WorldWideScience

Sample records for method numerical results

  1. Steady-state transport equation resolution by particle methods, and numerical results

    International Nuclear Information System (INIS)

    Mercier, B.

    1985-10-01

    A method to solve steady-state transport equation has been given. Principles of the method are given. The method is studied in two different cases; estimations given by the theory are compared to numerical results. Results got in 1-D (spherical geometry) and in 2-D (axisymmetric geometry) are given [fr

  2. Experimental Results and Numerical Simulation of the Target RCS using Gaussian Beam Summation Method

    Directory of Open Access Journals (Sweden)

    Ghanmi Helmi

    2018-05-01

    Full Text Available This paper presents a numerical and experimental study of Radar Cross Section (RCS of radar targets using Gaussian Beam Summation (GBS method. The purpose GBS method has several advantages over ray method, mainly on the caustic problem. To evaluate the performance of the chosen method, we started the analysis of the RCS using Gaussian Beam Summation (GBS and Gaussian Beam Launching (GBL, the asymptotic models Physical Optic (PO, Geometrical Theory of Diffraction (GTD and the rigorous Method of Moment (MoM. Then, we showed the experimental validation of the numerical results using experimental measurements which have been executed in the anechoic chamber of Lab-STICC at ENSTA Bretagne. The numerical and experimental results of the RCS are studied and given as a function of various parameters: polarization type, target size, Gaussian beams number and Gaussian beams width.

  3. Numerical methods

    CERN Document Server

    Dahlquist, Germund

    1974-01-01

    ""Substantial, detailed and rigorous . . . readers for whom the book is intended are admirably served."" - MathSciNet (Mathematical Reviews on the Web), American Mathematical Society.Practical text strikes fine balance between students' requirements for theoretical treatment and needs of practitioners, with best methods for large- and small-scale computing. Prerequisites are minimal (calculus, linear algebra, and preferably some acquaintance with computer programming). Text includes many worked examples, problems, and an extensive bibliography.

  4. A method for data handling numerical results in parallel OpenFOAM simulations

    International Nuclear Information System (INIS)

    nd Vasile Pârvan Ave., 300223, TM Timişoara, Romania, alin.anton@cs.upt.ro (Romania))" data-affiliation=" (Faculty of Automatic Control and Computing, Politehnica University of Timişoara, 2nd Vasile Pârvan Ave., 300223, TM Timişoara, Romania, alin.anton@cs.upt.ro (Romania))" >Anton, Alin; th Mihai Viteazu Ave., 300221, TM Timişoara (Romania))" data-affiliation=" (Center for Advanced Research in Engineering Science, Romanian Academy – Timişoara Branch, 24th Mihai Viteazu Ave., 300221, TM Timişoara (Romania))" >Muntean, Sebastian

    2015-01-01

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit ® [1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms

  5. A method for data handling numerical results in parallel OpenFOAM simulations

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Alin [Faculty of Automatic Control and Computing, Politehnica University of Timişoara, 2" n" d Vasile Pârvan Ave., 300223, TM Timişoara, Romania, alin.anton@cs.upt.ro (Romania); Muntean, Sebastian [Center for Advanced Research in Engineering Science, Romanian Academy – Timişoara Branch, 24" t" h Mihai Viteazu Ave., 300221, TM Timişoara (Romania)

    2015-12-31

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.

  6. Numerical proceessing of radioimmunoassay results using logit-log transformation method

    International Nuclear Information System (INIS)

    Textoris, R.

    1983-01-01

    The mathematical model and algorithm are described of the numerical processing of the results of a radioimmunoassay by the logit-log transformation method and by linear regression with weight factors. The limiting value of the curve for zero concentration is optimized with regard to the residual sum by the iterative method by multiple repeats of the linear regression. Typical examples are presented of the approximation of calibration curves. The method proved suitable for all hitherto used RIA sets and is well suited for small computers with internal memory of min. 8 Kbyte. (author)

  7. MLFMA-accelerated Nyström method for ultrasonic scattering - Numerical results and experimental validation

    Science.gov (United States)

    Gurrala, Praveen; Downs, Andrew; Chen, Kun; Song, Jiming; Roberts, Ron

    2018-04-01

    Full wave scattering models for ultrasonic waves are necessary for the accurate prediction of voltage signals received from complex defects/flaws in practical nondestructive evaluation (NDE) measurements. We propose the high-order Nyström method accelerated by the multilevel fast multipole algorithm (MLFMA) as an improvement to the state-of-the-art full-wave scattering models that are based on boundary integral equations. We present numerical results demonstrating improvements in simulation time and memory requirement. Particularly, we demonstrate the need for higher order geom-etry and field approximation in modeling NDE measurements. Also, we illustrate the importance of full-wave scattering models using experimental pulse-echo data from a spherical inclusion in a solid, which cannot be modeled accurately by approximation-based scattering models such as the Kirchhoff approximation.

  8. Lagrangian methods for blood damage estimation in cardiovascular devices--How numerical implementation affects the results.

    Science.gov (United States)

    Marom, Gil; Bluestein, Danny

    2016-01-01

    This paper evaluated the influence of various numerical implementation assumptions on predicting blood damage in cardiovascular devices using Lagrangian methods with Eulerian computational fluid dynamics. The implementation assumptions that were tested included various seeding patterns, stochastic walk model, and simplified trajectory calculations with pathlines. Post processing implementation options that were evaluated included single passage and repeated passages stress accumulation and time averaging. This study demonstrated that the implementation assumptions can significantly affect the resulting stress accumulation, i.e., the blood damage model predictions. Careful considerations should be taken in the use of Lagrangian models. Ultimately, the appropriate assumptions should be considered based the physics of the specific case and sensitivity analysis, similar to the ones presented here, should be employed.

  9. Methods of numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1983-01-01

    Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)

  10. Image restoration by the method of convex projections: part 2 applications and numerical results.

    Science.gov (United States)

    Sezan, M I; Stark, H

    1982-01-01

    The image restoration theory discussed in a previous paper by Youla and Webb [1] is applied to a simulated image and the results compared with the well-known method known as the Gerchberg-Papoulis algorithm. The results show that the method of image restoration by projection onto convex sets, by providing a convenient technique for utilizing a priori information, performs significantly better than the Gerchberg-Papoulis method.

  11. Numerical methods using Matlab

    CERN Document Server

    Lindfield, George

    2012-01-01

    Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems that have applications in the biosciences, chaos, optimization, engineering and science across the board. Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of use

  12. Advances in Numerical Methods

    CERN Document Server

    Mastorakis, Nikos E

    2009-01-01

    Features contributions that are focused on significant aspects of current numerical methods and computational mathematics. This book carries chapters that advanced methods and various variations on known techniques that can solve difficult scientific problems efficiently.

  13. The numerical method of inverse Laplace transform for calculation of overvoltages in power transformers and test results

    Directory of Open Access Journals (Sweden)

    Mikulović Jovan Č.

    2014-01-01

    Full Text Available A methodology for calculation of overvoltages in transformer windings, based on a numerical method of inverse Laplace transform, is presented. Mathematical model of transformer windings is described by partial differential equations corresponding to distributed parameters electrical circuits. The procedure of calculating overvoltages is applied to windings having either isolated neutral point, or grounded neutral point, or neutral point grounded through impedance. A comparative analysis of the calculation results obtained by the proposed numerical method and by analytical method of calculation of overvoltages in transformer windings is presented. The results computed by the proposed method and measured voltage distributions, when a voltage surge is applied to a three-phase 30 kVA power transformer, are compared. [Projekat Ministartsva nauke Republike Srbije, br. TR-33037 i br. TR-33020

  14. Analysis of numerical methods

    CERN Document Server

    Isaacson, Eugene

    1994-01-01

    This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.

  15. Essential numerical computer methods

    CERN Document Server

    Johnson, Michael L

    2010-01-01

    The use of computers and computational methods has become ubiquitous in biological and biomedical research. During the last 2 decades most basic algorithms have not changed, but what has is the huge increase in computer speed and ease of use, along with the corresponding orders of magnitude decrease in cost. A general perception exists that the only applications of computers and computer methods in biological and biomedical research are either basic statistical analysis or the searching of DNA sequence data bases. While these are important applications they only scratch the surface of the current and potential applications of computers and computer methods in biomedical research. The various chapters within this volume include a wide variety of applications that extend far beyond this limited perception. As part of the Reliable Lab Solutions series, Essential Numerical Computer Methods brings together chapters from volumes 210, 240, 321, 383, 384, 454, and 467 of Methods in Enzymology. These chapters provide ...

  16. Investigation of error estimation method of observational data and comparison method between numerical and observational results toward V and V of seismic simulation

    International Nuclear Information System (INIS)

    Suzuki, Yoshio; Kawakami, Yoshiaki; Nakajima, Norihiro

    2017-01-01

    The method to estimate errors included in observational data and the method to compare numerical results with observational results are investigated toward the verification and validation (V and V) of a seismic simulation. For the method to estimate errors, 144 literatures for the past 5 years (from the year 2010 to 2014) in the structure engineering field and earthquake engineering field where the description about acceleration data is frequent are surveyed. As a result, it is found that some processes to remove components regarded as errors from observational data are used in about 30% of those literatures. Errors are caused by the resolution, the linearity, the temperature coefficient for sensitivity, the temperature coefficient for zero shift, the transverse sensitivity, the seismometer property, the aliasing, and so on. Those processes can be exploited to estimate errors individually. For the method to compare numerical results with observational results, public materials of ASME V and V Symposium 2012-2015, their references, and above 144 literatures are surveyed. As a result, it is found that six methods have been mainly proposed in existing researches. Evaluating those methods using nine items, advantages and disadvantages for those methods are arranged. The method is not well established so that it is necessary to employ those methods by compensating disadvantages and/or to search for a solution to a novel method. (author)

  17. Results from Numerical General Relativity

    Science.gov (United States)

    Baker, John G.

    2011-01-01

    For several years numerical simulations have been revealing the details of general relativity's predictions for the dynamical interactions of merging black holes. I will review what has been learned of the rich phenomenology of these mergers and the resulting gravitational wave signatures. These wave forms provide a potentially observable record of the powerful astronomical events, a central target of gravitational wave astronomy. Asymmetric radiation can produce a thrust on the system which may accelerate the single black hole resulting from the merger to high relative velocity.

  18. Introduction to precise numerical methods

    CERN Document Server

    Aberth, Oliver

    2007-01-01

    Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented. All disc-based content for this title is now available on the Web. · Clearer, simpler descriptions and explanations ofthe various numerical methods· Two new types of numerical problems; accurately solving partial differential equations with the included software and computing line integrals in the complex plane.

  19. Numerical methods for hydrodynamic stability problems

    International Nuclear Information System (INIS)

    Fujimura, Kaoru

    1985-11-01

    Numerical methods for solving the Orr-Sommerfeld equation, which is the fundamental equation of the hydrodynamic stability theory for various shear flows, are reviewed and typical numerical results are presented. The methods of asymptotic solution, finite difference methods, initial value methods and expansions in orthogonal functions are compared. (author)

  20. Numerical methods in multibody dynamics

    CERN Document Server

    Eich-Soellner, Edda

    1998-01-01

    Today computers play an important role in the development of complex mechanical systems, such as cars, railway vehicles or machines. Efficient simulation of these systems is only possible when based on methods that explore the strong link between numerics and computational mechanics. This book gives insight into modern techniques of numerical mathematics in the light of an interesting field of applications: multibody dynamics. The important interaction between modeling and solution techniques is demonstrated by using a simplified multibody model of a truck. Different versions of this mechanical model illustrate all key concepts in static and dynamic analysis as well as in parameter identification. The book focuses in particular on constrained mechanical systems. Their formulation in terms of differential-algebraic equations is the backbone of nearly all chapters. The book is written for students and teachers in numerical analysis and mechanical engineering as well as for engineers in industrial research labor...

  1. Operator theory and numerical methods

    CERN Document Server

    Fujita, H; Suzuki, T

    2001-01-01

    In accordance with the developments in computation, theoretical studies on numerical schemes are now fruitful and highly needed. In 1991 an article on the finite element method applied to evolutionary problems was published. Following the method, basically this book studies various schemes from operator theoretical points of view. Many parts are devoted to the finite element method, but other schemes and problems (charge simulation method, domain decomposition method, nonlinear problems, and so forth) are also discussed, motivated by the observation that practically useful schemes have fine mathematical structures and the converses are also true. This book has the following chapters: 1. Boundary Value Problems and FEM. 2. Semigroup Theory and FEM. 3. Evolution Equations and FEM. 4. Other Methods in Time Discretization. 5. Other Methods in Space Discretization. 6. Nonlinear Problems. 7. Domain Decomposition Method.

  2. Numerical methods for metamaterial design

    CERN Document Server

    2013-01-01

    This book describes a relatively new approach for the design of electromagnetic metamaterials.  Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered.  Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies.  Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization.  Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromag...

  3. Numerical Methods for Partial Differential Equations

    CERN Document Server

    Guo, Ben-yu

    1987-01-01

    These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.

  4. Numerical methods in matrix computations

    CERN Document Server

    Björck, Åke

    2015-01-01

    Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work. Åke Björck is a professor emeritus at the Department of Mathematics, Linköping University. He is a Fellow of the Society of Industrial and Applied Mathematics.

  5. Numerical methods for image registration

    CERN Document Server

    Modersitzki, Jan

    2003-01-01

    Based on the author's lecture notes and research, this well-illustrated and comprehensive text is one of the first to provide an introduction to image registration with particular emphasis on numerical methods in medical imaging. Ideal for researchers in industry and academia, it is also a suitable study guide for graduate mathematicians, computer scientists, engineers, medical physicists, and radiologists.Image registration is utilised whenever information obtained from different viewpoints needs to be combined or compared and unwanted distortion needs to be eliminated. For example, CCTV imag

  6. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando

    2013-01-01

    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  7. A numerical method for resonance integral calculations

    International Nuclear Information System (INIS)

    Tanbay, Tayfun; Ozgener, Bilge

    2013-01-01

    A numerical method has been proposed for resonance integral calculations and a cubic fit based on least squares approximation to compute the optimum Bell factor is given. The numerical method is based on the discretization of the neutron slowing down equation. The scattering integral is approximated by taking into account the location of the upper limit in energy domain. The accuracy of the method has been tested by performing computations of resonance integrals for uranium dioxide isolated rods and comparing the results with empirical values. (orig.)

  8. Methods for enhancing numerical integration

    International Nuclear Information System (INIS)

    Doncker, Elise de

    2003-01-01

    We give a survey of common strategies for numerical integration (adaptive, Monte-Carlo, Quasi-Monte Carlo), and attempt to delineate their realm of applicability. The inherent accuracy and error bounds for basic integration methods are given via such measures as the degree of precision of cubature rules, the index of a family of lattice rules, and the discrepancy of uniformly distributed point sets. Strategies incorporating these basic methods often use paradigms to reduce the error by, e.g., increasing the number of points in the domain or decreasing the mesh size, locally or uniformly. For these processes the order of convergence of the strategy is determined by the asymptotic behavior of the error, and may be too slow in practice for the type of problem at hand. For certain problem classes we may be able to improve the effectiveness of the method or strategy by such techniques as transformations, absorbing a difficult part of the integrand into a weight function, suitable partitioning of the domain, transformations and extrapolation or convergence acceleration. Situations warranting the use of these techniques (possibly in an 'automated' way) are described and illustrated by sample applications

  9. Numerical methods used in simulation

    International Nuclear Information System (INIS)

    Caseau, Paul; Perrin, Michel; Planchard, Jacques

    1978-01-01

    The fundamental numerical problem posed by simulation problems is the stability of the resolution diagram. The system of the most used equations is defined, since there is a family of models of increasing complexity with 3, 4 or 5 equations although only models with 3 and 4 equations have been used extensively. After defining what is meant by explicit or implicit, the best established stability results is given for one-dimension problems and then for two-dimension problems. It is shown that two types of discretisation may be defined: four and eight point diagrams (in one or two dimensions) and six and ten point diagrams (in one or two dimensions). To end, some results are given on problems that are not usually treated very much, i.e. non-asymptotic stability and the stability of diagrams based on finite elements [fr

  10. Hybrid methods for airframe noise numerical prediction

    Energy Technology Data Exchange (ETDEWEB)

    Terracol, M.; Manoha, E.; Herrero, C.; Labourasse, E.; Redonnet, S. [ONERA, Department of CFD and Aeroacoustics, BP 72, Chatillon (France); Sagaut, P. [Laboratoire de Modelisation en Mecanique - UPMC/CNRS, Paris (France)

    2005-07-01

    This paper describes some significant steps made towards the numerical simulation of the noise radiated by the high-lift devices of a plane. Since the full numerical simulation of such configuration is still out of reach for present supercomputers, some hybrid strategies have been developed to reduce the overall cost of such simulations. The proposed strategy relies on the coupling of an unsteady nearfield CFD with an acoustic propagation solver based on the resolution of the Euler equations for midfield propagation in an inhomogeneous field, and the use of an integral solver for farfield acoustic predictions. In the first part of this paper, this CFD/CAA coupling strategy is presented. In particular, the numerical method used in the propagation solver is detailed, and two applications of this coupling method to the numerical prediction of the aerodynamic noise of an airfoil are presented. Then, a hybrid RANS/LES method is proposed in order to perform some unsteady simulations of complex noise sources. This method allows for significant reduction of the cost of such a simulation by considerably reducing the extent of the LES zone. This method is described and some results of the numerical simulation of the three-dimensional unsteady flow in the slat cove of a high-lift profile are presented. While these results remain very difficult to validate with experiments on similar configurations, they represent up to now the first 3D computations of this kind of flow. (orig.)

  11. Numerical computer methods part D

    CERN Document Server

    Johnson, Michael L

    2004-01-01

    The aim of this volume is to brief researchers of the importance of data analysis in enzymology, and of the modern methods that have developed concomitantly with computer hardware. It is also to validate researchers' computer programs with real and synthetic data to ascertain that the results produced are what they expected. Selected Contents: Prediction of protein structure; modeling and studying proteins with molecular dynamics; statistical error in isothermal titration calorimetry; analysis of circular dichroism data; model comparison methods.

  12. Numerical methods for hyperbolic differential functional problems

    Directory of Open Access Journals (Sweden)

    Roman Ciarski

    2008-01-01

    Full Text Available The paper deals with the initial boundary value problem for quasilinear first order partial differential functional systems. A general class of difference methods for the problem is constructed. Theorems on the error estimate of approximate solutions for difference functional systems are presented. The convergence results are proved by means of consistency and stability arguments. A numerical example is given.

  13. Numerical computer methods part E

    CERN Document Server

    Johnson, Michael L

    2004-01-01

    The contributions in this volume emphasize analysis of experimental data and analytical biochemistry, with examples taken from biochemistry. They serve to inform biomedical researchers of the modern data analysis methods that have developed concomitantly with computer hardware. Selected Contents: A practical approach to interpretation of SVD results; modeling of oscillations in endocrine networks with feedback; quantifying asynchronous breathing; sample entropy; wavelet modeling and processing of nasal airflow traces.

  14. Compact tokamak reactors part 2 (numerical results)

    International Nuclear Information System (INIS)

    Wiley, J.C.; Wootton, A.J.; Ross, D.W.

    1996-01-01

    The authors describe a numerical optimization scheme for fusion reactors. The particular application described is to find the smallest copper coil spherical tokamak, although the numerical scheme is sufficiently general to allow many other problems to be solved. The solution to the steady state energy balance is found by first selecting the fixed variables. The range of all remaining variables is then selected, except for the temperature. Within the specified ranges, the temperature which satisfies the power balance is then found. Tests are applied to determine that remaining constraints are satisfied, and the acceptable results then stored. Results are presented for a range of auxiliary current drive efficiencies and different scaling relationships; for the range of variables chosen the machine encompassing volume increases or remains approximately unchanged as the aspect ratio is reduced

  15. An outline review of numerical transport methods

    International Nuclear Information System (INIS)

    Budd, C.

    1981-01-01

    A brief review is presented of numerical methods for solving the neutron transport equation in the context of reactor physics. First the various forms of transport equation are given. Second, the various ways of classifying numerical transport methods are discussed. Finally each method (or class of methods) is outlined in turn. (U.K.)

  16. Intelligent numerical methods applications to fractional calculus

    CERN Document Server

    Anastassiou, George A

    2016-01-01

    In this monograph the authors present Newton-type, Newton-like and other numerical methods, which involve fractional derivatives and fractional integral operators, for the first time studied in the literature. All for the purpose to solve numerically equations whose associated functions can be also non-differentiable in the ordinary sense. That is among others extending the classical Newton method theory which requires usual differentiability of function. Chapters are self-contained and can be read independently and several advanced courses can be taught out of this book. An extensive list of references is given per chapter. The book’s results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also to be in all science and engineering libraries.

  17. Numerical methods: Analytical benchmarking in transport theory

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1988-01-01

    Numerical methods applied to reactor technology have reached a high degree of maturity. Certainly one- and two-dimensional neutron transport calculations have become routine, with several programs available on personal computer and the most widely used programs adapted to workstation and minicomputer computational environments. With the introduction of massive parallelism and as experience with multitasking increases, even more improvement in the development of transport algorithms can be expected. Benchmarking an algorithm is usually not a very pleasant experience for the code developer. Proper algorithmic verification by benchmarking involves the following considerations: (1) conservation of particles, (2) confirmation of intuitive physical behavior, and (3) reproduction of analytical benchmark results. By using today's computational advantages, new basic numerical methods have been developed that allow a wider class of benchmark problems to be considered

  18. Numerical methods in software and analysis

    CERN Document Server

    Rice, John R

    1992-01-01

    Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithm

  19. An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, James F

    2013-01-01

    Praise for the First Edition "". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises.""-Zentralblatt MATH "". . . carefully structured with many detailed worked examples.""-The Mathematical Gazette The Second Edition of the highly regarded An Introduction to Numerical Methods and Analysis provides a fully revised guide to numerical approximation. The book continues to be accessible and expertly guides readers through the many available techniques of numerical methods and analysis. An Introduction to

  20. Isogeometric methods for numerical simulation

    CERN Document Server

    Bordas, Stéphane

    2015-01-01

    The book presents the state of the art in isogeometric modeling and shows how the method has advantaged. First an introduction to geometric modeling with NURBS and T-splines is given followed by the implementation into computer software. The implementation in both the FEM and BEM is discussed.

  1. Excel spreadsheet in teaching numerical methods

    Science.gov (United States)

    Djamila, Harimi

    2017-09-01

    One of the important objectives in teaching numerical methods for undergraduates’ students is to bring into the comprehension of numerical methods algorithms. Although, manual calculation is important in understanding the procedure, it is time consuming and prone to error. This is specifically the case when considering the iteration procedure used in many numerical methods. Currently, many commercial programs are useful in teaching numerical methods such as Matlab, Maple, and Mathematica. These are usually not user-friendly by the uninitiated. Excel spreadsheet offers an initial level of programming, which it can be used either in or off campus. The students will not be distracted with writing codes. It must be emphasized that general commercial software is required to be introduced later to more elaborated questions. This article aims to report on a teaching numerical methods strategy for undergraduates engineering programs. It is directed to students, lecturers and researchers in engineering field.

  2. RELAP-7 Numerical Stabilization: Entropy Viscosity Method

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Berry; M. O. Delchini; J. Ragusa

    2014-06-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.

  3. Stratal Control Volumes and Stratal Control Trajectories: A New Method to Constrain, Understand and Reconcile Results from Stratigraphic Outcrop Analysis, Subsurface Analysis and Analogue and Numerical Modelling

    Science.gov (United States)

    Burgess, P. M.; Steel, R. J.

    2016-12-01

    Decoding a history of Earth's surface dynamics from strata requires robust quantitative understanding of supply and accommodation controls. The concept of stratigraphic solution sets has proven useful in this decoding, but application and development of this approach has so far been surprisingly limited. Stratal control volumes, areas and trajectories are new approaches defined here, building on previous ideas about stratigraphic solution sets, to help analyse and understand the sedimentary record of Earth surface dynamics. They may have particular application reconciling results from outcrop and subsurface analysis with results from analogue and numerical experiments. Stratal control volumes are sets of points in a three-dimensional volume, with axes of subsidence, sediment supply and eustatic rates of change, populated with probabilities derived from analysis of subsidence, supply and eustasy timeseries (Figure 1). These empirical probabilities indicate the likelihood of occurrence of any particular combination of control rates defined by any point in the volume. The stratal control volume can then by analysed to determine which parts of the volume represent relative sea-level fall and rise, where in the volume particular stacking patterns will occur, and how probable those stacking patterns are. For outcrop and subsurface analysis, using a stratal control area with eustasy and subsidence combined on a relative sea-level axis allows similar analysis, and may be preferable. A stratal control trajectory is a history of supply and accommodation creation rates, interpreted from outcrop or subsurface data, or observed in analogue and numerical experiments, and plotted as a series of linked points forming a trajectory through the stratal control volume (Figure 1) or area. Three examples are presented, one from outcrop and two theoretical. Much work remains to be done to build a properly representative database of stratal controls, but careful comparison of stratal

  4. Mathematica with a Numerical Methods Course

    Science.gov (United States)

    Varley, Rodney

    2003-04-01

    An interdisciplinary "Numerical Methods" course has been shared between physics, mathematics and computer science since 1992 at Hunter C. Recently, the lectures and workshops for this course have become formalized and placed on the internet at http://www.ph.hunter.cuny.edu (follow the links "Course Listings and Websites" >> "PHYS385 (Numerical Methods)". Mathematica notebooks for the lectures are available for automatic download (by "double clicking" the lecture icon) for student use in the classroom or at home. AOL (or Netscape/Explorer) can be used provided Mathematica (or the "free" MathReader) has been made a "helper application". Using Mathematica has the virtue that mathematical equations (no LaTex required) can easily be included with the text and Mathematica's graphing is easy to use. Computational cells can be included within the notebook and students may easily modify the calculation to see the result of "what if..." questions. Homework is sent as Mathematica notebooks to the instructor via the internet and the corrected workshops are returned in the same manner. Most exam questions require computational solutions.

  5. Graphical interpretation of numerical model results

    International Nuclear Information System (INIS)

    Drewes, D.R.

    1979-01-01

    Computer software has been developed to produce high quality graphical displays of data from a numerical grid model. The code uses an existing graphical display package (DISSPLA) and overcomes some of the problems of both line-printer output and traditional graphics. The software has been designed to be flexible enough to handle arbitrarily placed computation grids and a variety of display requirements

  6. Design of heat exchangers by numerical methods

    International Nuclear Information System (INIS)

    Konuk, A.A.

    1981-01-01

    Differential equations describing the heat tranfer in shell - and tube heat exchangers are derived and solved numerically. The method of ΔT sub(lm) is compared with the proposed method in cases where the specific heat at constant pressure, Cp and the overall heat transfer coefficient, U, vary with temperature. The error of the method of ΔT sub (lm) for the computation of the exchanger lenght is less than + 10%. However, the numerical method, being more accurate and at the same time easy to use and economical, is recommended for the design of shell-and-tube heat exchangers. (Author) [pt

  7. Numerical analysis in electromagnetics the TLM method

    CERN Document Server

    Saguet, Pierre

    2013-01-01

    The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general.The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been

  8. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R I; Stone, J M

    2007-11-20

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

  9. Numerical methods and modelling for engineering

    CERN Document Server

    Khoury, Richard

    2016-01-01

    This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems. Uses a “building-block” approach, starting with simpler mathemati...

  10. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    International Nuclear Information System (INIS)

    Klein, R I; Stone, J M

    2007-01-01

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments

  11. Spectral Methods in Numerical Plasma Simulation

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...

  12. Hybrid numerical calculation method for bend waveguides

    OpenAIRE

    Garnier , Lucas; Saavedra , C.; Castro-Beltran , Rigoberto; Lucio , José Luis; Bêche , Bruno

    2017-01-01

    National audience; The knowledge of how the light will behave in a waveguide with a radius of curvature becomes more and more important because of the development of integrated photonics, which include ring micro-resonators, phasars, and other devices with a radius of curvature. This work presents a numerical calculation method to determine the eigenvalues and eigenvectors of curved waveguides. This method is a hybrid method which uses at first conform transformation of the complex plane gene...

  13. Lagrangian numerical methods for ocean biogeochemical simulations

    Science.gov (United States)

    Paparella, Francesco; Popolizio, Marina

    2018-05-01

    We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.

  14. Numerical methods and analysis of multiscale problems

    CERN Document Server

    Madureira, Alexandre L

    2017-01-01

    This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

  15. Numerical simulation of GEW equation using RBF collocation method

    Directory of Open Access Journals (Sweden)

    Hamid Panahipour

    2012-08-01

    Full Text Available The generalized equal width (GEW equation is solved numerically by a meshless method based on a global collocation with standard types of radial basis functions (RBFs. Test problems including propagation of single solitons, interaction of two and three solitons, development of the Maxwellian initial condition pulses, wave undulation and wave generation are used to indicate the efficiency and accuracy of the method. Comparisons are made between the results of the proposed method and some other published numerical methods.

  16. Numerical methods in electron magnetic resonance

    International Nuclear Information System (INIS)

    Soernes, A.R.

    1998-01-01

    The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system

  17. Numerical methods in electron magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Soernes, A.R

    1998-07-01

    The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system.

  18. Numerical methods in nuclear engineering. Part 1

    International Nuclear Information System (INIS)

    Phillips, G.J.

    1983-08-01

    These proceedings, published in two parts contain the full text of 56 papers and summaries of six papers presented at the conference. They cover the use of numerical methods in thermal hydraulics, reactor physics, neutron diffusion, subchannel analysis, risk assessment, transport theory, and fuel behaviour

  19. A hybrid numerical method for orbit correction

    International Nuclear Information System (INIS)

    White, G.; Himel, T.; Shoaee, H.

    1997-09-01

    The authors describe a simple hybrid numerical method for beam orbit correction in particle accelerators. The method overcomes both degeneracy in the linear system being solved and respects boundaries on the solution. It uses the Singular Value Decomposition (SVD) to find and remove the null-space in the system, followed by a bounded Linear Least Squares analysis of the remaining recast problem. It was developed for correcting orbit and dispersion in the B-factory rings

  20. Conservative numerical methods for solitary wave interactions

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A; Lopez-Marcos, M A [Departamento de Matematica Aplicada y Computacion, Facultad de Ciencias, Universidad de Valladolid, Paseo del Prado de la Magdalena s/n, 47005 Valladolid (Spain)

    2003-07-18

    The purpose of this paper is to show the advantages that represent the use of numerical methods that preserve invariant quantities in the study of solitary wave interactions for the regularized long wave equation. It is shown that the so-called conservative methods are more appropriate to study the phenomenon and provide a dynamic point of view that allows us to estimate the changes in the parameters of the solitary waves after the collision.

  1. Theoretical and numerical method in aeroacoustics

    Directory of Open Access Journals (Sweden)

    Nicuşor ALEXANDRESCU

    2010-06-01

    Full Text Available The paper deals with the mathematical and numerical modeling of the aerodynamic noisegenerated by the fluid flow interaction with the solid structure of a rotor blade.Our analysis use Lighthill’s acoustic analogy. Lighthill idea was to express the fundamental equationsof motion into a wave equation for acoustic fluctuation with a source term on the right-hand side. Theobtained wave equation is solved numerically by the spatial discretization. The method is applied inthe case of monopole source placed in different points of blade surfaces to find this effect of noisepropagation.

  2. Numerical methods for scientists and engineers

    CERN Document Server

    Antia, H M

    2012-01-01

    This book presents an exhaustive and in-depth exposition of the various numerical methods used in scientific and engineering computations. It emphasises the practical aspects of numerical computation and discusses various techniques in sufficient detail to enable their implementation in solving a wide range of problems. The main addition in the third edition is a new Chapter on Statistical Inferences. There is also some addition and editing in the next chapter on Approximations. With this addition 12 new programs have also been added.

  3. Numerical methods for differential equations and applications

    International Nuclear Information System (INIS)

    Ixaru, L.G.

    1984-01-01

    This book is addressed to persons who, without being professionals in applied mathematics, are often faced with the problem of numerically solving differential equations. In each of the first three chapters a definite class of methods is discussed for the solution of the initial value problem for ordinary differential equations: multistep methods; one-step methods; and piecewise perturbation methods. The fourth chapter is mainly focussed on the boundary value problems for linear second-order equations, with a section devoted to the Schroedinger equation. In the fifth chapter the eigenvalue problem for the radial Schroedinger equation is solved in several ways, with computer programs included. (Auth.)

  4. Numerical Methods for a Class of Differential Algebraic Equations

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-01-01

    Full Text Available This paper is devoted to the study of some efficient numerical methods for the differential algebraic equations (DAEs. At first, we propose a finite algorithm to compute the Drazin inverse of the time varying DAEs. Numerical experiments are presented by Drazin inverse and Radau IIA method, which illustrate that the precision of the Drazin inverse method is higher than the Radau IIA method. Then, Drazin inverse, Radau IIA, and Padé approximation are applied to the constant coefficient DAEs, respectively. Numerical results demonstrate that the Padé approximation is powerful for solving constant coefficient DAEs.

  5. Numerical methods and optimization a consumer guide

    CERN Document Server

    Walter, Éric

    2014-01-01

    Initial training in pure and applied sciences tends to present problem-solving as the process of elaborating explicit closed-form solutions from basic principles, and then using these solutions in numerical applications. This approach is only applicable to very limited classes of problems that are simple enough for such closed-form solutions to exist. Unfortunately, most real-life problems are too complex to be amenable to this type of treatment. Numerical Methods and Optimization – A Consumer Guide presents methods for dealing with them. Shifting the paradigm from formal calculus to numerical computation, the text makes it possible for the reader to ·         discover how to escape the dictatorship of those particular cases that are simple enough to receive a closed-form solution, and thus gain the ability to solve complex, real-life problems; ·         understand the principles behind recognized algorithms used in state-of-the-art numerical software; ·         learn the advantag...

  6. Statistical methods applied to the study of opinion formation models: a brief overview and results of a numerical study of a model based on the social impact theory

    Science.gov (United States)

    Bordogna, Clelia María; Albano, Ezequiel V.

    2007-02-01

    The aim of this paper is twofold. On the one hand we present a brief overview on the application of statistical physics methods to the modelling of social phenomena focusing our attention on models for opinion formation. On the other hand, we discuss and present original results of a model for opinion formation based on the social impact theory developed by Latané. The presented model accounts for the interaction among the members of a social group under the competitive influence of a strong leader and the mass media, both supporting two different states of opinion. Extensive simulations of the model are presented, showing that they led to the observation of a rich scenery of complex behaviour including, among others, critical behaviour and phase transitions between a state of opinion dominated by the leader and another dominated by the mass media. The occurrence of interesting finite-size effects reveals that, in small communities, the opinion of the leader may prevail over that of the mass media. This observation is relevant for the understanding of social phenomena involving a finite number of individuals, in contrast to actual physical phase transitions that take place in the thermodynamic limit. Finally, we give a brief outlook of open questions and lines for future work.

  7. Statistical methods applied to the study of opinion formation models: a brief overview and results of a numerical study of a model based on the social impact theory

    International Nuclear Information System (INIS)

    Bordogna, Clelia Maria; Albano, Ezequiel V

    2007-01-01

    The aim of this paper is twofold. On the one hand we present a brief overview on the application of statistical physics methods to the modelling of social phenomena focusing our attention on models for opinion formation. On the other hand, we discuss and present original results of a model for opinion formation based on the social impact theory developed by Latane. The presented model accounts for the interaction among the members of a social group under the competitive influence of a strong leader and the mass media, both supporting two different states of opinion. Extensive simulations of the model are presented, showing that they led to the observation of a rich scenery of complex behaviour including, among others, critical behaviour and phase transitions between a state of opinion dominated by the leader and another dominated by the mass media. The occurrence of interesting finite-size effects reveals that, in small communities, the opinion of the leader may prevail over that of the mass media. This observation is relevant for the understanding of social phenomena involving a finite number of individuals, in contrast to actual physical phase transitions that take place in the thermodynamic limit. Finally, we give a brief outlook of open questions and lines for future work

  8. Partial differential equations with numerical methods

    CERN Document Server

    Larsson, Stig

    2003-01-01

    The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering. The main theme is the integration of the theory of linear PDEs and the numerical solution of such equations. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. As preparation, the two-point boundary value problem and the initial-value problem for ODEs are discussed in separate chapters. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. Some background on linear functional analysis and Sobolev spaces, and also on numerical linear algebra, is reviewed in two appendices.

  9. A student's guide to numerical methods

    CERN Document Server

    Hutchinson, Ian H

    2015-01-01

    This concise, plain-language guide for senior undergraduates and graduate students aims to develop intuition, practical skills and an understanding of the framework of numerical methods for the physical sciences and engineering. It provides accessible self-contained explanations of mathematical principles, avoiding intimidating formal proofs. Worked examples and targeted exercises enable the student to master the realities of using numerical techniques for common needs such as solution of ordinary and partial differential equations, fitting experimental data, and simulation using particle and Monte Carlo methods. Topics are carefully selected and structured to build understanding, and illustrate key principles such as: accuracy, stability, order of convergence, iterative refinement, and computational effort estimation. Enrichment sections and in-depth footnotes form a springboard to more advanced material and provide additional background. Whether used for self-study, or as the basis of an accelerated introdu...

  10. Numerical implementation of the loop-tree duality method

    Energy Technology Data Exchange (ETDEWEB)

    Buchta, Sebastian; Rodrigo, German [Universitat de Valencia-Consejo Superior de Investigaciones Cientificas, Parc Cientific, Instituto de Fisica Corpuscular, Valencia (Spain); Chachamis, Grigorios [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Draggiotis, Petros [Institute of Nuclear and Particle Physics, NCSR ' ' Demokritos' ' , Agia Paraskevi (Greece)

    2017-05-15

    We present a first numerical implementation of the loop-tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and we present explicit results for scalar and tensor integrals with up to eight external legs (octagons). The LTD method features an excellent performance independently of the number of external legs. (orig.)

  11. Numerical Methods for Stochastic Computations A Spectral Method Approach

    CERN Document Server

    Xiu, Dongbin

    2010-01-01

    The first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC meth

  12. Spectral methods in numerical plasma simulation

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.; Knorr, G.; Lynov, J.P.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed. (orig.)

  13. Classical and modern numerical analysis theory, methods and practice

    CERN Document Server

    Ackleh, Azmy S; Kearfott, R Baker; Seshaiyer, Padmanabhan

    2009-01-01

    Mathematical Review and Computer Arithmetic Mathematical Review Computer Arithmetic Interval ComputationsNumerical Solution of Nonlinear Equations of One Variable Introduction Bisection Method The Fixed Point Method Newton's Method (Newton-Raphson Method) The Univariate Interval Newton MethodSecant Method and Müller's Method Aitken Acceleration and Steffensen's Method Roots of Polynomials Additional Notes and SummaryNumerical Linear Algebra Basic Results from Linear Algebra Normed Linear Spaces Direct Methods for Solving Linear SystemsIterative Methods for Solving Linear SystemsThe Singular Value DecompositionApproximation TheoryIntroduction Norms, Projections, Inner Product Spaces, and Orthogonalization in Function SpacesPolynomial ApproximationPiecewise Polynomial ApproximationTrigonometric ApproximationRational ApproximationWavelet BasesLeast Squares Approximation on a Finite Point SetEigenvalue-Eigenvector Computation Basic Results from Linear Algebra The Power Method The Inverse Power Method Deflation T...

  14. Numerical methods for engine-airframe integration

    International Nuclear Information System (INIS)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment

  15. Numerical method for partial equilibrium flow

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Cloutman, L.D.; Los Alamos, New Mexico 87545)

    1981-01-01

    A numerical method is presented for chemically reactive fluid flow in which equilibrium and nonequilibrium reactions occur simultaneously. The equilibrium constraints on the species concentrations are established by a quadratic iterative procedure. If the equilibrium reactions are uncoupled and of second or lower order, the procedure converges in a single step. In general, convergence is most rapid when the reactions are weakly coupled. This can frequently be achieved by a judicious choice of the independent reactions. In typical transient calculations, satisfactory accuracy has been achieved with about five iterations per time step

  16. Numerical methods for semiconductor heterostructures with band nonparabolicity

    International Nuclear Information System (INIS)

    Wang Weichung; Hwang Tsungmin; Lin Wenwei; Liu Jinnliang

    2003-01-01

    This article presents numerical methods for computing bound state energies and associated wave functions of three-dimensional semiconductor heterostructures with special interest in the numerical treatment of the effect of band nonparabolicity. A nonuniform finite difference method is presented to approximate a model of a cylindrical-shaped semiconductor quantum dot embedded in another semiconductor matrix. A matrix reduction method is then proposed to dramatically reduce huge eigenvalue systems to relatively very small subsystems. Moreover, the nonparabolic band structure results in a cubic type of nonlinear eigenvalue problems for which a cubic Jacobi-Davidson method with an explicit nonequivalence deflation method are proposed to compute all the desired eigenpairs. Numerical results are given to illustrate the spectrum of energy levels and the corresponding wave functions in rather detail

  17. Numerical methods in dynamic fracture mechanics

    International Nuclear Information System (INIS)

    Beskos, D.E.

    1987-01-01

    A review of numerical methods for the solution of dynamic problems of fracture mechanics is presented. Finite difference, finite element and boundary element methods as applied to linear elastic or viscoelastic and non-linear elastoplastic or elastoviscoplastic dynamic fracture mechanics problems are described and critically evaluated. Both cases of stationary cracks and rapidly propagating cracks of simple I, II, III or mixed modes are considered. Harmonically varying with time or general transient dynamic disturbances in the form of external loading or incident waves are taken into account. Determination of the dynamic stress intensity factor for stationary cracks or moving cracks with known velocity history as well as determination of the crack-tip propagation history for given dynamic fracture toughness versus crack velocity relation are described and illustrated by means of certain representative examples. Finally, a brief assessment of the present state of knowledge is made and research needs are identified

  18. Numerical and adaptive grid methods for ideal magnetohydrodynamics

    Science.gov (United States)

    Loring, Burlen

    2008-02-01

    In this thesis numerical finite difference methods for ideal magnetohydrodynamics(MHD) are investigated. A review of the relevant physics, essential for interpreting the results of numerical solutions and constructing validation cases, is presented. This review includes a discusion of the propagation of small amplitude waves in the MHD system as well as a thorough discussion of MHD shocks, contacts and rarefactions and how they can be piece together to obtain a solutions to the MHD Riemann problem. Numerical issues relevant to the MHD system such as: the loss of nonlinear numerical stability in the presence of discontinuous solutions, the introduction of spurious forces due to the growth of the divergence of the magnetic flux density, the loss of pressure positivity, and the effects of non-conservative numerical methods are discussed, along with the practical approaches which can be used to remedy or minimize the negative consequences of each. The use of block structured adaptive mesh refinement is investigated in the context of a divergence free MHD code. A new method for conserving magnetic flux across AMR grid interfaces is developed and a detailed discussion of our implementation of this method using the CHOMBO AMR framework is given. A preliminary validation of the new method for conserving magnetic flux density across AMR grid interfaces illustrates that the method works. Finally a number of code validation cases are examined spurring a discussion of the strengths and weaknesses of the numerics employed.

  19. Numerical methods design, analysis, and computer implementation of algorithms

    CERN Document Server

    Greenbaum, Anne

    2012-01-01

    Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book a...

