac muscle.

  9. In Vivo Confocal Microscopy and Anterior Segment Optic Coherence Tomography Findings in Ocular Ochronosis

    Directory of Open Access Journals (Sweden)

    Elif Demirkilinc Biler

    2015-01-01

    Full Text Available Purpose. To report clinical and in vivo confocal microscopy (IVCM findings of two patients with ocular ochronosis secondary due to alkaptonuria. Materials and Methods. Complete ophthalmologic examinations, including IVCM (HRT II/Rostock Cornea Module, Heidelberg, Germany, anterior segment optical coherence tomography (AS-OCT (Topcon 3D spectral-domain OCT 2000, Topcon Medical Systems, Paramus, NJ, USA, corneal topography (Pentacam, OCULUS Optikgeräte GmbH, Wetzlar, Germany, and anterior segment photography, were performed. Results. Biomicroscopic examination showed bilateral darkly pigmented lesions of the nasal and temporal conjunctiva and episclera in both patients. In vivo confocal microscopy of the lesions revealed prominent degenerative changes, including vacuoles and fragmentation of collagen fibers in the affected conjunctival lamina propria and episclera. Hyperreflective pigment granules in different shapes were demonstrated in the substantia propria beneath the basement membrane. AS-OCT of Case 1 demonstrated hyporeflective areas. Fundus examination was within normal limits in both patients, except tilted optic discs with peripapillary atrophy in one of the patients. Corneal topography, thickness, and macular OCT were normal bilaterally in both cases. Conclusion. The degenerative and anatomic changes due to ochronotic pigment deposition in alkaptonuria can be demonstrated in detail with IVCM and AS-OCT. Confocal microscopic analysis in ocular ochronosis may serve as a useful adjunct in diagnosis and monitoring of the disease progression.

  10. Nano-displacement measurement based on virtual pinhole confocal method

    International Nuclear Information System (INIS)

    Li, Long; Kuang, Cuifang; Xue, Yi; Liu, Xu

    2013-01-01

    A virtual pinhole confocal system based on charge-coupled device (CCD) detection and image processing techniques is built to measure axial displacement with 10 nm resolution, preeminent flexibility and excellent robustness when facing spot drifting. Axial displacement of the sample surface is determined by capturing the confocal laser spot using a CCD detector and quantifying the energy collected by programmable virtual pinholes. Experiments indicate an applicable measuring range of 1000 nm (Gaussian fitting r = 0.9902) with a highly linear range of 500 nm (linear fitting r = 0.9993). A concentric subtraction algorithm is introduced to further enhance resolution. Factors affecting measuring precision, sensitivity and signal-to-noise ratio are discussed using theoretical deductions and diffraction simulations. The virtual pinhole technique has promising applications in surface profiling and confocal imaging applications which require easily-customizable pinhole configurations. (paper)

  11. Spinning-disk confocal microscopy: present technology and future trends.

    Science.gov (United States)

    Oreopoulos, John; Berman, Richard; Browne, Mark

    2014-01-01

    Live-cell imaging requires not only high temporal resolution but also illumination powers low enough to minimize photodamage. Traditional single-point laser scanning confocal microscopy (LSCM) is generally limited by both the relatively slow speed at which it can acquire optical sections by serial raster scanning (a few Hz) and the higher potential for phototoxicity. These limitations have driven the development of rapid, parallel forms of confocal microscopy, the most popular of which is the spinning-disk confocal microscope (SDCM). Here, we briefly introduce the SDCM technique, discuss its strengths and weaknesses against LSCM, and update the reader on some recent developments in SDCM technology that improve its performance and expand its utility for life science research now and in the future. © 2014 Elsevier Inc. All rights reserved.

  12. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    Science.gov (United States)

    Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen

    2007-01-01

    A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  13. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    Directory of Open Access Journals (Sweden)

    Zou Y

    2017-10-01

    Full Text Available Ying Zou,1,2,* Anna Celli,2,3,* Hanjiang Zhu,2,* Akram Elmahdy,2 Yachao Cao,2 Xiaoying Hui,2 Howard Maibach2 1Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, People’s Republic of China; 2Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA; 3San Francisco Veterans Medical Center, San Francisco, CA, USA *These authors contributed equally to this work Objective: With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration.Methods: Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy.Results: NPs were localized in the stratum corneum (SC and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not.Conclusion: Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. Keywords: nanoparticles, skin penetration, stratum corneum, confocal laser scanning microscopy, tape stripping

  14. Improved sampling and analysis of images in corneal confocal microscopy.

    Science.gov (United States)

    Schaldemose, E L; Fontain, F I; Karlsson, P; Nyengaard, J R

    2017-10-01

    Corneal confocal microscopy (CCM) is a noninvasive clinical method to analyse and quantify corneal nerve fibres in vivo. Although the CCM technique is in constant progress, there are methodological limitations in terms of sampling of images and objectivity of the nerve quantification. The aim of this study was to present a randomized sampling method of the CCM images and to develop an adjusted area-dependent image analysis. Furthermore, a manual nerve fibre analysis method was compared to a fully automated method. 23 idiopathic small-fibre neuropathy patients were investigated using CCM. Corneal nerve fibre length density (CNFL) and corneal nerve fibre branch density (CNBD) were determined in both a manual and automatic manner. Differences in CNFL and CNBD between (1) the randomized and the most common sampling method, (2) the adjusted and the unadjusted area and (3) the manual and automated quantification method were investigated. The CNFL values were significantly lower when using the randomized sampling method compared to the most common method (p = 0.01). There was not a statistical significant difference in the CNBD values between the randomized and the most common sampling method (p = 0.85). CNFL and CNBD values were increased when using the adjusted area compared to the standard area. Additionally, the study found a significant increase in the CNFL and CNBD values when using the manual method compared to the automatic method (p ≤ 0.001). The study demonstrated a significant difference in the CNFL values between the randomized and common sampling method indicating the importance of clear guidelines for the image sampling. The increase in CNFL and CNBD values when using the adjusted cornea area is not surprising. The observed increases in both CNFL and CNBD values when using the manual method of nerve quantification compared to the automatic method are consistent with earlier findings. This study underlines the importance of improving the analysis of the

  15. Fabry-Perot confocal resonator optical associative memory

    Science.gov (United States)

    Burns, Thomas J.; Rogers, Steven K.; Vogel, George A.

    1993-03-01

    A unique optical associative memory architecture is presented that combines the optical processing environment of a Fabry-Perot confocal resonator with the dynamic storage and recall properties of volume holograms. The confocal resonator reduces the size and complexity of previous associative memory architectures by folding a large number of discrete optical components into an integrated, compact optical processing environment. Experimental results demonstrate the system is capable of recalling a complete object from memory when presented with partial information about the object. A Fourier optics model of the system's operation shows it implements a spatially continuous version of a discrete, binary Hopfield neural network associative memory.

  16. Confocal Raman microscopy for identification of bacterial species in biofilms

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  17. Confocal microscopy as an early relapse marker for acanthamoeba keratitis.

    Science.gov (United States)

    Daas, Loay; Viestenz, Arne; Schnabel, Philipp Albert; Fries, Fabian N; Hager, Tobias; SzentmÁry, Nora; Seitz, Berthold

    2018-01-01

    Acanthameoba keratitis is a serious ophthalmological condition with a potentially vision-threatening prognosis. Early diagnosis and recognition of relapse, and the detection of persistent Acanthamoeba cysts, are essential for informing the prognosis and managing the condition. We suggest the use of in vivo confocal microscopy not only to identify the early signs of relapse after keratoplasty in patients with Acanthamoeba keratitis, but also as an additional follow-up tool after antimicrobial crosslinking. This study shows that in vivo confocal microscopy is, in experienced hands, a quick and reliable diagnostic tool. Clin. Anat. 31:60-63, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Microscopia confocal in vivo na cistinose: relato de caso

    Directory of Open Access Journals (Sweden)

    Victor Gustavo

    2004-01-01

    Full Text Available A cistinose é doença autossômica recessiva rara caracterizada pelo acúmulo do aminoácido cistina livre dentro dos lisossomos e geralmente é fatal na primeira década de vida na ausência de transplante renal. O presente estudo tem por objetivo relatar os achados da microscopia confocal in vivo em paciente adulto com cistinose infantil. O exame de microscopia confocal in vivo revelou que há diferenças quanto à intensidade de acometimento, tamanho e forma dos depósitos nas diversas camadas corneanas.

  19. High resolution 3D confocal microscope imaging of volcanic ash particles.

    Science.gov (United States)

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM 10 s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery.

    Science.gov (United States)

    Bennàssar, A; Vilata, A; Puig, S; Malvehy, J

    2014-02-01

    Ex vivo fluorescence confocal microscopy (FCM) enables real-time imaging of skin morphology directly in freshly excised tissue. FCM displays wide field-of-view mosaics with cellular resolution, thus enabling a rapid bedside pathology. An application of interest is rapid detection of residual basal cell carcinoma (BCC) in skin excisions during Mohs surgery. We sought to evaluate the sensitivity and specificity of ex vivo imaging with FCM for the detection of residual BCC in Mohs tissue excisions, and to calculate the time invested up to the diagnosis for both FCM and frozen sections. Eighty consecutive BCCs were prospectively collected and the margins scanned with ex vivo FCM, including excisions with and without residual BCC of all major subtypes. Each mosaic was divided into two or four, resulting in 480 submosaics for study. Every confocal submosaic was assessed for the presence or absence of BCC and compared with standard frozen sections as the gold standard. Furthermore, the time spent for each technique was calculated and compared. The overall sensitivity and specificity of detecting residual BCC were 88% and 99%, respectively. Moreover, the new technique reduced by almost two-thirds the time invested when compared with the processing of a frozen section (P confocal mosaicing microscopy in fresh tissue for rapid surgical pathology, potentially to expedite and guide Mohs surgery with high accuracy. This observation is an important step towards the goal of using real-time surgical pathology for skin tumours. © 2013 British Association of Dermatologists.

  1. Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro.

    Science.gov (United States)

    Zou, Ying; Celli, Anna; Zhu, Hanjiang; Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human "viable" epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.

  2. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    Science.gov (United States)

    Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. PMID:29184403

  3. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    NARCIS (Netherlands)

    Yoo, H.W.

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological

  4. Confocal microscopy patterns in nonmelanoma skin cancer and clinical applications.

    Science.gov (United States)

    González, S; Sánchez, V; González-Rodríguez, A; Parrado, C; Ullrich, M

    2014-06-01

    Reflectance confocal microscopy is currently the most promising noninvasive diagnostic tool for studying cutaneous structures between the stratum corneum and the superficial reticular dermis. This tool gives real-time images parallel to the skin surface; the microscopic resolution is similar to that of conventional histology. Numerous studies have identified the main confocal features of various inflammatory skin diseases and tumors, demonstrating the good correlation of these features with certain dermatoscopic patterns and histologic findings. Confocal patterns and diagnostic algorithms have been shown to have high sensitivity and specificity in melanoma and nonmelanoma skin cancer. Possible present and future applications of this noninvasive technology are wide ranging and reach beyond its use in noninvasive diagnosis. This tool can also be used, for example, to evaluate dynamic skin processes that occur after UV exposure or to assess tumor response to noninvasive treatments such as photodynamic therapy. We explain the characteristic confocal features found in the main nonmelanoma skin tumors and discuss possible applications for this novel diagnostic technique in routine dermatology practice. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  5. Nonlinear Image Restoration in Confocal Microscopy : Stability under Noise

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1995-01-01

    In this paper we study the noise stability of iterative algorithms developed for attenuation correction in Fluorescence Confocal Microscopy using FT methods. In each iteration the convolution of the previous estimate is computed. It turns out that the estimators are robust to noise perturbation.

  6. Confocal stereology: an efficient tool for measurement of microscopic structures

    Czech Academy of Sciences Publication Activity Database

    Kubínová, Lucie; Janáček, Jiří

    2015-01-01

    Roč. 360, č. 1 (2015), s. 13-28 ISSN 0302-766X R&D Projects: GA MŠk(CZ) LH13028 Institutional support: RVO:67985823 Keywords : 3-D images * confocal microscopy * geometrical characteristics * spatial probes * stereology Subject RIV: EA - Cell Biology Impact factor: 2.948, year: 2015

  7. Improvement in volume estimation from confocal sections after image deconvolution

    Czech Academy of Sciences Publication Activity Database

    Difato, Francesco; Mazzone, F.; Scaglione, S.; Fato, M.; Beltrame, F.; Kubínová, Lucie; Janáček, Jiří; Ramoino, P.; Vicidomini, G.; Diaspro, A.

    2004-01-01

    Roč. 64, č. 2 (2004), s. 151-155 ISSN 1059-910X Institutional research plan: CEZ:AV0Z5011922 Keywords : confocal microscopy * image deconvolution * point spread function Subject RIV: EA - Cell Biology Impact factor: 2.609, year: 2004

  8. Analysis of endoplasmic reticulum of tobacco cells using confocal microscopy

    Czech Academy of Sciences Publication Activity Database

    Radochová, Barbora; Janáček, Jiří; Schwarzerová, K.; Demjénová, E.; Tomori, Z.; Karen, Petr; Kubínová, Lucie

    2005-01-01

    Roč. 24, č. 11 (2005), s. 181-185 ISSN 1580-3139 R&D Projects: GA AV ČR(CZ) KJB6011309 Institutional research plan: CEZ:AV0Z50110509 Keywords : confocal microscopy * endoplasmic reticulum * image analysis Subject RIV: EA - Cell Biology

  9. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY AND FOUNDATIONS FOR QUANTITATION

    Science.gov (United States)

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The reliability of the CLSM to obtain specific measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. For man...

  10. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR CALIBRATION, QUANTITATION AND SPECTROSCOPY

    Science.gov (United States)

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  11. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR MEASUREMENTS, QUANTITATION AND SPECTROSCOPY

    Science.gov (United States)

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  12. A confocal scanning laser ophthalmoscope for retinal vessel oximetry

    Science.gov (United States)

    Lompado, Arthur

    Measurement of a person's blood oxygen saturation has long been recognized as a useful metric for the characterizing ailments ranging from chronic respiratory disorders to acute, potentially life threatening, traumas. The ubiquity of oxygen saturation monitors in the medical field, including portable pulse oximeters and laboratory based CO-oximeters, is a testament to the importance of this technique. The work presented here documents the design, fabrication and development of a unique type of oxygen saturation monitor, a confocal scanning retinal vessel oximeter, with the potential to expand the usefulness of the present devices. A large part of the knowledge base required to construct the instrument comes from the consideration of light scattering by red blood cells in a blood vessel. Therefore, a substantial portion of this work is devoted to the process of light scattering by whole human blood and its effects on the development of a more accurate oximeter. This light scattering effect has been both measured and modeled stochastically to determine its contribution to the measured oximeter signal. It is shown that, although well accepted in the published literature, the model only correlates marginally to the measurements due to inherent limitations imposed by the model assumptions. Nonetheless, enough material has been learned about the scattering to allow development of a mathematical model for the interaction of light with blood in a vessel, and this knowledge has been applied to the data reduction of the present oximeter. This data reduction technique has been tested in a controlled experiment employing a model eye with a blood filled mock retinal vessel. It will be shown that the presently developed technique exhibited strong correlation between the known blood oxygen saturation and that calculated by the new system.

  13. 3D Imaging of Porous Media Using Laser Scanning Confocal Microscopy with Application to Microscale Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    Fredrich, J.T.

    1999-02-10

    We present advances in the application of laser scanning confocal microscopy (LSCM) to image, reconstruct, and characterize statistically the microgeometry of porous geologic and engineering materials. We discuss technical and practical aspects of this imaging technique, including both its advantages and limitations. Confocal imaging can be used to optically section a material, with sub-micron resolution possible in the lateral and axial planes. The resultant volumetric image data, consisting of fluorescence intensities for typically {approximately}50 million voxels in XYZ space, can be used to reconstruct the three-dimensional structure of the two-phase medium. We present several examples of this application, including studying pore geometry in sandstone, characterizing brittle failure processes in low-porosity rock deformed under triaxial loading conditions in the laboratory, and analyzing the microstructure of porous ceramic insulations. We then describe approaches to extract statistical microgeometric descriptions from volumetric image data, and present results derived from confocal volumetric data sets. Finally, we develop the use of confocal image data to automatically generate a three-dimensional mesh for numerical pore-scale flow simulations.

  14. Measurement of chemical and geometrical surface changes in a wear track by a confocal height sensor and confocal Raman spectroscopy

    NARCIS (Netherlands)

    Winogrodzka, A.; Valefi, Mahdiar; de Rooij, Matthias B.; Schipper, Dirk J.

    2014-01-01

    Geometrical and chemical changes in the wear track can cause a drift in friction level. In this paper, chemical and geometrical surface changes in wear tracks are analyzed. For this, a setup with a confocal height sensor was developed to measure the local height changes on the wear track, combined

  15. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Overview of the methodology. Vol. 1 of 9 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) including a CD-ROM comprising all volumes

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. This document follows the guidelines of the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles, Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)', IAEA-TECDOC-1434 (2004), together with its previous report Guidance for the evaluation for innovative nuclear reactors and fuel cycles, Report of Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), IAEA-TECDOC-1362 (2003). This INPRO manual is comprised of an overview volume (laid out in this report), and eight additional volumes (available on a CD-ROM attached to the inside back cover of this report) covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). The overview volume sets out the philosophy of INPRO and a general discussion of the INPRO methodology. This overview volume discusses the relationship of INPRO with the UN concept of sustainability to demonstrate how the

  16. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    Science.gov (United States)

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2015-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy. PMID:26413560

  17. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    OpenAIRE

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2014-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy.

  18. Confocal and dermoscopic features of basal cell carcinoma in Gorlin-Goltz syndrome: A case report.

    Science.gov (United States)

    Casari, Alice; Argenziano, Giuseppe; Moscarella, Elvira; Lallas, Aimilios; Longo, Caterina

    2017-05-01

    Gorlin-Goltz (GS) syndrome is an autosomal dominant disease linked to a mutation in the PTCH gene. Major criteria include the onset of multiple basal cell carcinoma (BCC), keratocystic odontogenic tumours in the jaws and bifid ribs. Dermoscopy and reflectance confocal microscopy represent imaging tools that are able to increase the diagnostic accuracy of skin cancer in a totally noninvasive manner, without performing punch biopsies. Here we present a case of a young woman in whom the combined approach of dermoscopy and RCM led to the identification of multiple small inconspicuous lesions as BCC and thus to the diagnosis of GS syndrome. © 2016 The Australasian College of Dermatologists.

  19. High Definition Confocal Imaging Modalities for the Characterization of Tissue-Engineered Substitutes.

    Science.gov (United States)

    Mayrand, Dominique; Fradette, Julie

    2018-01-01

    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.

  20. Using STED and ELSM confocal microscopy for a better knowledge of fused silica polished glass interface

    International Nuclear Information System (INIS)

    Catrin, Rodolphe; Neauport, Jerome; Taroux, Daniel; Corbineau, Thomas; Cormont, Philippe; Maunier, Cedric; Legros, Philippe

    2013-01-01

    Characteristics and nature of close surface defects existing in fused silica polished optical surfaces were explored. Samples were deliberately scratched using a modified polishing process in presence of different fluorescent dyes. Various techniques including Epi-fluorescence Laser Scanning Mode (ELSM) or Stimulated Emission Depletion (STED) confocal microscopy were used to measure and quantify scratches that are sometimes embedded under the polished layer. We show using a nondestructive technique that depth of the modified region extends far below the surface. Moreover cracks of 120 nm width can be present ten micrometers below the surface. (authors)

  1. EUS-Guided Needle-Based Confocal Laser Endomicroscopy

    DEFF Research Database (Denmark)

    Bhutani, Manoop S; Koduru, Pramoda; Joshi, Virendra

    2015-01-01

    Endoscopic ultrasound (EUS) has emerged as an excellent tool for imaging the gastrointestinal tract, as well as surrounding structures. EUS-guided fine-needle aspiration (EUS-FNA) has become the standard of care for the tissue sampling of a variety of masses and lymph nodes within and around...... the gut, providing further diagnostic and staging information. Confocal laser endomicroscopy (CLE) is a novel endoscopic method that enables imaging at a subcellular level of resolution during endoscopy, allowing up to 1000-fold magnification of tissue and providing an optical biopsy. A new procedure...... that has been developed in the past few years is needle-based confocal laser endomicroscopy (nCLE), which involves a mini-CLE probe that can be passed through a 1 9-gauge needle during EUS-FNA. This enables the real-time visualization of tissue at a microscopic level, with the potential to further improve...

  2. Inverted follicular keratosis: dermoscopic and reflectance confocal microscopic features.

    Science.gov (United States)

    Armengot-Carbo, M; Abrego, A; Gonzalez, T; Alarcon, I; Alos, L; Carrera, C; Malvehy, J; Puig, S

    2013-01-01

    Inverted follicular keratosis (IFK) is a rare benign tumor which usually appears as a firm papule on the face. The diagnosis is generally made by histopathology because the clinical appearance is difficult to differentiate from other lesions. Dermoscopic features of IFK have not been established to date. Herein we describe the dermoscopic findings of 4 cases of IFK. Radial peripheral hairpin vessels surrounded by a whitish halo arranged around a central white-yellowish amorphous area were observed in 3 cases, and glomerular vessels were present in the central area of one of them. The fourth case also presented a central white amorphous area but showed arborizing vessels. Reflectance confocal microscopy (available in 1 case) revealed a broadened honeycomb pattern, epidermal projections and hairpin and glomerular vessels. To our knowledge this is the first case series describing the dermoscopic features of inverted follicular keratosis and the first confocal microscopy description of this entity.

  3. Confocal Microscope Alignment of Nanocrystals for Coherent Diffraction Imaging

    International Nuclear Information System (INIS)

    Beitra, Loren; Watari, Moyu; Matsuura, Takashi; Shimamoto, Naonobu; Harder, Ross; Robinson, Ian

    2010-01-01

    We have installed and tested an Olympus LEXT confocal microscope at the 34-ID-C beamline of the Advanced Photon Source (APS). The beamline is for Coherent X-ray Diffraction (CXD) experiments in which a nanometre-sized crystal is aligned inside a focussed X-ray beam. The microscope was required for three-dimensional (3D) sample alignment to get around sphere-of-confusion issues when locating Bragg peaks in reciprocal space. In this way, and by use of strategic sample preparations, we have succeeded in measuring six Bragg peaks from a single 200 nm gold crystal and obtained six projections of its internal displacement field. This enables the clear identification of stacking-fault bands within the crystal. The confocal alignment method will allow a full determination of the strain tensor provided three or more Bragg reflections from the same crystal are found.

  4. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    Science.gov (United States)

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. The challenge of diagnosing seborrheic keratosis by reflectance confocal microscopy.

    Science.gov (United States)

    Guo, A; Chen, J; Yang, C; Ding, Y; Zeng, Q; Tan, L

    2018-05-24

    Seborrheic keratosis (SK) is one of the most common skin tumors seen by dermatologists. It should be differentiated with many diseases, especially skin tumors. Reflectance confocal microscopy (RCM) has been applied for evaluation of SK. There are a few studies that describe the RCM of SK. The aim of the study was to find the challenge of diagnosing seborrheic keratosis by reflectance confocal microscopy. A total of 390 patients with a clinical suspicious diagnosis of seborrheic keratosis were enrolled in this study, and lesions from each patient were imaged with RCM. Thirty-seven of these patients performed a biopsy in order to be given a histological diagnosis. We retrospectively analyzed the outcomes of RCM diagnosis and histological diagnosis, and then found the RCM characteristics of biopsy-proven lesions. According to RCM images, 258 of 390 (66.2%) patients were diagnosed with SK, 97 of 390 (24.9%) patients could not be diagnosed by the dermatologist according to RCM. Of all 37 biopsied lesions, 23 were SK, 6 were actinic keratosis, 2 were basal cell carcinoma, and 2 were squamous cell carcinoma. It is challenge to diagnose seborrheic keratosis by reflectance confocal microscopy. It may due to the variable clinical and RCM appearances of SK, and limited depth of RCM. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    Science.gov (United States)

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  7. Quantification of Multilayer Samples by Confocal μXRF

    International Nuclear Information System (INIS)

    Perez, R. Daniel; Sanchez, H. J.; Rubio, M.; Perez, C. A.

    2009-01-01

    The confocal setup consists of x-ray lenses in the excitation as well as in the detection channel. In this configuration, a micro volume defined by the overlap of the foci of both x-ray lenses is analyzed. Scanning this micro volume through the sample, 1-3 dimensional studies can be performed. For intermediate thin homogeneous layers a scanning in the normal direction to the surface sample provides information of its thickness and elemental composition. For multilayer samples it also provides the order of each layer in the stratified structure. For the confocal setup, we used a glass monocapillary in the excitation channel and a monolithic half polycapillary in the detection channel. The experiment was carried out at the D09B beamline of the LNLS using white beam. In the present work, a new algorithm was applied to analyze in detail by confocal μXRF a sample of three paint layers on a glass substrate. Using the proposed algorithm, information about thickness and elemental densities was obtained for each layer of these samples.

  8. Ex vivo confocal microscopy: a new diagnostic technique for mucormycosis.

    Science.gov (United States)

    Leclercq, A; Cinotti, E; Labeille, B; Perrot, J L; Cambazard, F

    2016-05-01

    Skin-dedicated ex vivo confocal microscopy (EVCM) has so far mainly been employed to identify cutaneous tumours on freshly excised samples. We present two cases where EVCM has been used to diagnose cutaneous mucormycosis. The skin biopsies were evaluated by the skin-dedicated ex vivo confocal microscope VivaScope 2500(®) (MAVIG GmbH, Munich Germany) under both reflectance and fluorescence mode. Conventional direct optical examination on skin scraping and histological examination were later performed. Mucormycetes observed by EVCM presented as hyper-reflective elongated 20 μm in diameter structures with perpendicular ramifications. Fungi were found both under reflectance and fluorescence mode and were better visible with acridine orange under fluorescence EVCM. Conventional direct optical examination on skin scraping and histological examination found the same elongated and branching structures confirming the presence of Mucormycetes. Ex vivo confocal microscopy has both the advantages of being fast as the direct optical examination, and to be able to show the localisation of the fungi in the tissue like the histological examination. In our cases, EVCM allowed to rapidly confirm the clinical diagnosis of mucormycosis, which is essential for the treatment of this fungal infection. Further studies are needed to compare the performance of EVCM with the findings of conventional histological and mycological examinations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Using corneal confocal microscopy to track changes in the corneal layers of dry eye patients after autologous serum treatment.

    Science.gov (United States)

    Mahelkova, Gabriela; Jirsova, Katerina; Seidler Stangova, Petra; Palos, Michalis; Vesela, Viera; Fales, Ivan; Jiraskova, Nada; Dotrelova, Dagmar

    2017-05-01

    In vivo corneal confocal microscopy allows the examination of each layer of the cornea in detail and the identification of pathological changes at the cellular level. The purpose of this study was to identify the possible effects of a three-month treatment with autologous serum eye-drops in different corneal layers of patients with severe dry eye disease using corneal confocal microscopy. Twenty-six patients with dry eye disease were included in the study. Corneal fluorescein staining was performed. The corneas of the right eyes were examined using in vivo corneal confocal microscopy before and after a three-month treatment with autologous serum drops. The densities of superficial and basal epithelial cells, Langerhans cells, the keratocytes and activated keratocytes, the density of endothelial cells and the status of the sub-basal nerve plexus fibres were evaluated. A significant decrease in corneal fluorescein staining was found after the three-month autologous serum treatment (p = 0.0006). The basal epithelial cell density decreased significantly (p = 0.001), while the density of superficial epithelial cells did not change significantly (p = 0.473) nor did the number of Langerhans cells or activated keratocytes (p = 0.223; p = 0.307, respectively). There were no differences in the other corneal cell layers or in the status of the nerve fibres. The results demonstrate the ability of corneal confocal microscopy to evaluate an improvement in the basal epithelial cell layer of the cornea after autologous serum treatment in patients with dry eye disease. More studies with longer follow-up periods are needed to elucidate the suitability of corneal confocal microscopy to follow the effect of autologous serum treatment on nerve fibres or other corneal layers in dry eye disease patients. © 2016 Optometry Australia.

  10. Imaging theory of nonlinear second harmonic and third harmonic generations in confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    TANG Zhilie; XING Da; LIU Songhao

    2004-01-01

    The imaging theory of nonlinear second harmonic generation (SHG) and third harmonic generation (THG) in confocal microscopy is presented in this paper. The nonlinear effect of SHG and THG on the imaging properties of confocal microscopy has been analyzed in detail by the imaging theory. It is proved that the imaging process of SHG and THG in confocal microscopy, which is different from conventional coherent imaging or incoherent imaging, can be divided into two different processes of coherent imaging. The three-dimensional point spread functions (3D-PSF) of SHG and THG confocal microscopy are derived based on the nonlinear principles of SHG and THG. The imaging properties of SHG and THG confocal microscopy are discussed in detail according to its 3D-PSF. It is shown that the resolution of SHG and THG confocal microscopy is higher than that of single-and two-photon confocal microscopy.

  11. Using in vivo corneal confocal microscopy to identify diabetic sensorimotor polyneuropathy risk profiles in patients with type 1 diabetes.

    Science.gov (United States)

    Lewis, Evan J H; Perkins, Bruce A; Lovblom, Lief E; Bazinet, Richard P; Wolever, Thomas M S; Bril, Vera

    2017-01-01

    Diabetic sensorimotor peripheral neuropathy (DSP) is the most prevalent complication in diabetes mellitus. Identifying DSP risk is essential for intervening early in the natural history of the disease. Small nerve fibers are affected earliest in the disease progression and evidence of this damage can be identified using in vivo corneal confocal microscopy (IVCCM). We applied IVCCM to a cohort of 40 patients with type 1 diabetes to identify their DSP risk profile. We measured standard IVCCM parameters including corneal nerve fiber length (CNFL), and performed nerve conduction studies and quantitative sensory testing. 40 patients (53% female), with a mean age of 48±14, BMI 28.1±5.8, and diabetes duration of 27±18 years were enrolled between March 2014 and June 2015. Mean IVCCM CNFL was 12.0±5.2 mm/mm 2 (normal ≥15 mm/mm 2 ). Ten patients (26%) without DSP were identified as being at risk of future DSP with mean CNFL 11.0±2.1 mm/mm 2 . Six patients (15%) were at low risk of future DSP with mean CNFL 19.0±4.6 mm/mm 2 , while 23 (59%) had established DSP with mean CNFL 10.5±4.5 mm/mm 2 . IVCCM can be used successfully to identify the risk profile for DSP in patients with type 1 diabetes. This methodology may prove useful to classify patients for DSP intervention clinical trials.

  12. High heterogeneity in methods used for the laboratory confirmation of pertussis diagnosis among European countries, 2010: integration of epidemiological and laboratory surveillance must include standardisation of methodologies and quality assurance.

    Science.gov (United States)

    He, Q; Barkoff, A M; Mertsola, J; Glismann, S; Bacci, S

    2012-08-09

    Despite extensive childhood immunisation, pertussis remains one of the world’s leading causes of vaccine preventable deaths. The current methods used for laboratory diagnosis of pertussis include bacterial culture, polymerase chain reaction (PCR) and enzyme linked immunosorbent assay (ELISA) serology. We conducted a questionnaire survey to identify variations in the laboratory methods and protocols used among participating countries included in the European surveillance network for vaccine-preventable diseases(EUVAC.NET). In February 2010, we performed the survey using a web-based questionnaire and sent it to the country experts of 25 European Union countries,and two European Economic Area (EEA) countries,Norway and Iceland. The questionnaire consisted of 37 questions which covered both general information on surveillance methods and detailed laboratory methods used. A descriptive analysis was performed.Questionnaires were answered by all 27 contacted countries. Nineteen countries had pertussis reference laboratories at the national level; their functions varied from performing diagnosis to providing technical advice for routine microbiology laboratories. Culture,PCR and serology were used in 17, 18 and 20 countries,respectively. For PCR, nine laboratories used insertion sequence IS481 as the target gene, which is present in multiple copies in the Bordetella pertussis genome and thus has a greater sensitivity over single copy targets, but has been proved not to be specific for B.pertussis. Antibodies directed against pertussis toxin(PT) are specific for B. pertussis infections. For ELISA serology, only 13 countries’ laboratories used purified PT as coating antigen and 10 included World Health Organization (WHO) or Food and Drug Administration (FDA) reference sera in their tests. This present survey shows that methods used for laboratory confirmation of pertussis differ widely among European countries and that there is a great heterogeneity of the reference

  13. A statistical pixel intensity model for segmentation of confocal laser scanning microscopy images.

    Science.gov (United States)

    Calapez, Alexandre; Rosa, Agostinho

    2010-09-01

    Confocal laser scanning microscopy (CLSM) has been widely used in the life sciences for the characterization of cell processes because it allows the recording of the distribution of fluorescence-tagged macromolecules on a section of the living cell. It is in fact the cornerstone of many molecular transport and interaction quantification techniques where the identification of regions of interest through image segmentation is usually a required step. In many situations, because of the complexity of the recorded cellular structures or because of the amounts of data involved, image segmentation either is too difficult or inefficient to be done by hand and automated segmentation procedures have to be considered. Given the nature of CLSM images, statistical segmentation methodologies appear as natural candidates. In this work we propose a model to be used for statistical unsupervised CLSM image segmentation. The model is derived from the CLSM image formation mechanics and its performance is compared to the existing alternatives. Results show that it provides a much better description of the data on classes characterized by their mean intensity, making it suitable not only for segmentation methodologies with known number of classes but also for use with schemes aiming at the estimation of the number of classes through the application of cluster selection criteria.

  14. On methodology

    DEFF Research Database (Denmark)

    Cheesman, Robin; Faraone, Roque

    2002-01-01

    This is an English version of the methodology chapter in the authors' book "El caso Berríos: Estudio sobre información errónea, desinformación y manipulación de la opinión pública".......This is an English version of the methodology chapter in the authors' book "El caso Berríos: Estudio sobre información errónea, desinformación y manipulación de la opinión pública"....

  15. Archetype modeling methodology.

    Science.gov (United States)

    Moner, David; Maldonado, José Alberto; Robles, Montserrat

    2018-03-01

    Clinical Information Models (CIMs) expressed as archetypes play an essential role in the design and development of current Electronic Health Record (EHR) information structures. Although there exist many experiences about using archetypes in the literature, a comprehensive and formal methodology for archetype modeling does not exist. Having a modeling methodology is essential to develop quality archetypes, in order to guide the development of EHR systems and to allow the semantic interoperability of health data. In this work, an archetype modeling methodology is proposed. This paper describes its phases, the inputs and outputs of each phase, and the involved participants and tools. It also includes the description of the possible strategies to organize the modeling process. The proposed methodology is inspired by existing best practices of CIMs, software and ontology development. The methodology has been applied and evaluated in regional and national EHR projects. The application of the methodology provided useful feedback and improvements, and confirmed its advantages. The conclusion of this work is that having a formal methodology for archetype development facilitates the definition and adoption of interoperable archetypes, improves their quality, and facilitates their reuse among different information systems and EHR projects. Moreover, the proposed methodology can be also a reference for CIMs development using any other formalism. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. In vivo confocal Raman spectroscopy of the human cornea.

    Science.gov (United States)

    Bauer, N J; Hendrikse, F; March, W F

    1999-07-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noninvasive assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea by using a microscope objective lens (x25 magnification, NA = 0.5, f = 10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array detector for rapid spectral data acquisition over a range from 2,890 to 3,590/cm(-1). Raman spectra were recorded from the anterior 100-150 microm of the cornea over a period before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400/cm(-1) (OH-vibrational mode of water) and 2,940/cm(-1) (CH-vibrational mode of proteins) was used as a measure for corneal hydration. High signal-to-noise ratio (SNR = 25) Raman spectra were obtained from the human corneas by using 15 mJ of laser light energy. Qualitative changes in the hydration of the anteriormost part of the corneas could be observed as a result of the dehydrating agent. With adequate improvements in system safety, confocal Raman spectroscopy could potentially be applied clinically as a noninvasive tool for the assessment of corneal hydration in vivo.

  17. In vitro confocal imaging of the rabbit cornea.

    Science.gov (United States)

    Masters, B R; Paddock, S

    1990-05-01

    We were able to observe in vitro the fine structure of the rabbit cornea using a laser scanning confocal microscope, especially in the regions between Descemet's membrane and the epithelial basal lamina. We observed submicrometre filaments throughout the stroma with high concentrations adjacent to Descemet's membrane, and found extensive interconnecting processes between stromal keratocytes. There are numerous regions containing nerve plexuses in the stroma. We found a deeply convoluted basal lamina adjacent to the epithelium, and observed regions containing junctions between endothelial cells in fluorescent images of rabbit corneas stained with the actin-specific compound fluorescein phalloidin.

  18. 3D confocal imaging in CUBIC-cleared mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-07-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  19. Confocal laser feedback tomography for skin cancer detection.

    Science.gov (United States)

    Mowla, Alireza; Du, Benjamin Wensheng; Taimre, Thomas; Bertling, Karl; Wilson, Stephen; Soyer, H Peter; Rakić, Aleksandar D

    2017-09-01

    Tomographic imaging of soft tissue such as skin has a potential role in cancer detection. The penetration of infrared wavelengths makes a confocal approach based on laser feedback interferometry feasible. We present a compact system using a semiconductor laser as both transmitter and receiver. Numerical and physical models based on the known optical properties of keratinocyte cancers were developed. We validated the technique on three phantoms containing macro-structural changes in optical properties. Experimental results were in agreement with numerical simulations and structural changes were evident which would permit discrimination of healthy tissue and tumour. Furthermore, cancer type discrimination was also able to be visualized using this imaging technique.

  20. 3D confocal imaging in CUBIC-cleared mouse heart

    International Nuclear Information System (INIS)

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-01-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  1. Volume visualization of biological tissue specimens using confocal microscopy

    Czech Academy of Sciences Publication Activity Database

    Čapek, Martin; Janáček, Jiří; Kubínová, Lucie; Smrčka, P.; Hána, K.

    2006-01-01

    Roč. 36, č. 2 (2006), s. 240-244 ISSN 0301-5491. [Biomedical Engineering Conference of Young Biomedical Engineers and Researchers /2./. Kladno, 19.07.2006-21.07.2006] R&D Projects: GA MŠk(CZ) LC06063; GA AV ČR(CZ) IAA100110502; GA AV ČR(CZ) IAA500200510; GA ČR(CZ) GA304/05/0153 Institutional research plan: CEZ:AV0Z50110509 Keywords : 3D reconstruction * confocal microscopy Subject RIV: JC - Computer Hardware ; Software

  2. Corneal Confocal Microscopy – A Novel, Noninvasive Method to Assess Diabetic Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Inceu Georgeta

    2014-12-01

    Full Text Available Background and aims. This article aims to compare corneal confocal microscopy (CCM with acknowledged tests of diabetic peripheral neuropathy (DPN, to assess corneal nerve morphology using CCM in diabetic patients, and to underline possible correlations between clinical and biological parameters, diabetes duration and DPN severity. Material and methods. A total of 90 patients with type 2 diabetes were included in the study for whom we measured anthropometric parameters and we performed laboratory measurements (tests. The patients were assessed for diabetic peripheral neuropathy using Semmes-Weinstein Monofilament Testing (SWMT, Rapid-Current Perception Threshold (R-CPT measurements using the Neurometer®, and CCM. We stratified the patients according to DPN severity, based on four parameters extracted after image analysis. Results. A higher percentage of patients were diagnosed with DPN using CCM (88.8%, compared with SWMT and R-CPT measurement (17.8% and 40% respectively. The incidence of DPN detected with CCM was considerable in patients with normal protective sensation and with normal R-CPT values. Conclusions. Our study showed that corneal confocal microscopy is a useful noninvasive method for diabetic neuropathy assessement in early stages. It was proven to directly quantify small fiber pathology, and to stratify neuropathic severity, and therefore can be used as a new, reliable tool in the diagnosis, clinical evaluation, and follow-up of peripheral diabetic neuropathy.

  3. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Esam M.A. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)], E-mail: h.g.m.edwards@bradford.ac.uk; Hargreaves, Michael D.; Scowen, Ian J. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)

    2008-05-12

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 {mu}m. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.

  4. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    International Nuclear Information System (INIS)

    Ali, Esam M.A.; Edwards, Howell G.M.; Hargreaves, Michael D.; Scowen, Ian J.

