WorldWideScience

Sample records for method motor performance

  1. The effect of induction motor shaft diameter on motor performance

    Directory of Open Access Journals (Sweden)

    Asım Gökhan Yetgin

    2017-10-01

    Full Text Available Induction motors are used in many areas from the past to the present and in different fields with the development of technology has continued to be used. It is obvious that induction motors as an improvement to the efficiency in terms of energy saving would cause great benefit. In that context, induction motor manufacturers and designers are constantly trying out new methods to improve motor performance and efficiency. In this study, what would be the optimum diameter of the shaft in order to increase the efficiency of the induction motor were investigated. In the study, 5.5 kW, 7.5 kW and 11 kW motors analyzes were also performed. Obtained shaft diameter values were compared with the manufacturer values. In addition, critical points such as the magnetic flux values, weight values and performances of the motors were examined and optimal shaft diameter values for each motor have been determined.

  2. Skeletal maturation, fundamental motor skills and motor performance in preschool children.

    Science.gov (United States)

    Freitas, D L; Lausen, B; Maia, J A; Gouveia, É R; Antunes, A M; Thomis, M; Lefevre, J; Malina, R M

    2018-06-01

    Relationships among skeletal age (SA), body size and fundamental motor skills (FMS) and motor performance were considered in 155 boys and 159 girls 3-6 years of age. Stature and body mass were measured. SA of the hand-wrist was assessed with the Tanner-Whitehouse II 20 bone method. The Test of Gross Motor Development, 2 nd edition (TGMD-2) and the Preschool Test Battery were used, respectively, to assess FMS and motor performance. Based on hierarchical regression analyses, the standardized residuals of SA on chronological age (SAsr) explained a maximum of 6.1% of the variance in FMS and motor performance in boys (ΔR 2 3 , range 0.0% to 6.1%) and a maximum of 20.4% of the variance in girls (ΔR 2 3 , range 0.0% to 20.4%) over that explained by body size and interactions of SAsr with body size (step 3). The interactions of the SAsr and stature and body mass (step 2) explained a maximum of 28.3% of the variance in boys (ΔR 2 2 , range 0.5% to 28.3%) and 16.7% of the variance in girls (ΔR 2 2 , range 0.7% to 16.7%) over that explained by body size alone. With the exception of balance, relationships among SAsr and FMS or motor performance differed between boys and girls. Overall, SA per se or interacting with body size had a relatively small influence in FMS and motor performance in children 3-6 years of age. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. A novel induction motor starting method using superconduction

    International Nuclear Information System (INIS)

    Silva, F.B.B.; Orlando, M.T.D.; Fardin, J.F.; Simonetti, D.S.; Baldan, C.A.

    2014-01-01

    Highlights: • Alternative method for starting up induction motor. • Based on using a high-temperature superconductor. • A prototype of the limiter was constructed with a 2G-YBCO tape. • Prototype was tested with a 55-kW industrial induction motor in a 440-V/60-Hz. • Offers reduced current waveform distortion compared to the soft starter method. - Abstract: In this paper, an alternative method for starting up induction motors is proposed, taking into account experimental measurements. The new starting current limitation method is based on using a high-temperature superconductor. A prototype of the superconducting starting current limiter was constructed with a commercially available second-generation high-temperature superconductor YBCO tape, and this was tested with a 55-kW industrial induction motor in a 440-V/60-Hz three-phase power grid. Performance evaluations of the superconducting limiter method (applied to startup of the induction motor) were performed and were compared with a direct-on-line starter and an electronic soft starter. In addition, a computational model was developed and used for electromagnetic torque analysis of the system. As significant characteristics, our method offers the ability to limit the starting current of the induction motor with greater electromagnetic torque, reduced current waveform distortion and therefore lower harmonic pollution during startup when compared to the soft starter method

  4. A novel induction motor starting method using superconduction

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F.B.B., E-mail: flaviobarcelos@ifes.edu.br [Ifes – Federal Institute of Espírito Santo, Dept. of Industrial Automation, Serra, ES 29173087 (Brazil); UFES – Federal University of Espírito Santo, Dept. of Electrical Engineering, Vitória, ES (Brazil); Orlando, M.T.D. [UFES – Federal University of Espírito Santo, Dept. of Physics, Vitória, ES (Brazil); Fardin, J.F.; Simonetti, D.S. [UFES – Federal University of Espírito Santo, Dept. of Electrical Engineering, Vitória, ES (Brazil); Baldan, C.A. [EEL/USP – Engineering School from Lorena/University of São Paulo, SP (Brazil)

    2014-12-15

    Highlights: • Alternative method for starting up induction motor. • Based on using a high-temperature superconductor. • A prototype of the limiter was constructed with a 2G-YBCO tape. • Prototype was tested with a 55-kW industrial induction motor in a 440-V/60-Hz. • Offers reduced current waveform distortion compared to the soft starter method. - Abstract: In this paper, an alternative method for starting up induction motors is proposed, taking into account experimental measurements. The new starting current limitation method is based on using a high-temperature superconductor. A prototype of the superconducting starting current limiter was constructed with a commercially available second-generation high-temperature superconductor YBCO tape, and this was tested with a 55-kW industrial induction motor in a 440-V/60-Hz three-phase power grid. Performance evaluations of the superconducting limiter method (applied to startup of the induction motor) were performed and were compared with a direct-on-line starter and an electronic soft starter. In addition, a computational model was developed and used for electromagnetic torque analysis of the system. As significant characteristics, our method offers the ability to limit the starting current of the induction motor with greater electromagnetic torque, reduced current waveform distortion and therefore lower harmonic pollution during startup when compared to the soft starter method.

  5. Investigation of Flux-Linkage Profile Measurement Methods for Switched-Reluctance Motors and Permanent-Magnet Motors

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2009-01-01

    Knowledge of actual flux linkage versus current profiles plays an important role in design verification and performance prediction for switched reluctance motors (SRM's) and permanent magnet motors (PMM's). Various measurement methods have been proposed and discussed so far but each method has its...

  6. A High-Performance Control Method of Constant V/f-Controlled Induction Motor Drives for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Long Chen

    2014-01-01

    Full Text Available A three-phase induction motor used as a propulsion system for the electric vehicle (EV is a nonlinear, multi-input multi-output, and strong coupling system. For such a complicated model system with unmeasured and unavoidable disturbances, as well as parameter variations, the conventional vector control method cannot meet the demands of high-performance control. Therefore, a novel control strategy named least squares support vector machines (LSSVM inverse control is presented in the paper. Invertibility of the induction motor in the constant V/f control mode is proved to confirm its feasibility. The LSSVM inverse is composed of an LSSVM approximating the nonlinear mapping of the induction motor and two integrators. The inverse model of the constant V/f-controlled induction motor drive is obtained by using LSSVM, and then the optimal parameters of LSSVM are determined automatically by applying a modified particle swarm optimization (MPSO. Cascading the LSSVM inverse with the induction motor drive system, the pseudolinear system can be obtained. Thus, it is easy to design the closed-loop linear regulator. The simulation results verify the effectiveness of the proposed method.

  7. Variation in motor output and motor performance in a centrally generated motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  8. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  9. Modulation of motor performance and motor learning by transcranial direct current stimulation.

    Science.gov (United States)

    Reis, Janine; Fritsch, Brita

    2011-12-01

    Transcranial direct current stimulation (tDCS) has shown preliminary success in improving motor performance and motor learning in healthy individuals, and restitution of motor deficits in stroke patients. This brief review highlights some recent work. Within the past years, behavioural studies have confirmed and specified the timing and polarity specific effects of tDCS on motor skill learning and motor adaptation. There is strong evidence that timely co-application of (hand/arm) training and anodal tDCS to the contralateral M1 can improve motor learning. Improvements in motor function as measured by clinical scores have been described for combined tDCS and training in stroke patients. For this purpose, electrode montages have been modified with respect to interhemispheric imbalance after brain injury. Cathodal tDCS applied to the unlesioned M1 or bihemispheric M1 stimulation appears to be well tolerated and useful to induce improvements in motor function. Mechanistic studies in humans and animals are discussed with regard to physiological motor learning. tDCS is well tolerated, easy to use and capable of inducing lasting improvements in motor function. This method holds promise for the rehabilitation of motor disabilities, although acute studies in patients with brain injury are so far lacking.

  10. Signs of abnormal motor performance in preschool children

    Directory of Open Access Journals (Sweden)

    Martina Šlachtová

    2013-12-01

    Full Text Available BACKGROUND: The determination of the level of motor development should be a common part of examinations performed by paediatricians, physiotherapists and also teachers. The importance has been increasing because of the prevalence of developmental coordination disorder. OBJECTIVE: The aim of the study was to find the differences in performance of the selected motor tasks of gross motor function in preschoolers on both quantitative and qualitative parameters. METHODS: In the study 261 children were included, boys and girls aged 4–6 years (the average age 5.4 years attending regular kindergartens. We used motor tasks of standing on one leg and hopping. Significant differences in quantitative parameters were assessed by two-way ANOVA in Statistica (version 9 software. Relative frequency of characters in qualitative parameters was assessed by the test of the difference between two proportions. RESULTS: Significant differences between the age groups appeared in the quantitative parameters comparing 4 and 5 year old children and 4 and 6 year old children. Regardless of gender there were no differences between 5 year and 6 year old children. Overall, the girls mastered the tasks of the test better than the boys in the quantitative parameters of evaluation. From the evaluation of the quality of motor performance the most frequently reached performance in the tasks of the test has been described (relative frequency of characters. Significantly different motor performance from most children of the sample was observed particularly in the associated movements of limbs or trunk and face, showing for a reduced ability of selective relaxation at higher demands of the movement task. CONCLUSIONS: The different motor performance in observed parameters, showing for a reduced ability of selective relaxation, could be regarded as signs of abnormal motor performance in that age category.

  11. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  12. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy

    OpenAIRE

    Park, Myoung-Ok

    2017-01-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification S...

  13. A novel position-sensorless control method for brushless DC motors

    International Nuclear Information System (INIS)

    Zhang, X.Z.; Wang, Y.N.

    2011-01-01

    This paper presents the design and implementation of a high performance position-sensorless control scheme for the extensively used brushless DC (BLDC) motors. In the proposed method, with proper PWM strategy, instead of detecting the zero-crossing point (ZCP) of the nonexcited motor back electromagnetic force (EMF) or the average motor terminal to neutral voltage, the true zero-crossing points of back EMF are extracted directly from the difference of the specific average line-to-line voltages with simple RC circuits and comparators. In contrast to conventional methods, the neutral voltage is not needed and the diode freewheeling currents in the nonconducted phase are eliminated completely; therefore, the commutation signals are more accurate and insensitive to the common-mode noise. Moreover, 100% pulse-width-modulation (PWM) duty ratio control of BLDC motors is provided with the presented method. As a result, the proposed method makes it possible to achieve good motor performance over a wide speed range and to simplify the starting procedure. The detailed circuit model is analyzed and some experimental results obtained from a sensorless prototype are shown to verify the analysis and confirm the validity of the proposed method.

  14. A fuzzy expert system for predicting the performance of switched reluctance motor

    International Nuclear Information System (INIS)

    Mirzaeian, B.; Moallem, M.; Lucas, Caro

    2001-01-01

    In this paper a fuzzy expert system for predicting the performance of a switched reluctance motor has been developed. The design vector consists of design parameters, and output performance variables are efficiency and torque ripple. An accurate analysis program based on Improved Magnetic Equivalent Circuit method has been used to generate the input-output data. These input-output data is used to produce the initial fuzzy rules for predicting the performance of Switched Reluctance Motor. The initial set of fuzzy rules with triangular membership functions has been devised using a table look-up scheme. The initial fuzzy rules have been optimized to a set of fuzzy rules with Gaussian membership functions using gradient descent training scheme. The performance prediction results for a 6/8, 4 kw, Switched Reluctance Motor shows good agreement with the results obtained from Improved Magnetic Equivalent Circuit method or Finite Element analysis. The developed fuzzy expert system can be used for fast prediction of motor performance in the optimal design process or on-line control schemes of Switched Reluctance motor

  15. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy.

    Science.gov (United States)

    Park, Myoung-Ok

    2017-02-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.

  16. HEALTH INDICATORS IN SCHOOL: ASSESSMENT OF NUTRITIONAL STATUS AND MOTOR PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Andressa Ribeiro Contreira

    2013-11-01

    Full Text Available Objective: This study aimed to investigate the relationship among motor performance and nutritional status in students. Methods: Attended by 27 adolescents of both sexes, aged between 11-13 years (average 11.74 ± 0.70 years from a private school in Florianópolis/SC. The motor performance was assessed using the MABC-2. For assess the nutritional status was used the BMI calculus. Results: Among 27 participants, 6 had a risk / indicative of motor difficulties and 9 had overweight. The vast majority of participants had adequate height for age. There was negative significant statistically correlation, but moderate, among BMI and total performance in the MABC-2, indicating that as higher the BMI, worse is the motor performance. Conclusion: Based on these results and the literature, it is suggested that in addition to the identification of children with overweight and motor difficulties, programs targeted physical activity and motor interventions are implemented, especially in the school environment, aiming to maintain the health conditions.

  17. Motor performance in children with Noonan syndrome

    NARCIS (Netherlands)

    Croonen, E.A.; Essink, M.; Burgt, I. van der; Draaisma, J.M.; Noordam, C.; Nijhuis-Van der Sanden, M.W.G.

    2017-01-01

    Although problems with motor performance in daily life are frequently mentioned in Noonan syndrome, the motor performance profile has never been systematically investigated. The aim of this study was to examine whether a specific profile in motor performance in children with Noonan syndrome was seen

  18. Optimization analysis of the motor cooling method in semi-closed single screw refrigeration compressor

    Science.gov (United States)

    Wang, Z. L.; Shen, Y. F.; Wang, Z. B.; Wang, J.

    2017-08-01

    Semi-closed single screw refrigeration compressors (SSRC) are widely used in refrigeration and air conditioning systems owing to the advantages of simple structure, balanced forces on the rotor, high volumetric efficiency and so on. In semi-closed SSRCs, motor is often cooled by suction gas or injected refrigerant liquid. Motor cooling method will changes the suction gas temperature, this to a certain extent, is an important factor influencing the thermal dynamic performance of a compressor. Thus the effects of motor cooling method on the performance of the compressor must be studied. In this paper mathematical models of motor cooling process by using these two methods were established. Influences of motor cooling parameters such as suction gas temperature, suction gas quantity, temperature of the injected refrigerant liquid and quantity of the injected refrigerant liquid on the thermal dynamic performance of the compressor were analyzed. The performances of the compressor using these two kinds of motor cooling methods were compared. The motor cooling capacity of the injected refrigerant liquid is proved to be better than the suction gas. All analysis results obtained can be useful for optimum design of the motor cooling process to improve the efficiency and the energy efficiency of the compressor.

  19. Teacher Compliance and Accuracy in State Assessment of Student Motor Skill Performance

    Science.gov (United States)

    Hall, Tina J.; Hicklin, Lori K.; French, Karen E.

    2015-01-01

    Purpose: The purpose of this study was to investigate teacher compliance with state mandated assessment protocols and teacher accuracy in assessing student motor skill performance. Method: Middle school teachers (N = 116) submitted eighth grade student motor skill performance data from 318 physical education classes to a trained monitoring…

  20. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children

    Science.gov (United States)

    Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly

  1. Motor unit recruitment by size does not provide functional advantages for motor performance.

    Science.gov (United States)

    Dideriksen, Jakob L; Farina, Dario

    2013-12-15

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.

  2. Optimal design of an IPM motor using Taguchi and Rosenbrock's methods

    International Nuclear Information System (INIS)

    Hwang, C C; Li, P L; Chang, C M; Liu, C T

    2011-01-01

    Techniques for the design optimization for cogging torque minimization and average torque maximization of a high-speed 2-pole interior permanent magnet (IPM) synchronous motor are presented. It is shown by the finite element method (FEM) and measurement, that combined the Taguchi and Rosenbrock's methods is a very efficient and effective approach in robust design a high performance motor.

  3. Application of Finite Element Method to Determine the Performances of a Permanent Magnet Synchronous Motor for Driving a Bicycle

    Directory of Open Access Journals (Sweden)

    Nicolae Digă

    2014-09-01

    Full Text Available In this paper, the authors present a case study in which was analyzed by finite element method a permanent magnet synchronous motor for driving a bicycle using the analysis and simulation software ANSYS Electromagnetics Low Frequency of ANSYS Inc. Company. Modelling and simulation with ANSYS ® Maxwell 2D of electromagnetic field in the studied motor was conducted for different initial positions (internal angle rotor-stator configured (set δ1. It was identified the internal angle for which the performances of PMSM are very close to those obtained by computation.

  4. High-performance permanent magnet brushless motors with balanced concentrated windings and similar slot and pole numbers

    International Nuclear Information System (INIS)

    Stumberger, Bojan; Stumberger, Gorazd; Hadziselimovic, Miralem; Hamler, Anton; Trlep, Mladen; Gorican, Viktor; Jesenik, Marko

    2006-01-01

    The paper presents a comparison between the performances of exterior-rotor permanent magnet brushless motors with distributed windings and the performances of exterior-rotor permanent magnet brushless motors with concentrated windings. Finite element method analysis is employed to determine the performance of each motor. It is shown that motors with concentrated windings and similar slot and pole numbers exhibit similar or better performances than motors with distributed windings for brushless AC (BLAC) operation mode and brushless DC (BLDC) operation mode as well

  5. Spatially defined disruption of motor imagery performance in people with osteoarthritis

    NARCIS (Netherlands)

    Stanton, T.R.; Lin, C.W.; Smeets, R.J.P.; Taylor, D.; Law, R.; Lorimer Moseley, G.

    2012-01-01

    OBJECTIVES: To determine whether motor imagery performance is disrupted in patients with painful knee OA and if this disruption is specific to the location of the pain. METHODS: Twenty patients with painful knee OA, 20 patients with arm pain and 20 healthy pain-free controls undertook a motor

  6. Integral performance optimum design for multistage solid propellant rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongtao (Shaanxi Power Machinery Institute (China))

    1989-04-01

    A mathematical model for integral performance optimization of multistage solid propellant rocket motors is presented. A calculation on a three-stage, volume-fixed, solid propellant rocket motor is used as an example. It is shown that the velocity at burnout of intermediate-range or long-range ballistic missile calculated using this model is four percent greater than that using the usual empirical method.

  7. Iron Pole Shape Optimization of IPM Motors Using an Integrated Method

    Directory of Open Access Journals (Sweden)

    JABBARI, A.

    2010-02-01

    Full Text Available An iron pole shape optimization method to reduce cogging torque in Interior Permanent Magnet (IPM motors is developed by using the reduced basis technique coupled by finite element and design of experiments methods. Objective function is defined as the minimum cogging torque. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the rotor pole shape optimization of a 4-poles/24-slots IPM motor.

  8. Motor Performance in Relation with Sustained Attention in Children with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Solmaz Solouki

    2012-04-01

    Full Text Available Objective: Present study compares relationship between motor performance, sustained attention and impulse control in children with Attention Deficit Hyperactivity Disorder and normal children. Materials & Methods: In this descriptive-analytic study, 21 boys with ADHD and 21 normal boys in the age range of 7- 10 years old were participated. Motor performance by using Bruininks Oseretsky Test of Motor Proficiency and sustained attention and impulse control by using Continuous Performance Test were evaluated. Results: Analysis by T-Test and Mann-Whitney revealed significant difference between ADHD group and normal group in gross, fine and battery motor performance also sustained attention and impulse control (P<0.0001. Analysis by Z-Fisher test indicated no significant difference between Correlation Coefficient of inattention and gross motor performance in two groups (P=0.276 but significant difference between Correlation Coefficient of inattention and fine (P<0.0001 and battery (P<0.0001 motor performance were shown. Correlation Coefficient impulsivity and gross (P=0.379, fine (P=0.92 and battery (P=0.562 motor performance shown no significant difference between two groups. Conclusion: According to study results there was a positive relation between sustained attention and impulse control and most of motor performance in both groups. Therefore these findings help Occupational Therapist to determine rehabilitation priorities and to use exact strategies in order to enhance motor performance in children.

  9. Motor performance in children with Noonan syndrome.

    Science.gov (United States)

    Croonen, Ellen A; Essink, Marlou; van der Burgt, Ineke; Draaisma, Jos M; Noordam, Cees; Nijhuis-van der Sanden, Maria W G

    2017-09-01

    Although problems with motor performance in daily life are frequently mentioned in Noonan syndrome, the motor performance profile has never been systematically investigated. The aim of this study was to examine whether a specific profile in motor performance in children with Noonan syndrome was seen using valid norm-referenced tests. The study assessed motor performance in 19 children with Noonan syndrome (12 females, mean age 9 years 4 months, range 6 years 1 month to 11 years and 11 months, SDS 1 year and 11 months). More than 60% of the parents of the children reported pain, decreased muscle strength, reduced endurance, and/or clumsiness in daily functioning. The mean standard scores on the Visual Motor Integration (VMI) test and Movement Assessment Battery for Children 2, Dutch version (MABC-2-NL) items differed significantly from the reference scores. Grip strength, muscle force, and 6 min Walking Test (6 MWT) walking distance were significantly lower, and the presence of generalized hypermobility was significantly higher. All MABC-2-NL scores (except manual dexterity) correlated significantly with almost all muscle strength tests, VMI total score, and VMI visual perception score. The 6 MWT was only significantly correlated to grip strength. This is the first study that confirms that motor performance, strength, and endurance are significantly impaired in children with Noonan syndrome. Decreased functional motor performance seems to be related to decreased visual perception and reduced muscle strength. Research on causal relationships and the effectiveness of interventions is needed. Physical and/or occupational therapy guidance should be considered to enhance participation in daily life. © 2017 Wiley Periodicals, Inc.

  10. Evidence That Bimanual Motor Timing Performance Is Not a Significant Factor in Developmental Stuttering

    Science.gov (United States)

    Hilger, Allison I.; Zelaznik, Howard; Smith, Anne

    2016-01-01

    Purpose: Stuttering involves a breakdown in the speech motor system. We address whether stuttering in its early stage is specific to the speech motor system or whether its impact is observable across motor systems. Method: As an extension of Olander, Smith, and Zelaznik (2010), we measured bimanual motor timing performance in 115 children: 70…

  11. Attentional Focus in Motor Learning, the Feldenkrais Method, and Mindful Movement.

    Science.gov (United States)

    Mattes, Josef

    2016-08-01

    The present paper discusses attentional focus in motor learning and performance from the point of view of mindful movement practices, taking as a starting point the Feldenkrais method. It is argued that earlier criticism of the Feldenkrais method (and thereby implicitly of mindful movement practices more generally) because of allegedly inappropriate attentional focus turns out to be unfounded in light of recent developments in the study of motor learning and performance. Conversely, the examples of the Feldenkrais method and Ki-Aikido are used to illustrate how both Western and Eastern (martial arts derived) mindful movement practices might benefit sports psychology. © The Author(s) 2016.

  12. Motor performance of preschool children

    OpenAIRE

    Karina Słonka; Manuela Dyas; Tadeusz Słonka; Tomasz Szurmik

    2017-01-01

    Introduction: Pre‑school age is a period of intensive development when children shape their posture, habits and motor memory. Movement is child's physiological need.  Motive activity supports not only physical development, but also psychical, intellectual and social.   Aim: The aim of the study is to assess motor ability in preschool children from the city of Opole and District Dobrzeń Wielki. Materials and methods: The research involved 228 children, aged 5 and 6. The method used in...

  13. Effects of interactive games on motor performance in children with spastic cerebral palsy

    OpenAIRE

    AlSaif, Amer A.; Alsenany, Samira

    2015-01-01

    [Purpose] Motor control and muscle strength impairments are the prime reasons for motor behavior disorders in children with spastic cerebral palsy. These impairments lead to histological changes in muscle growth and the learning of motor skills. Therefore, such children experience reduced muscle force generation and decreased muscle flexibility. We investigated the effect of training with Nintendo Wii Fit games on motor performance in children with spastic cerebral palsy. [Subjects and Method...