  20. Valve cam design using numerical step-by-step method

    OpenAIRE

    Vasilyev, Aleksandr; Bakhracheva, Yuliya; Kabore, Ousman; Zelenskiy, Yuriy

    2014-01-01

    This article studies the numerical step-by-step method of cam profile design. The results of the study are used for designing the internal combustion engine valve gear. This method allows to profile the peak efficiency of cams in view of many restrictions, connected with valve gear serviceability and reliability.

  1. Investigating Convergence Patterns for Numerical Methods Using Data Analysis

    Science.gov (United States)

    Gordon, Sheldon P.

    2013-01-01

    The article investigates the patterns that arise in the convergence of numerical methods, particularly those in the errors involved in successive iterations, using data analysis and curve fitting methods. In particular, the results obtained are used to convey a deeper level of understanding of the concepts of linear, quadratic, and cubic…

  2. A numerical test of the collective coordinate method

    International Nuclear Information System (INIS)

    Dobrowolski, T.; Tatrocki, P.

    2008-01-01

    The purpose of this Letter is to compare the dynamics of the kink interacting with the imperfection which follows from the collective coordinate method with the numerical results obtained on the ground of the field theoretical model. We showed that for weekly interacting kinks the collective coordinate method works similarly well for low and extremely large speeds

  3. Survey of numerical methods for compressible fluids

    Energy Technology Data Exchange (ETDEWEB)

    Sod, G A

    1977-06-01

    The finite difference methods of Godunov, Hyman, Lax-Wendroff (two-step), MacCormack, Rusanov, the upwind scheme, the hybrid scheme of Harten and Zwas, the antidiffusion method of Boris and Book, and the artificial compression method of Harten are compared with the random choice known as Glimm's method. The methods are used to integrate the one-dimensional equations of gas dynamics for an inviscid fluid. The results are compared and demonstrate that Glimm's method has several advantages. 16 figs., 4 tables.

  4. Numerical Methods for Free Boundary Problems

    CERN Document Server

    1991-01-01

    About 80 participants from 16 countries attended the Conference on Numerical Methods for Free Boundary Problems, held at the University of Jyviiskylii, Finland, July 23-27, 1990. The main purpose of this conference was to provide up-to-date information on important directions of research in the field of free boundary problems and their numerical solutions. The contributions contained in this volume cover the lectures given in the conference. The invited lectures were given by H.W. Alt, V. Barbu, K-H. Hoffmann, H. Mittelmann and V. Rivkind. In his lecture H.W. Alt considered a mathematical model and existence theory for non-isothermal phase separations in binary systems. The lecture of V. Barbu was on the approximate solvability of the inverse one phase Stefan problem. K-H. Hoff­ mann gave an up-to-date survey of several directions in free boundary problems and listed several applications, but the material of his lecture is not included in this proceedings. H.D. Mittelmann handled the stability of thermo capi...

  5. Numerical methods for modeling photonic-crystal VCSELs

    DEFF Research Database (Denmark)

    Dems, Maciej; Chung, Il-Sug; Nyakas, Peter

    2010-01-01

    We show comparison of four different numerical methods for simulating Photonic-Crystal (PC) VCSELs. We present the theoretical basis behind each method and analyze the differences by studying a benchmark VCSEL structure, where the PC structure penetrates all VCSEL layers, the entire top-mirror DBR...... to the effective index method. The simulation results elucidate the strength and weaknesses of the analyzed methods; and outline the limits of applicability of the different models....

  6. On numerical solution of Burgers' equation by homotopy analysis method

    International Nuclear Information System (INIS)

    Inc, Mustafa

    2008-01-01

    In this Letter, we present the Homotopy Analysis Method (shortly HAM) for obtaining the numerical solution of the one-dimensional nonlinear Burgers' equation. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Convergence of the solution and effects for the method is discussed. The comparison of the HAM results with the Homotopy Perturbation Method (HPM) and the results of [E.N. Aksan, Appl. Math. Comput. 174 (2006) 884; S. Kutluay, A. Esen, Int. J. Comput. Math. 81 (2004) 1433; S. Abbasbandy, M.T. Darvishi, Appl. Math. Comput. 163 (2005) 1265] are made. The results reveal that HAM is very simple and effective. The HAM contains the auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region of solution series. The numerical solutions are compared with the known analytical and some numerical solutions

  7. Numerical methods of mathematical optimization with Algol and Fortran programs

    CERN Document Server

    Künzi, Hans P; Zehnder, C A; Rheinboldt, Werner

    1971-01-01

    Numerical Methods of Mathematical Optimization: With ALGOL and FORTRAN Programs reviews the theory and the practical application of the numerical methods of mathematical optimization. An ALGOL and a FORTRAN program was developed for each one of the algorithms described in the theoretical section. This should result in easy access to the application of the different optimization methods.Comprised of four chapters, this volume begins with a discussion on the theory of linear and nonlinear optimization, with the main stress on an easily understood, mathematically precise presentation. In addition

  8. Numerical methods in physical and economic sciences

    International Nuclear Information System (INIS)

    Lions, J.L.; Marchouk, G.I.

    1974-01-01

    This book is the first of a series to be published simultaneously in French and Russian. Some results obtained in the framework of an agreement of French-Soviet scientific collaboration in the field of the information processing are exposed. In the first part, the iterative methods for solving linear systems are studied with new methods which are compared to already known methods. Iterative methods of minimization of quadratic functionals are then studied. In the second part, the optimization problems with one or many criteria, issued from Physics and Economics problems are considered and splitting and decentralizing methods systematically studied [fr

  9. Recent results of seismic isolation study in CRIEPI: Numerical activities

    International Nuclear Information System (INIS)

    Shiojiri, Hiroo; Ishida, Katsuhiko; Yabana, Shurichi; Hirata, Kazuta

    1992-01-01

    Development of detailed numerical models of a bearing and the related isolation system Is necessary for establishing the rational design of the bearing and the system. The developed numerical models should be validated regarding the physical parameters and the basic assumption by comparing the experimental results with the numerical ones. The numerical work being conducted in CRIEPI consists of the following items: (1) Simple modeling of the behavior of the bearings capable of approximating the tests on bearings, and the validation of the model for the bearing by comparing the numerical results adopting the models with the shaking table tests results; (2) Detailed three-dimensional modeling of single bearings with finite-element codes, and the experimental validation of the model; (3)Simple and detailed three-dimensional modeling of isolation buildings and experimental validation

  10. Development of numerical methods for reactive transport

    International Nuclear Information System (INIS)

    Bouillard, N.

    2006-12-01

    When a radioactive waste is stored in deep geological disposals, it is expected that the waste package will be damaged under water action (concrete leaching, iron corrosion). Then, to understand these damaging processes, chemical reactions and solutes transport are modelled. Numerical simulations of reactive transport can be done sequentially by the coupling of several codes. This is the case of the software platform ALLIANCES which is developed jointly with CEA, ANDRA and EDF. Stiff reactions like precipitation-dissolution are crucial for the radioactive waste storage applications, but standard sequential iterative approaches like Picard's fail in solving rapidly reactive transport simulations with such stiff reactions. In the first part of this work, we focus on a simplified precipitation and dissolution process: a system made up with one solid species and two aqueous species moving by diffusion is studied mathematically. It is assumed that a precipitation dissolution reaction occurs in between them, and it is modelled by a discontinuous kinetics law of unknown sign. By using monotonicity properties, the convergence of a finite volume scheme on admissible mesh is proved. Existence of a weak solution is obtained as a by-product of the convergence of the scheme. The second part is dedicated to coupling algorithms which improve Picard's method and can be easily used in an existing coupling code. By extending previous works, we propose a general and adaptable framework to solve nonlinear systems. Indeed by selecting special options, we can either recover well known methods, like nonlinear conjugate gradient methods, or design specific method. This algorithm has two main steps, a preconditioning one and an acceleration one. This algorithm is tested on several examples, some of them being rather academical and others being more realistic. We test it on the 'three species model'' example. Other reactive transport simulations use an external chemical code CHESS. For a

  11. Nodal methods in numerical reactor calculations

    International Nuclear Information System (INIS)

    Hennart, J.P.; Valle, E. del

    2004-01-01

    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  12. Nodal methods in numerical reactor calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hennart, J P [UNAM, IIMAS, A.P. 20-726, 01000 Mexico D.F. (Mexico); Valle, E del [National Polytechnic Institute, School of Physics and Mathematics, Department of Nuclear Engineering, Mexico, D.F. (Mexico)

    2004-07-01

    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  13. Direct numerical methods of mathematical modeling in mechanical structural design

    International Nuclear Information System (INIS)

    Sahili, Jihad; Verchery, Georges; Ghaddar, Ahmad; Zoaeter, Mohamed

    2002-01-01

    Full text.Structural design and numerical methods are generally interactive; requiring optimization procedures as the structure is analyzed. This analysis leads to define some mathematical terms, as the stiffness matrix, which are resulting from the modeling and then used in numerical techniques during the dimensioning procedure. These techniques and many others involve the calculation of the generalized inverse of the stiffness matrix, called also the 'compliance matrix'. The aim of this paper is to introduce first, some different existing mathematical procedures, used to calculate the compliance matrix from the stiffness matrix, then apply direct numerical methods to solve the obtained system with the lowest computational time, and to compare the obtained results. The results show a big difference of the computational time between the different procedures

  14. Interdisciplinary Study of Numerical Methods and Power Plants Engineering

    Directory of Open Access Journals (Sweden)

    Ioana OPRIS

    2014-08-01

    Full Text Available The development of technology, electronics and computing opened the way for a cross-disciplinary research that brings benefits by combining the achievements of different fields. To prepare the students for their future interdisciplinary approach,aninterdisciplinary teaching is adopted. This ensures their progress in knowledge, understanding and ability to navigate through different fields. Aiming these results, the Universities introduce new interdisciplinary courses which explore complex problems by studying subjects from different domains. The paper presents a problem encountered in designingpower plants. The method of solvingthe problem isused to explain the numerical methods and to exercise programming.The goal of understanding a numerical algorithm that solves a linear system of equations is achieved by using the knowledge of heat transfer to design the regenerative circuit of a thermal power plant. In this way, the outcomes from the prior courses (mathematics and physics are used to explain a new subject (numerical methods and to advance future ones (power plants.

  15. FORECASTING PILE SETTLEMENT ON CLAYSTONE USING NUMERICAL AND ANALYTICAL METHODS

    Directory of Open Access Journals (Sweden)

    Ponomarev Andrey Budimirovich

    2016-06-01

    Full Text Available In the article the problem of designing pile foundations on claystones is reviewed. The purpose of this paper is comparative analysis of the analytical and numerical methods for forecasting the settlement of piles on claystones. The following tasks were solved during the study: 1 The existing researches of pile settlement are analyzed; 2 The characteristics of experimental studies and the parameters for numerical modeling are presented, methods of field research of single piles’ operation are described; 3 Calculation of single pile settlement is performed using numerical methods in the software package Plaxis 2D and analytical method according to the requirements SP 24.13330.2011; 4 Experimental data is compared with the results of analytical and numerical calculations; 5 Basing on these results recommendations for forecasting pile settlement on claystone are presented. Much attention is paid to the calculation of pile settlement considering the impacted areas in ground space beside pile and the comparison with the results of field experiments. Basing on the obtained results, for the prediction of settlement of single pile on claystone the authors recommend using the analytical method considered in SP 24.13330.2011 with account for the impacted areas in ground space beside driven pile. In the case of forecasting the settlement of single pile on claystone by numerical methods in Plaxis 2D the authors recommend using the Hardening Soil model considering the impacted areas in ground space beside the driven pile. The analyses of the results and calculations are presented for examination and verification; therefore it is necessary to continue the research work of deep foundation at another experimental sites to improve the reliability of the calculation of pile foundation settlement. The work is of great interest for geotechnical engineers engaged in research, design and construction of pile foundations.

  16. Numerical methods for Bayesian inference in the face of aging

    International Nuclear Information System (INIS)

    Clarotti, C.A.; Villain, B.; Procaccia, H.

    1996-01-01

    In recent years, much attention has been paid to Bayesian methods for Risk Assessment. Until now, these methods have been studied from a theoretical point of view. Researchers have been mainly interested in: studying the effectiveness of Bayesian methods in handling rare events; debating about the problem of priors and other philosophical issues. An aspect central to the Bayesian approach is numerical computation because any safety/reliability problem, in a Bayesian frame, ends with a problem of numerical integration. This aspect has been neglected until now because most Risk studies assumed the Exponential model as the basic probabilistic model. The existence of conjugate priors makes numerical integration unnecessary in this case. If aging is to be taken into account, no conjugate family is available and the use of numerical integration becomes compulsory. EDF (National Board of Electricity, of France) and ENEA (National Committee for Energy, New Technologies and Environment, of Italy) jointly carried out a research program aimed at developing quadrature methods suitable for Bayesian Interference with underlying Weibull or gamma distributions. The paper will illustrate the main results achieved during the above research program and will discuss, via some sample cases, the performances of the numerical algorithms which on the appearance of stress corrosion cracking in the tubes of Steam Generators of PWR French power plants. (authors)

  17. Numerical methods in simulation of resistance welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi

    2015-01-01

    Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...... thecontact area and the distribution of contact pressure. The numerical simulation of resistancewelding is illustrated by a spot welding example that includes subsequent tensile shear testing...

  18. Workshop on Numerical Methods for Ordinary Differential Equations

    CERN Document Server

    Gear, Charles; Russo, Elvira

    1989-01-01

    Developments in numerical initial value ode methods were the focal topic of the meeting at L'Aquila which explord the connections between the classical background and new research areas such as differental-algebraic equations, delay integral and integro-differential equations, stability properties, continuous extensions (interpolants for Runge-Kutta methods and their applications, effective stepsize control, parallel algorithms for small- and large-scale parallel architectures). The resulting proceedings address many of these topics in both research and survey papers.

  19. New numerical method for solving the solute transport equation

    International Nuclear Information System (INIS)

    Ross, B.; Koplik, C.M.

    1978-01-01

    The solute transport equation can be solved numerically by approximating the water flow field by a network of stream tubes and using a Green's function solution within each stream tube. Compared to previous methods, this approach permits greater computational efficiency and easier representation of small discontinuities, and the results are easier to interpret physically. The method has been used to study hypothetical sites for disposal of high-level radioactive waste

  20. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin

    2012-08-21

    Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.

  1. Numerical method improvement for a subchannel code

    Energy Technology Data Exchange (ETDEWEB)

    Ding, W.J.; Gou, J.L.; Shan, J.Q. [Xi' an Jiaotong Univ., Shaanxi (China). School of Nuclear Science and Technology

    2016-07-15

    Previous studies showed that the subchannel codes need most CPU time to solve the matrix formed by the conservation equations. Traditional matrix solving method such as Gaussian elimination method and Gaussian-Seidel iteration method cannot meet the requirement of the computational efficiency. Therefore, a new algorithm for solving the block penta-diagonal matrix is designed based on Stone's incomplete LU (ILU) decomposition method. In the new algorithm, the original block penta-diagonal matrix will be decomposed into a block upper triangular matrix and a lower block triangular matrix as well as a nonzero small matrix. After that, the LU algorithm is applied to solve the matrix until the convergence. In order to compare the computational efficiency, the new designed algorithm is applied to the ATHAS code in this paper. The calculation results show that more than 80 % of the total CPU time can be saved with the new designed ILU algorithm for a 324-channel PWR assembly problem, compared with the original ATHAS code.

  2. Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

    International Nuclear Information System (INIS)

    Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B

    2009-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  3. CEMRACS 2010: Numerical methods for fusion

    International Nuclear Information System (INIS)

    2011-01-01

    This CEMRACS summer school is devoted to the mathematical and numerical modeling of plasma problems that occur in magnetic or inertial fusion. The main topics of this year are the following: -) asymptotic solutions for fluid models of plasma, -) the hydrodynamics of the implosion and the coupling with radiative transfer in inertial fusion, -) gyrokinetic simulations of magnetic fusion plasmas, and -) Landau damping.

  4. Numerical Methods for Bayesian Inverse Problems

    KAUST Repository

    Ernst, Oliver

    2014-01-06

    We present recent results on Bayesian inversion for a groundwater flow problem with an uncertain conductivity field. In particular, we show how direct and indirect measurements can be used to obtain a stochastic model for the unknown. The main tool here is Bayes’ theorem which merges the indirect data with the stochastic prior model for the conductivity field obtained by the direct measurements. Further, we demonstrate how the resulting posterior distribution of the quantity of interest, in this case travel times of radionuclide contaminants, can be obtained by Markov Chain Monte Carlo (MCMC) simulations. Moreover, we investigate new, promising MCMC methods which exploit geometrical features of the posterior and which are suited to infinite dimensions.

  5. Numerical Methods for Bayesian Inverse Problems

    KAUST Repository

    Ernst, Oliver; Sprungk, Bjorn; Cliffe, K. Andrew; Starkloff, Hans-Jorg

    2014-01-01

    We present recent results on Bayesian inversion for a groundwater flow problem with an uncertain conductivity field. In particular, we show how direct and indirect measurements can be used to obtain a stochastic model for the unknown. The main tool here is Bayes’ theorem which merges the indirect data with the stochastic prior model for the conductivity field obtained by the direct measurements. Further, we demonstrate how the resulting posterior distribution of the quantity of interest, in this case travel times of radionuclide contaminants, can be obtained by Markov Chain Monte Carlo (MCMC) simulations. Moreover, we investigate new, promising MCMC methods which exploit geometrical features of the posterior and which are suited to infinite dimensions.

  6. Automatic numerical integration methods for Feynman integrals through 3-loop

    International Nuclear Information System (INIS)

    De Doncker, E; Olagbemi, O; Yuasa, F; Ishikawa, T; Kato, K

    2015-01-01

    We give numerical integration results for Feynman loop diagrams through 3-loop such as those covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt package. The Dqags algorithm from QuadPack accommodates boundary singularities of fairly general types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface), which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing among processes that may be distributed over a network of nodes. Results are included for 3-loop self-energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms, and is applied to a set of 2-loop self-energy diagrams with UV singularities. (paper)

  7. Quantum dynamic imaging theoretical and numerical methods

    CERN Document Server

    Ivanov, Misha

    2011-01-01

    Studying and using light or "photons" to image and then to control and transmit molecular information is among the most challenging and significant research fields to emerge in recent years. One of the fastest growing areas involves research in the temporal imaging of quantum phenomena, ranging from molecular dynamics in the femto (10-15s) time regime for atomic motion to the atto (10-18s) time scale of electron motion. In fact, the attosecond "revolution" is now recognized as one of the most important recent breakthroughs and innovations in the science of the 21st century. A major participant in the development of ultrafast femto and attosecond temporal imaging of molecular quantum phenomena has been theory and numerical simulation of the nonlinear, non-perturbative response of atoms and molecules to ultrashort laser pulses. Therefore, imaging quantum dynamics is a new frontier of science requiring advanced mathematical approaches for analyzing and solving spatial and temporal multidimensional partial differ...

  8. Rigid inclusions-Comparison between analytical and numerical methods

    International Nuclear Information System (INIS)

    Gomez Perez, R.; Melentijevic, S.

    2014-01-01

    This paper compares different analytical methods for analysis of rigid inclusions with finite element modeling. First of all, the load transfer in the distribution layer is analyzed for its different thicknesses and different inclusion grids to define the range between results obtained by analytical and numerical methods. The interaction between the soft soil and the inclusion in the estimation of settlements is studied as well. Considering different stiffness of the soft soil, settlements obtained analytical and numerically are compared. The influence of the soft soil modulus of elasticity on the neutral point depth was also performed by finite elements. This depth has a great importance for the definition of the total length of rigid inclusion. (Author)

  9. Efficient numerical method for district heating system hydraulics

    International Nuclear Information System (INIS)

    Stevanovic, Vladimir D.; Prica, Sanja; Maslovaric, Blazenka; Zivkovic, Branislav; Nikodijevic, Srdjan

    2007-01-01

    An efficient method for numerical simulation and analyses of the steady state hydraulics of complex pipeline networks is presented. It is based on the loop model of the network and the method of square roots for solving the system of linear equations. The procedure is presented in the comprehensive mathematical form that could be straightforwardly programmed into a computer code. An application of the method to energy efficiency analyses of a real complex district heating system is demonstrated. The obtained results show a potential for electricity savings in pumps operation. It is shown that the method is considerably more effective than the standard Hardy Cross method still widely used in engineering practice. Because of the ease of implementation and high efficiency, the method presented in this paper is recommended for hydraulic steady state calculations of complex networks

  10. Numerical method for wave forces acting on partially perforated caisson

    Science.gov (United States)

    Jiang, Feng; Tang, Xiao-cheng; Jin, Zhao; Zhang, Li; Chen, Hong-zhou

    2015-04-01

    The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid-structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier-Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.

  11. Sensitivity analysis of numerical results of one- and two-dimensional advection-diffusion problems

    International Nuclear Information System (INIS)

    Motoyama, Yasunori; Tanaka, Nobuatsu

    2005-01-01

    Numerical simulation has been playing an increasingly important role in the fields of science and engineering. However, every numerical result contains errors such as modeling, truncation, and computing errors, and the magnitude of the errors that are quantitatively contained in the results is unknown. This situation causes a large design margin in designing by analyses and prevents further cost reduction by optimizing design. To overcome this situation, we developed a new method to numerically analyze the quantitative error of a numerical solution by using the sensitivity analysis method and modified equation approach. If a reference case of typical parameters is calculated once by this method, then no additional calculation is required to estimate the results of other numerical parameters such as those of parameters with higher resolutions. Furthermore, we can predict the exact solution from the sensitivity analysis results and can quantitatively evaluate the error of numerical solutions. Since the method incorporates the features of the conventional sensitivity analysis method, it can evaluate the effect of the modeling error as well as the truncation error. In this study, we confirm the effectiveness of the method through some numerical benchmark problems of one- and two-dimensional advection-diffusion problems. (author)

  12. Numerical methods for coupled fracture problems

    Science.gov (United States)

    Viesca, Robert C.; Garagash, Dmitry I.

    2018-04-01

    We consider numerical solutions in which the linear elastic response to an opening- or sliding-mode fracture couples with one or more processes. Classic examples of such problems include traction-free cracks leading to stress singularities or cracks with cohesive-zone strength requirements leading to non-singular stress distributions. These classical problems have characteristic square-root asymptotic behavior for stress, relative displacement, or their derivatives. Prior work has shown that such asymptotics lead to a natural quadrature of the singular integrals at roots of Chebyhsev polynomials of the first, second, third, or fourth kind. We show that such quadratures lead to convenient techniques for interpolation, differentiation, and integration, with the potential for spectral accuracy. We further show that these techniques, with slight amendment, may continue to be used for non-classical problems which lack the classical asymptotic behavior. We consider solutions to example problems of both the classical and non-classical variety (e.g., fluid-driven opening-mode fracture and fault shear rupture driven by thermal weakening), with comparisons to analytical solutions or asymptotes, where available.

  13. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.S.

    2004-10-03

    This paper covers the basics of the implementation of the control volume method in the context of the Homogeneous Equilibrium Model (HEM)(T/H) code using the conservation equations of mass, momentum, and energy. This primer uses the advection equation as a template. The discussion will cover the basic equations of the control volume portion of the course in the primer, which includes the advection equation, numerical methods, along with the implementation of the various equations via FORTRAN into computer programs and the final result for a three equation HEM code and its validation.

  14. Uniqueness and numerical methods in inverse obstacle scattering

    International Nuclear Information System (INIS)

    Kress, Rainer

    2007-01-01

    The inverse problem we consider in this tutorial is to determine the shape of an obstacle from the knowledge of the far field pattern for scattering of time-harmonic plane waves. In the first part we will concentrate on the issue of uniqueness, i.e., we will investigate under what conditions an obstacle and its boundary condition can be identified from a knowledge of its far field pattern for incident plane waves. We will review some classical and some recent results and draw attention to open problems. In the second part we will survey on numerical methods for solving inverse obstacle scattering problems. Roughly speaking, these methods can be classified into three groups. Iterative methods interpret the inverse obstacle scattering problem as a nonlinear ill-posed operator equation and apply iterative schemes such as regularized Newton methods, Landweber iterations or conjugate gradient methods for its solution. Decomposition methods, in principle, separate the inverse scattering problem into an ill-posed linear problem to reconstruct the scattered wave from its far field and the subsequent determination of the boundary of the scatterer from the boundary condition. Finally, the third group consists of the more recently developed sampling methods. These are based on the numerical evaluation of criteria in terms of indicator functions that decide whether a point lies inside or outside the scatterer. The tutorial will give a survey by describing one or two representatives of each group including a discussion on the various advantages and disadvantages

  15. Numerical experiment on finite element method for matching data

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Kumakura, Toshimasa; Yoshimura, Koichi.

    1993-03-01

    Numerical experiments are presented on the finite element method by Pletzer-Dewar for matching data of an ordinary differential equation with regular singular points by using model equation. Matching data play an important role in nonideal MHD stability analysis of a magnetically confined plasma. In the Pletzer-Dewar method, the Frobenius series for the 'big solution', the fundamental solution which is not square-integrable at the regular singular point, is prescribed. The experiments include studies of the convergence rate of the matching data obtained by the finite element method and of the effect on the results of computation by truncating the Frobenius series at finite terms. It is shown from the present study that the finite element method is an effective method for obtaining the matching data with high accuracy. (author)

  16. Nonlinear ordinary differential equations analytical approximation and numerical methods

    CERN Document Server

    Hermann, Martin

    2016-01-01

    The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

  17. THE DESIGN OF AXIAL PUMP ROTORS USING THE NUMERICAL METHODS

    Directory of Open Access Journals (Sweden)

    Ali BEAZIT

    2010-06-01

    Full Text Available The researches in rotor theory, the increasing use of computers and the connection between design and manufacturing of rotors, have determined the revaluation and completion of classical rotor geometry. This paper presents practical applications of mathematical description of rotor geometry. A program has been created to describe the rotor geometry for arbitrary shape of the blade. The results can be imported by GAMBIT - a processor for geometry with modeling and mesh generations, to create a mesh needed in hydrodynamics analysis of rotor CFD. The results obtained are applicable in numerical methods and are functionally convenient for CAD/CAM systems.

  18. Numerical Methods for Partial Differential Equations.

    Science.gov (United States)

    1984-01-09

    iteration or the conjugate gradient method. The smoothing sweeps are used to annihilate the highly oscillatory (compared to the grid spacing) components of...53 52 "-󈧯 33 41 *32 * . 31 * 21 - 11 O- carrius plane rotacions o I ~~arr: ’.trix vrS2-0 Cf A Figure 4. QM fiitorization of a BLTE (1,2) mnitrix

  19. Numerical methods for stochastic partial differential equations with white noise

    CERN Document Server

    Zhang, Zhongqiang

    2017-01-01

    This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical compa...

  20. Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus

    Science.gov (United States)

    Hirani, A. N.; Nakshatrala, K. B.; Chaudhry, J. H.

    2015-05-01

    We derive a numerical method for Darcy flow, and also for Poisson's equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its discretizations on simplicial complexes such as triangle and tetrahedral meshes. DEC is a coordinate invariant discretization, in that it does not depend on the embedding of the simplices or the whole mesh. We start by rewriting the governing equations of Darcy flow using the language of exterior calculus. This yields a formulation in terms of flux differential form and pressure. The numerical method is then derived by using the framework provided by DEC for discretizing differential forms and operators that act on forms. We also develop a discretization for a spatially dependent Hodge star that varies with the permeability of the medium. This also allows us to address discontinuous permeability. The matrix representation for our discrete non-homogeneous Hodge star is diagonal, with positive diagonal entries. The resulting linear system of equations for flux and pressure are saddle type, with a diagonal matrix as the top left block. The performance of the proposed numerical method is illustrated on many standard test problems. These include patch tests in two and three dimensions, comparison with analytically known solutions in two dimensions, layered medium with alternating permeability values, and a test with a change in permeability along the flow direction. We also show numerical evidence of convergence of the flux and the pressure. A convergence experiment is included for Darcy flow on a surface. A short introduction to the relevant parts of smooth and discrete exterior calculus is included in this article. We also include a discussion of the boundary condition in terms of exterior calculus.

  1. Current system of the solar wind: results of numerical calculation

    International Nuclear Information System (INIS)

    Pisanko, Yu.V.

    1985-01-01

    Results of numerical calculations of surface current in the interplanetary current layer and steady volume current in the solar wind for heliocentric distances (1-10)Rsub(s) (Rsub(s) is the Sun radius) are given. The strength of current dependence on spatial coordinates is considered. Stationary nondissipative magnetohydrodynamic corona expansion (SNMCE) in the reference system rotating with the Sun is studied. Calculations show that three-dimensional current system of nonaxial-symmetric and nonsymmetric relatively to helioequator plane of SNMCE is more complicated than the zonal ring current around the Sun, which is the only component of the current system in spatial symmetric case

  2. Tensor viscosity method for convection in numerical fluid dynamics

    International Nuclear Information System (INIS)

    Dukowicz, J.K.; Ramshaw, J.D.

    1979-01-01

    A new method, called the tensor viscosity method, is described for differencing the convective terms in multidimensional numerical fluid dynamics. The method is the proper generalization to two or three dimensions of interpolated donor cell differencing in one dimension, and is designed to achieve numerical stability with minimal numerical damping. It is a single-step method that is distinguished by simplicity and case of implementation, even in the case of an arbitrary non-rectangular mesh. It should therefore be useful in finite-element as well as finite-difference formulations

  3. Improvement of numerical analysis method for FBR core characteristics. 3

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Yamamoto, Toshihisa; Kitada, Takanori; Katagi, Yousuke

    1998-03-01

    As the improvement of numerical analysis method for FBR core characteristics, studies on several topics have been conducted; multiband method, Monte Carlo perturbation and nodal transport method. This report is composed of the following three parts. Part 1: Improvement of Reaction Rate Calculation Method in the Blanket Region Based on the Multiband Method; A method was developed for precise evaluation of the reaction rate distribution in the blanket region using the multiband method. With the 3-band parameters obtained from the ordinary fitting method, major reaction rates such as U-238 capture, U-235 fission, Pu-239 fission and U-238 fission rate distributions were analyzed. Part 2: Improvement of Estimation Method for Reactivity Based on Monte-Carlo Perturbation Theory; Perturbation theory based on Monte-Carlo perturbation theory have been investigated and introduced into the calculational code. The Monte-Carlo perturbation code was applied to MONJU core and the calculational results were compared to the reference. Part 3: Improvement of Nodal Transport Calculation for Hexagonal Geometry; A method to evaluate the intra-subassembly power distribution from the nodal averaged neutron flux and surface fluxes at the node boundaries, was developed based on the transport theory. (J.P.N.)

  4. Advanced Numerical and Theoretical Methods for Photonic Crystals and Metamaterials

    Science.gov (United States)

    Felbacq, Didier

    2016-11-01

    This book provides a set of theoretical and numerical tools useful for the study of wave propagation in metamaterials and photonic crystals. While concentrating on electromagnetic waves, most of the material can be used for acoustic (or quantum) waves. For each presented numerical method, numerical code written in MATLAB® is presented. The codes are limited to 2D problems and can be easily translated in Python or Scilab, and used directly with Octave as well.

  5. Introduction to numerical methods for time dependent differential equations

    CERN Document Server

    Kreiss, Heinz-Otto

    2014-01-01

    Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the t

  6. Numerical Simulation of Plasma Antenna with FDTD Method

    International Nuclear Information System (INIS)

    Chao, Liang; Yue-Min, Xu; Zhi-Jiang, Wang

    2008-01-01

    We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconBgurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design

  7. Numerical simulation of plasma antenna with FDTD method

    International Nuclear Information System (INIS)

    Liang Chao; Xu Yuemin; Wang Zhijiang

    2008-01-01

    We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconfigurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design. (authors)

  8. Uncertainties related to numerical methods for neutron spectra unfolding

    International Nuclear Information System (INIS)

    Glodic, S.; Ninkovic, M.; Adarougi, N.A.

    1987-10-01

    One of the often used techniques for neutron detection in radiation protection utilities is the Bonner multisphere spectrometer. Besides its advantages and universal applicability for evaluating integral parameters of neutron fields in health physics practices, the outstanding problems of the method are data analysis and the accuracy of the results. This paper briefly discusses some numerical problems related to neutron spectra unfolding, such as uncertainty of the response matrix as a source of error, and the possibility of real time data reduction using spectrometers. (author)

  9. A numerical method to compute interior transmission eigenvalues

    International Nuclear Information System (INIS)

    Kleefeld, Andreas

    2013-01-01

    In this paper the numerical calculation of eigenvalues of the interior transmission problem arising in acoustic scattering for constant contrast in three dimensions is considered. From the computational point of view existing methods are very expensive, and are only able to show the existence of such transmission eigenvalues. Furthermore, they have trouble finding them if two or more eigenvalues are situated closely together. We present a new method based on complex-valued contour integrals and the boundary integral equation method which is able to calculate highly accurate transmission eigenvalues. So far, this is the first paper providing such accurate values for various surfaces different from a sphere in three dimensions. Additionally, the computational cost is even lower than those of existing methods. Furthermore, the algorithm is capable of finding complex-valued eigenvalues for which no numerical results have been reported yet. Until now, the proof of existence of such eigenvalues is still open. Finally, highly accurate eigenvalues of the interior Dirichlet problem are provided and might serve as test cases to check newly derived Faber–Krahn type inequalities for larger transmission eigenvalues that are not yet available. (paper)

  10. Numerical simulation methods for phase-transitional flow

    NARCIS (Netherlands)

    Pecenko, A.

    2010-01-01

    The object of the present dissertation is a numerical study of multiphase flow of one fluid component. In particular, the research described in this thesis focuses on the development of numerical methods that are based on a diffuse-interface model (DIM). With this approach, the modeling problem

  11. Assessing numerical methods used in nuclear aerosol transport models

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1987-01-01

    Several computer codes are in use for predicting the behaviour of nuclear aerosols released into containment during postulated accidents in water-cooled reactors. Each of these codes uses numerical methods to discretize and integrate the equations that govern the aerosol transport process. Computers perform only algebraic operations and generate only numbers. It is in the numerical methods that sense can be made of these numbers and where they can be related to the actual solution of the equations. In this report, the numerical methods most commonly used in the aerosol transport codes are examined as special cases of a general solution procedure, the Method of Weighted Residuals. It would appear that the numerical methods used in the codes are all capable of producing reasonable answers to the mathematical problem when used with skill and care. 27 refs

  12. Two split cell numerical methods for solving 2-D non-equilibrium radiation transport equations

    International Nuclear Information System (INIS)

    Feng Tinggui

    2004-11-01

    Two numerically positive methods, the step characteristic integral method and subcell balance method, for solving radiative transfer equations on quadrilateral grids are presented. Numerical examples shows that the schemes presented are feasible on non-rectangle grid computation, and that the computing results by the schemes presented are comparative to that by the discrete ordinate diamond scheme on rectangle grid. (author)

  13. Method for numerical simulation of two-term exponentially correlated colored noise

    International Nuclear Information System (INIS)

    Yilmaz, B.; Ayik, S.; Abe, Y.; Gokalp, A.; Yilmaz, O.

    2006-01-01

    A method for numerical simulation of two-term exponentially correlated colored noise is proposed. The method is an extension of traditional method for one-term exponentially correlated colored noise. The validity of the algorithm is tested by comparing numerical simulations with analytical results in two physical applications

  14. NUMERICAL AND ANALYTIC METHODS OF ESTIMATION BRIDGES’ CONSTRUCTIONS

    Directory of Open Access Journals (Sweden)

    Y. Y. Luchko

    2010-03-01

    Full Text Available In this article the numerical and analytical methods of calculation of the stressed-and-strained state of bridge constructions are considered. The task on increasing of reliability and accuracy of the numerical method and its solution by means of calculations in two bases are formulated. The analytical solution of the differential equation of deformation of a ferro-concrete plate under the action of local loads is also obtained.

  15. Numerical method of singular problems on singular integrals

    International Nuclear Information System (INIS)

    Zhao Huaiguo; Mou Zongze

    1992-02-01

    As first part on the numerical research of singular problems, a numerical method is proposed for singular integrals. It is shown that the procedure is quite powerful for solving physics calculation with singularity such as the plasma dispersion function. Useful quadrature formulas for some class of the singular integrals are derived. In general, integrals with more complex singularities can be dealt by this method easily

  16. A calculation method for RF couplers design based on numerical simulation by microwave studio

    International Nuclear Information System (INIS)

    Wang Rong; Pei Yuanji; Jin Kai

    2006-01-01

    A numerical simulation method for coupler design is proposed. It is based on the matching procedure for the 2π/3 structure given by Dr. R.L. Kyhl. Microwave Studio EigenMode Solver is used for such numerical simulation. the simulation for a coupler has been finished with this method and the simulation data are compared with experimental measurements. The results show that this numerical simulation method is feasible for coupler design. (authors)

  17. Numerical Solution of the Blasius Viscous Flow Problem by Quartic B-Spline Method

    Directory of Open Access Journals (Sweden)

    Hossein Aminikhah

    2016-01-01

    Full Text Available A numerical method is proposed to study the laminar boundary layer about a flat plate in a uniform stream of fluid. The presented method is based on the quartic B-spline approximations with minimizing the error L2-norm. Theoretical considerations are discussed. The computed results are compared with some numerical results to show the efficiency of the proposed approach.

  18. Molecular dynamics with deterministic and stochastic numerical methods

    CERN Document Server

    Leimkuhler, Ben

    2015-01-01

    This book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications.  Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method...

  19. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-09

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  20. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-01

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  1. On the numerical stability analysis of pipelined Krylov subspace methods

    Czech Academy of Sciences Publication Activity Database

    Carson, E.T.; Rozložník, Miroslav; Strakoš, Z.; Tichý, P.; Tůma, M.

    submitted 2017 (2018) R&D Projects: GA ČR GA13-06684S Grant - others:GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : Krylov subspace methods * the conjugate gradient method * numerical stability * inexact computations * delay of convergence * maximal attainable accuracy * pipelined Krylov subspace methods * exascale computations

  2. Stochastic numerical methods an introduction for students and scientists

    CERN Document Server

    Toral, Raul

    2014-01-01

    Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability ConceptsMonte Carlo IntegrationGeneration of Uniform and Non-uniformRandom Numbers: Non-correlated ValuesDynamical MethodsApplications to Statistical MechanicsIn...

  3. Circular orbits of corotating binary black holes: Comparison between analytical and numerical results

    International Nuclear Information System (INIS)

    Damour, Thibault; Gourgoulhon, Eric; Grandclement, Philippe

    2002-01-01

    We compare recent numerical results, obtained within a 'helical Killing vector' approach, on circular orbits of corotating binary black holes to the analytical predictions made by the effective one-body (EOB) method (which has been recently extended to the case of spinning bodies). On the scale of the differences between the results obtained by different numerical methods, we find good agreement between numerical data and analytical predictions for several invariant functions describing the dynamical properties of circular orbits. This agreement is robust against the post-Newtonian accuracy used for the analytical estimates, as well as under choices of the resummation method for the EOB 'effective potential', and gets better as one uses a higher post-Newtonian accuracy. These findings open the way to a significant 'merging' of analytical and numerical methods, i.e. to matching an EOB-based analytical description of the (early and late) inspiral, up to the beginning of the plunge, to a numerical description of the plunge and merger. We illustrate also the 'flexibility' of the EOB approach, i.e. the possibility of determining some 'best fit' values for the analytical parameters by comparison with numerical data

  4. Numerical method for two phase flow with a unstable interface

    International Nuclear Information System (INIS)

    Glimm, J.; Marchesin, D.; McBryan, O.

    1981-01-01

    The random choice method is used to compute the oil-water interface for two dimensional porous media equations. The equations used are a pair of coupled equations; the (elliptic) pressure equation and the (hyperbolic) saturation equation. The equations do not include the dispersive capillary pressure term and the computation does not introduce numerical diffusion. The method resolves saturation discontinuities sharply. The main conclusion of this paper is that the random choice is a correct numerical procedure for this problem even in the highly fingered case. Two methods of inducing fingers are considered: deterministically, through choice of Cauchy data and heterogeneity, through maximizing the randomness of the random choice method

  5. A numerical method for a transient two-fluid model

    International Nuclear Information System (INIS)

    Le Coq, G.; Libmann, M.

    1978-01-01

    The transient boiling two-phase flow is studied. In nuclear reactors, the driving conditions for the transient boiling are a pump power decay or/and an increase in heating power. The physical model adopted for the two-phase flow is the two fluid model with the assumption that the vapor remains at saturation. The numerical method for solving the thermohydraulics problems is a shooting method, this method is highly implicit. A particular problem exists at the boiling and condensation front. A computer code using this numerical method allow the calculation of a transient boiling initiated by a steady state for a PWR or for a LMFBR

  6. EFFECTS OF DIFFERENT NUMERICAL INTERFACE METHODS ON HYDRODYNAMICS INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    FRANCOIS, MARIANNE M. [Los Alamos National Laboratory; DENDY, EDWARD D. [Los Alamos National Laboratory; LOWRIE, ROBERT B. [Los Alamos National Laboratory; LIVESCU, DANIEL [Los Alamos National Laboratory; STEINKAMP, MICHAEL J. [Los Alamos National Laboratory

    2007-01-11

    The authors compare the effects of different numerical schemes for the advection and material interface treatments on the single-mode Rayleigh-Taylor instability, using the RAGE hydro-code. The interface growth and its surface density (interfacial area) versus time are investigated. The surface density metric shows to be better suited to characterize the difference in the flow, than the conventional interface growth metric. They have found that Van Leer's limiter combined to no interface treatment leads to the largest surface area. Finally, to quantify the difference between the numerical methods they have estimated the numerical viscosity in the linear-regime at different scales.

  7. Experimental and numerical results from hybrid retrofitted photovoltaic panels

    International Nuclear Information System (INIS)

    Rossi, Cecilia; Tagliafico, Luca A.; Scarpa, Federico; Bianco, Vincenzo

    2013-01-01

    Highlights: • The experimental study focuses on the feasibility of hybrid PV/T panels retrofitting. • The critical role of a thin layer of air between PV panel and back plate is evidenced. • The benefit of the addition of a conductive paste layer is analyzed via FEM simulations. • The use of wood ribs to stick the back plate represents a cheap effective solution. - Abstract: The aim of present study is to investigate different methodologies to achieve a better contact between a photovoltaic panel and a thermal plate, in order to cool the PV panel by means of water in the perspective of coupling it with a heat pump. It is believed that this kind of system allows to obtain a higher energy efficiency. The analysis is developed both experimentally and numerically, testing different kinds of configurations in different operating conditions. Simulations are employed to analyze the effect of the variations of the contact resistance between the panel and the thermal plates, demonstrating that the use of a conductive paste increases the overall performance of the panel. Results show interesting possibilities in terms of retrofitting of existing photovoltaic panels by employing very simple solutions, such as to fix the thermal plate on the rear of the panel by means of wood ribs

  8. Numerical methods for axisymmetric and 3D nonlinear beams

    Science.gov (United States)

    Pinton, Gianmarco F.; Trahey, Gregg E.

    2005-04-01

    Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.