    2008-01-01

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 μm. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material

  5. Depth-variant blind restoration with pupil-phase constraints for 3D confocal microscopy

    International Nuclear Information System (INIS)

    Hadj, Saima Ben; Blanc-Féraud, Laure; Engler, Gilbert

    2013-01-01

    Three-dimensional images of confocal laser scanning microscopy suffer from a depth-variant blur, due to refractive index mismatch between the different mediums composing the system as well as the specimen, leading to optical aberrations. Our goal is to develop an image restoration method for 3D confocal microscopy taking into account the blur variation with depth. The difficulty is that optical aberrations depend on the refractive index of the biological specimen. The depth-variant blur function or the Point Spread Function (PSF) is thus different for each observation. A blind or semi-blind restoration method needs to be developed for this system. For that purpose, we use a previously developed algorithm for the joint estimation of the specimen function (original image) and the 3D PSF, the continuously depth-variant PSF is approximated by a convex combination of a set of space-invariant PSFs taken at different depths. We propose to add to that algorithm a pupil-phase constraint for the PSF estimation, given by the the optical instrument geometry. We thus define a blind estimation algorithm by minimizing a regularized criterion in which we integrate the Gerchberg-Saxton algorithm allowing to include these physical constraints. We show the efficiency of this method relying on some numerical tests

  6. Analysis of the in vivo confocal Raman spectral variability in human skin

    Science.gov (United States)

    Mogilevych, Borys; dos Santos, Laurita; Rangel, Joao L.; Grancianinov, Karen J. S.; Sousa, Mariane P.; Martin, Airton A.

    2015-06-01

    Biochemical composition of the skin changes in each layer and, therefore, the skin spectral profile vary with the depth. In this work, in vivo Confocal Raman spectroscopy studies were performed at different skin regions and depth profile (from the surface down to 10 μm) of the stratum corneum, to verify the variability and reproducibility of the intra- and interindividual Raman data. The Raman spectra were collected from seven healthy female study participants using a confocal Raman system from Rivers Diagnostic, with 785 nm excitation line and a CCD detector. Measurements were performed in the volar forearm region, at three different points at different depth, with the step of 2 μm. For each depth point, three spectra were acquired. Data analysis included the descriptive statistics (mean, standard deviation and residual) and Pearson's correlation coefficient calculation. Our results show that inter-individual variability is higher than intraindividual variability, and variability inside the SC is higher than on the skin surface. In all these cases we obtained r values, higher than 0.94, which correspond to high correlation between Raman spectra. It reinforces the possibility of the data reproducibility and direct comparison of in vivo results obtained with different study participants of the same age group and phototype.

  7. Corneal confocal microscopy and dry eye findings in contact lens discomfort patients.

    Science.gov (United States)

    Dogan, Aysun Sanal; Gurdal, Canan; Arslan, Nese

    2018-02-01

    To evaluate the corneal confocal microscopy and dry eye findings in patients with contact lens discomfort. The study included 3 groups of participants: Contact lens wearers using silicone hydrogel soft contact lenses who are symptomatic (CLD, n=15) or asymptomatic (ACL, n=11) and non-wearers as controls (n=14). Duration of contact lens wear, Ocular Surface Disease Index (OSDI) questionnaire responses, fluorescein tear break-uptime (FBUT), and corneal confocal microscopy findings were recorded. Mean age was 25.7±8.2 years and male/female ratio was 7/33. Demographic findings were similar regarding the groups. CLD patients had a longer lens use history than ACL (median 5 vs 2 years, pCLD group than ACL or controls (pCLD group, compared to controls and ACL (pCLD group compared to controls but similar to ACL (pCLD group than the ACL (p=0.014). Patients with CLD had been wearing contact lenses for longer than those without symptoms. OSDI and FBUT scores were worse in CLD patients. In contact lens discomfort patients, there were increased dendritiform cells, indicating intensified inflammatory status of the cornea. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  8. Intraoperative diagnosis of nonpigmented nail tumours with ex vivo fluorescence confocal microscopy: 10 cases.

    Science.gov (United States)

    Debarbieux, S; Gaspar, R; Depaepe, L; Dalle, S; Balme, B; Thomas, L

    2015-04-01

    Ex vivo fluorescence confocal microscopy (FCM) permits real-time imaging of freshly excised skin tissues. Its usefulness as a time-sparing alternative to frozen sections in Mohs surgery of basal cell carcinoma is well documented. The purpose of this study was to describe the ex vivo FCM features of a series of benign and malignant nonpigmented tumours of the nail unit, and to correlate them with conventional histopathology. Nail apparatus tumours from 10 patients were imaged during surgical exploration using ex vivo FCM after immersion in acridine orange. Confocal mosaics of the freshly performed biopsies were evaluated in real time and retrospectively compared with haematoxylin and eosin sections. Our series included two invasive epithelial tumours (Group 1), four in situ or minimally invasive squamous cell carcinomas (SCC) (Group 2), three benign epithelial tumours (Group 3) and one nodular melanoma (Group 4). The correlation was excellent for malignant epithelial tumours exhibiting marked cytological and architectural atypias (Bowen disease, invasive SCC and onycholemmal carcinoma). Onychomatricomas exhibited a very peculiar aspect with densely cellular papillae. The correlation was less favourable for minimally invasive well-differentiated SCCs with slight cytological atypias. The correlation was poor for our case of amelanotic invasive subungual melanoma. Ex vivo FCM could be a useful tool to shorten management of nonpigmented nail tumours: in the case of a malignant tumour, it could indeed lead to performing wide excision during the same surgical procedure and possibly assessing the surgical margins. © 2014 British Association of Dermatologists.

  9. Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue.

    Science.gov (United States)

    Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M; Koch, Edmund

    2012-07-01

    Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.

  10. Microscopia confocal en córneas de cien ojos sanos Confocal microscopy results of one hundred healthy eye corneas

    OpenAIRE

    Zulema Gómez Castillo; Keyly Fernández García; Alain Pérez Tejeda; Susana Márquez Villalón; Madelyn Jareño Ochoa; Judith Cuevas Ruiz

    2012-01-01

    Objetivo: Analizar las estructuras celulares por microscopia confocal, Confoscan 4, en córneas sanas en nuestro medio. Métodos: Se realizó un estudio prospectivo longitudinal a 100 ojos sanos de médicos que trabajan en nuestra institución, y pacientes que asistieron al servicio de córnea. Esta investigación fue desde mayo de 2007 a mayo 2008, en el Instituto Cubano de Oftalmología "Ramón Pando Ferrer", La Habana. En los médicos se examinaron ambos ojos y en los pacientes el ojo no afectado. S...

  11. Microscopia confocal de la córnea en facoemulsificación Confocal microscopy of the cornea on phacoemulsification

    Directory of Open Access Journals (Sweden)

    Juan Raúl Hernández Silva

    2011-12-01

    Full Text Available Objetivo: Determinar los cambios estructurales de la córnea en la cirugía de catarata por facoemulsificación sin complicaciones. Métodos: Se realizó un estudio prospectivo de pacientes operados de catarata por facoemulsificación coaxial por la técnica de pre chop sin complicaciones. A estos se les realizó microscopia confocal de la córnea con el CONFOSCAN 4 (Nidek Technologies con el objetivo de 40x y adaptador Z-Ring. Se realizó el estudio en el preoperatorio y en el posoperatorio (a las 24 horas, después de una semana, de un mes y a los tres meses. Resultados: Se demostraron cambios estructurales en la córnea como células epiteliales con núcleos hiperreflectivos alargadas en ocasiones y áreas de hiperreflectividad anómala a las 24 horas del posoperatorio. Persistieron queratocitos activados y la disminución de la hiperreflectividad de la matriz extracelular que desapareció al mes. Conclusiones: Aunque por biomicroscopia no se observen alteraciones corneales en el posoperatorio de la cirugía de catarata por facoemulsificación, sí se pueden demostrar por microscopia confocal de la córnea. Estas variaciones no influyen en la recuperación visual óptima de los pacientes.Objective: To determine the structural changes in the cornea in the cataract surgery using phacoemulsification without complications. Methods: A prospective study of patients operated on from cataract using the coaxial phacoemulsification (Pre Chop technique without complications was carried out. These patients also underwent confocal microscopy of the cornea with Confoscan4 (Nidek Technologies with 40x target and Z - Ring adapter. The study was performed in the preoperative period and postoperative period for 24 hours, one week, one month and three months after surgery. Results: Structural changes were observed in the cornea such as epithelial cells with hypereflectivity nucleus, occasionally elongated, , areas of anomalous hypereflectivity 24 hours after

  12. Confocal stereology and image analysis: methods for estimating geometrical characteristics of cells and tissues from three-dimensional confocal images

    Czech Academy of Sciences Publication Activity Database

    Kubínová, Lucie; Janáček, Jiří; Karen, Petr; Radochová, Barbora; Difato, Francesco; Krekule, Ivan

    2004-01-01

    Roč. 53, Suppl.1 (2004), s. S47-S55 ISSN 0862-8408 R&D Projects: GA ČR GA304/01/0257; GA ČR GA310/02/1470; GA AV ČR KJB6011309; GA AV ČR KJB5039302 Grant - others:SI - CZ(CZ) KONTAKT 001/2001 Institutional research plan: CEZ:AV0Z5011922 Keywords : confocal microscopy * image analysis * stereology Subject RIV: EA - Cell Biology Impact factor: 1.140, year: 2004

  13. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2012-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  14. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong

    2012-02-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists\\' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  15. Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation

    Directory of Open Access Journals (Sweden)

    Hongda Mao

    2013-01-01

    Full Text Available Embryonic heart morphogenesis (EHM is a complex and dynamic process where the heart transforms from a single tube into a four-chambered pump. This process is of great biological and clinical interest but is still poorly understood for two main reasons. On the one hand, the existing imaging modalities for investigating EHM suffered from either limited penetration depth or limited spatial resolution. On the other hand, current works typically adopted manual segmentation, which was tedious, subjective, and time consuming considering the complexity of developing heart geometry and the large size of images. In this paper, we propose to utilize confocal microscopy imaging with tissue optical immersion clearing technique to image the heart at different stages of development for EHM study. The imaging method is able to produce high spatial resolution images and achieve large penetration depth at the same time. Furthermore, we propose a novel convex active contour model for automatic image segmentation. The model has the ability to deal with intensity fall-off in depth which is characterized by confocal microscopy images. We acquired the images of embryonic quail hearts from day 6 to day 14 of incubation for EHM study. The experimental results were promising and provided us with an insight view of early heart growth pattern and also paved the road for data-driven heart growth modeling.

  16. CCDiode: an optimal detector for laser confocal microscopes

    Science.gov (United States)

    Pawley, James B.; Blouke, Morley M.; Janesick, James R.

    1996-04-01

    The laser confocal microscope (LCM) is now an established research tool in biology and materials science. In biological applications, it is usually employed to detect the location of fluorescent market molecules and, under these conditions, signal levels from bright areas are often digitizer. To maintain the desired +/- 3 e noise level at the relatively high data rate of 1 MHz, our new device utilizes 64 separate readout amplifier/digitizer systems, operating in sequence. The resulting detector is more compact, efficient and reliable than the PMT it replaces but as its sensitive area is smaller than that of a PMT, it will require auxiliary optics when used with any LCM having a large (mm) pinhole. As the signal light is parallel, a simple lens mounted axially and with the CCDiode at its focus would suffice. Future versions may use 3 X 3 or 5 X 5 arrays of sensors to `track' the confocal spot as it is deflected by inhomogeneities of the specimen, change its effective size or shape or detect system misalignment.

  17. The confocal plane grating spectrometer at BESSY II

    International Nuclear Information System (INIS)

    Könnecke, R.; Follath, R.; Pontius, N.; Schlappa, J.; Eggenstein, F.; Zeschke, T.; Bischoff, P.; Schmidt, J.-S.; Noll, T.

    2013-01-01

    Highlights: ► At the electron storage ring BESSY II a confocal plane grating RIXS endstation with a spot size of 4 μm × 1 μm is presently being installed. ► A resolving power above 10,000 is expected for low energy excitations below 500 eV. ► The sample will be excited with a photon flux up to 10 15 photons/(s 300 mA 0.1%bandwidth). ► Sample environments for solid, gaseous and liquid samples will be provided. ► A fast detecting system is being set up for future pump-probe experiments. -- Abstract: At BESSY II a confocal plane grating spectrometer for resonant inelastic X-ray scattering (RIXS) is currently under commissioning. The new endstation operates with a source size of 4 × 1 μm 2 provided by its dedicated beamline. The RIXS-spectrometer covers an energy range from 50 eV to 1000 eV, providing a resolving power E/ΔE of 5000–15,000. The beamline allows full polarization control and gives a photon flux of up to 7 × 10 14 photons/s/0.1 A/0.1%bandwidth by offering a resolving power E/ΔE of 4000–12,000

  18. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy

    Directory of Open Access Journals (Sweden)

    A. Beaudet

    1998-11-01

    Full Text Available This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

  19. The current role of in vivo reflectance confocal microscopy within the continuum of actinic keratosis and squamous cell carcinoma: a systematic review.

    Science.gov (United States)

    Nguyen, Kim P; Peppelman, Malou; Hoogedoorn, Lisa; Van Erp, Piet E J; Gerritsen, Marie-Jeanne P

    2016-12-01

    Clinical differentiation between actinic keratosis (AK), squamous cell carcinoma (SCC) in situ, and invasive SCC and its variants may be difficult. Reflectance confocal microscopy (RCM) is a non-invasive technique for in vivo skin imaging. To explicate the diagnostic and monitoring use of RCM within the spectrum of AK and SCC, and evaluate the accuracy of RCM for these diagnoses relative to histopathology. A systematic literature search was performed in PubMed, EMBASE, the Cochrane Library, and Web of Science databases. The quality was assessed using the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) checklist. Twenty-five eligible studies were included. Different diagnostic RCM features have been described for AK, actinic cheilitis (AC), erythroplasia of Queyrat, Bowen disease, invasive SCC, and keratoacanthoma (KA). The overall range of sensitivity and specificity of RCM for the diagnosis of SCC, AK, SCC in situ, and KA was 79-100% and 78-100%, respectively. The current literature describes the use of RCM for diagnosing AK, AC, erythroplasia of Queyrat, Bowen disease, invasive SCC, and KA, as well as for monitoring treatments of AK, with good accuracy. Unfortunately, studies with high methodological quality are lacking. Pre-treatment of hyperkeratotic lesions and uniform definitions of RCM features are required to simplify the differentiation between AKs, SCC in situ, and SCC and its variants in clinical practice.

  20. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization.

    Science.gov (United States)

    Lasher, Richard A; Hitchcock, Robert W; Sachse, Frank B

    2009-08-01

    This work presents a methodology for modeling of cardiac tissue micro-structure. The approach is based on catheter-based confocal imaging systems, which are emerging as tools for diagnosis in various clinical disciplines. A limitation of these systems is that a fluorescent marker must be available in sufficient concentration in the imaged region. We introduce a novel method for the local delivery of fluorescent markers to cardiac tissue based on a hydro-gel carrier brought into contact with the tissue surface. The method was tested with living rabbit cardiac tissue and applied to acquire three-dimensional image stacks with a standard inverted confocal microscope and two-dimensional images with a catheter-based confocal microscope. We processed these image stacks to obtain spatial models and quantitative data on tissue microstructure. Volumes of atrial and ventricular myocytes were 4901 +/- 1713 and 10 299 +/-3598 mum (3) (mean+/-sd), respectively. Atrial and ventricular myocyte volume fractions were 72.4 +/-4.7% and 79.7 +/- 2.9% (mean +/-sd), respectively. Atrial and ventricular myocyte density was 165 571 +/- 55 836 and 86 957 +/- 32 280 cells/mm (3) (mean+/-sd), respectively. These statistical data and spatial descriptions of tissue microstructure provide important input for modeling studies of cardiac tissue function. We propose that the described methodology can also be used to characterize diseased tissue and allows for personalized modeling of cardiac tissue.

  1. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment

    Science.gov (United States)

    Nimchuk, Zachary L.; Perdue, Tony D.

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory. PMID:28579995

  2. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment.

    Science.gov (United States)

    Nimchuk, Zachary L; Perdue, Tony D

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory.

  3. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    Science.gov (United States)

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  4. Tracking of cell nuclei for assessment of in vitro uptake kinetics in ultrasound-mediated drug delivery using fibered confocal fluorescence microscopy.

    Science.gov (United States)

    Derieppe, Marc; de Senneville, Baudouin Denis; Kuijf, Hugo; Moonen, Chrit; Bos, Clemens

    2014-10-01

    Previously, we demonstrated the feasibility to monitor ultrasound-mediated uptake of a cell-impermeable model drug in real time with fibered confocal fluorescence microscopy. Here, we present a complete post-processing methodology, which corrects for cell displacements, to improve the accuracy of pharmacokinetic parameter estimation. Nucleus detection was performed based on the radial symmetry transform algorithm. Cell tracking used an iterative closest point approach. Pharmacokinetic parameters were calculated by fitting a two-compartment model to the time-intensity curves of individual cells. Cells were tracked successfully, improving time-intensity curve accuracy and pharmacokinetic parameter estimation. With tracking, 93 % of the 370 nuclei showed a fluorescence signal variation that was well-described by a two-compartment model. In addition, parameter distributions were narrower, thus increasing precision. Dedicated image analysis was implemented and enabled studying ultrasound-mediated model drug uptake kinetics in hundreds of cells per experiment, using fiber-based confocal fluorescence microscopy.

  5. Using Photoshop with images created by a confocal system.

    Science.gov (United States)

    Sedgewick, Jerry

    2014-01-01

    Many pure colors and grayscales tones that result from confocal imaging are not reproducible to output devices, such as printing presses, laptop projectors, and laser jet printers. Part of the difficulty in predicting the colors and tones that will reproduce lies in both the computer display, and in the display of unreproducible colors chosen for fluorophores. The use of a grayscale display for confocal channels and a LUT display to show saturated (clipped) tonal values aids visualization in the former instance and image integrity in the latter. Computer monitors used for post-processing in order to conform the image to the output device can be placed in darkened rooms, and the gamma for the display can be set to create darker shadow regions, and to control the display of color. These conditions aid in visualization of images so that blacks are set to grayer values that are more amenable to faithful reproduction. Preferences can be set in Photoshop for consistent display of colors, along with other settings to optimize use of memory. The Info window is opened so that tonal information can be shown via readouts. Images that are saved as indexed color are converted to grayscale or RGB Color, 16-bit is converted to 8-bit when desired, and colorized images from confocal software is returned to grayscale and re-colorized according to presented methods so that reproducible colors are made. Images may also be sharpened and noise may be reduced, or more than one image layered to show colocalization according to specific methods. Images are then converted to CMYK (Cyan, Magenta, Yellow and Black) for consequent assignment of pigment percentages for printing presses. Changes to single images and multiple images from image stacks are automated for efficient and consistent image processing changes. Some additional changes are done to those images destined for 3D visualization to better separate regions of interest from background. Files are returned to image stacks, saved and

  6. Confocal Raman spectrocopy for the analysis of nail polish evidence.

    Science.gov (United States)

    López-López, Maria; Vaz, Joana; García-Ruiz, Carmen

    2015-06-01

    Nail polishes are cosmetic paints that may be susceptible of forensic analysis offering useful information to assist in a crime reconstruction. Although the nail polish appearance could allow a quick visual identification of the sample, this analysis is subjected to the perception and subjective interpretation of the forensic examiner. The chemical analysis of the nail polishes offers great deal of information not subjected to analyst interpretation. Confocal Raman spectroscopy is a well-suited technique for the analysis of paints due to its non-invasive and non-destructive nature and its ability to supply information about the organic and inorganic components of the sample. In this work, 77 regular and gel nail polishes were analyzed with confocal Raman spectroscopy using two laser wavelengths (532 and 780 nm). The sample behavior under the two laser wavelengths and the differences in the spectra taken at different points of the sample were studied for each nail polish. Additionally, the spectra obtained for all the nail polishes were visually compared. The results concluded that the longer laser wavelength prevents sample burning and fluorescence effects; the similarity among the spectra collected within the sample is not directly related with the presence of glitter particles; and 64% of the samples analyzed showed a characteristic spectrum. Additionally, the use of confocal Raman spectroscopy for the forensic analysis of nail polishes evidence in the form of flakes or smudges on different surfaces were studied. The results showed that both types of evidence can be analyzed by the technique. Also, two non-invasive sampling methods for the collection of the evidence from the nails of the suspect or the victim were proposed: (i) to use acetone-soaked cotton swabs to remove the nail varnishes and (ii) to scrape the nail polish from the nail with a blade. Both approaches, each exhibiting advantages and drawbacks in terms of transport and handling were appropriate

  7. Observation of regenerated fungiform taste buds after severing the chorda tympani nerve using confocal laser scanning microscopy in vivo.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Kato, Yuji; Yamada, Takechiyo; Manabe, Yasuhiro; Narita, Norihiko

    2014-03-01

    To evaluate whether regenerated fungiform taste buds after severing the chorda tympani nerve can be detected by confocal laser scanning microscopy in vivo. Retrospective study. University hospital. Six patients with a normal gustatory function (Group 1), 9 patients with taste function recovery after severing the CTN (Group 2), and 5 patients without taste function recovery (Group 3) were included. In Groups 2 and 3, canal wall up (closed) tympanoplasty or canal wall down with canal reconstruction tympanoplasty was performed in all patients. Diagnostic. The severed nerves were readapted or approximated on the temporalis muscle fascia used to reconstruct the eardrum during surgery. Preoperative and postoperative gustatory functions were assessed using electrogustometry. Twelve to 260 months after severing the CTN, the surface of the midlateral region of the tongue was observed with a confocal laser microscope. EGM thresholds showed no response 1 month after surgery in all patients of Groups 2 and 3. In Group 2, EGM thresholds showed recovery 1 to 2 years after surgery and before confocal microscopy (-1.3 ± 6.5 dB). There was a significant difference between Group 1 (-5.7 ± 2.0 dB; p taste buds were observed in each FP, and 55 (79.7%) of 69 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 3.7 ± 3.6. In patients with a recovered taste function (Group 2), 0 to 8 taste buds were observed in each FP. In this group, 54 (56.2%) of 94 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 2.0 ± 2.2 (p taste bud was observed. Regenerated fungiform taste bud could be observed in vivo using confocal laser scanning microscopy, indicating that regenerated taste bud can be detected without biopsy.

  8. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.

    Science.gov (United States)

    Lima, Rui; Wada, Shigeo; Tanaka, Shuji; Takeda, Motohiro; Ishikawa, Takuji; Tsubota, Ken-ichi; Imai, Yohsuke; Yamaguchi, Takami

    2008-04-01

    Progress in microfabricated technologies has attracted the attention of researchers in several areas, including microcirculation. Microfluidic devices are expected to provide powerful tools not only to better understand the biophysical behavior of blood flow in microvessels, but also for disease diagnosis. Such microfluidic devices for biomedical applications must be compatible with state-of-the-art flow measuring techniques, such as confocal microparticle image velocimetry (PIV). This confocal system has the ability to not only quantify flow patterns inside microchannels with high spatial and temporal resolution, but can also be used to obtain velocity measurements for several optically sectioned images along the depth of the microchannel. In this study, we investigated the ability to obtain velocity measurements using physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel (300 microm wide, 45 microm deep) using a confocal micro-PIV system. Applying this combination, measurements of trace particles seeded in the flow were performed for both fluids at a constant flow rate (Re = 0.02). Velocity profiles were acquired by successive measurements at different depth positions to obtain three-dimensional (3-D) information on the behavior of both fluid flows. Generally, the velocity profiles were found to be markedly blunt in the central region, mainly due to the low aspect ratio (h/w = 0.15) of the rectangular microchannel. Predictions using a theoretical model for the rectangular microchannel corresponded quite well with the experimental micro-PIV results for the PS fluid. However, for the in vitro blood with 20% hematocrit, small fluctuations were found in the velocity profiles. The present study clearly shows that confocal micro-PIV can be effectively integrated with a PDMS microchannel and used to obtain blood velocity profiles along the full depth of the microchannel because of its unique 3-D optical sectioning ability

  9. A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging

    Science.gov (United States)

    Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing

    2017-06-01

    In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.

  10. MIRD methodology

    International Nuclear Information System (INIS)

    Rojo, Ana M.; Gomez Parada, Ines

    2004-01-01

    The MIRD (Medical Internal Radiation Dose) system was established by the Society of Nuclear Medicine of USA in 1960 to assist the medical community in the estimation of the dose in organs and tissues due to the incorporation of radioactive materials. Since then, 'MIRD Dose Estimate Report' (from the 1 to 12) and 'Pamphlets', of great utility for the dose calculations, were published. The MIRD system was planned essentially for the calculation of doses received by the patients during nuclear medicine diagnostic procedures. The MIRD methodology for the absorbed doses calculations in different tissues is explained

  11. PSA methodology

    Energy Technology Data Exchange (ETDEWEB)

    Magne, L

    1997-12-31

    The purpose of this text is first to ask a certain number of questions on the methods related to PSAs. Notably we will explore the positioning of the French methodological approach - as applied in the EPS 1300{sup 1} and EPS 900{sup 2} PSAs - compared to other approaches (Part One). This reflection leads to more general reflection: what contents, for what PSA? This is why, in Part Two, we will try to offer a framework for definition of the criteria a PSA should satisfy to meet the clearly identified needs. Finally, Part Three will quickly summarize the questions approached in the first two parts, as an introduction to the debate. 15 refs.

  12. PSA methodology

    International Nuclear Information System (INIS)

    Magne, L.

    1996-01-01

    The purpose of this text is first to ask a certain number of questions on the methods related to PSAs. Notably we will explore the positioning of the French methodological approach - as applied in the EPS 1300 1 and EPS 900 2 PSAs - compared to other approaches (Part One). This reflection leads to more general reflection: what contents, for what PSA? This is why, in Part Two, we will try to offer a framework for definition of the criteria a PSA should satisfy to meet the clearly identified needs. Finally, Part Three will quickly summarize the questions approached in the first two parts, as an introduction to the debate. 15 refs

  13. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  14. Confocal mapping of myelin figures with micro-Raman spectroscopy

    Science.gov (United States)

    Huang, Jung-Ren; Cheng, Yu-Che; Huang, Hung Ji; Chiang, Hai-Pang

    2018-01-01

    We employ confocal micro-Raman spectroscopy (CMRS) with submicron spatial resolution to study the myelin structures (cylindrical lamellae) composed of nested surfactant C12E3 or lipid DMPC bilayers. The CMRS mapping indicates that for a straight C12E3 myelin, the surfactant concentration increases with the myelin width and is higher in the center region than in the peripheral region. For a curved C12E3 myelin, the convex side has a higher surfactant concentration than the corresponding concave side. The spectrum of DMPC myelins undergoes a qualitative change as the temperature increases above 60 °C, suggesting that the surfactant molecules may be damaged. Our work demonstrates the utility of CMRS in bio-soft material research.

  15. Confocal imaging of protein distributions in porous silicon optical structures

    International Nuclear Information System (INIS)

    De Stefano, Luca; D'Auria, Sabato

    2007-01-01

    The performances of porous silicon optical biosensors depend strongly on the arrangement of the biological probes into their sponge-like structures: it is well known that in this case the sensing species do not fill the pores but instead cover their internal surface. In this paper, the direct imaging of labelled proteins into different porous silicon structures by using a confocal laser microscope is reported. The distribution of the biological matter in the nanostructured material follows a Gaussian behaviour which is typical of the diffusion process in the porous media but with substantial differences between a porous silicon monolayer and a multilayer such as a Bragg mirror. Even if semi-quantitative, the results can be very useful in the design of the porous silicon based biosensing devices

  16. Signal and noise modeling in confocal laser scanning fluorescence microscopy.

    Science.gov (United States)

    Herberich, Gerlind; Windoffer, Reinhard; Leube, Rudolf E; Aach, Til

    2012-01-01

    Fluorescence confocal laser scanning microscopy (CLSM) has revolutionized imaging of subcellular structures in biomedical research by enabling the acquisition of 3D time-series of fluorescently-tagged proteins in living cells, hence forming the basis for an automated quantification of their morphological and dynamic characteristics. Due to the inherently weak fluorescence, CLSM images exhibit a low SNR. We present a novel model for the transfer of signal and noise in CLSM that is both theoretically sound as well as corroborated by a rigorous analysis of the pixel intensity statistics via measurement of the 3D noise power spectra, signal-dependence and distribution. Our model provides a better fit to the data than previously proposed models. Further, it forms the basis for (i) the simulation of the CLSM imaging process indispensable for the quantitative evaluation of CLSM image analysis algorithms, (ii) the application of Poisson denoising algorithms and (iii) the reconstruction of the fluorescence signal.

  17. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Ghita, Ovidiu; Whelan, Paul F.

    2015-01-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented...... to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis...... scanning microscopy images can be used to provide information on the protein microstructure in yogurt products. For large numbers of microscopy images, subjective evaluation becomes a difficult or even impossible approach, if the images should be incorporated in any form of statistical analysis alongside...

  18. Investigation of the petrophysical properties of a porous sandstone sample using confocal scanning laser microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Petford, N. [Kingston Univ., Centre for Earth and Environmental Science Research, Kingston (United Kingdom); Davidson, G. [University Coll., Dept. of Electronic and Electrical Engineering, London (United Kingdom); Miller, J.A. [Cambridge Univ., Dept. of Earth Sciences, Cambridge (United Kingdom)

    2001-05-01

    Confocal scanning laser microscopy (CSLM) is used to produce images of the two- and three-dimensional distribution and geometry of pore space in a reservoir sandstone and measure the 2D distribution of pore throat radii. Non-destructive serial sectioning of the rock using laser light at 100% illumination, combined with image thresholding and histogram equalization techniques allow the pore volume structure of the uppermost 100 {mu}m of the sample to be reconstructed. Negative imaging of the pore volume gave superior depth and feature resolution compared to positive (reflection) imaging. Artefacts encountered in applying classical Medial Axial Transforms to CSLM images include branch networks dominated by coordination numbers of 3. Skeletonization using Euclidean distance maps gives increased accuracy in the description of the pore network. Measured pore throat size distribution in the rock is strongly exponential and described by the expression y 219e{sup -0.25x} where y is the number of pore throats. (Author)

  19. Methods of Hematoxylin and Erosin Image Information Acquisition and Optimization in Confocal Microscopy.

    Science.gov (United States)

    Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin; Sohn, Dae Kyung

    2016-07-01

    We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis.

  20. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    Science.gov (United States)

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  1. Laser confocal microscope for analysis of 3013 inner container closure weld region

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, M. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-26

    As part of the protocol to investigate the corrosion in the inner container closure weld region (ICCWR) a laser confocal microscope (LCM) was used to perform close visual examination of the surface and measurements of corrosion features on the surface. However, initial analysis of selected destructively evaluated (DE) containers using the LCM revealed several challenges for acquiring, processing and interpreting the data. These challenges include topography of the ICCWR sample, surface features, and the amount of surface area for collecting data at high magnification conditions. In FY17, the LCM parameters were investigated to identify the appropriate parameter values for data acquisition and identification of regions of interest. Using these parameter values, selected DE containers were analyzed to determine the extent of the ICCWR to be examined.

  2. Confocal laser endomicroscopy for diagnosis of Barrett´s esophagus

    Directory of Open Access Journals (Sweden)

    Helmut eNeumann

    2012-05-01

    Full Text Available Barrett´s esophagus (BE is established as a premalignant condition in the distal esophagus. Current surveillance guidelines recommend random biopsies every 1-2 cm at intervals of 3-5 years. Advanced endoscopic imaging of BE underwent several technical revolutions within the last decade including broad-field (red-flag techniques (e.g. chromoendoscopy and small-field techniques with confocal laser endomicroscopy (CLE at the forefront. In this review we will focus on advanced endoscopic imaging using CLE for the diagnosis and characterization of BE and associated neoplasia. In addition, we will critically discuss the technique of CLE and provide some tricks and hints for the daily routine practice of CLE for diagnosis of BE.

  3. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy.

    Science.gov (United States)

    Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H; Wouters, Fred S; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg

    2013-12-24

    We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions.

  4. A confocal microscopy-based atlas of tissue architecture in the tapeworm Hymenolepis diminuta.

    Science.gov (United States)

    Rozario, Tania; Newmark, Phillip A

    2015-11-01

    Tapeworms are pervasive and globally distributed parasites that infect millions of humans and livestock every year, and are the causative agents of two of the 17 neglected tropical diseases prioritized by the World Health Organization. Studies of tapeworm biology and pathology are often encumbered by the complex life cycles of disease-relevant tapeworm species that infect hosts such as foxes, dogs, cattle, pigs, and humans. Thus, studies of laboratory models can help overcome the practical, ethical, and cost-related difficulties faced by tapeworm parasitologists. The rat intestinal tapeworm Hymenolepis diminuta is easily reared in the laboratory and has the potential to enable modern molecular-based experiments that will greatly contribute to our understanding of multiple aspects of tapeworm biology, such as growth and reproduction. As part of our efforts to develop molecular tools for experiments on H. diminuta, we have characterized a battery of lectins, antibodies, and common stains that label different tapeworm tissues and organ structures. Using confocal microscopy, we have assembled an "atlas" of H. diminuta organ architecture that will be a useful resource for helminthologists. The methodologies we describe will facilitate characterization of loss-of-function perturbations using H. diminuta. This toolkit will enable a greater understanding of fundamental tapeworm biology that may elucidate new therapeutic targets toward the eradication of these parasites. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging

    International Nuclear Information System (INIS)

    Kotlarchyk, M A; Botvinick, E L; Putnam, A J

    2010-01-01

    Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.

  6. A model system using confocal fluorescence microscopy for examining real-time intracellular sodium ion regulation.

    Science.gov (United States)

    Lee, Jacqueline A; Collings, David A; Glover, Chris N

    2016-08-15

    The gills of euryhaline fish are the ultimate ionoregulatory tissue, achieving ion homeostasis despite rapid and significant changes in external salinity. Cellular handling of sodium is not only critical for salt and water balance but is also directly linked to other essential functions such as acid-base homeostasis and nitrogen excretion. However, although measurement of intracellular sodium ([Na(+)]i) is important for an understanding of gill transport function, it is challenging and subject to methodological artifacts. Using gill filaments from a model euryhaline fish, inanga (Galaxias maculatus), the suitability of the fluorescent dye CoroNa Green as a probe for measuring [Na(+)]i in intact ionocytes was confirmed via confocal microscopy. Cell viability was verified, optimal dye loading parameters were determined, and the dye-ion dissociation constant was measured. Application of the technique to freshwater- and 100% seawater-acclimated inanga showed salinity-dependent changes in branchial [Na(+)]i, whereas no significant differences in branchial [Na(+)]i were determined in 50% seawater-acclimated fish. This technique facilitates the examination of real-time changes in gill [Na(+)]i in response to environmental factors and may offer significant insight into key homeostatic functions associated with the fish gill and the principles of sodium ion transport in other tissues and organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Transient gels in colloid-polymer mixtures studied with fluorescence confocal scanning laser microscopy

    NARCIS (Netherlands)

    Verhaegh, N.A.M.; Asnaghi, D.; Lekkerkerker, H.N.W.

    1999-01-01

    We study the structure and the time evolution of transient gels formed in colloid-polymer mixtures, by means of uorescence Confocal Scanning Laser Microscopy (CSLM). This technique is used in conjunction with novel colloidal silica particles containing a uorescent core. The confocal micrographs

  8. Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy

    OpenAIRE

    Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter

    2013-01-01

    We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...

  9. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    Science.gov (United States)

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  10. Microscopia confocal en córneas de cien ojos sanos Confocal microscopy results of one hundred healthy eye corneas

    Directory of Open Access Journals (Sweden)

    Zulema Gómez Castillo

    2012-06-01

    Full Text Available Objetivo: Analizar las estructuras celulares por microscopia confocal, Confoscan 4, en córneas sanas en nuestro medio. Métodos: Se realizó un estudio prospectivo longitudinal a 100 ojos sanos de médicos que trabajan en nuestra institución, y pacientes que asistieron al servicio de córnea. Esta investigación fue desde mayo de 2007 a mayo 2008, en el Instituto Cubano de Oftalmología "Ramón Pando Ferrer", La Habana. En los médicos se examinaron ambos ojos y en los pacientes el ojo no afectado. Se recopilaron un total de 50 casos sin afección corneal. Resultados: De los 100 ojos estudiados, 64 tenían paquimetrías por encima del valor medio. Estuvieron presentes los tres tipos de células epiteliales en casi la totalidad de los pacientes; así como los queratocitos en las diferentes profundidades del estroma corneal. La mayoría de los ojos tenían un conteo celular endotelial por encima de 2 500, cifra comprendida dentro de los valores normales. Se encontraron fibras nerviosas en cada una de sus capas. Conclusiones: La microscopia confocal se presenta como una nueva herramienta que permite observar en vivo la histología corneal y complementar las observaciones de la biomicroscopia convencional. Esto constituye un reto para el mejor entendimiento de la histopatología corneal. De esta manera podemos actuar de forma profiláctica y terapéutica, en el seguimiento y evolución de patologías corneales.Objective: This paper is aimed at analyzing the corneal cellular structures through Confoscan S4-aided confocal microscopy in apparently healthy corneas. Methods: A prospective longitudinal study of 100 healthy eyes from practicing doctors, and from patients who had attended the corneal service at “Ramón Pando Ferrer” Cuban Institute of Ophthalmology in Havana since May 2007 was conducted. Both eyes of participating doctors were examined whereas the non-affected eye was examined in the patients. A total of 50 cases with no corneal

  11. Estudio del endotelio corneal en el queratocono por microscopia confocal Study of the corneal endothelium confocal microscopy in keratoconus

    Directory of Open Access Journals (Sweden)

    María del Carmen Benítez Merino

    2011-12-01

    Full Text Available Objetivo: Describir los hallazgos morfométricos del endotelio corneal por microscopia confocal con CONFOSCAN S-4. Métodos: Estudio descriptivo transversal de 102 ojos con queratocono en el período de septiembre de 2008 a septiembre 2009. A estos pacientes se les realizó microscopia confocal con CosfoscanS-4 para el estudio del endotelio corneal atendiendo el grado de queratocono. Se analizó el comportamiento de la evolución del queratocono según edad y sexo. Las imágenes fueron analizadas y procesadas mediante un programa informático diseñado específicamente para esto. Resultados: Fueron semejantes las edades de los pacientes con queratocono grado I y II, (35,2 y 34,7 años, los grado III presentaron una edad promedio mayor (38,4 años, sin diferencias significativas (p= 0,279. El sexo femenino predominó en 80,4 % de los pacientes. El 100 % de los queratoconos grado III tuvieron endotelios patológicos. Los valores promedios de la densidad celular en los queratoconos grado III (2585,9 células/mm² resultó no significativo (p= 0,339. El polimegatismo en los queratoconos grado III para un 48,69 % fue significativo (p= 0,002. En el pleomorfismo resultó significativo las diferencias observadas entre los tres grados (p= 0,002. Conclusión: Predominó el queratocono grado II para las mujeres y el grado I para los hombres. Los hallazgos morfológicos se manifestaron en la forma y tamaño de las células endoteliales. En córneas con queratocono grado II y III confluyeron células de mediano y gran tamaño con pérdida de su hexagonalidad. La densidad celular se mantuvo dentro del rango de valores normales para cualquier grado de queratocono.Objective: To describe the morphometric findings of the corneal endothelium confocal microscopy with CONFOSCAN S-4 Methods: Descriptive cross-sectional study of 102 eyes with keratoconus performed from September 2008 to September 2009. The study patients had undergone confocal microscopy with

  12. The application of confocal technology based on polycapillary X-ray optics in surface topography

    International Nuclear Information System (INIS)

    Zhao, Guangcui; Sun, Tianxi; Liu, Zhiguo; Yuan, Hao; Li, Yude; Liu, Hehe; Zhao, Weigang; Zhang, Ruixia; Min, Qin; Peng, Song

    2013-01-01

    A confocal micro-X-ray fluorescence (MXRF) technology based on polycapillary X-ray optics was proposed for determining surface topography. This confocal topography method involves elemental sensitivity and can be used to classify the objects according to their elemental composition while obtaining their surface topography. To improve the spatial resolution of this confocal topography technology, the center of the confocal micro-volume was overlapped with the output focal spot of the polycapillary X-ray, focusing the lens in the excitation channel. The input focal spot of the X-ray lens parallel to the detection channel was used to determine the surface position of the sample. The corresponding surface adaptive algorithm was designed to obtain the surface topography. The surface topography of a ceramic chip was obtained. This confocal MXRF surface topography method could find application in the materials sciences

  13. Cell differentiation in cardiac myxomas: confocal microscopy and gene expression analysis after laser capture microdissection.

    Science.gov (United States)

    Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni

    2018-05-22

    Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.