  14. Motor network structure and function are associated with motor performance in Huntington's disease.

    Science.gov (United States)

    Müller, Hans-Peter; Gorges, Martin; Grön, Georg; Kassubek, Jan; Landwehrmeyer, G Bernhard; Süßmuth, Sigurd D; Wolf, Robert Christian; Orth, Michael

    2016-03-01

    In Huntington's disease, the relationship of brain structure, brain function and clinical measures remains incompletely understood. We asked how sensory-motor network brain structure and neural activity relate to each other and to motor performance. Thirty-four early stage HD and 32 age- and sex-matched healthy control participants underwent structural magnetic resonance imaging (MRI), diffusion tensor, and intrinsic functional connectivity MRI. Diffusivity patterns were assessed in the cortico-spinal tract and the thalamus-somatosensory cortex tract. For the motor network connectivity analyses the dominant M1 motor cortex region and for the basal ganglia-thalamic network the thalamus were used as seeds. Region to region structural and functional connectivity was examined between thalamus and somatosensory cortex. Fractional anisotropy (FA) was higher in HD than controls in the basal ganglia, and lower in the external and internal capsule, in the thalamus, and in subcortical white matter. Between-group axial and radial diffusivity differences were more prominent than differences in FA, and correlated with motor performance. Within the motor network, the insula was less connected in HD than in controls, with the degree of connection correlating with motor scores. The basal ganglia-thalamic network's connectivity differed in the insula and basal ganglia. Tract specific white matter diffusivity and functional connectivity were not correlated. In HD sensory-motor white matter organization and functional connectivity in a motor network were independently associated with motor performance. The lack of tract-specific association of structure and function suggests that functional adaptation to structural loss differs between participants.

  15. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  16. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  17. Impact of extrinsic factors on fine motor performance of children attending day care

    Directory of Open Access Journals (Sweden)

    Carolina Corsi

    Full Text Available Abstract Objective: To assess the impact of extrinsic factors on fine motor performance of children aged 2-years old. Methods: 73 children attending public and 21 private day care centers were assessed. Day care environment was evaluated using the Infant/Toddler Environment Rating Scale-Revised Edition (ITERS-R, fine motor performance was assessed through the Bayley Scales of Infant and Toddler Development-III (BSITD-III, socioeconomic data, maternal education and time of start at the day care were collected through interviews. Spearman's correlation coefficient was calculated to assess the association between the studied variables. Results: The time at the day care was positively correlated with the children's performance in some fine motor tasks of the BSITD-III, showing that the activities developed in day care centers were important for the refinement of specific motor skills, while the overall fine motor performance by the scale was associated with maternal education and the ITERS-R scale sub-item “language and understanding”. Conclusions: Extrinsic factors such as higher maternal education and quality of day care centers are associated with fine motor performance in children attending day care.

  18. Task-irrelevant auditory feedback facilitates motor performance in musicians

    Directory of Open Access Journals (Sweden)

    Virginia eConde

    2012-05-01

    Full Text Available An efficient and fast auditory–motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT. Our hypothesis was that musicians, due to their extensive auditory–motor practice routine during musical training, have a superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Here we provide novel evidence that task-irrelevant auditory feedback is capable to reinforce SRTT performance but not learning, a finding that might provide further insight into auditory-motor integration in musicians on a behavioral level.

  19. MOV motor and gearbox performance under design basis loads

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.

    1998-01-01

    This paper describes the results of valve testing sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research and conducted at the Idaho National Engineering and Environmental Laboratory. The research objective was to evaluate the capabilities of specific actuator motor and gearbox assemblies under various design basis loading conditions. The testing was performed using the motor-operated valve load simulator, a test fixture that simulates the stem load profiles a valve actuator would experience when closing a valve against flow and pressure loadings. The authors tested five typical motors (four ac motors and one dc motor) with three gearbox assemblies at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. The authors also determined the efficiency of the actuator gearbox. The testing produced the following significant results: all five motors operated at or above their rated torque during tests at full voltage and ambient temperature; for all five motors (dc as well as ac), the actual torque loss due to voltage degradation was greater than the torque loss predicted using common methods; startup torques in locked rotor tests compared well with stall torques in dynamometer-type tests; the methods commonly used to predict torque losses due to elevated operating temperatures sometimes bounded the actual losses, but not in all cases; the greatest discrepancy involved the prediction for the dc motor; running efficiencies published by the manufacturer for actuator gearboxes were higher than the actual efficiencies determined from testing, in some instances, the published pullout efficiencies were also higher than the actual values; operation of the gearbox at elevated temperature did not affect the operating efficiency

  20. A Novel Method for Sensorless Speed Detection of Brushed DC Motors

    Directory of Open Access Journals (Sweden)

    Ernesto Vazquez-Sanchez

    2016-12-01

    Full Text Available Many motor applications require accurate speed measurement. For brushed dc motors, speed can be measured with conventional observers or sensorless observers. Sensorless observers have the advantage of not requiring any external devices to be attached to the motor. Instead, voltage and/or current are measured and used to estimate the speed. The sensorless observers are usually divided into two groups: those based on the dynamic model, and those based on the ripple component. This paper proposes a method that measures the current of brushed dc motors and analyses the position of its spectral components. From these spectral components, the method estimates the motor speed. Three tests, performed each with the speeds ranging from 2000 to 3000 rpm either at constant-speed, at slowly changing speeds, or at rapidly changing speeds, showed that the average error was below 1 rpm and that the deviation error was below 1.5 rpm. The proposed method: (i is a novel method that is not based on either the dynamic model or on the ripple component; (ii requires only the measurement of the current for the speed estimation; (iii can be used for brushed dc (direct current motors with a large number of coils; and (iv achieves a low error in the speed estimation.

  1. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  2. Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train

    Science.gov (United States)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.

  3. Driving performance of a two-dimensional homopolar linear DC motor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Yamaguchi, M.; Kano, Y. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1998-05-01

    This paper presents a novel two-dimensional homopolar linear de motor (LDM) which can realize two-dimensional (2-D) motion. For position control purposes, two kinds of position detecting methods are proposed. The position in one position is detected by means of a capacitive sensor which makes the output of the sensor partially immune to the variation of the gap between electrodes. The position in the other direction is achieved by exploiting the position dependent property of the driving coil inductance, instead of using an independent sensor. The position control is implemented on the motor and 2-D tracking performance is analyzed. Experiments show that the motor demonstrates satisfactory driving performance, 2-D tracking error being within 5.5% when the angular frequency of reference signal is 3.14 rad./s. 7 refs., 17 figs., 2 tabs.

  4. Assessment of global motor performance and gross and fine motor skills of infants attending day care centers.

    Science.gov (United States)

    Souza, Carolina T; Santos, Denise C C; Tolocka, Rute E; Baltieri, Letícia; Gibim, Nathália C; Habechian, Fernanda A P

    2010-01-01

    To analyze the global motor performance and the gross and fine motor skills of infants attending two public child care centers full-time. This was a longitudinal study that included 30 infants assessed at 12 and 17 months of age with the Motor Scale of the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). This scale allows the analysis of global motor performance, fine and gross motor performance, and the discrepancy between them. The Wilcoxon test and Spearman's correlation coefficient were used. Most of the participants showed global motor performance within the normal range, but below the reference mean at 12 and 17 months, with 30% classified as having "suspected delays" in at least one of the assessments. Gross motor development was poorer than fine motor development at 12 and at 17 months of age, with great discrepancy between these two subtests in the second assessment. A clear individual variability was observed in fine motor skills, with weak linear correlation between the first and the second assessment of this subtest. A lower individual variability was found in the gross motor skills and global motor performance with positive moderate correlation between assessments. Considering both performance measurements obtained at 12 and 17 months of age, four infants were identified as having a "possible delay in motor development". The study showed the need for closer attention to the motor development of children who attend day care centers during the first 17 months of life, with special attention to gross motor skills (which are considered an integral part of the child's overall development) and to children with suspected delays in two consecutive assessments.

  5. Improving motor reliability in nuclear power plants: Volume 1, Performance evaluation and maintenance practices

    International Nuclear Information System (INIS)

    Subudhi, M.; Gunther, W.E.; Taylor, J.H.; Sugarman, A.C.; Sheets, M.W.

    1987-11-01

    This report constitutes the first of the three volumes under this NUREG. The report presents recommendations for developing a cost-effective program for performance evaluation and maintenance of electric motors in nuclear power plants. These recommendations are based on current industry practices, available techniques for monitoring degradation in motor components, manufacturer's recommendations, operating experience, and results from two laboratory tests on aged motors. Two laboratory test reports on a small and a large motor are presented in separate volumes of this NUREG. These provide the basis for the various functional indicators recommended for maintenance programs in this report. The overall preventive maintenance program is separated into two broad areas of activity aimed at mitigating the potential effects of equipment aging: Performance Evaluation and Equipment Maintenance. The latter involves actually maintaining the condition of the equipment while the former involves those activities undertaken to monitor degradation due to aging. These monitoring methods are further categorized into periodic testing, surveillance testing, continuous monitoring and inspections. This study focuses on the methods and procedures for performing the above activities to maintain the motors operationally ready in a nuclear facility. This includes an assessment of various functional indicators to determine their suitability for trending to monitor motor component condition. The intrusiveness of test methods and the present state-of-the-art for using the test equipment in a plant environment are discussed. In conclusion, implementation of the information provided in this report, will improve motor reliability in nuclear power plants. The study indicates the kinds of tests to conduct, how and when to conduct them, and to which motors the tests should be applied. 44 refs., 12 figs., 13 tabs

  6. Task-relevant cognitive and motor functions are prioritized during prolonged speed-accuracy motor task performance.

    Science.gov (United States)

    Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas

    2018-06-01

    This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.

  7. Association between Body Composition and Motor Performance in Preschool Children

    Directory of Open Access Journals (Sweden)

    Tanja H. Kakebeeke

    2017-09-01

    Full Text Available Objective: Being overweight makes physical movement more difficult. Our aim was to investigate the association between body composition and motor performance in preschool children. Methods: A total of 476 predominantly normal-weight preschool children (age 3.9 ± 0.7 years; m/f: 251/225; BMI 16.0 ± 1.4 kg/m2 participated in the Swiss Preschoolers' Health Study (SPLASHY. Body composition assessments included skinfold thickness, waist circumference (WC, and BMI. The Zurich Neuromotor Assessment (ZNA was used to assess gross and fine motor tasks. Results: After adjustment for age, sex, socioeconomic status, sociocultural characteristics, and physical activity (assessed with accelerometers, skinfold thickness and WC were both inversely correlated with jumping sideward (gross motor task β-coefficient -1.92, p = 0.027; and -3.34, p = 0.014, respectively, while BMI was positively correlated with running performance (gross motor task β-coefficient 9.12, p = 0.001. No significant associations were found between body composition measures and fine motor tasks. Conclusion: The inverse associations between skinfold thickness or WC and jumping sideward indicates that children with high fat mass may be less proficient in certain gross motor tasks. The positive association between BMI and running suggests that BMI might be an indicator of fat-free (i.e., muscle mass in predominately normal-weight preschool children.

  8. Effects of interactive games on motor performance in children with spastic cerebral palsy.

    Science.gov (United States)

    AlSaif, Amer A; Alsenany, Samira

    2015-06-01

    [Purpose] Motor control and muscle strength impairments are the prime reasons for motor behavior disorders in children with spastic cerebral palsy. These impairments lead to histological changes in muscle growth and the learning of motor skills. Therefore, such children experience reduced muscle force generation and decreased muscle flexibility. We investigated the effect of training with Nintendo Wii Fit games on motor performance in children with spastic cerebral palsy. [Subjects and Methods] Forty children with cerebral palsy spastic diplegia aged 6-10 years diagnosed with level-3 functional capabilities according to the Gross Motor Classification System (GMFCS) were enrolled. Participants were divided randomly into equal groups: group (A) that practiced with the Nintendo Wii Fit game for at least 20 minutes/day for 12 weeks and group (B) that underwent no training (control group). The Movement Assessment Battery for Children-2 (mABC-2) was used to assess motor performance, because it mainly involves motor tasks very similar to those involved in playing Nintendo Wii Fit games, e.g., goal-directed arm movements, balancing, and jumping. [Results] There were significant improvements in the subscales of the motor performance test of those who practiced with the Nintendo Wii, while the control group showed no significant changes. [Conclusion] Using motion interactive games in home rehabilitation is feasible for children with cerebral palsy.

  9. Indirect and direct methods for measuring a dynamic throat diameter in a solid rocket motor

    Science.gov (United States)

    Colbaugh, Lauren

    In a solid rocket motor, nozzle throat erosion is dictated by propellant composition, throat material properties, and operating conditions. Throat erosion has a significant effect on motor performance, so it must be accurately characterized to produce a good motor design. In order to correlate throat erosion rate to other parameters, it is first necessary to know what the throat diameter is throughout a motor burn. Thus, an indirect method and a direct method for determining throat diameter in a solid rocket motor are investigated in this thesis. The indirect method looks at the use of pressure and thrust data to solve for throat diameter as a function of time. The indirect method's proof of concept was shown by the good agreement between the ballistics model and the test data from a static motor firing. The ballistics model was within 10% of all measured and calculated performance parameters (e.g. average pressure, specific impulse, maximum thrust, etc.) for tests with throat erosion and within 6% of all measured and calculated performance parameters for tests without throat erosion. The direct method involves the use of x-rays to directly observe a simulated nozzle throat erode in a dynamic environment; this is achieved with a dynamic calibration standard. An image processing algorithm is developed for extracting the diameter dimensions from the x-ray intensity digital images. Static and dynamic tests were conducted. The measured diameter was compared to the known diameter in the calibration standard. All dynamic test results were within +6% / -7% of the actual diameter. Part of the edge detection method consists of dividing the entire x-ray image by an average pixel value, calculated from a set of pixels in the x-ray image. It was found that the accuracy of the edge detection method depends upon the selection of the average pixel value area and subsequently the average pixel value. An average pixel value sensitivity analysis is presented. Both the indirect

  10. Relationship between children's performance-based motor skills and child, parent, and teacher perceptions of children's motor abilities using self/informant-report questionnaires.

    Science.gov (United States)

    Lalor, Aislinn; Brown, Ted; Murdolo, Yuki

    2016-04-01

    Occupational therapists often assess the motor skill performance of children referred to them as part of the assessment process. This study investigated whether children's, parents' and teachers' perceptions of children's motor skills using valid and reliable self/informant-report questionnaires were associated with and predictive of children's actual motor performance, as measured by a standardised performance-based motor skill assessment. Fifty-five typically developing children (8-12 years of age), their parents and classroom teachers were recruited to participate in the study. The children completed the Physical Self-Description Questionnaire (PSDQ) and the Self-Perception Profile for Children. The parents completed the Developmental Profile III (DP-III) and the Developmental Coordination Disorder Questionnaire, whereas the teachers completed the Developmental Coordination Disorder Questionnaire and the Teacher's Rating Scale of Child's Actual Behavior. Children's motor performance composite scores were determined using the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (BOT-2). Spearman's rho correlation coefficients were calculated to identify if significant correlations existed and multiple linear regression was used to identify whether self/informant report data were significant predictors of children's motor skill performance. The child self-report scores had the largest number of significant correlations with the BOT-2 composites. Regression analysis found that the parent report DP-III Physical subscale was a significant predictor of the BOT-2 Manual Coordination composite and the child-report questionnaire PSDQ. Endurance subscale was a significant predictor of the BOT-2 Strength and Agility composite. The findings support the use of top-down assessment methods from a variety of sources when evaluating children's motor abilities. © 2016 Occupational Therapy Australia.

  11. Simulation and performance of brushless dc motor actuators

    Science.gov (United States)

    Gerba, A., Jr.

    1985-12-01

    The simulation model for a Brushless D.C. Motor and the associated commutation power conditioner transistor model are presented. The necessary conditions for maximum power output while operating at steady-state speed and sinusoidally distributed air-gap flux are developed. Comparison of simulated model with the measured performance of a typical motor are done both on time response waveforms and on average performance characteristics. These preliminary results indicate good agreement. Plans for model improvement and testing of a motor-driven positioning device for model evaluation are outlined.

  12. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.

    Science.gov (United States)

    Ahn, Minkyu; Cho, Hohyun; Ahn, Sangtae; Jun, Sung C

    2018-01-01

    Performance variation is a critical issue in motor imagery brain-computer interface (MI-BCI), and various neurophysiological, psychological, and anatomical correlates have been reported in the literature. Although the main aim of such studies is to predict MI-BCI performance for the prescreening of poor performers, studies which focus on the user's sense of the motor imagery process and directly estimate MI-BCI performance through the user's self-prediction are lacking. In this study, we first test each user's self-prediction idea regarding motor imagery experimental datasets. Fifty-two subjects participated in a classical, two-class motor imagery experiment and were asked to evaluate their easiness with motor imagery and to predict their own MI-BCI performance. During the motor imagery experiment, an electroencephalogram (EEG) was recorded; however, no feedback on motor imagery was given to subjects. From EEG recordings, the offline classification accuracy was estimated and compared with several questionnaire scores of subjects, as well as with each subject's self-prediction of MI-BCI performance. The subjects' performance predictions during motor imagery task showed a high positive correlation ( r = 0.64, p performance even without feedback information. This implies that the human brain is an active learning system and, by self-experiencing the endogenous motor imagery process, it can sense and adopt the quality of the process. Thus, it is believed that users may be able to predict MI-BCI performance and results may contribute to a better understanding of low performance and advancing BCI.

  13. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    Science.gov (United States)

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P synchronization (r = -0.356; P synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  14. From Children to Adults: Motor Performance across the Life-Span

    Science.gov (United States)

    Leversen, Jonas S. R.; Haga, Monika; Sigmundsson, Hermundur

    2012-01-01

    The life-span approach to development provides a theoretical framework to examine the general principles of life-long development. This study aims to investigate motor performance across the life span. It also aims to investigate if the correlations between motor tasks increase with aging. A cross-sectional design was used to describe the effects of aging on motor performance across age groups representing individuals from childhood to young adult to old age. Five different motor tasks were used to study changes in motor performance within 338 participants (7–79 yrs). Results showed that motor performance increases from childhood (7–9) to young adulthood (19–25) and decreases from young adulthood (19–25) to old age (66–80). These results are mirroring results from cognitive research. Correlation increased with increasing age between two fine motor tasks and two gross motor tasks. We suggest that the findings might be explained, in part, by the structural changes that have been reported to occur in the developing and aging brain and that the theory of Neural Darwinism can be used as a framework to explain why these changes occur. PMID:22719958

  15. Actual motor performance and self-perceived motor competence in children with attention-deficit hyperactivity disorder compared with healthy siblings and peers.

    Science.gov (United States)

    Fliers, Ellen A; de Hoog, Marieke L A; Franke, Barbara; Faraone, Stephen V; Rommelse, Nanda N J; Buitelaar, Jan K; Nijhuis-van der Sanden, Maria W G

    2010-01-01

    : Children with attention-deficit hyperactivity disorder (ADHD) frequently experience comorbid motor problems, developmental coordination disorder. Also, children with ADHD are said to overestimate their abilities in the cognitive and social domain, the so-called "Positive Illusory Bias." In this cross-sectional study, the relationship between actual motor performance and perceived motor competence was examined. Motor performance was assessed using the Movement Assessment Battery for Children in 100 children and adolescents (age 6-17 years), including 32 children with ADHD combined type, 18 unaffected siblings, and 50 healthy control children. ADHD was diagnosed using Parent and Teacher questionnaires and a clinical interview. Perceived motor competence and interest in the motor domain were rated with the Dutch supplement scale to Harters' Self-Perception Profile for Children, especially focusing on the motor domain (m-CBSK). Children with ADHD had poorer motor performance than unaffected siblings and control children, especially in the field of manual dexterity. However, no relationship was found between motor performance and perceived motor competence. Only children with the very lowest motor performance had a significantly lowered perception of their motor competence. Interest in the motor domain and motor self-perception was positively correlated. Children with ADHD performed poorer on the Movement Assessment Battery for Children, but generally overestimated their own motor competence.

  16. Gross motor performance and self-perceived motor competence in children with emotional, behavioural, and pervasive developmental disorders: a review

    NARCIS (Netherlands)

    Emck, C.; Bosscher, R.J.; Beek, P.J.; Doreleijers, T.A.H.

    2009-01-01

    Aims: Motor performance and self-perceived motor competence have a great impact on the psychosocial development of children in general. In this review, empirical studies of gross motor performance and self-perception of motor competence in children with emotional (depression and anxiety),

  17. Design, Modeling and Performance Optimization of a Novel Rotary Piezoelectric Motor

    Science.gov (United States)

    Duong, Khanh A.; Garcia, Ephrahim

    1997-01-01

    This work has demonstrated a proof of concept for a torsional inchworm type motor. The prototype motor has shown that piezoelectric stack actuators can be used for rotary inchworm motor. The discrete linear motion of piezoelectric stacks can be converted into rotary stepping motion. The stacks with its high force and displacement output are suitable actuators for use in piezoelectric motor. The designed motor is capable of delivering high torque and speed. Critical issues involving the design and operation of piezoelectric motors were studied. The tolerance between the contact shoes and the rotor has proved to be very critical to the performance of the motor. Based on the prototype motor, a waveform optimization scheme was proposed and implemented to improve the performance of the motor. The motor was successfully modeled in MATLAB. The model closely represents the behavior of the prototype motor. Using the motor model, the input waveforms were successfully optimized to improve the performance of the motor in term of speed, torque, power and precision. These optimized waveforms drastically improve the speed of the motor at different frequencies and loading conditions experimentally. The optimized waveforms also increase the level of precision of the motor. The use of the optimized waveform is a break-away from the traditional use of sinusoidal and square waves as the driving signals. This waveform optimization scheme can be applied to any inchworm motors to improve their performance. The prototype motor in this dissertation as a proof of concept was designed to be robust and large. Future motor can be designed much smaller and more efficient with lessons learned from the prototype motor.

  18. Quantitative assessment of finger motor performance: Normative data.

    Directory of Open Access Journals (Sweden)

    Alessio Signori

    Full Text Available Finger opposition movements are the basis of many daily living activities and are essential in general for manipulating objects; an engineered glove quantitatively assessing motor performance during sequences of finger opposition movements has been shown to be useful to provide reliable measures of finger motor impairment, even subtle, in subjects affected by neurological diseases. However, the obtained behavioral parameters lack published reference values.To determine mean values for different motor behavioral parameters describing the strategy adopted by healthy people in performing repeated sequences of finger opposition movements, examining associations with gender and age.Normative values for finger motor performance parameters were obtained on a sample of 255 healthy volunteers executing sequences of finger-to-thumb opposition movements, stratified by gender and over a wide range of ages. Touch duration, inter-tapping interval, movement rate, correct sequences (%, movements in advance compared with a metronome (% and inter-hand interval were assessed.Increasing age resulted in decreased movement speed, advance movements with respect to a cue, correctness of sequences, and bimanual coordination. No significant performance differences were found between male and female subjects except for the duration of the finger touch, the interval between two successive touches and their ratio.We report age- and gender-specific normal mean values and ranges for different parameters objectively describing the performance of finger opposition movement sequences, which may serve as useful references for clinicians to identify possible deficits in subjects affected by diseases altering fine hand motor skills.