  9. Efficient Numerical Methods for Stochastic Differential Equations in Computational Finance

    KAUST Repository

    Happola, Juho

    2017-09-19

    Stochastic Differential Equations (SDE) offer a rich framework to model the probabilistic evolution of the state of a system. Numerical approximation methods are typically needed in evaluating relevant Quantities of Interest arising from such models. In this dissertation, we present novel effective methods for evaluating Quantities of Interest relevant to computational finance when the state of the system is described by an SDE.

  10. Application of numerical analysis methods to thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Gomez Ros, J. M.; Delgado, A.

    1989-01-01

    This report presents the application of numerical methods to thermoluminescence dosimetry (TLD), showing the advantages obtained over conventional evaluation systems. Different configurations of the analysis method are presented to operate in specific dosimetric applications of TLD, such as environmental monitoring and mailed dosimetry systems for quality assurance in radiotherapy facilities. (Author) 10 refs

  11. Efficient Numerical Methods for Stochastic Differential Equations in Computational Finance

    KAUST Repository

    Happola, Juho

    2017-01-01

    Stochastic Differential Equations (SDE) offer a rich framework to model the probabilistic evolution of the state of a system. Numerical approximation methods are typically needed in evaluating relevant Quantities of Interest arising from such models. In this dissertation, we present novel effective methods for evaluating Quantities of Interest relevant to computational finance when the state of the system is described by an SDE.

  12. A numerical method for solving singular De`s

    Energy Technology Data Exchange (ETDEWEB)

    Mahaver, W.T.

    1996-12-31

    A numerical method is developed for solving singular differential equations using steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety of first and second order problems, including linear constrained, unconstrained, and partially constrained first order problems, a nonlinear first order problem with irregular singularity, and two second order variational problems.

  13. Numerical Solution of Fuzzy Differential Equations by Runge-Kutta Verner Method

    Directory of Open Access Journals (Sweden)

    T. Jayakumar

    2015-01-01

    Full Text Available In this paper we study the numerical methods for Fuzzy Differential equations by an application of the Runge-Kutta Verner method for fuzzy differential equations. We prove a convergence result and give numerical examples to illustrate the theory.

  14. Mathematical analysis and numerical methods for science and technology

    CERN Document Server

    Dautray, Robert

    These 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which ...

  15. Application of the photoelastic experimental hybrid method with new numerical method to the high stress distribution

    International Nuclear Information System (INIS)

    Hawong, Jai Sug; Lee, Dong Hun; Lee, Dong Ha; Tche, Konstantin

    2004-01-01

    In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method

  16. Numerical perturbative methods in the quantum theory of physical systems

    International Nuclear Information System (INIS)

    Adam, G.

    1980-01-01

    During the last two decades, development of digital electronic computers has led to the deployment of new, distinct methods in theoretical physics. These methods, based on the advances of modern numerical analysis as well as on specific equations describing physical processes, enabled to perform precise calculations of high complexity which have completed and sometimes changed our image of many physical phenomena. Our efforts have concentrated on the development of numerical methods with such intrinsic performances as to allow a successful approach of some Key issues in present theoretical physics on smaller computation systems. The basic principle of such methods is to translate, in numerical analysis language, the theory of perturbations which is suited to numerical rather than to analytical computation. This idea has been illustrated by working out two problems which arise from the time independent Schroedinger equation in the non-relativistic approximation, within both quantum systems with a small number of particles and systems with a large number of particles, respectively. In the first case, we are led to the numerical solution of some quadratic ordinary differential equations (first section of the thesis) and in the second case, to the solution of some secular equations in the Brillouin area (second section). (author)

  17. MATH: A Scientific Tool for Numerical Methods Calculation and Visualization

    Directory of Open Access Journals (Sweden)

    Henrich Glaser-Opitz

    2016-02-01

    Full Text Available MATH is an easy to use application for various numerical methods calculations with graphical user interface and integrated plotting tool written in Qt with extensive use of Qwt library for plotting options and use of Gsl and MuParser libraries as a numerical and parser helping libraries. It can be found at http://sourceforge.net/projects/nummath. MATH is a convenient tool for use in education process because of its capability of showing every important step in solution process to better understand how it is done. MATH also enables fast comparison of similar method speed and precision.

  18. Numerical simulation methods for wave propagation through optical waveguides

    International Nuclear Information System (INIS)

    Sharma, A.

    1993-01-01

    The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs

  19. Numerical methods for two-phase flow with contact lines

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Clauido

    2012-07-01

    This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations

  20. Numerical Methods for Forward and Inverse Problems in Discontinuous Media

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, Timothy P.

    2011-03-08

    The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise to medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.

  1. Comparison the Results of Numerical Simulation And Experimental Results for Amirkabir Plasma Focus Facility

    Science.gov (United States)

    Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.

    2014-06-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  2. Comparison the results of numerical simulation and experimental results for Amirkabir plasma focus facility

    International Nuclear Information System (INIS)

    Goudarzi, Shervin; Amrollahi, R; Sharak, M Niknam

    2014-01-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  3. A higher order numerical method for time fractional partial differential equations with nonsmooth data

    Science.gov (United States)

    Xing, Yanyuan; Yan, Yubin

    2018-03-01

    Gao et al. [11] (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate O (k 3 - α), 0 equation is sufficiently smooth, Lv and Xu [20] (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate O (k 3 - α), 0 equation has low regularity and in this case the numerical method fails to have the convergence rate O (k 3 - α), 0 quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate O (k 3 - α), 0 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.

  4. A Broyden numerical Kutta condition for an unsteady panel method

    International Nuclear Information System (INIS)

    Liu, P.; Bose, N.; Colbourne, B.

    2003-01-01

    In panel methods, numerical Kutta conditions are applied in order to ensure that pressure differences between the surfaces at the trailing edges of lifting surface elements are close to zero. Previous numerical Kutta conditions for 3-D panel methods have focused on use of the Newton-Raphson iterative procedure. For extreme unsteady motions, such as for oscillating hydrofoils or for a propeller behind a blockage, the Newton-Raphson procedure can have severe convergence difficulties. The Broyden iteration, a modified Newton-Raphson iteration procedure, is applied here to obtain improved convergence behavior. Using the Broyden iteration increases the reliability, robustness and in many cases computing efficiency for unsteady, multi-body interactive flows. This method was tested in a time domain code for an ice class propeller in both open water flow and during interaction with a nearby ice blockage. Predictions showed that the method was effective in these extreme flows. (author)

  5. Numerical methods for the Lévy LIBOR model

    DEFF Research Database (Denmark)

    Papapantoleon, Antonis; Skovmand, David

    2010-01-01

    but the methods are generally slow. We propose an alternative approximation scheme based on Picard iterations. Our approach is similar in accuracy to the full numerical solution, but with the feature that each rate is, unlike the standard method, evolved independently of the other rates in the term structure....... This enables simultaneous calculation of derivative prices of different maturities using parallel computing. We include numerical illustrations of the accuracy and speed of our method pricing caplets.......The aim of this work is to provide fast and accurate approximation schemes for the Monte-Carlo pricing of derivatives in the L\\'evy LIBOR model of Eberlein and \\"Ozkan (2005). Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates...

  6. Numerical Methods for the Lévy LIBOR Model

    DEFF Research Database (Denmark)

    Papapantoleon, Antonis; Skovmand, David

    are generally slow. We propose an alternative approximation scheme based on Picard iterations. Our approach is similar in accuracy to the full numerical solution, but with the feature that each rate is, unlike the standard method, evolved independently of the other rates in the term structure. This enables...... simultaneous calculation of derivative prices of different maturities using parallel computing. We include numerical illustrations of the accuracy and speed of our method pricing caplets.......The aim of this work is to provide fast and accurate approximation schemes for the Monte-Carlo pricing of derivatives in the Lévy LIBOR model of Eberlein and Özkan (2005). Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates but the methods...

  7. New numerical methods for quantum field theories on the continuum

    Energy Technology Data Exchange (ETDEWEB)

    Emirdag, P.; Easter, R.; Guralnik, G.S.; Hahn, S.C

    2000-03-01

    The Source Galerkin Method is a new numerical technique that is being developed to solve Quantum Field Theories on the continuum. It is not based on Monte Carlo techniques and has a measure to evaluate relative errors. It promises to increase the accuracy and speed of calculations, and takes full advantage of symmetries of the theory. The application of this method to the non-linear {sigma} model is outlined.

  8. Numerical methods and computers used in elastohydrodynamic lubrication

    Science.gov (United States)

    Hamrock, B. J.; Tripp, J. H.

    1982-01-01

    Some of the methods of obtaining approximate numerical solutions to boundary value problems that arise in elastohydrodynamic lubrication are reviewed. The highlights of four general approaches (direct, inverse, quasi-inverse, and Newton-Raphson) are sketched. Advantages and disadvantages of these approaches are presented along with a flow chart showing some of the details of each. The basic question of numerical stability of the elastohydrodynamic lubrication solutions, especially in the pressure spike region, is considered. Computers used to solve this important class of lubrication problems are briefly described, with emphasis on supercomputers.

  9. Numerical

    Directory of Open Access Journals (Sweden)

    M. Boumaza

    2015-07-01

    Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.

  10. Dynamical Systems Method and Applications Theoretical Developments and Numerical Examples

    CERN Document Server

    Ramm, Alexander G

    2012-01-01

    Demonstrates the application of DSM to solve a broad range of operator equations The dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications. Dynamical Systems Method and Applications begins with a general introduction and

  11. Hybrid RANS-LES using high order numerical methods

    Science.gov (United States)

    Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael

    2017-11-01

    Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  12. Developing Teaching Material Software Assisted for Numerical Methods

    Science.gov (United States)

    Handayani, A. D.; Herman, T.; Fatimah, S.

    2017-09-01

    The NCTM vision shows the importance of two things in school mathematics, which is knowing the mathematics of the 21st century and the need to continue to improve mathematics education to answer the challenges of a changing world. One of the competencies associated with the great challenges of the 21st century is the use of help and tools (including IT), such as: knowing the existence of various tools for mathematical activity. One of the significant challenges in mathematical learning is how to teach students about abstract concepts. In this case, technology in the form of mathematics learning software can be used more widely to embed the abstract concept in mathematics. In mathematics learning, the use of mathematical software can make high level math activity become easier accepted by student. Technology can strengthen student learning by delivering numerical, graphic, and symbolic content without spending the time to calculate complex computing problems manually. The purpose of this research is to design and develop teaching materials software assisted for numerical method. The process of developing the teaching material starts from the defining step, the process of designing the learning material developed based on information obtained from the step of early analysis, learners, materials, tasks that support then done the design step or design, then the last step is the development step. The development of teaching materials software assisted for numerical methods is valid in content. While validator assessment for teaching material in numerical methods is good and can be used with little revision.

  13. A numerical test method of California bearing ratio on graded crushed rocks using particle flow modeling

    Directory of Open Access Journals (Sweden)

    Yingjun Jiang

    2015-04-01

    Full Text Available In order to better understand the mechanical properties of graded crushed rocks (GCRs and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed for the California bearing ratio (CBR test on GCRs. The effects of different testing conditions and micro-mechanical parameters used in the model on the CBR numerical results have been systematically studied. The reliability of the numerical technique is verified. The numerical results suggest that the influences of the loading rate and Poisson's ratio on the CBR numerical test results are not significant. As such, a loading rate of 1.0–3.0 mm/min, a piston diameter of 5 cm, a specimen height of 15 cm and a specimen diameter of 15 cm are adopted for the CBR numerical test. The numerical results reveal that the CBR values increase with the friction coefficient at the contact and shear modulus of the rocks, while the influence of Poisson's ratio on the CBR values is insignificant. The close agreement between the CBR numerical results and experimental results suggests that the numerical simulation of the CBR values is promising to help assess the mechanical properties of GCRs and to optimize the grading design. Besides, the numerical study can provide useful insights on the mesoscopic mechanism.

  14. Numerical method for the nonlinear Fokker-Planck equation

    International Nuclear Information System (INIS)

    Zhang, D.S.; Wei, G.W.; Kouri, D.J.; Hoffman, D.K.

    1997-01-01

    A practical method based on distributed approximating functionals (DAFs) is proposed for numerically solving a general class of nonlinear time-dependent Fokker-Planck equations. The method relies on a numerical scheme that couples the usual path-integral concept to the DAF idea. The high accuracy and reliability of the method are illustrated by applying it to an exactly solvable nonlinear Fokker-Planck equation, and the method is compared with the accurate K-point Stirling interpolation formula finite-difference method. The approach is also used successfully to solve a nonlinear self-consistent dynamic mean-field problem for which both the cumulant expansion and scaling theory have been found by Drozdov and Morillo [Phys. Rev. E 54, 931 (1996)] to be inadequate to describe the occurrence of a long-lived transient bimodality. The standard interpretation of the transient bimodality in terms of the flat region in the kinetic potential fails for the present case. An alternative analysis based on the effective potential of the Schroedinger-like Fokker-Planck equation is suggested. Our analysis of the transient bimodality is strongly supported by two examples that are numerically much more challenging than other examples that have been previously reported for this problem. copyright 1997 The American Physical Society

  15. Solar neutrino masses and mixing from bilinear R-parity broken supersymmetry: Analytical versus numerical results

    Science.gov (United States)

    Díaz, M.; Hirsch, M.; Porod, W.; Romão, J.; Valle, J.

    2003-07-01

    We give an analytical calculation of solar neutrino masses and mixing at one-loop order within bilinear R-parity breaking supersymmetry, and compare our results to the exact numerical calculation. Our method is based on a systematic perturbative expansion of R-parity violating vertices to leading order. We find in general quite good agreement between the approximate and full numerical calculations, but the approximate expressions are much simpler to implement. Our formalism works especially well for the case of the large mixing angle Mikheyev-Smirnov-Wolfenstein solution, now strongly favored by the recent KamLAND reactor neutrino data.

  16. Appraisal of numerical methods in predicting the aerodynamics of forward-swept wings

    CSIR Research Space (South Africa)

    Lombardi, G

    1998-07-01

    Full Text Available The capabilities of different numerical methods in evaluating the aerodynamic characteristics of a forward-swept wing in subsonic and transonic now are analyzed. The numerical results, obtained by means of potential, Euler, and Navier-Stokes solvers...

  17. A numerical method for multigroup slab-geometry discrete ordinates problems with no spatial truncation error

    International Nuclear Information System (INIS)

    Barros, R.C. de; Larsen, E.W.

    1991-01-01

    A generalization of the one-group Spectral Green's Function (SGF) method is developed for multigroup, slab-geometry discrete ordinates (S N ) problems. The multigroup SGF method is free from spatial truncation errors; it generated numerical values for the cell-edge and cell-average angular fluxes that agree with the analytic solution of the multigroup S N equations. Numerical results are given to illustrate the method's accuracy

  18. Numerical analysis of temperature field during hardfacing process and comparison with experimental results

    Directory of Open Access Journals (Sweden)

    Lazić Vukić N.

    2014-01-01

    Full Text Available The three-dimensional transient nonlinear thermal analysis of the hard facing process is performed by using the finite element method. The simulations were executed on the open source Salome platform using the open source finite element solver Code_Aster. The Gaussian double ellipsoid was selected in order to enable greater possibilities for the calculation of the moving heat source. The numerical results were compared with available experimental results.

  19. Hybrid numerical methods for multiscale simulations of subsurface biogeochemical processes

    International Nuclear Information System (INIS)

    Scheibe, T D; Tartakovsky, A M; Tartakovsky, D M; Redden, G D; Meakin, P

    2007-01-01

    Many subsurface flow and transport problems of importance today involve coupled non-linear flow, transport, and reaction in media exhibiting complex heterogeneity. In particular, problems involving biological mediation of reactions fall into this class of problems. Recent experimental research has revealed important details about the physical, chemical, and biological mechanisms involved in these processes at a variety of scales ranging from molecular to laboratory scales. However, it has not been practical or possible to translate detailed knowledge at small scales into reliable predictions of field-scale phenomena important for environmental management applications. A large assortment of numerical simulation tools have been developed, each with its own characteristic scale. Important examples include 1. molecular simulations (e.g., molecular dynamics); 2. simulation of microbial processes at the cell level (e.g., cellular automata or particle individual-based models); 3. pore-scale simulations (e.g., lattice-Boltzmann, pore network models, and discrete particle methods such as smoothed particle hydrodynamics); and 4. macroscopic continuum-scale simulations (e.g., traditional partial differential equations solved by finite difference or finite element methods). While many problems can be effectively addressed by one of these models at a single scale, some problems may require explicit integration of models across multiple scales. We are developing a hybrid multi-scale subsurface reactive transport modeling framework that integrates models with diverse representations of physics, chemistry and biology at different scales (sub-pore, pore and continuum). The modeling framework is being designed to take advantage of advanced computational technologies including parallel code components using the Common Component Architecture, parallel solvers, gridding, data and workflow management, and visualization. This paper describes the specific methods/codes being used at each

  20. Numerical analysis of jet breakup behavior using particle method

    International Nuclear Information System (INIS)

    Shibata, Kazuya; Koshizuka, Seiichi; Oka, Yoshiaki

    2002-01-01

    A continuous jet changes to droplets where jet breakup occurs. In this study, two-dimensional numerical analysis of jet breakup is performed using the MPS method (Moving Particle Semi-implicit Method) which is a particle method for incompressible flows. The continuous fluid surrounding the jet is neglected. Dependencies of the jet breakup length on the Weber number and the Froude number agree with the experiment. The size distribution of droplets is in agreement with the Nukiyama-Tanasawa distribution which has been widely used as an experimental correlation. Effects of the Weber number and the Froude number on the size distribution are also obtained. (author)

  1. Numerical simulation methods to richtmyer-meshkov instabilities

    International Nuclear Information System (INIS)

    Zhou Ning; Yu Yan; Tang Weijun

    2003-01-01

    Front tracking algorithms have generally assumed that the computational medium is divided into piece-wise smooth subdomains bounded by interfaces and that strong wave interactions are solved via Riemann solutions. However, in multi-dimensional cases, the Riemann solution of multiple shock wave interactions are far more complicated and still subject to analytical study. For this reason, it is very desirable to be able to track contact discontinuities only. A new numerical algorithm to couple a tracked contact surface and an untracked strong shock wave are described. The new tracking algorithm reduces the complication of computation, and maintains the sharp resolution of the contact surface. The numerical results are good. (authors)

  2. Numerical method for two-phase flow discontinuity propagation calculation

    International Nuclear Information System (INIS)

    Toumi, I.; Raymond, P.

    1989-01-01

    In this paper, we present a class of numerical shock-capturing schemes for hyperbolic systems of conservation laws modelling two-phase flow. First, we solve the Riemann problem for a two-phase flow with unequal velocities. Then, we construct two approximate Riemann solvers: an one intermediate-state Riemann solver and a generalized Roe's approximate Riemann solver. We give some numerical results for one-dimensional shock-tube problems and for a standard two-phase flow heat addition problem involving two-phase flow instabilities

  3. Numerical methods for characterization of synchrotron radiation based on the Wigner function method

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2014-06-01

    Full Text Available Numerical characterization of synchrotron radiation based on the Wigner function method is explored in order to accurately evaluate the light source performance. A number of numerical methods to compute the Wigner functions for typical synchrotron radiation sources such as bending magnets, undulators and wigglers, are presented, which significantly improve the computation efficiency and reduce the total computation time. As a practical example of the numerical characterization, optimization of betatron functions to maximize the brilliance of undulator radiation is discussed.

  4. Numerical renormalization group method for entanglement negativity at finite temperature

    Science.gov (United States)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  5. Second GAMM-conference on numerical methods in fluid mechanics

    International Nuclear Information System (INIS)

    Hirschel, E.H.; Geller, W.

    1977-01-01

    Proceedings of the Second GAMM-Conference on Numerical Methods in Fluid Mechanics held at the DFVLR, Koeln, October 11 to 13, 1977. The conference was attended by approximately 100 participants from 13 European countries representing quite different fields ranging from Aerodynamics to Nuclear Energy. At the meeting 34 papers were presented, many of them concerned with basic problems in the field. It was well demonstrated that Numerical Methods in Fluid Mechanics do not only serve as means for the computation of flow fields but also as tools in the analysis of fluid mechanical phenomena, a role of large future importance if one considers the complexity especially of three-dimensional flows. (orig./RW) [de

  6. Theoretical and applied aerodynamics and related numerical methods

    CERN Document Server

    Chattot, J J

    2015-01-01

    This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...

  7. Numerical method for the unsteady potential flow about pitching airfoils

    International Nuclear Information System (INIS)

    Parrouffe, J.-M.; Paraschivoiu, I.

    1985-01-01

    This paper presents a numerical method for the unsteady potential flow about an aerodynamic profile and in its wake. This study has many applications such as airplane wings and propellers, guide vanes, subcavitant hydrofoils and wind turbine blades. Typical of such nonstationary configurations is the rotor of the Darrieus vertical-axis wind turbine whose blades are exposed to cyclic aerodynamic loads in the operating state

  8. Numerical Verification Methods for Spherical $t$-Designs

    OpenAIRE

    Chen, Xiaojun

    2009-01-01

    The construction of spherical $t$-designs with $(t+1)^2$ points on the unit sphere $S^2$ in $\\mathbb{R}^3$ can be reformulated as an underdetermined system of nonlinear equations. This system is highly nonlinear and involves the evaluation of a degree $t$ polynomial in $(t+1)^4$ arguments. This paper reviews numerical verification methods using the Brouwer fixed point theorem and Krawczyk interval operator for solutions of the underdetermined system of nonlinear equations...

  9. Development of numerical methods for thermohydraulic problems in reactor safety

    International Nuclear Information System (INIS)

    Chabrillac, M.; Kavenoky, A.; Le Coq, G.; L'Heriteau, J.P.; Stewart, B.; Rousseau, J.C.

    1976-01-01

    Numerical methods are being developed for the LOCA calculation; the first part is devoted to the BERTHA model and the associated characteristic treatment for the first seconds of the blowdown, the second part presents the problems encountered for accounting for velocity difference between phases. The FLIRA treatment of the reflooding is presented in the last part: this treatment allows the calculation of the quenching front velocity

  10. Parametric methods outperformed non-parametric methods in comparisons of discrete numerical variables

    Directory of Open Access Journals (Sweden)

    Sandvik Leiv

    2011-04-01

    Full Text Available Abstract Background The number of events per individual is a widely reported variable in medical research papers. Such variables are the most common representation of the general variable type called discrete numerical. There is currently no consensus on how to compare and present such variables, and recommendations are lacking. The objective of this paper is to present recommendations for analysis and presentation of results for discrete numerical variables. Methods Two simulation studies were used to investigate the performance of hypothesis tests and confidence interval methods for variables with outcomes {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, and {0, 1, 2, 3, 4, 5}, using the difference between the means as an effect measure. Results The Welch U test (the T test with adjustment for unequal variances and its associated confidence interval performed well for almost all situations considered. The Brunner-Munzel test also performed well, except for small sample sizes (10 in each group. The ordinary T test, the Wilcoxon-Mann-Whitney test, the percentile bootstrap interval, and the bootstrap-t interval did not perform satisfactorily. Conclusions The difference between the means is an appropriate effect measure for comparing two independent discrete numerical variables that has both lower and upper bounds. To analyze this problem, we encourage more frequent use of parametric hypothesis tests and confidence intervals.

  11. The instanton method and its numerical implementation in fluid mechanics

    Science.gov (United States)

    Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias

    2015-08-01

    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier-Stokes equations.

  12. The instanton method and its numerical implementation in fluid mechanics

    International Nuclear Information System (INIS)

    Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias

    2015-01-01

    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin–Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler–Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier–Stokes equations. (topical review)

  13. Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Najm, Habib N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phipps, Eric Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

  14. Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method

    Science.gov (United States)

    Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2012-01-01

    Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939

  15. Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods

    Science.gov (United States)

    Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi

    2010-06-01

    Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.

  16. Numerical computation of FCT equilibria by inverse equilibrium method

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Tsunematsu, Toshihide; Takeda, Tatsuoki

    1986-11-01

    FCT (Flux Conserving Tokamak) equilibria were obtained numerically by the inverse equilibrium method. The high-beta tokamak ordering was used to get the explicit boundary conditions for FCT equilibria. The partial differential equation was reduced to the simultaneous quasi-linear ordinary differential equations by using the moment method. The regularity conditions for solutions at the singular point of the equations can be expressed correctly by this reduction and the problem to be solved becomes a tractable boundary value problem on the quasi-linear ordinary differential equations. This boundary value problem was solved by the method of quasi-linearization, one of the shooting methods. Test calculations show that this method provides high-beta tokamak equilibria with sufficiently high accuracy for MHD stability analysis. (author)

  17. New numerical method to study phase transitions and its applications

    International Nuclear Information System (INIS)

    Lee, Jooyoung; Kosterlitz, J.M.

    1991-11-01

    We present a powerful method of identifying the nature of transitions by numerical simulation of finite systems. By studying the finite size scaling properties of free energy barrier between competing states, we can identify unambiguously a weak first order transition even when accessible system sizes are L/ξ < 0.05 as in the five state Potts model in two dimensions. When studying a continuous phase transition we obtain quite accurate estimates of critical exponents by treating it as a field driven first order transition. The method has been successfully applied to various systems

  18. A Numerical Method for Lane-Emden Equations Using Hybrid Functions and the Collocation Method

    Directory of Open Access Journals (Sweden)

    Changqing Yang

    2012-01-01

    Full Text Available A numerical method to solve Lane-Emden equations as singular initial value problems is presented in this work. This method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The collocation method transforms the differential equation into a system of algebraic equations. It also has application in a wide area of differential equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.

  19. Recent numerical results on the two dimensional Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Parola, A.; Sorella, S.; Baroni, S.; Car, R.; Parrinello, M.; Tosatti, E. (SISSA, Trieste (Italy))

    1989-12-01

    A new method for simulating strongly correlated fermionic systems, has been applied to the study of the ground state properties of the 2D Hubbard model at various fillings. Comparison has been made with exact diagonalizations in the 4 x 4 lattices where very good agreement has been verified in all the correlation functions which have been studied: charge, magnetization and momentum distribution. (orig.).

  20. Recent numerical results on the two dimensional Hubbard model

    International Nuclear Information System (INIS)

    Parola, A.; Sorella, S.; Baroni, S.; Car, R.; Parrinello, M.; Tosatti, E.

    1989-01-01

    This paper reports a new method for simulating strongly correlated fermionic systems applied to the study of the ground state properties of the 2D Hubbard model at various fillings. Comparison has been made with exact diagonalizations in the 4 x 4 lattices where very good agreement has been verified in all the correlation functions which have been studied: charge, magnetization and momentum distribution

  1. Trojan Horse Method: Recent Results

    International Nuclear Information System (INIS)

    Pizzone, R. G.; Spitaleri, C.

    2008-01-01

    Owing the presence of the Coulomb barrier at astrophysically relevant kinetic energies, it is very difficult, or sometimes impossible to measure astrophysical reaction rates in laboratory. This is why different indirect techniques are being used along with direct measurements. The THM is unique indirect technique allowing one measure astrophysical rearrangement reactions down to astrophysical relevant energies. The basic principle and a review of the main application of the Trojan Horse Method are presented. The applications aiming at the extraction of the bare S b (E) astrophysical factor and electron screening potentials U e for several two body processes are discussed

  2. Analytic-numerical method of determining the freezing front location

    Directory of Open Access Journals (Sweden)

    R. Grzymkowski

    2011-07-01

    Full Text Available Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase – liquid phase leads to formulation of the parabolic boundary problems with the moving boundary. Solution of such defined problem requires, most often, to use sophisticated numerical techniques and far advanced mathematical tools. Excellent illustration of the complexity of considered problems, as well as of the variety of approaches used for finding their solutions, gives the papers [1-4]. In the current paper, the authors present the, especially attractive from the engineer point of view, analytic-numerical method for finding the approximate solution of selected class of problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of the sought function describing the temperature field into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the approximation of the function defining the location of freezing front with the broken line, parameters of which are numerically determined.

  3. Numerical simulation of compressible two-phase flow using a diffuse interface method

    International Nuclear Information System (INIS)

    Ansari, M.R.; Daramizadeh, A.

    2013-01-01

    Highlights: ► Compressible two-phase gas–gas and gas–liquid flows simulation are conducted. ► Interface conditions contain shock wave and cavitations. ► A high-resolution diffuse interface method is investigated. ► The numerical results exhibit very good agreement with experimental results. -- Abstract: In this article, a high-resolution diffuse interface method is investigated for simulation of compressible two-phase gas–gas and gas–liquid flows, both in the presence of shock wave and in flows with strong rarefaction waves similar to cavitations. A Godunov method and HLLC Riemann solver is used for discretization of the Kapila five-equation model and a modified Schmidt equation of state (EOS) is used to simulate the cavitation regions. This method is applied successfully to some one- and two-dimensional compressible two-phase flows with interface conditions that contain shock wave and cavitations. The numerical results obtained in this attempt exhibit very good agreement with experimental results, as well as previous numerical results presented by other researchers based on other numerical methods. In particular, the algorithm can capture the complex flow features of transient shocks, such as the material discontinuities and interfacial instabilities, without any oscillation and additional diffusion. Numerical examples show that the results of the method presented here compare well with other sophisticated modeling methods like adaptive mesh refinement (AMR) and local mesh refinement (LMR) for one- and two-dimensional problems

  4. Numerical simulation methods of fires in nuclear power plants

    International Nuclear Information System (INIS)

    Keski-Rahkonen, O.; Bjoerkman, J.; Heikkilae, L.

    1992-01-01

    Fire is a significant hazard to the safety of nuclear power plants (NPP). Fire may be serious accident as such, but even small fire at a critical point in a NPP may cause an accident much more serious than fire itself. According to risk assessments a fire may be an initial cause or a contributing factor in a large part of reactor accidents. At the Fire Technology and the the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) fire safety research for NPPs has been carried out in a large extent since 1985. During years 1988-92 a project Advanced Numerical Modelling in Nuclear Power Plants (PALOME) was carried out. In the project the level of numerical modelling for fire research in Finland was improved by acquiring, preparing for use and developing numerical fire simulation programs. Large scale test data of the German experimental program (PHDR Sicherheitsprogramm in Kernforschungscentral Karlsruhe) has been as reference. The large scale tests were simulated by numerical codes and results were compared to calculations carried out by others. Scientific interaction with outstanding foreign laboratories and scientists has been an important part of the project. This report describes the work of PALOME-project carried out at the Fire Technology Laboratory only. A report on the work at the Nuclear Engineering Laboratory will be published separatively. (au)

  5. Novel Parallel Numerical Methods for Radiation and Neutron Transport

    International Nuclear Information System (INIS)

    Brown, P N

    2001-01-01

    In many of the multiphysics simulations performed at LLNL, transport calculations can take up 30 to 50% of the total run time. If Monte Carlo methods are used, the percentage can be as high as 80%. Thus, a significant core competence in the formulation, software implementation, and solution of the numerical problems arising in transport modeling is essential to Laboratory and DOE research. In this project, we worked on developing scalable solution methods for the equations that model the transport of photons and neutrons through materials. Our goal was to reduce the transport solve time in these simulations by means of more advanced numerical methods and their parallel implementations. These methods must be scalable, that is, the time to solution must remain constant as the problem size grows and additional computer resources are used. For iterative methods, scalability requires that (1) the number of iterations to reach convergence is independent of problem size, and (2) that the computational cost grows linearly with problem size. We focused on deterministic approaches to transport, building on our earlier work in which we performed a new, detailed analysis of some existing transport methods and developed new approaches. The Boltzmann equation (the underlying equation to be solved) and various solution methods have been developed over many years. Consequently, many laboratory codes are based on these methods, which are in some cases decades old. For the transport of x-rays through partially ionized plasmas in local thermodynamic equilibrium, the transport equation is coupled to nonlinear diffusion equations for the electron and ion temperatures via the highly nonlinear Planck function. We investigated the suitability of traditional-solution approaches to transport on terascale architectures and also designed new scalable algorithms; in some cases, we investigated hybrid approaches that combined both

  6. Performance investigation of a lab–scale latent heat storage prototype – Numerical results

    International Nuclear Information System (INIS)

    Niyas, Hakeem; Prasad, Sunku; Muthukumar, P.

    2017-01-01

    Highlights: • Developed a numerical tool for analyzing a shell-and-tube LHS system. • Effective heat capacity method is used for incorporating the latent heat. • Number of heat transfer fluid tubes and fins are optimized. • Partial charging/discharging is efficient than complete charging/discharging. • Numerically predicted values match well with the experimental results. - Abstract: In the current study, numerical analysis of the charging and discharging characteristics of a lab-scale latent heat storage (LHS) prototype is presented. A mathematical model is developed to analyze the performance characteristics of the LHS prototype of shell and tube heat exchanger configuration. Effective heat capacity (EHC) method is implemented to consider the latent heat of the phase change material (PCM) and Boussinesq approximation is used to incorporate the buoyancy effect of the molten layer of the PCM in the model. For proper modeling of velocities in the PCM, Darcy law’s source term is added. The governing equations involved in the model are solved using a finite element based software product, COMSOL Multiphysics 4.3a. The number of embedded tubes and fins on the embedded tubes are optimized based on the discharging time of the model. Various performance parameters such as charging/discharging time, energy storage/discharge rate and melt fraction are evaluated. Numerically predicted temperature variations of the model during charging and discharging processes were compared with the experimental data extracted from the lab-scale LHS prototype and a good agreement was found between them.

  7. Numerical simulation of the regularized long wave equation by He's homotopy perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Inc, Mustafa [Department of Mathematics, Firat University, 23119 Elazig (Turkey)], E-mail: minc@firat.edu.tr; Ugurlu, Yavuz [Department of Mathematics, Firat University, 23119 Elazig (Turkey)

    2007-09-17

    In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions.

  8. Numerical simulation of the regularized long wave equation by He's homotopy perturbation method

    International Nuclear Information System (INIS)

    Inc, Mustafa; Ugurlu, Yavuz

    2007-01-01

    In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions

  9. Numerical method for three dimensional steady-state two-phase flow calculations

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.

    1992-01-01

    This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers

  10. Numerical methods on flow instabilities in steam generator

    International Nuclear Information System (INIS)

    Yoshikawa, Ryuji; Hamada, Hirotsugu; Ohshima, Hiroyuki; Yanagisawa, Hideki

    2008-06-01

    The phenomenon of two-phase flow instability is important for the design and operation of many industrial systems and equipment, such as steam generators. The designer's job is to predict the threshold of flow instability in order to design around it or compensate for it. So it is essential to understand the physical phenomena governing such instability and to develop computational tools to model the dynamics of boiling systems. In Japan Atomic Energy Agency, investigations on heat transfer characteristics of steam generator are being performed for the development of Sodium-cooled Fast Breeder Reactor. As one part of the research work, the evaluations of two-phase flow instability in the steam generator are being carried out experimentally and numerically. In this report, the numerical methods were studied for two-phase flow instability analysis in steam generator. For numerical simulation purpose, the special algorithm to calculate inlet flow rate iteratively with inlet pressure and outlet pressure as boundary conditions for the density-wave instability analysis was established. There was no need to solve property derivatives and large matrices, so the spurious numerical instabilities caused by discontinuous property derivatives at boiling boundaries were avoided. Large time-step was possible. The flow instability in single heat transfer tube was successfully simulated with homogeneous equilibrium model by using the present algorithm. Then the drift-flux model including the effects of subcooled boiling and two phase slip was adopted to improve the accuracy. The computer code was developed after selecting the correlations of drift velocity and distribution parameter. The capability of drift flux model together with the present algorithm for simulating density-wave instability in single tube was confirmed. (author)

  11. Comparing numerical methods for the solutions of the Chen system

    International Nuclear Information System (INIS)

    Noorani, M.S.M.; Hashim, I.; Ahmad, R.; Bakar, S.A.; Ismail, E.S.; Zakaria, A.M.

    2007-01-01

    In this paper, the Adomian decomposition method (ADM) is applied to the Chen system which is a three-dimensional system of ODEs with quadratic nonlinearities. The ADM yields an analytical solution in terms of a rapidly convergent infinite power series with easily computable terms. Comparisons between the decomposition solutions and the classical fourth-order Runge-Kutta (RK4) numerical solutions are made. In particular we look at the accuracy of the ADM as the Chen system changes from a non-chaotic system to a chaotic one. To highlight some computational difficulties due to a high Lyapunov exponent, a comparison with the Lorenz system is given

  12. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    International Nuclear Information System (INIS)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-01

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor

  13. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-15

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor.

  14. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Numerical Methods

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs

  15. Parameter sampling capabilities of sequential and simultaneous data assimilation: II. Statistical analysis of numerical results

    International Nuclear Information System (INIS)

    Fossum, Kristian; Mannseth, Trond

    2014-01-01

    We assess and compare parameter sampling capabilities of one sequential and one simultaneous Bayesian, ensemble-based, joint state-parameter (JS) estimation method. In the companion paper, part I (Fossum and Mannseth 2014 Inverse Problems 30 114002), analytical investigations lead us to propose three claims, essentially stating that the sequential method can be expected to outperform the simultaneous method for weakly nonlinear forward models. Here, we assess the reliability and robustness of these claims through statistical analysis of results from a range of numerical experiments. Samples generated by the two approximate JS methods are compared to samples from the posterior distribution generated by a Markov chain Monte Carlo method, using four approximate measures of distance between probability distributions. Forward-model nonlinearity is assessed from a stochastic nonlinearity measure allowing for sufficiently large model dimensions. Both toy models (with low computational complexity, and where the nonlinearity is fairly easy to control) and two-phase porous-media flow models (corresponding to down-scaled versions of problems to which the JS methods have been frequently applied recently) are considered in the numerical experiments. Results from the statistical analysis show strong support of all three claims stated in part I. (paper)

  16. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  17. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  18. Adaptive and dynamic meshing methods for numerical simulations

    Science.gov (United States)

    Acikgoz, Nazmiye

    -hoc application of the simulated annealing technique, which improves the likelihood of removing poor elements from the grid. Moreover, a local implementation of the simulated annealing is proposed to reduce the computational cost. Many challenging multi-physics and multi-field problems that are unsteady in nature are characterized by moving boundaries and/or interfaces. When the boundary displacements are large, which typically occurs when implicit time marching procedures are used, degenerate elements are easily formed in the grid such that frequent remeshing is required. To deal with this problem, in the second part of this work, we propose a new r-adaptation methodology. The new technique is valid for both simplicial (e.g., triangular, tet) and non-simplicial (e.g., quadrilateral, hex) deforming grids that undergo large imposed displacements at their boundaries. A two- or three-dimensional grid is deformed using a network of linear springs composed of edge springs and a set of virtual springs. The virtual springs are constructed in such a way as to oppose element collapsing. This is accomplished by confining each vertex to its ball through springs that are attached to the vertex and its projection on the ball entities. The resulting linear problem is solved using a preconditioned conjugate gradient method. The new method is compared with the classical spring analogy technique in two- and three-dimensional examples, highlighting the performance improvements achieved by the new method. Meshes are an important part of numerical simulations. Depending on the geometry and flow conditions, the most suitable mesh for each particular problem is different. Meshes are usually generated by either using a suitable software package or solving a PDE. In both cases, engineering intuition plays a significant role in deciding where clusterings should take place. In addition, for unsteady problems, the gradients vary for each time step, which requires frequent remeshing during simulations

  19. Towards numerical simulations of supersonic liquid jets using ghost fluid method

    International Nuclear Information System (INIS)

    Majidi, Sahand; Afshari, Asghar

    2015-01-01

    Highlights: • A ghost fluid method based solver is developed for numerical simulation of compressible multiphase flows. • The performance of the numerical tool is validated via several benchmark problems. • Emergence of supersonic liquid jets in quiescent gaseous environment is simulated using ghost fluid method for the first time. • Bow-shock formation ahead of the liquid jet is clearly observed in the obtained numerical results. • Radiation of mach waves from the phase-interface witnessed experimentally is evidently captured in our numerical simulations. - Abstract: A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid

  20. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Lucas

    2004-10-01

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.

  1. Numerical evaluation of methods for computing tomographic projections

    International Nuclear Information System (INIS)

    Zhuang, W.; Gopal, S.S.; Hebert, T.J.

    1994-01-01

    Methods for computing forward/back projections of 2-D images can be viewed as numerical integration techniques. The accuracy of any ray-driven projection method can be improved by increasing the number of ray-paths that are traced per projection bin. The accuracy of pixel-driven projection methods can be increased by dividing each pixel into a number of smaller sub-pixels and projecting each sub-pixel. The authors compared four competing methods of computing forward/back projections: bilinear interpolation, ray-tracing, pixel-driven projection based upon sub-pixels, and pixel-driven projection based upon circular, rather than square, pixels. This latter method is equivalent to a fast, bi-nonlinear interpolation. These methods and the choice of the number of ray-paths per projection bin or the number of sub-pixels per pixel present a trade-off between computational speed and accuracy. To solve the problem of assessing backprojection accuracy, the analytical inverse Fourier transform of the ramp filtered forward projection of the Shepp and Logan head phantom is derived

  2. Numerical simulation of stratified shear flow using a higher order Taylor series expansion method

    Energy Technology Data Exchange (ETDEWEB)

    Iwashige, Kengo; Ikeda, Takashi [Hitachi, Ltd. (Japan)

    1995-09-01

    A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.

  3. A numerical method for two-dimensional anisotropic transport problem in cylindrical geometry

    International Nuclear Information System (INIS)

    Du Mingsheng; Feng Tiekai; Fu Lianxiang; Cao Changshu; Liu Yulan

    1988-01-01

    The authors deal with the triangular mesh-discontinuous finite element method for solving the time-dependent anisotropic neutron transport problem in two-dimensional cylindrical geometry. A prior estimate of the numerical solution is given. Stability is proved. The authors have computed a two dimensional anisotropic neutron transport problem and a Tungsten-Carbide critical assembly problem by using the numerical method. In comparision with DSN method and the experimental results obtained by others both at home and abroad, the method is satisfactory

  4. Direct Calculation of Permeability by High-Accurate Finite Difference and Numerical Integration Methods

    KAUST Repository

    Wang, Yi

    2016-07-21

    Velocity of fluid flow in underground porous media is 6~12 orders of magnitudes lower than that in pipelines. If numerical errors are not carefully controlled in this kind of simulations, high distortion of the final results may occur [1-4]. To fit the high accuracy demands of fluid flow simulations in porous media, traditional finite difference methods and numerical integration methods are discussed and corresponding high-accurate methods are developed. When applied to the direct calculation of full-tensor permeability for underground flow, the high-accurate finite difference method is confirmed to have numerical error as low as 10-5% while the high-accurate numerical integration method has numerical error around 0%. Thus, the approach combining the high-accurate finite difference and numerical integration methods is a reliable way to efficiently determine the characteristics of general full-tensor permeability such as maximum and minimum permeability components, principal direction and anisotropic ratio. Copyright © Global-Science Press 2016.