  14. Metrological characterization methods for confocal chromatic line sensors and optical topography sensors

    Science.gov (United States)

    Seppä, Jeremias; Niemelä, Karri; Lassila, Antti

    2018-05-01

    The increasing use of chromatic confocal technology for, e.g. fast, in-line optical topography, and measuring thickness, roughness and profiles implies a need for the characterization of various aspects of the sensors. Single-point, line and matrix versions of chromatic confocal technology, encoding depth information into wavelength, have been developed. Of these, line sensors are particularly suitable for in-line process measurement. Metrological characterization and development of practical methods for calibration and checking is needed for new optical methods and devices. Compared to, e.g. tactile methods, optical topography measurement techniques have limitations related to light wavelength and coherence, optical properties of the sample including reflectivity, specularity, roughness and colour, and definition of optical versus mechanical surfaces. In this work, metrological characterization methods for optical line sensors were developed for scale magnification and linearity, sensitivity to sample properties, and dynamic characteristics. An accurate depth scale calibration method using a single prototype groove depth sample was developed for a line sensor and validated with laser-interferometric sample tracking, attaining (sub)micrometre level or better than 0.1% scale accuracy. Furthermore, the effect of different surfaces and materials on the measurement and depth scale was studied, in particular slope angle, specularity and colour. In addition, dynamic performance, noise, lateral scale and resolution were measured using the developed methods. In the case of the LCI1200 sensor used in this study, which has a 11.3 mm  ×  2.8 mm measurement range, the instrument depth scale was found to depend only minimally on sample colour, whereas measuring steeply sloped specular surfaces in the peripheral measurement area, in the worst case, caused a somewhat larger relative sample-dependent change (1%) in scale.

  15. Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms.

    Science.gov (United States)

    Steinbach, Gábor; Kaňa, Radek

    2016-04-01

    Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.

  16. Fluorescence Confocal Microscopy for Ex Vivo Diagnosis of Conjunctival Tumors: A Pilot Study.

    Science.gov (United States)

    Iovieno, Alfonso; Longo, Caterina; De Luca, Mariacarla; Piana, Simonetta; Fontana, Luigi; Ragazzi, Moira

    2016-08-01

    To evaluate the potential use of fluorescence confocal microscopy (FCM) for ex vivo diagnosis and excision margin assessment of conjunctival neoplasms. Validity study. setting: Single institution. Consecutive patients with clinically suspicious conjunctival lesions. Conjunctival lesions were excised in toto using a standard "no-touch technique" by a single surgeon (A.I.). Collected specimens were examined with a commercially available laser scanning fluorescence confocal microscope after immersion in a 0.6 mM solution of acridine orange dye for 10-20 seconds. Specimens were subsequently processed with standard histologic analysis. FCM diagnosis of the nature and extension of conjunctival lesions. Sixteen consecutive patients were included in the study (11 male, 5 female; mean age 58.1 ± 26.1 years, range 10-90 years). The median time needed to process and analyze a sample with FCM was 15 minutes. Eleven of 16 lesions were identified by FCM as squamous (2 benign papillomas, 2 grade 2 conjunctival intraepithelial neoplasias, 7 in situ squamous carcinomas) and 5 as nonsquamous (1 pingueculum, 1 dermolipoma, 2 melanocytic nevi, 1 melanoma). In all cases FCM was able to detect horizontal and vertical extension of the lesion. All FCM findings were confirmed by corresponding subsequent histologic examination. FCM provides a fast ex vivo preliminary diagnosis of suspicious conjunctival lesions with good histologic details and margin assessment, and may represent a novel tool for intraoperative and postsurgical management of conjunctival tumors. This is the first study to investigate ex vivo FCM application in ophthalmology. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Testing methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.A.

    1990-01-01

    Several methodologies are available for screening human populations for exposure to ionizing radiation. Of these, aberration frequency determined in peripheral blood lymphocytes is the best developed. Individual exposures to large doses can easily be quantitated, and population exposures to occupational levels can be detected. However, determination of exposures to the very low doses anticipated from a low-level radioactive waste disposal site is more problematical. Aberrations occur spontaneously, without known cause. Exposure to radiation induces no new or novel types, but only increases their frequency. The limitations of chromosomal aberration dosimetry for detecting low level radiation exposures lie mainly in the statistical signal to noise'' problem, the distribution of aberrations among cells and among individuals, and the possible induction of aberrations by other environmental occupational or medical exposures. However, certain features of the human peripheral lymphocyte-chromosomal aberration system make it useful in screening for certain types of exposures. Future technical developments may make chromosomal aberration dosimetry more useful for low-level radiation exposures. Other methods, measuring gene mutations or even minute changes on the DNA level, while presently less will developed techniques, may eventually become even more practical and sensitive assays for human radiation exposure. 15 refs.

  18. Testing methodologies

    International Nuclear Information System (INIS)

    Bender, M.A.

    1990-01-01

    Several methodologies are available for screening human populations for exposure to ionizing radiation. Of these, aberration frequency determined in peripheral blood lymphocytes is the best developed. Individual exposures to large doses can easily be quantitated, and population exposures to occupational levels can be detected. However, determination of exposures to the very low doses anticipated from a low-level radioactive waste disposal site is more problematical. Aberrations occur spontaneously, without known cause. Exposure to radiation induces no new or novel types, but only increases their frequency. The limitations of chromosomal aberration dosimetry for detecting low level radiation exposures lie mainly in the statistical ''signal to noise'' problem, the distribution of aberrations among cells and among individuals, and the possible induction of aberrations by other environmental occupational or medical exposures. However, certain features of the human peripheral lymphocyte-chromosomal aberration system make it useful in screening for certain types of exposures. Future technical developments may make chromosomal aberration dosimetry more useful for low-level radiation exposures. Other methods, measuring gene mutations or even minute changes on the DNA level, while presently less will developed techniques, may eventually become even more practical and sensitive assays for human radiation exposure. 15 refs

  19. Regional Shelter Analysis Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Michael B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dennison, Deborah [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, Jave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walker, Hoyt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Miller, Paul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-01

    The fallout from a nuclear explosion has the potential to injure or kill 100,000 or more people through exposure to external gamma (fallout) radiation. Existing buildings can reduce radiation exposure by placing material between fallout particles and exposed people. Lawrence Livermore National Laboratory was tasked with developing an operationally feasible methodology that could improve fallout casualty estimates. The methodology, called a Regional Shelter Analysis, combines the fallout protection that existing buildings provide civilian populations with the distribution of people in various locations. The Regional Shelter Analysis method allows the consideration of (a) multiple building types and locations within buildings, (b) country specific estimates, (c) population posture (e.g., unwarned vs. minimally warned), and (d) the time of day (e.g., night vs. day). The protection estimates can be combined with fallout predictions (or measurements) to (a) provide a more accurate assessment of exposure and injury and (b) evaluate the effectiveness of various casualty mitigation strategies. This report describes the Regional Shelter Analysis methodology, highlights key operational aspects (including demonstrating that the methodology is compatible with current tools), illustrates how to implement the methodology, and provides suggestions for future work.

  20. Iris ultrastructure in patients with synechiae as revealed by in vivo laser scanning confocal microscopy : In vivo iris ultrastructure in patients with Synechiae by Laser Scanning Confocal Microscopy.

    Science.gov (United States)

    Li, Ming; Cheng, Hongbo; Guo, Ping; Zhang, Chun; Tang, Song; Wang, Shusheng

    2016-04-26

    Iris plays important roles in ocular physiology and disease pathogenesis. Currently it is technically challenging to noninvasively examine the human iris ultrastructure in vivo. The purpose of the current study is to reveal human iris ultrastructure in patients with synechiae by using noninvasive in vivo laser scanning confocal microscopy (LSCM). The ultrastructure of iris in thirty one patients, each with synechiae but transparent cornea, was examined by in vivo LSCM. Five characteristic iris ultrastructures was revealed in patients with synechiae by in vivo LSCM, which include: 1. tree trunk-like structure; 2. tree branch/bush-like structure; 3. Fruit-like structure; 4. Epithelioid-like structure; 5. deep structure. Pigment granules can be observed as a loose structure on the top of the arborization structure. In iris-associated diseases with Tyndall's Phenomenon and keratic precipitates, the pigment particles are more likely to fall off from the arborization structure. The ultrastructure of iris in patients with synechiae has been visualized using in vivo LSCM. Five iris ultrastructures can be clearly observed, with some of the structures maybe disease-associated. The fall-off of the pigment particles may cause the Tyndall's Phenomenon positive. In vivo LSCM provides a non-invasive approach to observe the human iris ultrastructure under certain eye disease conditions, which sets up a foundation to visualize certain iris-associated diseases in the future.

  1. Research and application on imaging technology of line structure light based on confocal microscopy

    Science.gov (United States)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  2. Enhancement of fluorescence confocal scanning microscopy lateral resolution by use of structured illumination

    International Nuclear Information System (INIS)

    Kim, Taejoong; Gweon, DaeGab; Lee, Jun-Hee

    2009-01-01

    Confocal microscopy is an optical imaging technique used to reconstruct three-dimensional images without physical sectioning. As with other optical microscopes, the lateral resolution of the confocal microscope cannot surpass the diffraction limit. This paper presents a novel imaging system, structured illumination confocal scanning microscopy (SICSM), that uses structured illumination to improve the lateral resolution of the confocal microscope. The SICSM can easily be implemented by introducing a structured illumination generating optics to conventional line-scanning fluorescence confocal microscopy. In this paper, we report our analysis of the lateral and axial resolutions of the SICSM by use of mathematical imaging theory. Numerical simulation results show that the lateral resolution of the SICSM is 1.43-fold better than that of the confocal microscope. In the axial direction, however, the resolution of the SICSM is ∼15% poorer than that of the confocal microscope. This deterioration arises because of a decrease in the axial cut-off frequency caused by the process of generating structured illumination. We propose the use of imaging conditions under which a compromise between the axial and lateral resolutions is chosen. Finally, we show simulated images of diversely shaped test objects to demonstrate the lateral and axial resolution performance of the SICSM

  3. Intravital Confocal and Two-photon Imaging of Dual-color Cells and Extracellular Matrix Mimics

    Science.gov (United States)

    Bal, Ufuk; Andresen, Volker; Baggett, Brenda; Utzinger, Urs

    2013-01-01

    To optimize imaging of cells in three dimensional culture we studied confocal backscattering, Second Harmonic Generation (SHG) and autofluorescence as source of contrast in extracellular matrix (ECM) mimics and evaluated the attenuation as well as bleaching of endogenous cellular fluorescence signals. All common ECM mimics exhibit contrast observable with confocal reflectance microscopy. SHG imaging on collagen I based hydrogels provides high contrast and good optical penetration depth. Agarose is a useful embedding medium because it allows for large optical penetration and exhibits minimal autofluorescence while still providing good reflectance to detect voids in the embedding medium. We labeled breast cancer cells’ outline with DsRed2 and nucleus with eGFP. DsRed2 can be excited with confocal imaging at 568nm, and with two photon excitation (TPE) in the red and longer NIR. eGFP was excited at 488nm for confocal and in the NIR for TPE. While there is small difference in the bleaching rate for eGFP between confocal and TPE we observed significant difference for DsRed2 where bleaching is strongest during TPE in the red wavelengths and smallest during confocal imaging. After a few hundred microns depth in a collagen I hydrogel, TPE fluorescence becomes twice as strong compared to confocal imaging. PMID:23380006

  4. Conversion efficiency of implanted ions by confocal micro-luminescence mapping

    International Nuclear Information System (INIS)

    Deshko, Y.; Huang, Mengbing; Gorokhovsky, A.A.

    2013-01-01

    We report on the further development of the statistical approach to determine the conversion efficiency of implanted ions into emitting centers and present the measurement method based on the confocal micro-luminescence mapping. It involves the micro-luminescence mapping with a narrow-open confocal aperture, followed by the statistical analysis of the photoluminescence signal from an ensemble of emitting centers. The confocal mapping method has two important advantages compared to the recently discussed aperture-free method (J. Lumin. 131 (2011) 489): it is less sensitive to errors in the laser spot size and has a well defined useful area. The confocal mapping has been applied to the Xe center in diamond. The conversion efficiency has been found to be about 0.28, which is in good agreement with the results of the aperture-free method. - Highlights: ► Conversion efficiency of implanted ions into emitting centers – statistical approach. ► Micro-luminescence mapping with open and narrow confocal aperture – comparison. ► Advantages of the confocal micro-luminescence mapping. ► Confocal micro-luminescence mapping has been applied to the Xe center in diamond. ► The conversion efficiency has been found to be about 0.28.

  5. Application of function-oriented roughness parameters using confocal microscopy

    Directory of Open Access Journals (Sweden)

    K. Klauer

    2018-06-01

    Full Text Available Optical measuring instruments are widely used for the functional characterization of surface topography. However, due to the interaction of the surface with the incident light, effects occur that can influence the measured topography height values and the obtained surface texture parameters. Therefore, we describe a systematic investigation of the influences of optical surface topography measurement on the acquisition of function-oriented roughness parameters. The same evaluation areas of varying cylinder liners which represent a typical application of function-oriented roughness parameters were measured with a confocal microscope and a stylus instrument. Functional surface texture parameters as given in the standards ISO 13565–2, ISO 13565–3 and ISO 25178–2 were evaluated for both measurement methods and compared. The transmission of specific surface features was described and a correlation analysis for the surface topographies obtained with the different measurement methods and their resulting functional roughness parameters was carried out. Keywords: Functional surface characterization, Optical metrology, Topography measurement, Roughness

  6. Confocal laser scanning microscopy in study of bone calcification

    Science.gov (United States)

    Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio

    2012-12-01

    Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  7. Application of Reflectance Confocal Microscopy in Dermatology Practice

    Directory of Open Access Journals (Sweden)

    Ayşe Esra Koku Aksu

    2015-03-01

    Full Text Available In vivo reflectance confocal microscopy (RCM is a non-invasive method, imaging cellular structures in living skin at a level close to the histological resolution. It is easier to diagnose melanocytic and non-melanocytic skin tumors especially in difficult cases when RCM features have been identified. Determination of the cellular features, presence of cellular and structural atypia with RCM allows the discrimination of benign and malignant lesions. Preoperative differential diagnosis of malignant lesions, determining preoperative lesion borders in complicated cases, identification of local recurrence after excision of malignant lesions, monitoring the treatment efficacy in patients using topical treatment and who can not be operated, are the main areas of RCM in tumoral lesions. Besides, RCM is helpful in the establishing the diagnosis of inflammatory disease like psoriasis, contact dermatitis, lichen planus and in evaluation of therapeutic efficacy, detecting of infestation like tinea, skabiyes, demodicosis and determining the level of bullae in bullous disease. Due to being noninvasive, RCM is preferred in cosmetology, in clinical research and practice for the evaluation of the effectiveness of cosmetic products and cosmetic procedures.

  8. Confocal fluorescence microscopy for minimal-invasive tumor diagnosis

    International Nuclear Information System (INIS)

    Zenzinger, M.; Bille, J.

    2000-01-01

    The goal of the project ''stereotactic laser-neurosurgery'' is the development of a system for careful and minimal-invasive resection of brain tumors with ultrashort laser pulses through a thin probe. A confocal laser-scanning-microscope is integrated in the probe. In this paper, the simulation of its optical properties by a laboratory setup and the expansion by the ability for fluorescence microscopy are reported. For a valuation of the imaging properties, the point-spread-function in three dimensions and the axial depth-transfer-function were measured and thus, among other things, the resolving power and the capacity for depth discrimination were analysed. The microscope will enable intra-operative detection of tumor cells by the method of immunofluorescence. As a first model of the application in the brain, cell cultures, that fluorescein-labelled antibodies were bound to specifically, were used in this work. Due to the fluorescence signal, it was possible to detect and identify clearly the areas that had been marked in this manner, proving the suitability of the setup for minimal-invasive tumor diagnosis. (orig.)

  9. A new method for depth profiling reconstruction in confocal microscopy

    Science.gov (United States)

    Esposito, Rosario; Scherillo, Giuseppe; Mensitieri, Giuseppe

    2018-05-01

    Confocal microscopy is commonly used to reconstruct depth profiles of chemical species in multicomponent systems and to image nuclear and cellular details in human tissues via image intensity measurements of optical sections. However, the performance of this technique is reduced by inherent effects related to wave diffraction phenomena, refractive index mismatch and finite beam spot size. All these effects distort the optical wave and cause an image to be captured of a small volume around the desired illuminated focal point within the specimen rather than an image of the focal point itself. The size of this small volume increases with depth, thus causing a further loss of resolution and distortion of the profile. Recently, we proposed a theoretical model that accounts for the above wave distortion and allows for a correct reconstruction of the depth profiles for homogeneous samples. In this paper, this theoretical approach has been adapted for describing the profiles measured from non-homogeneous distributions of emitters inside the investigated samples. The intensity image is built by summing the intensities collected from each of the emitters planes belonging to the illuminated volume, weighed by the emitters concentration. The true distribution of the emitters concentration is recovered by a new approach that implements this theoretical model in a numerical algorithm based on the Maximum Entropy Method. Comparisons with experimental data and numerical simulations show that this new approach is able to recover the real unknown concentration distribution from experimental profiles with an accuracy better than 3%.

  10. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy.

    Science.gov (United States)

    Canclini, Lucía; Wallrabe, Horst; Di Paolo, Andrés; Kun, Alejandra; Calliari, Aldo; Sotelo-Silveira, José Roberto; Sotelo, José Roberto

    2014-03-15

    Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Building ASIPS the Mescal methodology

    CERN Document Server

    Gries, Matthias

    2006-01-01

    A number of system designers use ASIP's rather than ASIC's to implement their system solutions. This book gives a comprehensive methodology for the design of these application-specific instruction processors (ASIPs). It includes demonstrations of applications of the methodologies using the Tipi research framework.

  12. Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography

    International Nuclear Information System (INIS)

    Cordes, Nikolaus L.; Seshadri, Srivatsan; Havrilla, George J.; Yuan, Xiaoli; Feser, Michael; Patterson, Brian M.

    2015-01-01

    Current non-destructive elemental characterization methods, such as scanning electron microscopy-based energy dispersive spectroscopy (SEM–EDS) and micro-X-ray fluorescence spectroscopy (MXRF), are limited to either elemental identification at the surface (SEM–EDS) or suffer from an inability to discriminate between surface or depth information (MXRF). Thus, a non-destructive elemental characterization of individual embedded particles beneath the surface is impossible with either of these techniques. This limitation can be overcome by using laboratory-based 3D confocal micro-X-ray fluorescence spectroscopy (confocal MXRF). This technique utilizes focusing optics on the X-ray source and detector which allows for spatial discrimination in all three dimensions. However, the voxel-by-voxel serial acquisition of a 3D elemental scan can be very time-intensive (~ 1 to 4 weeks) if it is necessary to locate individual embedded particles of interest. As an example, if each point takes a 5 s measurement time, a small volume of 50 × 50 × 50 pixels leads to an acquisition time of approximately 174 h, not including sample stage movement time. Initially screening the samples for particles of interest using micro-X-ray computed tomography (micro-CT) can significantly reduce the time required to spatially locate these particles. Once located, these individual particles can be elementally characterized with confocal MXRF. Herein, we report the elemental identification of high atomic number surface and subsurface particles embedded in a mineralogical matrix by coupling micro-CT and confocal MXRF. Synergistically, these two X-ray based techniques first rapidly locate and then elementally identify individual subsurface particles. - Highlights: • Coupling of confocal X-ray fluorescence spectroscopy and X-ray computed tomography • Qualitative elemental identification of surface and subsurface mineral particles • Non-destructive particle size measurements • Utilization of

  13. Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, Nikolaus L., E-mail: ncordes@lanl.gov [Polymers and Coatings Group, Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Seshadri, Srivatsan, E-mail: srivatsan.seshadri@zeiss.com [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA 94588 (United States); Havrilla, George J. [Chemical Diagnostics and Engineering, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Yuan, Xiaoli [Julius Kruttschnitt Mineral Research Centre, University of Queensland, Indooroopilly, Brisbane, QLD 4068 (Australia); Feser, Michael [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA 94588 (United States); Patterson, Brian M. [Polymers and Coatings Group, Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-01-01

    Current non-destructive elemental characterization methods, such as scanning electron microscopy-based energy dispersive spectroscopy (SEM–EDS) and micro-X-ray fluorescence spectroscopy (MXRF), are limited to either elemental identification at the surface (SEM–EDS) or suffer from an inability to discriminate between surface or depth information (MXRF). Thus, a non-destructive elemental characterization of individual embedded particles beneath the surface is impossible with either of these techniques. This limitation can be overcome by using laboratory-based 3D confocal micro-X-ray fluorescence spectroscopy (confocal MXRF). This technique utilizes focusing optics on the X-ray source and detector which allows for spatial discrimination in all three dimensions. However, the voxel-by-voxel serial acquisition of a 3D elemental scan can be very time-intensive (~ 1 to 4 weeks) if it is necessary to locate individual embedded particles of interest. As an example, if each point takes a 5 s measurement time, a small volume of 50 × 50 × 50 pixels leads to an acquisition time of approximately 174 h, not including sample stage movement time. Initially screening the samples for particles of interest using micro-X-ray computed tomography (micro-CT) can significantly reduce the time required to spatially locate these particles. Once located, these individual particles can be elementally characterized with confocal MXRF. Herein, we report the elemental identification of high atomic number surface and subsurface particles embedded in a mineralogical matrix by coupling micro-CT and confocal MXRF. Synergistically, these two X-ray based techniques first rapidly locate and then elementally identify individual subsurface particles. - Highlights: • Coupling of confocal X-ray fluorescence spectroscopy and X-ray computed tomography • Qualitative elemental identification of surface and subsurface mineral particles • Non-destructive particle size measurements • Utilization of

  14. Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis.

    Science.gov (United States)

    Zhang, Yong-Zhong; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Chen, Da-Yuan; Sun, Qing-Yuan

    2008-03-01

    The behavior of mitochondria during early oogenesis remains largely unknown in zebrafish. We used three mitochondrial probes (Mito Tracker Red CMXRos, Mito Tracker Green FM, and JC-1) to stain early zebrafish oocyte mitochondria, and confocal microscopy to analyze mitochondrial aggregation and distribution. By using fluorescence recovery after photobleaching (FRAP), we traced mitochondrial movement. The microtubule assembly inhibitor nocodazole and microfilament inhibitor cytochalasin B (CB) were used to analyze the role of microtubules and microfilaments on mitochondrial movement. By using the dual emission probe, JC-1, and oxidative phosphorylation uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), we determined the distribution of active and inactive (low-active) mitochondria. Green/red fluorescence ratios of different sublocations in different oocyte groups stained by JC-1 were detected in merged (green and red) images. Our results showed that mitochondria exhibited a unique distribution pattern in early zebrafish oocytes. They tended to aggregate into large clusters in early stage I oocytes, but in a threadlike state in latter stage I oocytes. We detected a lower density mitochondrial area and a higher density mitochondrial area on opposite sides of the germinal vesicle. The green/red fluorescence ratios in different sublocations in normal oocytes were about 1:1. This implies that active mitochondria were distributed in all sublocations. FCCP treatment caused significant increases in the ratios. CB and nocodazole treatment caused an increase of the ratios in clusters and mitochondrial cloud, but not in dispersed areas. Mitochondria in different sublocations underwent fast dynamic movement. Inhibition or disruption of microtubules or microfilaments resulted in even faster mitochondrial free movement.

  15. Confocal laser scanning microscopy in study of bone calcification

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Tetsunari, E-mail: tetsu-n@cc.osaka-dent.ac.jp [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Kokubu, Mayu; Kato, Hirohito [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Imai, Koichi [Department of Biomaterials, Osaka Dental University, Osaka (Japan); Tanaka, Akio [Department of Oral Pathology, Osaka Dental University, Osaka (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer High-magnification images with depth selection, and thin sections were observed using CLSM. Black-Right-Pointing-Pointer The direction and velocity of calcification of the bone was observed by administration of 2 fluorescent dyes. Black-Right-Pointing-Pointer In dog femora grafted with coral blocks, newly-formed bone was observed in the coral block space with a rough surface. Black-Right-Pointing-Pointer Twelve weeks after dental implant was grafted in dog femora, the space between screws was filled with newly-formed bones. - Abstract: Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 {mu}m/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  16. Confocal laser scanning microscopy in study of bone calcification

    International Nuclear Information System (INIS)

    Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio

    2012-01-01

    Highlights: ► High-magnification images with depth selection, and thin sections were observed using CLSM. ► The direction and velocity of calcification of the bone was observed by administration of 2 fluorescent dyes. ► In dog femora grafted with coral blocks, newly-formed bone was observed in the coral block space with a rough surface. ► Twelve weeks after dental implant was grafted in dog femora, the space between screws was filled with newly-formed bones. - Abstract: Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  17. Aqueous Colloid + Polymer Depletion System for Confocal Microscopy and Rheology

    Science.gov (United States)

    Park, Nayoung; Umanzor, Esmeralda J.; Conrad, Jacinta C.

    2018-05-01

    We developed a model depletion system with colloidal particles that were refractive index- and density-matched to 80 (w/w)% glycerol in water, and characterized the effect of interparticle interactions on the structure and dynamics of non-equilibrium phases. 2,2,2-trifluoroethyl methacrylate-co-tert-butyl methacrylate copolymer particles were synthesized following Kodger et al. (Sci. Rep. 5, 14635 (2015)). Particles were dispersed in glycerol/water solutions to generate colloidal suspensions with good control over electrostatic interactions and a moderately high background viscosity of 55 mPa-s. To probe the effects of charge screening and depletion attractions on the suspension phase behavior, we added NaCl and polyacrylamide (M_w = 186 kDa) at various concentrations to particle suspensions formulated at volume fractions of phi = 0.05 and 0.3 and imaged the suspensions using confocal microscopy. The particles were nearly hard spheres at a NaCl concentration of 20 mM, but aggregated when the concentration of NaCl was further increased. Changes in the particle structure and dynamics with increasing concentration of the depletant polyacrylamide followed the trends expected from earlier experiments on depletion-driven gelation. Additionally, we measured the viscosity and corrected first normal stress difference of suspensions formulated at phi = 0.4 with and without added polymer. The solvent viscosity was suitable for rheology measurements without the onset of instabilities such as secondary flows or edge fracture. These results validate this system as an alternative to one common model system, suspensions of poly(methyl methacrylate) particles and polystyrene depletants in organic solvents, for investigating phase behavior and flow properties in attractive colloidal suspensions.

  18. Confocal examination of subsurface cracking in ceramic materials.

    Science.gov (United States)

    Etman, Maged K

    2009-10-01

    The original ceramic surface finish and its microstructure may have an effect on crack propagation. The purpose of this study was to investigate the relation between crack propagation and ceramic microstructure following cyclic fatigue loading, and to qualitatively evaluate and quantitatively measure the surface and subsurface crack depths of three types of ceramic restorations with different microstructures using a Confocal Laser Scanning Microscope (CLSM) and Scanning Electron Microscope (SEM). Twenty (8 x 4 x 2 mm(3)) blocks of AllCeram (AC), experimental ceramic (EC, IPS e.max Press), and Sensation SL (SSL) were prepared, ten glazed and ten polished of each material. Sixty antagonist enamel specimens were made from the labial surfaces of permanent incisors. The ceramic abraders were attached to a wear machine, so that each enamel specimen presented at 45 degrees to the vertical movement of the abraders, and immersed in artificial saliva. Wear was induced for 80K cycles at 60 cycles/min with a load of 40 N and 2-mm horizontal deflection. The specimens were examined for cracks at baseline, 5K, 10K, 20K, 40K, and 80K cycles. Twenty- to 30-microm deep subsurface cracking appeared in SSL, with 8 to 10 microm in AC, and 7 microm close to the margin of the wear facets in glazed EC after 5K cycles. The EC showed no cracks with increasing wear cycles. Seventy-microm deep subsurface cracks were detected in SSL and 45 microm in AC after 80K cycles. Statistically, there was significant difference among the three materials (p 0.05) in crack depth within the same ceramic material with different surface finishes. The ceramic materials with different microstructures showed different patterns of subsurface cracking.

  19. Transparent Guideline Methodology Needed

    DEFF Research Database (Denmark)

    Lidal, Ingeborg; Norén, Camilla; Mäkelä, Marjukka

    2013-01-01

    As part of learning at the Nordic Workshop of Evidence-based Medicine, we have read with interest the practice guidelines for central venous access, published in your Journal in 2012.1 We appraised the quality of this guideline using the checklist developed by The Evidence-Based Medicine Working ...... are based on best currently available evidence. Our concerns are in two main categories: the rigor of development, including methodology of searching, evaluating, and combining the evidence; and editorial independence, including funding and possible conflicts of interest....... Group.2 Similar criteria for guideline quality have been suggested elsewhere.3 Our conclusion was that this much needed guideline is currently unclear about several aspects of the methodology used in developing the recommendations. This means potential users cannot be certain that the recommendations...

  20. RELIABILITY OF CONFOCAL MICROSCOPY SPECTRAL IMAGING SYSTEMS: USE OF MULTISPECTRAL BEADS

    Science.gov (United States)

    Background: There is a need for a standardized, impartial calibration, and validation protocol on confocal spectral imaging (CSI) microscope systems. To achieve this goal, it is necessary to have testing tools to provide a reproducible way to evaluate instrument performance. ...

  1. A four-phase strategy for the implementation of reflectance confocal microscopy in dermatology

    NARCIS (Netherlands)

    Hoogedoorn, L.; Gerritsen, M.J.P.; Wolberink, E.A.W.; Peppelman, M.; Kerkhof, P.C.M. van de; Erp, P.E.J. van

    2016-01-01

    BACKGROUND: Reflectance confocal microscopy (RCM) is gradually implemented in dermatology. Strategies for further implementation and practical 'hands on' guidelines are lacking. OBJECTIVE: The primary outcome was to conduct a general strategy for further implementation of RCM. The secondary outcome

  2. Visualization of carbon nanotubes dispersion in composite by using confocal laser scanning microscopy

    Czech Academy of Sciences Publication Activity Database

    Ilčíková, M.; Danko, M.; Doroshenko, M.; Best, A.; Mrlík, M.; Csomorová, K.; Šlouf, Miroslav; Chorvát Jr., D.; Koynov, K.; Mosnáček, J.

    2016-01-01

    Roč. 79, June (2016), s. 187-197 ISSN 0014-3057 Institutional support: RVO:61389013 Keywords : confocal laser scanning microscopy * composites * carbon nanotubes dispersion Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.531, year: 2016

  3. Ex Vivo (Fluorescence) Confocal Microscopy in Surgical Pathology: State of the Art.

    Science.gov (United States)

    Ragazzi, Moira; Longo, Caterina; Piana, Simonetta

    2016-05-01

    First developed in 1957, confocal microscopy is a powerful imaging tool that can be used to obtain near real-time reflected light images of untreated human tissue with nearly histologic resolution. Besides its research applications, in the last decades, confocal microscopy technology has been proposed as a useful device to improve clinical diagnosis, especially in ophthalmology, dermatology, and endomicroscopy settings, thanks to advances in instrument development. Compared with the wider use of the in vivo tissue assessment, ex vivo applications of confocal microscopy are not fully explored. A comprehensive review of the current literature was performed here, focusing on the reliable applications of ex vivo confocal microscopy in surgical pathology and on some potential evolutions of this new technique from pathologists' viewpoint.

  4. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    Science.gov (United States)

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  5. Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis.

    Science.gov (United States)

    Wang, Junping; Xie, Xinfang; Feng, Jinsong; Chen, Jessica C; Du, Xin-jun; Luo, Jiangzhao; Lu, Xiaonan; Wang, Shuo

    2015-07-02

    Listeria monocytogenes is a facultatively anaerobic, Gram-positive, rod-shape foodborne bacterium causing invasive infection, listeriosis, in susceptible populations. Rapid and high-throughput detection of this pathogen in dairy products is critical as milk and other dairy products have been implicated as food vehicles in several outbreaks. Here we evaluated confocal micro-Raman spectroscopy (785 nm laser) coupled with chemometric analysis to distinguish six closely related Listeria species, including L. monocytogenes, in both liquid media and milk. Raman spectra of different Listeria species and other bacteria (i.e., Staphylococcus aureus, Salmonella enterica and Escherichia coli) were collected to create two independent databases for detection in media and milk, respectively. Unsupervised chemometric models including principal component analysis and hierarchical cluster analysis were applied to differentiate L. monocytogenes from Listeria and other bacteria. To further evaluate the performance and reliability of unsupervised chemometric analyses, supervised chemometrics were performed, including two discriminant analyses (DA) and soft independent modeling of class analogies (SIMCA). By analyzing Raman spectra via two DA-based chemometric models, average identification accuracies of 97.78% and 98.33% for L. monocytogenes in media, and 95.28% and 96.11% in milk were obtained, respectively. SIMCA analysis also resulted in satisfied average classification accuracies (over 93% in both media and milk). This Raman spectroscopic-based detection of L. monocytogenes in media and milk can be finished within a few hours and requires no extensive sample preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Confocal fluorometer for diffusion tracking in 3D engineered tissue constructs

    Science.gov (United States)

    Daly, D.; Zilioli, A.; Tan, N.; Buttenschoen, K.; Chikkanna, B.; Reynolds, J.; Marsden, B.; Hughes, C.

    2016-03-01

    We present results of the development of a non-contacting instrument, called fScan, based on scanning confocal fluorometry for assessing the diffusion of materials through a tissue matrix. There are many areas in healthcare diagnostics and screening where it is now widely accepted that the need for new quantitative monitoring technologies is a major pinch point in patient diagnostics and in vitro testing. With the increasing need to interpret 3D responses this commonly involves the need to track the diffusion of compounds, pharma-active species and cells through a 3D matrix of tissue. Methods are available but to support the advances that are currently only promised, this monitoring needs to be real-time, non-invasive, and economical. At the moment commercial meters tend to be invasive and usually require a sample of the medium to be removed and processed prior to testing. This methodology clearly has a number of significant disadvantages. fScan combines a fiber based optical arrangement with a compact, free space optical front end that has been integrated so that the sample's diffusion can be measured without interference. This architecture is particularly important due to the "wet" nature of the samples. fScan is designed to measure constructs located within standard well plates and a 2-D motion stage locates the required sample with respect to the measurement system. Results are presented that show how the meter has been used to evaluate movements of samples through collagen constructs in situ without disturbing their kinetic characteristics. These kinetics were little understood prior to these measurements.

  7. Imaging Amyloid Tissues Stained with Luminescent Conjugated Oligothiophenes by Hyperspectral Confocal Microscopy and Fluorescence Lifetime Imaging.

    Science.gov (United States)

    Nyström, Sofie; Bäck, Marcus; Nilsson, K Peter R; Hammarström, Per

    2017-10-20

    Proteins that deposit as amyloid in tissues throughout the body can be the cause or consequence of a large number of diseases. Among these we find neurodegenerative diseases such as Alzheimer's and Parkinson's disease afflicting primarily the central nervous system, and systemic amyloidosis where serum amyloid A, transthyretin and IgG light chains deposit as amyloid in liver, carpal tunnel, spleen, kidney, heart, and other peripheral tissues. Amyloid has been known and studied for more than a century, often using amyloid specific dyes such as Congo red and Thioflavin T (ThT) or Thioflavin (ThS). In this paper, we present heptamer-formyl thiophene acetic acid (hFTAA) as an example of recently developed complements to these dyes called luminescent conjugated oligothiophenes (LCOs). hFTAA is easy to use and is compatible with co-staining in immunofluorescence or with other cellular markers. Extensive research has proven that hFTAA detects a wider range of disease associated protein aggregates than conventional amyloid dyes. In addition, hFTAA can also be applied for optical assignment of distinct aggregated morphotypes to allow studies of amyloid fibril polymorphism. While the imaging methodology applied is optional, we here demonstrate hyperspectral imaging (HIS), laser scanning confocal microscopy and fluorescence lifetime imaging (FLIM). These examples show some of the imaging techniques where LCOs can be used as tools to gain more detailed knowledge of the formation and structural properties of amyloids. An important limitation to the technique is, as for all conventional optical microscopy techniques, the requirement for microscopic size of aggregates to allow detection. Furthermore, the aggregate should comprise a repetitive β-sheet structure to allow for hFTAA binding. Excessive fixation and/or epitope exposure that modify the aggregate structure or conformation can render poor hFTAA binding and hence pose limitations to accurate imaging.

  8. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas.

    Science.gov (United States)

    Sanai, Nader; Snyder, Laura A; Honea, Norissa J; Coons, Stephen W; Eschbacher, Jennifer M; Smith, Kris A; Spetzler, Robert F

    2011-10-01

    Greater extent of resection (EOR) for patients with low-grade glioma (LGG) corresponds with improved clinical outcome, yet remains a central challenge to the neurosurgical oncologist. Although 5-aminolevulinic acid (5-ALA)-induced tumor fluorescence is a strategy that can improve EOR in gliomas, only glioblastomas routinely fluoresce following 5-ALA administration. Intraoperative confocal microscopy adapts conventional confocal technology to a handheld probe that provides real-time fluorescent imaging at up to 1000× magnification. The authors report a combined approach in which intraoperative confocal microscopy is used to visualize 5-ALA tumor fluorescence in LGGs during the course of microsurgical resection. Following 5-ALA administration, patients with newly diagnosed LGG underwent microsurgical resection. Intraoperative confocal microscopy was conducted at the following points: 1) initial encounter with the tumor; 2) the midpoint of tumor resection; and 3) the presumed brain-tumor interface. Histopathological analysis of these sites correlated tumor infiltration with intraoperative cellular tumor fluorescence. Ten consecutive patients with WHO Grades I and II gliomas underwent microsurgical resection with 5-ALA and intraoperative confocal microscopy. Macroscopic tumor fluorescence was not evident in any patient. However, in each case, intraoperative confocal microscopy identified tumor fluorescence at a cellular level, a finding that corresponded to tumor infiltration on matched histological analyses. Intraoperative confocal microscopy can visualize cellular 5-ALA-induced tumor fluorescence within LGGs and at the brain-tumor interface. To assess the clinical value of 5-ALA for high-grade gliomas in conjunction with neuronavigation, and for LGGs in combination with intraoperative confocal microscopy and neuronavigation, a Phase IIIa randomized placebo-controlled trial (BALANCE) is underway at the authors' institution.

  9. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  10. Development of an add-on kit for scanning confocal microscopy (Conference Presentation)

    Science.gov (United States)

    Guo, Kaikai; Zheng, Guoan

    2017-03-01

    Scanning confocal microscopy is a standard choice for many fluorescence imaging applications in basic biomedical research. It is able to produce optically sectioned images and provide acquisition versatility to address many samples and application demands. However, scanning a focused point across the specimen limits the speed of image acquisition. As a result, scanning confocal microscope only works well with stationary samples. Researchers have performed parallel confocal scanning using digital-micromirror-device (DMD), which was used to project a scanning multi-point pattern across the sample. The DMD based parallel confocal systems increase the imaging speed while maintaining the optical sectioning ability. In this paper, we report the development of an add-on kit for high-speed and low-cost confocal microscopy. By adapting this add-on kit to an existing regular microscope, one can convert it into a confocal microscope without significant hardware modifications. Compared with current DMD-based implementations, the reported approach is able to recover multiple layers along the z axis simultaneously. It may find applications in wafer inspection and 3D metrology of semiconductor circuit. The dissemination of the proposed add-on kit under $1000 budget could also lead to new types of experimental designs for biological research labs, e.g., cytology analysis in cell culture experiments, genetic studies on multicellular organisms, pharmaceutical drug profiling, RNA interference studies, investigation of microbial communities in environmental systems, and etc.

  11. Radiotracer methodology

    International Nuclear Information System (INIS)

    Eng, R.R.

    1988-01-01

    In 1923, George Hevesy demonstrated the distribution of radioactive lead in the horsebean plant. This early demonstration of the potential use of radiotracers in biology was reinforced when J.G. Hamilton and colleagues used iodine-131 for diagnostic purposes in patients. Then in 1950 Cassen et al. designed the first scintillation counter for measuring radioiodine in the body, using calcium tungstate crystals coupled to a photomultiplier tube. This was followed by the development of the Anger camera, which permitted visualization of radiotracer distribution in biological systems. From these significant early discoveries to the present, many advances have been made. They include the discovery and production of many useful radioisotopes; the formulation of these radioisotopes into useful radiotracers; the advent of first- , and second-, and third-generation instrumentation for monitoring in vitro and in vivo distributions of new radiotracers; and the application of this knowledge to allow us to better understand physiological processes and treat disease states. Radiotracer techniques are integral to numerous techniques described in this volume. Autoradiography, nuclear scintigraphy, positron emission tomography, and single-photon emission computed tomography (SPECT) are all dependent on an understanding of radiotracer techniques to properly utilize these probe devices

  12. Chapter three: methodology of exposure modeling

    CSIR Research Space (South Africa)

    Moschandreas, DJ

    2002-12-01

    Full Text Available methodologies and models are reviewed. Three exposure/measurement methodologies are assessed. Estimation methods focus on source evaluation and attribution, sources include those outdoors and indoors as well as in occupational and in-transit environments. Fate...