  19. Effect of Group Setting on Gross Motor Performance in Children 3-5 Years Old with Motor Delays.

    Science.gov (United States)

    Fay, Deanne; Wilkinson, Tawna; Wagoner, Michelle; Brooks, Danna; Quinn, Lauren; Turnell, Andrea

    2017-02-01

    The purpose of this study was to evaluate differences in gross motor performance of children 3-5 years of age with motor delays when assessed individually compared to assessment in a group setting among peers with typical development (TD). Twenty children with motor delays and 42 children with TD were recruited from a preschool program. A within-subject repeated measures design was used; each child with delay was tested both in an individual setting and in a group setting with two to four peers with TD. Testing sessions were completed 4-8 days apart. Ten different motor skills from the Peabody Developmental Motor Scales-2 were administered. Performance of each item was videotaped and scored by a blinded researcher. Overall gross motor performance was significantly different (p < .05) between the two settings, with 14 of 20 children demonstrating better performance in the group setting. In particular, children performed better on locomotion items (p < .05). The higher scores for locomotion in the group setting may be due to the influence of competition, motivation, or modeling. Assessing a child in a group setting is recommended as part of the evaluation process.

  20. Motor performance as predictor of physical activity in children - The CHAMPS Study-DK

    DEFF Research Database (Denmark)

    Larsen, Lisbeth Runge; Kristensen, Peter Lund; Junge, Tina

    2015-01-01

    Purpose Physical activity is associated with several health benefits in children, and physical activity habits developed in childhood tend to persist into adulthood. Physical activity may be the foundation of a healthy lifestyle and motor performance has been shown to be positively associated wit...... run in childhood may be important determinants of physical activity in adolescence.......Purpose Physical activity is associated with several health benefits in children, and physical activity habits developed in childhood tend to persist into adulthood. Physical activity may be the foundation of a healthy lifestyle and motor performance has been shown to be positively associated...... with physical activity in cross-sectional studies. The purpose of this study was to explore the longitudinal relationship between motor performance and physical activity in a three-year follow-up study. Methods Longitudinal analyses were performed using data from 673 participants (44% boys, 6-12 years old) who...

  1. Effect of rotor rectifier on motor performance in slip recovery drives

    Energy Technology Data Exchange (ETDEWEB)

    Al Zahawi, B.A.T.; Jones, B.L.; Drury, W.

    1987-01-01

    The static Kramer system, comprising a slip-ring induction motor and a slip energy recovery circuit, is one of the simplest and most efficient forms of ac variable-speed drive. It is sometimes used to upgrade drives which had originally been designed for fixed speed operation, often with substantial energy savings. In such cases, it is important to know how the inclusion of a rectifier in the slip energy recovery circuit affects motor performance. A satisfactory model for the motor-rectifier combination is also needed to provide a sound basis for assessing alternative forms of recovery systems which aim to overcome the principal shortcomings of the drive, namely the magnitude and variability of its reactive power. Despite its simplicity, the Kramer drive presents a formidable analytical challenge. Rigorous analysis is particularly difficult and there is a need for a simpler form of analysis when calculating ratings and steady-state performance. The approach taken in this paper uses a transformer-type model for the motor, and largely analytical expressions for predicting torque, stator power, stator reactive power and rectifier output voltage. Motor resistances, diode characteristics, and the several possible rectifier overlap modes are included. It is shown that the rectifier has an adverse effect on stator reactive power, power factor, and peak torque, particularly at speeds well below synchronous, requiring some derating of motors designed for resistance control and also requiring additional power factor correction. While the analysis does not cater to variations caused by harmonics at some speeds, it does provide a quick, accurate method of predicting performance over most sections of the operating range. 12 refs., 11 figs.

  2. Improving Motor and Drive System Performance – A Sourcebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-01

    This sourcebook outlines opportunities to improve motor and drive systems performance. The sourcebook is divided into four main sections: (1) Motor and Drive System Basics: Summarizes important terms, relationships, and system design considerations relating to motor and drive systems. (2) Performance Opportunity Road Map: Details the key components of well-functioning motor and drive systems and opportunities for energy performance opportunities. (3) Motor System Economics: Offers recommendations on how to propose improvement projects based on corporate priorities, efficiency gains, and financial payback periods. (4) Where to Find Help: Provides a directory of organizations associated with motors and drives, as well as resources for additional information, tools, software, videos, and training opportunities.

  3. ANALYSIS OF INDUCTION MOTOR WITH BROKEN BARS AND CONSTANT SPEED USING CIRCUIT-FIELD COUPLED METHOD

    Directory of Open Access Journals (Sweden)

    N. Halem

    2015-07-01

    Full Text Available The paper presents the use of the two-dimensional finite element method for modeling the three-phase squirrel-cage induction motor by using circuit coupled method. In order to analyze the machine performances, the voltage source is considered. The Ansys magnetic analysis software is used for calculating the magnetic field of an induction motor having a cage fault. The experimental results prove that the proposed approach constitutes a useful tool for the study and diagnostics of induction motors.

  4. Visual Motor and Perceptual Task Performance in Astigmatic Students

    Directory of Open Access Journals (Sweden)

    Erin M. Harvey

    2017-01-01

    Full Text Available Purpose. To determine if spectacle corrected and uncorrected astigmats show reduced performance on visual motor and perceptual tasks. Methods. Third through 8th grade students were assigned to the low refractive error control group (astigmatism < 1.00 D, myopia < 0.75 D, hyperopia < 2.50 D, and anisometropia < 1.50 D or bilateral astigmatism group (right and left eye ≥ 1.00 D based on cycloplegic refraction. Students completed the Beery-Buktenica Developmental Test of Visual Motor Integration (VMI and Visual Perception (VMIp. Astigmats were randomly assigned to testing with/without correction and control group was tested uncorrected. Analyses compared VMI and VMIp scores for corrected and uncorrected astigmats to the control group. Results. The sample included 333 students (control group 170, astigmats tested with correction 75, and astigmats tested uncorrected 88. Mean VMI score in corrected astigmats did not differ from the control group (p=0.829. Uncorrected astigmats had lower VMI scores than the control group (p=0.038 and corrected astigmats (p=0.007. Mean VMIp scores for uncorrected (p=0.209 and corrected astigmats (p=0.124 did not differ from the control group. Uncorrected astigmats had lower mean scores than the corrected astigmats (p=0.003. Conclusions. Uncorrected astigmatism influences visual motor and perceptual task performance. Previously spectacle treated astigmats do not show developmental deficits on visual motor or perceptual tasks when tested with correction.

  5. Design methods in solid rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    A compilation of lectures summarizing the current state-of-the-art in designing solid rocket motors and and their components is presented. The experience of several countries in the use of new technologies and methods is represented. Specific sessions address propellant grains, cases, nozzles, internal thermal insulation, and the general optimization of solid rocket motor designs.

  6. Simulation and performance of brushless DC motor actuators

    OpenAIRE

    Gerba, Alex

    1985-01-01

    The simulation model for a Brushless D.C. Motor and the associated commutation power conditioner transistor model are presented. The necessary conditions for maximum power output while operating at steady-state speed and sinusoidally distributed air-gap flux are developed. Comparisons of simulated model with the measured performance of a typical motor are done both on time response waveforms and on average performance characteristics. These preliminary results indicate good ...

  7. Performance in complex motor tasks deteriorates in hyperthermic humans

    DEFF Research Database (Denmark)

    Piil, Jacob Feder; Lundbye-Jensen, Jesper; Trangmar, Steven J

    2017-01-01

    -motor tracking performance was reduced by 10.7 ± 6.5% following exercise-induced hyperthermia when integrated in the multipart protocol and 4.4 ± 5.7% when tested separately (bothP 1.3% (P math tasks...... of information or decision-making prior to responding. We hypothesized that divergences could relate to task complexity and developed a protocol consisting of 1) simple motor task [TARGET_pinch], 2) complex motor task [Visuo-motor tracking], 3) simple math task [MATH_type], 4) combined motor-math task [MATH...

  8. Depressive symptoms and motor performance in the elderly: a population based study Sintomas depressivos e desempenho motor em idosos: estudo de base populacional

    Directory of Open Access Journals (Sweden)

    Kleyton T. Santos

    2012-08-01

    Full Text Available BACKGROUND: There is a growing incidence of depression in the elderly, and this impairment interferes directly in the reduction of motor skills. OBJECTVE: This study aims to examine the association between depressive symptoms and motor performance in community-dwelling elderly. METHOD: This is a cross-sectional study that analyzed data from 316 elders of a home and population-based epidemiological survey. The information used was: socio-demographic characteristics; motor performance tests; physical activity; and Geriatric Depression Scale. The data were analyzed using the Statistical Package for Social Sciences. Mann-Whitney U test, chi-square, Spearman correlation and Poisson regression, with a confidence interval of 95%, were calculated. RESULTS: For all motor tests, motor performance was negatively associated with depressive symptoms, regardless of gender, age, literacy and illiteracy, per capita income and physical activity. Elderly people with depressive symptoms have between 58% and 82% more functional limitation, depending on the motor performance test compared to those who were not depressed. CONCLUSIONS: There is an inverse relationship between depressive symptoms and motor performance in the elderly.CONTEXTUALIZAÇÃO: É crescente a ocorrência de depressão em idosos, e esse acometimento interfere diretamente na redução da capacidade motora. OBJETIVO: Analisar a associação entre sintomas depressivos e desempenho motor em idosos residentes na comunidade. MÉTODO: Trata-se de um estudo transversal que analisou dados de 316 idosos de uma pesquisa epidemiológica de base domiciliar e populacional. As informações usadas foram: características sociodemográficas; testes de desempenho motor; atividade física e Escala de Depressão Geriátrica. Os dados foram analisados no The Statistical Package for Social Sciences, sendo realizados testes U de Mann-Whitney, qui-quadrado, Correlação de Spearman e regressão de Poisson, com

  9. A numerical method to enhance the performance of a cam-type electric motor-driven left ventricular assist device.

    Science.gov (United States)

    Huang, Huan; Yang, Ming; Lu, Cunyue; Xu, Liang; Zhuang, Xiaoqi; Meng, Fan

    2013-10-01

    Pulsatile left ventricular assist devices (LVADs) driven by electric motors have been widely accepted as a treatment of heart failure. Performance enhancement with computer assistance for this kind of LVAD has seldom been reported. In this article, a numerical method is proposed to assist the design of a cam-type pump. The method requires an integrated model of an LVAD system, consisting of a motor, a transmission mechanism, and a cardiovascular circulation. Performance indices, that is, outlet pressure, outlet flow, and pump efficiency, were used to select the best cam profile from six candidates. A prototype pump connected to a mock circulatory loop (MCL) was used to calibrate the friction coefficient of the cam groove and preliminarily evaluate modeling accuracy. In vitro experiments show that the mean outlet pressure and flow can be predicted with high accuracy by the model, and gross geometries of the measurements can also be reproduced. Simulation results demonstrate that as the total peripheral resistance (TPR) is fixed at 1.1 mm Hg.s/mL, the two-cycle 2/3-rise profile is the best. Compared with other profiles, the maximum increases of pressure and flow indices are 75 and 76%, respectively, and the maximum efficiency increase is over 51%. For different TPRs (0.5∼1.5 mm Hg.s/mL) and operation intervals (0.1∼0.4 s) in counterpulsation, the conclusion is also acceptable. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  10. Influence of different rotor magnetic circuit structure on the performance of permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Qiu Hongbo

    2017-09-01

    Full Text Available In order to compare the performance difference of the permanent magnet synchronous motors (PMSM with different rotor structure, two kinds of rotor magnetic circuit structure with surface-mounted radial excitation and tangential excitation are designed respectively. By comparing and analyzing the results, the difference of the motor performance was determined. Firstly, based on the finite element method (FEM, the motor electromagnetic field performance was studied, and the magnetic field distribution of the different magnetic circuit structure was obtained. The influence mechanism of the different magnetic circuit structure on the air gap flux density was obtained by using the Fourier theory. Secondly, the cogging torque, output torque and overload capacity of the PMSM with different rotor structure were studied. The effect mechanism of the different rotor structure on the motor output property difference was obtained. The motor prototype with two kinds of rotor structure was manufactured, and the experimental study was carried out. By comparing the experimental data and simulation data, the correctness of the research is verified. This paper lays a foundation for the research on the performance of the PMSM with different magnetic circuit structure.

  11. MOTOR PERFORMANCE OF PRIMARY SCHOOL GIRLS ACCORDING TO BIRTH SEASON

    Directory of Open Access Journals (Sweden)

    Josip Lepeš

    2010-09-01

    Full Text Available Body height, weight and motor performances data of 348 junior level primary schools girls 122 seven, 151 eight, 76 nine year olds. The results show that girls born in summer and in autumn generally had better performances in most of the skills, than those born in spring and winter and the differences were proved statistically in each case, expect obstacle race test. Girls who were better than average at some motor skills, generally outdid their school maters or contemporary group average at other motor skill performance as well.

  12. METHODS OF DIAGNOSTIC EFFECTIVENESS ORGANIZATIONAL CHANGES IN CARGO MOTOR TRANSPORTATION ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Denis Sergeevich Antipov

    2017-03-01

    Full Text Available The article propose methods of diagnostic effectiveness organizational changes in cargo motor transportation organizations. The article contain the main results approbation of the developed methods of diagnostic effectiveness organizational changes in cargo motor transportation organizations in 37 cargo motor transportation organizations of Saint-Petersburg and the Leningrad Region. Constructed diagrams of conformity specific weights resulting from organizational changes in cargo motor transportation organizations. Presents diagrams effectiveness organizational changes in cargo motor transportation organizations at every stages of the life cycle. The goal of the present paper is to development methods of diagnostic effectiveness organizational changes in cargo motor transportation organizations.

  13. A new method for speed control of a DC motor using magnetorheological clutch

    Science.gov (United States)

    Nguyen, Quoc Hung; Choi, Seung-Bok

    2014-03-01

    In this research, a new method to control speed of DC motor using magnetorheological (MR) clutch is proposed and realized. Firstly, the strategy of a DC motor speed control using MR clutch is proposed. The MR clutch configuration is then proposed and analyzed based on Bingham-plastic rheological model of MR fluid. An optimal designed of the MR clutch is then studied to find out the optimal geometric dimensions of the clutch that can transform a required torque with minimum mass. A prototype of the optimized MR clutch is then manufactured and its performance characteristics are experimentally investigated. A DC motor speed control system featuring the optimized MR clutch is designed and manufactured. A PID controller is then designed to control the output speed of the system. In order to evaluate the effectiveness of the proposed DC motor speed control system, experimental results of the system such as speed tracking performance are obtained and presented with discussions.

  14. The Effect of Motor Performance on Sportive Performance of Children in Different Sports Branches

    Science.gov (United States)

    Aktug, Zait Burak; Iri, Ruckan

    2018-01-01

    The aim of the study is to investigate the relationship between motor performances of children aged 10-14 years and ball striking speeds made by specific technique and to determine motor performance differences between the branches. A total of 64 children (football = 22, volleyball = 19, tennis = 23) aged 10-14 years participated in the study. The…

  15. Time of Day Does Not Modulate Improvements in Motor Performance following a Repetitive Ballistic Motor Training Task

    Science.gov (United States)

    Sale, Martin V.; Ridding, Michael C.; Nordstrom, Michael A.

    2013-01-01

    Repetitive performance of a task can result in learning. The neural mechanisms underpinning such use-dependent plasticity are influenced by several neuromodulators. Variations in neuromodulator levels may contribute to the variability in performance outcomes following training. Circulating levels of the neuromodulator cortisol change throughout the day. High cortisol levels inhibit neuroplasticity induced with a transcranial magnetic stimulation (TMS) paradigm that has similarities to use-dependent plasticity. The present study investigated whether performance changes following a motor training task are modulated by time of day and/or changes in endogenous cortisol levels. Motor training involving 30 minutes of repeated maximum left thumb abduction was undertaken by twenty-two participants twice, once in the morning (8 AM) and once in the evening (8 PM) on separate occasions. Saliva was assayed for cortisol concentration. Motor performance, quantified by measuring maximum left thumb abduction acceleration, significantly increased by 28% following training. Neuroplastic changes in corticomotor excitability of abductor pollicis brevis, quantified with TMS, increased significantly by 23% following training. Training-related motor performance improvements and neuroplasticity were unaffected by time of day and salivary cortisol concentration. Although similar neural elements and processes contribute to motor learning, training-induced neuroplasticity, and TMS-induced neuroplasticity, our findings suggest that the influence of time of day and cortisol differs for these three interventions. PMID:23577271

  16. Time of Day Does Not Modulate Improvements in Motor Performance following a Repetitive Ballistic Motor Training Task

    Directory of Open Access Journals (Sweden)

    Martin V. Sale

    2013-01-01

    Full Text Available Repetitive performance of a task can result in learning. The neural mechanisms underpinning such use-dependent plasticity are influenced by several neuromodulators. Variations in neuromodulator levels may contribute to the variability in performance outcomes following training. Circulating levels of the neuromodulator cortisol change throughout the day. High cortisol levels inhibit neuroplasticity induced with a transcranial magnetic stimulation (TMS paradigm that has similarities to use-dependent plasticity. The present study investigated whether performance changes following a motor training task are modulated by time of day and/or changes in endogenous cortisol levels. Motor training involving 30 minutes of repeated maximum left thumb abduction was undertaken by twenty-two participants twice, once in the morning (8 AM and once in the evening (8 PM on separate occasions. Saliva was assayed for cortisol concentration. Motor performance, quantified by measuring maximum left thumb abduction acceleration, significantly increased by 28% following training. Neuroplastic changes in corticomotor excitability of abductor pollicis brevis, quantified with TMS, increased significantly by 23% following training. Training-related motor performance improvements and neuroplasticity were unaffected by time of day and salivary cortisol concentration. Although similar neural elements and processes contribute to motor learning, training-induced neuroplasticity, and TMS-induced neuroplasticity, our findings suggest that the influence of time of day and cortisol differs for these three interventions.

  17. Key Principles of Open Motor-Skill Training for Peak Performance

    Science.gov (United States)

    Wang, Jin

    2016-01-01

    Motor-skill training is an imperative element contributing to overall sport performance. In order to help coaches, athletes and practitioners to capture the characteristics of motor skills, sport scientists have divided motor skills into different categories, such as open versus closed, serial or discrete, outcome- or process-oriented, and…

  18. Prevalence of obesity and motor performance capabilities in Tyrolean preschool children.

    Science.gov (United States)

    Greier, Klaus; Riechelmann, Herbert; Burtscher, Martin

    2014-07-01

    The childrens' world of movement has changed dramatically during the last decades. As a consequence motor performance decreases particularly in children affected by overweight and obesity. This study analyses the influence of the body mass index (BMI) on motor performance of pre-school children. In a cross-sectional study including 41 kindergartens in Tyrol (Austria), 4- to 5-year-old children (n = 1,063) were recruited. Four BMI groups were used according to a German BMI reference system: Group I (anorexic/underweight), group II (normal weight), group III (overweight) and group IV (obese). Motor performance was assessed by the use of the Karlsruhe Motorik-Screening (KMS 3-6). Out of the 1,063 preschool children (550 ♂, 513 ♀) 7.6 % (n = 81) were overweight and 5.5 % (n = 58) were obese. The results demonstrate that motor performance of under- and overweight preschool-children is not different from children with normal BMI, but obese children had significantly lower motor performance (p obese Tyrolean preschool children is similar to those of non-mountainous areas of Austria and Germany. The fact that motor performance is reduced only in obese children suggests that targeted promotion of physical activity is urgently needed for preschool children particularly considering children with a risk to develop obesity. Besides the efforts of parents, nursery schools are the ideal setting for intervention measures.

  19. Nonlinear Control of Induction Motors: A Performance Study

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1998-01-01

    A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the...... for the field amplitude and the motor torque. The method is compared with the traditional Rotor Field Oriented Control method as regards variations in rotor resistance an magnetizing inductance......A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers...

  20. Motor performance and physical activity habits of college students in Costa Rica

    Directory of Open Access Journals (Sweden)

    Judith Jiménez-Díaz

    2016-01-01

    Full Text Available The purpose of this study was to analyze the motor performance of fundamental motor skills and physical activity habits of students at the University of Costa Rica. A total of 92 males and 48 females (M age = 19.78 yr., SD = 4.72 yr. enrolled in different Sports Activity courses taught at the Rodrigo Facio campus was assessed. The Instrument for the Evaluation of Fundamental Movement Patterns was used to assess motor performance in eight fundamental movement patterns (running, jumping, galloping, catching, throwing, bouncing, and kicking. The physical activity level was obtained from a self-reported questionnaire developed for such purpose. Results show that 28% of the participants were physically active. Participants presented a proficient performance in kicking, running, and galloping, but a non-proficient performance in jumping, hopping, bouncing, throwing and catching. Physical activity behavior was related to the overall performance of the motor skills assessed (Rho = .233; p = .006. In conclusion, college students presented a proficient performance on three of the eight skills assessed. In addition, a relationship was found between physical activity levels and performance. Physical Education teachers are recommended to develop activities to enhance motor performance of fundamental motor skills in college students.

  1. Comparison of motor and cognitive performance of children attending public and private day care centers

    Directory of Open Access Journals (Sweden)

    Mariana M. Santos

    2013-12-01

    Full Text Available BACKGROUND: Given that environmental factors, such as the school environment, can influence child development, more attention should be paid to the development of children attending day care centers. OBJECTIVE: Todetermine whether there are differences in the gross motor, fine motor, or cognitive performances of children between 1 and3 years-old of similar socioeconomic status attending public and private day care centers full time. METHOD: Participants were divided into 2 groups, 1 of children attending public day care centers (69 children and another of children attending private day care centers (47 children. All children were healthy and regularly attended day care full time for over 4 months. To assess cognitive, gross and fine motor performance, the Bayley Scales of Infant and Toddler Development III was used. The Mann-Whitney test was used for comparative analyses between groups of children between 13 and 24 months, 25 and 41 months, and 13 and 41 months. RESULTS: Children in public day care centers exhibited lower scores on the cognitive development scale beginning at 13 months old. The fine and gross motor performance scores were lower in children over the age of 25 months attending public centers. Maternal education was not related to the performance of children in either group. CONCLUSION: The scores of cognitive performance as well as fine and gross motor performance of children of similar socioeconomic status who attend public day care centers are lower than children attending private daycare centers.

  2. Anthropometric and motor performance profile of elite futsal athletes

    Directory of Open Access Journals (Sweden)

    Ademar Avelar

    2008-07-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n1p76 The purpose of the present study was to identify the anthropometric and motor performance profi le of futsal (indoor soccer athletes in the second and third-placed teams in the Parana state championships (Brazil. Anthropometric(body mass, stature and skinfolds thickness and motor performance (modified abdominal test, shuttle run, race of 30 m and 40 s measures were obtained from twenty-seven male athletes (24.7 ± 6.4 years; 73.6 ± 7.6 kg; 174.8 ± 6.6 cm. For data analysis, athletes were grouped according to game positions. ANOVA one-way was used for comparisons between different positions, followed by Scheffé’s post hoc test, with p < 0.05. Signifi cant differences were detected in body mass (midfielder < goalkeeper, p < 0.01, stature (midfielder < forward and goalkeeper, p < 0.01 and lean body mass (midfi elder < goalkeeper, p < 0.01. No significant differences in motor performance were detected between the athletes studied. The results of this study show that futsal athletes playing in different positions exhibit similar anthropometric and motor performance, in the majority of variables.

  3. Motor performance as predictor of physical activity in children - The CHAMPS Study-DK

    DEFF Research Database (Denmark)

    Larsen, Lisbeth Runge; Kristensen, Peter Lund; Junge, Tina

    , health-related fitness and performance-related fitness were significantly associated to time spent at moderate to vigorous physical activity level at three years follow up. The clinical relevance of the results indicated cardiorespiratory fitness and shuttle run to be important skills to perceive......Background Physical activity is associated to several health benefits in children and has a tendency to track from childhood to adulthood. An adequate motor performance has been shown positively related to physical activity level in cross sectional studies and may be the foundation of a healthy...... lifestyle, but there is a lack of longitudinal studies. The objective of this study was to explore the longitudinal relationship between motor performance and physical activity in a three-year follow up study. Methods Longitudinal analyses were performed using data from the CHAMPS-Study DK, including 673...