  5. A virtual component method in numerical computation of cascades for isotope separation

    International Nuclear Information System (INIS)

    Zeng Shi; Cheng Lu

    2014-01-01

    The analysis, optimization, design and operation of cascades for isotope separation involve computations of cascades. In analytical analysis of cascades, using virtual components is a very useful analysis method. For complicated cases of cascades, numerical analysis has to be employed. However, bound up to the conventional idea that the concentration of a virtual component should be vanishingly small, virtual component is not yet applied to numerical computations. Here a method of introducing the method of using virtual components to numerical computations is elucidated, and its application to a few types of cascades is explained and tested by means of numerical experiments. The results show that the concentration of a virtual component is not restrained at all by the 'vanishingly small' idea. For the same requirements on cascades, the cascades obtained do not depend on the concentrations of virtual components. (authors)

  6. Applying multi-resolution numerical methods to geodynamics

    Science.gov (United States)

    Davies, David Rhodri

    Computational models yield inaccurate results if the underlying numerical grid fails to provide the necessary resolution to capture a simulation's important features. For the large-scale problems regularly encountered in geodynamics, inadequate grid resolution is a major concern. The majority of models involve multi-scale dynamics, being characterized by fine-scale upwelling and downwelling activity in a more passive, large-scale background flow. Such configurations, when coupled to the complex geometries involved, present a serious challenge for computational methods. Current techniques are unable to resolve localized features and, hence, such models cannot be solved efficiently. This thesis demonstrates, through a series of papers and closely-coupled appendices, how multi-resolution finite-element methods from the forefront of computational engineering can provide a means to address these issues. The problems examined achieve multi-resolution through one of two methods. In two-dimensions (2-D), automatic, unstructured mesh refinement procedures are utilized. Such methods improve the solution quality of convection dominated problems by adapting the grid automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. Thermal and thermo-chemical validation tests illustrate that the technique is robust and highly successful, improving solution accuracy whilst increasing computational efficiency. These points are reinforced when the technique is applied to geophysical simulations of mid-ocean ridge and subduction zone magmatism. To date, successful goal-orientated/error-guided grid adaptation techniques have not been utilized within the field of geodynamics. The work included herein is therefore the first geodynamical application of such methods. In view of the existing three-dimensional (3-D) spherical mantle dynamics codes, which are built upon a quasi-uniform discretization of the sphere and closely coupled

  7. Computer prediction of subsurface radionuclide transport: an adaptive numerical method

    International Nuclear Information System (INIS)

    Neuman, S.P.

    1983-01-01

    Radionuclide transport in the subsurface is often modeled with the aid of the advection-dispersion equation. A review of existing computer methods for the solution of this equation shows that there is need for improvement. To answer this need, a new adaptive numerical method is proposed based on an Eulerian-Lagrangian formulation. The method is based on a decomposition of the concentration field into two parts, one advective and one dispersive, in a rigorous manner that does not leave room for ambiguity. The advective component of steep concentration fronts is tracked forward with the aid of moving particles clustered around each front. Away from such fronts the advection problem is handled by an efficient modified method of characteristics called single-step reverse particle tracking. When a front dissipates with time, its forward tracking stops automatically and the corresponding cloud of particles is eliminated. The dispersion problem is solved by an unconventional Lagrangian finite element formulation on a fixed grid which involves only symmetric and diagonal matrices. Preliminary tests against analytical solutions of ne- and two-dimensional dispersion in a uniform steady state velocity field suggest that the proposed adaptive method can handle the entire range of Peclet numbers from 0 to infinity, with Courant numbers well in excess of 1

  8. The pressure equation arising in reservoir simulation. Mathematical properties, numerical methods and upscaling

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Bjoern Fredrik

    1997-12-31

    The main purpose of this thesis has been to analyse self-adjoint second order elliptic partial differential equations arising in reservoir simulation. It studies several mathematical and numerical problems for the pressure equation arising in models of fluid flow in porous media. The theoretical results obtained have been illustrated by a series of numerical experiments. The influence of large variations in the mobility tensor upon the solution of the pressure equation is analysed. The performance of numerical methods applied to such problems have been studied. A new upscaling technique for one-phase flow in heterogeneous reservoirs is developed. The stability of the solution of the pressure equation with respect to small perturbations of the mobility tensor is studied. The results are used to develop a new numerical method for a model of fully nonlinear water waves. 158 refs, 39 figs., 12 tabs.

  9. The pressure equation arising in reservoir simulation. Mathematical properties, numerical methods and upscaling

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Bjoern Fredrik

    1998-12-31

    The main purpose of this thesis has been to analyse self-adjoint second order elliptic partial differential equations arising in reservoir simulation. It studies several mathematical and numerical problems for the pressure equation arising in models of fluid flow in porous media. The theoretical results obtained have been illustrated by a series of numerical experiments. The influence of large variations in the mobility tensor upon the solution of the pressure equation is analysed. The performance of numerical methods applied to such problems have been studied. A new upscaling technique for one-phase flow in heterogeneous reservoirs is developed. The stability of the solution of the pressure equation with respect to small perturbations of the mobility tensor is studied. The results are used to develop a new numerical method for a model of fully nonlinear water waves. 158 refs, 39 figs., 12 tabs.

  10. Achieving better cooling of turbine blades using numerical simulation methods

    Science.gov (United States)

    Inozemtsev, A. A.; Tikhonov, A. S.; Sendyurev, C. I.; Samokhvalov, N. Yu.

    2013-02-01

    A new design of the first-stage nozzle vane for the turbine of a prospective gas-turbine engine is considered. The blade's thermal state is numerically simulated in conjugate statement using the ANSYS CFX 13.0 software package. Critical locations in the blade design are determined from the distribution of heat fluxes, and measures aimed at achieving more efficient cooling are analyzed. Essentially lower (by 50-100°C) maximal temperature of metal has been achieved owing to the results of the performed work.

  11. COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS FOR OVERTOPPING DISCHARGE OF THE OBREC WAVE ENERGY CONVERTER

    Directory of Open Access Journals (Sweden)

    A. YAZID MALIKI

    2017-05-01

    Full Text Available OBREC is the latest innovation of overtopping wave energy converter (WEC which is coalesced with the rubble mound breakwaters. The acquisition of wave overtopping in a front reservoir and consequently releasing process through turbine is the concept of energy production in OBREC. The physical scale model studies of overtopping discharge of the OBREC have recently been done by previous researcher in wave flume at Aalborg University. This paper demonstrates the overtopping behavior of OBREC device using a VOF method with capabilities to solve RANS equation in the numerical suite Flow3D. The purpose of this research is to validate the overtopping discharge performance of the numerical model against the experiments of the OBREC. Based on the observation, the results have shown a good agreement between the validation and physical experiment.

  12. Re-Computation of Numerical Results Contained in NACA Report No. 496

    Science.gov (United States)

    Perry, Boyd, III

    2015-01-01

    An extensive examination of NACA Report No. 496 (NACA 496), "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen, is described. The examination included checking equations and solution methods and re-computing interim quantities and all numerical examples in NACA 496. The checks revealed that NACA 496 contains computational shortcuts (time- and effort-saving devices for engineers of the time) and clever artifices (employed in its solution methods), but, unfortunately, also contains numerous tripping points (aspects of NACA 496 that have the potential to cause confusion) and some errors. The re-computations were performed employing the methods and procedures described in NACA 496, but using modern computational tools. With some exceptions, the magnitudes and trends of the original results were in fair-to-very-good agreement with the re-computed results. The exceptions included what are speculated to be computational errors in the original in some instances and transcription errors in the original in others. Independent flutter calculations were performed and, in all cases, including those where the original and re-computed results differed significantly, were in excellent agreement with the re-computed results. Appendix A contains NACA 496; Appendix B contains a Matlab(Reistered) program that performs the re-computation of results; Appendix C presents three alternate solution methods, with examples, for the two-degree-of-freedom solution method of NACA 496; Appendix D contains the three-degree-of-freedom solution method (outlined in NACA 496 but never implemented), with examples.

  13. Classical and quantum aspects of topological solitons (using numerical methods)

    International Nuclear Information System (INIS)

    Weidig, T.

    1999-08-01

    In Introduction, we review integrable and topological solitons. In Numerical Methods, we describe how to minimise functionals, time-integrate configurations and solve eigenvalue problems. We also present the Simulated Annealing scheme for minimisation in solitonic systems. In Classical Aspects, we analyse the effect of the potential term on the structure of minimal-energy solutions for any topological charge n. The simplest holomorphic baby Skyrme model has no known stable minimal-energy solution for n > 1. The one-vacuum baby Skyrme model possesses non-radially symmetric multi-skyrmions that look like 'skyrmion lattices' formed by skyrmions with n = 2. The two-vacua baby Skyrme model has radially symmetric multi-skyrmions. We implement Simulated Annealing and it works well for higher order terms. We find that the spatial part of the six-derivative term is zero. In Quantum Aspects, we find the first order quantum mass correction for the φ 4 kink using the semi-classical expansion. We derive a trace formula which gives the mass correction by using the eigenmodes and values of the soliton and vacuum perturbations. We show that the zero mode is the most important contribution. We compute the mass correction of φ 4 kink and Sine-Gordon numerically by solving the eigenvalue equations and substituting into the trace formula. (author)

  14. Numerical methods for the simulation of continuous sedimentation in ideal clarifier-thickener units

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, R.; Karlsen, K.H.; Risebro, N.H.; Towers, J.D.

    2001-10-01

    We consider a model of continuous sedimentation. Under idealizing assumptions, the settling of the solid particles under the influence of gravity can be described by the initial value problem for a nonlinear hyperbolic partial differential equation with a flux function that depends discontinuously on height. The purpose of this contribution is to present and demonstrate two numerical methods for simulating continuous sedimentation: a front tracking method and a finite finite difference method. The basic building blocks in the front tracking method are the solutions of a finite number of certain Riemann problems and a procedure for tracking local collisions of shocks. The solutions of the Riemann problems are recalled herein and the front tracking algorithm is described. As an alternative to the front tracking method, a simple scalar finite difference algorithm is proposed. This method is based on discretizing the spatially varying flux parameters on a mesh that is staggered with respect to that of the conserved variable, resulting in a straightforward generalization of the well-known Engquist-Osher upwind finite difference method. The result is an easily implemented upwind shock capturing method. Numerical examples demonstrate that the front tracking and finite difference methods can be used as efficient and accurate simulation tools for continuous sedimentation. The numerical results for the finite difference method indicate that discontinuities in the local solids concentration are resolved sharply and agree with those produced by the front tracking method. The latter is free of numerical dissipation, which leads to sharply resolved concentration discontinuities, but is more complicated to implement than the former. Available mathematical results for the proposed numerical methods are also briefly reviewed. (author)

  15. Numerical method in reproducing kernel space for an inverse source problem for the fractional diffusion equation

    International Nuclear Information System (INIS)

    Wang, Wenyan; Han, Bo; Yamamoto, Masahiro

    2013-01-01

    We propose a new numerical method for reproducing kernel Hilbert space to solve an inverse source problem for a two-dimensional fractional diffusion equation, where we are required to determine an x-dependent function in a source term by data at the final time. The exact solution is represented in the form of a series and the approximation solution is obtained by truncating the series. Furthermore, a technique is proposed to improve some of the existing methods. We prove that the numerical method is convergent under an a priori assumption of the regularity of solutions. The method is simple to implement. Our numerical result shows that our method is effective and that it is robust against noise in L 2 -space in reconstructing a source function. (paper)

  16. Numerical modeling of isothermal compositional grading by convex splitting methods

    KAUST Repository

    Li, Yiteng

    2017-04-09

    In this paper, an isothermal compositional grading process is simulated based on convex splitting methods with the Peng-Robinson equation of state. We first present a new form of gravity/chemical equilibrium condition by minimizing the total energy which consists of Helmholtz free energy and gravitational potential energy, and incorporating Lagrange multipliers for mass conservation. The time-independent equilibrium equations are transformed into a system of transient equations as our solution strategy. It is proved our time-marching scheme is unconditionally energy stable by the semi-implicit convex splitting method in which the convex part of Helmholtz free energy and its derivative are treated implicitly and the concave parts are treated explicitly. With relaxation factor controlling Newton iteration, our method is able to converge to a solution with satisfactory accuracy if a good initial estimate of mole compositions is provided. More importantly, it helps us automatically split the unstable single phase into two phases, determine the existence of gas-oil contact (GOC) and locate its position if GOC does exist. A number of numerical examples are presented to show the performance of our method.

  17. Numerical methods for Eulerian and Lagrangian conservation laws

    CERN Document Server

    Després, Bruno

    2017-01-01

    This book focuses on the interplay between Eulerian and Lagrangian conservation laws for systems that admit physical motivation and originate from continuum mechanics. Ultimately, it highlights what is specific to and beneficial in the Lagrangian approach and its numerical methods. The two first chapters present a selection of well-known features of conservation laws and prepare readers for the subsequent chapters, which are dedicated to the analysis and discretization of Lagrangian systems. The text is at the frontier of applied mathematics and scientific computing and appeals to students and researchers interested in Lagrangian-based computational fluid dynamics. It also serves as an introduction to the recent corner-based Lagrangian finite volume techniques.

  18. Advanced numerical methods for three dimensional two-phase flow calculations in PWR

    International Nuclear Information System (INIS)

    Toumi, I.; Gallo, D.; Royer, E.

    1997-01-01

    This paper is devoted to new numerical methods developed for three dimensional two-phase flow calculations. These methods are finite volume numerical methods. They are based on an extension of Roe's approximate Riemann solver to define convective fluxes versus mean cell quantities. To go forward in time, a linearized conservative implicit integrating step is used, together with a Newton iterative method. We also present here some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. This kind of numerical method, which is widely used for fluid dynamic calculations, is proved to be very efficient for the numerical solution to two-phase flow problems. This numerical method has been implemented for the three dimensional thermal-hydraulic code FLICA-4 which is mainly dedicated to core thermal-hydraulic transient and steady-state analysis. Hereafter, we will also find some results obtained for the EPR reactor running in a steady-state at 60% of nominal power with 3 pumps out of 4, and a thermal-hydraulic core analysis for a 1300 MW PWR at low flow steam-line-break conditions. (author)

  19. A numerical method to estimate AC loss in superconducting coated conductors by finite element modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z; Jiang, Q; Pei, R; Campbell, A M; Coombs, T A [Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-04-15

    A finite element method code based on the critical state model is proposed to solve the AC loss problem in YBCO coated conductors. This numerical method is based on a set of partial differential equations (PDEs) in which the magnetic field is used as the state variable. The AC loss problems have been investigated both in self-field condition and external field condition. Two numerical approaches have been introduced: the first model is configured on the cross-section plane of the YBCO tape to simulate an infinitely long superconducting tape. The second model represents the plane of the critical current flowing and is able to simulate the YBCO tape with finite length where the end effect is accounted. An AC loss measurement has been done to verify the numerical results and shows a good agreement with the numerical solution.

  20. NUMERICAL WITHOUT ITERATION METHOD OF MODELING OF ELECTROMECHANICAL PROCESSES IN ASYNCHRONOUS ENGINES

    Directory of Open Access Journals (Sweden)

    D. G. Patalakh

    2018-02-01

    Full Text Available Purpose. Development of calculation of electromagnetic and electromechanic transients is in asynchronous engines without iterations. Methodology. Numeral methods of integration of usual differential equations, programming. Findings. As the system of equations, describing the dynamics of asynchronous engine, contents the products of rotor and stator currents and product of rotation frequency of rotor and currents, so this system is nonlinear one. The numeral solution of nonlinear differential equations supposes an iteration process on every step of integration. Time-continuing and badly converging iteration process may be the reason of calculation slowing. The improvement of numeral method by the way of an iteration process removing is offered. As result the modeling time is reduced. The improved numeral method is applied for integration of differential equations, describing the dynamics of asynchronous engine. Originality. The improvement of numeral method allowing to execute numeral integrations of differential equations containing product of functions is offered, that allows to avoid an iteration process on every step of integration and shorten modeling time. Practical value. On the basis of the offered methodology the universal program of modeling of electromechanics processes in asynchronous engines could be developed as taking advantage on fast-acting.

  1. Numerical simulation of bubble deformation in magnetic fluids by finite volume method

    International Nuclear Information System (INIS)

    Yamasaki, Haruhiko; Yamaguchi, Hiroshi

    2017-01-01

    Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field. - Highlights: • A magnetic field analysis is developed to simulate the bubble dynamics in magnetic fluid with two-phase interface. • The elongation of bubble increased with increasing magnetic flux intensities due to strong magnetic normal force. • Proposed technique explains the bubble dynamics, taking into account of the continuity of the magnetic flux density.

  2. Development of CAD implementing the algorithm of boundary elements’ numerical analytical method

    Directory of Open Access Journals (Sweden)

    Yulia V. Korniyenko

    2015-03-01

    Full Text Available Up to recent days the algorithms for numerical-analytical boundary elements method had been implemented with programs written in MATLAB environment language. Each program had a local character, i.e. used to solve a particular problem: calculation of beam, frame, arch, etc. Constructing matrices in these programs was carried out “manually” therefore being time-consuming. The research was purposed onto a reasoned choice of programming language for new CAD development, allows to implement algorithm of numerical analytical boundary elements method and to create visualization tools for initial objects and calculation results. Research conducted shows that among wide variety of programming languages the most efficient one for CAD development, employing the numerical analytical boundary elements method algorithm, is the Java language. This language provides tools not only for development of calculating CAD part, but also to build the graphic interface for geometrical models construction and calculated results interpretation.

  3. Selection of robust methods. Numerical examples and results

    Czech Academy of Sciences Publication Activity Database

    Víšek, Jan Ámos

    2005-01-01

    Roč. 21, č. 11 (2005), s. 1-58 ISSN 1212-074X R&D Projects: GA ČR(CZ) GA402/03/0084 Institutional research plan: CEZ:AV0Z10750506 Keywords : robust regression * model selection * uniform consistency of M-estimators Subject RIV: BA - General Mathematics

  4. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.

    Science.gov (United States)

    Ling, Hong; Luo, Ercang; Dai, Wei

    2006-12-22

    Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.

  5. Maximum-likelihood method for numerical inversion of Mellin transform

    International Nuclear Information System (INIS)

    Iqbal, M.

    1997-01-01

    A method is described for inverting the Mellin transform which uses an expansion in Laguerre polynomials and converts the Mellin transform to Laplace transform, then the maximum-likelihood regularization method is used to recover the original function of the Mellin transform. The performance of the method is illustrated by the inversion of the test functions available in the literature (J. Inst. Math. Appl., 20 (1977) 73; Math. Comput., 53 (1989) 589). Effectiveness of the method is shown by results obtained through demonstration by means of tables and diagrams

  6. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves

    International Nuclear Information System (INIS)

    Johnsen, Eric; Larsson, Johan; Bhagatwala, Ankit V.; Cabot, William H.; Moin, Parviz; Olson, Britton J.; Rawat, Pradeep S.; Shankar, Santhosh K.; Sjoegreen, Bjoern; Yee, H.C.; Zhong Xiaolin; Lele, Sanjiva K.

    2010-01-01

    Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.

  7. Management and minimisation of uncertainties and errors in numerical aerodynamics results of the German collaborative project MUNA

    CERN Document Server

    Barnewitz, Holger; Fritz, Willy; Thiele, Frank

    2013-01-01

    This volume reports results from the German research initiative MUNA (Management and Minimization of Errors and Uncertainties in Numerical Aerodynamics), which combined development activities of the German Aerospace Center (DLR), German universities and German aircraft industry. The main objective of this five year project was the development of methods and procedures aiming at reducing various types of uncertainties that are typical of numerical flow simulations. The activities were focused on methods for grid manipulation, techniques for increasing the simulation accuracy, sensors for turbulence modelling, methods for handling uncertainties of the geometry and grid deformation as well as stochastic methods for quantifying aleatoric uncertainties.

  8. Vectorization on the star computer of several numerical methods for a fluid flow problem

    Science.gov (United States)

    Lambiotte, J. J., Jr.; Howser, L. M.

    1974-01-01

    A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.

  9. Numerical analysis for multi-group neutron-diffusion equation using Radial Point Interpolation Method (RPIM)

    International Nuclear Information System (INIS)

    Kim, Kyung-O; Jeong, Hae Sun; Jo, Daeseong

    2017-01-01

    Highlights: • Employing the Radial Point Interpolation Method (RPIM) in numerical analysis of multi-group neutron-diffusion equation. • Establishing mathematical formation of modified multi-group neutron-diffusion equation by RPIM. • Performing the numerical analysis for 2D critical problem. - Abstract: A mesh-free method is introduced to overcome the drawbacks (e.g., mesh generation and connectivity definition between the meshes) of mesh-based (nodal) methods such as the finite-element method and finite-difference method. In particular, the Point Interpolation Method (PIM) using a radial basis function is employed in the numerical analysis for the multi-group neutron-diffusion equation. The benchmark calculations are performed for the 2D homogeneous and heterogeneous problems, and the Multiquadrics (MQ) and Gaussian (EXP) functions are employed to analyze the effect of the radial basis function on the numerical solution. Additionally, the effect of the dimensionless shape parameter in those functions on the calculation accuracy is evaluated. According to the results, the radial PIM (RPIM) can provide a highly accurate solution for the multiplication eigenvalue and the neutron flux distribution, and the numerical solution with the MQ radial basis function exhibits the stable accuracy with respect to the reference solutions compared with the other solution. The dimensionless shape parameter directly affects the calculation accuracy and computing time. Values between 1.87 and 3.0 for the benchmark problems considered in this study lead to the most accurate solution. The difference between the analytical and numerical results for the neutron flux is significantly increased in the edge of the problem geometry, even though the maximum difference is lower than 4%. This phenomenon seems to arise from the derivative boundary condition at (x,0) and (0,y) positions, and it may be necessary to introduce additional strategy (e.g., the method using fictitious points and

  10. Development of a set of benchmark problems to verify numerical methods for solving burnup equations

    International Nuclear Information System (INIS)

    Lago, Daniel; Rahnema, Farzad

    2017-01-01

    Highlights: • Description transmutation chain benchmark problems. • Problems for validating numerical methods for solving burnup equations. • Analytical solutions for the burnup equations. • Numerical solutions for the burnup equations. - Abstract: A comprehensive set of transmutation chain benchmark problems for numerically validating methods for solving burnup equations was created. These benchmark problems were designed to challenge both traditional and modern numerical methods used to solve the complex set of ordinary differential equations used for tracking the change in nuclide concentrations over time due to nuclear phenomena. Given the development of most burnup solvers is done for the purpose of coupling with an established transport solution method, these problems provide a useful resource in testing and validating the burnup equation solver before coupling for use in a lattice or core depletion code. All the relevant parameters for each benchmark problem are described. Results are also provided in the form of reference solutions generated by the Mathematica tool, as well as additional numerical results from MATLAB.

  11. Solving the Bateman equations in CASMO5 using implicit ode numerical methods for stiff systems

    International Nuclear Information System (INIS)

    Hykes, J. M.; Ferrer, R. M.

    2013-01-01

    The Bateman equations, which describe the transmutation of nuclides over time as a result of radioactive decay, absorption, and fission, are often numerically stiff. This is especially true if short-lived nuclides are included in the system. This paper describes the use of implicit numerical methods for o D Es applied to the stiff Bateman equations, specifically employing the Backward Differentiation Formulas (BDF) form of the linear multistep method. As is true in other domains, using an implicit method removes or lessens the (sometimes severe) step-length constraints by which explicit methods must abide. To gauge its accuracy and speed, the BDF method is compared to a variety of other solution methods, including Runge-Kutta explicit methods and matrix exponential methods such as the Chebyshev Rational Approximation Method (CRAM). A preliminary test case was chosen as representative of a PWR lattice depletion step and was solved with numerical libraries called from a Python front-end. The Figure of Merit (a combined measure of accuracy and efficiency) for the BDF method was nearly identical to that for CRAM, while explicit methods and other matrix exponential approximations trailed behind. The test case includes 319 nuclides, in which the shortest-lived nuclide is 98 Nb with a half-life of 2.86 seconds. Finally, the BDF and CRAM methods were compared within CASMO5, where CRAM had a FOM about four times better than BDF, although the BDF implementation was not fully optimized. (authors)

  12. Study on numerical methods for transient flow induced by speed-changing impeller of fluid machinery

    International Nuclear Information System (INIS)

    Wu, Dazhuan; Chen, Tao; Wang, Leqin; Cheng, Wentao; Sun, Youbo

    2013-01-01

    In order to establish a reliable numerical method for solving the transient rotating flow induced by a speed-changing impeller, two numerical methods based on finite volume method (FVM) were presented and analyzed in this study. Two-dimensional numerical simulations of incompressible transient unsteady flow induced by an impeller during starting process were carried out respectively by using DM and DSR methods. The accuracy and adaptability of the two methods were evaluated by comprehensively comparing the calculation results. Moreover, an intensive study on the application of DSR method was conducted subsequently. The results showed that transient flow structure evolution and transient characteristics of the starting impeller are obviously affected by the starting process. The transient flow can be captured by both two methods, and the DSR method shows a higher computational efficiency. As an application example, the starting process of a mixed-flow pump was simulated by using DSR method. The calculation results were analyzed by comparing with the experiment data.

  13. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.

    Science.gov (United States)

    Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q

    2013-03-01

    In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.

  14. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION

    OpenAIRE

    Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.

    2013-01-01

    In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and technique...

  15. Numerical method for solving integral equations of neutron transport. II

    International Nuclear Information System (INIS)

    Loyalka, S.K.; Tsai, R.W.

    1975-01-01

    In a recent paper it was pointed out that the weakly singular integral equations of neutron transport can be quite conveniently solved by a method based on subtraction of singularity. This previous paper was devoted entirely to the consideration of simple one-dimensional isotropic-scattering and one-group problems. The present paper constitutes interesting extensions of the previous work in that in addition to a typical two-group anisotropic-scattering albedo problem in the slab geometry, the method is also applied to an isotropic-scattering problem in the x-y geometry. These results are compared with discrete S/sub N/ (ANISN or TWOTRAN-II) results, and for the problems considered here, the proposed method is found to be quite effective. Thus, the method appears to hold considerable potential for future applications. (auth)

  16. Numerical methods for incompressible viscous flows with engineering applications

    Science.gov (United States)

    Rose, M. E.; Ash, R. L.

    1988-01-01

    A numerical scheme has been developed to solve the incompressible, 3-D Navier-Stokes equations using velocity-vorticity variables. This report summarizes the development of the numerical approximation schemes for the divergence and curl of the velocity vector fields and the development of compact schemes for handling boundary and initial boundary value problems.

  17. A novel method of including Landau level mixing in numerical studies of the quantum Hall effect

    International Nuclear Information System (INIS)

    Wooten, Rachel; Quinn, John; Macek, Joseph

    2013-01-01

    Landau level mixing should influence the quantum Hall effect for all except the strongest applied magnetic fields. We propose a simple method for examining the effects of Landau level mixing by incorporating multiple Landau levels into the Haldane pseudopotentials through exact numerical diagonalization. Some of the resulting pseudopotentials for the lowest and first excited Landau levels will be presented

  18. Numerical Integration Methods for the Takagi-Taupin Equations for Crystals of Rectangular Cross Section

    International Nuclear Information System (INIS)

    Kolosov, S.I.; Punegov, V.I.

    2005-01-01

    Two independent methods for calculation of the rocking curves for laterally bounded crystals are developed. Numerical simulation of diffraction for crystals of different sizes is performed. The results obtained using the dynamical theory of diffraction are compared to those obtained in the kinematic approximation

  19. Comparative numerical solutions of stiff Ordinary differential equations using magnus series expansion method

    Directory of Open Access Journals (Sweden)

    SURE KÖME

    2014-12-01

    Full Text Available In this paper, we investigated the effect of Magnus Series Expansion Method on homogeneous stiff ordinary differential equations with different stiffness ratios. A Magnus type integrator is used to obtain numerical solutions of two different examples of stiff problems and exact and approximate results are tabulated. Furthermore, absolute error graphics are demonstrated in detail.

  20. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian

    2012-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at The Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators...

  1. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian R.H.

    2014-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at the Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators...

  2. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin; Heister, Timo; Bangerth, Wolfgang

    2012-01-01

    Numerical simulation of the processes in the Earth's mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth's core. However, doing so presents many practical difficulties related

  3. A method of numerically controlled machine part programming

    Science.gov (United States)

    1970-01-01

    Computer program is designed for automatically programmed tools. Preprocessor computes desired tool path and postprocessor computes actual commands causing machine tool to follow specific path. It is used on a Cincinnati ATC-430 numerically controlled machine tool.

  4. A detailed survey of numerical methods for unconstrained minimization. Pt. 1

    International Nuclear Information System (INIS)

    Mika, K.; Chaves, T.

    1980-01-01

    A detailed description of numerical methods for unconstrained minimization is presented. This first part surveys in particular conjugate direction and gradient methods, whereas variable metric methods will be the subject of the second part. Among the results of special interest we quote the following. The conjugate direction methods of Powell, Zangwill and Sutti can be best interpreted if the Smith approach is adopted. The conditions for quadratic termination of Powell's first procedure are analyzed. Numerical results based on nonlinear least squares problems are presented for the following conjugate direction codes: VA04AD from Harwell Subroutine Library and ZXPOW from IMSL, both implementations of Powell's second procedure, DFMND from IBM-SILMATH (Zangwill's method) and Brent's algorithm PRAXIS. VA04AD turns out to be superior in all cases, PRAXIS improves for high-dimensional problems. All codes clearly exhibit superlinear convergence. Akaike's result for the method of steepest descent is derived directly from a set of nonlinear recurrence relations. Numerical results obtained with the highly ill conditioned Hilbert function confirm the theoretical predictions. Several properties of the conjugate gradient method are presented and a new derivation of the equivalence of steepest descent partan and the CG method is given. A comparison of numerical results from the CG codes VA08AD (Fletcher-Reeves), DFMCG (the SSP version of the Fletcher-Reevens algorithm) and VA14AD (Powell's implementation of the Polak-Ribiere formula) reveals that VA14AD is clearly superior in all cases, but that the convergence rate of these codes is only weakly superlinear such that high accuracy solutions require extremely large numbers of function calls. (orig.)

  5. An analytically based numerical method for computing view factors in real urban environments

    Science.gov (United States)

    Lee, Doo-Il; Woo, Ju-Wan; Lee, Sang-Hyun

    2018-01-01

    A view factor is an important morphological parameter used in parameterizing in-canyon radiative energy exchange process as well as in characterizing local climate over urban environments. For realistic representation of the in-canyon radiative processes, a complete set of view factors at the horizontal and vertical surfaces of urban facets is required. Various analytical and numerical methods have been suggested to determine the view factors for urban environments, but most of the methods provide only sky-view factor at the ground level of a specific location or assume simplified morphology of complex urban environments. In this study, a numerical method that can determine the sky-view factors ( ψ ga and ψ wa ) and wall-view factors ( ψ gw and ψ ww ) at the horizontal and vertical surfaces is presented for application to real urban morphology, which are derived from an analytical formulation of the view factor between two blackbody surfaces of arbitrary geometry. The established numerical method is validated against the analytical sky-view factor estimation for ideal street canyon geometries, showing a consolidate confidence in accuracy with errors of less than 0.2 %. Using a three-dimensional building database, the numerical method is also demonstrated to be applicable in determining the sky-view factors at the horizontal (roofs and roads) and vertical (walls) surfaces in real urban environments. The results suggest that the analytically based numerical method can be used for the radiative process parameterization of urban numerical models as well as for the characterization of local urban climate.

  6. NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS.

    Energy Technology Data Exchange (ETDEWEB)

    LUCCIO, A.; D' IMPERIO, N.; MALITSKY, N.

    2005-09-12

    Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package.

  7. Ernst Equation and Riemann Surfaces: Analytical and Numerical Methods

    International Nuclear Information System (INIS)

    Ernst, Frederick J

    2007-01-01

    metric tensor components. The first two chapters of this book are devoted to some basic ideas: in the introductory chapter 1 the authors discuss the concept of integrability, comparing the integrability of the vacuum Ernst equation with the integrability of nonlinear equations of Korteweg-de Vries (KdV) type, while in chapter 2 they describe various circumstances in which the vacuum Ernst equation has been determined to be relevant, not only in connection with gravitation but also, for example, in the construction of solutions of the self-dual Yang-Mills equations. It is also in this chapter that one of several equivalent linear systems for the Ernst equation is described. The next two chapters are devoted to Dmitry Korotkin's concept of algebro-geometric solutions of a linear system: in chapter 3 the structure of such solutions of the vacuum Ernst equation, which involve Riemann theta functions of hyperelliptic algebraic curves of any genus, is contrasted with the periodic structure of such solutions of the KdV equation. How such solutions can be obtained, for example, by solving a matrix Riemann-Hilbert problem and how the metric tensor of the associated spacetime can be evaluated is described in detail. In chapter 4 the asymptotic behaviour and the similarity structure of the general algebro-geometric solutions of the Ernst equation are described, and the relationship of such solutions to the perhaps more familiar multi-soliton solutions is discussed. The next three chapters are based upon the authors' own published research: in chapter 5 it is shown that a problem involving counter-rotating infinitely thin disks of matter can be solved in terms of genus two Riemann theta functions, while in chapter 6 the authors describe numerical methods that facilitate the construction of such solutions, and in chapter 7 three-dimensional graphs are displayed that depict all metrical fields of the associated spacetime. Finally, in chapter 8, the difficulties associated with

  8. Review of Methods and Approaches for Deriving Numeric ...

    Science.gov (United States)

    EPA will propose numeric criteria for nitrogen/phosphorus pollution to protect estuaries, coastal areas and South Florida inland flowing waters that have been designated Class I, II and III , as well as downstream protective values (DPVs) to protect estuarine and marine waters. In accordance with the formal determination and pursuant to a subsequent consent decree, these numeric criteria are being developed to translate and implement Florida’s existing narrative nutrient criterion, to protect the designated use that Florida has previously set for these waters, at Rule 62-302.530(47)(b), F.A.C. which provides that “In no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora or fauna.” Under the Clean Water Act and EPA’s implementing regulations, these numeric criteria must be based on sound scientific rationale and reflect the best available scientific knowledge. EPA has previously published a series of peer reviewed technical guidance documents to develop numeric criteria to address nitrogen/phosphorus pollution in different water body types. EPA recognizes that available and reliable data sources for use in numeric criteria development vary across estuarine and coastal waters in Florida and flowing waters in South Florida. In addition, scientifically defensible approaches for numeric criteria development have different requirements that must be taken into consider

  9. Numerical solution of the time dependent neutron transport equation by the method of the characteristics

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2013-01-01

    This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps

  10. Numerical solution of the time dependent neutron transport equation by the method of the characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

    2013-05-01

    This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.

  11. Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: A numerical comparison

    KAUST Repository

    Bäck, Joakim

    2010-09-17

    Much attention has recently been devoted to the development of Stochastic Galerkin (SG) and Stochastic Collocation (SC) methods for uncertainty quantification. An open and relevant research topic is the comparison of these two methods. By introducing a suitable generalization of the classical sparse grid SC method, we are able to compare SG and SC on the same underlying multivariate polynomial space in terms of accuracy vs. computational work. The approximation spaces considered here include isotropic and anisotropic versions of Tensor Product (TP), Total Degree (TD), Hyperbolic Cross (HC) and Smolyak (SM) polynomials. Numerical results for linear elliptic SPDEs indicate a slight computational work advantage of isotropic SC over SG, with SC-SM and SG-TD being the best choices of approximation spaces for each method. Finally, numerical results corroborate the optimality of the theoretical estimate of anisotropy ratios introduced by the authors in a previous work for the construction of anisotropic approximation spaces. © 2011 Springer.

  12. Noninvasive assessment of mitral inertness [correction of inertance]: clinical results with numerical model validation.

    Science.gov (United States)

    Firstenberg, M S; Greenberg, N L; Smedira, N G; McCarthy, P M; Garcia, M J; Thomas, J D

    2001-01-01

    Inertial forces (Mdv/dt) are a significant component of transmitral flow, but cannot be measured with Doppler echo. We validated a method of estimating Mdv/dt. Ten patients had a dual sensor transmitral (TM) catheter placed during cardiac surgery. Doppler and 2D echo was performed while acquiring LA and LV pressures. Mdv/dt was determined from the Bernoulli equation using Doppler velocities and TM gradients. Results were compared with numerical modeling. TM gradients (range: 1.04-14.24 mmHg) consisted of 74.0 +/- 11.0% inertial forcers (range: 0.6-12.9 mmHg). Multivariate analysis predicted Mdv/dt = -4.171(S/D (RATIO)) + 0.063(LAvolume-max) + 5. Using this equation, a strong relationship was obtained for the clinical dataset (y=0.98x - 0.045, r=0.90) and the results of numerical modeling (y=0.96x - 0.16, r=0.84). TM gradients are mainly inertial and, as validated by modeling, can be estimated with echocardiography.

  13. Implementation of visual programming methods for numerical techniques used in electromagnetic field theory

    Directory of Open Access Journals (Sweden)

    Metin Varan

    2017-08-01

    Full Text Available Field theory is one of the two sub-field theories in electrical and electronics engineering that for creates difficulties for undergraduate students. In undergraduate period, field theory has been taught under the theory of electromagnetic fields by which describes using partial differential equations and integral methods. Analytical methods for solution of field problems on the basis of a mathematical model may result the understanding difficulties for undergraduate students due to their mathematical and physical infrastructure. The analytical methods which can be applied in simple model lose their applicability to more complex models. In this case, the numerical methods are used to solve more complex equations. In this study, by preparing some field theory‘s web-based graphical user interface numerical methods of applications it has been aimed to increase learning levels of field theory problems for undergraduate and graduate students while taking in mind their computer programming capabilities.

  14. Stability of numerical method for semi-linear stochastic pantograph differential equations

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-01-01

    Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.

  15. Numerical and experimental validation of a particle Galerkin method for metal grinding simulation

    Science.gov (United States)

    Wu, C. T.; Bui, Tinh Quoc; Wu, Youcai; Luo, Tzui-Liang; Wang, Morris; Liao, Chien-Chih; Chen, Pei-Yin; Lai, Yu-Sheng

    2018-03-01

    In this paper, a numerical approach with an experimental validation is introduced for modelling high-speed metal grinding processes in 6061-T6 aluminum alloys. The derivation of the present numerical method starts with an establishment of a stabilized particle Galerkin approximation. A non-residual penalty term from strain smoothing is introduced as a means of stabilizing the particle Galerkin method. Additionally, second-order strain gradients are introduced to the penalized functional for the regularization of damage-induced strain localization problem. To handle the severe deformation in metal grinding simulation, an adaptive anisotropic Lagrangian kernel is employed. Finally, the formulation incorporates a bond-based failure criterion to bypass the prospective spurious damage growth issues in material failure and cutting debris simulation. A three-dimensional metal grinding problem is analyzed and compared with the experimental results to demonstrate the effectiveness and accuracy of the proposed numerical approach.

  16. Mixed dual finite element methods for the numerical treatment of the diffusion equation in hexagonal geometry

    International Nuclear Information System (INIS)

    Schneider, D.

    2001-01-01

    The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P N approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)

  17. Numerical methods and applications in many fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Luitz, David J.

    2013-02-07

    This thesis presents results covering several topics in correlated many fermion systems. A Monte Carlo technique (CT-INT) that has been implemented, used and extended by the author is discussed in great detail in chapter 3. The following chapter discusses how CT-INT can be used to calculate the two particle Green's function and explains how exact frequency summations can be obtained. A benchmark against exact diagonalization is presented. The link to the dynamical cluster approximation is made in the end of chapter 4, where these techniques are of immense importance. In chapter 5 an extensive CT-INT study of a strongly correlated Josephson junction is shown. In particular, the signature of the first order quantum phase transition between a Kondo and a local moment regime in the Josephson current is discussed. The connection to an experimental system is made with great care by developing a parameter extraction strategy. As a final result, we show that it is possible to reproduce experimental data from a numerically exact CT-INT model-calculation. The last topic is a study of graphene edge magnetism. We introduce a general effective model for the edge states, incorporating a complicated interaction Hamiltonian and perform an exact diagonalization study for different parameter regimes. This yields a strong argument for the importance of forbidden umklapp processes and of the strongly momentum dependent interaction vertex for the formation of edge magnetism. Additional fragments concerning the use of a Legendre polynomial basis for the representation of the two particle Green's function, the analytic continuation of the self energy for the Anderson Kane Mele Model as well as the generation of test data with a given covariance matrix are documented in the appendix. A final appendix provides some very important matrix identities that are used for the discussion of technical details of CT-INT.

  18. Numerical methods and applications in many fermion systems

    International Nuclear Information System (INIS)

    Luitz, David J.

    2013-01-01

    This thesis presents results covering several topics in correlated many fermion systems. A Monte Carlo technique (CT-INT) that has been implemented, used and extended by the author is discussed in great detail in chapter 3. The following chapter discusses how CT-INT can be used to calculate the two particle Green's function and explains how exact frequency summations can be obtained. A benchmark against exact diagonalization is presented. The link to the dynamical cluster approximation is made in the end of chapter 4, where these techniques are of immense importance. In chapter 5 an extensive CT-INT study of a strongly correlated Josephson junction is shown. In particular, the signature of the first order quantum phase transition between a Kondo and a local moment regime in the Josephson current is discussed. The connection to an experimental system is made with great care by developing a parameter extraction strategy. As a final result, we show that it is possible to reproduce experimental data from a numerically exact CT-INT model-calculation. The last topic is a study of graphene edge magnetism. We introduce a general effective model for the edge states, incorporating a complicated interaction Hamiltonian and perform an exact diagonalization study for different parameter regimes. This yields a strong argument for the importance of forbidden umklapp processes and of the strongly momentum dependent interaction vertex for the formation of edge magnetism. Additional fragments concerning the use of a Legendre polynomial basis for the representation of the two particle Green's function, the analytic continuation of the self energy for the Anderson Kane Mele Model as well as the generation of test data with a given covariance matrix are documented in the appendix. A final appendix provides some very important matrix identities that are used for the discussion of technical details of CT-INT.

  19. Numerical methods for calculating thermal residual stresses and hydrogen diffusion

    International Nuclear Information System (INIS)

    Leblond, J.B.; Devaux, J.; Dubois, D.

    1983-01-01

    Thermal residual stresses and hydrogen concentrations are two major factors intervening in cracking phenomena. These parameters were numerically calculated by a computer programme (TITUS) using the FEM, during the deposition of a stainless clad on a low-alloy plate. The calculation was performed with a 2-dimensional option in four successive steps: thermal transient calculation, metallurgical transient calculation (determination of the metallurgical phase proportions), elastic-plastic transient (plain strain conditions), hydrogen diffusion transient. Temperature and phase dependence of hydrogen diffusion coefficient and solubility constant. The following results were obtained: thermal calculations are very consistent with experiments at higher temperatures (due to the introduction of fusion and solidification latent heats); the consistency is not as good (by 70 degrees) for lower temperatures (below 650 degrees C); this was attributed to the non-introduction of gamma-alpha transformation latent heat. The metallurgical phase calculation indicates that the heat affected zone is almost entirely transformed into bainite after cooling down (the martensite proportion does not exceed 5%). The elastic-plastic calculations indicate that the stresses in the heat affected zone are compressive or slightly tensile; on the other hand, higher tensile stresses develop on the boundary of the heat affected zone. The transformation plasticity has a definite influence on the final stress level. The return of hydrogen to the clad during the bainitic transformation is but an incomplete phenomenon and the hydrogen concentration in the heat affected zone after cooling down to room temperature is therefore sufficient to cause cold cracking (if no heat treatment is applied). Heat treatments are efficient in lowering the hydrogen concentration. These results enable us to draw preliminary conclusions on practical means to avoid cracking. (orig.)