  13. Methodological Issues and Practices in Qualitative Research.

    Science.gov (United States)

    Bradley, Jana

    1993-01-01

    Discusses methodological issues concerning qualitative research and describes research practices that qualitative researchers use to address these methodological issues. Topics discussed include the researcher as interpreter, the emergent nature of qualitative research, understanding the experience of others, trustworthiness in qualitative…

  14. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis.

    Science.gov (United States)

    Skytte, Jacob L; Ghita, Ovidiu; Whelan, Paul F; Andersen, Ulf; Møller, Flemming; Dahl, Anders B; Larsen, Rasmus

    2015-06-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented dairy products. When studying such networks, hundreds of images can be obtained, and here image analysis methods are essential for using the images in statistical analysis. Previously, methods including gray level co-occurrence matrix analysis and fractal analysis have been used with success. However, a range of other image texture characterization methods exists. These methods describe an image by a frequency distribution of predefined image features (denoted textons). Our contribution is an investigation of the choice of image analysis methods by performing a comparative study of 7 major approaches to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis, and cluster analysis. Our investigation suggests that the texton-based descriptors provide a fuller description of the images compared to gray-level co-occurrence matrix descriptors and fractal analysis, while still being as applicable and in some cases as easy to tune. © 2015 Institute of Food Technologists®

  15. Clinical impact of confocal laser endomicroscopy in the management of gastrointestinal lesions with an uncertain diagnosis.

    Science.gov (United States)

    Robles-Medranda, Carlos; Vargas, Maria; Ospina, Jesenia; Puga-Tejada, Miguel; Valero, Manuel; Soria, Miguel; Bravo, Gladys; Robles-Jara, Carlos; Lukashok, Hannah Pitanga

    2017-08-16

    To evaluate the clinical impact of confocal laser endomicroscopy (CLE) in the diagnosis and management of patients with an uncertain diagnosis. A retrospective chart review was performed. Patients who underwent CLE between November 2013 and October 2015 and exhibited a poor correlation between endoscopic and histological findings were included. Baseline characteristics, indications, previous diagnostic studies, findings at the time of CLE, clinical management and histological results were analyzed. Interventions based on CLE findings were also analyzed. We compared the diagnostic accuracy of CLE and target biopsies of surgical specimens. A total of 144 patients were included. Of these, 51% (74/144) were female. The mean age was 51 years old. In all, 41/144 (28.4%) lesions were neoplastic (13 bile duct, 10 gastric, 8 esophageal, 6 colonic, 1 duodenal, 1 rectal, 1 ampulloma and 1 pancreatic). The sensitivity, specificity, positive predictive value, negative predictive value, and observed agreement when CLE was used to detect N-lesions were 85.37%, 87.38%, 72.92%, 93.75% and 86.81%, respectively. Cohen's Kappa was 69.20%, thus indicating good agreement. Changes in management were observed in 54% of the cases. CLE is a new diagnostic tool that has a significant clinical impact on the diagnosis and treatment of patients with uncertain diagnosis.

  16. Post-PRK corneal scatter measurements with a scanning confocal slit photon counter

    Science.gov (United States)

    Taboada, John; Gaines, David; Perez, Mary A.; Waller, Steve G.; Ivan, Douglas J.; Baldwin, J. Bruce; LoRusso, Frank; Tutt, Ronald C.; Perez, Jose; Tredici, Thomas; Johnson, Dan A.

    2000-06-01

    Increased corneal light scatter or 'haze' has been associated with excimer laser photorefractive surgery of the cornea. The increased scatter can affect visual performance; however, topical steroid treatment post surgery substantially reduces the post PRK scatter. For the treatment and monitoring of the scattering characteristics of the cornea, various methods have been developed to objectively measure the magnitude of the scatter. These methods generally can measure scatter associated with clinically observable levels of haze. For patients with moderate to low PRK corrections receiving steroid treatment, measurement becomes fairly difficult as the haze clinical rating is non observable. The goal of this development was to realize an objective, non-invasive physical measurement that could produce a significant reading for any level including the background present in a normal cornea. As back-scatter is the only readily accessible observable, the instrument is based on this measurement. To achieve this end required the use of a confocal method to bias out the background light that would normally confound conventional methods. A number of subjects with nominal refractive errors in an Air Force study have undergone PRK surgery. A measurable increase in corneal scatter has been observed in these subjects whereas clinical ratings of the haze were noted as level zero. Other favorable aspects of this back-scatter based instrument include an optical capability to perform what is equivalent to an optical A-scan of the anterior chamber. Lens scatter can also be measured.

  17. Statistical strategies to reveal potential vibrational markers for in vivo analysis by confocal Raman spectroscopy

    Science.gov (United States)

    Oliveira Mendes, Thiago de; Pinto, Liliane Pereira; Santos, Laurita dos; Tippavajhala, Vamshi Krishna; Téllez Soto, Claudio Alberto; Martin, Airton Abrahão

    2016-07-01

    The analysis of biological systems by spectroscopic techniques involves the evaluation of hundreds to thousands of variables. Hence, different statistical approaches are used to elucidate regions that discriminate classes of samples and to propose new vibrational markers for explaining various phenomena like disease monitoring, mechanisms of action of drugs, food, and so on. However, the technical statistics are not always widely discussed in applied sciences. In this context, this work presents a detailed discussion including the various steps necessary for proper statistical analysis. It includes univariate parametric and nonparametric tests, as well as multivariate unsupervised and supervised approaches. The main objective of this study is to promote proper understanding of the application of various statistical tools in these spectroscopic methods used for the analysis of biological samples. The discussion of these methods is performed on a set of in vivo confocal Raman spectra of human skin analysis that aims to identify skin aging markers. In the Appendix, a complete routine of data analysis is executed in a free software that can be used by the scientific community involved in these studies.

  18. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    Science.gov (United States)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In

  19. Confocal Microscopy of Jammed Matter: From Elasticity to Granular Thermodynamics

    Science.gov (United States)

    Jorjadze, Ivane

    Packings of particles are ubiquitous in nature and are of interest not only to the scientific community but also to the food, pharmaceutical, and oil industries. In this thesis we use confocal microscopy to investigate packing geometry and stress transmission in 3D jammed particulate systems. By introducing weak depletion attraction we probe the accessible phase-space and demonstrate that a microscopic approach to jammed matter gives validity to statistical mechanics framework, which is intriguing because our particles are not thermally activated. We show that the fluctuations of the local packing parameters can be successfully captured by the recently proposed 'granocentric' model, which generates packing statistics according to simple stochastic processes. This model enables us to calculate packing entropy and granular temperature, the so-called 'compactivity', therefore, providing a basis for a statistical mechanics of granular matter. At a jamming transition point at which there are formed just enough number of contacts to guarantee the mechanical stability, theoretical arguments suggest a singularity which gives rise to the surprising scaling behavior of the elastic moduli and the microstructure, as observed in numerical simulations. Since the contact network in 3D is typically hidden from view, experimental test of the scaling law between the coordination number and the applied pressure is lacking in the literature. Our data show corrections to the linear scaling of the pressure with density which takes into account the creation of contacts. Numerical studies of vibrational spectra, in turn, reveal sudden features such as excess of low frequency modes, dependence of mode localization and structure on the pressure. Chapter four describes the first calculation of vibrational density of states from the experimental 3D data and is in qualitative agreement with the analogous computer simulations. We study the configurational role of the pressure and demonstrate

  20. Case Study Research Methodology

    Directory of Open Access Journals (Sweden)

    Mark Widdowson

    2011-01-01

    Full Text Available Commenting on the lack of case studies published in modern psychotherapy publications, the author reviews the strengths of case study methodology and responds to common criticisms, before providing a summary of types of case studies including clinical, experimental and naturalistic. Suggestions are included for developing systematic case studies and brief descriptions are given of a range of research resources relating to outcome and process measures. Examples of a pragmatic case study design and a hermeneutic single-case efficacy design are given and the paper concludes with some ethical considerations and an exhortation to the TA community to engage more widely in case study research.

  1. Soft Systems Methodology

    Science.gov (United States)

    Checkland, Peter; Poulter, John

    Soft systems methodology (SSM) is an approach for tackling problematical, messy situations of all kinds. It is an action-oriented process of inquiry into problematic situations in which users learn their way from finding out about the situation, to taking action to improve it. The learning emerges via an organised process in which the situation is explored using a set of models of purposeful action (each built to encapsulate a single worldview) as intellectual devices, or tools, to inform and structure discussion about a situation and how it might be improved. This paper, written by the original developer Peter Checkland and practitioner John Poulter, gives a clear and concise account of the approach that covers SSM's specific techniques, the learning cycle process of the methodology and the craft skills which practitioners develop. This concise but theoretically robust account nevertheless includes the fundamental concepts, techniques, core tenets described through a wide range of settings.

  2. Clinical trial methodology

    National Research Council Canada - National Science Library

    Peace, Karl E; Chen, Ding-Geng

    2011-01-01

    ... in the pharmaceutical industry, Clinical trial methodology emphasizes the importance of statistical thinking in clinical research and presents the methodology as a key component of clinical research...

  3. Efficiency of the confocal method of laser endomicroscopy in complex diagnoses of diseases of common bile duct

    International Nuclear Information System (INIS)

    Anaskin, S G; Korniletsky, I D; Panchenkov, D N; Chertyuk, V B; Sazonov, D V; Zabozlayev, F G; Danilevskaya, O V; Mokshina, N V

    2017-01-01

    One of the more frequent manifestations of diseases of the bile ducts are its’ strictures or stenoses that could be of either malignant or benign nature. Current methods of diagnosing this pathology include computer tomography (CT) scan, magnetic resonance cholangiopancreatography (MRCP), endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP). However, these methods are not always informative, which makes this a current and topical problem. A fundamentally new method that broadens the capabilities of ERCP when diagnosing diseases of the bile duct accompanied by the development of strictures or stenoses is probe-based confocal laser endomicroscopy (pCLE). The method is based on the principle of confocal fluorescence microscopy. The most elaborate complications arise with the presence of the pre-existing pancreatobiliary pathology: pseudotumoral chronic pancreatitis, acute cholangitis, etc. Early stage cholangiocarcinoma diagnosis can be difficult (and not always possible) even with the help of modern research methods. For the timely diagnostic it is advantageous to conduct pCLE and targeted biopsy of the zone with most manifested changes. In all instances, the first use of the pCLE method for diagnostic purposes allowed us to clarify and correctly verify the diagnosis. When concerning the diseases of the bile duct, the modern stage of pCLE development can be of critical importance when other methods are not effective. (paper)

  4. Confocal Analysis of Nuclear Lamina Behavior during Male Meiosis and Spermatogenesis in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Fabiana Fabbretti

    Full Text Available Lamin family proteins are structural components of a filamentous framework, the nuclear lamina (NL, underlying the inner membrane of nuclear envelope. The NL not only plays a role in nucleus mechanical support and nuclear shaping, but is also involved in many cellular processes including DNA replication, gene expression and chromatin positioning. Spermatogenesis is a very complex differentiation process in which each stage is characterized by nuclear architecture dramatic changes, from the early mitotic stage to the sperm differentiation final stage. Nevertheless, very few data are present in the literature on the NL behavior during this process. Here we show the first and complete description of NL behavior during meiosis and spermatogenesis in Drosophila melanogaster. By confocal imaging, we characterized the NL modifications from mitotic stages, through meiotic divisions to sperm differentiation with an anti-laminDm0 antibody against the major component of the Drosophila NL. We observed that continuous changes in the NL structure occurred in parallel with chromatin reorganization throughout the whole process and that meiotic divisions occurred in a closed context. Finally, we analyzed NL in solofuso meiotic mutant, where chromatin segregation is severely affected, and found the strict correlation between the presence of chromatin and that of NL.

  5. Demons registration for in vivo and deformable laser scanning confocal endomicroscopy

    Science.gov (United States)

    Chiew, Wei Ming; Lin, Feng; Seah, Hock Soon

    2017-09-01

    A critical effect found in noninvasive in vivo endomicroscopic imaging modalities is image distortions due to sporadic movement exhibited by living organisms. In three-dimensional confocal imaging, this effect results in a dataset that is tilted across deeper slices. Apart from that, the sequential flow of the imaging-processing pipeline restricts real-time adjustments due to the unavailability of information obtainable only from subsequent stages. To solve these problems, we propose an approach to render Demons-registered datasets as they are being captured, focusing on the coupling between registration and visualization. To improve the acquisition process, we also propose a real-time visual analytics tool, which complements the imaging pipeline and the Demons registration pipeline with useful visual indicators to provide real-time feedback for immediate adjustments. We highlight the problem of deformation within the visualization pipeline for object-ordered and image-ordered rendering. Visualizations of critical information including registration forces and partial renderings of the captured data are also presented in the analytics system. We demonstrate the advantages of the algorithmic design through experimental results with both synthetically deformed datasets and actual in vivo, time-lapse tissue datasets expressing natural deformations. Remarkably, this algorithm design is for embedded implementation in intelligent biomedical imaging instrumentation with customizable circuitry.

  6. The Effect of Autologous Platelet Lysate Eye Drops: An In Vivo Confocal Microscopy Study

    Directory of Open Access Journals (Sweden)

    Antonio M. Fea

    2016-01-01

    Full Text Available Purpose. To determine the effectiveness of autologous platelet lysate (APL eye drops in patients with primary Sjögren syndrome (SS dry eye, refractory to standard therapy, in comparison with patients treated with artificial tears. We focused on the effect of APL on cornea morphology with the in vivo confocal microscopy (IVCM. Methods. Patients were assigned to two groups: group A used autologous platelet lysate QID, and group B used preservative-free artificial tears QID, for 90 days. Ophthalmological assessments included ocular surface disease index (OSDI, best corrected visual acuity (BCVA, Schirmer test, fluorescein score, and breakup time (BUT. A subgroup of patients in group A underwent IVCM: corneal basal epithelium, subbasal nerves, Langerhans cells, anterior stroma activated keratocytes, and reflectivity were evaluated. Results. 60 eyes of 30 patients were enrolled; in group A (n=20 patients mean OSDI, fluorescein score, and BUT showed significant improvement compared with group B (n=10 patients. The IVCM showed a significant increase in basal epithelium cells density and subbasal nerve plexus density and number and a decrease in Langerhans cells density (p<0.05. Conclusion. APL was found effective in the treatment of SS dry eye. IVCM seems to be a useful tool to visualize cornea morphologic modifications.

  7. Mechanisms of biliary stent clogging: confocal laser scanning and scanning electron microscopy.

    Science.gov (United States)

    van Berkel, A M; van Marle, J; Groen, A K; Bruno, M J

    2005-08-01

    Endoscopic insertion of plastic biliary endoprostheses is a well-established treatment for obstructive jaundice. The major limitation of this technique is late stent occlusion. In order to compare events involved in biliary stent clogging and identify the distribution of bacteria in unblocked stents, confocal laser scanning (CLS) and scanning electron microscopy (SEM) were carried out on two different stent materials - polyethylene (PE) and hydrophilic polymer-coated polyurethane (HCPC). Ten consecutive patients with postoperative benign biliary strictures were included in the study. Two 10-Fr stents 9 cm in length, one made of PE and the other of HCPC, were inserted. The stents were electively exchanged after 3 months and examined using CLS and SEM. No differences were seen between the two types of stent. The inner stent surface was covered with a uniform amorphous layer. On top of this layer, a biofilm of living and dead bacteria was found, which in most cases was unstructured. The lumen was filled with free-floating colonies of bacteria and crystals, surrounded by mobile laminar structures of mucus. An open network of large dietary fibers was seen in all of the stents. The same clogging events occurred in both PE and HCPC stents. The most remarkable observation was the identification of networks of large dietary fibers, resulting from duodenal reflux, acting as a filter. The build-up of this intraluminal framework of dietary fibers appears to be a major factor contributing to the multifactorial process of stent clogging.

  8. Ex Vivo Confocal Spectroscopy of Autofluorescence in Age-Related Macular Degeneration.

    Directory of Open Access Journals (Sweden)

    Joel Kaluzny

    Full Text Available We investigated the autofluorescence (AF signature of the microscopic features of retina with age-related macular degeneration (AMD using 488 nm excitation.The globes of four donors with AMD and four age-matched controls were embedded in paraffin and sectioned through the macula. Sections were excited using a 488 nm argon laser, and the AF emission was captured using a laser scanning confocal microscope (496-610 nm, 6 nm resolution. The data cubes were then analyzed to compare peak emission spectra between the AMD and the controls. Microscopic features, including individual lipofuscin and melanolipofuscin granules, Bruch's Membrane, as well macroscopic features, were considered.Overall, the AMD eyes showed a trend of blue-shifted emission peaks compared with the controls. These differences were statistically significant when considering the emission of the combined RPE/Bruch's Membrane across all the tissue cross-sections (p = 0.02.The AF signatures of ex vivo AMD RPE/BrM show blue-shifted emission spectra (488 nm excitation compared with the control tissue. The magnitude of these differences is small (~4 nm and highlights the potential challenges of detecting these subtle spectral differences in vivo.

  9. Efficacy of photodynamic therapy against larvae of Aedes aegypti: confocal microscopy and fluorescence-lifetime imaging

    Science.gov (United States)

    de Souza, L. M.; Pratavieira, S.; Inada, N. M.; Kurachi, C.; Corbi, J.; Guimarães, F. E. G.; Bagnato, V. S.

    2014-03-01

    Recently a few demonstration on the use of Photodynamic Reaction as possibility to eliminate larvae that transmit diseases for men has been successfully demonstrated. This promising tool cannot be vastly used due to many problems, including the lake of investigation concerning the mechanisms of larvae killing as well as security concerning the use of photosensitizers in open environment. In this study, we investigate some of the mechanisms in which porphyrin (Photogem) is incorporated on the Aedes aegypti larvae previously to illumination and killing. Larvae at second instar were exposed to the photosensitizer and after 30 minutes imaged by a confocal fluorescence microscope. It was observed the presence of photosensitizer in the gut and at the digestive tract of the larva. Fluorescence-Lifetime Imaging showed greater photosensitizer concentration in the intestinal wall of the samples, which produces a strong decrease of the Photogem fluorescence lifetime. For Photodynamic Therapy exposition to different light doses and concentrations of porphyrin were employed. Three different light sources (LED, Fluorescent lamp, Sun light) also were tested. Sun light and fluorescent lamp shows close to 100% of mortality after 24 hrs. of illumination. These results indicate the potential use of photodynamic effect against the LARVAE of Aedes aegypti.

  10. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Science.gov (United States)

    Martisek, Dalibor; Prochazkova, Jana

    2017-12-01

    The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  11. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Directory of Open Access Journals (Sweden)

    Martisek Dalibor

    2017-12-01

    Full Text Available The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  12. The Effect of Autologous Platelet Lysate Eye Drops: An In Vivo Confocal Microscopy Study.

    Science.gov (United States)

    Fea, Antonio M; Aragno, Vittoria; Testa, Valeria; Machetta, Federica; Parisi, Simone; D'Antico, Sergio; Spinetta, Roberta; Fusaro, Enrico; Grignolo, Federico M

    2016-01-01

    Purpose. To determine the effectiveness of autologous platelet lysate (APL) eye drops in patients with primary Sjögren syndrome (SS) dry eye, refractory to standard therapy, in comparison with patients treated with artificial tears. We focused on the effect of APL on cornea morphology with the in vivo confocal microscopy (IVCM). Methods. Patients were assigned to two groups: group A used autologous platelet lysate QID, and group B used preservative-free artificial tears QID, for 90 days. Ophthalmological assessments included ocular surface disease index (OSDI), best corrected visual acuity (BCVA), Schirmer test, fluorescein score, and breakup time (BUT). A subgroup of patients in group A underwent IVCM: corneal basal epithelium, subbasal nerves, Langerhans cells, anterior stroma activated keratocytes, and reflectivity were evaluated. Results. 60 eyes of 30 patients were enrolled; in group A (n = 20 patients) mean OSDI, fluorescein score, and BUT showed significant improvement compared with group B (n = 10 patients). The IVCM showed a significant increase in basal epithelium cells density and subbasal nerve plexus density and number and a decrease in Langerhans cells density (p < 0.05). Conclusion. APL was found effective in the treatment of SS dry eye. IVCM seems to be a useful tool to visualize cornea morphologic modifications.

  13. Fluorescence and confocal imaging of mammalian cells using conjugated oligoelectrolytes with phenylenevinylene core

    Energy Technology Data Exchange (ETDEWEB)

    Milczarek, Justyna; Pawlowska, Roza; Zurawinski, Remigiusz; Lukasik, Beata; Garner, Logan E.; Chworos, Arkadiusz

    2017-05-01

    Over the last few years, considerable efforts are taken, in order to find a molecular fluorescent probe fulfilling their applicability requirements. Due to a good optical properties and affinity to biological structures conjugated oligoelectrolytes (COEs) can be considered as a promising dyes for application in fluorescence-based bioimaging. In this work, we synthetized COEs with phenylenevinylene core (PV-COEs) and applied as fluorescent membranous-specific probes. Cytotoxicity effects of each COE were probed on cancerous and non-cancerous cell types and little to no toxicity effects were observed at the high range of concentrations. The intensity of cell fluorescence following the COE staining was determined by the photoluminescence analysis and fluorescence activated cell sorting method (FACS). Intercalation of tested COEs into mammalian cell membranes was revealed by fluorescent and confocal microscopy colocalization with commercial dyes specific for cellular structures including mitochondria, Golgi apparatus and endoplasmic reticulum. The phenylenevinylene conjugated oligoelectrolytes have been found to be suitable for fluorescent bioimaging of mammalian cells and membrane-rich organelles. Due to their water solubility coupled with spontaneous intercalation into cells, favorable photophysical features, ease of cell staining, low cytotoxicity and selectivity for membranous structures, PV-COEs can be applied as markers for fluorescence imaging of a variety of cell types.

  14. Progress in reflectance confocal microscopy for imaging oral tissues in vivo

    Science.gov (United States)

    Peterson, Gary; Zanoni, Daniella K.; Migliacci, Jocelyn; Cordova, Miguel; Rajadhyaksha, Milind; Patel, Snehal

    2016-02-01

    We report progress in development and feasibility testing of reflectance confocal microscopy (RCM) for imaging in the oral cavity of humans. We adapted a small rigid relay telescope (120mm long x 14mm diameter) and a small water immersion objective lens (12mm diameter, NA 0.7) to a commercial handheld RCM scanner (Vivascope 3000, Caliber ID, Rochester NY). This scanner is designed for imaging skin but we adapted the front end (the objective lens and the stepper motor that axially translates) for intra-oral use. This adaption required a new approach to address the loss of the automated stepper motor for acquisition of images in depth. A helical spring-like cap (with a coverslip to contact tissue) was designed for approximately 150 um of travel. Additionally other methods for focusing optics were designed and evaluated. The relay telescope optics is being tested in a clinical setting. With the capture of video and "video-mosaicing", extended areas can be imaged. The feasibility of imaging oral tissues was initially investigated in volunteers. RCM imaging in buccal mucosa in vivo shows nuclear and cellular detail in the epithelium and epithelial junction, and connective tissue and blood flow in the underlying lamina propria. Similar detail, including filiform and fungiform papillae, can be seen on the tongue in vivo. Clinical testing during head and neck surgery is now in progress and patients are being imaged for both normal tissue and cancerous margins in lip and tongue mucosa.

  15. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    Science.gov (United States)

    Wirth, Dennis; Smith, Thomas W.; Moser, Richard; Yaroslavsky, Anna N.

    2015-04-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml-1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors.

  16. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    International Nuclear Information System (INIS)

    Wirth, Dennis; Yaroslavsky, Anna N; Smith, Thomas W; Moser, Richard

    2015-01-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml −1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors. (paper)

  17. Effective scheme of photolysis of GFP in live cell as revealed with confocal fluorescence microscopy

    Science.gov (United States)

    Glazachev, Yu I.; Orlova, D. Y.; Řezníčková, P.; Bártová, E.

    2018-05-01

    We proposed an effective kinetics scheme of photolysis of green fluorescent protein (GFP) observed in live cells with a commercial confocal fluorescence microscope. We investigated the photolysis of GFP-tagged heterochromatin protein, HP1β-GFP, in live nucleus with the pulse position modulation approach, which has several advantages over the classical pump-and-probe method. At the basis of the proposed scheme lies a process of photoswitching from the native fluorescence state to the intermediate fluorescence state, which has a lower fluorescence yield and recovers back to native state in the dark. This kinetics scheme includes four effective parameters (photoswitching, reverse switching, photodegradation rate constants, and relative brightness of the intermediate state) and covers the time scale from dozens of milliseconds to minutes of the experimental fluorescence kinetics. Additionally, the applicability of the scheme was demonstrated in the cases of continuous irradiation and the classical pump-and-probe approach using numerical calculations and analytical solutions. An interesting finding of experimental data analysis was that the overall photodegradation of GFP proceeds dominantly from the intermediate state, and demonstrated approximately the second-order reaction versus irradiation power. As a practical example, the proposed scheme elucidates the artifacts of fluorescence recovery after the photobleaching method, and allows us to propose some suggestions on how to diminish them.

  18. Latest developments and opportunities for 3D analysis of biological samples by confocal μ-XRF

    International Nuclear Information System (INIS)

    Perez, Roberto D.; Sanchez, Hector J.; Perez, Carlos A.; Rubio, Marcelo

    2010-01-01

    X-ray fluorescence analysis performed with a primary radiation focused in the micrometer range is known as micro-X-ray fluorescence (μ-XRF). It is characterized by a penetration depth higher than other micro-analytical methods, reaching hundreds of micrometers in biological samples. This characteristic of the X-ray beam can be employed in 3D analysis. An innovative method to perform 3D analysis by μ-XRF is the so-called confocal setup. The confocal setup consists of X-ray lenses in the excitation as well as in the detection channel. In this configuration, a micro-volume defined by the overlap of the foci of both X-ray lenses is analyzed. Scanning this micro-volume through the sample can be used to perform a study in three dimensions. At present, X-ray lenses used in confocal μ-XRF experiments are mainly glass capillaries and polycapillaries. Glass capillaries are used in the excitation channel with sources of high photon flux like synchrotron radiation. Half polycapillaries or conical polycapillary concentrators are used almost exclusively in the detection channel. Spatial resolution of the confocal μ-XRF depends on the dimensions of the foci of both X-ray lenses. The overlap of these foci forms an ellipsoid which is the probing volume of the confocal setup. The axis length of the probing volume reported in confocal μ-XRF experiments are of order of few tens of micrometer. In our confocal setup, we used a commercial glass monocapillary in the excitation channel and a monolithic half polycapillary in the detection channel. The polycapillary was home-made by means of drawing of multibundles of glass capillaries in a heating furnace. The experiment was carried out at the beamline D09B-XRF of the Synchrotron Light National Laboratory (Laboratorio Nacional de Luz Sincrotron, LNLS) using white beam. A model for the theoretical description of X-ray fluorescence intensity registered by confocal μ-XRF was introduced by Malzer and Kanngieβer [2005. A model for the

  19. In situ protein expression in tumour spheres: development of an immunostaining protocol for confocal microscopy

    International Nuclear Information System (INIS)

    Weiswald, Louis-Bastien; Guinebretière, Jean-Marc; Richon, Sophie; Bellet, Dominique; Saubaméa, Bruno; Dangles-Marie, Virginie

    2010-01-01

    Multicellular tumour sphere models have been shown to closely mimic phenotype characteristics of in vivo solid tumours, or to allow in vitro propagation of cancer stem cells (CSCs). CSCs are usually characterized by the expression of specific membrane markers using flow cytometry (FC) after enzymatic dissociation. Consequently, the spatial location of positive cells within spheres is not documented. Confocal microscopy is the best technique for the imaging of thick biological specimens after multi-labelling but suffers from poor antibody penetration. Thus, we describe here a new protocol for in situ confocal imaging of protein expression in intact spheroids. Protein expression in whole spheroids (150 μm in diameter) from two human colon cancer cell lines, HT29 and CT320X6, has been investigated with confocal immunostaining, then compared with profiles obtained through paraffin immunohistochemistry (pIHC) and FC. Target antigens, relevant for colon cancer and with different expression patterns, have been studied. We first demonstrate that our procedure overcomes the well-known problem of antibody penetration in compact structures by performing immunostaining of EpCAM, a membrane protein expressed by all cells within our spheroids. EpCAM expression is detected in all cells, even the deepest ones. Likewise, antibody access is confirmed with CK20 and CD44 immunostaining. Confocal imaging shows that 100% of cells express β-catenin, mainly present in the plasma membrane with also cytoplasmic and nuclear staining, in agreement with FC and pIHC data. pIHC and confocal imaging show similar CA 19-9 cytoplasmic and membranar expression profile in a cell subpopulation. CA 19-9 + cell count confirms confocal imaging as a highly sensitive method (75%, 62% and 51%, for FC, confocal imaging and pIHC, respectively). Finally, confocal imaging reveals that the weak expression of CD133, a putative colon CSC marker, is restricted to the luminal cell surface of colorectal cancer acini

  20. Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium

    International Nuclear Information System (INIS)

    Saloma, Caesar; Palmes-Saloma, Cynthia; Kondoh, Hisato

    1998-01-01

    Normally transparent biological structures in a turbid medium are imaged using a laser confocal microscope and multiwavelength site-specific fluorescence labelling. The spatial filtering capability of the detector pinhole in the confocal microscope limits the number of scattered fluorescent photons that reach the photodetector. Simultaneous application of different fluorescent markers on the same sample site minimizes photobleaching by reducing the excitation time for each marker. A high-contrast grey-level image is also produced by summing confocal images of the same site taken at different fluorescence wavelengths. Monte Carlo simulations are performed to obtain the quantitative behaviour of confocal fluorescence imaging in turbid media. Confocal images of the following samples were also obtained: (i) 15 μm diameter fluorescent spheres placed 1.16 mm deep beneath an aqueous suspension of 0.0823 μm diameter polystyrene latex spheres, and (ii) hindbrain of a whole-mount mouse embryo (age 10 days) that was stained to fluoresce at 515 nm and 580 nm peak wavelengths. Expression of RNA transcripts of a gene within the embryo hindbrain was detected by a fluorescence-based whole-mount in situ hybridization procedure that we recently tested. (author)

  1. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    Science.gov (United States)

    Wang, Youmin; Raj, Milan; McGuff, H. Stan; Bhave, Gauri; Yang, Bin; Shen, Ting; Zhang, Xiaojing

    2012-06-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE VR® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment.

  2. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    International Nuclear Information System (INIS)

    Wang, Youmin; Raj, Milan; Bhave, Gauri; Yang, Bin; Zhang, Xiaojing; McGuff, H. Stan; Shen, Ting

    2012-01-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE V R® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment. (paper)

  3. Association between dermoscopic and reflectance confocal microscopy features of cutaneous melanoma with BRAF mutational status.

    Science.gov (United States)

    Bombonato, C; Ribero, S; Pozzobon, F C; Puig-Butille, J A; Badenas, C; Carrera, C; Malvehy, J; Moscarella, E; Lallas, A; Piana, S; Puig, S; Argenziano, G; Longo, C

    2017-04-01

    Melanomas harbouring common genetic mutations might share certain morphological features detectable with dermoscopy and reflectance confocal microscopy. BRAF mutational status is crucial for the management of metastatic melanoma. To correlate the dermoscopic characteristics of primary cutaneous melanomas with BRAF mutational status. Furthermore, a subset of tumours has also been analysed for the presence of possible confocal features that might be linked with BRAF status. Retrospectively acquired dermoscopic and confocal images of patients with melanoma in tertiary referral academic centres: Skin Cancer Unit in Reggio Emilia and at the Melanoma Unit in Barcelona. Kruskal-Wallis test, logistic regressions, univariate and multivariate analyses have been performed to find dermoscopic and confocal features significantly correlated with BRAF mutational status. Dermoscopically, the presence of irregular peripheral streaks and ulceration were positive predictors of BRAF-mutated melanomas with a statistically significance value, while dotted vessels were more represented in wild-type melanomas. None of the evaluated reflectance confocal microscopy features were correlated with genetic profiling. Ulceration and irregular peripheral streaks represent dermoscopic feature indicative for BRAF-mutated melanoma, while dotted vessels are suggestive for wild-type melanoma. © 2016 European Academy of Dermatology and Venereology.

  4. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Directory of Open Access Journals (Sweden)

    Nohra E. Beltran

    2013-01-01

    Full Text Available The gastric mucosa ischemic tissular damage plays an important role in critical care patients’ outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine. The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10% for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (. Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia.

  5. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    Science.gov (United States)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  6. Confocal scanning microscopy with multiple optical probes for high speed measurements and better imaging

    Science.gov (United States)

    Chun, Wanhee; Lee, SeungWoo; Gweon, Dae-Gab

    2008-02-01

    Confocal scanning microscopy (CSM) needs a scanning mechanism because only one point information of specimen can be obtained. Therefore the speed of the confocal scanning microscopy is limited by the speed of the scanning tool. To overcome this limitation from scanning tool we propose another scanning mechanism. We make three optical probes in the specimen under confocal condition of each point. Three optical probes are moved by beam scanning mechanism with shared resonant scanning mirror (RM) and galvanometer driven mirror (GM). As each optical probe scan allocated region of the specimen, information from three points is obtained simultaneously and image acquisition time is reduced. Therefore confocal scanning microscopy with multiple optical probes is expected to have three times faster speed of the image acquisition than conventional one. And as another use, multiple optical probes to which different light wavelength is applied can scan whole same region respectively. It helps to obtain better contrast image in case of specimens having different optical characteristics for specific light wavelength. In conclusion confocal scanning microscopy with multiple optical probes is useful technique for views of image acquisition speed and image quality.

  7. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research

    KAUST Repository

    Yong Wan,

    2009-11-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist\\'s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system.

  8. Lateral resolution testing of a novel developed confocal microscopic imaging system

    Science.gov (United States)

    Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun

    2015-10-01

    Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.

  9. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    International Nuclear Information System (INIS)

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes

  10. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    International Nuclear Information System (INIS)

    Späth, Andreas; Raabe, Jörg; Fink, Rainer H.

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed

  11. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Späth, Andreas [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Raabe, Jörg [Paul Scherrer Institut, 5232 Villigen (Switzerland); Fink, Rainer H., E-mail: rainer.fink@fau.de [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany)

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed.

  12. Methodology for ranking restoration options

    DEFF Research Database (Denmark)

    Jensen, Per Hedemann

    1999-01-01

    techniques as a function of contamination and site characteristics. The project includes analyses of existing remediation methodologies and contaminated sites, and is structured in the following steps:-characterisation of relevant contaminated sites -identication and characterisation of relevant restoration...... techniques -assessment of the radiological impact -development and application of a selection methodology for restoration options -formulation ofgeneric conclusions and development of a manual The project is intended to apply to situations in which sites with nuclear installations have been contaminated...

  13. Sample size methodology

    CERN Document Server

    Desu, M M

    2012-01-01

    One of the most important problems in designing an experiment or a survey is sample size determination and this book presents the currently available methodology. It includes both random sampling from standard probability distributions and from finite populations. Also discussed is sample size determination for estimating parameters in a Bayesian setting by considering the posterior distribution of the parameter and specifying the necessary requirements. The determination of the sample size is considered for ranking and selection problems as well as for the design of clinical trials. Appropria

  14. Application of the laser scanning confocal microscope in fluorescent film sensor research

    Science.gov (United States)

    Zhang, Hongyan; Liu, Wei-Min; Zhao, Wen-Wen; Dai, Qing; Wang, Peng-Fei

    2010-10-01

    Confocal microscopy offers several advantages over conventional optical microscopy; we show an experimental investigation laser scanning confocal microscope as a tool to be used in cubic boron nitride (cBN) film-based fluorescent sensor research. Cubic boron nitride cBN film sensors are modified with dansyl chloride and rhodamine B isothiocyanate respectively. Fluorescent modification quality on the cubic boron nitride film is clearly express and the sensor ability to Hg2+ cations and pH are investigated in detail. We evidence the rhodamine B isothiocyanate modified quality on cBN surface is much better than that of dansyl chloride. And laser scanning confocal microscope has potential application lighttight fundus film fluorescent sensor research.

  15. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    Energy Technology Data Exchange (ETDEWEB)

    Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.; Saar, R.; Kikas, J. [Institute of Physics, University of Tartu, Wilhelm Ostwald st., Tartu 50411 (Estonia); Murata, T. [Nippon Electric Glass Co., 7-1 Seiran 2-chome, Otsu-shi, Shiga 520-8639 (Japan)

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  16. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    Science.gov (United States)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  17. Performance verification of focus variation and confocal microscopes measuring tilted ultra-fine surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Baruffi, Federico; Tosello, Guido

    2016-01-01

    The behaviour of two optical instruments, scilicet a laser scanning confocal microscope and a focus-variation microscope, was investigated considering measurements of tilted surfaces. The measured samples were twelve steel artefacts for mould surface finish reference, covering Sa roughness...... parameter in the range (101—103) nm. The 3D surface texture parameters considered were Sa, Sq and Sdq. The small working distance of the confocal microscope objectives influenced the measurement setup, preventing from selecting a high tilting angle. The investigation was carried out comparing measurements...... of flat surfaces (0° tilt) with measurements of 12.5° tilted surfaces. The confocal microscope results showed a high sensitivity to tilting due to the laser beam reflection on the metal surfaces. The focus variation microscope results were more robust with respect to the considered angular variation...

  18. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  19. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography).

    Science.gov (United States)

    Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary

    2015-02-07

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.

  20. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    Science.gov (United States)

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  1. Speckle-illuminated fluorescence confocal microscopy, using a digital micro-mirror device

    International Nuclear Information System (INIS)

    Jiang, Shi-Hong; Walker, John G

    2009-01-01

    An implementation of a speckle-illuminated fluorescence confocal microscope using a digital micro-mirror device (DMD) is described. The DMD not only projects a sequence of imaged binary speckle patterns onto the specimen at a very high frame rate but also operates as a spatial light modulator to perform real-time optical data processing. Frame averaging is accomplished by CCD charge accumulation during a single exposure. The recorded time-averaged image is a confocal image plus an unwanted non-confocal image which can be removed by recording a separate image. Experimental results with image acquisition within a fraction of a second are shown. Images of a thin biological sample are also shown to demonstrate practical application of the technique

  2. A novel method for enhancing the lateral resolution and image SNR in confocal microscopy

    Science.gov (United States)

    Chen, Youhua; Zhu, Dazhao; Fang, Yue; Kuang, Cuifang; Liu, Xu

    2017-12-01

    There is always a tradeoff between the resolution and the signal-to-noise ratio (SNR) in confocal microscopy. In particular, the pinhole size is very important for maintaining a balance between them. In this paper, we propose a method for improving the lateral resolution and image SNR in confocal microscopy without making any changes to the hardware. By using the fluorescence emission difference (FED) approach, we divide the images acquired by different pinhole sizes into one image acquired by the central pinhole and several images acquired by ring-shaped pinholes. Then, they are added together with the deconvolution method. Simulation and experimental results for fluorescent particles and cells show that our method can achieve a far better resolution than a large pinhole and a higher SNR than a small pinhole. Moreover, our method can improve the performance of classic confocal laser scanning microscopy (CLSM) to a certain extent, especially CLSM with a continuously variable pinhole.

  3. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm(-1)). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  4. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    Science.gov (United States)

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes.

  5. Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia.

    Science.gov (United States)

    Sheikhzadeh, Fahime; Ward, Rabab K; Carraro, Anita; Chen, Zhao Yang; van Niekerk, Dirk; Miller, Dianne; Ehlen, Tom; MacAulay, Calum E; Follen, Michele; Lane, Pierre M; Guillaud, Martial

    2015-10-24

    Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 μm below the epithelial surface were respectively 100, 100, and 92 %. Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical

  6. Adipocyte size and cellular expression of caveolar proteins analyzed by confocal microscopy

    DEFF Research Database (Denmark)

    Hulstrøm, Veronica; Prats Gavalda, Clara; Vinten, Jørgen

    2013-01-01

    Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1 and caveo......Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1...

  7. Improved signal model for confocal sensors accounting for object depending artifacts.

    Science.gov (United States)

    Mauch, Florian; Lyda, Wolfram; Gronle, Marc; Osten, Wolfgang

    2012-08-27

    The conventional signal model of confocal sensors is well established and has proven to be exceptionally robust especially when measuring rough surfaces. Its physical derivation however is explicitly based on plane surfaces or point like objects, respectively. Here we show experimental results of a confocal point sensor measurement of a surface standard. The results illustrate the rise of severe artifacts when measuring curved surfaces. On this basis, we present a systematic extension of the conventional signal model that is proven to be capable of qualitatively explaining these artifacts.