  4. A novel starting method for BLDC motors without the position sensors

    International Nuclear Information System (INIS)

    Asaei, Behzad; Rostami, Alireza

    2009-01-01

    This paper presents a novel method to estimate the rotor position of a brushless dc (BLDC) motor at standstill. Moreover, a method for startup and acceleration of the motor up to a certain speed is introduced. The principle of the estimation method is based on the variation of the BLDC motor current in the magnetic axis due to the magnetic saturation of the stator core. An advantage of this method is that the maximum estimated error of the initial rotor position is 6 deg. Therefore, the motor starting torque is increased significantly. However, to implement this method, a current sensor at the dc link of the inverter is needed

  5. A novel starting method for BLDC motors without the position sensors

    Energy Technology Data Exchange (ETDEWEB)

    Asaei, Behzad; Rostami, Alireza [School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran); University of Yazd, Yazd (Iran)

    2009-02-15

    This paper presents a novel method to estimate the rotor position of a brushless dc (BLDC) motor at standstill. Moreover, a method for startup and acceleration of the motor up to a certain speed is introduced. The principle of the estimation method is based on the variation of the BLDC motor current in the magnetic axis due to the magnetic saturation of the stator core. An advantage of this method is that the maximum estimated error of the initial rotor position is 6 deg. Therefore, the motor starting torque is increased significantly. However, to implement this method, a current sensor at the dc link of the inverter is needed. (author)

  6. The validity of parental reports on motor skills performance level in preschool children: a comparison with a standardized motor test.

    Science.gov (United States)

    Zysset, Annina E; Kakebeeke, Tanja H; Messerli-Bürgy, Nadine; Meyer, Andrea H; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Ferrazzini, Valentina; Kriemler, Susi; Munsch, Simone; Puder, Jardena J; Jenni, Oskar G

    2018-05-01

    Motor skills are interrelated with essential domains of childhood such as cognitive and social development. Thus, the evaluation of motor skills and the identification of atypical or delayed motor development is crucial in pediatric practice (e.g., during well-child visits). Parental reports on motor skills may serve as possible indicators to decide whether further assessment of a child is necessary or not. We compared parental reports on fundamental motor skills performance level (e.g., hopping, throwing), based on questions frequently asked in pediatric practice, with a standardized motor test in 389 children (46.5% girls/53.5% boys, M age = 3.8 years, SD = 0.5, range 3.0-5.0 years) from the Swiss Preschoolers' Health Study (SPLASHY). Motor skills were examined using the Zurich Neuromotor Assessment 3-5 (ZNA3-5), and parents filled in an online questionnaire on fundamental motor skills performance level. The results showed that the answers from the parental report correlated only weakly with the objectively assessed motor skills (r = .225, p skills would be desirable, the parent's report used in this study was not a valid indicator for children's fundamental motor skills. Thus, we may recommend to objectively examine motor skills in clinical practice and not to exclusively rely on parental report. What is Known: • Early assessment of motor skills in preschool children is important because motor skills are essential for the engagement in social activities and the development of cognitive abilities. Atypical or delayed motor development can be an indicator for different developmental needs or disorders. • Pediatricians frequently ask parents about the motor competences of their child during well-child visits. What is New: • The parental report on fundamental motor skills performance level used in this study was not a reliable indicator for describing motor development in the preschool age. • Standardized examinations of motor skills are

  7. Relationship of ocular accommodation and motor skills performance in developmental coordination disorder.

    Science.gov (United States)

    Rafique, Sara A; Northway, Nadia

    2015-08-01

    Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of High-Definition Anodal Transcranial Direct Current Stimulation Applied Simultaneously to Both Primary Motor Cortices on Bimanual Sensorimotor Performance

    OpenAIRE

    Nils H. Pixa; Fabian Steinberg; Michael Doppelmayr; Michael Doppelmayr

    2017-01-01

    Many daily activities, such as tying one’s shoe laces, opening a jar of jam or performing a free throw in basketball, require the skillful coordinated use of both hands. Even though the non-invasive method of transcranial direct current stimulation (tDCS) has been repeatedly shown to improve unimanual motor performance, little is known about its effects on bimanual motor performance. More knowledge about how tDCS may improve bimanual behavior would be relevant to motor recovery, e.g., in pers...

  9. Learning-performance distinction and memory processes for motor skills: a focused review and perspective.

    Science.gov (United States)

    Kantak, Shailesh S; Winstein, Carolee J

    2012-03-01

    Behavioral research in cognitive psychology provides evidence for an important distinction between immediate performance that accompanies practice and long-term performance that reflects the relative permanence in the capability for the practiced skill (i.e. learning). This learning-performance distinction is strikingly evident when challenging practice conditions may impair practice performance, but enhance long-term retention of motor skills. A review of motor learning studies with a specific focus on comparing differences in performance between that at the end of practice and at delayed retention suggests that the delayed retention or transfer performance is a better indicator of motor learning than the performance at (or end of) practice. This provides objective evidence for the learning-performance distinction. This behavioral evidence coupled with an understanding of the motor memory processes of encoding, consolidation and retrieval may provide insight into the putative mechanism that implements the learning-performance distinction. Here, we propose a simplistic empirically-based framework--motor behavior-memory framework--that integrates the temporal evolution of motor memory processes with the time course of practice and delayed retention frequently used in behavioral motor learning paradigms. In the context of the proposed framework, recent research has used noninvasive brain stimulation to decipher the role of each motor memory process, and specific cortical brain regions engaged in motor performance and learning. Such findings provide beginning insights into the relationship between the time course of practice-induced performance changes and motor memory processes. This in turn has promising implications for future research and practical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Automatic Human Movement Assessment With Switching Linear Dynamic System: Motion Segmentation and Motor Performance.

    Science.gov (United States)

    de Souza Baptista, Roberto; Bo, Antonio P L; Hayashibe, Mitsuhiro

    2017-06-01

    Performance assessment of human movement is critical in diagnosis and motor-control rehabilitation. Recent developments in portable sensor technology enable clinicians to measure spatiotemporal aspects to aid in the neurological assessment. However, the extraction of quantitative information from such measurements is usually done manually through visual inspection. This paper presents a novel framework for automatic human movement assessment that executes segmentation and motor performance parameter extraction in time-series of measurements from a sequence of human movements. We use the elements of a Switching Linear Dynamic System model as building blocks to translate formal definitions and procedures from human movement analysis. Our approach provides a method for users with no expertise in signal processing to create models for movements using labeled dataset and later use it for automatic assessment. We validated our framework on preliminary tests involving six healthy adult subjects that executed common movements in functional tests and rehabilitation exercise sessions, such as sit-to-stand and lateral elevation of the arms and five elderly subjects, two of which with limited mobility, that executed the sit-to-stand movement. The proposed method worked on random motion sequences for the dual purpose of movement segmentation (accuracy of 72%-100%) and motor performance assessment (mean error of 0%-12%).

  11. Desempenho motor de lactentes frequentadores de berçários em creches públicas Motor performance of infants attending the nurseries of public day care centers

    Directory of Open Access Journals (Sweden)

    Letícia Baltieri

    2010-09-01

    Full Text Available OBJETIVO: Analisar o desempenho motor axial, apendicular e global e sua correlação com as características neonatais, familiares e de tempo de exposição à creche em crianças com idade entre 12-24 meses, frequentadoras de creches públicas. MÉTODOS: Estudo transversal com 40 lactentes (idade média 14,3±2,4 meses frequentadores de creches públicas. Os participantes foram avaliados quanto ao desempenho motor com a Bayley Scales of Infant and Toddler Development-III, a qual possibilita análise do desempenho motor e comparação dos domínios motores axial e apendicular. Foram coletados dados neonatais, familiares e de exposição à creche e pesquisou-se a correlação destes fatores ao desempenho motor. Foi utilizado o teste t pareado para comparar médias e a correlação de Pearson. RESULTADOS: O desempenho motor do grupo esteve, em média, abaixo da referência, com 22,5% das crianças classificadas como suspeitas de atraso nos desempenhos axial e global, contrastando com nenhuma no domínio apendicular. A comparação axial e apendicular apontou diferença significativa, com desempenho axial aquém do apendicular, além de 35% do grupo ter apresentado discrepância significativa entre esses domínios. Não foi encontrada correlação linear entre os domínios motores avaliados e as variáveis neonatais, familiares e de exposição à creche. CONCLUSÕES: O desempenho motor global do grupo esteve abaixo da média de referência, com desempenho motor axial inferior ao apendicular e importante discrepância entre esses. Recomenda-se atenção às habilidades motoras axiais e às oportunidades de exploração que o ambiente em creches pode propiciar, especialmente no decorrer dos dois primeiros anos de vida.OBJECTIVE: To analyze gross, fine and global motor performance and its correlation with neonatal and familial variables and day care exposure among children between 12-24 months of age attending public day care centers. METHODS: This

  12. Clinical utility of the Structured Observation of Motor Performance in Infants within the child health services.

    Directory of Open Access Journals (Sweden)

    Kine Johansen

    Full Text Available This study aimed to evaluate the clinical utility of the Structured Observation of Motor Performance in Infants (SOMP-I when used by nurses in routine child healthcare by analyzing the nurses' SOMP-I assessments and the actions taken when motor problems were suspected.Infants from three child health centers in Uppsala County, Sweden, were consecutively enrolled in a longitudinal study. The 242 infants were assessed using SOMP-I by the nurse responsible for the infant as part of the regular well-child visits at as close to 2, 4, 6 and 10 months of age as possible. The nurses noted actions taken such as giving advice, scheduling an extra follow-up or referring the infant to specialized care. The infants' motor development was reassessed at 18 months of age through review of medical records or parental report.The assessments of level of motor development at 2 and 10 months showed a distribution corresponding to the percentile distribution of the SOMP-I method. Fewer infants than expected were assessed as delayed at 4 and 6 months or deficient in quality at all assessment ages. When an infant was assessed as delayed in level or deficient in quality, the likelihood of the nurse taking actions increased. This increased further if both delay and quality deficit were found at the same assessment or if one or both were found at repeated assessments. The reassessment of the motor development at 18 months did not reveal any missed infants with major motor impairments.The use of SOMP-I appears to demonstrate favorable clinical utility in routine child healthcare as tested here. Child health nurses can assess early motor performance using this standardized assessment method, and using the method appears to support them the clinical decision-making.

  13. Motor performance of pupils with attention deficit hyperactivity disorder (ADHD).

    OpenAIRE

    Otipková, Zuzana

    2012-01-01

    Title: Motor performance of pupils with attention deficit hyperactivity disorder (ADHD). Objectives: The aim of the work was to determine the level of fine and gross motor skills of upper extremities of the pupils with diagnosis ADHD at schools specialized on these pupils and compare it with the fine and gross motor skills of upper extremities of children without this diagnosis at common elementary school. Further work objective was to determine the level of gross motor skills of lower limbs ...

  14. Evaluation and prediction of the performance of positive displacement motor

    Energy Technology Data Exchange (ETDEWEB)

    Tudor, R.; Ginzburg, L. [Canadian Fracmaster Ltd., Calgary, AB (Canada); Xu, H. [Japan National Oil Corp (Japan); Li, J.; Robello, G.; Grigor, C.

    1998-12-31

    Test results of positive displacement motors (PDMs) collected by using various PDMs from a number of different suppliers have been analyzed. Various correlations have been developed and motor performance pumped with incompressible drilling fluid was evaluated based on test data provided by suppliers in the form of pressure drop versus torque output. Conclusions drawn from the study suggest that when a motor is operated at less than full load, the correlation between mechanical power and hydraulic power across the PDM power section can be described with a simple linear equation (different for each PDM type). Assuming the availability of patented geometric information for each PDM type, the performance of PDMs can be described by both the geometric parameters of the motor and the rheological properties of the circulation fluid. 9 refs., 8 figs.

  15. On-line PWR RHR pump performance testing following motor and impeller replacement

    International Nuclear Information System (INIS)

    DiMarzo, J.T.

    1996-01-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump's 'B' impeller. The spare was installed into the 'B' train. The motor had never been run in the system before. A pump performance test was developed to verify it's operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the 'B' Train showed performance well in excess of the minimum required. The motor that was originally in the 'B' train was similarly overhauled and equipped with 'A' pump's original impeller, re-installed in the 'A' train, and tested. Analysis of the 'A' train results indicate that the RHR pump's performance was also well in excess of the vendors requirements

  16. On-line PWR RHR pump performance testing following motor and impeller replacement

    Energy Technology Data Exchange (ETDEWEB)

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  17. Working Memory Training Improves Dual-Task Performance on Motor Tasks.

    Science.gov (United States)

    Kimura, Takehide; Kaneko, Fuminari; Nagahata, Keita; Shibata, Eriko; Aoki, Nobuhiro

    2017-01-01

    The authors investigated whether working memory training improves motor-motor dual-task performance consisted of upper and lower limb tasks. The upper limb task was a simple reaction task and the lower limb task was an isometric knee extension task. 45 participants (age = 21.8 ± 1.6 years) were classified into a working memory training group (WM-TRG), dual-task training group, or control group. The training duration was 2 weeks (15 min, 4 times/week). Our results indicated that working memory capacity increased significantly only in the WM-TRG. Dual-task performance improved in the WM-TRG and dual-task training group. Our study provides the novel insight that working memory training improves dual-task performance without specific training on the target motor task.

  18. RELIABILITY OF ANKLE-FOOT MORPHOLOGY, MOBILITY, STRENGTH, AND MOTOR PERFORMANCE MEASURES.

    Science.gov (United States)

    Fraser, John J; Koldenhoven, Rachel M; Saliba, Susan A; Hertel, Jay

    2017-12-01

    Assessment of foot posture, morphology, intersegmental mobility, strength and motor control of the ankle-foot complex are commonly used clinically, but measurement properties of many assessments are unclear. To determine test-retest and inter-rater reliability, standard error of measurement, and minimal detectable change of morphology, joint excursion and play, strength, and motor control of the ankle-foot complex. Reliability study. 24 healthy, recreationally-active young adults without history of ankle-foot injury were assessed by two clinicians on two occasions, three to ten days apart. Measurement properties were assessed for foot morphology (foot posture index, total and truncated length, width, arch height), joint excursion (weight-bearing dorsiflexion, rearfoot and hallux goniometry, forefoot inclinometry, 1 st metatarsal displacement) and joint play, strength (handheld dynamometry), and motor control rating during intrinsic foot muscle (IFM) exercises. Clinician order was randomized using a Latin Square. The clinicians performed independent examinations and did not confer on the findings for the duration of the study. Test-retest and inter-tester reliability and agreement was assessed using intraclass correlation coefficients (ICC 2,k ) and weighted kappa ( K w ). Test-retest reliability ICC were as follows: morphology: .80-1.00, joint excursion: .58-.97, joint play: -.67-.84, strength: .67-.92, IFM motor rating: K W -.01-.71. Inter-rater reliability ICC were as follows: morphology: .81-1.00, joint excursion: .32-.97, joint play: -1.06-1.00, strength: .53-.90, and IFM motor rating: K w .02-.56. Measures of ankle-foot posture, morphology, joint excursion, and strength demonstrated fair to excellent test-retest and inter-rater reliability. Test-retest reliability for rating of perceived difficulty and motor performance was good to excellent for short-foot, toe-spread-out, and hallux exercises and poor to fair for lesser toe extension. Joint play measures had

  19. METHODIC OF DEVELOPMENT OF MOTOR GIFTEDNESS OF PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Fedorova Svetlana Yurievna

    2013-04-01

    Full Text Available Education and training of gifted children today appropriate to consider as an important strategic task of modern society. In this context, the purpose of research is the development motor giftedness, which is particularly relevant at the stage of pre-school education, which is caused by age-preschoolers. Preschoolers' motor giftedness is considered by the author as developing integrated quality, including psychomotor skills, inclinations, increased motivation for motor activity. In the process of study the following methods are used: the study and analysis of the scientific and methodological literature on studies, questioning, interview, testing of physical fitness, statistical data processing. The result of research work is methodic of development of motor giftedness on physical education in preschool. The author's methodic consists of four steps: diagnostic, prognostic, practice and activity, social and pedagogical. Each step determines the inclusion of preschool children in sports and developing environment that meets his or her abilities and needs through the creation of certain social and educational conditions. The area of using results of the author's methodic is preschool and the system of improvement professional skill of teachers.

  20. Trends in Motor Performance of First Graders: A Comparison of Cohorts from 2006 to 2015

    Directory of Open Access Journals (Sweden)

    Sarah Spengler

    2017-09-01

    Full Text Available BackgroundMotor performance is an important factor for health. Already in childhood, motor performance is associated with, e.g., obesity and risk factors for cardiovascular diseases. It is widely believed that the motor performance of children has declined over recent years. However, this belief is lacking clear evidence. The objective of this study was to examine trends in motor performance of first grade students during a period of 10 years (2006–2015. We examined trends in (a aerobic fitness, (b strength, (c speed, and (d balance for boys and girls separately and considered body mass index (BMI as a potential confounder.MethodsFrom 2006 to 2015, we tested 5,001 first graders [50.8% boys; mean age 6.76 (0.56 years] of 18 primary schools in Germany. Each year between 441 and 552 students of the same schools were surveyed. Performance tests were taken from the Motorik-Module Study and the “German Motor Ability Test”: “6-min run,” “push-ups,” “20-m sprint,” and “static stand.” Linear regression models were conducted for statistical analysis.ResultsA slightly negative trend in aerobic fitness performance was revealed in boys (β = −0.050; p = 0.012 but not in girls. In the strength performance test no trend over time was detected. Performance in speed (boys: β = −0.094; girls: β = −0.143; p ≤ 0.001 and balance tests (boys: β = −0.142; girls: β = −0.232; p ≤ 0.001 increased over time for both boys and girls. These findings held true when BMI was considered.ConclusionThis study only partly supported the assumption that motor performance of children has declined: in our study, aerobic fitness declined (only in boys, while strength remained stable and speed and balance even increased in both sexes. Moreover, it seems as if BMI can explain changes in performance only to a small extent. Changed lifestyles might be a substantial cause. Further research on recent trends of motor

  1. Factors associated with motor performance among overweight and nonoverweight Tyrolean primary school children.

    Science.gov (United States)

    Ruedl, Gerhard; Greier, Klaus; Kirschner, Werner; Kopp, Martin

    2016-01-01

    The increasing prevalence of overweight and obesity among children is often associated with motor deficits. Motor performance among children partly depends on modifiable factors, for example, weight status, electronic media use, sports club participation, and on nonmodifiable factors, for example, sex, age, migration background, or socio-economic status. To evaluate factors associated with motor performance among overweight and nonoverweight Tyrolean primary school children. Height, weight, and sport motor performance of primary school children were measured using the German motor performance test DMT 6-18. In addition, children were asked about migration background, sports club participation, and electronic media use in their room. A total of 304 children (48.7% girls) with a mean age of 8.0 ± 1.2 years were tested. In total, 61 (20.1%) children were overweight or obese. Regarding motor performance, nonoverweight children showed significantly higher total z-scores (106.8 ± 5.7 vs. 102.4 ± 6.8). For the total cohort, results of the multiple linear regression analysis (R (2) = 0.20) revealed that factors male sex (β = 0.12), nonoverweight children (β = 0.28), higher school grade (β = 0.23), sports club participation (β = 0.18),and > 2 weekly lessons of physical education (β = 0.26) were associated with an increased motor performance. For nonoverweight children results of the multiple linear regression analysis (R (2) = 0.09) found that a higher school grade (β = 0.17), sports club participation (β = 0.16),and more than 2 weekly lessons of physical education (β = 0.22) were associated with an increased motor performance. For the overweight children, results of the multiple linear regression analysis (R (2) = 0 .43) showed that no migration background (β = 0.23), a higher school grade (β = 0.55), sports club participation (β = 0.33) and more than 2 weekly lessons of physical

  2. Effect of different methods of pulse width modulation on power losses in an induction motor

    Science.gov (United States)

    Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii

    2017-10-01

    We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.

  3. The Investigation of the Relationship between Children's 50m Freestyle Swimming Performances and Motor Performances

    Science.gov (United States)

    Aktug, Zait Burak; Iri, Ruckan; Top, Elif

    2018-01-01

    The aim of the study is to examine the relationship between children's 50 m freestyle swimming performances and motor performances. There were 32 swimmers (male = 21, female = 11), who had been swimming for at least one and a half year, participated in the study. The motor performances of the participating swimmers were determined through the…

  4. Neurofeedback training of alpha-band coherence enhances motor performance.

    Science.gov (United States)

    Mottaz, Anais; Solcà, Marco; Magnin, Cécile; Corbet, Tiffany; Schnider, Armin; Guggisberg, Adrian G

    2015-09-01

    Neurofeedback training of motor cortex activations with brain-computer interface systems can enhance recovery in stroke patients. Here we propose a new approach which trains resting-state functional connectivity associated with motor performance instead of activations related to movements. Ten healthy subjects and one stroke patient trained alpha-band coherence between their hand motor area and the rest of the brain using neurofeedback with source functional connectivity analysis and visual feedback. Seven out of ten healthy subjects were able to increase alpha-band coherence between the hand motor cortex and the rest of the brain in a single session. The patient with chronic stroke learned to enhance alpha-band coherence of his affected primary motor cortex in 7 neurofeedback sessions applied over one month. Coherence increased specifically in the targeted motor cortex and in alpha frequencies. This increase was associated with clinically meaningful and lasting improvement of motor function after stroke. These results provide proof of concept that neurofeedback training of alpha-band coherence is feasible and behaviorally useful. The study presents evidence for a role of alpha-band coherence in motor learning and may lead to new strategies for rehabilitation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Motor Performance as Risk Factor for Lower Extremity Injuries in Children

    DEFF Research Database (Denmark)

    Runge, Lisbeth; Kristensen, Peter Lund; Junge, Tina

    2016-01-01

    PURPOSE: Physical activity related injuries in children constitute a costly public health matter. The influence of motor performance on injury risk is unclear. The purpose was to examine if motor performance was a risk factor of traumatic and overuse lower extremity injuries in a normal population...... motor performance (core stability, vertical jump, shuttle run) was positively associated with traumatic and overuse injuries, and negatively (single leg hop) associated with traumatic injuries, indicating different influence on injury risk. Previous injury was a confounder affecting the effect size...... and the significance. More studies are needed to consolidate the findings, to clarify the influence of different performance tests on different types of injuries and to examine the influence of behaviour in relation to injury risk....

  6. Performance Analysis of Permanent Magnet Motors for Electric Vehicles (EV Traction Considering Driving Cycles

    Directory of Open Access Journals (Sweden)

    Thanh Anh Huynh

    2018-05-01

    Full Text Available This paper evaluates the electromagnetic and thermal performance of several traction motors for electric vehicles (EVs. Two different driving cycles are employed for the evaluation of the motors, one for urban and the other for highway driving. The electromagnetic performance to be assessed includes maximum motor torque output for vehicle acceleration and the flux weakening capability for wide operating range under current and voltage limits. Thermal analysis is performed to evaluate the health status of the magnets and windings for the prescribed driving cycles. Two types of traction motors are investigated: two interior permanent magnet motors and one permanent magnet-assisted synchronous reluctance motor. The analysis results demonstrate the benefits and disadvantages of these motors for EV traction and provide suggestions for traction motor design. Finally, experiments are conducted to validate the analysis.