  20. Direct numerical simulation of the Rayleigh-Taylor instability with the spectral element method

    International Nuclear Information System (INIS)

    Zhang Xu; Tan Duowang

    2009-01-01

    A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh-Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh-Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows. (authors)

  1. Direct Numerical Simulation of the Rayleigh−Taylor Instability with the Spectral Element Method

    International Nuclear Information System (INIS)

    Xu, Zhang; Duo-Wang, Tan

    2009-01-01

    A novel method is proposed to simulate Rayleigh−Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier–Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh−Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh–Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh−Taylor instabilities of turbulent flows. (fundamental areas of phenomenology (including applications))

  2. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    Science.gov (United States)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  3. Numerical simulation of pseudoelastic shape memory alloys using the large time increment method

    Science.gov (United States)

    Gu, Xiaojun; Zhang, Weihong; Zaki, Wael; Moumni, Ziad

    2017-04-01

    The paper presents a numerical implementation of the large time increment (LATIN) method for the simulation of shape memory alloys (SMAs) in the pseudoelastic range. The method was initially proposed as an alternative to the conventional incremental approach for the integration of nonlinear constitutive models. It is adapted here for the simulation of pseudoelastic SMA behavior using the Zaki-Moumni model and is shown to be especially useful in situations where the phase transformation process presents little or lack of hardening. In these situations, a slight stress variation in a load increment can result in large variations of strain and local state variables, which may lead to difficulties in numerical convergence. In contrast to the conventional incremental method, the LATIN method solve the global equilibrium and local consistency conditions sequentially for the entire loading path. The achieved solution must satisfy the conditions of static and kinematic admissibility and consistency simultaneously after several iterations. 3D numerical implementation is accomplished using an implicit algorithm and is then used for finite element simulation using the software Abaqus. Computational tests demonstrate the ability of this approach to simulate SMAs presenting flat phase transformation plateaus and subjected to complex loading cases, such as the quasi-static behavior of a stent structure. Some numerical results are contrasted to those obtained using step-by-step incremental integration.

  4. Deformation of two-phase aggregates using standard numerical methods

    Science.gov (United States)

    Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.

    2013-04-01

    Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.

  5. Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method

    Science.gov (United States)

    Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.

    2017-02-01

    Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.

  6. Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.

    Science.gov (United States)

    Xia, Ji-Yang; Leung, Dennis Y C

    2005-01-01

    A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.

  7. Design of analog networks in the control theory formulation. Part 2: Numerical results

    OpenAIRE

    Zemliak, A. M.

    2005-01-01

    The paper presents numerical results of design of nonlinear electronic networks based on the problem formulation in terms of the control theory. Several examples illustrate the prospects of the approach suggested in the first part of the work.

  8. Numerical calculation of elastohydrodynamic lubrication methods and programs

    CERN Document Server

    Huang, Ping

    2015-01-01

    The book not only offers scientists and engineers a clear inter-disciplinary introduction and orientation to all major EHL problems and their solutions but, most importantly, it also provides numerical programs on specific application in engineering. A one-stop reference providing equations and their solutions to all major elastohydrodynamic lubrication (EHL) problems, plus numerical programs on specific applications in engineering offers engineers and scientists a clear inter-disciplinary introduction and a concise program for practical engineering applications to most important EHL problems

  9. A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method

    Science.gov (United States)

    Somogyi, Andy; Tagg, Randall

    2007-11-01

    We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.

  10. Interacting steps with finite-range interactions: Analytical approximation and numerical results

    Science.gov (United States)

    Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.

    2013-05-01

    We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  11. Numerical analysis of the immersed boundary method applied to the flow around a forced oscillating cylinder

    International Nuclear Information System (INIS)

    Pinto, L C; Silvestrini, J H; Schettini, E B C

    2011-01-01

    In present paper, Navier-Stokes and Continuity equations for incompressible flow around an oscillating cylinder were numerically solved. Sixth order compact difference schemes were used to solve the spatial derivatives, while the time advance was carried out through second order Adams Bashforth accurate scheme. In order to represent the obstacle in the flow, the Immersed Boundary Method was adopted. In this method a force term is added to the Navier-Stokes equations representing the body. The simulations present results regarding the hydrodynamic coefficients and vortex wakes in agreement to experimental and numerical previous works and the physical lock-in phenomenon was identified. Comparing different methods to impose the IBM, it can be concluded that no alterations regarding the vortex shedding mode were observed. The Immersed Boundary Method techniques used here can represent the surface of an oscillating cylinder in the flow.

  12. A fast numerical method for the valuation of American lookback put options

    Science.gov (United States)

    Song, Haiming; Zhang, Qi; Zhang, Ran

    2015-10-01

    A fast and efficient numerical method is proposed and analyzed for the valuation of American lookback options. American lookback option pricing problem is essentially a two-dimensional unbounded nonlinear parabolic problem. We reformulate it into a two-dimensional parabolic linear complementary problem (LCP) on an unbounded domain. The numeraire transformation and domain truncation technique are employed to convert the two-dimensional unbounded LCP into a one-dimensional bounded one. Furthermore, the variational inequality (VI) form corresponding to the one-dimensional bounded LCP is obtained skillfully by some discussions. The resulting bounded VI is discretized by a finite element method. Meanwhile, the stability of the semi-discrete solution and the symmetric positive definiteness of the full-discrete matrix are established for the bounded VI. The discretized VI related to options is solved by a projection and contraction method. Numerical experiments are conducted to test the performance of the proposed method.

  13. The Navier-Stokes Equations Theory and Numerical Methods

    CERN Document Server

    Masuda, Kyûya; Rautmann, Reimund; Solonnikov, Vsevolod

    1990-01-01

    These proceedings contain original (refereed) research articles by specialists from many countries, on a wide variety of aspects of Navier-Stokes equations. Additionally, 2 survey articles intended for a general readership are included: one surveys the present state of the subject via open problems, and the other deals with the interplay between theory and numerical analysis.

  14. On Numerical Methods in Non-Newtonian Flows

    International Nuclear Information System (INIS)

    Fileas, G.

    1982-12-01

    The constitutive equations for non-Newtonian flows are presented and the various flow models derived from continuum mechanics and molecular theories are considered and evaluated. Detailed account is given of numerical simulation employing differential and integral models of different kinds of non-Newtonian flows using finite-difference and finite-element techniques. Appreciating the fact that no book or concentrated material on Numerical Non-Newtonian Fluid Flow exists at the present, procedures for computer set-ups are described and references are given for finite-difference, finite-element and molecular-theory based programmes for several kinds of flow. Achievements and unreached goals in the field of numerical simulation of non-Newtonian flows are discussed and the lack of numerical work in the fields of suspension flows and heat transfer is pointed out. Finally, FFOCUS is presented as a newly built computer program which can simulate freezing flows on Newtonian fluids through various geometries and is aimed to be further developed to handle non-Newtonian freezing flows and certain types of suspension phenomena involved in corium flow after a hypothetical core melt-down accident in a PWR. (author)

  15. A method of piecewise-smooth numerical branching

    Czech Academy of Sciences Publication Activity Database

    Ligurský, Tomáš; Renard, Y.

    2017-01-01

    Roč. 97, č. 7 (2017), s. 815-827 ISSN 1521-4001 R&D Projects: GA MŠk LQ1602 Institutional support: RVO:68145535 Keywords : numerical branching * piecewise smooth * steady-state problem * contact problem * Coulomb friction Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://onlinelibrary.wiley.com/doi/10.1002/zamm.201600219/epdf

  16. Discrete variational derivative method a structure-preserving numerical method for partial differential equations

    CERN Document Server

    Furihata, Daisuke

    2010-01-01

    Nonlinear Partial Differential Equations (PDEs) have become increasingly important in the description of physical phenomena. Unlike Ordinary Differential Equations, PDEs can be used to effectively model multidimensional systems. The methods put forward in Discrete Variational Derivative Method concentrate on a new class of ""structure-preserving numerical equations"" which improves the qualitative behaviour of the PDE solutions and allows for stable computing. The authors have also taken care to present their methods in an accessible manner, which means that the book will be useful to engineer

  17. NUMERICAL SIMULATION OF ELECTRICAL IMPEDANCE TOMOGRAPHY PROBLEM AND STUDY OF APPROACH BASED ON FINITE VOLUME METHOD

    Directory of Open Access Journals (Sweden)

    Ye. S. Sherina

    2014-01-01

    Full Text Available This research has been aimed to carry out a study of peculiarities that arise in a numerical simulation of the electrical impedance tomography (EIT problem. Static EIT image reconstruction is sensitive to a measurement noise and approximation error. A special consideration has been given to reducing of the approximation error, which originates from numerical implementation drawbacks. This paper presents in detail two numerical approaches for solving EIT forward problem. The finite volume method (FVM on unstructured triangular mesh is introduced. In order to compare this approach, the finite element (FEM based forward solver was implemented, which has gained the most popularity among researchers. The calculated potential distribution with the assumed initial conductivity distribution has been compared to the analytical solution of a test Neumann boundary problem and to the results of problem simulation by means of ANSYS FLUENT commercial software. Two approaches to linearized EIT image reconstruction are discussed. Reconstruction of the conductivity distribution is an ill-posed problem, typically requiring a large amount of computation and resolved by minimization techniques. The objective function to be minimized is constructed of measured voltage and calculated boundary voltage on the electrodes. A classical modified Newton type iterative method and the stochastic differential evolution method are employed. A software package has been developed for the problem under investigation. Numerical tests were conducted on simulated data. The obtained results could be helpful to researches tackling the hardware and software issues for medical applications of EIT.

  18. Explicit appropriate basis function method for numerical solution of stiff systems

    International Nuclear Information System (INIS)

    Chen, Wenzhen; Xiao, Hongguang; Li, Haofeng; Chen, Ling

    2015-01-01

    Highlights: • An explicit numerical method called the appropriate basis function method is presented. • The method differs from the power series method for obtaining approximate numerical solutions. • Two cases show the method is fit for linear and nonlinear stiff systems. • The method is very simple and effective for most of differential equation systems. - Abstract: In this paper, an explicit numerical method, called the appropriate basis function method, is presented. The explicit appropriate basis function method differs from the power series method because it employs an appropriate basis function such as the exponential function, or periodic function, other than a polynomial, to obtain approximate numerical solutions. The method is successful and effective for the numerical solution of the first order ordinary differential equations. Two examples are presented to show the ability of the method for dealing with linear and nonlinear systems of differential equations

  19. Research status and some results of numerical system to study regional environment: SPEEDI-MP

    International Nuclear Information System (INIS)

    Chino, Masamichi

    2004-01-01

    Research status and some results of 'Numerical system to study regional environment: SPEEDI-MP', which reproduces circulations of materials in the atmospheric, oceanic and terrestrial environments, are introduced. The purpose of this system are the development of various environmental models, the connection of atmospheric, oceanic and terrestrial models and the construction of research bases for numerical environmental studies. In addition to the accurate prediction of environmental behavior of radionuclides, the system has been applied to the non-nuclear fields, e.g., numerical analysis of environmental effects to volcanic gases from Miyake Jima, real-time prediction of the migration of rice planthoppers from Eastern Asia. (author)

  20. Comparison of results of experimental research with numerical calculations of a model one-sided seal

    Directory of Open Access Journals (Sweden)

    Joachimiak Damian

    2015-06-01

    Full Text Available Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+ has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.

  1. Some variance reduction methods for numerical stochastic homogenization.

    Science.gov (United States)

    Blanc, X; Le Bris, C; Legoll, F

    2016-04-28

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. © 2016 The Author(s).

  2. MEASURING RESULTS NUMERAL TREATMENT OF IMPULSIVE CURRENTS BY MEANS OF ROGOVSKY BELT APPLICATION

    Directory of Open Access Journals (Sweden)

    U. Batygin

    2009-01-01

    Full Text Available The technique of numerical processing of measurement results of pulse currents by means of Rogovsky belt application is offered in the given work. It is shown that at measurement of signals by digital oscillographs and further numerical transformation of target signals, the possibilities of Rogovsky belt without the application of additional devices that in turn allows to define parameters of pulse currents with any peak-time characteristics essentially expand.

  3. Numerical simulations of a family of the coupled viscous Burgers, equation using the lattice Boltzmann method

    International Nuclear Information System (INIS)

    He, Y B; Tang, X H

    2016-01-01

    In this paper, in order to extend the lattice Boltzmann method (LBM) to deal with more nonlinear systems, a one-dimensional and five-velocity lattice Boltzmann scheme with an amending function for a family of the coupled viscous Burgers’ equation (CVBE) is proposed. With the Taylor and Chapman–Enskog expansion, a family of the CVBE is recovered correctly from the lattice Boltzmann equation through selecting the equilibrium distribution functions and amending functions properly. The method is applied to some test examples with an analytical solution. The results are compared with those obtained by the finite difference method (FDM); it is shown that the numerical solutions agree well with the analytical solutions and the errors obtained by the present method are smaller than the FDM. Furthermore, some problems without analytical solutions are numerically studied by the present method and the FDM. The results show that the numerical solutions of the LBM are in good agreement with those obtained by the FDM, which can validate the effectiveness and stability of the LBM. (paper: classical statistical mechanics, equilibrium and non-equilibrium)

  4. Cathodic protection simulation of above ground storage tank bottom: Experimental and numerical results

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Marcelo [Inspection Department, Rio de Janeiro Refinery - REDUC, Petrobras, Rio de Janeiro (Brazil); Brasil, Simone L.D.C. [Chemistry School, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro (Brazil); Baptista, Walmar [Corrosion Department, Research Centre - CENPES, Petrobras (Brazil); Miranda, Luiz de [Materials and Metallurgical Engineering Program, COPPE, UFRJ, Rio de Janeiro (Brazil); Brito, Rosane F. [Corrosion Department, Research Centre, CENPES, Petrobras, Rio de Janeiro (Brazil)

    2004-07-01

    The deterioration history of Above ground Storage Tanks (AST) of Petrobras' refineries - shows that the great incidence of corrosion in the AST bottom is at the external side. This is a problem in the disposability of storage crude oil and other final products. At this refinery, all AST's are built over a concrete base with a lot of pile to support the structure and distribute the charge homogeneously. Because of this it is very difficult to use cathodic protection as an anti-corrosive method for each one of these tanks. This work presents an alternative cathodic protection system to protect the external side of the tank bottom using a new metallic bottom, placed at different distance from the original one. The space between the two bottoms was filled with one of two kinds of soils, sand or clay, more conductive than the concrete. Using a prototype tank it was studied the potential distributions over the new tank bottom for different system parameters, as soil resistivity, number and position of anodes localized in the old bottom. These experimental results were compared to numerical simulations, carried out using a software based on the Boundary Element Method. The computer simulation validates this protection method, confirming to be a very useful tool to define the optimized cathodic protection system configuration. (authors)

  5. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    Science.gov (United States)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  6. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.

  7. Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method

    International Nuclear Information System (INIS)

    Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr

    2008-01-01

    Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code

  8. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.

    1995-02-01

    There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.

  9. A Numerical Method for Partial Differential Algebraic Equations Based on Differential Transform Method

    Directory of Open Access Journals (Sweden)

    Murat Osmanoglu

    2013-01-01

    Full Text Available We have considered linear partial differential algebraic equations (LPDAEs of the form , which has at least one singular matrix of . We have first introduced a uniform differential time index and a differential space index. The initial conditions and boundary conditions of the given system cannot be prescribed for all components of the solution vector here. To overcome this, we introduced these indexes. Furthermore, differential transform method has been given to solve LPDAEs. We have applied this method to a test problem, and numerical solution of the problem has been compared with analytical solution.

  10. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    International Nuclear Information System (INIS)

    Zhou, Xiafeng; Guo, Jiong; Li, Fu

    2015-01-01

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  11. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn

    2015-12-15

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  12. Numerical method for time-dependent localized corrosion analysis with moving boundaries by combining the finite volume method and voxel method

    International Nuclear Information System (INIS)

    Onishi, Yuki; Takiyasu, Jumpei; Amaya, Kenji; Yakuwa, Hiroshi; Hayabusa, Keisuke

    2012-01-01

    Highlights: ► A novel numerical method to analyze time dependent localized corrosion is developed. ► It takes electromigration, mass diffusion, chemical reactions, and moving boundaries. ► Our method perfectly satisfies the conservation of mass and electroneutrality. ► The behavior of typical crevice corrosion is successfully simulated. ► Both verification and validation of our method are carried out. - Abstract: A novel numerical method for time-dependent localized corrosion analysis is presented. Electromigration, mass diffusion, chemical reactions, and moving boundaries are considered in the numerical simulation of localized corrosion of engineering alloys in an underwater environment. Our method combines the finite volume method (FVM) and the voxel method. The FVM is adopted in the corrosion rate calculation so that the conservation of mass is satisfied. A newly developed decoupled algorithm with a projection method is introduced in the FVM to decouple the multiphysics problem into the electrostatic, mass transport, and chemical reaction analyses with electroneutrality maintained. The polarization curves for the corroding metal are used as boundary conditions for the metal surfaces to calculate the corrosion rates. The voxel method is adopted in updating the moving boundaries of cavities without remeshing and mesh-to-mesh solution mapping. Some modifications of the standard voxel method, which represents the boundaries as zigzag-shaped surfaces, are introduced to generate smooth surfaces. Our method successfully reproduces the numerical and experimental results of a capillary electrophoresis problem. Furthermore, the numerical results are qualitatively consistent with the experimental results for several examples of crevice corrosion.

  13. Numerical and experimental results of a passive free yawing downwind wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Verelst, D.R.S.

    2013-09-15

    The background of this PhD study concerns a medium sized 3 bladed wind turbine in a free yawing and downwind configuration. Largely funded by an EU Marie-Curie IAPP grant, the project was jointly setup by the renewable energy consultant 3E, DTU Wind Energy and the TU Delft. The 3 bladed free yawing downwind concept is pursued in an attempt to increase the robustness of a wind turbine by eliminating the traditionally actively controlled, and sometimes failure prone yawing mechanism. Under certain conditions, such as for remote (off shore) and off grid applications, a decreased failure rate can increase the economical competitiveness significantly compared to more traditional power supplies. This work presents aeroelastic analysis and results of a wind tunnel test campaign for the 3 bladed free yawing downwind concept. The investigated topics concern free yawing stability and how it is affected by coning angle, blade sweep, and blade flexibility using both numerical and experimental methods. The wind tunnel tests were organized in the Open Jet Facility of the TU Delft, and the thesis discusses the experiment's design, construction, operation, and gives an analysis of the results. It provides a dataset to compare aeroelastic simulations with experimental results for varying yawed inflow conditions and free yawing stability. The experimental data scope is limited to rotor speed, tower base bending moment, yaw angle, and blade root flapwise bending moments measurements. Other work covered during the PhD study is a parametric blade sweep investigation for the NREL 5MW turbine, and a detailed study on load extrapolation methods based on aeroelastic simulations. It is concluded that the 3 bladed, free yawing, and downwind wind turbine can operate in a stable manner. However, numerical studies indicate a less stable operating region when the rotor flow is about to stall. The experiments confirmed the free yawing stability, but the unstable region indicated in the

  14. Numerical sensitivity computation for discontinuous gradient-only optimization problems using the complex-step method

    CSIR Research Space (South Africa)

    Wilke, DN

    2012-07-01

    Full Text Available problems that utilise remeshing (i.e. the mesh topology is allowed to change) between design updates. Here, changes in mesh topology result in abrupt changes in the discretization error of the computed response. These abrupt changes in turn manifests... in shape optimization but may be present whenever (partial) differential equations are ap- proximated numerically with non-constant discretization methods e.g. remeshing of spatial domains or automatic time stepping in temporal domains. Keywords: Complex...

  15. A Numerical Method for Blast Shock Wave Analysis of Missile Launch from Aircraft

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs

    2015-01-01

    Full Text Available An efficient empirical approach was developed to accurately represent the blast shock wave loading resulting from the launch of a missile from a military aircraft to be used in numerical analyses. Based on experimental test series of missile launches in laboratory environment and from a helicopter, equations were derived to predict the time- and position-dependent overpressure. The method was finally applied and validated in a structural analysis of a helicopter tail boom under missile launch shock wave loading.

  16. Application of optimization numerical methods in calculation of the two-particle nuclear reactions

    International Nuclear Information System (INIS)

    Titarenko, N.N.

    1987-01-01

    An optimization packet of PEAK-OPT applied programs intended for solution of problems of absolute minimization of functions of many variables in calculations of cross sections of binary nuclear reactions is described. The main algorithms of computerized numerical solution of systems of nonlinear equations for the least square method are presented. Principles for plotting and functioning the optimization software as well as results of its practical application are given

  17. Theory of difference equations numerical methods and applications

    CERN Document Server

    Lakshmikantham, Vangipuram

    1988-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  18. Lobatto-Milstein Numerical Method in Application of Uncertainty Investment of Solar Power Projects

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Eissa

    2017-01-01

    Full Text Available Recently, there has been a growing interest in the production of electricity from renewable energy sources (RES. The RES investment is characterized by uncertainty, which is long-term, costly and depends on feed-in tariff and support schemes. In this paper, we address the real option valuation (ROV of a solar power plant investment. The real option framework is investigated. This framework considers the renewable certificate price and, further, the cost of delay between establishing and operating the solar power plant. The optimal time of launching the project and assessing the value of the deferred option are discussed. The new three-stage numerical methods are constructed, the Lobatto3C-Milstein (L3CM methods. The numerical methods are integrated with the concept of Black–Scholes option pricing theory and applied in option valuation for solar energy investment with uncertainty. The numerical results of the L3CM, finite difference and Monte Carlo methods are compared to show the efficiency of our methods. Our dataset refers to the Arab Republic of Egypt.

  19. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    Science.gov (United States)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  20. SELECT NUMERICAL METHODS FOR MODELING THE DYNAMICS SYSTEMS

    Directory of Open Access Journals (Sweden)

    Tetiana D. Panchenko

    2016-07-01

    Full Text Available The article deals with the creation of methodical support for mathematical modeling of dynamic processes in elements of the systems and complexes. As mathematical models ordinary differential equations have been used. The coefficients of the equations of the models can be nonlinear functions of the process. The projection-grid method is used as the main tool. It has been described iterative method algorithms taking into account the approximate solution prior to the first iteration and proposed adaptive control computing process. The original method of estimation error in the calculation solutions as well as for a given level of error of the technique solutions purpose adaptive method for solving configuration parameters is offered. A method for setting an adaptive method for solving the settings for a given level of error is given. The proposed method can be used for distributed computing.

  1. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    Science.gov (United States)

    Katsaounis, T. D.

    2005-02-01

    equations in Diffpack can be used to derive fully implicit solvers for systems. The proposed techniques are illustrated in terms of two applications, namely a system of PDEs modelling pipeflow and a two-phase porous media flow. Stochastic PDEs is the topic of chapter 7. The first part of the chapter is a simple introduction to stochastic PDEs; basic analytical properties are presented for simple models like transport phenomena and viscous drag forces. The second part considers the numerical solution of stochastic PDEs. Two basic techniques are presented, namely Monte Carlo and perturbation methods. The last part explains how to implement and incorporate these solvers into Diffpack. Chapter 8 describes how to operate Diffpack from Python scripts. The main goal here is to provide all the programming and technical details in order to glue the programming environment of Diffpack with visualization packages through Python and in general take advantage of the Python interfaces. Chapter 9 attempts to show how to use numerical experiments to measure the performance of various PDE solvers. The authors gathered a rather impressive list, a total of 14 PDE solvers. Solvers for problems like Poisson, Navier--Stokes, elasticity, two-phase flows and methods such as finite difference, finite element, multigrid, and gradient type methods are presented. The authors provide a series of numerical results combining various solvers with various methods in order to gain insight into their computational performance and efficiency. In Chapter 10 the authors consider a computationally challenging problem, namely the computation of the electrical activity of the human heart. After a brief introduction on the biology of the problem the authors present the mathematical models involved and a numerical method for solving them within the framework of Diffpack. Chapter 11 and 12 are closely related; actually they could have been combined in a single chapter. Chapter 11 introduces several mathematical

  2. A asymptotic numerical method for the steady-state convection diffusion equation

    International Nuclear Information System (INIS)

    Wu Qiguang

    1988-01-01

    In this paper, A asymptotic numerical method for the steady-state Convection diffusion equation is proposed, which need not take very fine mesh size in the neighbourhood of the boundary layer. Numerical computation for model problem show that we can obtain the numerical solution in the boundary layer with moderate step size

  3. Study on natural convection in core barrel. Experimental and numerical results for band type spacer pads

    International Nuclear Information System (INIS)

    Hayashi, Kenji; Kawamata, Nobuhiro; Kamide, Hideki

    2003-03-01

    In a fast reactor an Inter-Wrapper Flow (IWF) is one of significant phenomena for decay heat removal under natural circulation condition, when a direct reactor auxiliary cooling system (DRACS) is adopted for decay heat removal system. Cold coolant provided by dipped heat exchangers (DHX) of DRACS can penetrate into the core barrel (region between the subassemblies) and it makes natural convection int he core barrel. Such IWF will depend on a spacer pad geometry of subassemblies. Water experiment, TRIF (Test Rig for Inter-wrapper Flow), was carried out for IWF in a reactor core. The test section modeled a 1/12th sector of the core and upper plenum of reactor vessel. Experimental parameters were the spacer pad geometry and flow path geometries connecting the upper plenum and core barrel. Numerical simulation using AQUA code was also performed to confirm applicability of a simulation method. An experimental series using a button type spacer pad had been carried out. Here a band type spacer pad was examined. Temperatures at subassembly wall were measured with parameter of the flow path geometries; one was a connection pipe between the upper plenum and core barrel and the other was flow hole in core former plates between the outermost subassemblies and the core barrel. It was found that these flow paths were effective to remove heat in the core in case of the band type spacer pad. A general purpose three dimensional analysis code, AQUA, was applied to the experimental analysis. Each subassembly and inter wrapper gap region were modeled by slab mesh geometry. Pressure loss coefficient at the pacer pad was set based on the geometry. The numerical simulation results were in good agreement with measured temperature profiles in the core. (author)

  4. Comparison between numerical and analytical results on the required rf current for stabilizing neoclassical tearing modes

    Science.gov (United States)

    Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhang, Yang; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin

    2018-04-01

    Numerical studies on the stabilization of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) have been carried out based on reduced MHD equations, focusing on the amount of the required driven current for mode stabilization and the comparison with analytical results. The dependence of the minimum driven current required for NTM stabilization on some parameters, including the bootstrap current density, radial width of the driven current, radial deviation of the driven current from the resonant surface, and the island width when applying ECCD, are studied. By fitting the numerical results, simple expressions for these dependences are obtained. Analysis based on the modified Rutherford equation (MRE) has also been carried out, and the corresponding results have the same trend as numerical ones, while a quantitative difference between them exists. This difference becomes smaller when the applied radio frequency (rf) current is smaller.

  5. Numerical conformal mapping methods for exterior and doubly connected regions

    Energy Technology Data Exchange (ETDEWEB)

    DeLillo, T.K. [Wichita State Univ., KS (United States); Pfaltzgraff, J.A. [Univ. of North Carolina, Chapel Hill, NC (United States)

    1996-12-31

    Methods are presented and analyzed for approximating the conformal map from the exterior of the disk to the exterior a smooth, simple closed curve and from an annulus to a bounded, doubly connected region with smooth boundaries. The methods are Newton-like methods for computing the boundary correspondences and conformal moduli similar to Fornberg`s method for the interior of the disk. We show that the linear systems are discretizations of the identity plus a compact operator and, hence, that the conjugate gradient method converges superlinearly.

  6. The Numerical Wind Atlas - the KAMM/WAsP Method

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H P; Rathmann, O; Mortensen, N G; Landberg, L

    2001-06-01

    The method of combining the Karlsruhe Atmospheric Mesoscale Model, KAMM, with the Wind Atlas Analysis and Application Program, WAsP, to make local predictions of the wind resource is presented. It combines the advantages of meso-scale modeling - overview over a big region and use of global data bases - with the local prediction capacity of the small-scale model WAsP. Results are presented for Denmark, Ireland, Northern Portugal and Galicia, and the Faroe Islands. Wind atlas files were calculated from wind data simulated with the meso-scale model using model grids with a resolution of 2.5, 5, and 10 km. Using these wind atlas files in WAsP the local prediction of the mean wind does not depend on the grid resolution of the meso-scale model. The local predictions combining KAMM and WAsP are much better than simple interpolation of the wind simulated by KAMM. In addition an investigation was made on the dependence of wind atlas data on the size of WAsP-maps. It is recommended that a topographic map around a site should extend 10 km out from it. If there is a major roughness change like a coast line further away in a frequent wind direction this should be included at even greater distances, perhaps up to 20 km away.

  7. Continuum-Kinetic Models and Numerical Methods for Multiphase Applications

    Science.gov (United States)

    Nault, Isaac Michael

    This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.

  8. Numerical Asymptotic Solutions Of Differential Equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  9. Numerical methods of estimating the dispersion of radionuclides in atmosphere

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Ghitulescu, Alina; Popescu, Gheorghe; Piciorea, Iuliana

    2007-01-01

    Full text: The paper presents the method of dispersion calculation, witch can be applied for the DLE calculation. This is necessary to ensure a secure performance of the Experimental Pilot Plant for Tritium and Deuterium Separation (using the technology for detritiation based upon isotope catalytic exchange between tritiated heavy water and deuterium followed by cryogenic distillation of the hydrogen isotopes). For the calculation of the dispersion of radioactivity effluents in the atmosphere, at a given distance between source and receiver, the Gaussian mathematical model was used. This model is currently applied for estimating the long-term results of dispersion in case of continuous or intermittent emissions as basic information for long-term radioprotection measures for areas of the order of kilometres from the source. We have considered intermittent or continuous emissions of intensity lower than 1% per day relative to the annual emission. It is supposed that the radioactive material released into environment presents a gaussian dispersion both in horizontal and vertical plan. The local dispersion parameters could be determined directly with turbulence measurements or indirectly by determination of atmospheric stability. Weather parameters for characterizing the atmospheric dispersion include: - direction of wind relative to the source; - the speed of the wind at the height of emission; - parameters of dispersion to different distances, depending on the atmospheric turbulence which characterizes the mixing of radioactive materials in the atmosphere; - atmospheric stability range; - the height of mixture stratum; - the type and intensity of precipitations. The choice of the most adequate version of Gaussian model depends on the relation among the height where effluent emission is in progress, H (m), and the height at which the buildings influence the air motion, HB (m). There were defined three zones of distinct dispersion. This zones can have variable lengths

  10. Three numerical methods for the computation of the electrostatic energy

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Galeriu, D.

    1975-01-01

    The FORTRAN programs for computation of the electrostatic energy of a body with axial symmetry by Lawrence, Hill-Wheeler and Beringer methods are presented in detail. The accuracy, time of computation and the required memory of these methods are tested at various deformations for two simple parametrisations: two overlapping identical spheres and a spheroid. On this basis the field of application of each method is recomended

  11. Numerical analysis of creep brittle rupture by the finite element method

    International Nuclear Information System (INIS)

    Goncalves, O.J.A.; Owen, D.R.J.

    1983-01-01

    In this work an implicit algorithm is proposed for the numerical analysis of creep brittle rupture problems by the finite element method. This kind of structural failure, typical in components operating at high temperatures for long periods of time, is modelled using either a three dimensional generalization of the Kachanov-Rabotnov equations due to Leckie and Hayhurst or the Monkman-Grant fracture criterion together with the Linear Life Fraction Rule. The finite element equations are derived by the displacement method and isoparametric elements are used for the spatial discretization. Geometric nonlinear effects (large displacements) are accounted for by an updated Lagrangian formulation. Attention is also focussed on the solution of the highly stiff differential equations that govern damage growth. Finally the numerical results of a three-dimensional analysis of a pressurized thin cylinder containing oxidised pits in its external wall are discussed. (orig.)

  12. Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method

    Science.gov (United States)

    Lv, Xin; Zou, Qingping; Reeve, Dominic

    2011-10-01

    This paper presents the applications of a newly developed free surface flow model to the practical, while challenging overflow problems for weirs. Since the model takes advantage of the strengths of both the level set and volume of fluid methods and solves the Navier-Stokes equations on an unstructured mesh, it is capable of resolving the time evolution of very complex vortical motions, air entrainment and pressure variations due to violent deformations following overflow of the weir crest. In the present study, two different types of vertical weir, namely broad-crested and sharp-crested, are considered for validation purposes. The calculated overflow parameters such as pressure head distributions, velocity distributions, and water surface profiles are compared against experimental data as well as numerical results available in literature. A very good quantitative agreement has been obtained. The numerical model, thus, offers a good alternative to traditional experimental methods in the study of weir problems.

  13. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    KAUST Repository

    Gao, Kai

    2015-06-05

    The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.

  14. A numerical method for interaction problems between fluid and membranes with arbitrary permeability for fluid

    Science.gov (United States)

    Miyauchi, Suguru; Takeuchi, Shintaro; Kajishima, Takeo

    2017-09-01

    We develop a numerical method for fluid-membrane interaction accounting for permeation of the fluid using a non-conforming mesh to the membrane shape. To represent the permeation flux correctly, the proposed finite element discretization incorporates the discontinuities in the velocity gradient and pressure on the membrane surface with specially selected base functions. The discontinuities are represented with independent variables and determined to satisfy the governing equations including the interfacial condition on the permeation. The motions of the fluid, membrane and permeation flux are coupled monolithically and time-advanced fully-implicitly. The validity and effectiveness of the proposed method are demonstrated by several two-dimensional fluid-membrane interaction problems of Stokes flows by comparing with the analytical models and numerical results obtained by other methods. The reproduced sharp discontinuities are found to be essential to suppress the non-physical permeation flux. Further, combined with the numerical treatment for the solute concentration across the membrane, the proposed method is applied to a fluid-structure interaction problem including the osmotic pressure difference.

  15. Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method

    International Nuclear Information System (INIS)

    Lima E Silva, A.L.F.; Silveira-Neto, A.; Damasceno, J.J.R.

    2003-01-01

    In this work, a virtual boundary method is applied to the numerical simulation of a uniform flow over a cylinder. The force source term, added to the two-dimensional Navier-Stokes equations, guarantees the imposition of the no-slip boundary condition over the body-fluid interface. These equations are discretized, using the finite differences method. The immersed boundary is represented with a finite number of Lagrangian points, distributed over the solid-fluid interface. A Cartesian grid is used to solve the fluid flow equations. The key idea is to propose a method to calculate the interfacial force without ad hoc constants that should usually be adjusted for the type of flow and the type of the numerical method, when this kind of model is used. In the present work, this force is calculated using the Navier-Stokes equations applied to the Lagrangian points and then distributed over the Eulerian grid. The main advantage of this approach is that it enables calculation of this force field, even if the interface is moving or deforming. It is unnecessary to locate the Eulerian grid points near this immersed boundary. The lift and drag coefficients and the Strouhal number, calculated for an immersed cylinder, are compared with previous experimental and numerical results, for different Reynolds numbers

  16. Research for developing precise tsunami evaluation methods. Probabilistic tsunami hazard analysis/numerical simulation method with dispersion and wave breaking

    International Nuclear Information System (INIS)

    2007-01-01

    The present report introduces main results of investigations on precise tsunami evaluation methods, which were carried out from the viewpoint of safety evaluation for nuclear power facilities and deliberated by the Tsunami Evaluation Subcommittee. A framework for the probabilistic tsunami hazard analysis (PTHA) based on logic tree is proposed and calculation on the Pacific side of northeastern Japan is performed as a case study. Tsunami motions with dispersion and wave breaking were investigated both experimentally and numerically. The numerical simulation method is verified for its practicability by applying to a historical tsunami. Tsunami force is also investigated and formulae of tsunami pressure acting on breakwaters and on building due to inundating tsunami are proposed. (author)

  17. Intercomparison of analysis methods for seismically isolated nuclear structures. Part 1: Advanced test data and numerical methods. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of the meeting was to review proposed contributions from CRP participating organizations to discuss in detail the experimental data on seismic isolators, to review the numerical methods for the analysis of the seismic isolators, and to perform a first comparison of the calculation results. The aim of the CRP was to validate the reliable numerical methods used for both detailed evaluation of dynamic behaviour of isolation devices and isolated nuclear structures of different nuclear power plant types. The full maturity of seismic isolation for nuclear applications was stressed, as well as the excellent behaviour of isolated structures during the recent earthquakes in Japan and the USA. Participants from Italy, USA, Japan, Russian federation, Republic of Korea, United Kingdom, India and European Commission have presented overview papers on the present programs and their status of contribution to the CRP

  18. Intercomparison of analysis methods for seismically isolated nuclear structures. Part 1: Advanced test data and numerical methods. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The purpose of the meeting was to review proposed contributions from CRP participating organizations to discuss in detail the experimental data on seismic isolators, to review the numerical methods for the analysis of the seismic isolators, and to perform a first comparison of the calculation results. The aim of the CRP was to validate the reliable numerical methods used for both detailed evaluation of dynamic behaviour of isolation devices and isolated nuclear structures of different nuclear power plant types. The full maturity of seismic isolation for nuclear applications was stressed, as well as the excellent behaviour of isolated structures during the recent earthquakes in Japan and the USA. Participants from Italy, USA, Japan, Russian federation, Republic of Korea, United Kingdom, India and European Commission have presented overview papers on the present programs and their status of contribution to the CRP.

  19. Numerical Solutions of the Mean-Value Theorem: New Methods for Downward Continuation of Potential Fields

    Science.gov (United States)

    Zhang, Chong; Lü, Qingtian; Yan, Jiayong; Qi, Guang

    2018-04-01

    Downward continuation can enhance small-scale sources and improve resolution. Nevertheless, the common methods have disadvantages in obtaining optimal results because of divergence and instability. We derive the mean-value theorem for potential fields, which could be the theoretical basis of some data processing and interpretation. Based on numerical solutions of the mean-value theorem, we present the convergent and stable downward continuation methods by using the first-order vertical derivatives and their upward continuation. By applying one of our methods to both the synthetic and real cases, we show that our method is stable, convergent and accurate. Meanwhile, compared with the fast Fourier transform Taylor series method and the integrated second vertical derivative Taylor series method, our process has very little boundary effect and is still stable in noise. We find that the characters of the fading anomalies emerge properly in our downward continuation with respect to the original fields at the lower heights.

  20. Performance of some numerical Laplace inversion methods on American put option formula

    Science.gov (United States)

    Octaviano, I.; Yuniar, A. R.; Anisa, L.; Surjanto, S. D.; Putri, E. R. M.

    2018-03-01

    Numerical inversion approaches of Laplace transform is used to obtain a semianalytic solution. Some of the mathematical inversion methods such as Durbin-Crump, Widder, and Papoulis can be used to calculate American put options through the optimal exercise price in the Laplace space. The comparison of methods on some simple functions is aimed to know the accuracy and parameters which used in the calculation of American put options. The result obtained is the performance of each method regarding accuracy and computational speed. The Durbin-Crump method has an average error relative of 2.006e-004 with computational speed of 0.04871 seconds, the Widder method has an average error relative of 0.0048 with computational speed of 3.100181 seconds, and the Papoulis method has an average error relative of 9.8558e-004 with computational speed of 0.020793 seconds.

  1. Technogenic Rock Dumps Physical Properties' Prognosis via Results of the Structure Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Markov Sergey

    2017-01-01

    Full Text Available Understanding of internal structure of the technogenic rock dumps (gob dumps is required condition for estimation of using ones as filtration massifs for treatment of mine wastewater. Internal structure of gob piles greatly depends on dumping technology to applying restrictions for use them as filtration massifs. Numerical modelling of gob dumps allows adequately estimate them physical parameters, as a filtration coefficient, density, etc. The gob dumps numerical modelling results given in this article, in particular was examined grain size distribution of determined fractions depend on dump height. Shown, that filtration coefficient is in a nonlinear dependence on amount of several fractions of rock in gob dump. The numerical model adequacy both the gob structure and the dependence of filtration coefficient from gob height acknowledged equality of calculated and real filtration coefficient values. The results of this research can be apply to peripheral dumping technology.

  2. A complex-plane strategy for computing rotating polytropic models - Numerical results for strong and rapid differential rotation

    International Nuclear Information System (INIS)

    Geroyannis, V.S.

    1990-01-01

    In this paper, a numerical method, called complex-plane strategy, is implemented in the computation of polytropic models distorted by strong and rapid differential rotation. The differential rotation model results from a direct generalization of the classical model, in the framework of the complex-plane strategy; this generalization yields very strong differential rotation. Accordingly, the polytropic models assume extremely distorted interiors, while their boundaries are slightly distorted. For an accurate simulation of differential rotation, a versatile method, called multiple partition technique is developed and implemented. It is shown that the method remains reliable up to rotation states where other elaborate techniques fail to give accurate results. 11 refs

  3. Numerical methods of higher order of accuracy for incompressible flows

    Czech Academy of Sciences Publication Activity Database

    Kozel, K.; Louda, Petr; Příhoda, Jaromír

    2010-01-01

    Roč. 80, č. 8 (2010), s. 1734-1745 ISSN 0378-4754 Institutional research plan: CEZ:AV0Z20760514 Keywords : higher order methods * upwind methods * backward-facing step Subject RIV: BK - Fluid Dynamics Impact factor: 0.812, year: 2010

  4. Numerical Methods for Plate Forming by Line Heating

    DEFF Research Database (Denmark)

    Clausen, Henrik Bisgaard

    2000-01-01

    Few researchers have addressed so far the topic Line Heating in the search for better control of the process. Various methods to help understanding the mechanics have been used, including beam analysis approximation, equivalent force calculation and three-dimensional finite element analysis. I...... consider here finite element methods to model the behaviour and to predict the heating paths....

  5. Numerical method for the eigenvalue problem and the singular equation by using the multi-grid method and application to ordinary differential equation

    International Nuclear Information System (INIS)

    Kanki, Takashi; Uyama, Tadao; Tokuda, Shinji.

    1995-07-01

    In the numerical method to compute the matching data which are necessary for resistive MHD stability analyses, it is required to solve the eigenvalue problem and the associated singular equation. An iterative method is developed to solve the eigenvalue problem and the singular equation. In this method, the eigenvalue problem is replaced with an equivalent nonlinear equation and a singular equation is derived from Newton's method for the nonlinear equation. The multi-grid method (MGM), a high speed iterative method, can be applied to this method. The convergence of the eigenvalue and the eigenvector, and the CPU time in this method are investigated for a model equation. It is confirmed from the numerical results that this method is effective for solving the eigenvalue problem and the singular equation with numerical stability and high accuracy. It is shown by improving the MGM that the CPU time for this method is 50 times shorter than that of the direct method. (author)

  6. [Numerical simulation of the effect of virtual stent release pose on the expansion results].

    Science.gov (United States)

    Li, Jing; Peng, Kun; Cui, Xinyang; Fu, Wenyu; Qiao, Aike

    2018-04-01

    The current finite element analysis of vascular stent expansion does not take into account the effect of the stent release pose on the expansion results. In this study, stent and vessel model were established by Pro/E. Five kinds of finite element assembly models were constructed by ABAQUS, including 0 degree without eccentricity model, 3 degree without eccentricity model, 5 degree without eccentricity model, 0 degree axial eccentricity model and 0 degree radial eccentricity model. These models were divided into two groups of experiments for numerical simulation with respect to angle and eccentricity. The mechanical parameters such as foreshortening rate, radial recoil rate and dog boning rate were calculated. The influence of angle and eccentricity on the numerical simulation was obtained by comparative analysis. Calculation results showed that the residual stenosis rates were 38.3%, 38.4%, 38.4%, 35.7% and 38.2% respectively for the 5 models. The results indicate that the pose has less effect on the numerical simulation results so that it can be neglected when the accuracy of the result is not highly required, and the basic model as 0 degree without eccentricity model is feasible for numerical simulation.