  8. A confocal optical microscope for detection of single impurities in a bulk crystal at cryogenic temperatures.

    Science.gov (United States)

    Karlsson, Jenny; Rippe, Lars; Kröll, Stefan

    2016-03-01

    A compact sample-scanning confocal optical microscope for detection of single impurities below the surface of a bulk crystal at cryogenic temperatures is described. The sample, lens, and scanners are mounted inside a helium bath cryostat and have a footprint of only 19 × 19 mm. Wide field imaging and confocal imaging using a Blu-ray lens immersed in liquid helium are demonstrated with excitation at 370 nm. A spatial resolution of 300 nm and a detection efficiency of 1.6% were achieved.

  9. Comparison between optical techniques and confocal microscopy for defect detection on thin wires

    International Nuclear Information System (INIS)

    Siegmann, Philip; Sanchez-Brea, Luis Miguel; Martinez-Anton, Juan Carlos; Bernabeu, Eusebio

    2004-01-01

    Conventional microscopy techniques, such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and confocal microscopy (CM) are not suitable for on-line surface inspection of fine metallic wires. In the recent years, some optical techniques have been developed to be used for those tasks. However, they need a rigorous validation. In this work, we have used confocal microscopy to obtain the topography z(x,y) of wires with longitudinal defects, such as dielines. The topography has been used to predict the light scattered by the wire. These simulations have been compared with experimental results, showing a good agreement

  10. Numerical study of a confocal ultrasonic setup for creation of cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, Maxime, E-mail: maxime.lafond@inserm.fr; Chavrier, Françoise; Prieur, Fabrice [Inserm, U1032, LabTau, Lyon, F-69003 (France); Université de Lyon, Lyon, F-69003 (France); Université Lyon 1, Lyon, F-69003 (France); Mestas, Jean-Louis; Lafon, Cyril [Inserm, U1032, LabTau, Lyon, F-69003 (France); Université de Lyon, Lyon, F-69003 (France); Université Lyon 1, Lyon, F-69003 (France); Caviskills SAS, Vaulx-En-Velin, F-69120 (France)

    2015-10-28

    Acoustic cavitation is used for various therapeutic applications such as local enhancement of drug delivery, histotripsy or hyperthermia. One of the utmost important parameter for cavitation creation is the rarefaction pressure. The typical magnitude of the rarefaction pressure required to initiate cavitation from gas dissolved in tissue is beyond the range of the megapascal. Because nonlinear effects need to be taken into account, a numerical simulator based on the Westervelt equation was used to study the pressure waveform and the acoustic field generated by a setup for creation of cavitation consisting of two high intensity focused ultrasound transducers mounted confocally. At constant acoustic power, simulations with only one and both transducers from the confocal setup showed that the distortion of the pressure waveform due to the combined effects of nonlinearity and diffraction is less pronounced when both confocal transducers are used. Consequently, the confocal setup generates a greater peak negative pressure at focus which is more favorable for cavitation initiation. Comparison between the confocal setup and a single transducer with the same total emitting surface puts in evidence the role of the spatial separation of the two beams. Furthermore, it has been previously shown that the location of the peak negative pressure created by a single transducer shifts from focus towards the transducers in the presence of nonlinear effects. The simulator was used to study a configuration where the acoustical axes of transducers intersect on the peak negative pressure instead of the geometrical focus. For a representative confocal setup, namely moderate nonlinear effects, a 2% increase of the peak negative pressure and 8% decrease of the peak positive pressure resulted from this configuration. These differences tend to increase by increasing nonlinear effects. Although the optimal position of the transducers varies with the nonlinear regimen, the intersection point

  11. Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy

    International Nuclear Information System (INIS)

    Neauport, J.; Cormont, P.; Destribats, J.; Legros, P.; Ambard, C.

    2009-01-01

    We report an experimental investigation of fluorescence confocal microscopy as a tool to measure subsurface damage on grinded fused silica optics. Confocal fluorescence microscopy was performed with an excitation at the wavelength of 405 nm on fixed abrasive diamond grinded fused silica samples. We detail the measured fluorescence spectrums and compare them to those of oil based coolants and grinding slurries. We evidence that oil based coolant used in diamond grinding induces a fluorescence that marks the subsurface damages and eases its observation. Such residual traces might also be involved in the laser damage process. (authors)

  12. The Use of Intravital Two-Photon and Thick Section Confocal Imaging to Analyze B Lymphocyte Trafficking in Lymph Nodes and Spleen.

    Science.gov (United States)

    Park, Chung; Hwang, Il-Young; Kehrl, John H

    2018-01-01

    Intravital two-photon laser scanning microscopy (TP-LSM) has allowed the direct observation of immune cells in intact organs of living animals. In the B cell biology field TP-LSM has detailed the movement of B cells in high endothelial venules and during their transmigration into lymph organs; described the movement and positioning of B cells within lymphoid organs; outlined the mechanisms by which antigen is delivered to B cells; observed B cell interacting with T cells, other cell types, and even with pathogens; and delineated the egress of B cells from the lymph node (LN) parenchyma into the efferent lymphatics. As the quality of TP-LSM improves and as new fluorescent probes become available additional insights into B cell behavior and function await new investigations. Yet intravital TP-LSM has some disadvantages including a lower resolution than standard confocal microscopy, a narrow imaging window, and a shallow depth of imaging. We have found that supplementing intravital TP-LSM with conventional confocal microscopy using thick LN sections helps to overcome some of these shortcomings. Here, we describe procedures for visualizing the behavior and trafficking of fluorescently labeled, adoptively transferred antigen-activated B cells within the inguinal LN of live mice using two-photon microscopy. Also, we introduce procedures for fixed thick section imaging using standard confocal microscopy, which allows imaging of fluorescently labeled cells deep in the LN cortex and in the spleen with high resolution.

  13. Potential of confocal laser scanning microscopy for non-invasive diagnostics of malignant epithelial skin tumors in the course of dermatoheliosis progression

    Directory of Open Access Journals (Sweden)

    E. S. Snarskaya

    2016-01-01

    Full Text Available Most cases of malignant epithelial skin neoplasms including actinic keratosis and basal cell carcinoma, which are characterized by the most complicated course and numerous clinical and morphological options, involve dermatoheliosis progression. The risk of actinic keratosis transformation into basal cell carcinoma varies from 0.1% to 20% and up to 80% in cases of multiple AK lesion foci. A non-invasive method known as reflectance confocal laser scanning microscopy is the most promising one for the purposes of early diagnostics of signs pointing at epithelial skin neoplasm development and makes it possible to monitor the tumor in progress in vivo to diagnose the presence of a pool of squamous cells on a timely basis. The confocal laser scanning microscopy method provides high-contrast images of for any horizontal-oriented morphologic structures in the epidermis and upper dermis with a resolution comparable to those characteristic of traditional optical microscopy of skin tissue samples. According to our data obtained as a result of studying dynamic changes and morphologic structures in actinic keratosis foci (50 cases using the confocal laser scanning microscopy method, we discovered a number of morphologic features, and their further analysis will distinguish the signs of progressing carcinogenesis in case of dermatoheliosis.

  14. In vitro studies of Rickettsia-host cell interactions: Confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines.

    Science.gov (United States)

    Speck, Stephanie; Kern, Tanja; Aistleitner, Karin; Dilcher, Meik; Dobler, Gerhard; Essbauer, Sandra

    2018-02-01

    Rickettsia (R.) helvetica is the most prevalent rickettsia found in Ixodes ricinus ticks in Germany. Several studies reported antibodies against R. helvetica up to 12.5% in humans investigated, however, fulminant clinical cases are rare indicating a rather low pathogenicity compared to other rickettsiae. We investigated growth characteristics of R. helvetica isolate AS819 in two different eukaryotic cell lines with focus on ultra-structural changes of host cells during infection determined by confocal laser scanning microscopy. Further investigations included partially sequencing of rickA, sca4 and sca2 genes, which have been reported to encode proteins involved in cell-to-cell spread and virulence in some rickettsiae. R. helvetica grew constantly but slowly in both cell lines used. Confocal laser scanning microscopy revealed that the dissemination of R. helvetica AS819 in both cell lines was rather mediated by cell break-down and bacterial release than cell-to-cell spread. The cytoskeleton of both investigated eukaryotic cell lines was not altered. R. helvetica possesses rickA, but its expression is not sufficient to promote actin-based motility as demonstrated by confocal laser scanning microscopy. Hypothetical Sca2 and Sca4 proteins were deduced from nucleotide gene sequences but the predicted amino acid sequences were disrupted or truncated compared to other rickettsiae most likely resulting in non-functional proteins. Taken together, these results might give a first hint to the underlying causes of the reduced virulence and pathogenicity of R. helvetica.

  15. In-vivo diagnosis and non-inasive monitoring of Imiquimod 5% cream for non-melanoma skin cancer using confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Dietterle, S; Lademann, J; Röwert-Huber, H-J; Stockfleth, E; Astner, S; Antoniou, C; Sterry, W

    2008-01-01

    Basal cell carcinoma (BCC) is the most common cutaneous malignancy with increasing incidence rates worldwide. A number of established treatments are available, including surgical excision. The emergence of new non-invasive treatment modalities has prompted the development of non-invasive optical devices for therapeutic monitoring and evaluating treatment efficacy. This study was aimed to evaluate the clinical applicability of a fluorescence confocal laser scanning microscope (CFLSM) for non-invasive therapeutic monitoring of basal cell carcinoma treated with Imiquimod (Aldara®) as topical immune-response modifier. Eight participants with a diagnosis of basal cell carcinoma (BCC) were enrolled in this investigation. Sequential evaluation during treatment with Imiquimod showed progressive normalization of the confocal histomorphologic parameters in correlation with normal skin. Confocal laser scanning microscopy was able to identify characteristic features of BCC and allowed the visualization of therapeutic effects over time. Thus our results indicate the clinical applicability of CFLSM imaging to evaluate treatment efficacy in vivo and non-invasively

  16. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.

    Science.gov (United States)

    Kinoshita, Haruyuki; Kaneda, Shohei; Fujii, Teruo; Oshima, Marie

    2007-03-01

    This paper presents a micro-flow diagnostic technique, 'high-speed confocal micro-particle image velocimetry (PIV)', and its application to the internal flow measurement of a droplet passing through a microchannel. A confocal micro-PIV system has been successfully constructed wherein a high-speed confocal scanner is combined with the conventional micro-PIV technique. The confocal micro-PIV system enables us to obtain a sequence of sharp and high-contrast cross-sectional particle images at 2000 frames s(-1). This study investigates the confocal depth, which is a significant parameter to determine the out-of-plane measurement resolution in confocal micro-PIV. Using the present confocal micro-PIV system, we can measure velocity distributions of micro-flows in a 228 microm x 171 microm region with a confocal depth of 1.88 microm. We also propose a three-dimensional velocity measurement method based on the confocal micro-PIV and the equation of continuity. This method enables us to measure three velocity components in a three-dimensional domain of micro flows. The confocal micro-PIV system is applied to the internal flow measurement of a droplet. We have measured three-dimensional distributions of three-component velocities of a droplet traveling in a 100 microm (width) x 58 microm (depth) channel. A volumetric velocity distribution inside a droplet is obtained by the confocal micro-PIV and the three-dimensional flow structure inside the droplet is investigated. The measurement results suggest that a three-dimensional and complex circulating flow is formed inside the droplet.

  17. Superresolution size determination in fluorescence microscopy: A comparison between spatially modulated illumination and confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Spoeri, Udo; Failla, Antonio Virgilio; Cremer, Christoph

    2004-01-01

    Recently developed far field light optical methods are a powerful tool to analyze biological nanostructures and their dynamics, in particular including the interior of three-dimensionally conserved cells. In this article, the recently described method of spatially modulated illumination (SMI) microscopy has been further extended to the online determination of the extension of small, subwavelength sized, fluorescent objects (nanosizing). Using fluorescence excitation with 488 nm, the determination of fluorescent labeled object diameters down to 40 nm corresponding to about 1/12th of the wavelength used for one-photon excitation could be shown. The results of the SMI nanosizing procedure for a detailed, systematic variation of the object diameter are presented together with a fast algorithm for online size evaluation. In addition, we show a direct comparison of the diameter of 'colocalization volumes' between SMI nanosizing and conventional confocal laser scanning microscopy

  18. New seismograph includes filters

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-02

    The new Nimbus ES-1210 multichannel signal enhancement seismograph from EG and G geometrics has recently been redesigned to include multimode signal fillers on each amplifier. The ES-1210F is a shallow exploration seismograph for near subsurface exploration such as in depth-to-bedrock, geological hazard location, mineral exploration, and landslide investigations.

  19. Detection of UV-induced pigmentary and epidermal changes over time using in vivo reflectance confocal microscopy

    NARCIS (Netherlands)

    Middelkamp-Hup, Maritza A.; Park, H.-Y.; Lee, Jin; Gilchrest, Barbara A.; Gonzalez, Salvador

    2006-01-01

    In vivo reflectance confocal microscopy (RCM) provides high-resolution optical sections of the skin in its native state, without needing to fix or section the tissue. Melanin provides an excellent contrast for RCM, giving a bright signal in the confocal images. The pigmented guinea-pig is a common

  20. Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies.

    Science.gov (United States)

    Dobbs, Jessica; Krishnamurthy, Savitri; Kyrish, Matthew; Benveniste, Ana Paula; Yang, Wei; Richards-Kortum, Rebecca

    2015-01-01

    Tissue sampling is a problematic issue for inflammatory breast carcinoma, and immediate evaluation following core needle biopsy is needed to evaluate specimen adequacy. We sought to determine if confocal fluorescence microscopy provides sufficient resolution to evaluate specimen adequacy by comparing invasive tumor cellularity estimated from standard histologic images to invasive tumor cellularity estimated from confocal images of breast core needle biopsy specimens. Grayscale confocal fluorescence images of breast core needle biopsy specimens were acquired following proflavine application. A breast-dedicated pathologist evaluated invasive tumor cellularity in histologic images with hematoxylin and eosin staining and in grayscale and false-colored confocal images of cores. Agreement between cellularity estimates was quantified using a kappa coefficient. 23 cores from 23 patients with suspected inflammatory breast carcinoma were imaged. Confocal images were acquired in an average of less than 2 min per core. Invasive tumor cellularity estimated from histologic and grayscale confocal images showed moderate agreement by kappa coefficient: κ = 0.48 ± 0.09 (p confocal images require less than 2 min for acquisition and allow for evaluation of invasive tumor cellularity in breast core needle biopsy specimens with moderate agreement to histologic images. We show that confocal fluorescence microscopy can be performed immediately following specimen acquisition and could indicate the need for additional biopsies at the initial visit.

  1. Confocal microscopy studies of morphology and apoptosis: ovaries, limbs, embryos and insects

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ap...

  2. Simulation with Python on transverse modes of the symmetric confocal resonator

    Science.gov (United States)

    Wang, Qing Hua; Qi, Jing; Ji, Yun Jing; Song, Yang; Li, Zhenhua

    2017-08-01

    Python is a popular open-source programming language that can be used to simulate various optical phenomena. We have developed a suite of programs to help teach the course of laser principle. The complicated transverse modes of the symmetric confocal resonator can be visualized in personal computers, which is significant to help the students understand the pattern distribution of laser resonator.

  3. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  4. Confocal microscope is able to detect calcium metabolic in neuronal infection by toxoplasma gondii

    International Nuclear Information System (INIS)

    Sensusiati, A D; Priya, T K S; Dachlan, Y P

    2017-01-01

    Calcium metabolism plays a very important role in neurons infected by Toxoplasma. Detection of change of calcium metabolism of neuron infected by Toxoplasma and Toxoplasma requires the calculation both quantitative and qualitative method. Confocal microscope has the ability to capture the wave of the fluorescent emission of the fluorescent dyes used in the measurement of cell calcium. The purpose of this study was to prove the difference in calcium changes between infected and uninfected neurons using confocal microscopy. Neuronal culture of human-skin-derived neural stem cell were divided into 6 groups, consisting 3 uninfected groups and 3 infected groups. Among the 3 groups were 2 hours, 24 hours and 48 hours. The neuron Toxoplasma gondii ratio was 1:5. Observation of intracellular calcium of neuron and tachyzoite, evidence of necrosis, apoptosis and the expression of Hsp 70 of neuron were examined by confocal microscope. The normality of the data was analysed by Kolmogorov-Smirnov Test, differentiation test was checked by t2 Test, and ANOVAs, for correlation test was done by Pearson Correlation Test. The calcium intensity of cytosolic neuron and T. gondii was significantly different from control groups (p<0.05). There was also significant correlation between calcium intensity with the evidence of necrosis and Hsp70 expression at 2 hours after infection. Apoptosis and necrosis were simultaneously shown with calcium contribution in this study. Confocal microscopy can be used to measure calcium changes in infected and uninfected neurons both in quantitatively and qualitatively. (paper)

  5. Development of a Josephson vortex two-state system based on a confocal annular Josephson junction

    DEFF Research Database (Denmark)

    Monaco, Roberto; Mygind, Jesper; Koshelets, Valery P.

    2018-01-01

    We report theoretical and experimental work on the development of a Josephson vortex two-state system based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of this geometrical configuration is a periodically variable width that generates a spatial vortex potential...

  6. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  7. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  8. Insight into the Microbial Multicellular Lifestyle via Flow-Cell Technology and Confocal Microscopy

    DEFF Research Database (Denmark)

    Pamp, Sünje Johanna; Sternberg, Claus; Tolker-Nielsen, Tim

    2009-01-01

    , industry, and human health. Accordingly a number of biofilm model systems, molecular tools, microscopic techniques, and image analysis programs have been employed for the study of biofilms under controlled and reproducible conditions. Studies using confocal laser scanning microscopy (CLSM) of biofilms...

  9. Diagnostic accuracy of confocal microscopy imaging vs. punch biopsy for diagnosing and subtyping basal cell carcinoma

    NARCIS (Netherlands)

    Kadouch, D. J.; Leeflang, M. M.; Elshot, Y. S.; Longo, C.; Ulrich, M.; van der Wal, A. C.; Wolkerstorfer, A.; Bekkenk, M. W.; de Rie, M. A.

    2017-01-01

    BackgroundIn vivo reflectance confocal microscopy (RCM) is a promising non-invasive skin imaging technique that could facilitate early diagnosis of basal cell carcinoma (BCC) instead of routine punch biopsies. However, the clinical value and utility of RCM vs. a punch biopsy in diagnosing and

  10. Reflectance confocal microscopy: non-invasive distinction between actinic keratosis and squamous cell carcinoma

    NARCIS (Netherlands)

    Peppelman, M.; Nguyen, K.P.; Hoogedoorn, L.; Erp, P.E.J. van; Gerritsen, M.J.P.

    2015-01-01

    BACKGROUND: Early recognition of squamous cell carcinoma (SCC) is difficult. Non-invasive reflectance confocal microscopic (RCM) imaging of the skin is a promising diagnostic technique. Although several RCM features for SCC and AK have been described, it is not determined whether RCM has the ability

  11. Reflectance confocal microscopy: an effective tool for monitoring ultraviolet B phototherapy in psoriasis.

    NARCIS (Netherlands)

    Wolberink, E.A.W.; Erp, P.E.J. van; Boer-van Huizen, R.T. de; Kerkhof, P.C.M. van de; Gerritsen, M.J.P.

    2012-01-01

    Background In vivo reflectance confocal microscopy (RCM) is a novel, noninvasive imaging technique which enables imaging of skin at a cellular resolution comparable to conventional microscopy. Objectives We performed a pilot study to evaluate RCM as a noninvasive tool for monitoring ultraviolet (UV)

  12. Cellular features of psoriatic skin: imaging and quantification using in vivo reflectance confocal microscopy

    NARCIS (Netherlands)

    Wolberink, E.A.W.; Erp, P.E.J. van; Teussink, M.M.; Kerkhof, P.C.M. van de; Gerritsen, M.J.P.

    2011-01-01

    BACKGROUND: In vivo reflectance confocal microscopy (RCM) is a novel, exciting imaging technique. It provides images of cell-and tissue structures and dynamics in situ, in real time, without the need for ex vivo tissue samples. RCM visualizes the superficial part of human skin up to a depth of 250

  13. Characterization of tissue autofluorescence in Barrett's esophagus by confocal fluorescence microscopy

    NARCIS (Netherlands)

    Kara, M. A.; DaCosta, R. S.; Streutker, C. J.; Marcon, N. E.; Bergman, J. J. G. H. M.; Wilson, B. C.

    2007-01-01

    High grade dysplasia and early cancer in Barrett's esophagus can be distinguished in vivo by endoscopic autofluorescence point spectroscopy and imaging from non-dysplastic Barrett's mucosa. We used confocal fluorescence microscopy for ex vivo comparison of autofluorescence in non-dysplastic and

  14. [Contribution of confocal microscopy and anterior chamber OCT to the study of corneal endothelial pathologies].

    Science.gov (United States)

    Fayol, N; Labbé, A; Dupont-Monod, S; Dupas, B; Baudouin, C

    2007-04-01

    To describe the appearance of various endothelial diseases with in vivo confocal microscopy and anterior chamber optical coherence tomography (AC OCT). In this study, ten patients with five different corneal endothelial pathologies were evaluated. Three patients had cornea guttata, three had corneal endothelial precipitates, two had irido-corneo-endothelial (ICE) syndrome, one had endothelial folds, and one had breaks in the Descemet membrane. All patients had bilateral ophthalmologic examinations, in vivo confocal microscopy, and AC OCT analysis. In cases of cornea guttata, AC OCT showed a finely embossed line corresponding to the empty intercellular cavities found with in vivo confocal microscopy. Corneal endothelium precipitates had the aspect of round formations suspended with the endothelium. Iris atrophy and irido-corneal synechiae resulting from ICE syndrome were precisely visualized with the AC OCT. High-resolution images of the anterior segment could be obtained using the AC OCT. Associated with in vivo confocal microscopy, these two new imaging techniques provide a precise evaluation of endothelial pathologies.

  15. Correcting the axial shrinkage of skeletal muscle thick sections visualized by confocal microscopy

    Czech Academy of Sciences Publication Activity Database

    Janáček, Jiří; Kreft, M.; Čebašek, V.; Eržen, I.

    2012-01-01

    Roč. 246, č. 2 (2012), s. 107-112 ISSN 0022-2720 R&D Projects: GA MŠk(CZ) MEB090910; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : capillaries * confocal microscopy * sample deformation * shrinkage * skeletal muscle * 3D Subject RIV: FH - Neurology Impact factor: 1.633, year: 2012

  16. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR QUANTIFYING CYTOMETRIC APPLICATIONS WITH SPECTROSCOPIC INSTRUMENTS

    Science.gov (United States)

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  17. An FFT-based Method for Attenuation Correction in Fluorescence Confocal Microscopy

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.; Bakker, M.

    1993-01-01

    A problem in three-dimensional imaging by a confocal scanning laser microscope (CSLM) in the (epi)fluorescence mode is the darkening of the deeper layers due to absorption and scattering of both the excitation and the fluorescence light. In this paper we propose a new method to correct for these

  18. Confocal Microscopy and Flow Cytometry System Performance: Assessment of QA Parameters that affect data Quanitification

    Science.gov (United States)

    Flow and image cytometers can provide useful quantitative fluorescence data. We have devised QA tests to be used on both a flow cytometer and a confocal microscope to assure that the data is accurate, reproducible and precise. Flow Cytometry: We have provided two simple perform...

  19. A multi-axis confocal rheoscope for studying shear flow of structured fluids

    KAUST Repository

    Lin, Neil Y. C.; McCoy, Jonathan H.; Cheng, Xiang; Leahy, Brian; Israelachvili, Jacob N.; Cohen, Itai

    2014-01-01

    of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material three-dimensional structure

  20. Analytic device including nanostructures

    KAUST Repository

    Di Fabrizio, Enzo M.; Fratalocchi, Andrea; Totero Gongora, Juan Sebastian; Coluccio, Maria Laura; Candeloro, Patrizio; Cuda, Gianni

    2015-01-01

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  1. Central serous chorioretinopathy fundus autofluorescence comparison with two different confocal scanning laser ophthalmoscopes.

    Science.gov (United States)

    Nam, Ki Tae; Yun, Cheol Min; Kim, Jee Taek; Yang, Kyung-Sook; Kim, Hyun Joo; Kim, Seong-Woo; Oh, Jaeryung; Huh, Kuhl

    2015-12-01

    To compare the lesion characteristics of two different types of confocal scanning laser ophthalmoscopy (cSLO) autofluorescence (AF) images in central serous chorioretinopathy (CSC). The study included 63 eyes of 61 patients; 63 pairs of fundus autofluorescence (FAF) images were compared before CSC resolution in 63 eyes, FAF images of 31 eyes were also compared after CSC resolution. The lesion characteristics (brightness and composite pattern) were compared between Heidelberg Retina Angiograph 2 (HRA2; Heidelberg Engineering, Germany) and Optomap Tx (Optomap; Optos, Scotland) FAF images. The lesion composite pattern was categorized as diffuse or granular. Diffuse AF was defined as homogenously increased or decreased AF, and granular AF was defined as dot-like, coarse changes in AF. The mean disease duration and subretinal fluid (SRF) height in the spectral domain optical coherence tomography were compared according to the FAF image characteristics. Lesion brightness before CSC resolution was hypo-AF in 48 eyes (76.2 %), hyper-AF in three (4.8 %), and mixed-AF in 12 (19.0 %) in HRA2 FAF images. In comparison, nine (14.3 %) images were hypo-AF, 44 (69.8 %) were hyper-AF, and 10 (15.9 %) were mixed-AF in Optomap FAF images (P < 0.0001). There was no significant difference in lesion composite pattern between the two FAF image wavelengths. Patients with lesions that were hyper-AF in Optomap FAF and hypo-AF in HRA2 FAF had a shorter disease duration and greater SRF height (1 month, 281 um) than those who were hyper-AF in both Optomap and HRA2 images (26 months, 153 um; P = 0.004, 0.001). The two types of FAF images of CSC showed different lesion brightness before and after CSC resolution but demonstrated similar lesion composite patterns.

  2. A confocal microscopic study of solitary pulmonary neuroendocrine cells in human airway epithelium

    Directory of Open Access Journals (Sweden)

    Sparrow Malcolm P

    2005-10-01

    Full Text Available Abstract Background Pulmonary neuroendocrine cells (PNEC are specialized epithelial cells that are thought to play important roles in lung development and airway function. PNEC occur either singly or in clusters called neuroepithelial bodies. Our aim was to characterize the three dimensional morphology of PNEC, their distribution, and their relationship to the epithelial nerves in whole mounts of adult human bronchi using confocal microscopy. Methods Bronchi were resected from non-diseased portions of a lobe of human lung obtained from 8 thoracotomy patients (Table 1 undergoing surgery for the removal of lung tumors. Whole mounts were stained with antibodies to reveal all nerves (PGP 9.5, sensory nerves (calcitonin gene related peptide, CGRP, and PNEC (PGP 9.5, CGRP and gastrin releasing peptide, GRP. The analysis and rendition of the resulting three-dimensional data sets, including side-projections, was performed using NIH-Image software. Images were colorized and super-imposed using Adobe Photoshop. Results PNEC were abundant but not homogenously distributed within the epithelium, with densities ranging from 65/mm2 to denser patches of 250/mm2, depending on the individual wholemount. Rotation of 3-D images revealed a complex morphology; flask-like with the cell body near the basement membrane and a thick stem extending to the lumen. Long processes issued laterally from its base, some lumenal and others with feet-like processes. Calcitonin gene-related peptide (CGRP was present in about 20% of PNEC, mainly in the processes. CGRP-positive nerves were sparse, with some associated with the apical part of the PNEC. Conclusion Our 3D-data demonstrates that PNEC are numerous and exhibit a heterogeneous peptide content suggesting an active and diverse PNEC population.

  3. In vivo confocal microscopy and tear cytokine analysis in post-LASIK ectasia.

    Science.gov (United States)

    Pahuja, Natasha Kishore; Shetty, Rohit; Deshmukh, Rashmi; Sharma, Anupam; Nuijts, Rudy M M A; Jhanji, Vishal; Sethu, Swaminathan; Ghosh, Arkasubhra

    2017-12-01

    Corneal keratectasia is one of the complications associated with laser in situ keratomileusis (LASIK) that results in vision impairment. The pathogenesis of post-LASIK ectasia (PLE) remains underexplored. We report the tear cytokine profile and in vivo confocal microscopy (IVCM) findings in eyes with PLE. This retrospective study included age-matched 7 (14 eyes) post-LASIK controls (PLCs) and 6 (12 eyes) PLE subjects. Corneal topography was used to categorise the subjects into PLC and PLE groups. Ocular Surface Disease Index (OSDI) scores obtained were based on standard questionnaire and IVCM images were used to determine corneal dendritic cells density (DCD) and sub-basal nerve plexus morphology. Inflammatory cytokines/chemokines in the tears were quantified using flow cytometry based cytometric bead array. Pentacam-based scores, OSDI scores and corneal DCD were significantly (pPLE compared with PLC. Discomfort-related subscale of OSDI score exhibited a positive correlation with total corneal DCD in the PLE cohort. The fold difference of chemokine (C-C motif) ligand/monocyte chemotactic protein-1 (CCL2/MCP1) (3.4±0.6) was found to be significantly (pPLE cohorts and a positive correlation between CCL2/MCP1 levels and total corneal DCD was also observed in the PLE cohort. The current study found a significant difference in the tear film cytokine profile between normal and PLE eyes. Presence of increased corneal dendritic cells and altered tear cytokines suggests an ongoing inflammatory response in PLE. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. The reflectance confocal microscopy features of sebaceous adenoma in a case of Muir Torre syndrome

    Directory of Open Access Journals (Sweden)

    Esma İnan Yüksel

    2015-03-01

    Full Text Available Muir-Torre syndrome (MTS is a rare autosomal dominant genodermatosis characterized by the occurrence of sebaceous gland neoplasms and/or keratoacanthomas associated with visceral malignancies. It is considered as a subtype of hereditary nonpolyposis colorectal cancer syndrome. Characteristic sebaceous gland neoplasms include sebaceous adenoma, sebaceous carcinoma, sebaceoma, and keratoacanthoma with sebaceous differentiation. The most common visceral malignancies are colorectal and genitourinary tumors. CASE: A 47year-old male patient admitted to our clinic complaining of two lesions on the nose. Dermatological examination revealed a plaque in 1 cm diameter consisting of bright yellowish-white coloured papules with slightly umblicated appearance and telangiectasias on the left site of the nose and had a dome shaped papule in 3 mm diameter with hyperkeratotic plug on the tip of the nose. He had personal history of partial colon resection because of colon cancer and familial Lynch 2 syndrome. On dermoscopic examination of sebaceous adenoma, a few yellow comedo-like globules and branching arborizing vessels were detected. Reflectance confocal microscopy (RCM revealed a good histopathologic correlation. Sebaceous lobules were composed by clusters of ovoid cells with hyporefractile dark nuclei and bright, hyperrefractile glistening cytoplasm. Numerous roundish to ovoid dark spaces corresponding to sebaceous ducts were detected. The diagnosis of MTS was established based on the personal and family history, dermoscopic, RCM and histopathologic findings. CONCLUSIONS: MTS evaluation is required in patients with biopsy-proven sebaceous adenoma. Early diagnosis may be lifesaving in patients with MTS. A better characterization of RCM features of sebaceous tumors will allow early diagnosis of the patients with MTS.

  5. In vivo confocal microscopy appearance of Fusarium and Aspergillus species in fungal keratitis.

    Science.gov (United States)

    Chidambaram, Jaya Devi; Prajna, Namperumalsamy Venkatesh; Larke, Natasha; Macleod, David; Srikanthi, Palepu; Lanjewar, Shruti; Shah, Manisha; Lalitha, Prajna; Elakkiya, Shanmugam; Burton, Matthew J

    2017-08-01

    Clinical outcomes in fungal keratitis vary between Fusarium and Aspergillus spp, therefore distinguishing between species using morphological features such as filament branching angles, sporulation along filaments (adventitious sporulation) or dichotomous branching may be useful. In this study, we assessed these three features within Heidelberg Retina Tomograph 3 in vivo confocal microscopy (IVCM) images from culture-positive Fusarium and Aspergillus spp keratitis participants. Prospective observational cohort study in Aravind Eye Hospital (February 2011-February 2012). Eligibility criteria: age ≥18 years, stromal infiltrate ≥3 mm diameter, Fusarium or Aspergillus spp culture-positive. previous/current herpetic keratitis, visual acuity 80% corneal thinning. IVCM was performed and images analysed for branch angle, presence/absence of adventitious sporulation or dichotomous branching by a grader masked to the microbiological diagnosis. 98 participants were included (106 eligible, 8 excluded as no measurable branch angles); 68 were positive for Fusarium spp, 30 for Aspergillus spp. Mean branch angle for Fusarium spp was 59.7° (95% CI 57.7° to 61.8°), and for Aspergillus spp was 63.3° (95% CI 60.8° to 65.8°), p=0.07. No adventitious sporulation was detected in Fusarium spp ulcers. Dichotomous branching was detected in 11 ulcers (7 Aspergillus spp, 4 Fusarium spp). There was very little difference in the branching angle of Fusarium and Aspergillus spp. Adventitious sporulation was not detected and dichotomous branching was infrequently seen. Although IVCM remains a valuable tool to detect fungal filaments in fungal keratitis, it cannot be used to distinguish Fusarium from Aspergillus spp and culture remains essential to determine fungal species. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Saskatchewan resources. [including uranium

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.

  7. RHIC Data Correlation Methodology

    International Nuclear Information System (INIS)

    Michnoff, R.; D'Ottavio, T.; Hoff, L.; MacKay, W.; Satogata, T.

    1999-01-01

    A requirement for RHIC data plotting software and physics analysis is the correlation of data from all accelerator data gathering systems. Data correlation provides the capability for a user to request a plot of multiple data channels vs. time, and to make meaningful time-correlated data comparisons. The task of data correlation for RHIC requires careful consideration because data acquisition triggers are generated from various asynchronous sources including events from the RHIC Event Link, events from the two Beam Sync Links, and other unrelated clocks. In order to correlate data from asynchronous acquisition systems a common time reference is required. The RHIC data correlation methodology will allow all RHIC data to be converted to a common wall clock time, while still preserving native acquisition trigger information. A data correlation task force team, composed of the authors of this paper, has been formed to develop data correlation design details and provide guidelines for software developers. The overall data correlation methodology will be presented in this paper

  8. SMART performance analysis methodology

    International Nuclear Information System (INIS)

    Lim, H. S.; Kim, H. C.; Lee, D. J.

    2001-04-01

    To ensure the required and desired operation over the plant lifetime, the performance analysis for the SMART NSSS design is done by means of the specified analysis methodologies for the performance related design basis events(PRDBE). The PRDBE is an occurrence(event) that shall be accommodated in the design of the plant and whose consequence would be no more severe than normal service effects of the plant equipment. The performance analysis methodology which systematizes the methods and procedures to analyze the PRDBEs is as follows. Based on the operation mode suitable to the characteristics of the SMART NSSS, the corresponding PRDBEs and allowable range of process parameters for these events are deduced. With the developed control logic for each operation mode, the system thermalhydraulics are analyzed for the chosen PRDBEs using the system analysis code. Particularly, because of different system characteristics of SMART from the existing commercial nuclear power plants, the operation mode, PRDBEs, control logic, and analysis code should be consistent with the SMART design. This report presents the categories of the PRDBEs chosen based on each operation mode and the transition among these and the acceptance criteria for each PRDBE. It also includes the analysis methods and procedures for each PRDBE and the concept of the control logic for each operation mode. Therefore this report in which the overall details for SMART performance analysis are specified based on the current SMART design, would be utilized as a guide for the detailed performance analysis

  9. QUALITY ASSESSMENT OF CONFOCAL MICROSCOPY SLIDE-BASED SYSTEMS: INSTABLITY

    Science.gov (United States)

    Background: All slide-based fluorescence cytometry detections systems basically include an excitation light source, intermediate optics, and a detection device (CCD or PMT). Occasionally, this equipment becomes unstable, generating unreliable and inferior data. Methods: A num...

  10. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

    Science.gov (United States)

    Verveer, P. J; Gemkow, M. J; Jovin, T. M

    1999-01-01

    We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.

  11. Confocal Raman microscopy for in depth analysis in the field of cultural heritage

    Science.gov (United States)

    Lorenzetti, G.; Striova, J.; Zoppi, A.; Castellucci, E. M.

    2011-05-01

    In the field of cultural heritage, the main concern when a sample is analyzed is its safeguard, and this means that non-destructive techniques are required. In this work, we show how confocal Raman microscopy (CRM) may be successfully applied in the study of works of art as a valuable alternative to other well established techniques. CRM with a metallurgical objective was tested for the in depth study of thin samples that are of interest in the field of cultural heritage. The sensitivity of the instrumentation was first evaluated by analyzing single layers of pure polyethylene terephthalate (PET) films having a thickness of 12, 25, and 50 μm, respectively, and a multilayer sample of polypropylene (PP) and polyethylene (PE). Subsequently, the technique was applied to the analysis of historical dyed cotton yarns in order to check whether it was possible to achieve a better discrimination of the fibres' signals for an easier identification. A substantial improvement of the signal to noise ratio was found in the confocal arrangement with respect to the non-confocal one, suggesting the use of this technique for this kind of analysis in the field of cultural heritage. Furthermore, Raman spectroscopy in confocal configuration was exploited in the evaluation of cleaning performed on the mural painting specimens, treated with acrylic resin (Paraloid B72). Confocal Raman experiments were performed before and after laser cleaning (at different conditions) in order to monitor the presence and to approximate the polymer thickness: the method proved to be a valid comparative tool in assessment of cleaning efficiencies.

  12. Confocal fluorescence microscopy in a murine model of microdissection testicular sperm extraction to improve sperm retrieval.

    Science.gov (United States)

    Smith, Ryan P; Lowe, Greg J; Kavoussi, Parviz K; Steers, William D; Costabile, Raymond A; Herr, John C; Shetty, Jagathpala; Lysiak, Jeffrey J

    2012-05-01

    Microdissection testicular sperm extraction markedly improves the sperm retrieval rates in men with nonobstructive azoospermia. However, localizing sperm foci can be time-consuming and it is not always successful. Fiberoptic confocal fluorescent microscopy offers the advantage of rapid in vivo detection of fluorescently labeled sperm in the seminiferous tubules. After establishing the feasibility of fiberoptic confocal fluorescent microscopy to identify antibody labeled sperm in vivo C57/B6 mice underwent intraperitoneal injection of busulfan to induce azoospermia. During spermatogenesis reestablishment at approximately 16 weeks the mice were anesthetized and the testes were delivered through a low midline incision. Fluorescein isothiocyanate labeled antibody to intra-acrosomal protein Hs-14 was injected retrograde into a single murine rete testis. The testes were imaged in vivo with fiberoptic confocal fluorescent microscopy and sperm foci were detected. The respective seminiferous tubules were excised and squash prepared for immunofluorescence microscopy. Sperm foci were identified in the testis injected with fluorescently tagged antibody by in vivo fiberoptic confocal fluorescence microscopy. The contralateral control testis of each mouse showed no specific signal. Immunofluorescence microscopy of the excised tubules provided morphological confirmation of the presence of labeled sperm with an absence in controls. Findings were consistent in the feasibility portion of the study and in the busulfan model of nonobstructive azoospermia. Fiberoptic confocal fluorescent microscopy was feasible during microdissection testicular sperm extraction in an azoospermic mouse model to identify fluorescently labeled sperm in vivo. Translation to the clinical setting could decrease operative time and improve the sperm harvest rate. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. Being Included and Excluded

    DEFF Research Database (Denmark)

    Korzenevica, Marina

    2016-01-01

    Following the civil war of 1996–2006, there was a dramatic increase in the labor mobility of young men and the inclusion of young women in formal education, which led to the transformation of the political landscape of rural Nepal. Mobility and schooling represent a level of prestige that rural...... politics. It analyzes how formal education and mobility either challenge or reinforce traditional gendered norms which dictate a lowly position for young married women in the household and their absence from community politics. The article concludes that women are simultaneously excluded and included from...... community politics. On the one hand, their mobility and decision-making powers decrease with the increase in the labor mobility of men and their newly gained education is politically devalued when compared to the informal education that men gain through mobility, but on the other hand, schooling strengthens...

  14. Methodologic frontiers in environmental epidemiology.

    OpenAIRE

    Rothman, K J

    1993-01-01

    Environmental epidemiology comprises the epidemiologic study of those environmental factors that are outside the immediate control of the individual. Exposures of interest to environmental epidemiologists include air pollution, water pollution, occupational exposure to physical and chemical agents, as well as psychosocial elements of environmental concern. The main methodologic problem in environmental epidemiology is exposure assessment, a problem that extends through all of epidemiologic re...

  15. Test reactor risk assessment methodology

    International Nuclear Information System (INIS)

    Jennings, R.H.; Rawlins, J.K.; Stewart, M.E.