  7. Motor planning flexibly optimizes performance under uncertainty about task goals.

    Science.gov (United States)

    Wong, Aaron L; Haith, Adrian M

    2017-03-03

    In an environment full of potential goals, how does the brain determine which movement to execute? Existing theories posit that the motor system prepares for all potential goals by generating several motor plans in parallel. One major line of evidence for such theories is that presenting two competing goals often results in a movement intermediate between them. These intermediate movements are thought to reflect an unintentional averaging of the competing plans. However, normative theories suggest instead that intermediate movements might actually be deliberate, generated because they improve task performance over a random guessing strategy. To test this hypothesis, we vary the benefit of making an intermediate movement by changing movement speed. We find that participants generate intermediate movements only at (slower) speeds where they measurably improve performance. Our findings support the normative view that the motor system selects only a single, flexible motor plan, optimized for uncertain goals.

  8. Performance Evaluation and Slip Regulation Control of an Asymmetrical Parameter Type Two-Phase Induction Motor Drive Using a Three-Leg Voltage Source Inverter

    Science.gov (United States)

    Piyarat, Wekin; Kinnares, Vijit

    This paper presents a performance evaluation and a simple speed control method of an asymmetrical parameter type two-phase induction motor drive using a three-leg VSI (Voltage Source Inverter). The two-phase induction motor is adapted from an existing single-phase induction motor resulting in impedance unbalance between main and auxiliary windings. The unbalanced two-phase inverter outputs with orthogonal displacement based on a SPWM (Sinusoidal Pulse Width Modulation) method are controlled with appropriate amplitudes for improving the motor performance. Dynamic simulation of the proposed drive system is given. A simple speed controller based on a slip regulation method is designed. The overall system is implemented on a DSP (Digital Signal Processor) board. The validity of the proposed system is verified by simulation and experimental results.

  9. Traveling-wave piezoelectric linear motor part II: experiment and performance evaluation.

    Science.gov (United States)

    Ting, Yung; Li, Chun-Chung; Chen, Liang-Chiang; Yang, Chieh-Min

    2007-04-01

    This article continues the discussion of a traveling-wave piezoelectric linear motor. Part I of this article dealt with the design and analysis of the stator of a traveling-wave piezoelectric linear motor. In this part, the discussion focuses on the structure and modeling of the contact layer and the carriage. In addition, the performance analysis and evaluation of the linear motor also are dealt with in this study. The traveling wave is created by stator, which is constructed by a series of bimorph actuators arranged in a line and connected to form a meander-line structure. Analytical and experimental results of the performance are presented and shown to be almost in agreement. Power losses due to friction and transmission are studied and found to be significant. Compared with other types of linear motors, the motor in this study is capable of supporting heavier loads and provides a larger thrust force.

  10. A Universal Motor Performance Test System Based on Virtual Instrument

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-09-01

    Full Text Available With the development of technology universal motors play a more and more important role in daily life and production, they have been used in increasingly wide field and the requirements increase gradually. How to control the speed and monitor the real-time temperature of motors are key issues. The cost of motor testing system based on traditional technology platform is very high in many reasons. In the paper a universal motor performance test system which based on virtual instrument is provided. The system achieves the precise control of the current motor speed and completes the measurement of real-time temperature of motor bearing support in order to realize the testing of general-purpose motor property. Experimental result shows that the system can work stability in controlling the speed and monitoring the real-time temperature. It has advantages that traditional using of SCM cannot match in speed, stability, cost and accuracy aspects. Besides it is easy to expand and reconfigure.

  11. Impact of extrinsic factors on fine motor performance of children attending day care.

    Science.gov (United States)

    Corsi, Carolina; Santos, Mariana Martins Dos; Marques, Luísa de Andrade Perez; Rocha, Nelci Adriana Cicuto Ferreira

    2016-12-01

    To assess the impact of extrinsic factors on fine motor performance of children aged two years old. 73 children attending public and 21 private day care centers were assessed. Day care environment was evaluated using the Infant/Toddler Environment Rating Scale - Revised Edition (ITERS-R), fine motor performance was assessed through the Bayley Scales of Infant and Toddler Development - III (BSITD-III), socioeconomic data, maternal education and time of start at the day care were collected through interviews. Spearman's correlation coefficient was calculated to assess the association between the studied variables. The time at the day care was positively correlated with the children's performance in some fine motor tasks of the BSITD-III, showing that the activities developed in day care centers were important for the refinement of specific motor skills, while the overall fine motor performance by the scale was associated with maternal education and the ITERS-R scale sub-item "language and understanding". Extrinsic factors such as higher maternal education and quality of day care centers are associated with fine motor performance in children attending day care. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Nonlinear Performance Characteristics of Flux-Switching PM Motors

    Directory of Open Access Journals (Sweden)

    E. Ilhan

    2013-01-01

    Full Text Available Nonlinear performance characteristics of 3-phase flux-switching permanent magnet motors (FSPM are overviewed. These machines show advantages of a robust rotor structure and a high energy density. Research on the FSPM is predominated by topics such as modeling and machine comparison, with little emphasis given on its performance and limits. Performance characteristics include phase flux linkage, phase torque, and phase inductance. In the paper, this analysis is done by a cross-correlation of rotor position and armature current. Due to the high amount of processed data, which cannot be handled analytically within an acceptable time period, a multistatic 2D finite element model (FEM is used. For generalization, the most commonly discussed FSPM topology, 12/10 FSPM, is chosen. Limitations on the motor performance due to the saturation are discussed on each characteristic. Additionally, a focused overview is given on energy conversion loops and dq-axes identification for the FSPM.

  13. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  14. Long-term performance of motor-operated valves

    Energy Technology Data Exchange (ETDEWEB)

    Scarbrough, T.G.

    1996-12-01

    The U.S. Nuclear Regulatory Commission (NRC) requires that motor-operated valves (MOVs) important to safety be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions to be performed. Despite these requirements, operating experience and research revealed problems with the performance of MOVs in operating nuclear power plants. In response to the concerns about MOV performance, the NRC issued Generic Letter (GL) 89-10, {open_quotes}Safety-Related Motor-Operated Valve Testing and Surveillance,{close_quotes} and its supplements. Most licensees have completed the aspects of their GL 89-10 programs associated with the review of MOV design bases, verification of MOV switch settings initially, testing of MOVs under design-basis conditions where practicable, and improvement of evaluations of MOV failures and necessary corrective action. Licensees are establishing processes to ensure that the long-term aspects of their MOV programs, such as periodic verification of MOV capability and the trending of MOV problems, are maintained. The NRC staff is developing a generic letter to address periodic verification of MOV design-basis capability.

  15. Long-term performance of motor-operated valves

    International Nuclear Information System (INIS)

    Scarbrough, T.G.

    1996-01-01

    The U.S. Nuclear Regulatory Commission (NRC) requires that motor-operated valves (MOVs) important to safety be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions to be performed. Despite these requirements, operating experience and research revealed problems with the performance of MOVs in operating nuclear power plants. In response to the concerns about MOV performance, the NRC issued Generic Letter (GL) 89-10, open-quotes Safety-Related Motor-Operated Valve Testing and Surveillance,close quotes and its supplements. Most licensees have completed the aspects of their GL 89-10 programs associated with the review of MOV design bases, verification of MOV switch settings initially, testing of MOVs under design-basis conditions where practicable, and improvement of evaluations of MOV failures and necessary corrective action. Licensees are establishing processes to ensure that the long-term aspects of their MOV programs, such as periodic verification of MOV capability and the trending of MOV problems, are maintained. The NRC staff is developing a generic letter to address periodic verification of MOV design-basis capability

  16. Influence of discretization method on the digital control system performance

    Directory of Open Access Journals (Sweden)

    Futás József

    2003-12-01

    Full Text Available The design of control system can be divided into two steps. First the process or plant have to be convert into mathematical model form, so that its behavior can be analyzed. Then an appropriate controller have to be design in order to get the desired response of the controlled system. In the continuous time domain the system is represented by differential equations. Replacing a continuous system into discrete time form is always an approximation of the continuous system. The different discretization methods give different digital controller performance. The methods presented on the paper are Step Invariant or Zero Order Hold (ZOH Method, Matched Pole-Zero Method, Backward difference Method and Bilinear transformation. The above mentioned discretization methods are used in developing PI position controller of a dc motor. The motor model was converted by the ZOH method. The performances of the different methods are compared and the results are presented.

  17. METHODIC OF DEVELOPMENT OF MOTOR GIFTEDNESS OF PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Светлана Юрьевна Федорова

    2013-05-01

    Full Text Available Education and training of gifted children today appropriate to consider as an important strategic task of modern society. In this context, the purpose of research is the development motor giftedness, which is particularly relevant at the stage of pre-school education, which is caused by age-preschoolers. Preschoolers' motor giftedness is considered by the author as developing integrated quality, including psychomotor skills, inclinations, increased motivation for motor activity. In the process of study the following methods are used:  the study and analysis of the scientific and methodological literature on studies, questioning, interview, testing of physical fitness, statistical data processing.The result of research work is methodic of development of motor giftedness on physical education in preschool. The author's methodic consists of four steps:  diagnostic, prognostic, practice and activity, social and pedagogical. Each step determines the inclusion of preschool children in sports and developing environment that meets his or her abilities and needs through the creation of certain social and educational conditions.The area of using results of the author's methodic is preschool and the system of improvement professional skill of teachers. DOI: http://dx.doi.org/10.12731/2218-7405-2013-4-31

  18. On the control performance of motors driven by long cables for remote handling at ITER

    International Nuclear Information System (INIS)

    Sol, Enrique del; Meek, Richard; Ruiz Morales, Emilio; Vitelli, Ricardo; Esqué, Salvador

    2016-01-01

    Highlights: • We show the dangerous effects of reflections on the actuator’s system. • We prove how to solve the reflections issue with a commercial LC filter. • We study the filter influence for short cables on two control modes. • We show the filter performance under a real remote handling operation. • We study the excellent performance of the filter for different cable lengths. - Abstract: Pulse Width Modulation (PWM) is nowadays the most used method for controlling a servo-motor. When combining PWM with motors and long cables, such as the ones that will be found at ITER, the standing waves originated are potentially very harmful for both actuator’s life span and control performance. Several methods have been investigated to cope with this issue, such as the use of chokes, filters, snubbers or active modification of the PWM signal. Of all possible locations where an electrical servo-motor could be used at ITER, the most critical scenario arises when mounting a low power motor, with a low gear ratio, in a dexterous manipulator for bilateral teleoperation. In those circumstances cable lengths of more than 150 m are expected between manipulator and control cubicle. In this paper, the effects of long cables in the system safety are analysed on a custom made test bench. The most common solutions to cope with this issue are analysed and a commercial LC filter is selected for further experimentation. An extensive set of experiments are carried out in order to validate the proposed solution for being used on remote handling equipment at ITER.

  19. On the control performance of motors driven by long cables for remote handling at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Sol, Enrique del, E-mail: enrique.delsol@oxfordtechnologies.co.uk [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon OX141RL (United Kingdom); Meek, Richard [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon OX141RL (United Kingdom); Ruiz Morales, Emilio; Vitelli, Ricardo; Esqué, Salvador [Fusion for Energy, Josep Pla, 2, Barcelona 08019 (Spain)

    2016-06-15

    Highlights: • We show the dangerous effects of reflections on the actuator’s system. • We prove how to solve the reflections issue with a commercial LC filter. • We study the filter influence for short cables on two control modes. • We show the filter performance under a real remote handling operation. • We study the excellent performance of the filter for different cable lengths. - Abstract: Pulse Width Modulation (PWM) is nowadays the most used method for controlling a servo-motor. When combining PWM with motors and long cables, such as the ones that will be found at ITER, the standing waves originated are potentially very harmful for both actuator’s life span and control performance. Several methods have been investigated to cope with this issue, such as the use of chokes, filters, snubbers or active modification of the PWM signal. Of all possible locations where an electrical servo-motor could be used at ITER, the most critical scenario arises when mounting a low power motor, with a low gear ratio, in a dexterous manipulator for bilateral teleoperation. In those circumstances cable lengths of more than 150 m are expected between manipulator and control cubicle. In this paper, the effects of long cables in the system safety are analysed on a custom made test bench. The most common solutions to cope with this issue are analysed and a commercial LC filter is selected for further experimentation. An extensive set of experiments are carried out in order to validate the proposed solution for being used on remote handling equipment at ITER.

  20. Flux-weakening control methods for hybrid excitation synchronous motor

    Directory of Open Access Journals (Sweden)

    Mingming Huang

    2015-09-01

    Full Text Available The hybrid excitation synchronous motor (HESM, which aim at combining the advantages of permanent magnet motor and wound excitation motor, have the characteristics of low-speed high-torque hill climbing and wide speed range. Firstly, a new kind of HESM is presented in the paper, and its structure and mathematical model are illustrated. Then, based on a space voltage vector control, a novel flux-weakening method for speed adjustment in the high speed region is presented. The unique feature of the proposed control method is that the HESM driving system keeps the q-axis back-EMF components invariable during the flux-weakening operation process. Moreover, a copper loss minimization algorithm is adopted to reduce the copper loss of the HESM in the high speed region. Lastly, the proposed method is validated by the simulation and the experimental results.

  1. Using hierarchical clustering methods to classify motor activities of COPD patients from wearable sensor data

    Directory of Open Access Journals (Sweden)

    Reilly John J

    2005-06-01

    Full Text Available Abstract Background Advances in miniature sensor technology have led to the development of wearable systems that allow one to monitor motor activities in the field. A variety of classifiers have been proposed in the past, but little has been done toward developing systematic approaches to assess the feasibility of discriminating the motor tasks of interest and to guide the choice of the classifier architecture. Methods A technique is introduced to address this problem according to a hierarchical framework and its use is demonstrated for the application of detecting motor activities in patients with chronic obstructive pulmonary disease (COPD undergoing pulmonary rehabilitation. Accelerometers were used to collect data for 10 different classes of activity. Features were extracted to capture essential properties of the data set and reduce the dimensionality of the problem at hand. Cluster measures were utilized to find natural groupings in the data set and then construct a hierarchy of the relationships between clusters to guide the process of merging clusters that are too similar to distinguish reliably. It provides a means to assess whether the benefits of merging for performance of a classifier outweigh the loss of resolution incurred through merging. Results Analysis of the COPD data set demonstrated that motor tasks related to ambulation can be reliably discriminated from tasks performed in a seated position with the legs in motion or stationary using two features derived from one accelerometer. Classifying motor tasks within the category of activities related to ambulation requires more advanced techniques. While in certain cases all the tasks could be accurately classified, in others merging clusters associated with different motor tasks was necessary. When merging clusters, it was found that the proposed method could lead to more than 12% improvement in classifier accuracy while retaining resolution of 4 tasks. Conclusion Hierarchical

  2. Associating Physical Activity Levels with Motor Performance and Physical Function in Childhood Survivors of Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Hung, Stanley H; Rankin, Anne; Virji-Babul, Naznin; Pritchard, Sheila; Fryer, Christopher; Campbell, Kristin L

    2017-01-01

    Purpose: This cross-sectional, observational study investigated whether physical activity (PA) levels are associated with motor performance and physical function in children after treatment for acute lymphoblastic leukemia (ALL). Method: Participants aged 8-13 years who had completed treatment for ALL (3-36 months post-treatment) were tested at their oncology long-term follow-up appointment at the British Columbia Children's Hospital. PA level was measured using the Physical Activity Questionnaire for Older Children (PAQ-C). Motor performance was measured using the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition, Short Form (BOT-2 SF), and physical function was measured using the 6-minute walk test (6MWT). Results: Thirteen children completed testing. PAQ-C scores were not associated with BOT-2 SF or 6MWT performance. Eleven children (85%) performed below the norm for the 6MWT. Children with elevated body mass index had poorer 6MWT but similar PAQ-C scores. Conclusion: PA was not found to be associated with motor performance and physical function. Participants who were overweight or obese had poorer 6MWT performance, which may indicate the need for closer monitoring of post-treatment weight status and physical function in the oncology follow-up setting.

  3. Association between vestibular function and motor performance in hearing-impaired children.

    Science.gov (United States)

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-12-01

    The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.

  4. Motor performance of preschool children

    OpenAIRE

    Słonka Karina; Dyas Manuela; Słonka Tadeusz; Szurmik Tomasz

    2017-01-01

    Słonka Karina, Dyas Manuela, Słonka Tadeusz, Szurmik Tomasz. Motor performance of preschool children. Journal of Education, Health and Sport. 2017;7(8):1308-1323. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.1045272 http://ojs.ukw.edu.pl/index.php/johs/article/view/5028 https://pbn.nauka.gov.pl/sedno-webapp/works/836989 The journal has had 7 points in Ministry of Science and Higher Education parametric evaluation. Part B item 1223 (26.01.2017...

  5. Analyze Experiment For Vigas and Pertamax to Performance and Exhaust Gas Emission for Gasoline Motor 2000cc

    Science.gov (United States)

    As'adi, Muhamad; Chrisna Ayu Dwiharpini Tupan, Diachirta

    2018-02-01

    The purpose and target for this analyze experiment is we get the performance variabel from gasoline motor which used LGV for fuel and Pertamax, so can give knowledge to community if LGV can be using LGV for fuel to transportation industry and more economic. We used experiment method of engine gasoline motor with 2000 cc which is LGV and Pertamax for fuel. The experiment with static experiment tes above Dyno Test. The result is engine perform to subscribe Torque, power, fuel consumption. Beside the static test we did the Exhaust Steam Emission. The result is the used LGV with the commercial brand Vigas can increase the maximum Engine Power 20.86% and Average Power 14.1%, the maximum torque for Motor which is use LGV as fuel is smaller than Motor with Pertamax, the decrease is 0.94%.Using Vigas in Motor can increase the mileage until 6.9% compare with the Motor with pertamax.Air Fuel Ratio (AFR) for both of the fuels still below the standard, so still happen waste of fuel, specially in low compression.Using Vigas can reduce the Exhaust Steam Emission especially CO2

  6. Effectiveness of autogenic training in improving motor performances in Parkinson's disease.

    Science.gov (United States)

    Ajimsha, M S; Majeed, Nisar A; Chinnavan, Elanchezhian; Thulasyammal, Ramiah Pillai

    2014-06-01

    Relaxation training can be an important adjunct in reducing symptoms associated with Parkinson's disease (PD). Autogenic Training (AT) is a simple, easily administered and inexpensive technique for retraining the mind and the body to be able to relax. AT uses visual imagery and body awareness to promote a state of deep relaxation. To investigate whether AT when used as an adjunct to Physiotherapy (PT) improves motor performances in PD in comparison with a control group receiving PT alone. Randomized, controlled, single blinded trial. Movement Disorder Clinic and Department of Physiotherapy, Sree Chithira Thirunal Institute of Medical Sciences and Technology in Trivandrum, Kerala, India. Patients with PD of grade 2 or 3 of Hoehn & Yahr (H&Y) scale (N = 66). AT group or control group. The techniques were administered by Physiotherapists trained in AT and consisted of 40 sessions per patient over 8 weeks. Motor score subscale of Unified Parkinson's Disease Rating Scale (UPDRS) was used to measure the motor performances. The primary outcome measure was the difference in Motor score subscale of UPDRS scores between Week 1 (pretest score), Week 8 (posttest score), and follow-up at Week 12 after randomization. The simple main effects analysis showed that the AT group performed better than the control group in weeks 8 and 12 (P < .005). Patients in the AT and control groups reported a 51.78% and 35.24% improvement, respectively, in their motor performances in Week 8 compared with that in Week 1, which persisted, in the follow-up (Week 12) as 30.82% in the AT group and 21.42% in the control group. This study provides evidence that AT when used as an adjunct to PT is more effective than PT alone in improving motor performances in PD patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Teeth grinding, oral motor performance and maximal bite force in cerebral palsy children.

    Science.gov (United States)

    Botti Rodrigues Santos, Maria Teresa; Duarte Ferreira, Maria Cristina; de Oliveira Guaré, Renata; Guimarães, Antonio Sergio; Lira Ortega, Adriana

    2015-01-01

    Identify whether the degree of oral motor performance is related to the presence of teeth grinding and maximal bite force values in children with spastic cerebral palsy. Ninety-five spastic cerebral palsy children with and without teeth grinding, according to caregivers' reports, were submitted to a comprehensive oral motor performance evaluation during the feeding process using the Oral Motor Assessment Scale. Maximal bite force was measured using an electronic gnathodynamometer. The teeth grinding group (n = 42) was younger, used anticonvulsant drugs, and was more frequently classified within the subfunctional oral motor performance category. Teeth grinding subfunctional spastic cerebral palsy children presented lower values of maximal bite force. The functional groups showing the presence or absence of teeth grinding presented higher values of maximal bite force compared with the subfunctional groups. In spastic cerebral palsy children, teeth grinding is associated with the worse oral motor performance. © 2015 Special Care Dentistry Association and Wiley Periodicals, Inc.

  8. On the use of musculoskeletal models to interpret motor control strategies from performance data

    Science.gov (United States)

    Cheng, Ernest J.; Loeb, Gerald E.

    2008-06-01

    The intrinsic viscoelastic properties of muscle are central to many theories of motor control. Much of the debate over these theories hinges on varying interpretations of these muscle properties. In the present study, we describe methods whereby a comprehensive musculoskeletal model can be used to make inferences about motor control strategies that would account for behavioral data. Muscle activity and kinematic data from a monkey were recorded while the animal performed a single degree-of-freedom pointing task in the presence of pseudo-random torque perturbations. The monkey's movements were simulated by a musculoskeletal model with accurate representations of musculotendon morphometry and contractile properties. The model was used to quantify the impedance of the limb while moving rapidly, the differential action of synergistic muscles, the relative contribution of reflexes to task performance and the completeness of recorded EMG signals. Current methods to address these issues in the absence of musculoskeletal models were compared with the methods used in the present study. We conclude that musculoskeletal models and kinetic analysis can improve the interpretation of kinematic and electrophysiological data, in some cases by illuminating shortcomings of the experimental methods or underlying assumptions that may otherwise escape notice.

  9. Structural Correlates of Skilled Performance on a Motor Sequence Task

    Directory of Open Access Journals (Sweden)

    Christopher J Steele

    2012-10-01

    Full Text Available The brain regions functionally engaged in motor sequence performance are well established, but the structural characteristics of these regions and the fibre pathways involved have been less well studied. In addition, relatively few studies have combined multiple magnetic resonance imaging (MRI and behavioural performance measures in the same sample. Therefore, the current study used diffusion tensor imaging, probabilistic tractography, and voxel-based morphometry to determine the structural correlates of skilled motor performance. Further, we compared these findings with fMRI results in the same sample. We correlated final performance and rate of improvement measures on a temporal motor sequence task with skeletonised fractional anisotropy (FA and whole brain grey matter (GM volume. Final synchronisation performance was negatively correlated with FA in white matter underlying bilateral sensorimotor cortex – an effect that was mediated by a positive correlation with radial diffusivity. Multi-fibre tractography indicated that this region contained crossing fibres from the corticospinal tract and superior longitudinal fasciculus (SLF. The identified SLF pathway linked parietal and auditory cortical regions that have been shown to be functionally engaged in this task. Thus, we hypothesise that enhanced synchronisation performance on this task may be related to greater fibre integrity of the SLF. Rate of improvement on synchronisation was positively correlated with GM volume in cerebellar lobules HVI and V – regions that showed training-related decreases in activity in the same sample. Taken together, our results link individual differences in brain structure and function to motor sequence performance on the same task. Further, our study illustrates the utility of using multiple MR measures and analysis techniques to specify the interpretation of structural findings.

  10. Concurrent word generation and motor performance: further evidence for language-motor interaction.

    Directory of Open Access Journals (Sweden)

    Amy D Rodriguez

    Full Text Available Embodied/modality-specific theories of semantic memory propose that sensorimotor representations play an important role in perception and action. A large body of evidence supports the notion that concepts involving human motor action (i.e., semantic-motor representations are processed in both language and motor regions of the brain. However, most studies have focused on perceptual tasks, leaving unanswered questions about language-motor interaction during production tasks. Thus, we investigated the effects of shared semantic-motor representations on concurrent language and motor production tasks in healthy young adults, manipulating the semantic task (motor-related vs. nonmotor-related words and the motor task (i.e., standing still and finger-tapping. In Experiment 1 (n = 20, we demonstrated that motor-related word generation was sufficient to affect postural control. In Experiment 2 (n = 40, we demonstrated that motor-related word generation was sufficient to facilitate word generation and finger tapping. We conclude that engaging semantic-motor representations can have a reciprocal influence on motor and language production. Our study provides additional support for functional language-motor interaction, as well as embodied/modality-specific theories.