  7. Stable numerical method in computation of stellar evolution

    International Nuclear Information System (INIS)

    Sugimoto, Daiichiro; Eriguchi, Yoshiharu; Nomoto, Ken-ichi.

    1982-01-01

    To compute the stellar structure and evolution in different stages, such as (1) red-giant stars in which the density and density gradient change over quite wide ranges, (2) rapid evolution with neutrino loss or unstable nuclear flashes, (3) hydrodynamical stages of star formation or supernova explosion, (4) transition phases from quasi-static to dynamical evolutions, (5) mass-accreting or losing stars in binary-star systems, and (6) evolution of stellar core whose mass is increasing by shell burning or decreasing by penetration of convective envelope into the core, we face ''multi-timescale problems'' which can neither be treated by simple-minded explicit scheme nor implicit one. This problem has been resolved by three prescriptions; one by introducing the hybrid scheme suitable for the multi-timescale problems of quasi-static evolution with heat transport, another by introducing also the hybrid scheme suitable for the multi-timescale problems of hydrodynamic evolution, and the other by introducing the Eulerian or, in other words, the mass fraction coordinate for evolution with changing mass. When all of them are combined in a single computer code, we can compute numerically stably any phase of stellar evolution including transition phases, as far as the star is spherically symmetric. (author)

  8. A numerical method for eigenvalue problems in modeling liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Baglama, J.; Farrell, P.A.; Reichel, L.; Ruttan, A. [Kent State Univ., OH (United States); Calvetti, D. [Stevens Inst. of Technology, Hoboken, NJ (United States)

    1996-12-31

    Equilibrium configurations of liquid crystals in finite containments are minimizers of the thermodynamic free energy of the system. It is important to be able to track the equilibrium configurations as the temperature of the liquid crystals decreases. The path of the minimal energy configuration at bifurcation points can be computed from the null space of a large sparse symmetric matrix. We describe a new variant of the implicitly restarted Lanczos method that is well suited for the computation of extreme eigenvalues of a large sparse symmetric matrix, and we use this method to determine the desired null space. Our implicitly restarted Lanczos method determines adoptively a polynomial filter by using Leja shifts, and does not require factorization of the matrix. The storage requirement of the method is small, and this makes it attractive to use for the present application.

  9. Two numerical methods for an inverse problem for the 2-D Helmholtz equation

    CERN Document Server

    Gryazin, Y A; Lucas, T R

    2003-01-01

    Two solution methods for the inverse problem for the 2-D Helmholtz equation are developed, tested, and compared. The proposed approaches are based on a marching finite-difference scheme which requires the solution of an overdetermined system at each step. The preconditioned conjugate gradient method is used for rapid solutions of these systems and an efficient preconditioner has been developed for this class of problems. Underlying target applications include the imaging of land mines, unexploded ordinance, and pollutant plumes in environmental cleanup sites, each formulated as an inverse problem for a 2-D Helmholtz equation. The images represent the electromagnetic properties of the respective underground regions. Extensive numerical results are presented.

  10. A numerical calculation method for flow discretisation in complex geometry with body-fitted grids

    International Nuclear Information System (INIS)

    Jin, X.

    2001-04-01

    A numerical calculation method basing on body fitted grids is developed in this work for computational fluid dynamics in complex geometry. The method solves the conservation equations in a general nonorthogonal coordinate system which matches the curvilinear boundary. The nonorthogonal, patched grid is generated by a grid generator which solves algebraic equations. By means of an interface its geometrical data can be used by this method. The conservation equations are transformed from the Cartesian system to a general curvilinear system keeping the physical Cartesian velocity components as dependent variables. Using a staggered arrangement of variables, the three Cartesian velocity components are defined on every cell surface. Thus the coupling between pressure and velocity is ensured, and numerical oscillations are avoided. The contravariant velocity for calculating mass flux on one cell surface is resulting from dependent Cartesian velocity components. After the discretisation and linear interpolation, a three dimensional 19-point pressure equation is found. Using the explicit treatment for cross-derivative terms, it reduces to the usual 7-point equation. Under the same data and process structure, this method is compatible with the code FLUTAN using Cartesian coordinates. In order to verify this method, several laminar flows are simulated in orthogonal grids at tilted space directions and in nonorthogonal grids with variations of cell angles. The simulated flow types are considered like various duct flows, transient heat conduction, natural convection in a chimney and natural convection in cavities. Their results achieve very good agreement with analytical solutions or empirical data. Convergence for highly nonorthogonal grids is obtained. After the successful validation of this method, it is applied for a reactor safety case. A transient natural convection flow for an optional sump cooling concept SUCO is simulated. The numerical result is comparable with the

  11. Numerical methods in image processing for applications in jewellery industry

    OpenAIRE

    Petrla, Martin

    2016-01-01

    Presented thesis deals with a problem from the field of image processing for application in multiple scanning of jewelery stones. The aim is to develop a method for preprocessing and subsequent mathematical registration of images in order to increase the effectivity and reliability of the output quality control. For these purposes the thesis summerizes mathematical definition of digital image as well as theoretical base of image registration. It proposes a method adjusting every single image ...

  12. Local and accumulated truncation errors in a class of perturbative numerical methods

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.; Corciovei, A.

    1980-01-01

    The approach to the solution of the radial Schroedinger equation using piecewise perturbative theory with a step function reference potential leads to a class of powerful numerical methods, conveniently abridged as SF-PNM(K), where K denotes the order at which the perturbation series was truncated. In the present paper rigorous results are given for the local truncation errors and bounds are derived for the accumulated truncated errors associated to SF-PNM(K), K = 0, 1, 2. They allow us to establish the smoothness conditions which have to be fulfilled by the potential in order to ensure a safe use of SF-PNM(K), and to understand the experimentally observed behaviour of the numerical results with the step size h. (author)

  13. A discontinuous Galerkin method for numerical pricing of European options under Heston stochastic volatility

    Science.gov (United States)

    Hozman, J.; Tichý, T.

    2016-12-01

    The paper is based on the results from our recent research on multidimensional option pricing problems. We focus on European option valuation when the price movement of the underlying asset is driven by a stochastic volatility following a square root process proposed by Heston. The stochastic approach incorporates a new additional spatial variable into this model and makes it very robust, i.e. it provides a framework to price a variety of options that is closer to reality. The main topic is to present the numerical scheme arising from the concept of discontinuous Galerkin methods and applicable to the Heston option pricing model. The numerical results are presented on artificial benchmarks as well as on reference market data.

  14. Simulation of Intra-Aneurysmal Blood Flow by Different Numerical Methods

    Directory of Open Access Journals (Sweden)

    Frank Weichert

    2013-01-01

    Full Text Available The occlusional performance of sole endoluminal stenting of intracranial aneurysms is controversially discussed in the literature. Simulation of blood flow has been studied to shed light on possible causal attributions. The outcome, however, largely depends on the numerical method and various free parameters. The present study is therefore conducted to find ways to define parameters and efficiently explore the huge parameter space with finite element methods (FEMs and lattice Boltzmann methods (LBMs. The goal is to identify both the impact of different parameters on the results of computational fluid dynamics (CFD and their advantages and disadvantages. CFD is applied to assess flow and aneurysmal vorticity in 2D and 3D models. To assess and compare initial simulation results, simplified 2D and 3D models based on key features of real geometries and medical expert knowledge were used. A result obtained from this analysis indicates that a combined use of the different numerical methods, LBM for fast exploration and FEM for a more in-depth look, may result in a better understanding of blood flow and may also lead to more accurate information about factors that influence conditions for stenting of intracranial aneurysms.

  15. The WOMBAT Attack Attribution Method: Some Results

    Science.gov (United States)

    Dacier, Marc; Pham, Van-Hau; Thonnard, Olivier

    In this paper, we present a new attack attribution method that has been developed within the WOMBAT project. We illustrate the method with some real-world results obtained when applying it to almost two years of attack traces collected by low interaction honeypots. This analytical method aims at identifying large scale attack phenomena composed of IP sources that are linked to the same root cause. All malicious sources involved in a same phenomenon constitute what we call a Misbehaving Cloud (MC). The paper offers an overview of the various steps the method goes through to identify these clouds, providing pointers to external references for more detailed information. Four instances of misbehaving clouds are then described in some more depth to demonstrate the meaningfulness of the concept.

  16. Simplicial quantum gravity with higher derivative terms: Formalism and numerical results in four dimensions

    International Nuclear Information System (INIS)

    Hamber, H.W.; Williams, R.M.; Cambridge Univ.

    1986-01-01

    Higher derivative terms for Regge's formulation of lattice gravity are discussed. The analytic weak-field expansion for the regular tessellation α 5 of the four-sphere is presented. Preliminary numerical results for some computations in four dimensions are also discussed. (orig.)

  17. Arnol'd tongues for a resonant injection-locked frequency divider: analytical and numerical results

    DEFF Research Database (Denmark)

    Bartuccelli, Michele; Deane, Jonathan H.B.; Gentile, Guido

    2010-01-01

    ’d tongues in the frequency–amplitude plane. In particular, we provide exact analytical formulae for the widths of the tongues, which correspond to the plateaux of the devil’s staircase picture. The results account for numerical and experimental findings presented in the literature for special driving terms...

  18. A Numerical Matrix-Based method in Harmonic Studies in Wind Power Plants

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Hjerrild, Jesper; Kocewiak, Łukasz Hubert

    2016-01-01

    In the low frequency range, there are some couplings between the positive- and negative-sequence small-signal impedances of the power converter due to the nonlinear and low bandwidth control loops such as the synchronization loop. In this paper, a new numerical method which also considers...... these couplings will be presented. The numerical data are advantageous to the parametric differential equations, because analysing the high order and complex transfer functions is very difficult, and finally one uses the numerical evaluation methods. This paper proposes a numerical matrix-based method, which...

  19. Combined Effects of Numerical Method Type and Time Step on Water Stressed Actual Crop ET

    Directory of Open Access Journals (Sweden)

    B. Ghahraman

    2016-02-01

    .7. Therefore, nine different classes were formed by combination of three crop types and three soil class types. Then, the results of numerical methods were compared to the analytical solution of the soil moisture differential equation as a datum. Three factors (time step, initial soil water content, and maximum evaporation, ETc were considered as influencing variables. Results and Discussion: It was clearly shown that as the crops becomes more sensitive, the dependency of Eta to ETc increases. The same is true as the soil becomes fine textured. The results showed that as water stress progress during the time step, relative errors of computed ET by different numerical methods did not depend on initial soil moisture. On overall and irrespective to soil tpe, crop type, and numerical method, relative error increased by increasing time step and/or increasing ETc. On overall, the absolute errors were negative for implicit Euler and third order Heun, while for other methods were positive. There was a systematic trend for relative error, as it increased by sandier soil and/or crop sensitivity. Absolute errors of ET computations decreased with consecutive time steps, which ensures the stability of water balance predictions. It was not possible to prescribe a unique numerical method for considering all variables. For comparing the numerical methods, however, we took the largest relative error corresponding to 10-day time step and ETc equal to 12 mm.d-1, while considered soil and crop types as variable. Explicit Euler was unstable and varied between 40% and 150%. Implicit Euler was robust and its relative error was around 20% for all combinations of soil and crop types. Unstable pattern was governed for modified Euler. The relative error was as low as 10% only for two cases while on overall it ranged between 20% and 100%. Although the relative errors of third order Heun were the smallest among the all methods, its robustness was not as good as implicit Euler method. Excluding one large

  20. Proceeding of 1998-workshop on MHD computations. Study on numerical methods related to plasma confinement

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    1999-04-01

    This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)

  1. Proceeding of 1998-workshop on MHD computations. Study on numerical methods related to plasma confinement

    Energy Technology Data Exchange (ETDEWEB)

    Kako, T.; Watanabe, T. [eds.

    1999-04-01

    This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)

  2. Numerical simulation of electromagnetic wave propagation using time domain meshless method

    International Nuclear Information System (INIS)

    Ikuno, Soichiro; Fujita, Yoshihisa; Itoh, Taku; Nakata, Susumu; Nakamura, Hiroaki; Kamitani, Atsushi

    2012-01-01

    The electromagnetic wave propagation in various shaped wave guide is simulated by using meshless time domain method (MTDM). Generally, Finite Differential Time Domain (FDTD) method is applied for electromagnetic wave propagation simulation. However, the numerical domain should be divided into rectangle meshes if FDTD method is applied for the simulation. On the other hand, the node disposition of MTDM can easily describe the structure of arbitrary shaped wave guide. This is the large advantage of the meshless time domain method. The results of computations show that the damping rate is stably calculated in case with R < 0.03, where R denotes a support radius of the weight function for the shape function. And the results indicate that the support radius R of the weight functions should be selected small, and monomials must be used for calculating the shape functions. (author)

  3. Dynamics of tachyon fields and inflation - comparison of analytical and numerical results with observation

    Directory of Open Access Journals (Sweden)

    Milošević M.

    2016-01-01

    Full Text Available The role tachyon fields may play in evolution of early universe is discussed in this paper. We consider the evolution of a flat and homogeneous universe governed by a tachyon scalar field with the DBI-type action and calculate the slow-roll parameters of inflation, scalar spectral index (n, and tensor-scalar ratio (r for the given potentials. We pay special attention to the inverse power potential, first of all to V (x ~ x−4, and compare the available results obtained by analytical and numerical methods with those obtained by observation. It is shown that the computed values of the observational parameters and the observed ones are in a good agreement for the high values of the constant X0. The possibility that influence of the radion field can extend a range of the acceptable values of the constant X0 to the string theory motivated sector of its values is briefly considered. [Projekat Ministarstva nauke Republike Srbije, br. 176021, br. 174020 i br. 43011

  4. Assessment of Soil Liquefaction Potential Based on Numerical Method

    DEFF Research Database (Denmark)

    Choobasti, A. Janalizadeh; Vahdatirad, Mohammad Javad; Torabi, M.

    2012-01-01

    Paying special attention to geotechnical hazards such as liquefaction in huge civil projects like urban railways especially in susceptible regions to liquefaction is of great importance. A number of approaches to evaluate the potential for initiation of liquefaction, such as Seed and Idriss...... simplified method have been developed over the years. Although simplified methods are available in calculating the liquefaction potential of a soil deposit and shear stresses induced at any point in the ground due to earthquake loading, these methods cannot be applied to all earthquakes with the same...... accuracy, also they lack the potential to predict the pore pressure developed in the soil. Therefore, it is necessary to carry out a ground response analysis to obtain pore pressures and shear stresses in the soil due to earthquake loading. Using soil historical, geological and compositional criteria...

  5. Composite magnetic refrigerants for an Ericsson cycle: New method of selection using a numerical approach

    International Nuclear Information System (INIS)

    Smaieli, A.; Chahine, R.

    1997-01-01

    The efficient operation of an Ericsson cycle requires the magnetic entropy change (AS) be constant as a function of temperature. To realize this condition using composite materials, a numerical method has been developed to determine the optimum proportions of the components. The Gd x Er 1-x (x = 0.69, 0.90) alloys have been used to investigate the validity of the numerical method. The values of ΔS have been determined from experimental magnetization curves of these alloys, in the 0.1-9 T magnetic field and the 200-290 K range. The calculations have led to the mass ratio y = 0.56 for the composite (Gd 0.90 Er 0.10 ) y (Gd 0.69 Er 0.31 ) 1-y . The ΔS of this composite is fairly constant in the 225-280 K range. To confirm this result, the magnetization curves of the composite material have been determined experimentally, and the corresponding ΔS was compared with the one predicted numerically. A good agreement was found proving the method's ability to properly determine the required fractions of the refrigerant's constituent materials

  6. Numerical methods and analysis of the nonlinear Vlasov equation on unstructured meshes of phase space

    International Nuclear Information System (INIS)

    Besse, Nicolas

    2003-01-01

    This work is dedicated to the mathematical and numerical studies of the Vlasov equation on phase-space unstructured meshes. In the first part, new semi-Lagrangian methods are developed to solve the Vlasov equation on unstructured meshes of phase space. As the Vlasov equation describes multi-scale phenomena, we also propose original methods based on a wavelet multi-resolution analysis. The resulting algorithm leads to an adaptive mesh-refinement strategy. The new massively-parallel computers allow to use these methods with several phase-space dimensions. Particularly, these numerical schemes are applied to plasma physics and charged particle beams in the case of two-, three-, and four-dimensional Vlasov-Poisson systems. In the second part we prove the convergence and give error estimates for several numerical schemes applied to the Vlasov-Poisson system when strong and classical solutions are considered. First we show the convergence of a semi-Lagrangian scheme on an unstructured mesh of phase space, when the regularity hypotheses for the initial data are minimal. Then we demonstrate the convergence of classes of high-order semi-Lagrangian schemes in the framework of the regular classical solution. In order to reconstruct the distribution function, we consider symmetrical Lagrange polynomials, B-Splines and wavelets bases. Finally we prove the convergence of a semi-Lagrangian scheme with propagation of gradients yielding a high-order and stable reconstruction of the solution. (author) [fr

  7. Numerical Methods for a Multicomponent Two-Phase Interface Model with Geometric Mean Influence Parameters

    KAUST Repository

    Kou, Jisheng

    2015-07-16

    In this paper, we consider an interface model for multicomponent two-phase fluids with geometric mean influence parameters, which is popularly used to model and predict surface tension in practical applications. For this model, there are two major challenges in theoretical analysis and numerical simulation: the first one is that the influence parameter matrix is not positive definite; the second one is the complicated structure of the energy function, which requires us to find out a physically consistent treatment. To overcome these two challenging problems, we reduce the formulation of the energy function by employing a linear transformation and a weighted molar density, and furthermore, we propose a local minimum grand potential energy condition to establish the relation between the weighted molar density and mixture compositions. From this, we prove the existence of the solution under proper conditions and prove the maximum principle of the weighted molar density. For numerical simulation, we propose a modified Newton\\'s method for solving this nonlinear model and analyze its properties; we also analyze a finite element method with a physical-based adaptive mesh-refinement technique. Numerical examples are tested to verify the theoretical results and the efficiency of the proposed methods.

  8. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan

    2013-12-17

    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model are used to describe the nucleation rate and the droplet growth, respectively. The conservation of the liquid phase is described by a finite number of moments of the size distribution function. The moment equations are then combined with the Euler equations and are solved by the finite-volume method. The numerical method is first validated by comparing its prediction with experimental results from the literature. The effects of nitrogen condensation on hypersonic nozzle flows are then numerically examined. The parameters at the nozzle exit under the conditions of condensation and no-condensation are evaluated. For the condensation case, the static pressure, the static temperature, and the amount of condensed fluid at the nozzle exit decrease with the increase of the total temperature. Compared with the no-condensation case, both the static pressure and temperature at the nozzle exit increase, and the Mach number decreases due to the nitrogen condensation. It is also indicated that preheating the nitrogen gas is necessary to avoid the nitrogen condensation even for a hypersonic nozzle with a Mach number of 5 operating at room temperatures. © 2013 Springer-Verlag Berlin Heidelberg.

  9. Numerical Methods for a Multicomponent Two-Phase Interface Model with Geometric Mean Influence Parameters

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2015-01-01

    In this paper, we consider an interface model for multicomponent two-phase fluids with geometric mean influence parameters, which is popularly used to model and predict surface tension in practical applications. For this model, there are two major challenges in theoretical analysis and numerical simulation: the first one is that the influence parameter matrix is not positive definite; the second one is the complicated structure of the energy function, which requires us to find out a physically consistent treatment. To overcome these two challenging problems, we reduce the formulation of the energy function by employing a linear transformation and a weighted molar density, and furthermore, we propose a local minimum grand potential energy condition to establish the relation between the weighted molar density and mixture compositions. From this, we prove the existence of the solution under proper conditions and prove the maximum principle of the weighted molar density. For numerical simulation, we propose a modified Newton's method for solving this nonlinear model and analyze its properties; we also analyze a finite element method with a physical-based adaptive mesh-refinement technique. Numerical examples are tested to verify the theoretical results and the efficiency of the proposed methods.

  10. Numerical approximations of nonlinear fractional differential difference equations by using modified He-Laplace method

    Directory of Open Access Journals (Sweden)

    J. Prakash

    2016-03-01

    Full Text Available In this paper, a numerical algorithm based on a modified He-Laplace method (MHLM is proposed to solve space and time nonlinear fractional differential-difference equations (NFDDEs arising in physical phenomena such as wave phenomena in fluids, coupled nonlinear optical waveguides and nanotechnology fields. The modified He-Laplace method is a combined form of the fractional homotopy perturbation method and Laplace transforms method. The nonlinear terms can be easily decomposed by the use of He’s polynomials. This algorithm has been tested against time-fractional differential-difference equations such as the modified Lotka Volterra and discrete (modified KdV equations. The proposed scheme grants the solution in the form of a rapidly convergent series. Three examples have been employed to illustrate the preciseness and effectiveness of the proposed method. The achieved results expose that the MHLM is very accurate, efficient, simple and can be applied to other nonlinear FDDEs.

  11. Development of the numerical method for liquid metal magnetohydrodynamics (I). Investigation of the method and development of the 2D method

    International Nuclear Information System (INIS)

    Ohira, H.; Ara, K.

    2002-11-01

    Advanced electromagnetic components are investigated in Feasibility Studies on Commercialized FR Cycle System to apply to the main cooling systems of Liquid Metal Fast Reactor. Although a lot of experiments and numerical analysis were carried out on both high Reynolds numbers and high magnetic Reynolds numbers, the complex phenomena could not be evaluated in detail. As the first step of the development of the numerical methods for the liquid metal magnetohydrodynamics, we investigated numerical methods that could be applied to the electromagnetic components with both complex structures and high magnetic turbulent field. As a result, we selected GSMAC (Generalized-Simplified MArker and Cell) method for calculating the liquid metal fluid dynamics because it could be easily applied to the complex flow field. We also selected the vector-FEM for calculating the magnetic field of the large components because the method had no interaction procedure. In the high magnetic turbulent field, the dynamic-SGS models would be also a promising model for the good estimation, because it could calculate the field directly without any experimental constant. In order to verify the GSMAC and the vector-FEM, we developed the 2D numerical models and calculated the magnetohydrodynamics in the large electromagnetic pump. It was estimated from these results that the methods were basically reasonable, because the calculated pressure differences had the similar tendencies to the experimental ones. (author)

  12. CHIRON: a package for ChPT numerical results at two loops

    Energy Technology Data Exchange (ETDEWEB)

    Bijnens, Johan [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden)

    2015-01-01

    This document describes the package CHIRON which includes two libraries, chiron itself and jbnumlib.chiron is a set of routines useful for two-loop numerical results in chiral perturbation theory (ChPT). It includes programs for the needed one- and two-loop integrals as well as routines to deal with the ChPT parameters. The present version includes everything needed for the masses, decay constants and quark-antiquark vacuum-expectation-values. An added routine calculates consistent values for the masses and decay constants when the pion and kaon masses are varied. In addition a number of finite volume results are included: one-loop tadpole integrals, two-loop sunset integrals and the results for masses and decay constants. The numerical routine library jbnumlib contains the numerical routines used in chiron. Many are to a large extent simple C++ versions of routines in the CERNLIB numerical library. Notable exceptions are the dilogarithm and the Jacobi theta function implementations. This paper describes what is included in CHIRON v0.50. (orig.)

  13. Numerical Studies of Magnetohydrodynamic Activity Resulting from Inductive Transients. Final Report

    International Nuclear Information System (INIS)

    Sovinec, Carl R.

    2005-01-01

    This report describes results from numerical studies of transients in magnetically confined plasmas. The work has been performed by University of Wisconsin graduate students James Reynolds and Giovanni Cone and by the Principal Investigator through support from contract DE-FG02-02ER54687, a Junior Faculty in Plasma Science award from the DOE Office of Science. Results from the computations have added significantly to our knowledge of magnetized plasma relaxation in the reversed-field pinch (RFP) and spheromak. In particular, they have distinguished relaxation activity expected in sustained configurations from transient effects that can persist over a significant fraction of the plasma discharge. We have also developed the numerical capability for studying electrostatic current injection in the spherical torus (ST). These configurations are being investigated as plasma confinement schemes in the international effort to achieve controlled thermonuclear fusion for environmentally benign energy production. Our numerical computations have been performed with the NIMROD code (http://nimrodteam.org) using local computing resources and massively parallel computing hardware at the National Energy Research Scientific Computing Center. Direct comparisons of simulation results for the spheromak with laboratory measurements verify the effectiveness of our numerical approach. The comparisons have been published in refereed journal articles by this group and by collaborators at Lawrence Livermore National Laboratory (see Section 4). In addition to the technical products, this grant has supported the graduate education of the two participating students for three years

  14. Control rod computer code IAMCOS: general theory and numerical methods

    International Nuclear Information System (INIS)

    West, G.

    1982-11-01

    IAMCOS is a computer code for the description of mechanical and thermal behavior of cylindrical control rods for fast breeders. This code version was applied, tested and modified from 1979 to 1981. In this report are described the basic model (02 version), theoretical definitions and computation methods [fr

  15. Hybrid Particle-Continuum Numerical Methods for Aerospace Applications

    Science.gov (United States)

    2011-01-01

    Many applications of MEMS/NEMS devices, which include micro- turbines [3, 4], micro-sensors for chemical con- centrations or gas ow properties [5, 6, 7...Oran, E. S., and Kaplan , C. R., The Coupled Multiscale Multiphysics Method (CM3) for Rareed Gas Flows, AIAA 2010-823, 2010. [63] Holman, T. D

  16. Fast Numerical Methods for Stochastic Partial Differential Equations

    Science.gov (United States)

    2016-04-15

    Particle Swarm Optimization (PSO) method. Inspired by the social behavior of the bird flocking or fish schooling, the particle swarm optimization (PSO...Weerasinghe, Hongmei Chi and Yanzhao Cao, Particle Swarm Optimization Simulation via Optimal Halton Sequences, accepted by Procedia Computer Science (2016...Optimization Simulation via Optimal Halton Sequences, accepted by Procedia Computer Science (2016). 2. Haiyan Tian, Hongmei Chi and Yanzhao Cao

  17. Neutrons and numerical methods. A new look at rotational tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M R; Kearley, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Molecular modelling techniques are easily adapted to calculate rotational potentials in crystals of simple molecular compounds. A comparison with the potentials obtained from the tunnelling spectra provides a stringent means for validating current methods of calculating Van der Waals, Coulomb and covalent terms. (author). 5 refs.

  18. Microstructure-based numerical modeling method for effective permittivity of ceramic/polymer composites

    Science.gov (United States)

    Jylhä, Liisi; Honkamo, Johanna; Jantunen, Heli; Sihvola, Ari

    2005-05-01

    Effective permittivity was modeled and measured for composites that consist of up to 35vol% of titanium dioxide powder dispersed in a continuous epoxy matrix. The study demonstrates a method that enables fast and accurate numerical modeling of the effective permittivity values of ceramic/polymer composites. The model requires electrostatic Monte Carlo simulations, where randomly oriented homogeneous prism-shaped inclusions occupy random positions in the background phase. The computation cost of solving the electrostatic problem by a finite-element code is decreased by the use of an averaging method where the same simulated sample is solved three times with orthogonal field directions. This helps to minimize the artificial anisotropy that results from the pseudorandomness inherent in the limited computational domains. All the required parameters for numerical simulations are calculated from the lattice structure of titanium dioxide. The results show a very good agreement between the measured and numerically calculated effective permittivities. When the prisms are approximated by oblate spheroids with the corresponding axial ratio, a fairly good prediction for the effective permittivity of the mixture can be achieved with the use of an advanced analytical mixing formula.

  19. Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method

    Directory of Open Access Journals (Sweden)

    De-Gang Wang

    2012-01-01

    Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.

  20. Numerical Methods for the Design and Analysis of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Roberts, John

    2008-01-01

    The numerical methods available for calculating the electromagnetic mode properties of photonic crystal fibres are reviewed. The preferred schemes for analyzing TIR guiding and band gap guiding fibres are contrasted.......The numerical methods available for calculating the electromagnetic mode properties of photonic crystal fibres are reviewed. The preferred schemes for analyzing TIR guiding and band gap guiding fibres are contrasted....

  1. Numerical relativity

    CERN Document Server

    Shibata, Masaru

    2016-01-01

    This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.

  2. Quantitative numerical method for analysing slip traces observed by AFM

    International Nuclear Information System (INIS)

    Veselý, J; Cieslar, M; Coupeau, C; Bonneville, J

    2013-01-01

    Atomic force microscopy (AFM) is used more and more routinely to study, at the nanometre scale, the slip traces produced on the surface of deformed crystalline materials. Taking full advantage of the quantitative height data of the slip traces, which can be extracted from these observations, requires however an adequate and robust processing of the images. In this paper an original method is presented, which allows the fitting of AFM scan-lines with a specific parameterized step function without any averaging treatment of the original data. This yields a quantitative and full description of the changes in step shape along the slip trace. The strength of the proposed method is established on several typical examples met in plasticity by analysing nano-scale structures formed on the sample surface by emerging dislocations. (paper)

  3. Numerical Methods for Plate Forming by Line Heating

    DEFF Research Database (Denmark)

    Clausen, Henrik Bisgaard

    2000-01-01

    Line heating is the process of forming originally flat plates into a desired shape by means of heat treatment. Parameter studies are carried out on a finite element model to provide knowledge of how the process behaves with varying heating conditions. For verification purposes, experiments are ca...... are carried out; one set of experiments investigates the actual heat flux distribution from a gas torch and another verifies the validty of the FE calculations. Finally, a method to predict the heating pattern is described....

  4. Numerical simulation methods for electron and ion optics

    International Nuclear Information System (INIS)

    Munro, Eric

    2011-01-01

    This paper summarizes currently used techniques for simulation and computer-aided design in electron and ion beam optics. Topics covered include: field computation, methods for computing optical properties (including Paraxial Rays and Aberration Integrals, Differential Algebra and Direct Ray Tracing), simulation of Coulomb interactions, space charge effects in electron and ion sources, tolerancing, wave optical simulations and optimization. Simulation examples are presented for multipole aberration correctors, Wien filter monochromators, imaging energy filters, magnetic prisms, general curved axis systems and electron mirrors.

  5. Loop integration results using numerical extrapolation for a non-scalar integral

    International Nuclear Information System (INIS)

    Doncker, E. de; Shimizu, Y.; Fujimoto, J.; Yuasa, F.; Kaugars, K.; Cucos, L.; Van Voorst, J.

    2004-01-01

    Loop integration results have been obtained using numerical integration and extrapolation. An extrapolation to the limit is performed with respect to a parameter in the integrand which tends to zero. Results are given for a non-scalar four-point diagram. Extensions to accommodate loop integration by existing integration packages are also discussed. These include: using previously generated partitions of the domain and roundoff error guards

  6. Improving the trust in results of numerical simulations and scientific data analytics

    Energy Technology Data Exchange (ETDEWEB)

    Cappello, Franck [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil [Argonne National Lab. (ANL), Argonne, IL (United States); Hovland, Paul [Argonne National Lab. (ANL), Argonne, IL (United States); Peterka, Tom [Argonne National Lab. (ANL), Argonne, IL (United States); Phillips, Carolyn [Argonne National Lab. (ANL), Argonne, IL (United States); Snir, Marc [Argonne National Lab. (ANL), Argonne, IL (United States); Wild, Stefan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-04-30

    This white paper investigates several key aspects of the trust that a user can give to the results of numerical simulations and scientific data analytics. In this document, the notion of trust is related to the integrity of numerical simulations and data analytics applications. This white paper complements the DOE ASCR report on Cybersecurity for Scientific Computing Integrity by (1) exploring the sources of trust loss; (2) reviewing the definitions of trust in several areas; (3) providing numerous cases of result alteration, some of them leading to catastrophic failures; (4) examining the current notion of trust in numerical simulation and scientific data analytics; (5) providing a gap analysis; and (6) suggesting two important research directions and their respective research topics. To simplify the presentation without loss of generality, we consider that trust in results can be lost (or the results’ integrity impaired) because of any form of corruption happening during the execution of the numerical simulation or the data analytics application. In general, the sources of such corruption are threefold: errors, bugs, and attacks. Current applications are already using techniques to deal with different types of corruption. However, not all potential corruptions are covered by these techniques. We firmly believe that the current level of trust that a user has in the results is at least partially founded on ignorance of this issue or the hope that no undetected corruptions will occur during the execution. This white paper explores the notion of trust and suggests recommendations for developing a more scientifically grounded notion of trust in numerical simulation and scientific data analytics. We first formulate the problem and show that it goes beyond previous questions regarding the quality of results such as V&V, uncertainly quantification, and data assimilation. We then explore the complexity of this difficult problem, and we sketch complementary general

  7. Efficient Numerical Methods for Nonequilibrium Re-Entry Flows

    Science.gov (United States)

    2014-01-14

    right-hand side is the only quadratic operation). The number of sub- iterations , kmax, used in this update needs to be chosen for optimal convergence and...Upper Symmetric Gauss - Seidel Method for the Euler and Navier-Stokes Equations,”, AIAA Journal, Vol. 26, No. 9, pp. 1025-1026, Sept. 1988. 11Edwards, J.R...Candler, “The Solution of the Navier-Stokes Equations Using Gauss - Seidel Line Relaxation,” Computers and Fluids, Vol. 17, No. 1, pp. 135-150, 1989

  8. Comparison of Different Numerical Methods for Quality Factor Calculation of Nano and Micro Photonic Cavities

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2014-01-01

    Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed.......Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed....

  9. The streamline upwind Petrov-Galerkin stabilising method for the numerical solution of highly advective problems

    Directory of Open Access Journals (Sweden)

    Carlos Humberto Galeano Urueña

    2009-05-01

    Full Text Available This article describes the streamline upwind Petrov-Galerkin (SUPG method as being a stabilisation technique for resolving the diffusion-advection-reaction equation by finite elements. The first part of this article has a short analysis of the importance of this type of differential equation in modelling physical phenomena in multiple fields. A one-dimensional description of the SUPG me- thod is then given to extend this basis to two and three dimensions. The outcome of a strongly advective and a high numerical complexity experiment is presented. The results show how the version of the implemented SUPG technique allowed stabilised approaches in space, even for high Peclet numbers. Additional graphs of the numerical experiments presented here can be downloaded from www.gnum.unal.edu.co.

  10. A Numerical method for solving a class of fractional Sturm-Liouville eigenvalue problems

    Directory of Open Access Journals (Sweden)

    Muhammed I. Syam

    2017-11-01

    Full Text Available This article is devoted to both theoretical and numerical studies of eigenvalues of regular fractional $2\\alpha $-order Sturm-Liouville problem where $\\frac{1}{2}< \\alpha \\leq 1$. In this paper, we implement the reproducing kernel method RKM to approximate the eigenvalues. To find the eigenvalues, we force the approximate solution produced by the RKM satisfy the boundary condition at $x=1$. The fractional derivative is described in the Caputo sense. Numerical results demonstrate the accuracy of the present algorithm. In addition, we prove the existence of the eigenfunctions of the proposed problem. Uniformly convergence of the approximate eigenfunctions produced by the RKM to the exact eigenfunctions is proven.

  11. Fully Numerical Methods for Continuing Families of Quasi-Periodic Invariant Tori in Astrodynamics

    Science.gov (United States)

    Baresi, Nicola; Olikara, Zubin P.; Scheeres, Daniel J.

    2018-01-01

    Quasi-periodic invariant tori are of great interest in astrodynamics because of their capability to further expand the design space of satellite missions. However, there is no general consent on what is the best methodology for computing these dynamical structures. This paper compares the performance of four different approaches available in the literature. The first two methods compute invariant tori of flows by solving a system of partial differential equations via either central differences or Fourier techniques. In contrast, the other two strategies calculate invariant curves of maps via shooting algorithms: one using surfaces of section, and one using a stroboscopic map. All of the numerical procedures are tested in the co-rotating frame of the Earth as well as in the planar circular restricted three-body problem. The results of our numerical simulations show which of the reviewed procedures should be preferred for future studies of astrodynamics systems.

  12. Numerical simulation for cracks detection using the finite elements method

    Directory of Open Access Journals (Sweden)

    S Bennoud

    2016-09-01

    Full Text Available The means of detection must ensure controls either during initial construction, or at the time of exploitation of all parts. The Non destructive testing (NDT gathers the most widespread methods for detecting defects of a part or review the integrity of a structure. In the areas of advanced industry (aeronautics, aerospace, nuclear …, assessing the damage of materials is a key point to control durability and reliability of parts and materials in service. In this context, it is necessary to quantify the damage and identify the different mechanisms responsible for the progress of this damage. It is therefore essential to characterize materials and identify the most sensitive indicators attached to damage to prevent their destruction and use them optimally. In this work, simulation by finite elements method is realized with aim to calculate the electromagnetic energy of interaction: probe and piece (with/without defect. From calculated energy, we deduce the real and imaginary components of the impedance which enables to determine the characteristic parameters of a crack in various metallic parts.

  13. Numerical method for IR background and clutter simulation

    Science.gov (United States)

    Quaranta, Carlo; Daniele, Gina; Balzarotti, Giorgio

    1997-06-01

    The paper describes a fast and accurate algorithm of IR background noise and clutter generation for application in scene simulations. The process is based on the hypothesis that background might be modeled as a statistical process where amplitude of signal obeys to the Gaussian distribution rule and zones of the same scene meet a correlation function with exponential form. The algorithm allows to provide an accurate mathematical approximation of the model and also an excellent fidelity with reality, that appears from a comparison with images from IR sensors. The proposed method shows advantages with respect to methods based on the filtering of white noise in time or frequency domain as it requires a limited number of computation and, furthermore, it is more accurate than the quasi random processes. The background generation starts from a reticule of few points and by means of growing rules the process is extended to the whole scene of required dimension and resolution. The statistical property of the model are properly maintained in the simulation process. The paper gives specific attention to the mathematical aspects of the algorithm and provides a number of simulations and comparisons with real scenes.

  14. A numerical method for transient gas-liquid two-phase flow using a general curvilinear coordinate system. 1. Governing equations and numerical method

    International Nuclear Information System (INIS)

    Tomiyama, Akio; Matsuoka, Toshiyuki.

    1995-01-01

    A simple numerical method for solving a transient incompressible two-fluid model was proposed in the present study. A general curvilinear coordinate system was adopted in this method for predicting transient flows in practical engineering devices. The simplicity of the present method is due to the fact that the field equations and constitutive equations were expressed in a tensor form in the general curvilinear coordinate system. When a conventional rectangular mesh is adopted in a calculation, the method reduces to a numerical method for a Cartesian coordinate system. As an example, the present method was applied to transient air-water bubbly flow in a vertical U-tube. It was confirmed that the effects of centrifugal and gravitational forces on the phase distribution in the U-tube were reasonably predicted. (author)

  15. New method of processing heat treatment experiments with numerical simulation support

    Science.gov (United States)

    Kik, T.; Moravec, J.; Novakova, I.

    2017-08-01

    In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.

  16. Axisymmetric buckling analysis of laterally restrained thick annular plates using a hybrid numerical method

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Ouji, A. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Islamic Azad University, Larestan Branch, Larestan (Iran, Islamic Republic of)

    2008-11-15

    The buckling analysis of annular thick plates with lateral supports such as two-parameter elastic foundations or ring supports is investigated using an elasticity based hybrid numerical method. For this purpose, firstly, the displacement components are perturbed around the pre-buckling state, which is located using the elasticity theory. Then, by decomposing the plate into a set of sub-domain in the form of co-axial annular plates, the buckling equations are discretized through the radial direction using global interpolation functions in conjunction with the principle of virtual work. The resulting differential equations are solved using the differential quadrature method. The method has the capability of modeling the arbitrary boundary conditions either at the inner and outer edges of thin-to-thick plates and with different types of lateral restraints. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its accuracy and versatility for thin-to-thick plates.

  17. Numerical simulations of negatively buoyant jets in an immiscible fluid using the Particle Finite Element Method

    Science.gov (United States)

    Mier-Torrecilla, Monica; Geyer, Adelina; Phillips, Jeremy C.; Idelsohn, Sergio R.; Oñate, Eugenio

    2010-05-01

    In this work we investigate numerically the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid using the Particle Finite Element Method (PFEM), a newly developed tool that combines the flexibility of particle-based methods with the accuracy of the finite element discretization. In order to test the applicability of PFEM to the study of negatively buoyant jets, we have compared the two-dimensional numerical results with experiments investigating the injection of a jet of dyed water through a nozzle in the base of a cylindrical tank containing rapeseed oil. In both simulations and experiments, the fountain inlet flow velocity and nozzle diameter were varied to cover a wide range of Reynolds Re and Froude numbers Fr, such that 0.1 < Fr < 30, reproducing both weak and strong fountains in a laminar regime (8 < Re < 1350). Numerical results, together with the experimental observations, allow us to describe three different fountain behaviors that have not been previously reported. Based on the Re and Fr values for the numerical and experimental simulations, we have built a regime map to define how these values may control the occurrence of each of the observed flow types. Whereas the Fr number itself provides a prediction of the maximum penetration height of the jet, its combination with the Re number provides a prediction of the flow behavior for a specific nozzle diameter and injection velocity. Conclusive remarks concerning the dynamics of negatively buoyant jets may be applied later on to several geological situations, e.g. the flow structure of a fully submerged subaqueous eruptive vent discharging magma or the replenishment of magma chambers in the Earth's crust.

  18. 3-D numerical investigation of subsurface flow in anisotropic porous media using multipoint flux approximation method

    KAUST Repository

    Negara, Ardiansyah

    2013-01-01

    Anisotropy of hydraulic properties of subsurface geologic formations is an essential feature that has been established as a consequence of the different geologic processes that they undergo during the longer geologic time scale. With respect to petroleum reservoirs, in many cases, anisotropy plays significant role in dictating the direction of flow that becomes no longer dependent only on the pressure gradient direction but also on the principal directions of anisotropy. Furthermore, in complex systems involving the flow of multiphase fluids in which the gravity and the capillarity play an important role, anisotropy can also have important influences. Therefore, there has been great deal of motivation to consider anisotropy when solving the governing conservation laws numerically. Unfortunately, the two-point flux approximation of finite difference approach is not capable of handling full tensor permeability fields. Lately, however, it has been possible to adapt the multipoint flux approximation that can handle anisotropy to the framework of finite difference schemes. In multipoint flux approximation method, the stencil of approximation is more involved, i.e., it requires the involvement of 9-point stencil for the 2-D model and 27-point stencil for the 3-D model. This is apparently challenging and cumbersome when making the global system of equations. In this work, we apply the equation-type approach, which is the experimenting pressure field approach that enables the solution of the global problem breaks into the solution of multitude of local problems that significantly reduce the complexity without affecting the accuracy of numerical solution. This approach also leads in reducing the computational cost during the simulation. We have applied this technique to a variety of anisotropy scenarios of 3-D subsurface flow problems and the numerical results demonstrate that the experimenting pressure field technique fits very well with the multipoint flux approximation

  19. Numerical Simulation of Antennas with Improved Integral Equation Method

    International Nuclear Information System (INIS)

    Ma Ji; Fang Guang-You; Lu Wei

    2015-01-01

    Simulating antennas around a conducting object is a challenge task in computational electromagnetism, which is concerned with the behaviour of electromagnetic fields. To analyze this model efficiently, an improved integral equation-fast Fourier transform (IE-FFT) algorithm is presented in this paper. The proposed scheme employs two Cartesian grids with different size and location to enclose the antenna and the other object, respectively. On the one hand, IE-FFT technique is used to store matrix in a sparse form and accelerate the matrix-vector multiplication for each sub-domain independently. On the other hand, the mutual interaction between sub-domains is taken as the additional exciting voltage in each matrix equation. By updating integral equations several times, the whole electromagnetic system can achieve a stable status. Finally, the validity of the presented method is verified through the analysis of typical antennas in the presence of a conducting object. (paper)

  20. Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method

    Science.gov (United States)

    Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun

    2017-10-01

    Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.