    1976-04-01

    A methodology has been developed for the identification of accident initiating events and the fault modeling of systems, including common mode identification, as these methods are applied in overall test reactor risk assessment. The methods are exemplified by a determination of risks to a loss of primary coolant flow in the Engineering Test Reactor

  16. Confocal Microscopy of Unfixed Breast Needle Core Biopsies: A Comparison to Fixed and Stained Sections

    Directory of Open Access Journals (Sweden)

    Zavislan James M

    2009-08-01

    Full Text Available Abstract Background Needle core biopsy, often in conjunction with ultrasonic or stereotactic guided techniques, is frequently used to diagnose breast carcinoma in women. Confocal scanning laser microscopy (CSLM is a technology that provides real-time digital images of tissues with cellular resolution. This paper reports the progress in developing techniques to rapidly screen needle core breast biopsy and surgical specimens at the point of care. CSLM requires minimal tissue processing and has the potential to reduce the time from excision to diagnosis. Following imaging, specimens can still be submitted for standard histopathological preparation. Methods Needle core breast specimens from 49 patients were imaged at the time of biopsy. These lesions had been characterized under the Breast Imaging Reporting And Data System (BI-RADS as category 3, 4 or 5. The core biopsies were imaged with the CSLM before fixation. Samples were treated with 5% citric acid and glycerin USP to enhance nuclear visibility in the reflectance confocal images. Immediately following imaging, the specimens were fixed in buffered formalin and submitted for histological processing and pathological diagnosis. CSLM images were then compared to the standard histology. Results The pathologic diagnoses by standard histology were 7 invasive ductal carcinomas, 2 invasive lobular carcinomas, 3 ductal carcinomas in-situ (CIS, 21 fibrocystic changes/proliferative conditions, 9 fibroadenomas, and 5 other/benign; two were excluded due to imaging difficulties. Morphologic and cellular features of benign and cancerous lesions were identified in the confocal images and were comparable to standard histologic sections of the same tissue. Conclusion CSLM is a technique with the potential to screen needle core biopsy specimens in real-time. The confocal images contained sufficient information to identify stromal reactions such as fibrosis and cellular proliferations such as intra-ductal and

  17. Confocal Microscopy of Unfixed Breast Needle Core Biopsies: A Comparison to Fixed and Stained Sections

    Science.gov (United States)

    2009-01-01

    Background Needle core biopsy, often in conjunction with ultrasonic or stereotactic guided techniques, is frequently used to diagnose breast carcinoma in women. Confocal scanning laser microscopy (CSLM) is a technology that provides real-time digital images of tissues with cellular resolution. This paper reports the progress in developing techniques to rapidly screen needle core breast biopsy and surgical specimens at the point of care. CSLM requires minimal tissue processing and has the potential to reduce the time from excision to diagnosis. Following imaging, specimens can still be submitted for standard histopathological preparation. Methods Needle core breast specimens from 49 patients were imaged at the time of biopsy. These lesions had been characterized under the Breast Imaging Reporting And Data System (BI-RADS) as category 3, 4 or 5. The core biopsies were imaged with the CSLM before fixation. Samples were treated with 5% citric acid and glycerin USP to enhance nuclear visibility in the reflectance confocal images. Immediately following imaging, the specimens were fixed in buffered formalin and submitted for histological processing and pathological diagnosis. CSLM images were then compared to the standard histology. Results The pathologic diagnoses by standard histology were 7 invasive ductal carcinomas, 2 invasive lobular carcinomas, 3 ductal carcinomas in-situ (CIS), 21 fibrocystic changes/proliferative conditions, 9 fibroadenomas, and 5 other/benign; two were excluded due to imaging difficulties. Morphologic and cellular features of benign and cancerous lesions were identified in the confocal images and were comparable to standard histologic sections of the same tissue. Conclusion CSLM is a technique with the potential to screen needle core biopsy specimens in real-time. The confocal images contained sufficient information to identify stromal reactions such as fibrosis and cellular proliferations such as intra-ductal and infiltrating carcinoma, and

  18. Measurement of grain size of polycrystalline materials with confocal energy dispersive micro-X-ray diffraction technology based on polycapillary X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Li, Fangzuo; Sun, Xuepeng; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-11

    The confocal energy dispersive micro-X-ray diffraction (EDMXRD) based on polycapillary X-ray optics was used to determine the grain size of polycrystalline materials. The grain size of a metallographic specimen of nickel base alloy was measured by using the confocal EDMXRD. The experimental results demonstrated that the confocal EDMXRD had potential applications in measuring large grain size.

  19. Scenario development methodologies

    International Nuclear Information System (INIS)

    Eng, T.; Hudson, J.; Stephansson, O.

    1994-11-01

    In the period 1981-1994, SKB has studied several methodologies to systematize and visualize all the features, events and processes (FEPs) that can influence a repository for radioactive waste in the future. All the work performed is based on the terminology and basic findings in the joint SKI/SKB work on scenario development presented in the SKB Technical Report 89-35. The methodologies studied are a) Event tree analysis, b) Influence diagrams and c) Rock Engineering Systems (RES) matrices. Each one of the methodologies is explained in this report as well as examples of applications. One chapter is devoted to a comparison between the two most promising methodologies, namely: Influence diagrams and the RES methodology. In conclusion a combination of parts of the Influence diagram and the RES methodology is likely to be a promising approach. 26 refs

  20. Reliability Centered Maintenance - Methodologies

    Science.gov (United States)

    Kammerer, Catherine C.

    2009-01-01

    Journal article about Reliability Centered Maintenance (RCM) methodologies used by United Space Alliance, LLC (USA) in support of the Space Shuttle Program at Kennedy Space Center. The USA Reliability Centered Maintenance program differs from traditional RCM programs because various methodologies are utilized to take advantage of their respective strengths for each application. Based on operational experience, USA has customized the traditional RCM methodology into a streamlined lean logic path and has implemented the use of statistical tools to drive the process. USA RCM has integrated many of the L6S tools into both RCM methodologies. The tools utilized in the Measure, Analyze, and Improve phases of a Lean Six Sigma project lend themselves to application in the RCM process. All USA RCM methodologies meet the requirements defined in SAE JA 1011, Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes. The proposed article explores these methodologies.

  1. Confocal Microscopy for Process Monitoring and Wide-Area Height Determination of Vertically-Aligned Carbon Nanotube Forests

    Directory of Open Access Journals (Sweden)

    Markus Piwko

    2015-08-01

    Full Text Available Confocal microscopy is introduced as a new and generally applicable method for the characterization of the vertically-aligned carbon nanotubes (VACNT forest height. With this technique process control is significantly intensified. The topography of the substrate and VACNT can be mapped with a height resolution down to 15 nm. The advantages of confocal microscopy, compared to scanning electron microscopy (SEM, are demonstrated by investigating the growth kinetics of VACNT using Al2O3 buffer layers with varying thicknesses. A process optimization using confocal microscopy for fast VACNT forest height evaluation is presented.

  2. Evaluation of the therapeutic results of actinic keratosis treated with topical 5% fluorouracil by reflectance confocal laser microscopy: preliminary study*

    Science.gov (United States)

    Ishioka, Priscila; Maia, Marcus; Rodrigues, Sarita Bartholomei; Marta, Alessandra Cristina; Hirata, Sérgio Henrique

    2015-01-01

    Topical treatment for actinic keratosis with 5% fluorouracil has a recurrence rate of 54% in 12 months of follow-up. This study analyzed thirteen actinic keratoses on the upper limbs through confocal microscopy, at the time of clinical diagnosis and after 4 weeks of treatment with fluorouracil. After the treatment was established and evidence of clinical cure was achieved, in two of the nine actinic keratoses, confocal microscopy enabled visualization of focal areas of atypical honeycomb pattern in the epidermis indicating therapeutic failure. Preliminary data suggest the use of confocal microscopy as a tool for diagnosis and therapeutic control of actinic keratosis. PMID:26131881

  3. Tissue clearing for confocal imaging of native and bio-artificial skeletal muscle.

    Science.gov (United States)

    Decroix, L; Van Muylder, V; Desender, L; Sampaolesi, M; Thorrez, L

    2015-01-01

    Novel clearing techniques have revolutionized three-dimensional confocal imaging of the brain without the need for physical tissue sectioning. We evaluated three clearing methods, ScaleA2, Clear(T2), and 3DISCO for visualizing native and tissue engineered muscle by confocal microscopy. We found that Clear(T2) treatment improved the depth of visualization of immunohistochemical staining slightly, but did not improve depth of visualization of endogenous green fluorescent protein (GFP). ScaleA2 preserved endogenous GFP signal better and permitted significantly deeper GFP imaging, but it was incompatible with tropomyosin immunohistochemical staining. 3DISCO treatment preserved both endogenous GFP and immunohistochemical staining, and permitted significantly deeper imaging. Clearing time for the 3DISCO procedure is short compared to ScaleA2 and Clear(T2). We suggest that 3DISCO is the preferable clearing method for native and tissue engineered skeletal muscle tissue.

  4. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells.

    Science.gov (United States)

    Okuno, Masanari; Hamaguchi, Hiro-o

    2010-12-15

    We have developed a multifocus confocal Raman microspectroscopic system for the fast multimode vibrational imaging of living cells. It consists of an inverted microscope equipped with a microlens array, a pinhole array, a fiber bundle, and a multichannel Raman spectrometer. Forty-eight Raman spectra from 48 foci under the microscope are simultaneously obtained by using multifocus excitation and image-compression techniques. The multifocus confocal configuration suppresses the background generated from the cover glass and the cell culturing medium so that high-contrast images are obtainable with a short accumulation time. The system enables us to obtain multimode (10 different vibrational modes) vibrational images of living cells in tens of seconds with only 1 mW laser power at one focal point. This image acquisition time is more than 10 times faster than that in conventional single-focus Raman microspectroscopy.

  5. Investigation of phosphatidylcholine enhancing FITC-insulin across buccal mucosa by confocal laser scanning microscopy

    Science.gov (United States)

    Tian, Weiqun; Su, Li; Zeng, Shaoqun; Luo, Qingming; Gao, Qiuhua; Xu, Huibi

    2002-04-01

    The aim was to characterize the transport of fluorescein isothiocyanate (FITC)-labeled dextran and insulin with different resoluble compounds for peptides and proteins through buccal mucosa. The penetration rate of insulin molecules through porcine buccal mucosa (a nonkeratinized epithelium, comparable to human buccal mucosa) was investigated by measuring transbuccal fluxes and by analyzing the distribution of the fluorescent probe in the rabbit buccal mucosa epithelium, using confocal laser scanning microscopy for visualizing permeation pathways. The confocal images of the distribution pattern of FITC-dextran and FITC-insulin showed that the paracellular route is the major pathway of FITC-dextran through buccal mucosa epithelium, the intra-cellular route is the major pathway of FITC-insulin through buccal mucosa epithelium. The permeation rate can be increased by co-administration of soybean phosphatidylcholine (SPC).

  6. Analysis of cell-tissue grafts under weightless conditions using confocal fluorescence microscopy

    Science.gov (United States)

    Volova, L. T.; Milyakova, M. N.; Rossinskaya, V. V.; Boltovskaya, V. V.; Kulagina, L. N.; Kurganskaya, L. V.; Timchenko, P. E.; Timchenko, E. V.; Zherdeva Taskina, Larisa A.

    2015-03-01

    The research results of monitoring of viable cells in a cellular-tissue graft using confocal laser fluorescence microscopy at 488 nm and 561 nm with the use of fluorophore propidium iodide (propidium iodide, PI Sigma Aldrich USA) are presented. The processing of the received images was carried out using the software ANDOR. It is experimentally shown that the method of confocal fluorescence microscopy is one of the informational methods for detecting cells populated in a 3-D bio-carrier with a resolution of at least 400 nm. Analysis of the received micrographs suggests that the cells that were in a bio-carrier for 30 days in a synchronous ground-based experiment retained their viability compared to a similar space-based experiment in which the cells were hardly detected in a bio-carrier.

  7. Confocal pore size measurement based on super-resolution image restoration.

    Science.gov (United States)

    Liu, Dali; Wang, Yun; Qiu, Lirong; Mao, Xinyue; Zhao, Weiqian

    2014-09-01

    A confocal pore size measurement based on super-resolution image restoration is proposed to obtain a fast and accurate measurement for submicrometer pore size of nuclear track-etched membranes (NTEMs). This method facilitates the online inspection of the pore size evolution during etching. Combining confocal microscopy with super-resolution image restoration significantly improves the lateral resolution of the NTEM image, yields a reasonable circle edge-setting criterion of 0.2408, and achieves precise pore edge detection. Theoretical analysis shows that the minimum measuring diameter can reach 0.19 μm, and the root mean square of the residuals is only 1.4 nm. Edge response simulation and experiment reveal that the edge response of the proposed method is better than 80 nm. The NTEM pore size measurement results obtained by the proposed method agree well with that obtained by scanning electron microscopy.

  8. Superresolution confocal technology for displacement measurements based on total internal reflection.

    Science.gov (United States)

    Kuang, Cuifang; Ali, M Yakut; Hao, Xiang; Wang, Tingting; Liu, Xu

    2010-10-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  9. A multi-axis confocal rheoscope for studying shear flow of structured fluids

    KAUST Repository

    Lin, Neil Y. C.

    2014-03-01

    We present a new design for a confocal rheoscope that enables uniform uniaxial or biaxial shear. The design consists of two precisely positioned parallel plates with a gap that can be adjusted down to 2 ±0.1 μm, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material three-dimensional structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions. © 2014 AIP Publishing LLC.

  10. Superresolution confocal technology for displacement measurements based on total internal reflection

    International Nuclear Information System (INIS)

    Kuang Cuifang; Hao Xiang; Wang Tingting; Liu Xu; Ali, M. Yakut

    2010-01-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  11. Fluorescence lifetime measurement with confocal endomicroscopy for direct analysis of tissue biochemistry in vivo

    Directory of Open Access Journals (Sweden)

    Youngjae Won

    2016-08-01

    Full Text Available Confocal endomicroscopy is a powerful tool for in vivo real-time imaging at cellular resolution inside a living body without tissue resection. Microscopic fluorescence lifetime measurement can provide information about localized biochemical conditions such as pH and the concentrations of oxygen and calcium. We hypothesized that combining these techniques could assist accurate cancer discrimination by providing both biochemical and morphological information. We designed a dual-mode experimental setup for confocal endomicroscopic imaging and fluorescence lifetime measurement and applied it to a mouse xenograft model of activated human pancreatic cancer generated by subcutaneous injection of AsPC-1 tumor cells. Using this method with pH-sensitive sodium fluorescein injection, we demonstrated discrimination between normal and cancerous tissues in a living mouse. With further development, this method may be useful for clinical cancer detection.

  12. Confocal Laser Endomicroscopy in the Study of Colonic Mucosa in IBD Patients: A Review

    Directory of Open Access Journals (Sweden)

    Francesca Salvatori

    2012-01-01

    Full Text Available Confocal laser endomicroscopy (CLE is one of several novel methods that provide real-time, high-resolution imaging at a micronscale via endoscopes. CLE and related technologies are often termed “virtual biopsy” as they simulate the images seen in traditional histology. Recently, the use of CLE was reported in the study of colonic mucosa in patients with inflammatory bowel diseases and in particular in patients affected by ulcerative colitis. CLE has the potential to have an important role in management of IBD patients as it can be used to assess the grading of colitis and in detection of microscopic colitis in endoscopically silent segments. Moreover, CLE can be used in surveillance programs especially in high-risk patients. This report aims to evaluate the current data on the application of confocal endomicroscopy in clinical gastroenterology and particularly in the study of colonic mucosa in UC patients.

  13. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  14. Confocal Raman microscopy to monitor extracellular matrix during dental pulp stem cells differentiation

    Science.gov (United States)

    Salehi, Hamideh; Collart-Dutilleul, Pierre-Yves; Gergely, Csilla; Cuisinier, Frédéric J. G.

    2015-07-01

    Regenerative medicine brings promising applications for mesenchymal stem cells, such as dental pulp stem cells (DPSCs). Confocal Raman microscopy, a noninvasive technique, is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800 to 3000 cm-1 region (C-H stretching) and the 960 cm-1 peak (ν1 PO43-) were collected (to image cells and phosphate, respectively), and the ratio of two peaks 1660 over 1690 cm-1 (amide I bands) to measure the collagen cross-linking has been calculated. Raman spectra of DPSCs after 21 days differentiation reveal several phosphate peaks: ν1 (first stretching mode) at 960 cm-1, ν2 at 430 cm-1, and ν4 at 585 cm-1 and collagen cross-linking can also be calculated. Confocal Raman microscopy enables monitoring osteogenic differentiation in vitro and can be a credible tool for clinical stem cell based research.

  15. Selective Bioparticle Retention and Characterization in a Chip-Integrated Confocal Ultrasonic Cavity

    DEFF Research Database (Denmark)

    Svennebring, J.; Manneberg, O.; Skafte-Pedersen, Peder

    2009-01-01

    We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field at the c......We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field...... sample feeding, a set of several manipulation functions performed in series is demonstrated: sample bypass-injection-aggregation and retention-positioning. Finally, we demonstrate transillumination microscopy imaging Of Ultrasonically trapped COS-7 cell aggregates. Biotechnol. Bioeng. 2009;103: 323-328....

  16. Development of confocal micro X-ray fluorescence instrument using two X-ray beams

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Nakano, Kazuhiko; Ding Xunliang

    2007-01-01

    A new confocal micro X-ray fluorescence instrument was developed. This instrument has two independent micro X-ray tubes with Mo targets. A full polycapillary X-ray lens was attached to each X-ray tube. Another half polycapillary lens was attached to a silicon drift X-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The effects of the excitation of two X-ray beams were investigated. The instrument enabled highly sensitive three-dimensional X-ray fluorescence analysis. We confirmed that the X-ray fluorescence intensity from the sample increased by applying the two independent X-ray tubes in confocal configuration. Elemental depth profiling of black wheat was demonstrated with the result that each element in the surface coat of a wheat grain showed unique distribution

  17. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo

    Science.gov (United States)

    Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  18. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    Science.gov (United States)

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.

  19. Fibered Confocal Fluorescence Microscopy for the Noninvasive Imaging of Langerhans Cells in Macaques.

    Science.gov (United States)

    Todorova, Biliana; Salabert, Nina; Tricot, Sabine; Boisgard, Raphaël; Rathaux, Mélanie; Le Grand, Roger; Chapon, Catherine

    2017-01-01

    We developed a new approach to visualize skin Langerhans cells by in vivo fluorescence imaging in nonhuman primates. Macaques were intradermally injected with a monoclonal, fluorescently labeled antibody against HLA-DR molecule and were imaged for up to 5 days by fibered confocal microscopy (FCFM). The network of skin Langerhans cells was visualized by in vivo fibered confocal fluorescence microscopy. Quantification of Langerhans cells revealed no changes to cell density with time. Ex vivo experiments confirmed that injected fluorescent HLA-DR antibody specifically targeted Langerhans cells in the epidermis. This study demonstrates the feasibility of single-cell, in vivo imaging as a noninvasive technique to track Langerhans cells in nontransgenic animals.

  20. In vivo confocal microscopy in dermatology: from research to clinical application

    Science.gov (United States)

    Ulrich, Martina; Lange-Asschenfeldt, Susanne

    2013-06-01

    Confocal laser scanning microscopy (CLSM) represents an emerging technique for the noninvasive histomorphological analysis of skin in vivo and has shown its applicability for dermatological research as well as its value as an adjunct tool in the clinical management of skin cancer patients. Herein, we aim to give an overview on the current clinical indications for CLSM in dermatology and also highlight the diverse applications of CLSM in dermatological research.

  1. A method for analysis of lipid vesicle domain structure from confocal image data

    DEFF Research Database (Denmark)

    Husen, Peter Rasmussen; Fidorra, Matthias; Hartel, Steffen

    2012-01-01

    Quantitative characterization of the lateral structure of curved membranes based on fluorescence microscopy requires knowledge of the fluorophore distribution on the surface. We present an image analysis approach for extraction of the fluorophore distribution on a spherical lipid vesicle from...... confocal imaging stacks. The technique involves projection of volumetric image data onto a triangulated surface mesh representation of the membrane, correction of photoselection effects and global motion of the vesicle during image acquisition and segmentation of the surface into domains using histograms...

  2. Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2014-01-01

    In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown u......, inoculation of the flow cells, running of the system, confocal laser scanning microscopy and image analysis, and disassembly and cleaning of the system....

  3. A low error reconstruction method for confocal holography to determine 3-dimensional properties

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemin, P.B., E-mail: pbjacque@nps.edu [Mechanical Engineering, University of Victoria, EOW 548,800 Finnerty Road, Victoria, BC (Canada); Herring, R.A. [Mechanical Engineering, University of Victoria, EOW 548,800 Finnerty Road, Victoria, BC (Canada)

    2012-06-15

    A confocal holography microscope developed at the University of Victoria uniquely combines holography with a scanning confocal microscope to non-intrusively measure fluid temperatures in three-dimensions (Herring, 1997), (Abe and Iwasaki, 1999), (Jacquemin et al., 2005). The Confocal Scanning Laser Holography (CSLH) microscope was built and tested to verify the concept of 3D temperature reconstruction from scanned holograms. The CSLH microscope used a focused laser to non-intrusively probe a heated fluid specimen. The focused beam probed the specimen instead of a collimated beam in order to obtain different phase-shift data for each scan position. A collimated beam produced the same information for scanning along the optical propagation z-axis. No rotational scanning mechanisms were used in the CSLH microscope which restricted the scan angle to the cone angle of the probe beam. Limited viewing angle scanning from a single view point window produced a challenge for tomographic 3D reconstruction. The reconstruction matrices were either singular or ill-conditioned making reconstruction with significant error or impossible. Establishing boundary conditions with a particular scanning geometry resulted in a method of reconstruction with low error referred to as 'wily'. The wily reconstruction method can be applied to microscopy situations requiring 3D imaging where there is a single viewpoint window, a probe beam with high numerical aperture, and specified boundary conditions for the specimen. The issues and progress of the wily algorithm for the CSLH microscope are reported herein. -- Highlights: Black-Right-Pointing-Pointer Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. Black-Right-Pointing-Pointer Processing of multiple holograms containing the cumulative refractive index through the fluid. Black-Right-Pointing-Pointer Reconstruction issues due to restricting angular scanning to the numerical aperture of the

  4. Chondrocytes provide a model for in-situ confocal microscopy and 3D reconstructions

    Science.gov (United States)

    Hirsch, Michelle S.; Svoboda, Kathy K. H.

    1994-04-01

    Hyaline cartilage is composed of chondrocytes that reside in lacunae surrounded by extracellular matrix molecules. Microscopic and histochemical features of cartilage have been studied with many techniques. Many of these techniques can be time consuming and may alter natural cartilage characteristics. In addition, the orientation and order of sectioned tissue must be maintained to create 3D reconstructions. We show that confocal laser scanning microscopy may replace traditional methods for studying cartilage.

  5. Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms

    Czech Academy of Sciences Publication Activity Database

    Steinbach, Gabor; Kaňa, Radek

    2016-01-01

    Roč. 22, č. 2 (2016), s. 258-263 ISSN 1431-9276 R&D Projects: GA ČR GAP501/12/0304; GA MŠk EE2.3.30.0059; GA MŠk ED2.1.00/03.0110; GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : automated microscopy * remote controlled microscopy * confocal microscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.891, year: 2016

  6. Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator

    International Nuclear Information System (INIS)

    Goetzinger, S; Menezes, L de S; Benson, O; Talapin, D V; Gaponik, N; Weller, H; Rogach, A L; Sandoghdar, V

    2004-01-01

    We report on experiments where we used a home-made confocal microscope to excite single nanocrystals on a high-Q microsphere resonator. In that way spectra of an individual quantum emitter could be recorded. The Q factor of the microspheres coated with nanocrystals was still up to 10 9 . We also demonstrate the use of a prism coupler as a well-defined output port to collect the fluorescence of an ensemble of nanocrystals coupled to whispering-gallery modes

  7. A low error reconstruction method for confocal holography to determine 3-dimensional properties

    International Nuclear Information System (INIS)

    Jacquemin, P.B.; Herring, R.A.

    2012-01-01

    A confocal holography microscope developed at the University of Victoria uniquely combines holography with a scanning confocal microscope to non-intrusively measure fluid temperatures in three-dimensions (Herring, 1997), (Abe and Iwasaki, 1999), (Jacquemin et al., 2005). The Confocal Scanning Laser Holography (CSLH) microscope was built and tested to verify the concept of 3D temperature reconstruction from scanned holograms. The CSLH microscope used a focused laser to non-intrusively probe a heated fluid specimen. The focused beam probed the specimen instead of a collimated beam in order to obtain different phase-shift data for each scan position. A collimated beam produced the same information for scanning along the optical propagation z-axis. No rotational scanning mechanisms were used in the CSLH microscope which restricted the scan angle to the cone angle of the probe beam. Limited viewing angle scanning from a single view point window produced a challenge for tomographic 3D reconstruction. The reconstruction matrices were either singular or ill-conditioned making reconstruction with significant error or impossible. Establishing boundary conditions with a particular scanning geometry resulted in a method of reconstruction with low error referred to as “wily”. The wily reconstruction method can be applied to microscopy situations requiring 3D imaging where there is a single viewpoint window, a probe beam with high numerical aperture, and specified boundary conditions for the specimen. The issues and progress of the wily algorithm for the CSLH microscope are reported herein. -- Highlights: ► Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. ► Processing of multiple holograms containing the cumulative refractive index through the fluid. ► Reconstruction issues due to restricting angular scanning to the numerical aperture of the beam. ► Minimizing tomographic reconstruction error by defining boundary

  8. Confocal Laser Endomicroscopy in Neurosurgery: A New Technique with Much Potential

    Directory of Open Access Journals (Sweden)

    David Breuskin

    2013-01-01

    Full Text Available Technical innovations in brain tumour diagnostic and therapy have led to significant improvements of patient outcome and recurrence free interval. The use of technical devices such as surgical microscopes as well as neuronavigational systems have helped localising tumours as much as fluorescent agents, such as 5-aminolaevulinic acid, have helped visualizing pathologically altered tissue. Nonetheless, intraoperative instantaneous frozen sections and histological diagnosis remain the only method of gaining certainty of the nature of the resected tissue. This technique is time consuming and does not provide close-to-real-time information. In gastroenterology, confocal endoscopy closed the gap between tissue resection and histological examination, providing an almost real-time histological diagnosis. The potential of this technique using a confocal laser endoscope EndoMAG1 by Karl Storz Company was evaluated by our group on pig brains, tumour tissue cell cultures, and fresh human tumour specimen. Here, the authors report for the first time on the results of applying this new technique and provide first confocal endoscopic images of various brain and tumour structures. In all, the technique harbours a very promising potential to provide almost real-time intraoperative diagnosis, but further studies are needed to provide evidence for the technique’s potential.

  9. A Clinical and Confocal Microscopic Comparison of Transepithelial PRK and LASEK for Myopia

    Directory of Open Access Journals (Sweden)

    Safak Korkmaz

    2014-01-01

    Full Text Available Purpose. To compare the clinical and confocal microscopic results of transepithelial PRK versus LASEK for correction of myopia. Materials and Methods. Twelve patients with myopia received transepithelial PRK in one eye and LASEK in the other. In transepithelial PRK-treated eyes, the corneal epithelium was removed with 40 microns of excimer laser ablation and in LASEK-treated eyes with 25-second application of 18% ethanol. Time to epithelial healing, ocular discomfort, uncorrected and best corrected visual acuities, manifest refraction, haze, greyscale value, and keratocyte apoptosis in confocal microscopy were recorded. Results. The mean time to epithelial healing was significantly longer after LASEK (4.00 ± 0.43 versus 3.17 ± 0.6 days. On day 1, ocular discomfort was significantly higher after transepithelial PRK. The grade of haze, keratocyte apoptosis, and greyscale value in confocal microscopy were significantly higher in transepithelial PRK-treated eyes at 1 month. All transepithelial PRK- and LASEK-treated eyes achieved 20/25 or better UCVA and were within ±1.00 D of emmetropia at final visits. Conclusions. Both transepithelial PRK and LASEK offer effective correction of myopia at 1 year. However, LASEK appeared to induce less discomfort and less intense wound healing in the early postoperative period.

  10. A Clinical and Confocal Microscopic Comparison of Transepithelial PRK and LASEK for Myopia.

    Science.gov (United States)

    Korkmaz, Safak; Bilgihan, Kamil; Sul, Sabahattin; Hondur, Ahmet

    2014-01-01

    Purpose. To compare the clinical and confocal microscopic results of transepithelial PRK versus LASEK for correction of myopia. Materials and Methods. Twelve patients with myopia received transepithelial PRK in one eye and LASEK in the other. In transepithelial PRK-treated eyes, the corneal epithelium was removed with 40 microns of excimer laser ablation and in LASEK-treated eyes with 25-second application of 18% ethanol. Time to epithelial healing, ocular discomfort, uncorrected and best corrected visual acuities, manifest refraction, haze, greyscale value, and keratocyte apoptosis in confocal microscopy were recorded. Results. The mean time to epithelial healing was significantly longer after LASEK (4.00 ± 0.43 versus 3.17 ± 0.6 days). On day 1, ocular discomfort was significantly higher after transepithelial PRK. The grade of haze, keratocyte apoptosis, and greyscale value in confocal microscopy were significantly higher in transepithelial PRK-treated eyes at 1 month. All transepithelial PRK- and LASEK-treated eyes achieved 20/25 or better UCVA and were within ±1.00 D of emmetropia at final visits. Conclusions. Both transepithelial PRK and LASEK offer effective correction of myopia at 1 year. However, LASEK appeared to induce less discomfort and less intense wound healing in the early postoperative period.

  11. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    International Nuclear Information System (INIS)

    Apedo, K.L.; Munzer, C.; He, H.; Montgomery, P.; Serres, N.; Fond, C.; Feugeas, F.

    2015-01-01

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are compared with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied

  12. Development of confocal 3D micro-XRF spectrometer with dual Cr-Mo excitation

    International Nuclear Information System (INIS)

    Kouichi Tsuji; Kazuhiko Nakano

    2007-01-01

    A new 3D micro-XRF instrument based on a confocal setup using two independent poly-capillary x-ray lenses and two x-ray sources (Cr and Mo targets) was developed. A full poly-capillary x-ray lens was attached to each x-ray tube. Another half poly-capillary lens was attached to a silicon drift x-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The depth resolutions that were evaluated by use of a 10-μm thick Au foil were approximately 90 μm for the x-ray energy of Au Lα. The effects of the dual Cr-Mo x-ray beam excitation were investigated. It was confirmed that the XRF intensity of light elements was increased by applying the Cr-target x-ray tube in a confocal configuration. In the proposed confocal configuration, 3D elemental mapping of the major elements of an amaranth seed was performed nondestructively at ambient air pressure. Each element of the seed showed different mapping images in the different depth layers. (authors)

  13. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Apedo, K.L., E-mail: apedo@unistra.fr [ICube, Université de Strasbourg, CNRS, 2 rue Boussingault, 67000 Strasbourg (France); Munzer, C.; He, H. [ICube, INSA de Strasbourg, CNRS, 24 Bld de la Victoire, 67084 Strasbourg (France); Montgomery, P. [ICube, Université de Strasbourg, CNRS, 23 rue du Loess, 67037 Strasbourg (France); Serres, N. [ICube, INSA de Strasbourg, CNRS, 24 Bld de la Victoire, 67084 Strasbourg (France); Fond, C. [ICube, Université de Strasbourg, CNRS, 2 rue Boussingault, 67000 Strasbourg (France); Feugeas, F. [ICube, INSA de Strasbourg, CNRS, 24 Bld de la Victoire, 67084 Strasbourg (France)

    2015-02-15

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are compared with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.

  14. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    Science.gov (United States)

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  15. [Revealing the chemical changes of tea cell wall induced by anthracnose with confocal Raman microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Hu, Xiao-qian; Lou, Bing-gan; He, Yong

    2014-06-01

    Healthy tea and tea infected by anthracnose were first studied by confocal Raman microscopy to illustrate chemical changes of cell wall in the present paper. Firstly, Raman spectra of both healthy and infected sample tissues were collected with spatial resolution at micron-level, and ultrastructure of healthy and infected tea cells was got from scanning electron microscope. These results showed that there were significant changes in Raman shift and Raman intensity between healthy and infected cell walls, indicating that great differences occurred in chemical compositions of cell walls between healthy and infected samples. In details, intensities at many Raman bands which were closely associated with cellulose, pectin, esters were reduced after infection, revealing that the content of chemical compounds such as cellulose, pectin, esters was decreased after infection. Subsequently, chemical imaging of both healthy and infected tea cell walls were realized based on Raman fingerprint spectra of cellulose and microscopic spatial structure. It was found that not only the content of cellulose was reduced greatly after infection, but also the ordered structure of cellulose was destroyed by anthracnose infection. Thus, confocal Raman microscopy was shown to be a powerful tool to detect the chemical changes in cell wall of tea caused by anthracnose without any chemical treatment or staining. This research firstly applied confocal Raman microscopy in phytopathology for the study of interactive relationship between host and pathogen, and it will also open a new way for intensive study of host-pathogen at cellular level.

  16. Laser confocal measurement system for curvature radius of lenses based on grating ruler

    Science.gov (United States)

    Tian, Jiwei; Wang, Yun; Zhou, Nan; Zhao, Weirui; Zhao, Weiqian

    2015-02-01

    In the modern optical measurement field, the radius of curvature (ROC) is one of the fundamental parameters of optical lens. Its measurement accuracy directly affects the other optical parameters, such as focal length, aberration and so on, which significantly affect the overall performance of the optical system. To meet the demand of measurement instruments for radius of curvature (ROC) with high accuracy in the market, we develop a laser confocal radius measurement system with grating ruler. The system uses the peak point of the confocal intensity curve to precisely identify the cat-eye and confocal positions and then measure the distance between these two positions by using the grating ruler, thereby achieving the high-precision measurement for the ROC. The system has advantages of high focusing sensitivity and anti-environment disturbance ability. And the preliminary theoretical analysis and experiments show that the measuring repeatability can be up to 0.8 um, which can provide an effective way for the accurate measurement of ROC.

  17. Development of confocal 3D micro-XRF spectrometer with dual Cr-Mo excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kouichi Tsuji [Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 (Japan); PRESTO-JST - Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Kazuhiko Nakano [Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 (Japan)

    2007-05-15

    A new 3D micro-XRF instrument based on a confocal setup using two independent poly-capillary x-ray lenses and two x-ray sources (Cr and Mo targets) was developed. A full poly-capillary x-ray lens was attached to each x-ray tube. Another half poly-capillary lens was attached to a silicon drift x-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The depth resolutions that were evaluated by use of a 10-{mu}m thick Au foil were approximately 90 {mu}m for the x-ray energy of Au L{alpha}. The effects of the dual Cr-Mo x-ray beam excitation were investigated. It was confirmed that the XRF intensity of light elements was increased by applying the Cr-target x-ray tube in a confocal configuration. In the proposed confocal configuration, 3D elemental mapping of the major elements of an amaranth seed was performed nondestructively at ambient air pressure. Each element of the seed showed different mapping images in the different depth layers. (authors)

  18. Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells

    International Nuclear Information System (INIS)

    Meller, Karl; Theiss, Carsten

    2006-01-01

    We describe a technical method of cell permeabilisation and embedding to study the organisation and distribution of intracellular proteins with aid of atomic force microscopy and confocal laser scanning microscopy in identical areas. While confocal laser scanning microscopy is useful for the identification of certain proteins subsequent labelling with markers or antibodies, atomic force microscopy allows the observation of macromolecular structures in fixed and living cells. To demonstrate the field of application of this preparatory technique, cells were permeabilised, fixed, and the actin cytoskeleton was stained with phalloidin-rhodamine. Confocal laser scanning microscopy was used to show the organisation of these microfilaments, e.g. geodesic dome structures. Thereafter, cells were embedded in Durcupan water-soluble resin, followed by UV-polymerisation of resin at 4 o C. This procedure allowed intracellular visualisation of the cell nucleus or cytoskeletal elements by atomic force microscopy, for instance to analyse the globular organisation of actin filaments. Therefore, this method offers a great potential to combine both microscopy techniques in order to understand and interpret intracellular protein relations, for example, the biochemical and morphological interaction of the cytoskeleton

  19. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    Science.gov (United States)

    Wouterlood, Floris G

    2014-04-10

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible. Copyright © 2014 John Wiley & Sons, Inc.

  20. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    International Nuclear Information System (INIS)

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary

  1. Confocal microscope is able to detect calcium metabolic in neuronal infection by toxoplasma gondii

    Science.gov (United States)

    Sensusiati, A. D.; Priya, T. K. S.; Dachlan, Y. P.

    2017-05-01

    Calcium metabolism plays a very important role in neurons infected by Toxoplasma. Detection of change of calcium metabolism of neuron infected by Toxoplasma and Toxoplasma requires the calculation both quantitative and qualitative method. Confocal microscope has the ability to capture the wave of the fluorescent emission of the fluorescent dyes used in the measurement of cell calcium. The purpose of this study was to prove the difference in calcium changes between infected and uninfected neurons using confocal microscopy. Neuronal culture of human-skin-derived neural stem cell were divided into 6 groups, consisting 3 uninfected groups and 3 infected groups. Among the 3 groups were 2 hours, 24 hours and 48 hours. The neuron Toxoplasma gondii ratio was 1:5. Observation of intracellular calcium of neuron and tachyzoite, evidence of necrosis, apoptosis and the expression of Hsp 70 of neuron were examined by confocal microscope. The normality of the data was analysed by Kolmogorov-Smirnov Test, differentiation test was checked by t2 Test, and ANOVAs, for correlation test was done by Pearson Correlation Test. The calcium intensity of cytosolic neuron and T. gondii was significantly different from control groups (pneurons both in quantitatively and qualitatively.

  2. A faster, high resolution, mtPA-GFP-based mitochondrial fusion assay acquiring kinetic data of multiple cells in parallel using confocal microscopy.

    Science.gov (United States)

    Lovy, Alenka; Molina, Anthony J A; Cerqueira, Fernanda M; Trudeau, Kyle; Shirihai, Orian S

    2012-07-20

    Mitochondrial fusion plays an essential role in mitochondrial calcium homeostasis, bioenergetics, autophagy and quality control. Fusion is quantified in living cells by photo-conversion of matrix targeted photoactivatable GFP (mtPAGFP) in a subset of mitochondria. The rate at which the photoconverted molecules equilibrate across the entire mitochondrial population is used as a measure of fusion activity. Thus far measurements were performed using a single cell time lapse approach, quantifying the equilibration in one cell over an hour. Here, we scale up and automate a previously published live cell method based on using mtPAGFP and a low concentration of TMRE (15 nm). This method involves photoactivating a small portion of the mitochondrial network, collecting highly resolved stacks of confocal sections every 15 min for 1 hour, and quantifying the change in signal intensity. Depending on several factors such as ease of finding PAGFP expressing cells, and the signal of the photoactivated regions, it is possible to collect around 10 cells within the 15 min intervals. This provides a significant improvement in the time efficiency of this assay while maintaining the highly resolved subcellular quantification as well as the kinetic parameters necessary to capture the detail of mitochondrial behavior in its native cytoarchitectural environment. Mitochondrial dynamics play a role in many cellular processes including respiration, calcium regulation, and apoptosis. The structure of the mitochondrial network affects the function of mitochondria, and the way they interact with the rest of the cell. Undergoing constant division and fusion, mitochondrial networks attain various shapes ranging from highly fused networks, to being more fragmented. Interestingly, Alzheimer's disease, Parkinson's disease, Charcot Marie Tooth 2A, and dominant optic atrophy have been correlated with altered mitochondrial morphology, namely fragmented networks. Often times, upon fragmentation

  3. Introduction to LCA Methodology

    DEFF Research Database (Denmark)

    Hauschild, Michael Z.

    2018-01-01

    In order to offer the reader an overview of the LCA methodology in the preparation of the more detailed description of its different phases, a brief introduction is given to the methodological framework according to the ISO 14040 standard and the main elements of each of its phases. Emphasis...

  4. Methodologies, languages and tools

    International Nuclear Information System (INIS)

    Amako, Katsuya

    1994-01-01

    This is a summary of the open-quotes Methodologies, Languages and Toolsclose quotes session in the CHEP'94 conference. All the contributions to methodologies and languages are relevant to the object-oriented approach. Other topics presented are related to various software tools in the down-sized computing environment

  5. Menopause and Methodological Doubt

    Science.gov (United States)

    Spence, Sheila

    2005-01-01

    Menopause and methodological doubt begins by making a tongue-in-cheek comparison between Descartes' methodological doubt and the self-doubt that can arise around menopause. A hermeneutic approach is taken in which Cartesian dualism and its implications for the way women are viewed in society are examined, both through the experiences of women…

  6. VEM: Virtual Enterprise Methodology

    DEFF Research Database (Denmark)

    Tølle, Martin; Vesterager, Johan

    2003-01-01

    This chapter presents a virtual enterprise methodology (VEM) that outlines activities to consider when setting up and managing virtual enterprises (VEs). As a methodology the VEM helps companies to ask the right questions when preparing for and setting up an enterprise network, which works...