  11. Cognitive Orientation to (daily) Occupational Performance (CO-OP) with children with Asperger's syndrome who have motor-based occupational performance goals.

    Science.gov (United States)

    Rodger, Sylvia; Brandenburg, Julia

    2009-02-01

    Motor difficulties associated with Asperger's syndrome (AS) are commonly reported, despite these not being diagnostically significant. Cognitive Orientation to daily Occupational Performance (CO-OP) is a verbal problem-solving intervention developed for use with children with developmental coordination disorder to address their motor-based difficulties. This paper reports on two case studies of children with AS illustrating the outcomes of CO-OP to address motor-based occupational performance goals. A case study approach was used to document how two children with AS engaged in 10 weekly sessions of CO-OP addressing child-chosen motor-based occupational performance goals and the outcomes of this intervention. Pre and post-intervention assessment using the Canadian Occupational Performance Measure, Vineland Adaptive Behaviour Scales and the Performance Quality Rating Scale indicated that both children were able to engage in CO-OP intervention to successfully improve their occupational performance. Further research into the application of CO-OP with children with AS is warranted based on preliminary positive findings regarding the efficacy of this intervention to address motor-based performance difficulties in two children with AS.

  12. Electrical motor/generator drive apparatus and method

    Science.gov (United States)

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  13. Avaliação do desempenho motor global e em habilidades motoras axiais e apendiculares de lactentes frequentadores de creche Assessment of global motor performance and gross and fine motor skills of infants attending day care centers

    Directory of Open Access Journals (Sweden)

    Carolina T Souza

    2010-08-01

    Full Text Available OBJETIVO: Analisar o desempenho motor global em habilidades motoras axiais e apendiculares de lactentes que frequentavam, em tempo integral, duas Escolas Municipais de Educação Infantil. MÉTODOS: Estudo longitudinal do qual participaram 30 lactentes avaliados aos 12 e 17 meses de vida com a escala motora das Bayley Scales of Infant and Toddler Development-III, que possibilita a análise do desempenho motor global, apendicular e axial e a discrepância entre eles. Utilizaram-se o teste de Wilcoxon e o Coeficiente de Correlação de Spearman. RESULTADOS: A maioria dos participantes apresentou desempenho motor global dentro dos limites de normalidade, porém abaixo da média de referência aos 12 e 17 meses, com 30% classificados como suspeitos de atraso em pelo menos uma das avaliações. O desempenho motor axial foi inferior ao apendicular aos 12 e aos 17 meses, com grande discrepância entre eles especialmente na 2ª avaliação. Observou-se marcada variabilidade individual nas habilidades motoras apendiculares, com fraca correlação linear no desempenho entre a 1ª e a 2ª avaliações nesse domínio. Nas habilidades axiais e no desempenho motor global, encontrou-se menor variabilidade individual, com correlações moderadas e positivas entre a 1ª e a 2ª avaliações. Identificaram-se quatro lactentes com suspeita de atraso no desenvolvimento motor em ambas as avaliações. CONCLUSÕES: O estudo aponta necessidade de maior atenção ao desenvolvimento motor durante os primeiros 17 meses de crianças que frequentam creches, com especial vigilância à motricidade axial (considerando que ela é parte integrante do desenvolvimento global da criança e às crianças com desempenho suspeito de atraso em duas avaliações consecutivas.OBJECTIVE: To analyze the global motor performance and the gross and fine motor skills of infants attending two public child care centers full-time. METHODS: This was a longitudinal study that included 30 infants

  14. Motor performance is not enhanced by daytime naps in older adults

    Directory of Open Access Journals (Sweden)

    Winifried eBackhaus

    2016-05-01

    Full Text Available The impact of sleep on motor learning in the aging brain was investigated using an experimental diurnal nap setup. As the brain ages several components of learning as well as motor performance change. In addition, aging is also related to sleep architectural changes. This combination of slowed learning processes and impaired sleep behavior raises the question of whether sleep can enhance learning and specifically performance of procedural tasks in healthy, older adults. Previous research was able to show sleep-dependent consolidation overnight for numerous tasks in young adults. Some of these study findings can also be replicated for older adults. This study aims to clarify whether sleep-dependent consolidation can also be found during shorter periods of diurnal sleep. The impact of midday naps on motor consolidation was analyzed by comparing procedural learning using a sequence and a motor adaptation task, in a crossover fashion in healthy, non-sleep deprived, older adults randomly subjected to wake (45 min, short nap (10-20 min sleep or long nap (50-70 min sleep conditions. Older adults exhibited learning gains, these were not found to be sleep-dependent in either task. The results suggest that daytime naps do not have an impact on performance and motor learning in an aging population.

  15. Effects of occupational therapy services on fine motor and functional performance in preschool children.

    Science.gov (United States)

    Case-Smith, J

    2000-01-01

    This study examined how performance components and variables in intervention influenced fine motor and functional outcomes in preschool children. In a sample of 44 preschool-aged children with fine motor delays who received occupational therapy services, eight fine motor and functional performance assessments were administered at the beginning and end of the academic year. Data on the format and intervention activities of each occupational therapy session were recorded for 8 months. The children received a mean of 23 sessions, in both individual and group format. Most of the sessions (81%) used fine motor activities; 29% addressed peer interaction, and 16% addressed play skills. Visual motor outcomes were influenced by the number of intervention sessions and percent of sessions with play goals. Fine motor outcomes were most influenced by the therapists' emphasis on play and peer interaction goals; functional outcomes were influenced by number of sessions and percent of sessions that specifically addressed self-care goals. The influence of play on therapy outcomes suggests that a focus on play in intervention activities can enhance fine motor and visual motor performance.

  16. Increased augmentation index and central systolic arterial pressure are associated with lower school and motor performance in young adolescents.

    Science.gov (United States)

    Vogrin, Bernarda; Slak Rupnik, Marjan; Mičetić-Turk, Dušanka

    2017-12-01

    Objective In adults, improper arterial function has been linked to cognitive impairment. The pulse wave velocity (PWV), augmentation index (AIx) and other vascular parameters are useful indicators of arterial health. In our study, we monitored arterial properties, body constitution, school success, and motor skills in young adolescents. We hypothesize that reduced cognitive and motor abilities have a vascular origin in children. Methods We analysed 81 healthy school children aged 11-16 years. Anthropometry central systolic arterial pressure, body mass index (BMI), standard deviation scores (SDS) BMI, general school performance grade, and eight motor tests were assessed. PWV, AIx, and central systolic arterial pressure (SBPao) were measured. Results AIx and SBPao correlated negatively with school performance grades. Extremely high AIx, PWV and SBPao values were observed in 5% of children and these children had average to low school performance. PWV correlated significantly with weight, height, and waist and hip circumference. AIx, PWV, school success, and BMI correlated strongly with certain motor functions. Conclusions Increased AIx and SBPao are associated with lower school and motor performance in children. PWV is influenced by the body's constitution.

  17. Tactile acuity is disrupted in osteoarthritis but is unrelated to disruptions in motor imagery performance.

    NARCIS (Netherlands)

    Stanton, T.R.; Lin, C.W.; Bray, H.; Smeets, R.J.P.; Taylor, D.; Law, R.Y.; Moseley, G.L.

    2013-01-01

    OBJECTIVE: To determine whether tactile acuity is disrupted in people with knee OA and to determine whether tactile acuity, a clinical signature of primary sensory cortex representation, is related to motor imagery performance (MIP; evaluates working body schema) and pain. METHODS: Experiment 1:

  18. Assessment of diagnostic methods for determining degradation of motor-operated valves

    International Nuclear Information System (INIS)

    Haynes, H.D.; Farmer, W.S.

    1992-01-01

    The Oak Ridge National Laboratory (ORNL) has carried out a comprehensive aging assessment of motor-operated valves (MOVs) in support of the Nuclear Plant Aging Research (NPAR) program. This paper provides a summary of the ORNL MOV aging assessment with emphasis on the identification, evaluation, and application of MOV monitoring methods and techniques. The diagnostic information available from any MOV measurable parameters was evaluated by ORNL using MOVs that were mounted on test stands. Those tests led to the conclusion that the single most informative MOV measurable parameter was also the one which was most easily acquired, namely the motor current. Motor current signature analysis (MCSA) was found to provide detailed information related to the condition of the motor, motor operator, and valve across a wide range of levels. As part of the MOV aging assessment, several tests were carried out by ORNL on MOVs having implanted defects and degradations. Tests were also performed on many MOVs located within a nuclear power plant. In addition, ORNL participated in the Gate Valve Flow Interruption Blowdown Test program carried out at Wyle Laboratories in Huntsville, Alabama. Results from all of these tests are summarized in this paper and several selected examples are given. Other areas covered in this paper include descriptions of relevant regulatory issues and activities, other related diagnostics research at ORNL, and interactions ORNL has had with outside organizations for the purpose of disseminating research results

  19. Detection of Failure in Asynchronous Motor Using Soft Computing Method

    Science.gov (United States)

    Vinoth Kumar, K.; Sony, Kevin; Achenkunju John, Alan; Kuriakose, Anto; John, Ano P.

    2018-04-01

    This paper investigates the stator short winding failure of asynchronous motor also their effects on motor current spectrums. A fuzzy logic approach i.e., model based technique possibly will help to detect the asynchronous motor failure. Actually, fuzzy logic similar to humanoid intelligent methods besides expected linguistic empowering inferences through vague statistics. The dynamic model is technologically advanced for asynchronous motor by means of fuzzy logic classifier towards investigate the stator inter turn failure in addition open phase failure. A hardware implementation was carried out with LabVIEW for the online-monitoring of faults.

  20. The Performance of Fundamental Gross Motor Skills by Children Enrolled in Head Start.

    Science.gov (United States)

    Woodard, Rebecca J.; Yun, Joonkoo

    2001-01-01

    This study sought to descriptively evaluate the performance of fundamental gross motor skills among Head Start children. Levels of performance were compared and contrasted with performance profiles of the Test of Gross Motor Development. Findings suggest that Head Start curriculum should focus on the importance of developing fundamental gross…

  1. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex

    Directory of Open Access Journals (Sweden)

    Marianne Anke Stephan

    2016-05-01

    Full Text Available The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group. For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group. Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools.

  2. Torque calculation in the induction motor with the finite element method; Calculo del par en el motor de induccion con el metodo del elemento finito

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Diaz, Ramon

    2002-06-15

    In this work the method of the finite element is applied to the bi-dimensional analysis of the induction motor in operation in steady state, excited by sine sources of laminar currents and sine sources of voltage. The analysis is focused mainly in the calculation of the electromagnetic torque. The topics of electromagnetic theory are covered and in an idealized model of the induction motor, analytically and numerically with the method of the finite element, in the variant method of Galerkin, the vectorial potential and the torque are calculated. The results obtained with the analytical and numerical methods are compared. Three formulations are developed to calculate the torque with the method of the finite element, using triangular elements of first order, based in the equation of force of Lorentz, the Maxwell tensor and the principle of the virtual work. Finally, a motor of induction of real characteristics is simulated, assuming it is connected to a three-phase voltage source. In this motor it is analyzed the convergence and the evolution in the results obtained of the torque with different discretions, and the torque-velocity performance curve is calculated. [Spanish] En este trabajo se aplica el metodo del elemento finito al analisis bidimensional del motor de induccion en operacion en estado estable, excitado por fuentes de corriente laminar senoidales y fuentes de voltaje senoidales. El analisis se enfoca principalmente en el calculo del par electromagnetico. Se tratan los topicos de teoria electromagnetica involucrados y en un modelo idealizado del motor de induccion, se calculan analitica y numericamente con el metodo del elemento finito, en la variante metodo de Galerkin, el potencial vectorial y el par. Se comparan resultados obtenidos con los metodos analiticos y numericos. Se desarrollan tres formulaciones para calcular el par con el metodo del elemento finito, utilizando elementos triangulares de primer orden, basadas en la ecuacion de fuerza de

  3. Motor relearning program and Bobath method improve motor function of the upper extremities in patients with stroke

    Institute of Scientific and Technical Information of China (English)

    Jinjing Liu; Fengsheng Li; Guihua Liu

    2006-01-01

    BACKGROUND: In the natural evolution of cerebrovascular disease, unconscious use of affected extremity during drug treatment and daily life can improve the function of affected upper extremity partially, but it is very slow and alsc accompanied by the formation of abnormal mode. Therefore, functional training should be emphasized in recovering the motor function of extremity.OBJECTIVE: To observe the effects of combination of motor relearning program and Bobath method on motor function of upper extremity of patients with stroke.DESIGN: Comparison of therapeutic effects taking stroke patients as observation subjects.SETTING: Department of Neurology, General Hospital of Beijing Jingmei Group.PARTICIPANTS: Totally 120 stroke patients, including 60 males and 60 females, averaged (59±3) years, who hospitalized in the Department of Neurology, General Hospital of Beijing Jingmei Group between January 2005 and June 2006 were recruited. The involved patients met the following criteria: Stroke attack within 2 weeks;diagnosis criteria of cerebral hemorrhage or infarction made in the 4th National Cerebrovascular Disease Conference; confirmed by skull CT or MRI; Informed consents of therapeutic regimen were obtained. The patients were assigned into 2 groups according to their wills: rehabilitation group and control group, with 30 males and 30 females in each group. Patients in rehabilitation group averaged (59±2)years old, and those in the control group averaged (58±2)years old.METHODS: ① Patients in two groups received routine treatment in the Department of Neurology. When the vital signs of patients in the rehabilitation group were stable, individualized treatment was conducted by combined application of motor relearning program and Bobath method. Meanwhile, training of activity of daily living was performed according to the disease condition changes of patients at different phases, including the nursing and instruction of body posture, the maintenance of good extremity

  4. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  5. Quantitative Motor Performance and Sleep Benefit in Parkinson Disease.

    Science.gov (United States)

    van Gilst, Merel M; van Mierlo, Petra; Bloem, Bastiaan R; Overeem, Sebastiaan

    2015-10-01

    Many people with Parkinson disease experience "sleep benefit": temporarily improved mobility upon awakening. Here we used quantitative motor tasks to assess the influence of sleep on motor functioning in Parkinson disease. Eighteen Parkinson patients with and 20 without subjective sleep benefit and 20 healthy controls participated. Before and directly after a regular night sleep and an afternoon nap, subjects performed the timed pegboard dexterity task and quantified finger tapping task. Subjective ratings of motor functioning and mood/vigilange were included. Sleep was monitored using polysomnography. On both tasks, patients were overall slower than healthy controls (night: F2,55 = 16.938, P Parkinson patients. Here we show that the subjective experience of sleep benefit is not paralleled by an actual improvement in motor functioning. Sleep benefit therefore appears to be a subjective phenomenon and not a Parkinson-specific reduction in symptoms. © 2015 Associated Professional Sleep Societies, LLC.

  6. Motor-operated valve (MOV) actuator motor and gearbox testing

    International Nuclear Information System (INIS)

    DeWall, K.; Watkins, J.C.; Bramwell, D.

    1997-07-01

    Researchers at the Idaho National Engineering and Environmental Laboratory tested the performance of electric motors and actuator gearboxes typical of the equipment installed on motor-operated valves used in nuclear power plants. Using a test stand that simulates valve closure loads against flow and pressure, the authors tested five electric motors (four ac and one dc) and three gearboxes at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. They also monitored the efficiency of the actuator gearbox. All five motors operated at or above their rated starting torque during tests at normal voltages and temperatures. For all five motors, actual torque losses due to voltage degradation were greater than the losses calculated by methods typically used for predicting motor torque at degraded voltage conditions. For the dc motor the actual torque losses due to elevated operating temperatures were greater than the losses calculated by the typical predictive method. The actual efficiencies of the actuator gearboxes were generally lower than the running efficiencies published by the manufacturer and were generally nearer the published pull-out efficiencies. Operation of the gearbox at elevated temperature did not affect the operating efficiency

  7. Effects of Motor Skill Intervention on Gross Motor Development, Creative Thinking and Academic Performance in Preschool Children

    Directory of Open Access Journals (Sweden)

    Judith Jiménez Díaz

    2010-08-01

    Full Text Available The purpose of this study was to investigate how students (mean= 6.08±0.5 years benefit from a physical education program in motor performance, creative thinking and academic achievement. Students (n = 39 were randomly assigned to comparison group (6 boys and 7 girls who received the regular preschool program (which includes 1 session of 30 minutes per week; intervention group 1 (6 boys and 7 girls who received the regular preschool program plus 1 session of 30 minutes per week of the intervention program; or intervention group 2 (6 boys and 7 girls, who received the regular preschool program plus 1 session of 60 minutes per week of the intervention program; during 8 weeks. All participants performed the Test of Gross Motor Development (TGMD-2 and the Torrance Test of Creative Thinking (TTCT before and after the study. The academic achievement score was given by the school. The ANOVA (Group x Gender x Time pre and post analysis revealed a significant triple interaction in the object control. Significant double interactions in the locomotor subscale and in the gross motor quotient were also found. After the post-hoc analysis, the results suggest that the physical education program benefits the gross motor performance and did not have an effect on the creative thinking or on the academic achievement.

  8. Two is better than one: Physical interactions improve motor performance in humans

    Science.gov (United States)

    Ganesh, G.; Takagi, A.; Osu, R.; Yoshioka, T.; Kawato, M.; Burdet, E.

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor performance during and after interactive practice. We show that these benefits cannot be explained by multi-sensory integration by an individual, but require physical interaction with a reactive partner. Furthermore, the benefits are determined by both the interacting partner's performance and similarity of the partner's behavior to one's own. Our results demonstrate the fundamental neural processes underlying human physical interactions and suggest advantages of interactive paradigms for sport-training and physical rehabilitation.

  9. Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance.

    Science.gov (United States)

    Corbet, Tiffany; Iturrate, Iñaki; Pereira, Michael; Perdikis, Serafeim; Millán, José Del R

    2018-04-21

    Motor imagery (MI) has been largely studied as a way to enhance motor learning and to restore motor functions. Although it is agreed that users should emphasize kinesthetic imagery during MI, recordings of MI brain patterns are not sufficiently reliable for many subjects. It has been suggested that the usage of somatosensory feedback would be more suitable than standardly used visual feedback to enhance MI brain patterns. However, somatosensory feed-back should not interfere with the recorded MI brain pattern. In this study we propose a novel feedback modality to guide subjects during MI based on sensory threshold neuromuscular electrical stimulation (St-NMES). St-NMES depolarizes sensory and motor axons without eliciting any muscular contraction. We hypothesize that St-NMES does not induce detectable ERD brain patterns and fosters MI performance. Twelve novice subjects were included in a cross-over design study. We recorded their EEG, comparing St-NMES with visual feed-back during MI or resting tasks. We found that St-NMES not only induced significantly larger desynchronization over sensorimotor areas (p<0.05) but also significantly enhanced MI brain connectivity patterns. Moreover, classification accuracy and stability were significantly higher with St-NMES. Importantly, St-NMES alone did not induce detectable artifacts, but rather the changes in the detected patterns were due to an increased MI performance. Our findings indicate that St-NMES is a promising feedback in order to foster MI performance and cold be used for BMI online applications. Copyright © 2018. Published by Elsevier Inc.

  10. Motor performance and functional ability in preschool- and early school-aged children with Juvenile Idiopathic Arthritis: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Takken Tim

    2008-01-01

    Full Text Available Abstract Objective To describe the level of motor performance and functional skills in young children with JIA. Methods In a cross-sectional study in 56 preschool-aged (PSA and early school- aged children (ESA with JIA according to ILAR classification, motor performance was measured with the Bayley Scales of Infant Development II (BSID2 and the Movement Assessment Battery for Children (M-ABC. Functional skills were measured with the Pediatric Evaluation of Disability Inventory (PEDI. Disease outcome was measured with a joint count on swelling/range of joint motion, functional ability and joint pain. Results Twenty two PSA children (mean age 2.1 years with a mean Developmental Index of the BSID2 of 77.9 indicating a delayed motor performance; 45% of PSA children showed a severe delayed motor performance. Mean PEDI scores were normal, 38% of PSA scored below -2 SD in one or more domains of the PEDI. Thirty four ESA children (mean age 5.2 years with a mean M-ABC 42.7, indicating a normal motor performance, 12% of ESA children had an abnormal score. Mean PEDI scores showed impaired mobility skills, 70% of ESA children scored below -2 SD in one or more domains of the PEDI. Disease outcome in both age groups demonstrated low to moderate scores. Significant correlations were found between age at disease onset, disease duration and BSID2 or M-ABC and between disease outcome and PEDI in both age cohorts. Conclusion More PSA children have more impaired motor performance than impaired functional skills, while ESA children have more impairment in functional skills. Disease onset and disease duration are correlated with motor performance in both groups. Impaired motor performance and delayed functional skills is primarily found in children with a polyarticular disease course. Clinical follow up and rehabilitation programs should also focus on motor performance and functional skills development in young children with JIA.

  11. Motor-enriched learning activities can improve mathematical performance in preadolescent children

    DEFF Research Database (Denmark)

    Beck, Mikkel Malling; Lind, Rune Rasmussen; Geertsen, Svend Sparre

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning......-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical.......73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities...

  12. Performance of claw-poled PM-stepping motor

    International Nuclear Information System (INIS)

    Liu, C.P.; Jeng, G.R.; Chen, W.C.; Tsai, M.C.; Wu, K.T.; Yao, Y.D.

    2007-01-01

    Present work is to analyze the performance of a permanent-magnetic (PM) stepping motor with claw poles by using the magnetic-circuit simulation technique. In this paper, we calculate the torque characteristics of the motor, such as the detent and the holding torques, and the step-position error by changing the gap between the upper and the lower stators and the staggered angle between the two stators. Through comparison of numerical data with experiment measurements, we found that the detent torque could be effectively reduced by increasing the stator-to-stator gap and further by decreasing the step-position error. Furthermore, the holding torque could be unchanged as the stator assemblage changed; however, it would be degenerated under the condition of low magnetization

  13. Effort to increase an engine performance using electrical ignition system for motor vehicle

    Directory of Open Access Journals (Sweden)

    I Wayan Bandem Adnyana

    2012-11-01

    Full Text Available Increasing engine performances using electrical ignition system on motor vehicle. In accordance with the development oftechnology, improvisation of automotive is created in order to increase the performance of engine. The method to increase thisperformance has been done by modify the ignition system, where the conventional method of ignition system which uses contactbreaker substituted by using capacitor. The improvisation of ignition system has been tested by increasing the speed and load onstationary condition. Results show that the improvisation of ignition system by using capacitor increases the effective power andreduce the specific fuel consumption of engine and reduce the gas emission of CO.

  14. Levitation Performance of Two Opposed Permanent Magnet Pole-Pair Separated Conical Bearingless Motors

    Science.gov (United States)

    Kascak, Peter; Jansen, Ralph; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2013-01-01

    In standard motor applications, rotor suspension with traditional mechanical bearings represents the most economical solution. However, in certain high performance applications, rotor suspension without contacting bearings is either required or highly beneficial. Examples include applications requiring very high speed or extreme environment operation, or with limited access for maintenance. This paper expands upon a novel bearingless motor concept, in which two motors with opposing conical air-gaps are used to achieve full five-axis levitation and rotation of the rotor. Force in this motor is created by deliberately leaving the motor s pole-pairs unconnected, which allows the creation of different d-axis flux in each pole pair. This flux imbalance is used to create lateral force. This approach is different than previous bearingless motor designs, which require separate windings for levitation and rotation. This paper examines the predicted and achieved suspension performance of a fully levitated prototype bearingless system.