  1. Preliminary result of a three dimensional numerical simulation of cloud formation over a cooling pond

    International Nuclear Information System (INIS)

    Yamada, T.

    1978-01-01

    Cooling ponds receive large amounts of waste heat from industrial sources and release the heat to the atmosphere. These large area sources of warm and moist air may have significant inadvertent effects. This paper is a preliminary step in the development of a method for estimating the perturbations in the atmosphere produced by a cooling pond. A three-dimensional numerical model based on turbulence second-moment closure equations and Gaussian cloud relations has been developed. A simplified version of the model, in which only turbulent energy and length-scale equations are solved prognostically, is used. Numerical simulations are conducted using as boundary conditions the data from a cooling pond study conducted in northern Illinois during the winter of 1976-1977. Preliminary analyses of these simulations indicate that formation of clouds over a cooling pond is sensitive to the moisture content in the ambient atmosphere

  2. Numerical study on visualization method for material distribution using photothermal effect

    International Nuclear Information System (INIS)

    Kim, Moo Joong; Yoo, Jai Suk; Kim, Dong Kwon; Kim, Hyun Jung

    2015-01-01

    Visualization and imaging techniques have become increasingly essential in a wide range of industrial fields. A few imaging methods such as X-ray imaging, computed tomography and magnetic resonance imaging have been developed for medical applications to materials that are basically transparent or X-ray penetrable; however, reliable techniques for optically opaque materials such as semiconductors or metallic circuits have not been suggested yet. The photothermal method has been developed mainly for the measurement of thermal properties using characteristics that exhibit photothermal effects depending on the thermal properties of the materials. This study attempts to numerically investigate the feasibility of using photothermal effects to visualize or measure the material distribution of opaque substances. For this purpose, we conducted numerical analyses of various intaglio patterns with approximate sizes of 1.2-6 mm in stainless steel 0.5 mm below copper. In addition, images of the intaglio patterns in stainless steel were reconstructed by two-dimensional numerical scanning. A quantitative comparison of the reconstructed results and the original geometries showed an average difference of 0.172 mm and demonstrated the possibility of application to experimental imaging.

  3. Two numerical methods for the solution of two-dimensional eddy current problems

    International Nuclear Information System (INIS)

    Biddlecombe, C.S.

    1978-07-01

    A general method for the solution of eddy current problems in two dimensions - one component of current density and two of magnetic field, is reported. After examining analytical methods two numerical methods are presented. Both solve the two dimensional, low frequency limit of Maxwell's equations for transient eddy currents in conducting material, which may be permeable, in the presence of other non-conducting permeable material. Both solutions are expressed in terms of the magnetic vector potential. The first is an integral equation method, using zero order elements in the discretisation of the unknown source regions. The other is a differential equation method, using a first order finite element mesh, and the Galerkin weighted residual procedure. The resulting equations are solved as initial-value problems. Results from programs based on each method are presented showing the power and limitations of the methods and the range of problems solvable. The methods are compared and recommendations are made for choosing between them. Suggestions are made for improving both methods, involving boundary integral techniques. (author)

  4. Numerical methods in finance and economics a MATLAB-based introduction

    CERN Document Server

    Brandimarte, Paolo

    2006-01-01

    A state-of-the-art introduction to the powerful mathematical and statistical tools used in the field of financeThe use of mathematical models and numerical techniques is a practice employed by a growing number of applied mathematicians working on applications in finance. Reflecting this development, Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition bridges the gap between financial theory and computational practice while showing readers how to utilize MATLAB?--the powerful numerical computing environment--for financial applications.The author provides an essential foundation in finance and numerical analysis in addition to background material for students from both engineering and economics perspectives. A wide range of topics is covered, including standard numerical analysis methods, Monte Carlo methods to simulate systems affected by significant uncertainty, and optimization methods to find an optimal set of decisions.Among this book''s most outstanding features is the...

  5. Numerical Analysis of an H1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation

    Directory of Open Access Journals (Sweden)

    Jinfeng Wang

    2014-01-01

    Full Text Available We discuss and analyze an H1-Galerkin mixed finite element (H1-GMFE method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H1-GMFE method. Based on the discussion on the theoretical error analysis in L2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H1-norm. Moreover, we derive and analyze the stability of H1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.

  6. Infants and young children modeling method for numerical dosimetry studies: application to plane wave exposure

    International Nuclear Information System (INIS)

    Dahdouh, S; Wiart, J; Bloch, I; Varsier, N; Nunez Ochoa, M A; Peyman, A

    2016-01-01

    Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties. (paper)

  7. Infants and young children modeling method for numerical dosimetry studies: application to plane wave exposure

    Science.gov (United States)

    Dahdouh, S.; Varsier, N.; Nunez Ochoa, M. A.; Wiart, J.; Peyman, A.; Bloch, I.

    2016-02-01

    Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties.

  8. Mathematical and Numerical Methods for Non-linear Beam Dynamics

    International Nuclear Information System (INIS)

    Herr, W

    2014-01-01

    Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of these developments is often poor or even unpublished, in many cases only available as lectures or conference proceedings

  9. Study on pipe deflection by using numerical method

    Science.gov (United States)

    Husaini; Zaki Mubarak, Amir; Agustiar, Rizki

    2018-05-01

    Piping systems are widely used in a refinery or oil and gas industry. The piping system must be properly designed to avoid failure or leakage. Pipe stress analysis is conducted to analyze the loads and critical stress occurred, so that the failure of the pipe can be avoided. In this research, it is analyzed the deflection of a pipe by using Finite Element Method. The pipe is made of A358 / 304SS SCH10S Stainless Steel. It is 16 inches in size with the distance between supports is 10 meters. The fluid flown is Liquid Natural Gas (LNG) with the range of temperature of -120 ° C to -170 ° C, and a density of 461.1 kg / m 3. The flow of LNG causes deflection of the pipe. The pipe deflection must be within the permissible tolerable range. The objective is to analyze the deflection occurred in the piping system. Based on the calculation and simulation, the deflection is 4.4983 mm, which is below the maximum limit of deflection allowed, which is 20.3 mm.

  10. Numerical divergence effects of equivalence theory in the nodal expansion method

    International Nuclear Information System (INIS)

    Zika, M.R.; Downar, T.J.

    1993-01-01

    Accurate solutions of the advanced nodal equations require the use of discontinuity factors (DFs) to account for the homogenization errors that are inherent in all coarse-mesh nodal methods. During the last several years, nodal equivalence theory (NET) has successfully been implemented for the Cartesian geometry and has received widespread acceptance in the light water reactor industry. The extension of NET to other reactor types has had limited success. Recent efforts to implement NET within the framework of the nodal expansion method have successfully been applied to the fast breeder reactor. However, attempts to apply the same methods to thermal reactors such as the Modular High-Temperature Gas Reactor (MHTGR) have led to numerical divergence problems that can be attributed directly to the magnitude of the DFs. In the work performed here, it was found that the numerical problems occur in the inner and upscatter iterations of the solution algorithm. These iterations use a Gauss-Seidel iterative technique that is always convergent for problems with unity DFs. However, for an MHTGR model that requires large DFs, both the inner and upscatter iterations were divergent. Initial investigations into methods for bounding the DFs have proven unsatisfactory as a means of remedying the convergence problems. Although the DFs could be bounded to yield a convergent solution, several cases were encountered where the resulting flux solution was less accurate than the solution without DFs. For the specific case of problems without upscattering, an alternate numerical method for the inner iteration, an LU decomposition, was identified and shown to be feasible

  11. Study of Interaction of Reinforcement with Concrete by Numerical Methods

    Science.gov (United States)

    Tikhomirov, V. M.; Samoshkin, A. S.

    2018-01-01

    This paper describes the study of deformation of reinforced concrete. A mathematical model for the interaction of reinforcement with concrete, based on the introduction of a contact layer, whose mechanical characteristics are determined from the experimental data, is developed. The limiting state of concrete is described using the Drucker-Prager theory and the fracture criterion with respect to maximum plastic deformations. A series of problems of the theory of reinforced concrete are solved: stretching of concrete from a central-reinforced prism and pre-stressing of concrete. It is shown that the results of the calculations are in good agreement with the experimental data.

  12. Numerical modeling of probe velocity effects for electromagnetic NDE methods

    Science.gov (United States)

    Shin, Y. K.; Lord, W.

    The present discussion of magnetic flux (MLF) leakage inspection introduces the behavior of motion-induced currents. The results obtained indicate that velocity effects exist at even low probe speeds for magnetic materials, compelling the inclusion of velocity effects in MLF testing of oil pipelines, where the excitation level and pig speed are much higher than those used in the present work. Probe velocity effect studies should influence probe design, defining suitable probe speed limits and establishing training guidelines for defect-characterization schemes.

  13. Numerical modelling of radon-222 entry into houses: An outline of techniques and results

    DEFF Research Database (Denmark)

    Andersen, C.E.

    2001-01-01

    Numerical modelling is a powerful tool for studies of soil gas and radon-222 entry into houses. It is the purpose of this paper to review some main techniques and results. In the past, modelling has focused on Darcy flow of soil gas (driven by indoor–outdoor pressure differences) and combined...... diffusive and advective transport of radon. Models of different complexity have been used. The simpler ones are finite-difference models with one or two spatial dimensions. The more complex models allow for full three-dimensional and time dependency. Advanced features include: soil heterogeneity, anisotropy......, fractures, moisture, non-uniform soil temperature, non-Darcy flow of gas, and flow caused by changes in the atmospheric pressure. Numerical models can be used to estimate the importance of specific factors for radon entry. Models are also helpful when results obtained in special laboratory or test structure...

  14. The solitary wave solution of coupled Klein-Gordon-Zakharov equations via two different numerical methods

    Science.gov (United States)

    Dehghan, Mehdi; Nikpour, Ahmad

    2013-09-01

    In this research, we propose two different methods to solve the coupled Klein-Gordon-Zakharov (KGZ) equations: the Differential Quadrature (DQ) and Globally Radial Basis Functions (GRBFs) methods. In the DQ method, the derivative value of a function with respect to a point is directly approximated by a linear combination of all functional values in the global domain. The principal work in this method is the determination of weight coefficients. We use two ways for obtaining these coefficients: cosine expansion (CDQ) and radial basis functions (RBFs-DQ), the former is a mesh-based method and the latter categorizes in the set of meshless methods. Unlike the DQ method, the GRBF method directly substitutes the expression of the function approximation by RBFs into the partial differential equation. The main problem in the GRBFs method is ill-conditioning of the interpolation matrix. Avoiding this problem, we study the bases introduced in Pazouki and Schaback (2011) [44]. Some examples are presented to compare the accuracy and easy implementation of the proposed methods. In numerical examples, we concentrate on Inverse Multiquadric (IMQ) and second-order Thin Plate Spline (TPS) radial basis functions. The variable shape parameter (exponentially and random) strategies are applied in the IMQ function and the results are compared with the constant shape parameter.

  15. Numerical methods for the solution of ordinary differential equations

    International Nuclear Information System (INIS)

    Azeem, M.

    1999-01-01

    The ode 113 code solves non-stiff differential equations and is a fully variable step, variable order, PECE implementation in terms of modified divided differences of Adams-Bashforth-Moulton family of formulas of order 1-12. The main objectives of this project were to modify PECE mode of ode 113 into PEC mode, study the variable step size and variable order strategy of both the modes and finally, develop the switching strategy between both PECE and PEC modes to minimize the cost of solving the ordinary differential equations. Using some test problems (including stiff, mild stiff and non-stiff), it was found that the PEC mode was more efficient for non-stiff problems at crude and intermediate tolerances and the PECE mode for all problems at the stringent tolerance. An automatic switching strategy was developed using the results observed from the step size and order plots of all the test problems for both the modes and gave the optimum results. (author)

  16. Applications of Operator-Splitting Methods to the Direct Numerical Simulation of Particulate and Free-Surface Flows and to the Numerical Solution of the Two-Dimensional Elliptic Monge--Ampère Equation

    OpenAIRE

    Glowinski, R.; Dean, E.J.; Guidoboni, G.; Juárez, L.H.; Pan, T.-W.

    2008-01-01

    The main goal of this article is to review some recent applications of operator-splitting methods. We will show that these methods are well-suited to the numerical solution of outstanding problems from various areas in Mechanics, Physics and Differential Geometry, such as the direct numerical simulation of particulate flow, free boundary problems with surface tension for incompressible viscous fluids, and the elliptic real Monge--Ampère equation. The results of numerical ...

  17. Numerical Simulation of Transitional, Hypersonic Flows using a Hybrid Particle-Continuum Method

    Science.gov (United States)

    Verhoff, Ashley Marie

    Analysis of hypersonic flows requires consideration of multiscale phenomena due to the range of flight regimes encountered, from rarefied conditions in the upper atmosphere to fully continuum flow at low altitudes. At transitional Knudsen numbers there are likely to be localized regions of strong thermodynamic nonequilibrium effects that invalidate the continuum assumptions of the Navier-Stokes equations. Accurate simulation of these regions, which include shock waves, boundary and shear layers, and low-density wakes, requires a kinetic theory-based approach where no prior assumptions are made regarding the molecular distribution function. Because of the nature of these types of flows, there is much to be gained in terms of both numerical efficiency and physical accuracy by developing hybrid particle-continuum simulation approaches. The focus of the present research effort is the continued development of the Modular Particle-Continuum (MPC) method, where the Navier-Stokes equations are solved numerically using computational fluid dynamics (CFD) techniques in regions of the flow field where continuum assumptions are valid, and the direct simulation Monte Carlo (DSMC) method is used where strong thermodynamic nonequilibrium effects are present. Numerical solutions of transitional, hypersonic flows are thus obtained with increased physical accuracy relative to CFD alone, and improved numerical efficiency is achieved in comparison to DSMC alone because this more computationally expensive method is restricted to those regions of the flow field where it is necessary to maintain physical accuracy. In this dissertation, a comprehensive assessment of the physical accuracy of the MPC method is performed, leading to the implementation of a non-vacuum supersonic outflow boundary condition in particle domains, and more consistent initialization of DSMC simulator particles along hybrid interfaces. The relative errors between MPC and full DSMC results are greatly reduced as a

  18. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    Science.gov (United States)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  19. Numerical soliton-like solutions of the potential Kadomtsev-Petviashvili equation by the decomposition method

    International Nuclear Information System (INIS)

    Kaya, Dogan; El-Sayed, Salah M.

    2003-01-01

    In this Letter we present an Adomian's decomposition method (shortly ADM) for obtaining the numerical soliton-like solutions of the potential Kadomtsev-Petviashvili (shortly PKP) equation. We will prove the convergence of the ADM. We obtain the exact and numerical solitary-wave solutions of the PKP equation for certain initial conditions. Then ADM yields the analytic approximate solution with fast convergence rate and high accuracy through previous works. The numerical solutions are compared with the known analytical solutions

  20. Numerical integration of electromagnetic cascade equations, discussion of results for air, copper, iron, and lead

    International Nuclear Information System (INIS)

    Adler, A.; Fuchs, B.; Thielheim, K.O.

    1977-01-01

    The longitudinal development of electromagnetic cascades in air, copper, iron, and lead is studied on the basis of results derived recently by numerical integration of the cascade equations applying rather accurate expressions for the cross-sections involved with the interactions of high energy electrons, positrons, and photons in electromagnetic cascades. Special attention is given to scaling properties of transition curves. It is demonstrated that a good scaling may be achieved by means of the depth of maximum cascade development. (author)

  1. Lifecycle-Based Swarm Optimization Method for Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Hai Shen

    2014-01-01

    Full Text Available Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO. Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.

  2. Application of Numerical Integration and Data Fusion in Unit Vector Method

    Science.gov (United States)

    Zhang, J.

    2012-01-01

    The Unit Vector Method (UVM) is a series of orbit determination methods which are designed by Purple Mountain Observatory (PMO) and have been applied extensively. It gets the conditional equations for different kinds of data by projecting the basic equation to different unit vectors, and it suits for weighted process for different kinds of data. The high-precision data can play a major role in orbit determination, and accuracy of orbit determination is improved obviously. The improved UVM (PUVM2) promoted the UVM from initial orbit determination to orbit improvement, and unified the initial orbit determination and orbit improvement dynamically. The precision and efficiency are improved further. In this thesis, further research work has been done based on the UVM: Firstly, for the improvement of methods and techniques for observation, the types and decision of the observational data are improved substantially, it is also asked to improve the decision of orbit determination. The analytical perturbation can not meet the requirement. So, the numerical integration for calculating the perturbation has been introduced into the UVM. The accuracy of dynamical model suits for the accuracy of the real data, and the condition equations of UVM are modified accordingly. The accuracy of orbit determination is improved further. Secondly, data fusion method has been introduced into the UVM. The convergence mechanism and the defect of weighted strategy have been made clear in original UVM. The problem has been solved in this method, the calculation of approximate state transition matrix is simplified and the weighted strategy has been improved for the data with different dimension and different precision. Results of orbit determination of simulation and real data show that the work of this thesis is effective: (1) After the numerical integration has been introduced into the UVM, the accuracy of orbit determination is improved obviously, and it suits for the high-accuracy data of

  3. Numerical Modeling of a Spherical Array of Monopoles Using FDTD Method

    DEFF Research Database (Denmark)

    Franek, Ondrej; Pedersen, Gert Frølund; Andersen, Jørgen Bach

    2006-01-01

    In this paper, the spherical-coordinate finite-difference time-domain method is applied to numerical analysis of phased array of monopoles distributed over a sphere. Outer boundary of the given problem is modeled by accurate spherical-coordinate anisotropic perfectly matched layer. The problem...... of increased cell aspect ratio near the sphere poles causing degradation of results is solved by dispersion optimization through artificial anisotropy. The accuracy of the approach is verified by comparing a model case with an exact solution. Finally, radiation patterns obtained by frequency-domain near-to-far-field...

  4. Probability density of tunneled carrier states near heterojunctions calculated numerically by the scattering method.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.

  5. Development of an atmospheric diffusion numerical model for a nuclear facility. Numerical calculation method incorporating building effects

    International Nuclear Information System (INIS)

    Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi

    2002-01-01

    Because effluent gas is sometimes released from low positions, viz., near the ground surface and around buildings, the effects caused by buildings within the site area are not negligible for gas diffusion predictions. For these reasons, the effects caused by buildings for gas diffusion are considered under the terrain following calculation coordinate system in this report. Numerical calculation meshes on the ground surface are treated as the building with the adaptation of wall function techniques of turbulent quantities in the flow calculations using a turbulence closure model. The reflection conditions of released particles on building surfaces are taken into consideration in the diffusion calculation using the Lagrangian particle model. Obtained flow and diffusion calculation results are compared with those of wind tunnel experiments around the building. It was apparent that features observed in a wind tunnel, viz., the formation of cavity regions behind the building and the gas diffusion to the ground surface behind the building, are also obtained by numerical calculation. (author)

  6. Development of numerical methods for reactive transport; Developpement de methodes numeriques pour le transport reactif

    Energy Technology Data Exchange (ETDEWEB)

    Bouillard, N

    2006-12-15

    When a radioactive waste is stored in deep geological disposals, it is expected that the waste package will be damaged under water action (concrete leaching, iron corrosion). Then, to understand these damaging processes, chemical reactions and solutes transport are modelled. Numerical simulations of reactive transport can be done sequentially by the coupling of several codes. This is the case of the software platform ALLIANCES which is developed jointly with CEA, ANDRA and EDF. Stiff reactions like precipitation-dissolution are crucial for the radioactive waste storage applications, but standard sequential iterative approaches like Picard's fail in solving rapidly reactive transport simulations with such stiff reactions. In the first part of this work, we focus on a simplified precipitation and dissolution process: a system made up with one solid species and two aqueous species moving by diffusion is studied mathematically. It is assumed that a precipitation dissolution reaction occurs in between them, and it is modelled by a discontinuous kinetics law of unknown sign. By using monotonicity properties, the convergence of a finite volume scheme on admissible mesh is proved. Existence of a weak solution is obtained as a by-product of the convergence of the scheme. The second part is dedicated to coupling algorithms which improve Picard's method and can be easily used in an existing coupling code. By extending previous works, we propose a general and adaptable framework to solve nonlinear systems. Indeed by selecting special options, we can either recover well known methods, like nonlinear conjugate gradient methods, or design specific method. This algorithm has two main steps, a preconditioning one and an acceleration one. This algorithm is tested on several examples, some of them being rather academical and others being more realistic. We test it on the 'three species model'' example. Other reactive transport simulations use an external chemical code CHESS. For a

  7. On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    H. Montazeri

    2012-01-01

    Full Text Available We consider a system of nonlinear equations F(x=0. A new iterative method for solving this problem numerically is suggested. The analytical discussions of the method are provided to reveal its sixth order of convergence. A discussion on the efficiency index of the contribution with comparison to the other iterative methods is also given. Finally, numerical tests illustrate the theoretical aspects using the programming package Mathematica.

  8. METHOD FOR NUMERICAL MODELING OF UNSTEADY SEPARATED FLOW AROUND AIRFOILS MOVING CLOSE TO FLAT SCREEN

    Directory of Open Access Journals (Sweden)

    V. Pogrebnaya Tamara

    2017-01-01

    Full Text Available In this article an attempt is made to explain the nature of differences in measurements of forces and moments, which influence an aircraft at take-off and landing when testing on different types of stands. An algorithm for numerical simulation of unsteady separated flow around airfoil is given. The algorithm is based on the combination of discrete vortex method and turbulent boundary layer equations. An unsteady flow separation modeling has been used. At each interval vortex method was used to calculate the potential flow around airfoils located near a screen. Calculated pressures and velocities were then used in boundary layer calculations to determine flow separation points and separated vortex in- tensities. After that calculation were made to determine free vortex positions to next time step and the process was fulfilled for next time step. The proposed algorithm allows using numeric visualization to understand physical picture of flow around airfoil moving close to screen. Three different ways of flow modeling (mirror method, fixed or movable screens were tested. In each case the flow separation process, which determines pressure distribution over airfoil surface and influ- ences aerodynamic performance, was viewed. The results of the calculations showed that at low atitudes of airfoil over screen mirror method over predicts lift force compared with movable screen, while fixed screen under predicts it. The data obtained can be used when designing equipment for testing in wind tunnels.

  9. Teaching numerical methods with IPython notebooks and inquiry-based learning

    KAUST Repository

    Ketcheson, David I.

    2014-01-01

    A course in numerical methods should teach both the mathematical theory of numerical analysis and the craft of implementing numerical algorithms. The IPython notebook provides a single medium in which mathematics, explanations, executable code, and visualizations can be combined, and with which the student can interact in order to learn both the theory and the craft of numerical methods. The use of notebooks also lends itself naturally to inquiry-based learning methods. I discuss the motivation and practice of teaching a course based on the use of IPython notebooks and inquiry-based learning, including some specific practical aspects. The discussion is based on my experience teaching a Masters-level course in numerical analysis at King Abdullah University of Science and Technology (KAUST), but is intended to be useful for those who teach at other levels or in industry.

  10. Efficient numerical methods for fluid- and electrodynamics on massively parallel systems

    Energy Technology Data Exchange (ETDEWEB)

    Zudrop, Jens

    2016-07-01

    In the last decade, computer technology has evolved rapidly. Modern high performance computing systems offer a tremendous amount of computing power in the range of a few peta floating point operations per second. In contrast, numerical software development is much slower and most existing simulation codes cannot exploit the full computing power of these systems. Partially, this is due to the numerical methods themselves and partially it is related to bottlenecks within the parallelization concept and its data structures. The goal of the thesis is the development of numerical algorithms and corresponding data structures to remedy both kinds of parallelization bottlenecks. The approach is based on a co-design of the numerical schemes (including numerical analysis) and their realizations in algorithms and software. Various kinds of applications, from multicomponent flows (Lattice Boltzmann Method) to electrodynamics (Discontinuous Galerkin Method) to embedded geometries (Octree), are considered and efficiency of the developed approaches is demonstrated for large scale simulations.

  11. THE FORMATION OF A MILKY WAY-SIZED DISK GALAXY. I. A COMPARISON OF NUMERICAL METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qirong; Li, Yuexing, E-mail: qxz125@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-11-01

    The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellar evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.

  12. Numerical method of identification of an unknown source term in a heat equation

    Directory of Open Access Journals (Sweden)

    Fatullayev Afet Golayo?lu

    2002-01-01

    Full Text Available A numerical procedure for an inverse problem of identification of an unknown source in a heat equation is presented. Approach of proposed method is to approximate unknown function by polygons linear pieces which are determined consecutively from the solution of minimization problem based on the overspecified data. Numerical examples are presented.

  13. Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model

    Science.gov (United States)

    Petit, O.; Mulu, B.; Nilsson, H.; Cervantes, M.

    2010-08-01

    The present work compares simulations made using the OpenFOAM CFD code with experimental measurements of the flow in the U9 Kaplan turbine model. Comparisons of the velocity profiles in the spiral casing and in the draft tube are presented. The U9 Kaplan turbine prototype located in Porjus and its model, located in Älvkarleby, Sweden, have curved inlet pipes that lead the flow to the spiral casing. Nowadays, this curved pipe and its effect on the flow in the turbine is not taken into account when numerical simulations are performed at design stage. To study the impact of the inlet pipe curvature on the flow in the turbine, and to get a better overview of the flow of the whole system, measurements were made on the 1:3.1 model of the U9 turbine. Previously published measurements were taken at the inlet of the spiral casing and just before the guide vanes, using the laser Doppler anemometry (LDA) technique. In the draft tube, a number of velocity profiles were measured using the LDA techniques. The present work extends the experimental investigation with a horizontal section at the inlet of the draft tube. The experimental results are used to specify the inlet boundary condition for the numerical simulations in the draft tube, and to validate the computational results in both the spiral casing and the draft tube. The numerical simulations were realized using the standard k-e model and a block-structured hexahedral wall function mesh.

  14. Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model

    International Nuclear Information System (INIS)

    Petit, O; Nilsson, H; Mulu, B; Cervantes, M

    2010-01-01

    The present work compares simulations made using the OpenFOAM CFD code with experimental measurements of the flow in the U9 Kaplan turbine model. Comparisons of the velocity profiles in the spiral casing and in the draft tube are presented. The U9 Kaplan turbine prototype located in Porjus and its model, located in Alvkarleby, Sweden, have curved inlet pipes that lead the flow to the spiral casing. Nowadays, this curved pipe and its effect on the flow in the turbine is not taken into account when numerical simulations are performed at design stage. To study the impact of the inlet pipe curvature on the flow in the turbine, and to get a better overview of the flow of the whole system, measurements were made on the 1:3.1 model of the U9 turbine. Previously published measurements were taken at the inlet of the spiral casing and just before the guide vanes, using the laser Doppler anemometry (LDA) technique. In the draft tube, a number of velocity profiles were measured using the LDA techniques. The present work extends the experimental investigation with a horizontal section at the inlet of the draft tube. The experimental results are used to specify the inlet boundary condition for the numerical simulations in the draft tube, and to validate the computational results in both the spiral casing and the draft tube. The numerical simulations were realized using the standard k-e model and a block-structured hexahedral wall function mesh.

  15. Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Petit, O; Nilsson, H [Division of Fluid Mechanics, Chalmers University of Technology, Hoersalsvaegen 7A, SE-41296 Goeteborg (Sweden); Mulu, B; Cervantes, M, E-mail: olivierp@chalmers.s [Division of Fluid Mechanics, Luleaa University of Technology, SE-971 87 Luleaa (Sweden)

    2010-08-15

    The present work compares simulations made using the OpenFOAM CFD code with experimental measurements of the flow in the U9 Kaplan turbine model. Comparisons of the velocity profiles in the spiral casing and in the draft tube are presented. The U9 Kaplan turbine prototype located in Porjus and its model, located in Alvkarleby, Sweden, have curved inlet pipes that lead the flow to the spiral casing. Nowadays, this curved pipe and its effect on the flow in the turbine is not taken into account when numerical simulations are performed at design stage. To study the impact of the inlet pipe curvature on the flow in the turbine, and to get a better overview of the flow of the whole system, measurements were made on the 1:3.1 model of the U9 turbine. Previously published measurements were taken at the inlet of the spiral casing and just before the guide vanes, using the laser Doppler anemometry (LDA) technique. In the draft tube, a number of velocity profiles were measured using the LDA techniques. The present work extends the experimental investigation with a horizontal section at the inlet of the draft tube. The experimental results are used to specify the inlet boundary condition for the numerical simulations in the draft tube, and to validate the computational results in both the spiral casing and the draft tube. The numerical simulations were realized using the standard k-e model and a block-structured hexahedral wall function mesh.

  16. Ground-based PIV and numerical flow visualization results from the Surface Tension Driven Convection Experiment

    Science.gov (United States)

    Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  17. Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method

    International Nuclear Information System (INIS)

    Mittal, R.C.; Rohila, Rajni

    2016-01-01

    In this paper, we have applied modified cubic B-spline based differential quadrature method to get numerical solutions of one dimensional reaction-diffusion systems such as linear reaction-diffusion system, Brusselator system, Isothermal system and Gray-Scott system. The models represented by these systems have important applications in different areas of science and engineering. The most striking and interesting part of the work is the solution patterns obtained for Gray Scott model, reminiscent of which are often seen in nature. We have used cubic B-spline functions for space discretization to get a system of ordinary differential equations. This system of ODE’s is solved by highly stable SSP-RK43 method to get solution at the knots. The computed results are very accurate and shown to be better than those available in the literature. Method is easy and simple to apply and gives solutions with less computational efforts.

  18. Numerical methods for reliability and safety assessment multiscale and multiphysics systems

    CERN Document Server

    Hami, Abdelkhalak

    2015-01-01

    This book offers unique insight on structural safety and reliability by combining computational methods that address multiphysics problems, involving multiple equations describing different physical phenomena, and multiscale problems, involving discrete sub-problems that together  describe important aspects of a system at multiple scales. The book examines a range of engineering domains and problems using dynamic analysis, nonlinear methods, error estimation, finite element analysis, and other computational techniques. This book also: ·       Introduces novel numerical methods ·       Illustrates new practical applications ·       Examines recent engineering applications ·       Presents up-to-date theoretical results ·       Offers perspective relevant to a wide audience, including teaching faculty/graduate students, researchers, and practicing engineers

  19. Numerical method of lines for the relaxational dynamics of nematic liquid crystals.

    Science.gov (United States)

    Bhattacharjee, A K; Menon, Gautam I; Adhikari, R

    2008-08-01

    We propose an efficient numerical scheme, based on the method of lines, for solving the Landau-de Gennes equations describing the relaxational dynamics of nematic liquid crystals. Our method is computationally easy to implement, balancing requirements of efficiency and accuracy. We benchmark our method through the study of the following problems: the isotropic-nematic interface, growth of nematic droplets in the isotropic phase, and the kinetics of coarsening following a quench into the nematic phase. Our results, obtained through solutions of the full coarse-grained equations of motion with no approximations, provide a stringent test of the de Gennes ansatz for the isotropic-nematic interface, illustrate the anisotropic character of droplets in the nucleation regime, and validate dynamical scaling in the coarsening regime.

  20. Analysis of spring-in in U-shaped composite laminates: Numerical and experimental results

    Science.gov (United States)

    Bellini, Costanzo; Sorrentino, Luca; Polini, Wilma; Parodo, Gianluca

    2018-05-01

    The phenomena that happen during the cure process of a composite material laminate are responsible for the rise of residual stresses and, consequently, for the deformation at the end of the manufacturing process. The most analyzed deformation is the spring-in, that represent the flange-to-flange angle deviance from the theoretical value. In this work, the influence of some parameters, such as the laminate thickness, the stacking sequence and the mold radius, on the spring-in angle of a U-shaped laminate was studied exploring a full factorial plan through numerical simulations. First of all, a numerical model proper for cure simulation was introduced and its suitability to simulate the deformation behavior was demonstrated. As a result, only the stacking sequence influenced the spring-in value, while the effect of the tool radius and laminate thickness was minimal.

  1. Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method

    Science.gov (United States)

    Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping

    2018-03-01

    In this paper, we present a first direct numerical simulation (DNS) of a turbulent pipe flow using the mesoscopic lattice Boltzmann method (LBM) on both a D3Q19 lattice grid and a D3Q27 lattice grid. DNS of turbulent pipe flows using LBM has never been reported previously, perhaps due to inaccuracy and numerical stability associated with the previous implementations of LBM in the presence of a curved solid surface. In fact, it was even speculated that the D3Q19 lattice might be inappropriate as a DNS tool for turbulent pipe flows. In this paper, we show, through careful implementation, accurate turbulent statistics can be obtained using both D3Q19 and D3Q27 lattice grids. In the simulation with D3Q19 lattice, a few problems related to the numerical stability of the simulation are exposed. Discussions and solutions for those problems are provided. The simulation with D3Q27 lattice, on the other hand, is found to be more stable than its D3Q19 counterpart. The resulting turbulent flow statistics at a friction Reynolds number of Reτ = 180 are compared systematically with both published experimental and other DNS results based on solving the Navier-Stokes equations. The comparisons cover the mean-flow profile, the r.m.s. velocity and vorticity profiles, the mean and r.m.s. pressure profiles, the velocity skewness and flatness, and spatial correlations and energy spectra of velocity and vorticity. Overall, we conclude that both D3Q19 and D3Q27 simulations yield accurate turbulent flow statistics. The use of the D3Q27 lattice is shown to suppress the weak secondary flow pattern in the mean flow due to numerical artifacts.

  2. Temperature Fields in Soft Tissue during LPUS Treatment: Numerical Prediction and Experiment Results

    International Nuclear Information System (INIS)

    Kujawska, Tamara; Wojcik, Janusz; Nowicki, Andrzej

    2010-01-01

    Recent research has shown that beneficial therapeutic effects in soft tissues can be induced by the low power ultrasound (LPUS). For example, increasing of cells immunity to stress (among others thermal stress) can be obtained through the enhanced heat shock proteins (Hsp) expression induced by the low intensity ultrasound. The possibility to control the Hsp expression enhancement in soft tissues in vivo stimulated by ultrasound can be the potential new therapeutic approach to the neurodegenerative diseases which utilizes the known feature of cells to increase their immunity to stresses through the Hsp expression enhancement. The controlling of the Hsp expression enhancement by adjusting of exposure level to ultrasound energy would allow to evaluate and optimize the ultrasound-mediated treatment efficiency. Ultrasonic regimes are controlled by adjusting the pulsed ultrasound waves intensity, frequency, duration, duty cycle and exposure time. Our objective was to develop the numerical model capable of predicting in space and time temperature fields induced by a circular focused transducer generating tone bursts in multilayer nonlinear attenuating media and to compare the numerically calculated results with the experimental data in vitro. The acoustic pressure field in multilayer biological media was calculated using our original numerical solver. For prediction of temperature fields the Pennes' bio-heat transfer equation was employed. Temperature field measurements in vitro were carried out in a fresh rat liver using the 15 mm diameter, 25 mm focal length and 2 MHz central frequency transducer generating tone bursts with the spatial peak temporal average acoustic intensity varied between 0.325 and 1.95 W/cm 2 , duration varied from 20 to 500 cycles at the same 20% duty cycle and the exposure time varied up to 20 minutes. The measurement data were compared with numerical simulation results obtained under experimental boundary conditions. Good agreement between the

  3. Numerical methods to solve the two-dimensional heat conduction equation

    International Nuclear Information System (INIS)

    Santos, R.S. dos.

    1981-09-01

    A class of numerical methods, called 'Hopscotch Algorithms', was used to solve the heat conduction equation in cylindrical geometry. Using a time dependent heat source, the temperature versus time behaviour of cylindric rod was analysed. Numerical simulation was used to study the stability and the convergence of each different method. Another test had the temperature specified on the outer surface as boundary condition. The various Hopscotch methods analysed exhibit differing degrees of accuracy, few of them being so accurate as the ADE method, but requiring more computational operations than the later, were observed. Finally, compared with the so called ODD-EVEN method, two other Hopscotch methods, are more time consuming. (Author) [pt

  4. Conservation properties of numerical integration methods for systems of ordinary differential equations

    Science.gov (United States)

    Rosenbaum, J. S.

    1976-01-01

    If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.

  5. Application of the method finite elements by numerical modeling stress-strain state in conveyor belts

    Directory of Open Access Journals (Sweden)

    Maras Michal

    1997-06-01

    Full Text Available Solving problems connected with damaging a conveyor belt at the transfer points is conditioned by knowing laws of this phenomenon. Acquiring the knowledge on this phenomen is possible to be gained either by experimental research or by the numerical model GEM 22, which enables to determine the distribution of stresses and strains in a suitably selected cross-section of a conveyor belt. The paper begins by defining the problem, determining the boundary model conditions and continues by modelling the dynamic force acting on the conveyor belt. In the conclusions of the paper there are given table and graphical results of the numerical modelling aimed at solving the problems connected with the damaging of a conveyor belt. By numerical modelling, in this case the finite element method, in the given way can be realized the parametric studies with changing values of input parameters, especially: - stretching force, - thickness of cover layers of the conveyor belt and strain properties of the rubber, - parameters of the steel cord of the conveyor belt.

  6. 3rd International Conference on Numerical Analysis and Optimization : Theory, Methods, Applications and Technology Transfer

    CERN Document Server

    Grandinetti, Lucio; Purnama, Anton

    2015-01-01

    Presenting the latest findings in the field of numerical analysis and optimization, this volume balances pure research with practical applications of the subject. Accompanied by detailed tables, figures, and examinations of useful software tools, this volume will equip the reader to perform detailed and layered analysis of complex datasets. Many real-world complex problems can be formulated as optimization tasks. Such problems can be characterized as large scale, unconstrained, constrained, non-convex, non-differentiable, and discontinuous, and therefore require adequate computational methods, algorithms, and software tools. These same tools are often employed by researchers working in current IT hot topics such as big data, optimization and other complex numerical algorithms on the cloud, devising special techniques for supercomputing systems. The list of topics covered include, but are not limited to: numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, opt...

  7. Adaptive cyclically dominating game on co-evolving networks: numerical and analytic results

    Science.gov (United States)

    Choi, Chi Wun; Xu, Chen; Hui, Pak Ming

    2017-10-01

    A co-evolving and adaptive Rock (R)-Paper (P)-Scissors (S) game (ARPS) in which an agent uses one of three cyclically dominating strategies is proposed and studied numerically and analytically. An agent takes adaptive actions to achieve a neighborhood to his advantage by rewiring a dissatisfying link with a probability p or switching strategy with a probability 1 - p. Numerical results revealed two phases in the steady state. An active phase for p pc has three separate clusters of agents using only R, P, and S, respectively with terminated adaptive actions. A mean-field theory based on the link densities in co-evolving network is formulated and the trinomial closure scheme is applied to obtain analytical solutions. The analytic results agree with simulation results on ARPS well. In addition, the different probabilities of winning, losing, and drawing a game among the agents are identified as the origin of the small discrepancy between analytic and simulation results. As a result of the adaptive actions, agents of higher degrees are often those being taken advantage of. Agents with a smaller (larger) degree than the mean degree have a higher (smaller) probability of winning than losing. The results are informative for future attempts on formulating more accurate theories.

  8. Sparse grid spectral methods for the numerical solution of partial differential equations with periodic boundary conditions

    International Nuclear Information System (INIS)

    Kupka, F.

    1997-11-01

    This thesis deals with the extension of sparse grid techniques to spectral methods for the solution of partial differential equations with periodic boundary conditions. A review on boundary and initial-boundary value problems and a discussion on numerical resolution is used to motivate this research. Spectral methods are introduced by projection techniques, and by three model problems: the stationary and the transient Helmholtz equations, and the linear advection equation. The approximation theory on the hyperbolic cross is reviewed and its close relation to sparse grids is demonstrated. This approach extends to non-periodic problems. Various Sobolev spaces with dominant mixed derivative are introduced to provide error estimates for Fourier approximation and interpolation on the hyperbolic cross and on sparse grids by means of Sobolev norms. The theorems are immediately applicable to the stability and convergence analysis of sparse grid spectral methods. This is explicitly demonstrated for the three model problems. A variant of the von Neumann condition is introduced to simplify the stability analysis of the time-dependent model problems. The discrete Fourier transformation on sparse grids is discussed together with its software implementation. Results on numerical experiments are used to illustrate the performance of the new method with respect to the smoothness properties of each example. The potential of the method in mathematical modelling is estimated and generalizations to other sparse grid methods are suggested. The appendix includes a complete Fortran90 program to solve the linear advection equation by the sparse grid Fourier collocation method and a third-order Runge-Kutta routine for integration in time. (author)

  9. German precursor study: methods and results

    International Nuclear Information System (INIS)

    Hoertner, H.; Frey, W.; von Linden, J.; Reichart, G.

    1985-01-01

    This study has been prepared by the GRS by contract of the Federal Minister of Interior. The purpose of the study is to show how the application of system-analytic tools and especially of probabilistic methods on the Licensee Event Reports (LERs) and on other operating experience can support a deeper understanding of the safety-related importance of the events reported in reactor operation, the identification of possible weak points, and further conclusions to be drawn from the events. Additionally, the study aimed at a comparison of its results for the severe core damage frequency with those of the German Risk Study as far as this is possible and useful. The German Precursor Study is a plant-specific study. The reference plant is Biblis NPP with its very similar Units A and B, whereby the latter was also the reference plant for the German Risk Study

  10. Mechanics of Nanostructures: Methods and Results

    Science.gov (United States)

    Ruoff, Rod

    2003-03-01

    We continue to develop and use new tools to measure the mechanics and electromechanics of nanostructures. Here we discuss: (a) methods for making nanoclamps and the resulting: nanoclamp geometry, chemical composition and type of chemical bonding, and nanoclamp strength (effectiveness as a nanoclamp for the mechanics measurements to be made); (b) mechanics of carbon nanocoils. We have received carbon nanocoils from colleagues in Japan [1], measured their spring constants, and have observed extensions exceeding 100% relative to the unloaded length, using our scanning electron microscope nanomanipulator tool; (c) several new devices that are essentially MEMS-based, that allow for improved measurements of the mechanics of psuedo-1D and planar nanostructures. [1] Zhang M., Nakayama Y., Pan L., Japanese J. Appl. Phys. 39, L1242-L1244 (2000).

  11. Numerical Analysis of Indoor Sound Quality Evaluation Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-Tuan Chou

    2013-01-01

    Full Text Available Indoors sound field distribution is important to Room Acoustics, but the field suffers numerous problems, for example, multipath propagation and scattering owing to sound absorption by furniture and other aspects of décor. Generally, an ideal interior space must have a sound field with clear quality. This provides both the speaker and the listener with a pleasant conversational environment. This investigation uses the Finite Element Method to assess the acoustic distribution based on the indoor space and chamber volume. In this situation, a fixed sound source at different frequencies is used to simulate the acoustic characteristics of the indoor space. This method considers the furniture and decoration sound absorbing material and thus different sound absorption coefficients and configurations. The preliminary numerical simulation provides a method that can forecast the distribution of sound in an indoor room in complex situations. Consequently, it is possible to arrange interior furnishings and appliances to optimize acoustic distribution and environmental friendliness. Additionally, the analytical results can also be used to calculate the Reverberation Time and speech intelligibility for specified indoor space.