  7. Data Centric Development Methodology

    Science.gov (United States)

    Khoury, Fadi E.

    2012-01-01

    Data centric applications, an important effort of software development in large organizations, have been mostly adopting a software methodology, such as a waterfall or Rational Unified Process, as the framework for its development. These methodologies could work on structural, procedural, or object oriented based applications, but fails to capture…

  8. The Methodology of Magpies

    Science.gov (United States)

    Carter, Susan

    2014-01-01

    Arts/Humanities researchers frequently do not explain methodology overtly; instead, they "perform" it through their use of language, textual and historic cross-reference, and theory. Here, methodologies from literary studies are shown to add to Higher Education (HE) an exegetical and critically pluralist approach. This includes…

  9. Observation of ice sheet formation on methane and ethane gas hydrates using a scanning confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, J.; Shimomura, N.; Ebinuma, T.; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira, Sapporo (Japan). Methane Hydrate Research Lab.

    2008-07-01

    Interest in gas hydrates has increased in recent years due to the discovery of large deposits under the ocean floor and in permafrost regions. Natural gas hydrates, including methane, is expected to become a new energy source and a medium for energy storage and transportation. Gas hydrates consist of an open network of water molecules that are hydrogen-bonded in a similar manner to ice. Gas molecules are interstitially engaged under high pressures and low temperatures. Although the dissociation temperature of methane hydrate under atmospheric pressure is about 193 K, studies have shown that methane hydrate can be stored at atmospheric pressure and 267 K for 2 years. Because of this phenomenon, known as self-preservation, transportation and storage of methane hydrate can occur at temperature conditions milder than those for liquefied methane gas at atmospheric pressure. This study examined the surface changes of methane and ethane hydrates during dissociation using an optical microscope and confocal scanning microscope (CSM). This paper reported on the results when the atmospheric gas pressure was decreased. Ice sheets formed on the surfaces of methane and ethane gas hydrates due to depressurizing dissociation of methane and ethane hydrates when the methane and ethane gas pressures were decreased at designated temperatures. The dissociation of methane gas hydrate below below 237 K resulted in the generation of small ice particles on the hydrate surface. A transparent ice sheet formed on the hydrate surface above 242 K. The thickness of the ice sheet on the methane hydrate surface showed the maximum of ca. 30 {mu}m at 253 K. In the case of ethane hydrates, ice particles and ice sheets formed below 262 and 267 respectively. Since the ice particles and ice sheets were formed by water molecules generated during the gas hydrate dissociation, the mechanism of ice sheet formation depends on the dissociation rate of hydrate, ice particle sintering rate, and water molecule

  10. Computer Aided Diagnosis for Confocal Laser Endomicroscopy in Advanced Colorectal Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Daniela Ştefănescu

    Full Text Available Confocal laser endomicroscopy (CLE is becoming a popular method for optical biopsy of digestive mucosa for both diagnostic and therapeutic procedures. Computer aided diagnosis of CLE images, using image processing and fractal analysis can be used to quantify the histological structures in the CLE generated images. The aim of this study is to develop an automatic diagnosis algorithm of colorectal cancer (CRC, based on fractal analysis and neural network modeling of the CLE-generated colon mucosa images.We retrospectively analyzed a series of 1035 artifact-free endomicroscopy images, obtained during CLE examinations from normal mucosa (356 images and tumor regions (679 images. The images were processed using a computer aided diagnosis (CAD medical imaging system in order to obtain an automatic diagnosis. The CAD application includes image reading and processing functions, a module for fractal analysis, grey-level co-occurrence matrix (GLCM computation module, and a feature identification module based on the Marching Squares and linear interpolation methods. A two-layer neural network was trained to automatically interpret the imaging data and diagnose the pathological samples based on the fractal dimension and the characteristic features of the biological tissues.Normal colon mucosa is characterized by regular polyhedral crypt structures whereas malignant colon mucosa is characterized by irregular and interrupted crypts, which can be diagnosed by CAD. For this purpose, seven geometric parameters were defined for each image: fractal dimension, lacunarity, contrast correlation, energy, homogeneity, and feature number. Of the seven parameters only contrast, homogeneity and feature number were significantly different between normal and cancer samples. Next, a two-layer feed forward neural network was used to train and automatically diagnose the malignant samples, based on the seven parameters tested. The neural network operations were cross

  11. Confocal analysis of nervous system architecture in direct-developing juveniles of Neanthes arenaceodentata (Annelida, Nereididae

    Directory of Open Access Journals (Sweden)

    Jacobs David K

    2010-06-01

    Full Text Available Abstract Background Members of Family Nereididae have complex neural morphology exemplary of errant polychaetes and are leading research models in the investigation of annelid nervous systems. However, few studies focus on the development of their nervous system morphology. Such data are particularly relevant today, as nereidids are the subjects of a growing body of "evo-devo" work concerning bilaterian nervous systems, and detailed knowledge of their developing neuroanatomy facilitates the interpretation of gene expression analyses. In addition, new data are needed to resolve discrepancies between classic studies of nereidid neuroanatomy. We present a neuroanatomical overview based on acetylated α-tubulin labeling and confocal microscopy for post-embryonic stages of Neanthes arenaceodentata, a direct-developing nereidid. Results At hatching (2-3 chaetigers, the nervous system has developed much of the complexity of the adult (large brain, circumesophageal connectives, nerve cords, segmental nerves, and the stomatogastric nervous system is partially formed. By the 5-chaetiger stage, the cephalic appendages and anal cirri are well innervated and have clear connections to the central nervous system. Within one week of hatching (9-chaetigers, cephalic sensory structures (e.g., nuchal organs, Langdon's organs and brain substructures (e.g., corpora pedunculata, stomatogastric ganglia are clearly differentiated. Additionally, the segmental-nerve architecture (including interconnections matches descriptions of other, adult nereidids, and the pharynx has developed longitudinal nerves, nerve rings, and ganglia. All central roots of the stomatogastric nervous system are distinguishable in 12-chaetiger juveniles. Evidence was also found for two previously undescribed peripheral nerve interconnections and aspects of parapodial muscle innervation. Conclusions N. arenaceodentata has apparently lost all essential trochophore characteristics typical of

  12. 24 CFR 904.205 - Training methodology.

    Science.gov (United States)

    2010-04-01

    ... Training methodology. Equal in importance to the content of the pre- and post-occupancy training is the training methodology. Because groups vary, there should be adaptability in the communication and learning experience. Methods to be utilized may include group presentations, small discussion groups, special classes...

  13. A methodology for developing distributed programs

    NARCIS (Netherlands)

    Ramesh, S.; Mehndiratta, S.L.

    1987-01-01

    A methodology, different from the existing ones, for constructing distributed programs is presented. It is based on the well-known idea of developing distributed programs via synchronous and centralized programs. The distinguishing features of the methodology are: 1) specification include process

  14. Multispectral confocal microscopy images and artificial neural nets to monitor the photosensitizer uptake and degradation in Candida albicans cells

    Science.gov (United States)

    Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Guimarães, Francisco E. G.

    2017-07-01

    This study clearly demonstrates that multispectral confocal microscopy images analyzed by artificial neural networks provides a powerful tool to real-time monitoring photosensitizer uptake, as well as photochemical transformations occurred.

  15. Methodological Problems of Nanotechnoscience

    Science.gov (United States)

    Gorokhov, V. G.

    Recently, we have reported on the definitions of nanotechnology as a new type of NanoTechnoScience and on the nanotheory as a cluster of the different natural and engineering theories. Nanotechnology is not only a new type of scientific-engineering discipline, but it evolves also in a “nonclassical” way. Nanoontology or nano scientific world view has a function of the methodological orientation for the choice the theoretical means and methods toward a solution to the scientific and engineering problems. This allows to change from one explanation and scientific world view to another without any problems. Thus, nanotechnology is both a field of scientific knowledge and a sphere of engineering activity, in other words, NanoTechnoScience is similar to Systems Engineering as the analysis and design of large-scale, complex, man/machine systems but micro- and nanosystems. Nano systems engineering as well as Macro systems engineering includes not only systems design but also complex research. Design orientation has influence on the change of the priorities in the complex research and of the relation to the knowledge, not only to “the knowledge about something”, but also to the knowledge as the means of activity: from the beginning control and restructuring of matter at the nano-scale is a necessary element of nanoscience.

  16. Performances for confocal X-ray diffraction technology based on polycapillary slightly focusing X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hehe; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stxbeijing@163.com [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Sun, Weiyuan; Li, Yude; Lin, Xiaoyan; Zhao, Weigang; Zhao, Guangcui; Luo, Ping; Pan, Qiuli; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2013-09-21

    The confocal X-ray diffraction (XRD) technology based on a polycapillary slightly focusing X-ray lens (PSFXRL) in excitation channel and a polycapillary parallel X-ray lens (PPXRL) with a long input focal distance in detection channel was developed. The output focal spot of the PSFXRL and the input focal spot of the PPXRL were adjusted in confocal configuration, and only the X-rays from the volume overlapped by these foci could be accordingly detected. This confocal configuration was helpful in decreasing background. The convergence of the beam focused by the PSFXRL and divergence of the beam which could be collected by the PPXRL with a long input focal distance were both about 9 mrad at 8 keV. This was helpful in improving the resolution of lattice spacing of this confocal XRD technology. The gain in power density of such PSFXRL and PPXRL was about 120 and 7 at 11 keV, respectively, which was helpful in using the low power source to perform XRD analysis efficiently. The performances of this confocal XRD technology were provided, and some common plastics were analyzed. The experimental results demonstrated that the confocal diffraction technology base on polycapillary slightly focusing X-ray optics had wide potential applications.

  17. Soft systems methodology: other voices

    OpenAIRE

    Holwell, Sue

    2000-01-01

    This issue of Systemic Practice and Action Research, celebrating the work of Peter Checkland, in the particular nature and development of soft systems methodology (SSM), would not have happened unless the work was seen by others as being important. No significant contribution to thinking happens without a secondary literature developing. Not surprisingly, many commentaries have accompanied the ongoing development of SSM. Some of these are insightful, some full of errors, and some include both...

  18. Methodological remarks on contraction theory

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Slotine, Jean-Jacques E.

    Because contraction analysis stems from a differential and incremental framework, the nature and methodology of contraction-based proofs are significantly different from those of their Lyapunov-based counterparts. This paper specifically studies this issue, and illustrates it by revisiting some c...... classical examples traditionally addressed using Lyapunov theory. Even in these cases, contraction tools can often yield significantly simplified analysis. The examples include adaptive control, robotics, and a proof of convergence of the deterministic Extended Kalman Filter....

  19. Methodology for ranking restoration options

    International Nuclear Information System (INIS)

    Hedemann Jensen, Per

    1999-04-01

    The work described in this report has been performed as a part of the RESTRAT Project FI4P-CT95-0021a (PL 950128) co-funded by the Nuclear Fission Safety Programme of the European Commission. The RESTRAT project has the overall objective of developing generic methodologies for ranking restoration techniques as a function of contamination and site characteristics. The project includes analyses of existing remediation methodologies and contaminated sites, and is structured in the following steps: characterisation of relevant contaminated sites; identification and characterisation of relevant restoration techniques; assessment of the radiological impact; development and application of a selection methodology for restoration options; formulation of generic conclusions and development of a manual. The project is intended to apply to situations in which sites with nuclear installations have been contaminated with radioactive materials as a result of the operation of these installations. The areas considered for remedial measures include contaminated land areas, rivers and sediments in rivers, lakes, and sea areas. Five contaminated European sites have been studied. Various remedial measures have been envisaged with respect to the optimisation of the protection of the populations being exposed to the radionuclides at the sites. Cost-benefit analysis and multi-attribute utility analysis have been applied for optimisation. Health, economic and social attributes have been included and weighting factors for the different attributes have been determined by the use of scaling constants. (au)

  20. Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.

    Science.gov (United States)

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo

    2015-07-01

    Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.

  1. Design Methodology - Design Synthesis

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup

    2003-01-01

    Design Methodology is part of our practice and our knowledge about designing, and it has been strongly supported by the establishing and work of a design research community. The aim of this article is to broaden the reader¿s view of designing and Design Methodology. This is done by sketching...... the development of Design Methodology through time and sketching some important approaches and methods. The development is mainly forced by changing industrial condition, by the growth of IT support for designing, but also by the growth of insight into designing created by design researchers.......ABSTRACT Design Methodology shall be seen as our understanding of how to design; it is an early (emerging late 60ies) and original articulation of teachable and learnable methodics. The insight is based upon two sources: the nature of the designed artefacts and the nature of human designing. Today...

  2. GPS system simulation methodology

    Science.gov (United States)

    Ewing, Thomas F.

    1993-01-01

    The following topics are presented: background; Global Positioning System (GPS) methodology overview; the graphical user interface (GUI); current models; application to space nuclear power/propulsion; and interfacing requirements. The discussion is presented in vugraph form.

  3. Hazard classification methodology

    International Nuclear Information System (INIS)

    Brereton, S.J.

    1996-01-01

    This document outlines the hazard classification methodology used to determine the hazard classification of the NIF LTAB, OAB, and the support facilities on the basis of radionuclides and chemicals. The hazard classification determines the safety analysis requirements for a facility

  4. Nonlinear Image Denoising Methodologies

    National Research Council Canada - National Science Library

    Yufang, Bao

    2002-01-01

    In this thesis, we propose a theoretical as well as practical framework to combine geometric prior information to a statistical/probabilistic methodology in the investigation of a denoising problem...

  5. Clinical trial methodology

    National Research Council Canada - National Science Library

    Peace, Karl E; Chen, Ding-Geng

    2011-01-01

    "Now viewed as its own scientific discipline, clinical trial methodology encompasses the methods required for the protection of participants in a clinical trial and the methods necessary to provide...

  6. PSA methodology including new design, operational and safety factors, 'Level of recognition of phenomena with a presumed dominant influence upon operational safety' (failures of conventional as well as non-conventional passive components, dependent failures, influence of operator, fires and external threats, digital control, organizational factors)

    International Nuclear Information System (INIS)

    Jirsa, P.

    2001-10-01

    The document represents a specific type of discussion of existing methodologies for the creation and application of probabilistic safety assessment (PSA) in light of the EUR document summarizing requirements placed by Western European NPP operators on the future design of nuclear power plants. A partial goal of this discussion consists in mapping, from the PSA point of view, those selected design, operational and/or safety factors of future NPPs that may be entirely new or, at least, newly addressed. Therefore, the terms of reference for this stage were formulated as follows: Assess current level of knowledge and procedures in the analysis of factors and phenomena with a dominant influence upon operational safety of new generation reactors, especially in the following areas: (1) Phenomenology of failure types and mechanisms and reliability of conventional passive safety system components; (2) Phenomenology of failure types and mechanisms and reliability of non-conventional passive components of newly designed safety systems; (3) Phenomenology of types and mechanisms of dependent failures; (4) Human factor role in new generation reactors and its effect upon safety; (5) Fire safety and other external threats to new nuclear installations; (6) Reliability of the digital systems of the I and C system and their effect upon safety; and (7) Organizational factors in new nuclear installations. (P.A.)

  7. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1992-03-01

    This report describes risk assessment methodology associated with the remedial action programs at the Hanford Reservation. Topics addressed include human health evaluation, pollutant and radionuclide transport through the environment, and environmental transport pathways

  8. Methodology of sustainability accounting

    Directory of Open Access Journals (Sweden)

    O.H. Sokil

    2017-03-01

    Full Text Available Modern challenges of the theory and methodology of accounting are realized through the formation and implementation of new concepts, the purpose of which is to meet the needs of users in standard and unique information. The development of a methodology for sustainability accounting is a key aspect of the management of an economic entity. The purpose of the article is to form the methodological bases of accounting for sustainable development and determine its goals, objectives, object, subject, methods, functions and key aspects. The author analyzes the theoretical bases of the definition and considers the components of the traditional accounting methodology. Generalized structural diagram of the methodology for accounting for sustainable development is offered in the article. The complex of methods and principles of sustainable development accounting for systematized and non-standard provisions has been systematized. The new system of theoretical and methodological provisions of accounting for sustainable development is justified in the context of determining its purpose, objective, subject, object, methods, functions and key aspects.

  9. Formalizing the ISDF Software Development Methodology

    Directory of Open Access Journals (Sweden)

    Mihai Liviu DESPA

    2015-01-01

    Full Text Available The paper is aimed at depicting the ISDF software development methodology by emphasizing quality management and software development lifecycle. The ISDF methodology was built especially for innovative software development projects. The ISDF methodology was developed empirically by trial and error in the process of implementing multiple innovative projects. The research process began by analysing key concepts like innovation and software development and by settling the important dilemma of what makes a web application innovative. Innovation in software development is presented from the end-user, project owner and project manager’s point of view. The main components of a software development methodology are identified. Thus a software development methodology should account for people, roles, skills, teams, tools, techniques, processes, activities, standards, quality measuring tools, and team values. Current software development models are presented and briefly analysed. The need for a dedicated innovation oriented software development methodology is emphasized by highlighting shortcomings of current software development methodologies when tackling innovation. The ISDF methodology is presented in the context of developing an actual application. The ALHPA application is used as a case study for emphasizing the characteristics of the ISDF methodology. The development life cycle of the ISDF methodology includes research, planning, prototyping, design, development, testing, setup and maintenance. Artefacts generated by the ISDF methodology are presented. Quality is managed in the ISDF methodology by assessing compliance, usability, reliability, repeatability, availability and security. In order to properly asses each quality component a dedicated indicator is built. A template for interpreting each indicator is provided. Conclusions are formulated and new related research topics are submitted for debate.

  10. Methodology for evaluation of railroad technology research projects

    Science.gov (United States)

    1981-04-01

    This Project memorandum presents a methodology for evaluating railroad research projects. The methodology includes consideration of industry and societal benefits, with special attention given to technical risks, implementation considerations, and po...

  11. Screening radon risks: A methodology for policymakers

    International Nuclear Information System (INIS)

    Eisinger, D.S.; Simmons, R.A.; Lammering, M.; Sotiros, R.

    1991-01-01

    This paper provides an easy-to-use screening methodology to estimate potential excess lifetime lung cancer risk resulting from indoor radon exposure. The methodology was developed under U.S. EPA Office of Policy, Planning, and Evaluation sponsorship of the agency's Integrated Environmental Management Projects (IEMP) and State/Regional Comparative Risk Projects. These projects help policymakers understand and use scientific data to develop environmental problem-solving strategies. This research presents the risk assessment methodology, discusses its basis, and identifies appropriate applications. The paper also identifies assumptions built into the methodology and qualitatively addresses methodological uncertainties, the direction in which these uncertainties could bias analyses, and their relative importance. The methodology draws from several sources, including risk assessment formulations developed by the U.S. EPA's Office of Radiation Programs, the EPA's Integrated Environmental Management Project (Denver), the International Commission on Radiological Protection, and the National Institute for Occupational Safety and Health. When constructed as a spreadsheet program, the methodology easily facilitates analyses and sensitivity studies (the paper includes several sensitivity study options). The methodology will be most helpful to those who need to make decisions concerning radon testing, public education, and exposure prevention and mitigation programs.26 references

  12. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.

    Science.gov (United States)

    Peterson, Brittni M; Mermelstein, Paul G; Meisel, Robert L

    2015-03-15

    Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Modeling of Fibrin Gels Based on Confocal Microscopy and Light-Scattering Data

    Science.gov (United States)

    Magatti, Davide; Molteni, Matteo; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-01-01

    Fibrin gels are biological networks that play a fundamental role in blood coagulation and other patho/physiological processes, such as thrombosis and cancer. Electron and confocal microscopies show a collection of fibers that are relatively monodisperse in diameter, not uniformly distributed, and connected at nodal points with a branching order of ∼3–4. Although in the confocal images the hydrated fibers appear to be quite straight (mass fractal dimension Dm = 1), for the overall system 1confocal images, we developed a method to generate three-dimensional (3D) in silico gels made of cylindrical sticks of diameter d, density ρ, and average length 〈L〉, joined at randomly distributed nodal points. The resulting 3D network strikingly resembles real fibrin gels and can be sketched as an assembly of densely packed fractal blobs, i.e., regions of size ξ, where the fiber concentration is higher than average. The blobs are placed at a distance ξ0 between their centers of mass so that they are overlapped by a factor η = ξ/ξ0 and have Dm ∼1.2–1.6. The in silico gels’ structure is quantitatively analyzed by its 3D spatial correlation function g3D(r) and corresponding power spectrum I(q) = FFT3D[g3D(r)], from which ρ, d, Dm, η, and ξ0 can be extracted. In particular, ξ0 provides an excellent estimate of the gel mesh size. The in silico gels’ I(q) compares quite well with real gels’ elastic light-scattering measurements. We then derived an analytical form factor for accurately fitting the scattering data, which allowed us to directly recover the gels’ structural parameters. PMID:23473498

  14. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    Science.gov (United States)

    Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  15. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications.

    Science.gov (United States)

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James; Khmaladze, Alexander

    2016-11-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts.

  16. Quantitative analysis of microbicide concentrations in fluids, gels and tissues using confocal Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Oranat Chuchuen

    Full Text Available Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold

  17. Quantitative Analysis of Microbicide Concentrations in Fluids, Gels and Tissues Using Confocal Raman Spectroscopy

    Science.gov (United States)

    Chuchuen, Oranat; Henderson, Marcus H.; Sykes, Craig; Kim, Min Sung; Kashuba, Angela D. M.; Katz, David F.

    2013-01-01

    Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry) are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold standard LC-MS/MS data

  18. Semi-automated scoring of triple-probe FISH in human sperm using confocal microscopy.

    Science.gov (United States)

    Branch, Francesca; Nguyen, GiaLinh; Porter, Nicholas; Young, Heather A; Martenies, Sheena E; McCray, Nathan; Deloid, Glen; Popratiloff, Anastas; Perry, Melissa J

    2017-09-01

    Structural and numerical sperm chromosomal aberrations result from abnormal meiosis and are directly linked to infertility. Any live births that arise from aneuploid conceptuses can result in syndromes such as Kleinfelter, Turners, XYY and Edwards. Multi-probe fluorescence in situ hybridization (FISH) is commonly used to study sperm aneuploidy, however manual FISH scoring in sperm samples is labor-intensive and introduces errors. Automated scoring methods are continuously evolving. One challenging aspect for optimizing automated sperm FISH scoring has been the overlap in excitation and emission of the fluorescent probes used to enumerate the chromosomes of interest. Our objective was to demonstrate the feasibility of combining confocal microscopy and spectral imaging with high-throughput methods for accurately measuring sperm aneuploidy. Our approach used confocal microscopy to analyze numerical chromosomal abnormalities in human sperm using enhanced slide preparation and rigorous semi-automated scoring methods. FISH for chromosomes X, Y, and 18 was conducted to determine sex chromosome disomy in sperm nuclei. Application of online spectral linear unmixing was used for effective separation of four fluorochromes while decreasing data acquisition time. Semi-automated image processing, segmentation, classification, and scoring were performed on 10 slides using custom image processing and analysis software and results were compared with manual methods. No significant differences in disomy frequencies were seen between the semi automated and manual methods. Samples treated with pepsin were observed to have reduced background autofluorescence and more uniform distribution of cells. These results demonstrate that semi-automated methods using spectral imaging on a confocal platform are a feasible approach for analyzing numerical chromosomal aberrations in sperm, and are comparable to manual methods. © 2017 International Society for Advancement of Cytometry. © 2017

  19. Microbiological Methodology in Astrobiology

    Science.gov (United States)

    Abyzov, S. S.; Gerasimenko, L. M.; Hoover, R. B.; Mitskevich, I. N.; Mulyukin, A. L.; Poglazova, M. N.; Rozanov, A. Y.

    2005-01-01

    Searching for life in astromaterials to be delivered from the future missions to extraterrestrial bodies is undoubtedly related to studies of the properties and signatures of living microbial cells and microfossils on Earth. As model terrestrial analogs of Martian polar subsurface layers are often regarded the Antarctic glacier and Earth permafrost habitats where alive microbial cells preserved viability for millennia years due to entering the anabiotic state. For the future findings of viable microorganisms in samples from extraterrestrial objects, it is important to use a combined methodology that includes classical microbiological methods, plating onto nutrient media, direct epifluorescence and electron microscopy examinations, detection of the elemental composition of cells, radiolabeling techniques, PCR and FISH methods. Of great importance is to ensure authenticity of microorganisms (if any in studied samples) and to standardize the protocols used to minimize a risk of external contamination. Although the convincing evidence of extraterrestrial microbial life will may come from the discovery of living cells in astromaterials, biomorphs and microfossils must also be regarded as a target in search of life evidence bearing in mind a scenario that alive microorganisms had not be preserved and underwent mineralization. Under the laboratory conditions, processes that accompanied fossilization of cyanobacteria were reconstructed, and artificially produced cyanobacterial stromatolites resembles by their morphological properties those found in natural Earth habitats. Regarding the vital importance of distinguishing between biogenic and abiogenic signatures and between living and fossil microorganisms in analyzed samples, it is worthwhile to use some previously developed approaches based on electron microscopy examinations and analysis of elemental composition of biomorphs in situ and comparison with the analogous data obtained for laboratory microbial cultures and

  20. Combination of Small Molecule Microarray and Confocal Microscopy Techniques for Live Cell Staining Fluorescent Dye Discovery

    Directory of Open Access Journals (Sweden)

    Attila Bokros

    2013-08-01

    Full Text Available Discovering new fluorochromes is significantly advanced by high-throughput screening (HTS methods. In the present study a combination of small molecule microarray (SMM prescreening and confocal laser scanning microscopy (CLSM was developed in order to discover novel cell staining fluorescent dyes. Compounds with high native fluorescence were selected from a 14,585-member library and further tested on living cells under the microscope. Eleven compartment-specific, cell-permeable (or plasma membrane-targeted fluorochromes were identified. Their cytotoxicity was tested and found that between 1–10 micromolar range, they were non-toxic even during long-term incubations.

  1. Lateral Brightness Correction in Confocal Microscopy Images Using Mathematical Morphology Filters

    Czech Academy of Sciences Publication Activity Database

    Michálek, Jan; Čapek, M.; Mao, X. W.; Kubínová, Lucie

    2010-01-01

    Roč. 16, Suppl.2 (2010), s. 758-759 ISSN 1431-9276. [Microscopy and Microanalysis 2010. Portland, 01.08.2010-05.08.2010] R&D Projects: GA MŠk(CZ) LC06063; GA MŠk(CZ) ME09010; GA ČR(CZ) GA102/08/0691; GA ČR(CZ) GA304/09/0733 Institutional research plan: CEZ:AV0Z50110509 Keywords : Lipschitz cover * lateral intensity correction * confocal microscopy Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.179, year: 2010

  2. Compensation of inhomogeneous fluorescence signal distribution in 2D images acquired by confocal microscopy

    Czech Academy of Sciences Publication Activity Database

    Michálek, Jan; Čapek, Martin; Kubínová, Lucie

    2011-01-01

    Roč. 74, č. 9 (2011), s. 831-838 ISSN 1059-910X R&D Projects: GA ČR(CZ) GA102/08/0691; GA ČR(CZ) GA304/09/0733; GA MŠk(CZ) LC06063; GA MŠk(CZ) ME09010 Institutional research plan: CEZ:AV0Z50110509 Keywords : confocal laser scanning microscopy * image enhancement * morphology filters Subject RIV: JC - Computer Hardware ; Software Impact factor: 1.792, year: 2011

  3. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  4. Scanner component and head development for confocal microscopy using moving mirror technology

    Science.gov (United States)

    Loney, Gregory C.

    1993-12-01

    One of the challenges in designing a confocal microscope is choosing the scan system configuration. The selection is based largely on the microscope application and involves a few distinct schemes. One scheme, moving mirror using galvanometer and resonant scanners, has been shown to offer an excellent solution exhibited by the large number of commercial systems which utilize them. Perceived shortcomings, such as slow image acquisition, are being dispelled due to the advent of large angle, high frequency resonant scanners. These newer devices offer near video rate performance at good scan efficiency.

  5. Role of Confocal Laser Endomicroscopy in Detection of Residual Barrett's Esophagus after Radiofrequency Ablation

    Directory of Open Access Journals (Sweden)

    Giorgio Diamantis

    2011-01-01

    Full Text Available Endoscopic endoluminal radiofrequency ablation (RFA is a novel and promising modality for Barrett's esophagus (BE treatment. Actually the only surveillance method after the ablation treatment is random biopsies throughout the whole treated area. Confocal laser endomicroscopy (CLE is a new endoscopic imaging tool that permits high-resolution microscopic examination of the gastrointestinal tract. The technology has garnered increasing attention because of its ability to provide real-time “optical” biopsy specimens, with a very high sensitivity and specificity. This paper summarize the potential application of CLE in the surveillance of the reepithelialization of BE, after endoscopic RFA.

  6. The Signal Detection and Control Circuit Design for Confocal Auto-Focus System

    OpenAIRE

    Yin Liu; Jin Yu; Zeqiang Mo

    2016-01-01

    Based on the demands of Confocal Auto-Focus system, the implementation method of signal measurement circuit and control circuit is given. Using the high performance instrumental amplifier AD620BN, low noise precision FET Op amplifier AD795JRZ and ultralow offset voltage Op amplifier OP07EP, a signal measurement circuit used to converse the two differential light intensity signal to electric signal is designed. And a control circuit which takes MCU MSP430F149 as core processes the former signa...

  7. Confocal laser scanning microscopy in vivo for diagnosing melanocytic skin neoplasms

    Directory of Open Access Journals (Sweden)

    A. A. Kubanova

    2014-01-01

    Full Text Available The authors discuss the use of confocal laser scanning microscopy in vivo (CLSM for diagnosing melanocytic skin neoplasms and its value for early diagnostics of melanoma. CLSM is an innovation noninvasive visual examination method for real-time multiple and painless examinations of the patient’s skin without injuring the skin integument. The method ensures early diagnostics of skin melanomas with high sensitivity and specificity, which makes it possible to use CLSM for screening melanocytic skin neoplasms for the sake of the early onset of treatment to save patient life and health.

  8. Ti-6Al-4V electron beam weld qualification using laser scanning confocal microscopy

    International Nuclear Information System (INIS)

    Wanjara, P.; Brochu, M.; Jahazi, M.

    2005-01-01

    Processing conditions for manufacturing Ti-6Al-4V components by welding using an electron beam source are known to influence the transformation microstructure in the narrow fusion and heat-affected zones of the weld region. This work examined the effect of multiple-sequence welding on the characteristics of the transformed beta microstructure, using laser scanning confocal microscopy to resolve the Widmanstaetten alpha-beta structure in the fusion zone. The evolution in the alpha interlamellar spacing and plate thickness with processing was then related to microhardness measurements in the weld region

  9. Dark-field scanning confocal microscope for vertical particle tracks in nuclear emulsion

    International Nuclear Information System (INIS)

    Astakhov, A.Ya.; Batusov, Yu.A.; Soroko, L.M.; Tereshchenko, S.V.; Tereshchenko, V.V.

    1999-01-01

    The principle of the DArk-FIeld Scanning CONfocal (DAFISCON) microscope for selective observation of the vertical particle tracks in nuclear emulsion is described. The construction of the DAFISCON microscope, built on the basis of the 2D measurement microscope, is described. The results of the experimental testing of the DAFISCON microscope, accomplished at high density of the vertical particle tracks, are presented. The 2D plot and the 1D plot of the CCD dark-field image are given. The spatial resolution of our microscope can be increased by using the objective with higher aperture

  10. Cell volume and geometric parameters determination in living cells using confocal microscopy and 3D reconstruction

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: David Hevia, Aida Rodriguez-Garcia, Marta Alonso-Gervós, Isabel Quirós-González, Henar M Cimadevilla, Carmen Gómez-Cordovés, Rosa M Sainz & Juan C Mayo ### Abstract The protocol reported here describes a simple, easy, fast and reproducible method aimed to know the geometric parameters of living cells based on confocal laser scanning microscopy combined with 3D reconstruction software. Briefly, the method is based on intrinsic fluorescence properties of acridine orange (AO), a...

  11. Confocal microscopy findings in deep anterior lamellar keratoplasty performed after Descemet's stripping automated endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Pang A

    2014-01-01

    Full Text Available Audrey Pang,1,2 Karim Mohamed-Noriega,1 Anita S Chan,1,3–5 Jodbhir S Mehta1,3 1Singapore National Eye Centre, 2Department of Ophthalmology, Tan Tock Seng Hospital, 3Singapore Eye Research Institute, 4Department of Histopathology, Pathology, Singapore General Hospital, 5Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Background: This study describes the in vivo confocal microscopy findings in two patients who had deep anterior lamellar keratoplasty (DALK following Descemet's stripping automated endothelial keratoplasty (DSAEK. Methods: The study reviewed the cases of two patients who first underwent DSAEK followed by DALK when their vision failed to improve due to residual stromal scarring. In the first case, a DSAEK was performed for a patient with pseudophakic bullous keratopathy. After surgery, the patient's vision failed to improve satisfactorily due to residual anterior stromal opacity and irregularity. Subsequently, the patient underwent a DALK. The same two consecutive operations were performed for a second patient with keratoconus whose previous penetrating keratoplasty had failed and had secondary graft ectasia. In vivo confocal microscopy was performed 2 months after the DALK surgery in both cases. Results: At 3 months after DALK, the best-corrected visual acuity was 6/30 in case 1 and 6/24 in case 2. In vivo confocal microscopy in both cases revealed the presence of quiescent keratocytes in the stroma layers of the DSAEK and DALK grafts, which was similar in the central and peripheral cornea. There was no activated keratocytes or haze noted in the interface between the grafts. Conclusion: Our short-term results show that performing a DALK after a DSAEK is an effective way of restoring cornea clarity in patients with residual anterior stromal opacity. In vivo confocal microscopy showed that there were no activated keratocytes seen in the interface of the grafts, which suggests

  12. Fluorescence spectroscopy and confocal microscopy of the mycotoxin citrinin in condensed phase and hydrogel films.

    Science.gov (United States)

    Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S

    2014-05-01

    The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.

  13. Embryological study of Herminium monorchis (Orchidaceae) using confocal scanning laser microscopy

    International Nuclear Information System (INIS)

    Fredrikson, M.

    1990-01-01

    The embryology of Herminium monorchis (Orchidaceae) was studied using confocal scanning laser microscopy (CSLM), a new technique for embryological studies. This technique may contribute new information to plant embryology. Herminium monorchis has a monosporic embryo sac development. The mature embryo sac is 8-nucleate. Two integuments, both 2-layered, are formed, but only the inner takes part in formation of the micropyle. Double fertilization takes place. The primary endosperm nucleus does not divide, but remains alive at least at the 3-celled stage of embryo development. The three antipodals do not show any sign of degeneration at this stage. (author)

  14. Insights into esophagus tissue architecture using two-photon confocal microscopy

    Science.gov (United States)

    Liu, Nenrong; Wang, Yue; Feng, Shangyuan; Chen, Rong

    2013-08-01

    In this paper, microstructures of human esophageal mucosa were evaluated using the two-photon laser scanning confocal microscopy (TPLSCM), based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). The distribution of epithelial cells, muscle fibers of muscularis mucosae has been distinctly obtained. Furthermore, esophageal submucosa characteristics with cancer cells invading into were detected. The variation of collagen, elastin and cancer cells is very relevant to the pathology in esophagus, especially early esophageal cancer. Our experimental results indicate that the MPM technique has the much more advantages for label-free imaging, and has the potential application in vivo in the clinical diagnosis and monitoring of early esophageal cancer.

  15. Potential Role of In Vivo Confocal Microscopy for Imaging Corneal Nerves in Transthyretin Familial Amyloid Polyneuropathy.

    Science.gov (United States)

    Rousseau, Antoine; Cauquil, Cecile; Dupas, Benedicte; Labbé, Antoine; Baudouin, Christophe; Barreau, Emmanuel; Théaudin, Marie; Lacroix, Catherine; Guiochon-Mantel, Anne; Benmalek, Anouar; Labetoulle, Marc; Adams, David

    2016-09-01

    Small fiber neuropathy (SFN) is an important feature of transthyretin familial amyloid polyneuropathy (TTR-FAP). A practical and objective method for the clinical evaluation of SFN is needed to improve the management of this disease. In vivo confocal microscopy (IVCM) of the corneal nerves, a rapid noninvasive technique, may be used as a surrogate marker of SFN. To determine the correlation of SFN with IVCM in patients with TTR-FAP. A prospective, single-center, cross-sectional controlled study was conducted at the French National Reference Center for TTR-FAP from June 1, 2013, to June 30, 2014. Fifteen patients with TTR-FAP underwent a complete neurologic examination, including Neuropathy Impairment Score of the Lower Limbs, hand grip strength, and evaluation of vegetative dysfunction, as well as electrophysiologic studies (nerve conduction and electrochemical skin conductance) and intraepidermal nerve fiber density quantification. Patients and 15 controls (matched for age and sex) underwent ophthalmologic assessments, including corneal esthesiometry and IVCM. Correlation of corneal nerve fiber length (CNFL) with the severity of SFN. Of the 15 patients enrolled in the study, 6 were women (40%); mean (SD) age was 54.4 [13.7] years. The CNFL was shorter in the patients than in controls (13.08 vs 17.57 mm/mm2; difference of 4.49 [95% CI, 0.72 to 8.27]; P = .02). The patients' CNFL correlated with the severity of both autonomic neuropathy assessed by the Compound Autonomic Dysfunction Test (rs = 0.66 [95% CI, 0.22 to 0.87]; P = .008) or electrochemical skin conductance (rs = 0.80 [95% CI, 0.50 to 0.93]; P < .001) and sensorimotor neuropathy assessed using the Neuropathy Impairment Score of the Lower Limbs (rs = -0.58 [95% CI, -0.84 to -0.11]; P = .02). Patients with altered sensory nerve action potentials and intraepidermal nerve fiber density had a shorter CNFL (P = .04 and P = .02, respectively). The CNFL could be measured in all

  16. Nano-scale Biophysical and Structural Investigations on Intact and Neuropathic Nerve Fibers by Simultaneous Combination of Atomic Force and Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Gonzalo Rosso

    2017-08-01

    Full Text Available The links between neuropathies of the peripheral nervous system (PNS, including Charcot-Marie-Tooth1A and hereditary neuropathy with liability to pressure palsies, and impaired biomechanical and structural integrity of PNS nerves remain poorly understood despite the medical urgency. Here, we present a protocol describing simultaneous structural and biomechanical integrity investigations on isolated nerve fibers, the building blocks of nerves. Nerve fibers are prepared from nerves harvested from wild-type and exemplary PNS neuropathy mouse models. The basic principle of the designed experimental approach is based on the simultaneous combination of atomic force microscopy (AFM and confocal microscopy. AFM is used to visualize the surface structure of nerve fibers at nano-scale resolution. The simultaneous combination of AFM and confocal microscopy is used to perform biomechanical, structural, and functional integrity measurements at nano- to micro-scale. Isolation of sciatic nerves and subsequent teasing of nerve fibers take ~45 min. Teased fibers can be maintained at 37°C in a culture medium and kept viable for up to 6 h allowing considerable time for all measurements which require 3–4 h. The approach is designed to be widely applicable for nerve fibers from mice of any PNS neuropathy. It can be extended to human nerve biopsies.

  17. Relationship between gustatory function and average number of taste buds per fungiform papilla measured by confocal laser scanning microscopy in humans.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Manabe, Yasuhiro; Sano, Kazuo

    2017-02-01

    The aim of this study was to elucidate the relationship between the gustatory function and average number of taste buds per fungiform papilla (FP) in humans. Systemically healthy volunteers (n = 211), pre-operative patients with chronic otitis media (n = 79), and postoperative patients, with or without a chorda tympani nerve (CTN) severed during middle ear surgery (n = 63), were included. Confocal laser scanning microscopy was employed to observe fungiform taste buds because it allows many FP to be observed non-invasively in a short period of time. Taste buds in an average of 10 FP in the midlateral region of the tongue were counted. In total, 3,849 FP were observed in 353 subjects. The gustatory function was measured by electrogustometry (EGM). An inverse relationship was found between the gustatory function and average number of fungiform taste buds per papilla. The healthy volunteers showed a lower EGM threshold (better gustatory function) and had more taste buds than did the patients with otitis media, and the patients with otitis media showed a lower EGM threshold and had more taste buds than did postoperative patients, reflecting the severity of damage to the CTN. It was concluded that the confocal laser scanning microscope is a very useful tool for using to observe a large number of taste buds non-invasively. © 2017 Eur J Oral Sci.