  15. Introduction to the permanent magnet motor market

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Toshihiro; Hamada, Kaneyuki [Yaskawa Electric Corp. (Japan)

    2000-07-01

    According to the Kyoto summit on global warming (COP3) in December 1997, the green-house gas emission level has to be reduced to 92-94% of the 1990 green-house gas level by the year 2014-2018. This would require conserving energy. An efficient means of achieving this voluntary goal is by employing high-efficiency drives, since motors consume 70% of all electricity for industrial use in Japan. As adjustable speed drives become popular, interior permanent magnet (IPM) motors, lately, have been recognized for high-efficiency performance. Due to the progress in permanent magnet technology combined with modern control methods, especially vector control with and without speed-sensors, the IPM motor is gaining in popularity. Compact size and high-efficiency performance is furthering the IPM motor as the preferred motor in many applications. This paper describes the principle and operation of IPM motors and compares its performance with that of an induction motor. Important features and practical control methods for IPM motors are presented. Various application examples highlighting the advantages of employing an IPM motor system are discussed. The applications include, but are not limited to, machine tools, fans, pumps, elevators, cranes, etc. (orig.)

  16. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children

    Science.gov (United States)

    Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper

    2016-01-01

    Objective To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. Methods This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Results Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all Pperformance in mathematics and reading comprehension. Conclusions The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations. PMID:27560512

  17. Single phase induction motor with starting performance

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.; Demeter, E. [Research Institute for Electrical Machines, ICPE-ME, Bucharest (Romania); Navrapescu, V. [University `Politehnica` Bucharest, Electrical Engineering Faculty Splaiul Independentei, Bucharest (Romania)

    1997-12-31

    The paper presents problems related to a special type of single phase induction motor. The main novelty consists in the use of a conducting (aluminium casted) shell distributed on the periferic region of the rotor. As a result the starting performance, as well as the rated ones, is much improved in comparison with the conventional construction. (orig.) 4 refs.

  18. Altered neuronal activities in the motor cortex with impaired motor performance in adult rats observed after infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Sankaranarayani, R; Nalini, A; Rao Laxmi, T; Raju, T R

    2010-01-05

    Although definite evidences are available to state that, neuronal activity is a prime determinant of animal behavior, the specific relationship between local field potentials of the motor cortex after intervention with CSF from human patients and animal behavior have remained opaque. The present study has investigated whether cerebrospinal fluid from sporadic amyotrophic lateral sclerosis (sALS) patients could disrupt neuronal activity of the motor cortex, which could be associated with disturbances in the motor performance of adult rats. CSF from ALS patients (ALS-CSF) was infused into the lateral ventricle of Wistar rats. After 24h, the impact of ALS-CSF on the local field potentials (LFPs) of the motor cortex and on the motor behavior of animals were examined. The results indicate that ALS-CSF produced a bivariate distribution on the relative power values of the LFPs of the motor cortex 24h following infusion. However, the behavioral results did not show bimodality, instead showed consistent decrease in motor performance: on rotarod and grip strength meter. The neuronal activity of the motor cortex negatively correlated with the duration of ALS symptoms at the time of lumbar puncture. Although the effect of ALS-CSF was more pronounced at 24h following infusion, the changes observed in LFPs and motor performance appeared to revert to baseline values at later time points of testing. In the current study, we have shown that, ALS-CSF has the potential to perturb neuronal activity of the rat motor cortex which was associated with poor performance on motor function tests.

  19. Long-term progressive motor skill training enhances corticospinal excitability for the ipsilateral hemisphere and motor performance of the untrained hand

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Larsen, Malte Nejst; Grey, Michael James

    2017-01-01

    It is well-established that unilateral motor practice can lead to increased performance in the opposite non-trained hand. Here, we test the hypothesis that progressively increasing task difficulty during long-term skill training with the dominant right hand increase performance and corticomotor...... and accuracy to individual proficiency promotes motor skill learning and drives the iM1-CSE resulting in enhanced performance of the non-trained hand. The results underline the importance of increasing task difficulty progressively and individually in skill learning and rehabilitation training. This article...... excitability of the left non-trained hand. Subjects practiced a visuomotor tracking task engaging right digit V for 6 weeks with either progressively increasing task difficulty (PT) or no progression (NPT). Corticospinal excitability(CSE) was evaluated from the resting motor threshold(rMT) and recruitment...

  20. Long-term progressive motor skill training enhances corticospinal excitability for the ipsilateral hemisphere and motor performance of the untrained hand

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Larsen, Malte Nejst; Grey, Michael James

    2017-01-01

    It is well established that unilateral motor practice can lead to increased performance in the opposite non-trained hand. Here, we test the hypothesis that progressively increasing task difficulty during long-term skill training with the dominant right hand increase performance and corticomotor...... demands for timing and accuracy to individual proficiency promotes motor skill learning and drives the iM1-CSE resulting in enhanced performance of the non-trained hand. The results underline the importance of increasing task difficulty progressively and individually in skill learning and rehabilitation...... excitability of the left non-trained hand. Subjects practiced a visuomotor tracking task engaging right digit V for 6 weeks with either progressively increasing task difficulty (PT) or no progression (NPT). Corticospinal excitability (CSE) was evaluated from the resting motor threshold (rMT) and recruitment...

  1. Effect of task-oriented training and high-variability practice on gross motor performance and activities of daily living in children with spastic diplegia.

    Science.gov (United States)

    Kwon, Hae-Yeon; Ahn, So-Yoon

    2016-10-01

    [Purpose] This study investigates how a task-oriented training and high-variability practice program can affect the gross motor performance and activities of daily living for children with spastic diplegia and provides an effective and reliable clinical database for future improvement of motor performances skills. [Subjects and Methods] This study randomly assigned seven children with spastic diplegia to each intervention group including that of a control group, task-oriented training group, and a high-variability practice group. The control group only received neurodevelopmental treatment for 40 minutes, while the other two intervention groups additionally implemented a task-oriented training and high-variability practice program for 8 weeks (twice a week, 60 min per session). To compare intra and inter-relationships of the three intervention groups, this study measured gross motor performance measure (GMPM) and functional independence measure for children (WeeFIM) before and after 8 weeks of training. [Results] There were statistically significant differences in the amount of change before and after the training among the three intervention groups for the gross motor performance measure and functional independence measure. [Conclusion] Applying high-variability practice in a task-oriented training course may be considered an efficient intervention method to improve motor performance skills that can tune to movement necessary for daily livelihood through motor experience and learning of new skills as well as change of tasks learned in a complex environment or similar situations to high-variability practice.

  2. System and method to determine electric motor efficiency using an equivalent circuit

    Science.gov (United States)

    Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA

    2011-06-07

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  3. Low Intensity Focused tDCS Over the Motor Cortex Shows Inefficacy to Improve Motor Imagery Performance

    Directory of Open Access Journals (Sweden)

    Irma N. Angulo-Sherman

    2017-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a brain stimulation technique that can enhance motor activity by stimulating the motor path. Thus, tDCS has the potential of improving the performance of brain-computer interfaces during motor neurorehabilitation. tDCS effects depend on several aspects, including the current density, which usually varies between 0.02 and 0.08 mA/cm2, and the location of the stimulation electrodes. Hence, testing tDCS montages at several current levels would allow the selection of current parameters for improving stimulation outcomes and the comparison of montages. In a previous study, we found that cortico-cerebellar tDCS shows potential of enhancing right-hand motor imagery. In this paper, we aim to evaluate the effects of the focal stimulation of the motor cortex over motor imagery. In particular, the effect of supplying tDCS with a 4 × 1 ring montage, which consists in placing an anode on the motor cortex and four cathodes around it, over motor imagery was assessed with different current densities. Electroencephalographic (EEG classification into rest or right-hand/feet motor imagery was evaluated on five healthy subjects for two stimulation schemes: applying tDCS for 10 min on the (1 right-hand or (2 feet motor cortex before EEG recording. Accuracy differences related to the tDCS intensity, as well as μ and β band power changes, were tested for each subject and tDCS modality. In addition, a simulation of the electric field induced by the montage was used to describe its effect on the brain. Results show no improvement trends on classification for the evaluated currents, which is in accordance with the observation of variable EEG band power results despite the focused stimulation. The lack of effects is probably related to the underestimation of the current intensity required to apply a particular current density for small electrodes and the relatively short inter-electrode distance. Hence, higher current

  4. Self-tuning Torque Control of Induction Motors for High Performance Applications

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    -link voltage a non-linear model of the inverter giving the relation between turn-on times and voltages is developed. A dynamic model of the induction motor based on space phasors is described. The model in a reference frame fixed to the rotor magnetizing current is analyzed in detail and extended with a model......: · To analyze and develop strategies for torque control of induction motors well suited for automatic tuning. · To analyze and develop methods for automatic tuning of the applied controllers. · To develop robust methods for adaptive field oriented control. · To test the final concept on different motors...... for magnetic saturating. The parameters in this non-linear model of the motor and inverter are determined by impressing some special designed stator voltage signals and measuring the stator currents. A s something new in this context a robust current controller is determined by relay experiment before starting...

  5. Motor performance and learning difficulties in schoolchildren aged 7 to 10 years old

    Directory of Open Access Journals (Sweden)

    J. Silva

    2011-01-01

    Full Text Available The general objective of this study was to evaluate the motor performance of children with and without learning difficulty indicatives. Took part in the study 406 students aged 7 to 10 years old, being 231 girls (56.9% and 175 (43.1% boys enrolled in a municipal public school in São José, Santa Catarina, Brazil. The indicative of learning difficulties was verified through the TDE, while motor performance was evaluated with the MABC. Boys without learning difficulties had better performance in the majority of the abilities evaluated, beyond an association between the indicative of motor problems with learning difficulties towards writing, arithmetic, reading, and in general. On the other hand, female students of the sample with and without any indicative of learning difficulties did not differentiate themselves as to motor abilities evaluated, with an association merely between the indicative of motor problems and reading problems. Based on the differences identified between girls and boys, results call attention to the need for future research in this area, considering gender as a differential variable in this relationship.

  6. Design principles and optimal performance for molecular motors under realistic constraints

    Science.gov (United States)

    Tu, Yuhai; Cao, Yuansheng

    2018-02-01

    The performance of a molecular motor, characterized by its power output and energy efficiency, is investigated in the motor design space spanned by the stepping rate function and the motor-track interaction potential. Analytic results and simulations show that a gating mechanism that restricts forward stepping in a narrow window in configuration space is needed for generating high power at physiologically relevant loads. By deriving general thermodynamics laws for nonequilibrium motors, we find that the maximum torque (force) at stall is less than its theoretical limit for any realistic motor-track interactions due to speed fluctuations. Our study reveals a tradeoff for the motor-track interaction: while a strong interaction generates a high power output for forward steps, it also leads to a higher probability of wasteful spontaneous back steps. Our analysis and simulations show that this tradeoff sets a fundamental limit to the maximum motor efficiency in the presence of spontaneous back steps, i.e., loose-coupling. Balancing this tradeoff leads to an optimal design of the motor-track interaction for achieving a maximum efficiency close to 1 for realistic motors that are not perfectly coupled with the energy source. Comparison with existing data and suggestions for future experiments are discussed.

  7. Method for Lumped Parameter simulation of Digital Displacement pumps/motors based on CFD

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital displacement fluid power pumps/motors offers improved efficiency and performance compared to traditional variable displacement pump/motors. These improvements are made possible by using efficient electronically controlled seat valves and careful design of the flow geometry. To optimize...... the design and control of digital displacement machines, there is a need for simulation models, preferably models with low computational cost. Therefore, a low computational cost generic lumped parameter model of digital displacement machine is presented, including a method for determining the needed model...... parameters based on steady CFD results, in order to take detailed geometry information into account. The response of the lumped parameter model is compared to a computational expensive transient CFD model for an example geometry....

  8. induction motor, unbalance, electrical loss, finite element method.

    Directory of Open Access Journals (Sweden)

    Camilo Andrés Cortés

    2008-09-01

    Full Text Available This paper shows the pattern of a 7.5 kW squirrel-cage induction motor’s electrical loss in balanced and unbalanced conditions, modelling the motor using the finite element method and comparing the results with experimental data obtained in the laboratory for the selected motor. Magnetic flux density variation was analysed at four places in the machine. The results so obtained sho- wed that the undervoltage unbalanced condition was the most critical from the motor’s total loss point of view. Regarding varia- tion of loss in parts of the motor, a constant iron loss pattern was found when the load was changed for each type of voltage supply and that the place where the loss had the largest rise was in the machine’s rotor.

  9. Short-term immobilization influences use-dependent cortical plasticity and fine motor performance.

    Science.gov (United States)

    Opie, George M; Evans, Alexandra; Ridding, Michael C; Semmler, John G

    2016-08-25

    Short-term immobilization that reduces muscle use for 8-10h is known to influence cortical excitability and motor performance. However, the mechanisms through which this is achieved, and whether these changes can be used to modify cortical plasticity and motor skill learning, are not known. The purpose of this study was to investigate the influence of short-term immobilization on use-dependent cortical plasticity, motor learning and retention. Twenty-one adults were divided into control and immobilized groups, both of which underwent two experimental sessions on consecutive days. Within each session, transcranial magnetic stimulation (TMS) was used to assess motor-evoked potential (MEP) amplitudes, short- (SICI) and long-interval intracortical inhibition (LICI), and intracortical facilitation (ICF) before and after a grooved pegboard task. Prior to the second training session, the immobilized group underwent 8h of left hand immobilization targeting the index finger, while control subjects were allowed normal limb use. Immobilization produced a reduction in MEP amplitudes, but no change in SICI, LICI or ICF. While motor performance improved for both groups in each session, the level of performance was greater 24-h later in control, but not immobilized subjects. Furthermore, training-related MEP facilitation was greater after, compared with before, immobilization. These results indicate that immobilization can modulate use-dependent plasticity and the retention of motor skills. They also suggest that changes in intracortical excitability are unlikely to contribute to the immobilization-induced modification of cortical excitability. Copyright © 2016. Published by Elsevier Ltd.

  10. Priming of disability and elderly stereotype in motor performance: similar or specific effects?

    Science.gov (United States)

    Ginsberg, Frederik; Rohmer, Odile; Louvet, Eva

    2012-04-01

    In three experimental studies, the effects of priming participants with the disability stereotype were investigated with respect to their subsequent motor performance. Also explored were effects of activating two similar stereotypes, persons with a disability and elderly people. In Study 1, participants were primed with the disability stereotype versus with a neutral prime, and then asked to perform on a motor coordination task. In Studies 2 and 3, a third condition was introduced: priming participants with the elderly stereotype. Results indicated that priming participants with the disability stereotype altered their motor performance: they showed decreased manual dexterity and performed slower than the non-primed participants. Priming with the elderly stereotype decreased only performance speed. These findings underline that prime-to-behavior effects may depend on activation of specific stereotype content.

  11. Nonlinear performance characteristics of flux-switching PM motors

    NARCIS (Netherlands)

    Ilhan, E.; Kremers, M.F.J.; Motoasca, T.E.; Paulides, J.J.H.; Lomonova, E.

    2013-01-01

    Nonlinear performance characteristics of 3-phase flux-switching permanent magnet motors (FSPM) are overviewed. These machines show advantages of a robust rotor structure and a high energy density. Research on the FSPM is predominated by topics such as modeling and machine comparison, with little

  12. Low motor performance scores among overweight children: poor coordination or morphological constraints?

    Science.gov (United States)

    Chivers, Paola; Larkin, Dawne; Rose, Elizabeth; Beilin, Lawrence; Hands, Beth

    2013-10-01

    This study examined whether lower motor performance scores can be full attributed to poor coordination, or whether weight related morphological constraints may also affect motor performance. Data for 666 children and adolescents from the longitudinal Western Australian Pregnancy Cohort (Raine) Study were grouped into normal weight, overweight and obese categories based on the International Obesity Task Force cut points. Participants completed the 10-item McCarron Assessment of Neuromuscular Development (MAND) at the 10 and 14 year follow-up. The prevalence of overweight and obese participants classified with mild or moderate motor difficulties was not different from the normal weight group at 10 years (χ2 = 5.8 p = .215), but higher at 14 years (χ2 = 11.3 p = .023). There were no significant differences in overall motor performance scores between weight status groups at 10 years, but at 14 years, the normal weight group achieved better scores than the obese group (pobese groups on the jump task at 10 (pmotor competence are appropriate for an increasingly overweight and obese population. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Motor performance of tongue with a computer-integrated system under different levels of background physical exertion

    Science.gov (United States)

    Huo, Xueliang; Johnson-Long, Ashley N.; Ghovanloo, Maysam; Shinohara, Minoru

    2015-01-01

    The purpose of this study was to compare the motor performance of tongue, using Tongue Drive System, to hand operation for relatively complex tasks under different levels of background physical exertion. Thirteen young able-bodied adults performed tasks that tested the accuracy and variability in tracking a sinusoidal waveform, and the performance in playing two video games that require accurate and rapid movements with cognitive processing using tongue and hand under two levels of background physical exertion. Results show additional background physical activity did not influence rapid and accurate displacement motor performance, but compromised the slow waveform tracking and shooting performances in both hand and tongue. Slow waveform tracking performance by the tongue was compromised with an additional motor or cognitive task, but with an additional motor task only for the hand. Practitioner Summary We investigated the influence of task complexity and background physical exertion on the motor performance of tongue and hand. Results indicate the task performance degrades with an additional concurrent task or physical exertion due to the limited attentional resources available for handling both the motor task and background exertion. PMID:24003900

  14. Motor Skill Performance and Sports Participation in Deaf Elementary School Children

    Science.gov (United States)

    Hartman, Esther; Houwen, Suzanne; Visscher, Chris

    2011-01-01

    This study aimed to examine motor performance in deaf elementary school children and its association with sports participation. The population studied included 42 deaf children whose hearing loss ranged from 80 to 120 dB. Their motor skills were assessed with the Movement Assessment Battery for Children, and a questionnaire was used to determine…

  15. Dynamic Friction Parameter Identification Method with LuGre Model for Direct-Drive Rotary Torque Motor

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2016-01-01

    Full Text Available Attainment of high-performance motion/velocity control objectives for the Direct-Drive Rotary (DDR torque motor should fully consider practical nonlinearities in controller design, such as dynamic friction. The LuGre model has been widely utilized to describe nonlinear friction behavior; however, parameter identification for the LuGre model remains a challenge. A new dynamic friction parameter identification method for LuGre model is proposed in this study. Static parameters are identified through a series of constant velocity experiments, while dynamic parameters are obtained through a presliding process. Novel evolutionary algorithm (NEA is utilized to increase identification accuracy. Experimental results gathered from the identification experiments conducted in the study for a practical DDR torque motor control system validate the effectiveness of the proposed method.

  16. Motor performance of children with mild intellectual disability and borderline intellectual functioning

    NARCIS (Netherlands)

    Vuijk, P. J.; Hartman, E.; Scherder, E.; Visscher, C.

    2010-01-01

    Background There is a relatively small body of research on the motor performance of children with mild intellectual disabilities (MID) and borderline intellectual functioning (BIF). Adequate levels of motor skills may contribute to lifelong enjoyment of physical activity, participation in sports and

  17. Motor skills, cognition, and work performance of people with severe mental illness.

    Science.gov (United States)

    Lipskaya-Velikovsky, Lena; Elgerisi, Dikla; Easterbrook, Adam; Ratzon, Navah Z

    2018-01-12

    Employment offers many benefits to people with mental illness, yet their employment rate is much lower than that of the general population. We investigated the effect of work-related motor skills, neurocognition, and job attitudes on the work performance of people with mental illness, comparing those working in sheltered workshops, with controls working in similar jobs. Twenty-nine adults with severe mental illness and 27 controls matched by gender and age were enrolled into the study using convenience sampling. They were assessed for gross and fine motor hand functioning, job attitudes, work performance, and cognition. People with mental illness scored lower on work performance, cognitive functioning, and hand dexterity while sitting and working with tools. They were assigned lower job loads than were controls, and perceived the physical environment at work as more constraining than did controls. Assembling motor skills significantly explained the work performance of people with mental illness. The results expand our understanding of the complexities involved in the employment of people with severe mental illness, and point to new paths for improving vocational outcomes of people with severe mental illness, taking into account their motor skills and job attitudes. Implications for rehabilitation Therapists should be aware that employed people with severe mental illness may have various unmet needs, affecting their work performance and experience of stress. This study results demonstrate importance of motor skills and perception of the work environment for the promotion of vocational outcomes among individuals with severe mental illness. Employment of people with severe mental illness should be viewed from holistic perspective as with general population, rather than focused on traditionally illness-related factors.

  18. The role of rotational hand movements and general motor ability in children’s mental rotation performance

    Directory of Open Access Journals (Sweden)

    Petra eJansen

    2015-07-01

    Full Text Available Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular seem to have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N= 83; Age range: 7.0-8.3 and 9.0-10.11 years. In addition, we assessed the role of motor ability in this relationship. Boys in the 7-8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability.

  19. Linear ultrasonic motor for absolute gravimeter.

    Science.gov (United States)

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-05-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Motor and cognitive performance of overweight preschool children.

    Science.gov (United States)

    Krombholz, Heinz

    2013-02-01

    Gross and fine motor skills and cognitive performance in obese and overweight children were compared to healthy weight children. Participants were 1,543 children (797 boys and 746 girls) ages 43 to 84 months, attending childcare centers in Munich, Germany. According to German Body Mass Index (BMI) standards for age and sex, 4.6% of the children were classified as obese (percentile greater or equal 97), 6.8% as overweight (percentile greater or equal 90 and less than 97), 5.9% as underweight (percentile less than 10), and 83.1% as being of healthy weight. Dependent variables were physical characteristics (height, weight, skinfold thickness), physical fitness (standing broad jump, shuttle run, hanging), body coordination (balancing forward, balancing backward, lateral jump, hopping), manual dexterity (right and left hand), and cognitive performance (intelligence, verbal ability, concentration). Higher proportions of children from lower socioeconomic and immigrant backgrounds were overweight. There was no association between weight and sex. Overweight children showed lower performance on gross motor skills (coordination and fitness), manual dexterity, and intelligence compared to healthy weight children, even after controlling for the effects of social class and immigration status.

  1. Transcranial direct current stimulation (tDCS) to the supplementary motor area (SMA) influences performance on motor tasks.

    Science.gov (United States)

    Hupfeld, K E; Ketcham, C J; Schneider, H D

    2017-03-01

    The supplementary motor area (SMA) is believed to be highly involved in the planning and execution of both simple and complex motor tasks. This study aimed to examine the role of the SMA in planning the movements required to complete reaction time, balance, and pegboard tasks using anodal transcranial direct current stimulation (tDCS), which passes a weak electrical current between two electrodes, in order to modulate neuronal activity. Twenty healthy adults were counterbalanced to receive either tDCS (experimental condition) or no tDCS (control condition) for 3 days. During administration of tDCS, participants performed a balance task significantly faster than controls. After tDCS, subjects significantly improved their simple and choice reaction time. These results demonstrate that the SMA is highly involved in planning and executing fine and gross motor skill tasks and that tDCS is an effective modality for increasing SMA-related performance on these tasks. The findings may be generalizable and therefore indicate implications for future interventions using tDCS as a therapeutic tool.

  2. Mental workload and motor performance dynamics during practice of reaching movements under various levels of task difficulty.