  12. Numerical sedimentation particle-size analysis using the Discrete Element Method

    Science.gov (United States)

    Bravo, R.; Pérez-Aparicio, J. L.; Gómez-Hernández, J. J.

    2015-12-01

    Sedimentation tests are widely used to determine the particle size distribution of a granular sample. In this work, the Discrete Element Method interacts with the simulation of flow using the well known one-way-coupling method, a computationally affordable approach for the time-consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates. Five samples with different particle-size distributions are modeled by about six million rigid spheres projected on two-dimensions, with diameters ranging from 2.5 ×10-6 m to 70 ×10-6 m, forming a water suspension in a sedimentation cylinder. DEM simulates the particle's movement considering laminar flow interactions of buoyant, drag and lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension. The numerical simulations cannot replace the laboratory tests since they need the final granulometry as initial data, but, as the results show, these simulations can identify the strong and weak points of each method and eventually recommend useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.

  13. An efficient approach to numerical study of the coupled-BBM system with B-spline collocation method

    Directory of Open Access Journals (Sweden)

    khalid ali

    2016-11-01

    Full Text Available In the present paper, a numerical method is proposed for the numerical solution of a coupled-BBM system with appropriate initial and boundary conditions by using collocation method with cubic trigonometric B-spline on the uniform mesh points. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms2L, ?L are computed. Furthermore, interaction of two and three solitary waves are used to discuss the effect of the behavior of the solitary waves after the interaction. These results show that the technique introduced here is easy to apply. We make linearization for the nonlinear term.

  14. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan; Cheng, Wan; Luo, Xisheng; Qin, Fenghua

    2013-01-01

    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model

  15. Some applications of perturbation theory to numerical integration methods for the Schroedinger equation

    International Nuclear Information System (INIS)

    Killingbeck, J.

    1979-01-01

    By using the methods of perturbation theory it is possible to construct simple formulae for the numerical integration of the Schroedinger equation, and also to calculate expectation values solely by means of simple eigenvalue calculations. (Auth.)

  16. Analysis of Plane-Parallel Electron Beam Propagation in Different Media by Numerical Simulation Methods

    Science.gov (United States)

    Miloichikova, I. A.; Bespalov, V. I.; Krasnykh, A. A.; Stuchebrov, S. G.; Cherepennikov, Yu. M.; Dusaev, R. R.

    2018-04-01

    Simulation by the Monte Carlo method is widely used to calculate the character of ionizing radiation interaction with substance. A wide variety of programs based on the given method allows users to choose the most suitable package for solving computational problems. In turn, it is important to know exactly restrictions of numerical systems to avoid gross errors. Results of estimation of the feasibility of application of the program PCLab (Computer Laboratory, version 9.9) for numerical simulation of the electron energy distribution absorbed in beryllium, aluminum, gold, and water for industrial, research, and clinical beams are presented. The data obtained using programs ITS and Geant4 being the most popular software packages for solving the given problems and the program PCLab are presented in the graphic form. A comparison and an analysis of the results obtained demonstrate the feasibility of application of the program PCLab for simulation of the absorbed energy distribution and dose of electrons in various materials for energies in the range 1-20 MeV.

  17. Numerical solution of the helmholtz equation for the superellipsoid via the galerkin method

    Directory of Open Access Journals (Sweden)

    Hy Dinh

    2013-01-01

    Full Text Available The objective of this work was to find the numerical solution of the Dirichlet problem for the Helmholtz equation for a smooth superellipsoid. The superellipsoid is a shape that is controlled by two parameters. There are some numerical issues in this type of an analysis; any integration method is affected by the wave number k, because of the oscillatory behavior of the fundamental solution. In this case we could only obtain good numerical results for super ellipsoids that were more shaped like super cones, which is a narrow range of super ellipsoids. The formula for these shapes was: $x=cos(xsin(y^{n},y=sin(xsin(y^{n},z=cos(y$ where $n$ varied from 0.5 to 4. The Helmholtz equation, which is the modified wave equation, is used in many scattering problems. This project was funded by NASA RI Space Grant for testing of the Dirichlet boundary condition for the shape of the superellipsoid. One practical value of all these computations can be getting a shape for the engine nacelles in a ray tracing the space shuttle. We are researching the feasibility of obtaining good convergence results for the superellipsoid surface. It was our view that smaller and lighter wave numbers would reduce computational costs associated with obtaining Galerkin coefficients. In addition, we hoped to significantly reduce the number of terms in the infinite series needed to modify the original integral equation, all of which were achieved in the analysis of the superellipsoid in a finite range. We used the Green's theorem to solve the integral equation for the boundary of the surface. Previously, multiple surfaces were used to test this method, such as the sphere, ellipsoid, and perturbation of the sphere, pseudosphere and the oval of Cassini Lin and Warnapala , Warnapala and Morgan .

  18. Numerical analysis of isothermal JET injection into a denser liquid pool using RD-MPS Method

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of); Park, H. S. [POSTECH, Pohang (Korea, Republic of); Jeun, G. [Hanyang Univ., Seoul (Korea, Republic of)

    2012-03-15

    In this study, the rigid body dynamics coupled moving particle semi-implicit (RD-MPS) method was used to simulate a plunging liquid jet penetrating into a denser liquid pool. The phenomenon is related to fuel-coolant interactions (FCI) during severe accidents in nuclear power plants when coolant water is forcedly injected into a melt pool. A numerical particle method like MPS enables to simulate the complex multiphase flow in that significant deformation of fluids occurs due to its inherent grid less algorithm. However, the MPS method alone cannot continue the calculation for a long time as shown in the Ikea's work due to the large deformation of fluid surfaces and the difference in both liquid densities. In the RD-MPS method, the rigid body dynamics was coupled with the moving particle semi-implicit method to increase the overall stability of calculations and to calculate the multi-phase behavior of fluids. We performed two and three dimensional calculations to simulate jet penetration behaviors in a denser liquid pool, and the result was in good agreement with that of experiment. The simulation results suggested that the coupled model be useful in simulating dynamic interactions of multi-phase incompressible fluids as well as that the 3-D simulation for the plunging jet in a confined geometry predicted better agreement with experimental results than the 2-D simulation did.

  19. Numerical analysis of isothermal JET injection into a denser liquid pool using RD-MPS Method

    International Nuclear Information System (INIS)

    Park, S.; Park, H. S.; Jeun, G.

    2012-01-01

    In this study, the rigid body dynamics coupled moving particle semi-implicit (RD-MPS) method was used to simulate a plunging liquid jet penetrating into a denser liquid pool. The phenomenon is related to fuel-coolant interactions (FCI) during severe accidents in nuclear power plants when coolant water is forcedly injected into a melt pool. A numerical particle method like MPS enables to simulate the complex multiphase flow in that significant deformation of fluids occurs due to its inherent grid less algorithm. However, the MPS method alone cannot continue the calculation for a long time as shown in the Ikea's work due to the large deformation of fluid surfaces and the difference in both liquid densities. In the RD-MPS method, the rigid body dynamics was coupled with the moving particle semi-implicit method to increase the overall stability of calculations and to calculate the multi-phase behavior of fluids. We performed two and three dimensional calculations to simulate jet penetration behaviors in a denser liquid pool, and the result was in good agreement with that of experiment. The simulation results suggested that the coupled model be useful in simulating dynamic interactions of multi-phase incompressible fluids as well as that the 3-D simulation for the plunging jet in a confined geometry predicted better agreement with experimental results than the 2-D simulation did

  20. Numerical method for solving linear Fredholm fuzzy integral equations of the second kind

    Energy Technology Data Exchange (ETDEWEB)

    Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)

    2007-01-15

    In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.

  1. Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method

    OpenAIRE

    Jun He; Quansheng Liu; Zhijun Wu; Yalong Jiang

    2018-01-01

    One significant factor influencing geothermal energy exploitation is the variation of the mechanical properties of rock in high temperature environments. Since rock is typically a heterogeneous granular material, thermal fracturing frequently occurs in the rock when the ambient temperature changes, which can greatly influence the geothermal energy exploitation. A numerical method based on the numerical manifold method (NMM) is developed in this study to simulate the thermo-elastic fracturing ...

  2. A New Method to Solve Numeric Solution of Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Min Hu

    2016-01-01

    Full Text Available It is well known that the cubic spline function has advantages of simple forms, good convergence, approximation, and second-order smoothness. A particular class of cubic spline function is constructed and an effective method to solve the numerical solution of nonlinear dynamic system is proposed based on the cubic spline function. Compared with existing methods, this method not only has high approximation precision, but also avoids the Runge phenomenon. The error analysis of several methods is given via two numeric examples, which turned out that the proposed method is a much more feasible tool applied to the engineering practice.

  3. Development of numerical methods for reactive transport; Developpement de methodes numeriques pour le transport reactif

    Energy Technology Data Exchange (ETDEWEB)

    Bouillard, N

    2006-12-15

    When a radioactive waste is stored in deep geological disposals, it is expected that the waste package will be damaged under water action (concrete leaching, iron corrosion). Then, to understand these damaging processes, chemical reactions and solutes transport are modelled. Numerical simulations of reactive transport can be done sequentially by the coupling of several codes. This is the case of the software platform ALLIANCES which is developed jointly with CEA, ANDRA and EDF. Stiff reactions like precipitation-dissolution are crucial for the radioactive waste storage applications, but standard sequential iterative approaches like Picard's fail in solving rapidly reactive transport simulations with such stiff reactions. In the first part of this work, we focus on a simplified precipitation and dissolution process: a system made up with one solid species and two aqueous species moving by diffusion is studied mathematically. It is assumed that a precipitation dissolution reaction occurs in between them, and it is modelled by a discontinuous kinetics law of unknown sign. By using monotonicity properties, the convergence of a finite volume scheme on admissible mesh is proved. Existence of a weak solution is obtained as a by-product of the convergence of the scheme. The second part is dedicated to coupling algorithms which improve Picard's method and can be easily used in an existing coupling code. By extending previous works, we propose a general and adaptable framework to solve nonlinear systems. Indeed by selecting special options, we can either recover well known methods, like nonlinear conjugate gradient methods, or design specific method. This algorithm has two main steps, a preconditioning one and an acceleration one. This algorithm is tested on several examples, some of them being rather academical and others being more realistic. We test it on the 'three species model'' example. Other reactive transport simulations use an external

  4. Proceeding of 1999-workshop on MHD computations 'study on numerical methods related to plasma confinement'

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    2000-06-01

    This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  5. An advanced three-phase physical, experimental and numerical method for tsunami induced boulder transport

    Science.gov (United States)

    Oetjen, Jan; Engel, Max; Prasad Pudasaini, Shiva; Schüttrumpf, Holger; Brückner, Helmut

    2017-04-01

    Coasts around the world are affected by high-energy wave events like storm surges or tsunamis depending on their regional climatological and geological settings. By focusing on tsunami impacts, we combine the abilities and experiences of different scientific fields aiming at improved insights of near- and onshore tsunami hydrodynamics. We investigate the transport of coarse clasts - so called boulders - due to tsunami impacts by a multi-methodology approach of numerical modelling, laboratory experiments, and sedimentary field records. Coupled numerical hydrodynamic and boulder transport models (BTM) are widely applied for analysing the impact characteristics of the transport by tsunami, such as wave height and flow velocity. Numerical models able to simulate past tsunami events and the corresponding boulder transport patterns with high accuracy and acceptable computational effort can be utilized as powerful forecasting models predicting the impact of a coast approaching tsunami. We have conducted small-scale physical experiments in the tilting flume with real shaped boulder models. Utilizing the structure from motion technique (Westoby et al., 2012) we reconstructed real boulders from a field study on the Island of Bonaire (Lesser Antilles, Caribbean Sea, Engel & May, 2012). The obtained three-dimensional boulder meshes are utilized for creating downscaled replica of the real boulder for physical experiments. The results of the irregular shaped boulder are compared to experiments with regular shaped boulder models to achieve a better insight about the shape related influence on transport patterns. The numerical model is based on the general two-phase mass flow model by Pudasaini (2012) enhanced for boulder transport simulations. The boulder is implemented using the immersed boundary technique (Peskin, 2002) and the direct forcing approach. In this method Cartesian grids (fluid and particle phase) and Lagrangian meshes (boulder) are combined. By applying the

  6. Numerical integration methods and layout improvements in the context of dynamic RNA visualization.

    Science.gov (United States)

    Shabash, Boris; Wiese, Kay C

    2017-05-30

    RNA visualization software tools have traditionally presented a static visualization of RNA molecules with limited ability for users to interact with the resulting image once it is complete. Only a few tools allowed for dynamic structures. One such tool is jViz.RNA. Currently, jViz.RNA employs a unique method for the creation of the RNA molecule layout by mapping the RNA nucleotides into vertexes in a graph, which we call the detailed graph, and then utilizes a Newtonian mechanics inspired system of forces to calculate a layout for the RNA molecule. The work presented here focuses on improvements to jViz.RNA that allow the drawing of RNA secondary structures according to common drawing conventions, as well as dramatic run-time performance improvements. This is done first by presenting an alternative method for mapping the RNA molecule into a graph, which we call the compressed graph, and then employing advanced numerical integration methods for the compressed graph representation. Comparing the compressed graph and detailed graph implementations, we find that the compressed graph produces results more consistent with RNA drawing conventions. However, we also find that employing the compressed graph method requires a more sophisticated initial layout to produce visualizations that would require minimal user interference. Comparing the two numerical integration methods demonstrates the higher stability of the Backward Euler method, and its resulting ability to handle much larger time steps, a high priority feature for any software which entails user interaction. The work in this manuscript presents the preferred use of compressed graphs to detailed ones, as well as the advantages of employing the Backward Euler method over the Forward Euler method. These improvements produce more stable as well as visually aesthetic representations of the RNA secondary structures. The results presented demonstrate that both the compressed graph representation, as well as the Backward

  7. A numerical method for determining the radial wave motion correction in plane wave couplers

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni

    2016-01-01

    Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model...... of the microphone-coupler system in a Boundary Element formulation. In order to obtain a realistic representation of the sound field, viscous losses must be introduced in the model. This paper presents such a model, and the results of the simulations for different combinations of microphones and couplers...

  8. Accuracy and Numerical Stabilty Analysis of Lattice Boltzmann Method with Multiple Relaxation Time for Incompressible Flows

    Science.gov (United States)

    Pradipto; Purqon, Acep

    2017-07-01

    Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.

  9. Numerical study of turbulent heat transfer from confined impinging jets using a pseudo-compressibility method

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.; Rautaheimo, P.; Siikonen, T.

    1997-12-31

    A numerical investigation is carried out to predict the turbulent fluid flow and heat transfer characteristics of two-dimensional single and three impinging slot jets. Two low-Reynolds-number {kappa}-{epsilon} models, namely the classical model of Chien and the explicit algebraic stress model of Gatski and Speziale, are considered in the simulation. A cell-centered finite-volume scheme combined with an artificial compressibility approach is employed to solve the flow equations, using a diagonally dominant alternating direction implicit (DDADI) time integration method. A fully upwinded second order spatial differencing is adopted to approximate the convective terms. Roe`s damping term is used to calculate the flux on the cell face. A multigrid method is utilized for the acceleration of convergence. On average, the heat transfer coefficients predicted by both models show good agreement with the experimental results. (orig.) 17 refs.

  10. Deposition By Turbidity Currents In Intraslope Diapiric Minibasins: Results Of 1-D Experiments And Numerical Modeling

    Science.gov (United States)

    Lamb, M.; Toniolo, H.; Parker, G.

    2001-12-01

    The slope of the continental margin of the northern Gulf of Mexico is riddled with small basins resulting from salt tectonics. Each such minibasin is the result of local subsidence due to salt withdrawal, and is isolated from neighboring basins by ridges formed due to compensational uplift. The minibasins are gradually filled by turbidity currents, which are active at low sea stand. Experiments in a 1-D minibasin reveal that a turbidity current flowing into a deep minibasin must undergo a hydraulic jump and form a muddy pond. This pond may not spill out of the basin even with continuous inflow. The reason for this is the detrainment of water across the settling interface that forms at the top of the muddy pond. Results of both experiments and numerical modeling of the flow and the evolution of the deposit are presented. The numerical model is the first of its kind to capture both the hydraulic jump and the effect of detrainment in ponded turbidity currents.

  11. Prediction for disruption erosion of ITER plasma facing components; a comparison of experimental and numerical results

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Akiba, M.; Seki, M.; Hassanein, A.; Tanchuk, V.

    1991-01-01

    An evaluation is given for the prediction for disruption erosion in the International Thermonuclear Engineering Reactor (ITER). At first, a description is given of the relation between plasma operating paramters and system dimensions to the predictions of loading parameters of Plasma Facing Components (PFC) in off-normal events. Numerical results from ITER parties on the prediction of disruption erosion are compared for a few typical cases and discussed. Apart from some differences in the codes, the observed discrepancies can be ascribed to different input data of material properties and boundary conditions. Some physical models for vapour shielding and their effects on numerical results are mentioned. Experimental results from ITER parties, obtained with electron and laser beams, are also compared. Erosion rates for the candidate ITER PFC materials are shown to depend very strongly on the energy deposition parameters, which are based on plasma physics considerations, and on the assumed material loss mechanisms. Lifetimes estimates for divertor plate and first wall armour are given for carbon, tungsten and beryllium, based on the erosion in the thermal quench phase. (orig.)

  12. Development of parallel implementation of adaptive numerical methods with industrial applications in fluid mechanics

    International Nuclear Information System (INIS)

    Laucoin, E.

    2008-10-01

    Numerical resolution of partial differential equations can be made reliable and efficient through the use of adaptive numerical methods.We present here the work we have done for the design, the implementation and the validation of such a method within an industrial software platform with applications in thermohydraulics. From the geometric point of view, this method can deal both with mesh refinement and mesh coarsening, while ensuring the quality of the mesh cells. Numerically, we use the mortar elements formalism in order to extend the Finite Volumes-Elements method implemented in the Trio-U platform and to deal with the non-conforming meshes arising from the adaptation procedure. Finally, we present an implementation of this method using concepts from domain decomposition methods for ensuring its efficiency while running in a parallel execution context. (author)

  13. Numerical method for solving the inverse problem of quantum scattering theory

    International Nuclear Information System (INIS)

    Ajrapetyan, R.G.; Puzynin, I.V.; Zhidkov, E.P.

    1996-01-01

    A new numerical method for solving the problem of the reconstruction of interaction potential by a phase shift given on a set of closed intervals in (l,k)-plane, satisfying certain geometrical 'Staircase Condition', is suggested. The method is based on the Variable Phase Approach and on the modification of the Continuous Analogy of the Newton Method. 22 refs., 1 fig

  14. Application of Numerical Optimization Methods to Perform Molecular Docking on Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    M. A. Farkov

    2014-01-01

    Full Text Available An analysis of numerical optimization methods for solving a problem of molecular docking has been performed. Some additional requirements for optimization methods according to GPU architecture features were specified. A promising method for implementation on GPU was selected. Its implementation was described and performance and accuracy tests were performed.

  15. Numerical method for estimating the size of chaotic regions of phase space

    International Nuclear Information System (INIS)

    Henyey, F.S.; Pomphrey, N.

    1987-10-01

    A numerical method for estimating irregular volumes of phase space is derived. The estimate weights the irregular area on a surface of section with the average return time to the section. We illustrate the method by application to the stadium and oval billiard systems and also apply the method to the continuous Henon-Heiles system. 15 refs., 10 figs

  16. Multiband discrete ordinates method: formalism and results

    International Nuclear Information System (INIS)

    Luneville, L.

    1998-06-01

    The multigroup discrete ordinates method is a classical way to solve transport equation (Boltzmann) for neutral particles. Self-shielding effects are not correctly treated due to large variations of cross sections in a group (in the resonance range). To treat the resonance domain, the multiband method is introduced. The main idea is to divide the cross section domain into bands. We obtain the multiband parameters using the moment method; the code CALENDF provides probability tables for these parameters. We present our implementation in an existing discrete ordinates code: SN1D. We study deep penetration benchmarks and show the improvement of the method in the treatment of self-shielding effects. (author)

  17. Waterspout Forecasting Method Over the Eastern Adriatic Using a High-Resolution Numerical Weather Model

    Science.gov (United States)

    Renko, Tanja; Ivušić, Sarah; Telišman Prtenjak, Maja; Šoljan, Vinko; Horvat, Igor

    2018-03-01

    In this study, a synoptic and mesoscale analysis was performed and Szilagyi's waterspout forecasting method was tested on ten waterspout events in the period of 2013-2016. Data regarding waterspout occurrences were collected from weather stations, an online survey at the official website of the National Meteorological and Hydrological Service of Croatia and eyewitness reports from newspapers and the internet. Synoptic weather conditions were analyzed using surface pressure fields, 500 hPa level synoptic charts, SYNOP reports and atmospheric soundings. For all observed waterspout events, a synoptic type was determined using the 500 hPa geopotential height chart. The occurrence of lightning activity was determined from the LINET lightning database, and waterspouts were divided into thunderstorm-related and "fair weather" ones. Mesoscale characteristics (with a focus on thermodynamic instability indices) were determined using the high-resolution (500 m grid length) mesoscale numerical weather model and model results were compared with the available observations. Because thermodynamic instability indices are usually insufficient for forecasting waterspout activity, the performance of the Szilagyi Waterspout Index (SWI) was tested using vertical atmospheric profiles provided by the mesoscale numerical model. The SWI successfully forecasted all waterspout events, even the winter events. This indicates that the Szilagyi's waterspout prognostic method could be used as a valid prognostic tool for the eastern Adriatic.

  18. Enriched Meshfree Method for an Accurate Numerical Solution of the Motz Problem

    Directory of Open Access Journals (Sweden)

    Won-Tak Hong

    2016-01-01

    Full Text Available We present an enriched meshfree solution of the Motz problem. The Motz problem has been known as a benchmark problem to verify the efficiency of numerical methods in the presence of a jump boundary data singularity at a point, where an abrupt change occurs for the boundary condition. We propose a singular basis function enrichment technique in the context of partition of unity based meshfree method. We take the leading terms of the local series expansion at the point singularity and use them as enrichment functions for the local approximation space. As a result, we obtain highly accurate leading coefficients of the Motz problem that are comparable to the most accurate numerical solution. The proposed singular enrichment technique is highly effective in the case of the local series expansion of the solution being known. The enrichment technique that is used in this study can be applied to monotone singularities (of type rα with α<1 as well as oscillating singularities (of type rαsin⁡(ϵlog⁡r. It is the first attempt to apply singular meshfree enrichment technique to the Motz problem.

  19. Numerical simulation of the flow field in pump intakes by means of Lattice Boltzmann methods

    International Nuclear Information System (INIS)

    Schneider, A; Conrad, D; Böhle, M

    2013-01-01

    Lattice Boltzmann Methods are nowadays popular schemes for solving fluid flow problems of engineering interest. This popularity is due to the advantages of these schemes: For example, the meshing of the fluid domain can be performed fully automatically which results in great simplicity in handling complex geometries. In this paper a numerical scheme for the flow simulation in pump intakes based on a Lattice Boltzmann large eddy approach is presented. The ability of this scheme to capture the flow phenomena of the intake flow at different operating conditions is analysed. For the operational reliability and efficiency of pumps and pump systems, the incoming flow conditions are crucial. Since the efficiency and reliability requirements of pumps are rising and must be guaranteed, the flow conditions in pump intakes have to be evaluated during plant planning. Recent trends show that pump intakes are built more and more compact, which makes the flow in the intake even more complex. Numerical methods are a promising technique for conduction flow analysis in pump intakes, because they can be realised rapidly and cheaply

  20. Numerical simulation of the electrohydrodynamic effects on bubble rising using the SPH method

    International Nuclear Information System (INIS)

    Rahmat, A.; Tofighi, N.; Yildiz, M.

    2016-01-01

    Highlights: • An oil-water bubble rising system is simulated under the electrohydrodynamic effects using ISPH method. • The bubble aspect ratio increases by incrementing electrical capillary and Reynolds numbers, and decrementing the Bond number. • The centroid velocity increases with increments of electric capillary and Reynolds number. • Negative values of the bottom velocity are observed due to the pulling effect of the bottom boundary. • The distance between the bubble centroids decreases in vertically in-line bubble pairs. - Abstract: In this paper, numerical simulations of two dimensional bubble rising in the presence of electrohydrodynamic forces are presented. The physical properties of the bubble and the background fluid are adjusted to resemble an oil-water system. The numerical technique utilized to discretize the governing equations is the Lagrangian Incompressible Smoothed Particle Hydrodynamics (ISPH) method. A single bubble is subjected to an electric field using a leaky dielectric model under different values of Reynolds, Bond and electrical Capillary numbers. The results show that the bubble elongates in the direction of the electric field forming a prolate shape. The increase in the values of Reynolds and electrical Capillary numbers enhances prolate deformation of the bubble, but raising the Bond number reduces the prolateness of the bubble. The interaction of a bubble pair is also investigated for various configurations. If the bubbles are placed such that their centroids are vertically in-line, they tend to merge due to the initial prolate deformation. However, the bubbles do not merge for off center-oriented cases.

  1. An efficient numerical method for solving the Boltzmann equation in multidimensions

    Science.gov (United States)

    Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas

    2018-01-01

    In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.

  2. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng, E-mail: xfyang@math.sc.edu [Department of Mathematics, University of South Carolina, Columbia, SC 29208 (United States); Zhao, Jia, E-mail: zhao62@math.sc.edu [Department of Mathematics, University of South Carolina, Columbia, SC 29208 (United States); Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Wang, Qi, E-mail: qwang@math.sc.edu [Department of Mathematics, University of South Carolina, Columbia, SC 29208 (United States); Beijing Computational Science Research Center, Beijing (China); School of Materials Science and Engineering, Nankai University, Tianjin (China)

    2017-03-15

    The Molecular Beam Epitaxial model is derived from the variation of a free energy, that consists of either a fourth order Ginzburg–Landau double well potential or a nonlinear logarithmic potential in terms of the gradient of a height function. One challenge in solving the MBE model numerically is how to develop proper temporal discretization for the nonlinear terms in order to preserve energy stability at the time-discrete level. In this paper, we resolve this issue by developing a first and second order time-stepping scheme based on the “Invariant Energy Quadratization” (IEQ) method. The novelty is that all nonlinear terms are treated semi-explicitly, and the resulted semi-discrete equations form a linear system at each time step. Moreover, the linear operator is symmetric positive definite and thus can be solved efficiently. We then prove that all proposed schemes are unconditionally energy stable. The semi-discrete schemes are further discretized in space using finite difference methods and implemented on GPUs for high-performance computing. Various 2D and 3D numerical examples are presented to demonstrate stability and accuracy of the proposed schemes.

  3. Numerical study of magneto-optical traps through a hierarchical tree method

    International Nuclear Information System (INIS)

    Oliveira, R.S. de; Raposo, E.P.; Vianna, S.S.

    2004-01-01

    We approach the problem of N atoms in a magneto-optical trap through a hierarchical tree method, using an algorithm originally developed by Barnes and Hut (BH) in the astrophysical context. Such an algorithm numerically takes care of the particle-particle interaction by controlling the approximation level in a way that offers more physical fidelity than the mean-field treatment and considerably less time consumption (τ∼N log 10 N in the hierarchical BH method, in contrast with the τ∼N 2 and τ∼N 3/2 dependences found in direct and mean-field approaches, respectively). Our results reproduce the experimentally reported single-ring orbital mode for N 6 atoms and also find indication of a double-ring structure for N∼10 7 , a situation mimicked by a N=10 6 system with enhanced radiative force, in agreement with experimental observations. We stress that this high-density regime is not accessed by direct integration of the equations of motion, due to the enormous computing times required, and is not suitably described through mean-field approaches, due to the rather unphysical enhancement of the particle-particle interactions and the presence of a spurious numerical grid dependence

  4. Numerical Modelling of Three-Fluid Flow Using The Level-set Method

    Science.gov (United States)

    Li, Hongying; Lou, Jing; Shang, Zhi

    2014-11-01

    This work presents a numerical model for simulation of three-fluid flow involving two different moving interfaces. These interfaces are captured using the level-set method via two different level-set functions. A combined formulation with only one set of conservation equations for the whole physical domain, consisting of the three different immiscible fluids, is employed. Numerical solution is performed on a fixed mesh using the finite volume method. Surface tension effect is incorporated using the Continuum Surface Force model. Validation of the present model is made against available results for stratified flow and rising bubble in a container with a free surface. Applications of the present model are demonstrated by a variety of three-fluid flow systems including (1) three-fluid stratified flow, (2) two-fluid stratified flow carrying the third fluid in the form of drops and (3) simultaneous rising and settling of two drops in a stationary third fluid. The work is supported by a Thematic and Strategic Research from A*STAR, Singapore (Ref. #: 1021640075).

  5. A mass conserving level set method for detailed numerical simulation of liquid atomization

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Kun; Shao, Changxiao [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China); Yang, Yue [State Key Laboratory of Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Fan, Jianren, E-mail: fanjr@zju.edu.cn [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2015-10-01

    An improved mass conserving level set method for detailed numerical simulations of liquid atomization is developed to address the issue of mass loss in the existing level set method. This method introduces a mass remedy procedure based on the local curvature at the interface, and in principle, can ensure the absolute mass conservation of the liquid phase in the computational domain. Three benchmark cases, including Zalesak's disk, a drop deforming in a vortex field, and the binary drop head-on collision, are simulated to validate the present method, and the excellent agreement with exact solutions or experimental results is achieved. It is shown that the present method is able to capture the complex interface with second-order accuracy and negligible additional computational cost. The present method is then applied to study more complex flows, such as a drop impacting on a liquid film and the swirling liquid sheet atomization, which again, demonstrates the advantages of mass conservation and the capability to represent the interface accurately.

  6. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer.

    Directory of Open Access Journals (Sweden)

    SangWook Park

    Full Text Available In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP and the IEEE standard guidelines.

  7. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer

    Science.gov (United States)

    Kim, Minhyuk

    2016-01-01

    In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines. PMID:27898688

  8. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer.

    Science.gov (United States)

    Park, SangWook; Kim, Minhyuk

    2016-01-01

    In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines.

  9. Improving the seismic small-scale modelling by comparison with numerical methods

    Science.gov (United States)

    Pageot, Damien; Leparoux, Donatienne; Le Feuvre, Mathieu; Durand, Olivier; Côte, Philippe; Capdeville, Yann

    2017-10-01

    the Spectral Element Method. The approach shows the relevance of building a line source by sampling several source points, except the boundaries effects on later arrival times. Indeed, the experimental results highlight the amplitude feature and the delay equal to π/4 provided by a line source in the same manner than numerical data. In opposite, the 2-D corrections applied on 3-D data showed discrepancies which are higher on experimental data than on numerical ones due to the source wavelet shape and interferences between different arrivals. The experimental results from the approach proposed here show that discrepancies are avoided, especially for the reflected echoes. Concerning the second point aiming to assess the experimental reproducibility of the source, correlation coefficients of recording from a repeated source impact on a homogeneous model are calculated. The quality of the results, that is, higher than 0.98, allow to calculate a mean source wavelet by inversion of a mean data set. Results obtained on a more realistic model simulating clays on limestones, confirmed the reproducibility of the source impact.

  10. Numerical Study on Several Stabilized Finite Element Methods for the Steady Incompressible Flow Problem with Damping

    Directory of Open Access Journals (Sweden)

    Jilian Wu

    2013-01-01

    Full Text Available We discuss several stabilized finite element methods, which are penalty, regular, multiscale enrichment, and local Gauss integration method, for the steady incompressible flow problem with damping based on the lowest equal-order finite element space pair. Then we give the numerical comparisons between them in three numerical examples which show that the local Gauss integration method has good stability, efficiency, and accuracy properties and it is better than the others for the steady incompressible flow problem with damping on the whole. However, to our surprise, the regular method spends less CPU-time and has better accuracy properties by using Crout solver.

  11. An implicit second order numerical method for two-fluid models

    International Nuclear Information System (INIS)

    Toumi, I.

    1995-01-01

    We present an implicit upwind numerical method for a six equation two-fluid model based on a linearized Riemann solver. The construction of this approximate Riemann solver uses an extension of Roe's scheme. Extension to second order accurate method is achieved using a piecewise linear approximation of the solution and a slope limiter method. For advancing in time, a linearized implicit integrating step is used. In practice this new numerical method has proved to be stable and capable of generating accurate non-oscillating solutions for two-phase flow calculations. The scheme was applied both to shock tube problems and to standard tests for two-fluid codes. (author)

  12. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    Science.gov (United States)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  13. Numerical Investigations on Several Stabilized Finite Element Methods for the Stokes Eigenvalue Problem

    Directory of Open Access Journals (Sweden)

    Pengzhan Huang

    2011-01-01

    Full Text Available Several stabilized finite element methods for the Stokes eigenvalue problem based on the lowest equal-order finite element pair are numerically investigated. They are penalty, regular, multiscale enrichment, and local Gauss integration method. Comparisons between them are carried out, which show that the local Gauss integration method has good stability, efficiency, and accuracy properties, and it is a favorite method among these methods for the Stokes eigenvalue problem.

  14. Distribution of Steps with Finite-Range Interactions: Analytic Approximations and Numerical Results

    Science.gov (United States)

    GonzáLez, Diego Luis; Jaramillo, Diego Felipe; TéLlez, Gabriel; Einstein, T. L.

    2013-03-01

    While most Monte Carlo simulations assume only nearest-neighbor steps interact elastically, most analytic frameworks (especially the generalized Wigner distribution) posit that each step elastically repels all others. In addition to the elastic repulsions, we allow for possible surface-state-mediated interactions. We investigate analytically and numerically how next-nearest neighbor (NNN) interactions and, more generally, interactions out to q'th nearest neighbor alter the form of the terrace-width distribution and of pair correlation functions (i.e. the sum over n'th neighbor distribution functions, which we investigated recently.[2] For physically plausible interactions, we find modest changes when NNN interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  15. Interval estimation methods of the mean in small sample situation and the results' comparison

    International Nuclear Information System (INIS)

    Wu Changli; Guo Chunying; Jiang Meng; Lin Yuangen

    2009-01-01

    The methods of the sample mean's interval estimation, namely the classical method, the Bootstrap method, the Bayesian Bootstrap method, the Jackknife method and the spread method of the Empirical Characteristic distribution function are described. Numerical calculation on the samples' mean intervals is carried out where the numbers of the samples are 4, 5, 6 respectively. The results indicate the Bootstrap method and the Bayesian Bootstrap method are much more appropriate than others in small sample situation. (authors)

  16. Long-Term Creep Behavior of the Intervertebral Disk: Comparison between Bioreactor Data and Numerical Results

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A. P. G., E-mail: apgcastro@dem.uminho.pt [Center for Mechanical and Materials Technologies, Department of Mechanical Engineering, University of Minho, Guimarães (Portugal); INSIGNEO Institute for in silico Medicine, Department of Mechanical Engineering, University of Sheffield, Sheffield (United Kingdom); Paul, C. P. L. [Department of Orthopaedic Surgery, VU Medical Center, Amsterdam (Netherlands); Research Institute MOVE, Faculty of Human Movement Sciences, VU Medical Center, Amsterdam (Netherlands); Detiger, S. E. L.; Smit, T. H.; Royen, B. J. van [Department of Orthopaedic Surgery, VU Medical Center, Amsterdam (Netherlands); Research Institute MOVE, Faculty of Human Movement Sciences, VU Medical Center, Amsterdam (Netherlands); Skeletal Tissue Engineering Group Amsterdam, VU Medical Center, Amsterdam (Netherlands); Pimenta Claro, J. C. [Center for Mechanical and Materials Technologies, Department of Mechanical Engineering, University of Minho, Guimarães (Portugal); Mullender, M. G. [Department of Orthopaedic Surgery, VU Medical Center, Amsterdam (Netherlands); Research Institute MOVE, Faculty of Human Movement Sciences, VU Medical Center, Amsterdam (Netherlands); Department of Plastic, Reconstructive and Hand Surgery, VU Medical Center, Amsterdam (Netherlands); Alves, J. L. [Center for Mechanical and Materials Technologies, Department of Mechanical Engineering, University of Minho, Guimarães (Portugal)

    2014-11-20

    The loaded disk culture system is an intervertebral disk (IVD)-oriented bioreactor developed by the VU Medical Center (VUmc, Amsterdam, The Netherlands), which has the capacity of maintaining up to 12 IVDs in culture, for approximately 3 weeks after extraction. Using this system, eight goat IVDs were provided with the essential nutrients and submitted to compression tests without losing their biomechanical and physiological properties, for 22 days. Based on previous reports (Paul et al., 2012, 2013; Detiger et al., 2013), four of these IVDs were kept in physiological condition (control) and the other four were previously injected with chondroitinase ABC (CABC), in order to promote degenerative disk disease (DDD). The loading profile intercalated 16 h of activity loading with 8 h of loading recovery to express the standard circadian variations. The displacement behavior of these eight IVDs along the first 2 days of the experiment was numerically reproduced, using an IVD osmo-poro-hyper-viscoelastic and fiber-reinforced finite element (FE) model. The simulations were run on a custom FE solver (Castro et al., 2014). The analysis of the experimental results allowed concluding that the effect of the CABC injection was only significant in two of the four IVDs. The four control IVDs showed no signs of degeneration, as expected. In what concerns to the numerical simulations, the IVD FE model was able to reproduce the generic behavior of the two groups of goat IVDs (control and injected). However, some discrepancies were still noticed on the comparison between the injected IVDs and the numerical simulations, namely on the recovery periods. This may be justified by the complexity of the pathways for DDD, associated with the multiplicity of physiological responses to each direct or indirect stimulus. Nevertheless, one could conclude that ligaments, muscles, and IVD covering membranes could be added to the FE model, in order to improve its accuracy and properly describe the

  17. Long-Term Creep Behavior of the Intervertebral Disc: Comparison between Bioreactor Data and Numerical Results

    Directory of Open Access Journals (Sweden)

    APG eCastro

    2014-11-01

    Full Text Available The Loaded Disc Culture System (LDCS is an Intervertebral Disc (IVD-oriented bioreactor developed by the VU Medical Center (VUmc, Amsterdam, The Netherlands, which has the capacity of maintaining up to 12 IVDs in culture, for approximately 3 weeks after extraction. Using this system, 8 goat IVDs were provided with the essential nutrients and submitted to compression tests without losing their biomechanical and physiological properties, for 22 days. Based on previous reports (Detiger et al., 2013; Paul et al., 2013, 2012, 4 of these IVDs were kept in physiological condition (control and the other 4 were previously injected with chondroitinase ABC (CABC, in order to promote Degenerative Disc Disease (DDD. The loading profile intercalated 16h of activity loading with 8h of loading recovery to express the standard circadian variations.The displacement behavior of these 8 IVDs along the first 2 days of the experiment was numerically reproduced, using an IVD osmo-poro-hyper-viscoelastic and fiber-reinforced Finite Element (FE model. The simulations were run on a custom FE solver (Castro et al., 2014.The analysis of the experimental results allowed concluding that the effect of the CABC injection was only significant in 2 of the 4 IVDs. The 4 control IVDs showed no signs of degeneration, as expected. In what concerns to the numerical simulations, the IVD FE model was able to reproduce the generic behavior of the two groups of goat IVDs (control and injected. However, some discrepancies were still noticed on the comparison between the injected IVDs and the numerical simulations, namely on the recovery periods. This may be justified by the complexity of the pathways for DDD, associated with the multiplicity of physiological responses to each direct or indirect stimulus. Nevertheless, one could conclude that ligaments, muscles and IVD covering membranes could be added to the FE model, in order to improve its accuracy and properly describe the recovery

  18. Implementation and assessment of high-resolution numerical methods in TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dean, E-mail: wangda@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley RD 6167, Oak Ridge, TN 37831 (United States); Mahaffy, John H.; Staudenmeier, Joseph; Thurston, Carl G. [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2013-10-15

    Highlights: • Study and implement high-resolution numerical methods for two-phase flow. • They can achieve better numerical accuracy than the 1st-order upwind scheme. • They are of great numerical robustness and efficiency. • Great application for BWR stability analysis and boron injection. -- Abstract: The 1st-order upwind differencing numerical scheme is widely employed to discretize the convective terms of the two-phase flow transport equations in reactor systems analysis codes such as TRACE and RELAP. While very robust and efficient, 1st-order upwinding leads to excessive numerical diffusion. Standard 2nd-order numerical methods (e.g., Lax–Wendroff and Beam–Warming) can effectively reduce numerical diffusion but often produce spurious oscillations for steep gradients. To overcome the difficulties with the standard higher-order schemes, high-resolution schemes such as nonlinear flux limiters have been developed and successfully applied in numerical simulation of fluid-flow problems in recent years. The present work contains a detailed study on the implementation and assessment of six nonlinear flux limiters in TRACE. These flux limiters selected are MUSCL, Van Leer (VL), OSPRE, Van Albada (VA), ENO, and Van Albada 2 (VA2). The assessment is focused on numerical stability, convergence, and accuracy of the flux limiters and their applicability for boiling water reactor (BWR) stability analysis. It is found that VA and MUSCL work best among of the six flux limiters. Both of them not only have better numerical accuracy than the 1st-order upwind scheme but also preserve great robustness and efficiency.

  19. Implementation and assessment of high-resolution numerical methods in TRACE

    International Nuclear Information System (INIS)

    Wang, Dean; Mahaffy, John H.; Staudenmeier, Joseph; Thurston, Carl G.

    2013-01-01

    Highlights: • Study and implement high-resolution numerical methods for two-phase flow. • They can achieve better numerical accuracy than the 1st-order upwind scheme. • They are of great numerical robustness and efficiency. • Great application for BWR stability analysis and boron injection. -- Abstract: The 1st-order upwind differencing numerical scheme is widely employed to discretize the convective terms of the two-phase flow transport equations in reactor systems analysis codes such as TRACE and RELAP. While very robust and efficient, 1st-order upwinding leads to excessive numerical diffusion. Standard 2nd-order numerical methods (e.g., Lax–Wendroff and Beam–Warming) can effectively reduce numerical diffusion but often produce spurious oscillations for steep gradients. To overcome the difficulties with the standard higher-order schemes, high-resolution schemes such as nonlinear flux limiters have been developed and successfully applied in numerical simulation of fluid-flow problems in recent years. The present work contains a detailed study on the implementation and assessment of six nonlinear flux limiters in TRACE. These flux limiters selected are MUSCL, Van Leer (VL), OSPRE, Van Albada (VA), ENO, and Van Albada 2 (VA2). The assessment is focused on numerical stability, convergence, and accuracy of the flux limiters and their applicability for boiling water reactor (BWR) stability analysis. It is found that VA and MUSCL work best among of the six flux limiters. Both of them not only have better numerical accuracy than the 1st-order upwind scheme but also preserve great robustness and efficiency

  20. Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms

    Directory of Open Access Journals (Sweden)

    2015-12-01

    Full Text Available Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.