  18. Multicriteria methodology for decision aiding

    CERN Document Server

    Roy, Bernard

    1996-01-01

    This is the first comprehensive book to present, in English, the multicriteria methodology for decision aiding In the foreword the distinctive features and main ideas of the European School of MCDA are outlined The twelve chapters are essentially expository in nature, but scholarly in treatment Some questions, which are too often neglected in the literature on decision theory, such as how is a decision made, who are the actors, what is a decision aiding model, how to define the set of alternatives, are discussed Examples are used throughout the book to illustrate the various concepts Ways to model the consequences of each alternative and building criteria taking into account the inevitable imprecisions, uncertainties and indeterminations are described and illustrated The three classical operational approaches of MCDA synthesis in one criterion (including MAUT), synthesis by outranking relations, interactive local judgements, are studied This methodology tries to be a theoretical or intellectual framework dire...

  19. Design methodology of Dutch banknotes

    Science.gov (United States)

    de Heij, Hans A. M.

    2000-04-01

    Since the introduction of a design methodology for Dutch banknotes, the quality of Dutch paper currency has improved in more than one way. The methodology is question provides for (i) a design policy, which helps fix clear objectives; (ii) design management, to ensure a smooth cooperation between the graphic designer, printer, papermaker an central bank, (iii) a program of requirements, a banknote development guideline for all parties involved. This systematic approach enables an objective selection of design proposals, including security features. Furthermore, the project manager obtains regular feedback from the public by conducting market surveys. Each new design of a Netherlands Guilder banknote issued by the Nederlandsche Bank of the past 50 years has been an improvement on its predecessor in terms of value recognition, security and durability.

  20. In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph

    Science.gov (United States)

    Ulrich, Martina; Klemp, Marisa; Darvin, Maxim E.; König, Karsten; Lademann, Jürgen; Meinke, Martina C.

    2013-06-01

    The standard diagnostic procedure for basal cell carcinoma (BCC) is invasive tissue biopsy with time-consuming histological examination. To reduce the number of biopsies, noninvasive optical methods have been developed providing high-resolution skin examination. We present direct comparison of a reflectance confocal microscope (RLSM) and a multiphoton tomograph (MPT) for BCC diagnosis. Both systems are applied to nine patients prior to surgery, and the results are analyzed, including histological results. Both systems prove suitable for detecting typical characteristics of BCC in various stages. The RLSM allows large horizontal overview images to be obtained, enabling the investigator to find the regions of interest quickly, e.g., BCC nests. Elongated cells and palisading structures are easily recognized using both methods. Due to the higher resolution, changes in nucleus diameter or cytoplasm could be visualized with the MPT. Therefore, the nucleus diameter, nucleus/cytoplasm ratio, and cell density are estimated for normal and BCC cells using the MPT. The nucleus of elongated BCC cells is significantly longer than other measured normal skin cells, whereas the cell density and nucleus/cytoplasm ratio of BCC cannot be significantly distinguished from granular cells.

  1. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V. [School of Materials Science and Engineering, University of New South Wales, Sydney 2052 (Australia); Ihlefeld, J. [Electronic, Optical, and Nanomaterials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  2. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    International Nuclear Information System (INIS)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V.; Ihlefeld, J.

    2014-01-01

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO 2 /(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  3. Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis.

    Science.gov (United States)

    Bertani, Francesca R; Mozetic, Pamela; Fioramonti, Marco; Iuliani, Michele; Ribelli, Giulia; Pantano, Francesco; Santini, Daniele; Tonini, Giuseppe; Trombetta, Marcella; Businaro, Luca; Selci, Stefano; Rainer, Alberto

    2017-08-21

    The possibility of detecting and classifying living cells in a label-free and non-invasive manner holds significant theranostic potential. In this work, Hyperspectral Imaging (HSI) has been successfully applied to the analysis of macrophagic polarization, given its central role in several pathological settings, including the regulation of tumour microenvironment. Human monocyte derived macrophages have been investigated using hyperspectral reflectance confocal microscopy, and hyperspectral datasets have been analysed in terms of M1 vs. M2 polarization by Principal Components Analysis (PCA). Following PCA, Linear Discriminant Analysis has been implemented for semi-automatic classification of macrophagic polarization from HSI data. Our results confirm the possibility to perform single-cell-level in vitro classification of M1 vs. M2 macrophages in a non-invasive and label-free manner with a high accuracy (above 98% for cells deriving from the same donor), supporting the idea of applying the technique to the study of complex interacting cellular systems, such in the case of tumour-immunity in vitro models.

  4. Real-time visualization of melanin granules in normal human skin using combined multiphoton and reflectance confocal microscopy.

    Science.gov (United States)

    Majdzadeh, Ali; Lee, Anthony M D; Wang, Hequn; Lui, Harvey; McLean, David I; Crawford, Richard I; Zloty, David; Zeng, Haishan

    2015-05-01

    Recent advances in biomedical optics have enabled dermal and epidermal components to be visualized at subcellular resolution and assessed noninvasively. Multiphoton microscopy (MPM) and reflectance confocal microscopy (RCM) are noninvasive imaging modalities that have demonstrated promising results in imaging skin micromorphology, and which provide complementary information regarding skin components. This study assesses whether combined MPM/RCM can visualize intracellular and extracellular melanin granules in the epidermis and dermis of normal human skin. We perform MPM and RCM imaging of in vivo and ex vivo skin in the infrared domain. The inherent three-dimensional optical sectioning capability of MPM/RCM is used to image high-contrast granular features across skin depths ranging from 50 to 90 μm. The optical images thus obtained were correlated with conventional histologic examination including melanin-specific staining of ex vivo specimens. MPM revealed highly fluorescent granular structures below the dermal-epidermal junction (DEJ) region. Histochemical staining also demonstrated melanin-containing granules that correlate well in size and location with the granular fluorescent structures observed in MPM. Furthermore, the MPM fluorescence excitation wavelength and RCM reflectance of cell culture-derived melanin were equivalent to those of the granules. This study suggests that MPM can noninvasively visualize and quantify subepidermal melanin in situ. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Implementation of fluorescence confocal mosaicking microscopy by “early adopter” Mohs surgeons and dermatologists: recent progress

    Science.gov (United States)

    Jain, Manu; Rajadhyaksha, Milind; Nehal, Kishwer

    2017-01-01

    Abstract. Confocal mosaicking microscopy (CMM) enables rapid imaging of large areas of fresh tissue ex vivo without the processing that is necessary for conventional histology. When performed in fluorescence mode using acridine orange (nuclear specific dye), it enhances nuclei-to-dermis contrast that enables detection of all types of basal cell carcinomas (BCCs), including micronodular and thin strands of infiltrative types. So far, this technique has been mostly validated in research settings for the detection of residual BCC tumor margins with high sensitivity of 89% to 96% and specificity of 99% to 89%. Recently, CMM has advanced to implementation and testing in clinical settings by “early adopter” Mohs surgeons, as an adjunct to frozen section during Mohs surgery. We summarize the development of CMM guided imaging of ex vivo skin tissues from bench to bedside. We also present its current state of application in routine clinical workflow not only for the assessment of residual BCC margins in the Mohs surgical setting but also for some melanocytic lesions and other skin conditions in clinical dermatology settings. Last, we also discuss the potential limitations of this technology as well as future developments. As this technology advances further, it may serve as an adjunct to standard histology and enable rapid surgical pathology of skin cancers at the bedside. PMID:28199474

  6. Methodology for performing surveys for fixed contamination

    International Nuclear Information System (INIS)

    Durham, J.S.; Gardner, D.L.

    1994-10-01

    This report describes a methodology for performing instrument surveys for fixed contamination that can be used to support the release of material from radiological areas, including release to controlled areas and release from radiological control. The methodology, which is based on a fast scan survey and a series of statistical, fixed measurements, meets the requirements of the U.S. Department of Energy Radiological Control Manual (RadCon Manual) (DOE 1994) and DOE Order 5400.5 (DOE 1990) for surveys for fixed contamination and requires less time than a conventional scan survey. The confidence interval associated with the new methodology conforms to the draft national standard for surveys. The methodology that is presented applies only to surveys for fixed contamination. Surveys for removable contamination are not discussed, and the new methodology does not affect surveys for removable contamination

  7. USGS Methodology for Assessing Continuous Petroleum Resources

    Science.gov (United States)

    Charpentier, Ronald R.; Cook, Troy A.

    2011-01-01

    The U.S. Geological Survey (USGS) has developed a new quantitative methodology for assessing resources in continuous (unconventional) petroleum deposits. Continuous petroleum resources include shale gas, coalbed gas, and other oil and gas deposits in low-permeability ("tight") reservoirs. The methodology is based on an approach combining geologic understanding with well productivities. The methodology is probabilistic, with both input and output variables as probability distributions, and uses Monte Carlo simulation to calculate the estimates. The new methodology is an improvement of previous USGS methodologies in that it better accommodates the uncertainties in undrilled or minimally drilled deposits that must be assessed using analogs. The publication is a collection of PowerPoint slides with accompanying comments.

  8. Methodologies for certification of transuranic waste packages

    International Nuclear Information System (INIS)

    Christensen, R.N.; Kok, K.D.

    1980-10-01

    The objective of this study was to postulate methodologies for certification that a waste package is acceptable for disposal in a licensed geologic repository. Within the context of this report, certification means the overall process which verifies that a waste package meets the criteria or specifications established for acceptance for disposal in a repository. The overall methodology for certification will include (1) certifying authorities, (2) tests and procedures, and (3) documentation and quality assurance programs. Each criterion will require a methodology that is specific to that criterion. In some cases, different waste forms will require a different methodology. The purpose of predicting certification methodologies is to provide additional information as to what changes, if any, are needed for the TRU waste in storage

  9. The policy trail methodology

    DEFF Research Database (Denmark)

    Holford, John; Larson, Anne; Melo, Susana

    of ‘policy trail’, arguing that it can overcome ‘methodological nationalism’ and link structure and agency in research on the ‘European educational space’. The ‘trail’ metaphor, she suggests, captures the intentionality and the erratic character of policy. The trail connects sites and brings about change......, but – although policy may be intended to be linear, with specific outcomes – policy often has to bend, and sometimes meets insurmountable obstacles. This symposium outlines and develops the methodology, but also reports on research undertaken within a major FP7 project (LLLIght’in’Europe, 2012-15) which made use......In recent years, the “policy trail” has been proposed as a methodology appropriate to the shifting and fluid governance of lifelong learning in the late modern world (Holford et al. 2013, Holford et al. 2013, Cort 2014). The contemporary environment is marked by multi-level governance (global...

  10. Changing methodologies in TESOL

    CERN Document Server

    Spiro, Jane

    2013-01-01

    Covering core topics from vocabulary and grammar to teaching, writing speaking and listening, this textbook shows you how to link research to practice in TESOL methodology. It emphasises how current understandings have impacted on the language classroom worldwide and investigates the meaning of 'methods' and 'methodology' and the importance of these for the teacher: as well as the underlying assumptions and beliefs teachers bring to bear in their practice. By introducing you to language teaching approaches, you will explore the way these are influenced by developments in our understanding of l

  11. Creativity in phenomenological methodology

    DEFF Research Database (Denmark)

    Dreyer, Pia; Martinsen, Bente; Norlyk, Annelise

    2014-01-01

    on the methodologies of van Manen, Dahlberg, Lindseth & Norberg, the aim of this paper is to argue that the increased focus on creativity and arts in research methodology is valuable to gain a deeper insight into lived experiences. We illustrate this point through examples from empirical nursing studies, and discuss......Nursing research is often concerned with lived experiences in human life using phenomenological and hermeneutic approaches. These empirical studies may use different creative expressions and art-forms to describe and enhance an embodied and personalised understanding of lived experiences. Drawing...... may support a respectful renewal of phenomenological research traditions in nursing research....

  12. EVIDÊNCIAS CIENTIFICAS SOBRE O USO DA ESPECTROSCOPIA RAMAN CONFOCAL IN VIVO NA PELE HUMANA

    Directory of Open Access Journals (Sweden)

    Aline Campos Pereira

    2017-04-01

    Full Text Available A Espectroscopia Raman Confocal (ERC é uma técnica totalmente não invasiva, eficaz na caracterização em tempo real dos arranjos químicos dos tecidos biológicos vivos. Com isso, o objetivo desse trabalho é destacar as pesquisas com uso da ERC. Foram selecionados e analisados das bases de dados: PubMed e Web of Science: 18 artigos científicos. Foram apresentados em dois quadros, obedecendo a ordem: nome dos autores, ano, revista, número de participantes, região espectral, tipo de sistema Raman Confocal, tipo e potência dos lasers. Todos os artigos reportados neste trabalham ressaltam que a ERC trata se de uma ferramenta valiosa, a qual fornece dados confiáveis. Conclui-se que existem poucos estudos científicos utilizando a ERC na pele humana, principalmente in vivo, apesar de fornecer informações em diferentes profundidades e obter dados com uma metodologia totalmente invasiva.

  13. Confocal non-line-of-sight imaging based on the light-cone transform

    Science.gov (United States)

    O’Toole, Matthew; Lindell, David B.; Wetzstein, Gordon

    2018-03-01

    How to image objects that are hidden from a camera’s view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  14. Characterization of particle deformation during compression measured by confocal laser scanning microscopy.

    Science.gov (United States)

    Guo, H X; Heinämäki, J; Yliruusi, J

    1999-09-20

    Direct compression of riboflavin sodium phosphate tablets was studied by confocal laser scanning microscopy (CLSM). The technique is non-invasive and generates three-dimensional (3D) images. Tablets of 1% riboflavin sodium phosphate with two grades of microcrystalline cellulose (MCC) were individually compressed at compression forces of 1.0 and 26.8 kN. The behaviour and deformation of drug particles on the upper and lower surfaces of the tablets were studied under compression forces. Even at the lower compression force, distinct recrystallized areas in the riboflavin sodium phosphate particles were observed in both Avicel PH-101 and Avicel PH-102 tablets. At the higher compression force, the recrystallization of riboflavin sodium phosphate was more extensive on the upper surface of the Avicel PH-102 tablet than the Avicel PH-101 tablet. The plastic deformation properties of both MCC grades reduced the fragmentation of riboflavin sodium phosphate particles. When compressed with MCC, riboflavin sodium phosphate behaved as a plastic material. The riboflavin sodium phosphate particles were more tightly bound on the upper surface of the tablet than on the lower surface, and this could also be clearly distinguished by CLSM. Drug deformation could not be visualized by other techniques. Confocal laser scanning microscopy provides valuable information on the internal mechanisms of direct compression of tablets.

  15. Quantitative comparison of X-ray fluorescence microtomography setups: Standard and confocal collimator apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Chukalina, M. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail: marina@ipmt-hpm.ac.ru; Simionovici, A. [Laboratoire de Geophysique Interne et Tectonophysique, University of Grenoble, BP 53, 38041, Grenoble (France)], E-mail: alexandre.simionovici@ujf-grenoble.fr; Zaitsev, S. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail: zaitsev@ipmt-hpm.ac.ru; Vanegas, C.J. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail: vanegas@ipmt-hpm.ac.ru

    2007-07-15

    Recently, there has been a renewed interest for fluorescence spectroscopy, as provided by modern setups which allow 2D and 3D imaging of elemental distributions. Two directions are currently under development: the SR-based fluorescence tomography in polar scanning geometry, provided by the new generation of X-ray microprobes and the confocal scanning geometry, which can be fielded in both SR and laboratory environments. The new probes bring forth a new age in fluorescence spectrometry: high resolution, high intensity and high sensitivity which allow 3D elemental mapping of volumes. The major task now is the development of these complex tools into fully quantitative probes, reproducible and straightforward for general use. In this work we analyze two X-ray fluorescence microtomography techniques: an apparatus tomography using a confocal collimator for the data collection and a standard first generation Computed Tomography (CT) in the parallel scanning scheme. We calculate the deposited dose (amount of energy deposited and distributed in the sample during the data collection time) and find the conditions for the choice of the tomography scheme.

  16. Confocal microscopy and imaging profilometry: A new tool aimed to evaluate aesthetic procedures.

    Science.gov (United States)

    Fabbrocini, Gabriella; Mazzella, Caterina; Montagnaro, Fabio; De Padova, Maria Pia; Lorenzi, Sandra; Tedeschi, Aurora; Forgione, Patrizia; Capasso, Claudia; Sivero, Luigi; Velotti, Carla; Russo, Daniela; Vitiello, Rosa; Ilardi, Gennaro

    2017-02-01

    According to the American Academy of Aesthetic Plastic Surgeons, more than 11 million cosmetic surgical and nonsurgical procedures were performed by board-certified plastic surgeons, dermatologists and otolaryngologists in the United States, totaling more than 12 billion dollars. We performed a retrospective observational multi-centric study on patients treated with a non-animal origin cross-linked hyaluronic acid with different molecular weights for nasolabial folds, evaluating through a new imaging system, profilometric techniques with the confocal microscopy, the durability, the efficacy and the safety of this product. From 25 patients, 150 silicone casts were obtained: 75 casts of the right nasolabial fold and 75 casts of the left nasolabial fold. Roughness arithmetical average of the right fold at T2 decreased by 50% versus T0 and by 40% compared to T1; at T2, it decreased by the 45% versus T0 and by 35% compared to T1. No side effects were reported. Results proved that the analysis of the skin microreliefs through confocal microscopy is a new imaging system that allows to evaluate with precision and safety the results of aesthetic treatments such as fillers objectively.

  17. Real-Time Live Confocal Fluorescence Microscopy as a New Tool for Assessing Platelet Vitality.

    Science.gov (United States)

    Hermann, Martin; Nussbaumer, Oliver; Knöfler, Ralf; Hengster, Paul; Nussbaumer, Walter; Streif, Werner

    2010-01-01

    BACKGROUND: Assessment of platelet vitality is important for patients presenting with inherited or acquired disorders of platelet function and for quality assessment of platelet concentrates. METHODS: Herein we combined live stains with intra-vital confocal fluorescence microscopy in order to obtain an imaging method that allows fast and accurate assessment of platelet vitality. Three fluorescent dyes, FITC-coupled wheat germ agglutinin (WGA), tetramethylrhodamine methyl ester perchlorate (TMRM) and acetoxymethylester (Rhod-2), were used to assess platelet morphology, mitochondrial activity and intra-platelet calcium levels. Microscopy was performed with a microlens-enhanced Nipkow spinning disk-based system allowing live confocal imaging. RESULTS: Comparison of ten samples of donor platelets collected before apheresis and platelets collected on days 5 and 7 of storage showed an increase in the percentage of Rhod-2-positive platelets from 3.6 to 47 and finally to 71%. Mitochondrial potential was demonstrated in 95.4% of donor platelets and in 92.5% of platelets stored for 7 days. CONCLUSION: Such fast and accurate visualization of known key parameters of platelet function could be of relevance for studies addressing the quality of platelets after storage and additional manipulation, such as pathogen inactivation, as well as for the analysis of inherited platelet function disorders.

  18. Confocal microscopy of corneal stroma and endothelium after LASIK and PRK.

    Science.gov (United States)

    Amoozadeh, Javad; Aliakbari, Soheil; Behesht-Nejad, Amir-Houshang; Seyedian, Mohammad-Amin; Rezvan, Bijan; Hashemi, Hassan

    2009-10-01

    To compare with confocal microscopy the changes in stromal keratocyte density and endothelial cell count due to photorefractive keratectomy (PRK) and LASIK. In this prospective study, 32 eyes (16 myopic patients) were examined with the NIDEK Confoscan 3 confocal microscope before and 6 months after PRK and LASIK. The preoperative mean myopia was -2.85+/-0.99 diopters (D) (range: -1.00 to -4.00 D) in 24 eyes that underwent PRK and -2.94+/-0.96 D (range: -2.00 to -4.25 D) in 8 eyes that underwent LASIK. Keratocyte density in the anterior and posterior stroma and the endothelial cell count were measured. Statistically significant changes were assessed using the t test. PPRK group. Postoperatively, the percentages were 52.96+/-7.55 and 53.34+/-10.2, respectively. Six months postoperatively, keratocyte density changed by 367.12+/-103.35 cells/mm(2) (34.7% reduction) in the anterior stroma (P.05) for the LASIK group. In the PRK group, these values were 319.71+/-83.45 cells/mm(2) (31.13% reduction) in the anterior stroma (P.05). The changes in keratocyte densities were not statistically significant between groups (P>.05). The mean number of keratocytes decreased by 37.2% in the retroablation zone of the LASIK group (PPRK groups (P>.05). Copyright 2009, SLACK Incorporated.

  19. Automatic segmentation of cell nuclei from confocal laser scanning microscopy images

    International Nuclear Information System (INIS)

    Kelemen, A.; Reist, H.W.

    1997-01-01

    A newly developed experimental method combines the possibility of irradiating more than a thousand cells simultaneous with an efficient colony-forming ability and with the capability of localizing a particle track through a cell nucleus together with the assessment of the energy transfer by digital superposition of the image containing the track with that of the cells. To assess the amount of energy deposition by particles traversing the cell nucleus the intersection lengths of the particle tracks have to be known. Intersection lengths can be obtained by determining the 3D surface contours of the irradiated cell nuclei. Confocal laser scanning microscopy using specific DNA fluorescent dye offers a possible way for the determination of the 3D shape of individual nuclei. Unfortunately, such experiments cannot be performed on living cells. One solution to this problem can be provided by building a statistical model of the shape of the nuclei of the exposed cells. In order to build such a statistical model, a large number of cell nuclei have to be identified and segmented from confocal laser scanning microscopy images. The present paper describes a method to perform this 3D segmentation in an automatic manner in order to create a solid basis for the statistical model. (author) 2 figs., 4 refs

  20. Chromatic confocal microscopy for multi-depth imaging of epithelial tissue

    Science.gov (United States)

    Olsovsky, Cory; Shelton, Ryan; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2013-01-01

    We present a novel chromatic confocal microscope capable of volumetric reflectance imaging of microstructure in non-transparent tissue. Our design takes advantage of the chromatic aberration of aspheric lenses that are otherwise well corrected. Strong chromatic aberration, generated by multiple aspheres, longitudinally disperses supercontinuum light onto the sample. The backscattered light detected with a spectrometer is therefore wavelength encoded and each spectrum corresponds to a line image. This approach obviates the need for traditional axial mechanical scanning techniques that are difficult to implement for endoscopy and susceptible to motion artifact. A wavelength range of 590-775 nm yielded a >150 µm imaging depth with ~3 µm axial resolution. The system was further demonstrated by capturing volumetric images of buccal mucosa. We believe these represent the first microstructural images in non-transparent biological tissue using chromatic confocal microscopy that exhibit long imaging depth while maintaining acceptable resolution for resolving cell morphology. Miniaturization of this optical system could bring enhanced speed and accuracy to endomicroscopic in vivo volumetric imaging of epithelial tissue. PMID:23667789

  1. Biomimetic Coating on Porous Alumina for Tissue Engineering: Characterisation by Cell Culture and Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Elizabeth Kolos

    2015-06-01

    Full Text Available In this study porous alumina samples were prepared and then coated using the biomimetic coating technique using a five times Simulated Body Fluid (5.0SBF as the growth solution. A coating was achieved after pre-treatment with concentrated acid. From elemental analysis, the coating contained calcium and phosphorous, but also sodium and chlorine. Halite was identified by XRD, a sodium chloride phase. Sintering was done to remove the halite phase. Once halite was burnt off, the calcium phosphate crystals were not covered with halite and, therefore, the apatite phases can be clearly observed. Cell culturing showed sufficient cell attachment to the less porous alumina, Sample B, that has more calcium phosphate growth, while the porous alumina, Sample A, with minimal calcium phosphate growth attained very little cell attachment. This is likely due to the contribution that calcium phosphate plays in the attachment of bone-like cells to a bioinert ceramic such as alumina. These results were repeated on both SEM and confocal microscopy analysis. Confocal microscopy was a novel characterisation approach which gave useful information and was a visual aid.

  2. Semiautomated confocal imaging of fungal pathogenesis on plants: Microscopic analysis of macroscopic specimens.

    Science.gov (United States)

    Minker, Katharine R; Biedrzycki, Meredith L; Kolagunda, Abhishek; Rhein, Stephen; Perina, Fabiano J; Jacobs, Samuel S; Moore, Michael; Jamann, Tiffany M; Yang, Qin; Nelson, Rebecca; Balint-Kurti, Peter; Kambhamettu, Chandra; Wisser, Randall J; Caplan, Jeffrey L

    2018-02-01

    The study of phenotypic variation in plant pathogenesis provides fundamental information about the nature of disease resistance. Cellular mechanisms that alter pathogenesis can be elucidated with confocal microscopy; however, systematic phenotyping platforms-from sample processing to image analysis-to investigate this do not exist. We have developed a platform for 3D phenotyping of cellular features underlying variation in disease development by fluorescence-specific resolution of host and pathogen interactions across time (4D). A confocal microscopy phenotyping platform compatible with different maize-fungal pathosystems (fungi: Setosphaeria turcica, Cochliobolus heterostrophus, and Cercospora zeae-maydis) was developed. Protocols and techniques were standardized for sample fixation, optical clearing, species-specific combinatorial fluorescence staining, multisample imaging, and image processing for investigation at the macroscale. The sample preparation methods presented here overcome challenges to fluorescence imaging such as specimen thickness and topography as well as physiological characteristics of the samples such as tissue autofluorescence and presence of cuticle. The resulting imaging techniques provide interesting qualitative and quantitative information not possible with conventional light or electron 2D imaging. Microsc. Res. Tech., 81:141-152, 2018. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    International Nuclear Information System (INIS)

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-01-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity

  4. Internalisation of polymeric nanosensors in mesenchymal stem cells: analysis by flow cytometry and confocal microscopy.

    Science.gov (United States)

    Coupland, Paul G; Fisher, Karen A; Jones, D Rhodri E; Aylott, Jonathan W

    2008-09-10

    The aim of this study was to demonstrate that flow cytometry and confocal microscopy could be applied in a complementary manner to analyse the internalisation of polymeric nanosensors in mesenchymal stem cells (MSC). The two techniques are able to provide en masse data analysis of nanosensors from large cell populations and detailed images of intracellular nanosensor localisation, respectively. The polyacrylamide nanosensors used in this investigation had been modified to contain free amine groups which were subsequently conjugated to Tat peptide, which acted as a delivery vector for nanosensor internalisation. Flow cytometry was used to confirm the health of MSC culture and assess the impact of nanosensor internalisation. MSC were characterised using fluorescently tagged CD cell surface markers that were also used to show that nanosensor internalisation did not negatively impact on MSC culture. Additionally it was shown that flow cytometry can be used to measure fluorophores located both on the cell surface and internalised within the cell. Complementary data was obtained using confocal microscopy to confirm nanosensor internalisation within MSC.

  5. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract

    Science.gov (United States)

    Piyawattanametha, Wibool; Ra, Hyejun; Qiu, Zhen; Friedland, Shai; Liu, Jonathan T. C.; Loewke, Kevin; Kino, Gordon S.; Solgaard, Olav; Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.

    2012-02-01

    Near-infrared confocal microendoscopy is a promising technique for deep in vivo imaging of tissues and can generate high-resolution cross-sectional images at the micron-scale. We demonstrate the use of a dual-axis confocal (DAC) near-infrared fluorescence microendoscope with a 5.5-mm outer diameter for obtaining clinical images of human colorectal mucosa. High-speed two-dimensional en face scanning was achieved through a microelectromechanical systems (MEMS) scanner while a micromotor was used for adjusting the axial focus. In vivo images of human patients are collected at 5 frames/sec with a field of view of 362×212 μm2 and a maximum imaging depth of 140 μm. During routine endoscopy, indocyanine green (ICG) was topically applied a nonspecific optical contrasting agent to regions of the human colon. The DAC microendoscope was then used to obtain microanatomic images of the mucosa by detecting near-infrared fluorescence from ICG. These results suggest that DAC microendoscopy may have utility for visualizing the anatomical and, perhaps, functional changes associated with colorectal pathology for the early detection of colorectal cancer.

  6. Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network.

    Science.gov (United States)

    Alves da Rocha, Roney; Paiva, Igor Moura; Anjos, Virgílio; Furtado, Marco Antônio Moreira; Bell, Maria José Valenzuela

    2015-06-01

    In this work, we assessed the use of confocal Raman microscopy and artificial neural network as a practical method to assess and quantify adulteration of fluid milk by addition of whey. Milk samples with added whey (from 0 to 100%) were prepared, simulating different levels of fraudulent adulteration. All analyses were carried out by direct inspection at the light microscope after depositing drops from each sample on a microscope slide and drying them at room temperature. No pre- or posttreatment (e.g., sample preparation or spectral correction) was required in the analyses. Quantitative determination of adulteration was performed through a feed-forward artificial neural network (ANN). Different ANN configurations were evaluated based on their coefficient of determination (R2) and root mean square error values, which were criteria for selecting the best predictor model. In the selected model, we observed that data from both training and validation subsets presented R2>99.99%, indicating that the combination of confocal Raman microscopy and ANN is a rapid, simple, and efficient method to quantify milk adulteration by whey. Because sample preparation and postprocessing of spectra were not required, the method has potential applications in health surveillance and food quality monitoring. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. QUANTIFICATION OF BIOFILMS IN MULTI-SPECTRAL DIGITAL1 VOLUMES FROM CONFOCAL LASER-SCANNING MICROSCOPES

    Directory of Open Access Journals (Sweden)

    Karsten Rodenacker

    2011-05-01

    Full Text Available Populations of bacteria in sludge flocs and biofilm marked by fluorescence marked with fluorescent probes are digitised with a confocal laser scanning microscope. These data are used to analyse the microbial community structure, to obtain information on the localisation of specific bacterial groups and to examine gene expression. This information is urgently required for an in-depth understanding of the function and, more generally, the microbial ecology of biofilms. Methods derived from quantitative image analysis are applied to digitised data from confocal laser scanning microscopes to obtain quantitative descriptions of volumetric, topological (and topographical properties of different compartments of the components under research. In addition to free-moving flocs, also biofilms attached to a substratum in an experimental environment are analysed. Growth form as well as interaction of components are quantitatively described. Classical measurements of volume and intensity (shape, distribution and distance dependent interaction measurements using methods from mathematical morphology are performed. Mainly image (volume processing methods are outlined. Segmented volumes are globally and individually (in terms of 3Dconnected components measured and used for distance mapping transform as well as for estimation of geodesic distances from the substrate. All transformations are applied on the 3D data set. Resulting distance distributions are quantified and related to information on the identity and activity of the probe-identified bacteria.

  8. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    Science.gov (United States)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  9. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    Science.gov (United States)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  10. Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue.

    Science.gov (United States)

    Kowalski, William J; Yuan, Fangping; Nakane, Takeichiro; Masumoto, Hidetoshi; Dwenger, Marc; Ye, Fei; Tinney, Joseph P; Keller, Bradley B

    2017-08-01

    Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.

  11. In vivo confocal microscopy of conjunctiva-associated lymphoid tissue in healthy humans.

    Science.gov (United States)

    Agnifili, Luca; Mastropasqua, Rodolfo; Fasanella, Vincenzo; Di Staso, Silvio; Mastropasqua, Alessandra; Brescia, Lorenza; Mastropasqua, Leonardo

    2014-07-29

    To investigate modifications with aging of the presence, distribution and morphologic features of conjunctiva-associated lymphoid tissue (CALT) in healthy human subjects using laser scanning in vivo confocal microscopy (IVCM). A total of 108 (age range, 17-75 years) subjects were enrolled. In vivo confocal microscopy of the tarsal and bulbar conjunctiva, and impression cytology (IC) with CD3 (intra-epithelial T-lymphocytes) and CD20 (intra-epithelial B-lymphocytes) antibody immunofluorescence staining were performed. The main outcomes were subepithelial lymphocyte density (LyD), follicular density (FD), and follicular area (FA). The secondary outcomes were follicular reflectivity (FR), and lymphocyte density (FLyD), and CD3 and CD20 positivity. Conjunctiva-associated lymphoid tissue was observed in all subjects (97% only superior and 3% in both superior and inferior tarsum). Lymphocyte density ranged from 7.8 to 165.8 cells/mm(2) (46.42 [18.37]; mean [SD]), FD from 0.5 to 19.4 follicles/mm(2) (5.3 [3.6]), and FA from 1110 to 96,280 mm(2) (26,440 [26,280]). All three parameters showed a highly significant inverse cubic relationship with age (P lymphoid structures. These modifications may account for the decrease of mucosal immune response and increase of ocular surface diseases in the elderly. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  12. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy

    Science.gov (United States)

    Krause, Marina; te Riet, Joost; Wolf, Katarina

    2013-12-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.

  13. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    Science.gov (United States)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  14. Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction

    Science.gov (United States)

    Slimani, Amel; Nouioua, Fares; Desoutter, Alban; Levallois, Bernard; Cuisinier, Frédéric J. G.; Tassery, Hervé; Terrer, Elodie; Salehi, Hamideh

    2017-08-01

    The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues.

  15. Adapting a compact confocal microscope system to a two-photon excitation fluorescence imaging architecture.

    Science.gov (United States)

    Diaspro, A; Corosu, M; Ramoino, P; Robello, M

    1999-11-01

    Within the framework of a national National Institute of Physics of Matter (INFM) project, we have realised a two-photon excitation (TPE) fluorescence microscope based on a new generation commercial confocal scanning head. The core of the architecture is a mode-locked Ti:Sapphire laser (Tsunami 3960, Spectra Physics Inc., Mountain View, CA) pumped by a high-power (5 W, 532 nm) laser (Millennia V, Spectra Physics Inc.) and an ultracompact confocal scanning head, Nikon PCM2000 (Nikon Instruments, Florence, Italy) using a single-pinhole design. Three-dimensional point-spread function has been measured to define spatial resolution performances. The TPE microscope has been used with a wide range of excitable fluorescent molecules (DAPI, Fura-2, Indo-1, DiOC(6)(3), fluoresceine, Texas red) covering a single photon spectral range from UV to green. An example is reported on 3D imaging of the helical structure of the sperm head of the Octopus Eledone cirrhosa labelled with an UV excitable dye, i.e., DAPI. The system can be easily switched for operating both in conventional and two-photon mode. Copyright 1999 Wiley-Liss, Inc.

  16. Confocal Raman spectroscopy to trace lipstick with their smudges on different surfaces.

    Science.gov (United States)

    López-López, Maria; Özbek, Nil; García-Ruiz, Carmen

    2014-06-01

    Lipsticks are very popular cosmetic products that can be transferred by contact to different surfaces, being important forensic evidence with an intricate analysis if they are found in a crime scene. This study evaluates the use of confocal Raman microscopy at 780 nm excitation wavelength for the nondestructive identification of 49 lipsticks of different brands and colors, overcoming the lipstick fluorescence problem reported by previous works using other laser wavelengths. Although the lipsticks samples showed some fluorescence, this effect was not so intense to completely overwhelm the Raman spectra. Lipsticks smudges on twelve different surfaces commonly stained with these samples were also analyzed. In the case of the surfaces, some of them provided several bands to the smudge spectra compromising the identification of the lipstick. For these samples spectral subtraction of the interfering bands from the surface was performed. Finally, five different red lipsticks with very similar color were measured on different surfaces to evaluate the lipstick traceability with their smudges even on interfering surfaces. Although previous spectral subtraction was needed in some cases, all the smudged were linked to their corresponding lipsticks even when they are smeared on the interfering surfaces. As a consequence, confocal Raman microscopy using the 780 nm excitation laser is presented as a nondestructive powerful tool for the identification of these tricky samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Molecular confocal laser endomicroscopy: a novel technique for in vivo cellular characterization of gastrointestinal lesions.

    Science.gov (United States)

    Karstensen, John Gásdal; Klausen, Pia Helene; Saftoiu, Adrian; Vilmann, Peter

    2014-06-28

    While flexible endoscopy is essential for macroscopic evaluation, confocal laser endomicroscopy (CLE) has recently emerged as an endoscopic method enabling visualization at a cellular level. Two systems are currently available, one based on miniprobes that can be inserted via a conventional endoscope or via a needle guided by endoscopic ultrasound. The second system has a confocal microscope integrated into the distal part of an endoscope. By adding molecular probes like fluorescein conjugated antibodies or fluorescent peptides to this procedure (either topically or systemically administered during on-going endoscopy), a novel world of molecular evaluation opens up. The method of molecular CLE could potentially be used for estimating the expression of important receptors in carcinomas, subsequently resulting in immediate individualization of treatment regimens, but also for improving the diagnostic accuracy of endoscopic procedures by identifying otherwise invisible mucosal lesions. Furthermore, studies have shown that fluorescein labelled drugs can be used to estimate the affinity of the drug to a target organ, which probably can be correlated to the efficacy of the drug. However, several of the studies in this research field have been conducted in animal facilities or in vitro, while only a limited number of trials have actually been carried out in vivo. Therefore, safety issues still needs further evaluations. This review will present an overview of the implications and pitfalls, as well as future challenges of molecular CLE in gastrointestinal diseases.

  18. Lithographically-fabricated channel arrays for confocal x-ray fluorescence microscopy and XAFS

    International Nuclear Information System (INIS)

    Woll, Arthur R; Agyeman-Budu, David; Choudhury, Sanjukta; Coulthard, Ian; Hallin, Emil; Finnefrock, Adam C; Gordon, Robert; Mass, Jennifer

    2014-01-01

    Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume. The minimum-achievable size of this probe volume is limited by the collector, for which polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched in silicon, and arranged like spokes of a wheel directed towards a single source position. The optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total collection efficiency, limiting its practical application. Here, we describe a new design in which the collimating channels are formed by a staggered array of pillars whose side-walls taper away from the channel axis. This approach improves both collection efficiency and working distance, while maintaining excellent spatial resolution. We illustrate these improvements with confocal XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) beamline 20-ID-B.

  19. Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue.

    Science.gov (United States)

    Longo, C; Rajadhyaksha, M; Ragazzi, M; Nehal, K; Gardini, S; Moscarella, E; Lallas, A; Zalaudek, I; Piana, S; Argenziano, G; Pellacani, G

    2014-09-01

    Fluorescence confocal microscopy (FCM) is an emerging technology for rapid imaging of excised tissue, without the need for frozen- or fixed-section processing. Basal cell carcinomas (BCCs) can be detected in Mohs excisions although few studies have described the major BCC findings as seen on FCM. To describe the major BCC findings of excised tissue during Mohs surgery and to correlate them with histopathology. Freshly excised tumours and frozen-thawed discarded tissue of BCC during Mohs surgery were analysed by means of FCM. A side-by-side correlation between FCM images and histological sections was performed. The FCM features of overlying skin and adnexal structures were also described. Sixty-four BCC cases were analysed. Distinct BCC types appeared unique in terms of shape and size of tumour islands [bigger in nodular (18/25), smaller and rounded in micronodular (7/7) and tiny cords for infiltrative ones (24/30)] and for the presence of clefting, palisading and increased nucleus/cytoplasm ratio. An excellent correlation was found between FCM and histological findings (Cohen's κ statistics = 0·9). In six cases, the presence of sebaceous glands and intense stroma reaction represented possible confounders. Fluorescence confocal microscopy is a fast and new imaging technique that allows an excellent visualization of skin structures and BCC findings during Mohs surgery. © 2014 British Association of Dermatologists.

  20. Systematic study of alginate-based microcapsules by micropipette aspiration and confocal fluorescence microscopy.

    Science.gov (United States)

    Kleinberger, Rachelle M; Burke, Nicholas A D; Dalnoki-Veress, Kari; Stöver, Harald D H

    2013-10-01

    Micropipette aspiration and confocal fluorescence microscopy were used to study the structure and mechanical properties of calcium alginate hydrogel beads (A beads), as well as A beads that were additionally coated with poly-L-lysine (P) and sodium alginate (A) to form, respectively, AP and APA hydrogels. A beads were found to continue curing for up to 500 h during storage in saline, due to residual calcium chloride carried over from the gelling bath. In subsequent saline washes, micropipette aspiration proved to be a sensitive indicator of gel weakening and calcium loss. Aspiration tests were used to compare capsule stiffness before and after citrate extraction of calcium. They showed that the initial gel strength is largely due to the calcium alginate gel cores, while the long term strength is solely due to the poly-L-lysine-alginate polyelectrolyte complex (PEC) shells. Confocal fluorescence microscopy showed that calcium chloride exposure after PLL deposition led to PLL redistribution into the hydrogel bead, resulting in thicker but more diffuse and weaker PEC shells. Adding a final alginate coating to form APA capsules did not significantly change the PEC membrane thickness and stiffness, but did speed the loss of calcium from the bead core. © 2013.