    Science.gov (United States)

    Shuggi, Isabelle M; Oh, Hyuk; Shewokis, Patricia A; Gentili, Rodolphe J

    2017-09-30

    The assessment of mental workload can inform attentional resource allocation during task performance that is essential for understanding the underlying principles of human cognitive-motor behavior. While many studies have focused on mental workload in relation to human performance, a modest body of work has examined it in a motor practice/learning context without considering individual variability. Thus, this work aimed to examine mental workload by employing the NASA TLX as well as the changes in motor performance resulting from the practice of a novel reaching task. Two groups of participants practiced a reaching task at a high and low nominal difficulty during which a group-level analysis assessed the mental workload, motor performance and motor improvement dynamics. A secondary cluster analysis was also conducted to identify specific individual patterns of cognitive-motor responses. Overall, both group- and cluster-level analyses revealed that: (i) all participants improved their performance throughout motor practice, and (ii) an increase in mental workload was associated with a reduction of the quality of motor performance along with a slower rate of motor improvement. The results are discussed in the context of the optimal challenge point framework and in particular it is proposed that under the experimental conditions employed here, functional task difficulty: (i) would possibly depend on an individuals' information processing capabilities, and (ii) could be indexed by the level of mental workload which, when excessively heightened can decrease the quality of performance and more generally result in delayed motor improvements. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity.

    Science.gov (United States)

    Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P

    2018-01-01

    Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.

  4. Carbon monoxide exposure and information processing during perceptual-motor performance

    Energy Technology Data Exchange (ETDEWEB)

    Mihevic, P.M.; Gliner, J.A.; Horvath, S.M.

    1983-01-01

    This study examined the influence of exposure to ambient carbon monoxide resulting in final carboxyhemoglobin (COHb) levels of approximately 5.0% on the ability to process information during motor performance. Subjects (n . 16) performed a primary reciprocal tapping task and a secondary digit manipulation task singly and/or concurrently during 2.5 h exposure to room air (0 ppm CO) or 100 ppm CO. Five levels of tapping difficulty and two levels of digit manipulation were employed. Tapping performance was unaffected when COHb levels were as high as 5%. However, at this level of COHb it was noted that CO exposure interacted with task difficulty of both tasks to influence reaction time on the digit manipulation task. It was concluded that motor performance was not influenced by exposure to CO leading to COHb concentrations of 5%. Task difficulty was a significant factor mediating behavioral effects of CO exposure.

  5. Carbon monoxide exposure and information processing during perceptual-motor performance

    Energy Technology Data Exchange (ETDEWEB)

    Mihevic, P.M.; Gliner, J.A.; Horvath, S.M.

    1983-04-01

    This study examined the influence of exposure to ambient carbon monoxide resulting in final carboxyhemoglobin (COHb) levels of approximately 5.0% on the ability to process information during motor performance. Subjects (n = 16) performed a primary reciprocal tapping task and a secondary digit manipulation task singly and/or concurrently during 2.5 h exposure to room air (0 ppm CO) or 100 ppm CO. Five levels of tapping difficulty and two levels of digit manipulation were employed. Tapping performance was unaffected when COHb levels were as high as 5%. However, at this level of COHb it was noted that CO exposure interacted with task difficulty of both tasks to influence reaction time on the digit manipulation task. It was concluded that motor performance was not influenced by exposure to CO leading to COHb concentrations of 5%. Task difficulty was a significant factor mediating behavioral effects of CO exposure.

  6. A Theoretical Investigation on Rectifying Performance of a Single Motor Molecular Device

    International Nuclear Information System (INIS)

    Lei Hui; Tan Xun-Qiong

    2015-01-01

    We report ab initio calculations of the transport behavior of a phenyl substituted molecular motor. The calculated results show that the transport behavior of the device is sensitive to the rotation degree of the rotor part. When the rotor part is parallel with the stator part, a better rectifying performance can be found in the current-voltage curve. However, when the rotor part revolves to vertical with the stator part, the currents in the positive bias region decrease slightly. More importantly, the rectifying performance disappears. Thus this offers us a new method to modulate the rectifying behavior in molecular devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method

    Science.gov (United States)

    Ciurys, Marek Pawel

    2017-12-01

    Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.

  8. Effects of glycine on motor performance in rats after traumatic spinal cord injury.

    Science.gov (United States)

    Gonzalez-Piña, Rigoberto; Nuño-Licona, Alberto

    2007-01-01

    It has been reported that glycine improves some functions lost after spinal cord injury (SCI). In order to assess the effects of glycine administration on motor performance after SCI, we used fifteen male Wistar rats distributed into three groups: sham (n = 3), spinal-cord injury (n = 6,) and spinal cord injury + glycine (n = 6). Motor performance was assessed using the beam-walking paradigm and footprint analysis. Results showed that for all animals with spinal-cord injury, scores in the beam-walking increased, which is an indication of increased motor deficit. In addition, footprint analysis showed a decrease in stride length and an increase in stride angle, additional indicators of motor deficit. These effects trended towards recovery after 8 weeks of recording and trended toward improvement by glycine administration; the effect was not significant. These results suggest that glycine replacement alone is not sufficient to improve the motor deficits that occur after SCI.

  9. Physical and Motor Performance Predictors of Lower Body ...

    African Journals Online (AJOL)

    The aim of this study was to develop a lower body explosive power (LBEP) prediction model from various physical and motor performance components among a cohort of male and female adolescents living in the Tlokwe local municipality of the North-West Province. A cross-sectional experimental research design was ...

  10. Performance analysis of samarium cobalt P.M. synchronous motor fed from PWM inverters

    International Nuclear Information System (INIS)

    Rahman, M.A.; Choudhury, M.A.

    1985-01-01

    This paper presents an analysis and performance of samarium cobalt permanent magnet (P.M.) synchronous motors fed from two types of voltage source pulse width modulated (PWM) inverters. The analysis and test results on the steady state performance of a P.M. motor fed from PWM inverters are presented. PWM inverters are used in variable voltage variable frequency applications to avoid a double conversion process of ordinary inverters. In drives, they are used for voltage and speed regulation of motors. Use of modulation technique in inverters also allow to eliminate or minimize selected harmonics from the inverter output voltage

  11. Human θ burst stimulation enhances subsequent motor learning and increases performance variability.

    Science.gov (United States)

    Teo, James T H; Swayne, Orlando B C; Cheeran, Binith; Greenwood, Richard J; Rothwell, John C

    2011-07-01

    Intermittent theta burst stimulation (iTBS) transiently increases motor cortex excitability in healthy humans by a process thought to involve synaptic long-term potentiation (LTP), and this is enhanced by nicotine. Acquisition of a ballistic motor task is likewise accompanied by increased excitability and presumed intracortical LTP. Here, we test how iTBS and nicotine influences subsequent motor learning. Ten healthy subjects participated in a double-blinded placebo-controlled trial testing the effects of iTBS and nicotine. iTBS alone increased the rate of learning but this increase was blocked by nicotine. We then investigated factors other than synaptic strengthening that may play a role. Behavioral analysis and modeling suggested that iTBS increased performance variability, which correlated with learning outcome. A control experiment confirmed the increase in motor output variability by showing that iTBS increased the dispersion of involuntary transcranial magnetic stimulation-evoked thumb movements. We suggest that in addition to the effect on synaptic plasticity, iTBS may have facilitated performance by increasing motor output variability; nicotine negated this effect on variability perhaps via increasing the signal-to-noise ratio in cerebral cortex.

  12. Method for the Field-oriented Control of an Induction Motor

    DEFF Research Database (Denmark)

    2000-01-01

    A method for the field-oriented control of an induction motor by means of a frequency contverter is dislosed, in which method a transformation angle is determined by estimation and is corrected in dependence on a rotational speed of a rotor flux vector or of the induction motor and/or in dependence...... on a delay time. In this connection it is desirable to improve the control behavior. To that end, the transformation angle is corrected a second time to compensate for a phase shift in the frequency converter....

  13. The performance and efficiency of four motor/controller/battery systems for the simpler electric vehicles

    Science.gov (United States)

    Shipps, P. R.

    1980-01-01

    A test and analysis program performed on four complete propulsion systems for an urban electric vehicle (EV) is described and results given. A dc series motor and a permanent magnet (PM) motor were tested, each powered by an EV battery pack and controlled by (1) a series/parallel voltage-switching (V-switch) system; and (2) a system using a pulse width modulation, 400 Hz transistorized chopper. Dynamometer tests were first performed, followed by eV performance predictions and data correlating road tests. During dynamometer tests using chopper control; current, voltage, and power were measured on both the battery and motor sides of the chopper, using three types of instrumentation. Conventional dc instruments provided adequate accuracy for eV power and energy measurements, when used on the battery side of the controller. When using the chopper controller, the addition of a small choke inductor improved system efficiency in the lower duty cycle range (some 8% increase at 50% duty cycle) with both types of motors. Overall system efficiency rankings during road tests were: (1) series motor with V-switch; (2) PM motor with V-switch; (3) series motor with chopper; and (4) PM motor with chopper. Chopper control of the eV was smoother and required less driver skill than V-switch control.

  14. Anthropometric and motor performance profile of elite futsal athletes

    Directory of Open Access Journals (Sweden)

    Leandro Ricardo Altimari

    2008-01-01

    Full Text Available The purpose of the present study was to identify the anthropometric and motor performance profile of futsal (indoor soccer athletes in the second and third-placed teams in the Parana state championships (Brazil. Anthropometric (body mass, stature and skinfolds thickness and motor performance (modified abdominal test, shuttle run, race of 30 m and 40 s measures were obtained from twenty-seven male athletes (24.7 ± 6.4 years; 73.6 ± 7.6 kg; 174.8 ± 6.6 cm. For data analysis, athletes were grouped according to game positions. ANOVA one-way was used for comparisons between different positions, followed by Scheffé’s post hoc test, with p ABSTRACT Este estudo objetivou identificar o perfil antropométrico e o desempenho motor de atletas de futsal masculino, pertencentes às equipes finalistas do campeonato paranaense da categoria adulto, chave ouro. Para tanto, coletou-se medidas antropométricas (massa corporal, estatura e espessura de dobras cutâneas e de desempenho motor (testes abdominal modificado, shuttle run, corrida de 30 m e corrida de 40 s de vinte e sete atletas (24,7 ± 6,4 anos; 73,6 ± 7,6 kg; 174,8 ± 6,6 cm, do sexo masculino. Para a análise dos dados, agrupou-se os atletas de acordo com a posição de jogo. Anova one-way foi empregada para as comparações entre os jogadores das diferentes posições, seguida pelo teste post hoc de Scheffé, com P < 0,05. Verificou-se diferença signifi cante entre os jogadores de diferentes posições de jogo nas variáveis: massa corporal (alas < goleiros, P < 0,01, estatura (alas < pivôs e goleiros, P < 0,01 e massa corporal magra (alas < goleiros, P < 0,01. Não foram observadas diferenças significantes entre os jogadores das diferentes posições de jogo nas variáveis de desempenho motor. Os resultados encontrados no presente estudo sugerem que atletas de futsal apresentam, na maioria das variáveis analisadas, características antropométricas e de desempenho motor semelhantes entre

  15. The fourth dimension: A motoric perspective on the anxiety-performance relationship.

    Science.gov (United States)

    Carson, Howie J; Collins, Dave

    2016-01-01

    This article focuses on raising concern that anxiety-performance relationship theory has insufficiently catered for motoric issues during, primarily, closed and self-paced skill execution (e.g., long jump and javelin throw). Following a review of current theory, we address the under-consideration of motoric issues by extending the three-dimensional model put forward by Cheng, Hardy, and Markland (2009) ('Toward a three-dimensional conceptualization of performance anxiety: Rationale and initial measurement development, Psychology of Sport and Exercise , 10 , 271-278). This fourth dimension, termed skill establishment , comprises the level and consistency of movement automaticity together with a performer's confidence in this specific process, as providing a degree of robustness against negative anxiety effects. To exemplify this motoric influence, we then offer insight regarding current theories' misrepresentation that a self-focus of attention toward an already well-learned skill always leads to a negative performance effect. In doing so, we draw upon applied literature to distinguish between positive and negative self-foci and suggest that on what and how a performer directs their attention is crucial to the interaction with skill establishment and, therefore, performance. Finally, implications for skill acquisition research are provided. Accordingly, we suggest a positive potential flow from applied/translational to fundamental/theory-generating research in sport which can serve to freshen and usefully redirect investigation into this long-considered but still insufficiently understood concept.

  16. Motor Performance of Children with Mild Intellectual Disability and Borderline Intellectual Functioning

    Science.gov (United States)

    Vuijk, P. J.; Hartman, E.; Scherder, E.; Visscher, C.

    2010-01-01

    Background: There is a relatively small body of research on the motor performance of children with mild intellectual disabilities (MID) and borderline intellectual functioning (BIF). Adequate levels of motor skills may contribute to lifelong enjoyment of physical activity, participation in sports and healthy lifestyles. The present study compares…

  17. Outcome and Process in Motor Performance: A Comparison of Jumping by Typically Developing Children and Those with Low Motor Proficiency

    Science.gov (United States)

    Williams, Morgan D.; Saunders, John E.; Maschette, Wayne E.; Wilson, Cameron J.

    2013-01-01

    The motivation for this study was to explore a conceptual framework to understand the outcomes and processes of motor performance in children. Vertical jumping, a fundamental movement skill, was used to compare children (ages 6-12 years) who were typically developing (TD) and those identified as having low motor proficiency (LMP). Jumps were…

  18. Experimental Methods for UAV Aerodynamic and Propulsion Performance Assessment

    Directory of Open Access Journals (Sweden)

    Stefan ANTON

    2015-06-01

    Full Text Available This paper presents an experimental method for assessing the performances and the propulsion power of a UAV in several points based on telemetry. The points in which we make the estimations are chosen based on several criteria and the fallowing parameters are measured: airspeed, time-to-climb, altitude and the horizontal distance. With the estimated propulsion power and knowing the shaft motor power, the propeller efficiency is determined at several speed values. The shaft motor power was measured in the lab using the propeller as a break. Many flights, using the same UAV configuration, were performed before extracting flight data, in order to reduce the instrumental or statistic errors. This paper highlights both the methodology of processing the data and the validation of theoretical results.

  19. The change in perceived motor competence and motor task values during elementary school : Gender and motor performance differences

    NARCIS (Netherlands)

    Noordstar, J.J.; van der Net, J.; Jak, S.; Helders, P.J.M.; Jongmans, M.J.

    2016-01-01

    Participation in motor activities is essential for social interaction and life satisfaction in children. Self-perceptions and task values have a central position in why children do or do not participate in (motor) activities. Investigating developmental changes in motor self-perceptions and motor

  20. Permanently split capacitor motor-study of the design parameters

    Science.gov (United States)

    Sarac, Vasilija; Stefanov, Goce

    2017-09-01

    Paper analyzes the influence of various design parameters on torque of permanently split capacitor motor. Motor analytical model is derived and it is used for calculating the performance characteristics of basic motor model. The acquired analytical model is applied in optimization software that uses genetic algorithms (GA) as an optimization method. Optimized motor model with increased torque is derived by varying three motor parameters in GA program: winding turns ratio, average air gap flux density and motor stack length. Increase of torque has been achieved for nominal operation but also at motor starting. Accuracy of the derived models is verified by Simulink. The acquired values of several motor parameters from transient characteristics of Simulink models are compared with the corresponding values obtained from analytical models of both motors, basic and optimized. Numerical analysis, based on finite element method (FEM), is also performed for both motor models. As a result of the FEM analysis, magnetic flux density in motor cross-section is calculated and adequate conclusions are derived in relation to core saturation and air gap flux density in both motor models.

  1. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  2. Fine-motor skills testing and prediction of endovascular performance

    DEFF Research Database (Denmark)

    Bech, Bo; Lönn, Lars; Schroeder, Torben V

    2013-01-01

    Performing endovascular procedures requires good control of fine-motor digital movements and hand-eye coordination. Objective assessment of such skills is difficult. Trainees acquire control of catheter/wire movements at various paces. However, little is known to what extent talent plays for novice...

  3. Peak height velocity as an alternative for maturational classification associated with motor performance

    Directory of Open Access Journals (Sweden)

    Leonardo Trevizan Costa

    2009-01-01

    Full Text Available Adolescence is a phase characterized by important physical and maturational alterations, with individuals of the same chronological age, but who are more mature, may present sportive advantages because of greater force gain and additional muscle mass. Thus, in studies evaluating motor skills of children and adolescents, maturational classification should be an efficient and easily applicable tool in order to facilitate the interpretation of the true relationship between maturation and motor performance. Therefore, the objective of this study was to compare the relationship between motor performance and different types of classification of biological maturation in 209 boys aged to 17 years (11.59 ± 2.57 practicing soccer. Anthropometric variables were obtained according to the ISAK criteria. Biological maturation was determined based on age at peak height velocity (PHV and also by self-assessment of sexual maturation (genitalia and pubic hair. Motor performance was evaluated by sit-and-reach tests, horizontal jump, modified push-ups, 50-m run, and 9/12-min run/walk. The results showed progression in the variables analyzed as the subjects reached maturity. Correlation analysis and the egression values indicated higher consistency for the PHV classification, which better explained motor performance according to maturational status, exceeding the values obtained by comparison according to age or sexual maturation. Thus, the use of PHV as a classification instrument is preferably recommended for youngsters with haracteristics similar to those of the present sample.

  4. Optimization analysis of propulsion motor control efficiency

    Directory of Open Access Journals (Sweden)

    CAI Qingnan

    2017-12-01

    Full Text Available [Objectives] This paper aims to strengthen the control effect of propulsion motors and decrease the energy used during actual control procedures.[Methods] Based on the traditional propulsion motor equivalence circuit, we increase the iron loss current component, introduce the definition of power matching ratio, calculate the highest efficiency of a motor at a given speed and discuss the flux corresponding to the power matching ratio with the highest efficiency. In the original motor vector efficiency optimization control module, an efficiency optimization control module is added so as to achieve motor efficiency optimization and energy conservation.[Results] MATLAB/Simulink simulation data shows that the efficiency optimization control method is suitable for most conditions. The operation efficiency of the improved motor model is significantly higher than that of the original motor model, and its dynamic performance is good.[Conclusions] Our motor efficiency optimization control method can be applied in engineering to achieve energy conservation.

  5. A novel PM motor with hybrid PM excitation and asymmetric rotor structure for high torque performance

    Directory of Open Access Journals (Sweden)

    Gaohong Xu

    2017-05-01

    Full Text Available This paper proposes a novel permanent magnet (PM motor for high torque performance, in which hybrid PM material and asymmetric rotor design are applied. The hybrid PM material is adopted to reduce the consumption of rare-earth PM because ferrite PM is assisted to enhance the torque production. Meanwhile, the rotor structure is designed to be asymmetric by shifting the surface-insert PM (SPM, which is used to improve the torque performance, including average torque and torque ripple. Moreover, the reasons for improvement of the torque performance are explained by evaluation and analysis of the performances of the proposed motor. Compared with SPM motor and V-type motor, the merit of high utilization ratio of rare-earth PM is also confirmed, showing that the proposed motor can offer higher torque density and lower torque ripple simultaneously with less consumption of rare-earth PM.

  6. Torque Ripple Minimization and Performance Investigation of an In-Wheel Permanent Magnet Motor

    Directory of Open Access Journals (Sweden)

    A. Mansouri

    2016-06-01

    Full Text Available Recently, electric vehicle motoring has become a topic of interest, due to the several problems caused by thermal engines such as pollution and high oil prices. Thus, electric motors are increasingly applied in vehicle’ applications and relevant research about these motors and their applications has been performed. Of particular interest are the improvements regarding torque production capability, the minimization of torque ripple and iron losses. The present work deals with the optimum design and the performance investigation of an outer rotor permanent magnet motor for in-wheel electric vehicle application. At first, and in order to find the optimum motor design, a new based particle-swarm multi-objective optimization procedure is applied. Three objective functions are used: efficiency maximization, weight and ripple torque minimization. Secondly, the effects of the permanent magnets segmentation, the stator slots opening, and the separation of adjacent magnets by air are outlined. The aim of the paper is the design of a topology with smooth output torque, low ripple torque, low iron losses and mechanical robustness.

  7. A Method to Determine Supply Voltage of Permanent Magnet Motor at Optimal Design Stage

    Science.gov (United States)

    Matustomo, Shinya; Noguchi, So; Yamashita, Hideo; Tanimoto, Shigeya

    The permanent magnet motors (PM motors) are widely used in electrical machinery, such as air conditioner, refrigerator and so on. In recent years, from the point of view of energy saving, it is necessary to improve the efficiency of PM motor by optimization. However, in the efficiency optimization of PM motor, many design variables and many restrictions are required. In this paper, the efficiency optimization of PM motor with many design variables was performed by using the voltage driven finite element analysis with the rotating simulation of the motor and the genetic algorithm.

  8. Proposed torque optimized behavior for digital speed control of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, H.M.B.; El-Shewy, H.M.; El-Kholy, M.M. [Zagazig Univ., Dept. of Electrical Engineering, Zagazig (Egypt); Abdel-Kader, F.E. [Menoufyia Univ., Dept. of Electrical Engineering, Menoufyia (Egypt)

    2002-09-01

    In this paper, a control strategy for speed control of induction motors with field orientation is proposed. The proposed method adjusts the output voltage and frequency of the converter to operate the motor at the desired speed with maximum torque per ampere at all load torques keeping the torque angle equal to 90 deg. A comparison between the performance characteristics of a 2 hp induction motor using three methods of speed control is presented. These methods are the proposed method, the direct torque control method and the constant V/f method. The comparison showed that better performance characteristics are obtained using the proposed speed control strategy. A computer program, based on this method, is developed. Starting from the motor parameters, the program calculates a data set for the stator voltage and frequency required to obtain maximum torque per ampere at any motor speed and load torque. This data set can be used by the digital speed control system of induction motors. (Author)

  9. Theta Neurofeedback Effects on Motor Memory Consolidation and Performance Accuracy: An Apparent Paradox?

    Science.gov (United States)

    Reiner, Miriam; Lev, Dror D; Rosen, Amit

    2018-05-15

    Previous studies have shown that theta neurofeedback enhances motor memory consolidation on an easy-to-learn finger-tapping task. However, the simplicity of the finger-tapping task precludes evaluating the putative effects of elevated theta on performance accuracy. Mastering a motor sequence is classically assumed to entail faster performance with fewer errors. The speed-accuracy tradeoff (SAT) principle states that as action speed increases, motor performance accuracy decreases. The current study investigated whether theta neurofeedback could improve both performance speed and performance accuracy, or would only enhance performance speed at the cost of reduced accuracy. A more complex task was used to study the effects of parietal elevated theta on 45 healthy volunteers The findings confirmed previous results on the effects of theta neurofeedback on memory consolidation. In contrast to the two control groups, in the theta-neurofeedback group the speed-accuracy tradeoff was reversed. The speed-accuracy tradeoff patterns only stabilized after a night's sleep implying enhancement in terms of both speed and accuracy. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Awake Surgery for a Violin Player: Monitoring Motor and Music Performance, A Case Report.

    Science.gov (United States)

    Piai, Vitória; Vos, Sandra H; Idelberger, Reinhard; Gans, Pauline; Doorduin, Jonne; Ter Laan, Mark

    2018-02-27

    We report the case of a professional violin player who underwent an awake craniotomy to resect a tumor in the left supplementary motor area, an area involved in motor planning. A careful pre- and intraoperative monitoring plan for music performance and complex motor function was established that could be used in combination with cortical stimulation. The patient suffered an epileptic seizure during cortical stimulation. The monitoring of complex motor and musical functions was implemented with the patient playing the violin while the resection was performed. Almost complete resection was achieved with no notable postoperative deficits contributing to functional impairment. The multidisciplinary approach, involving neurosurgery, neuropsychology, anesthesiology, and clinical neurophysiology, allowed us to successfully cope with the theoretical and practical challenges associated with tailored care for a professional musician. The music and motor monitoring plan is reported in detail to enable other sites to reproduce and adapt it accordingly.

  11. Neuronal Substrates Underlying Performance Variability in Well-Trained Skillful Motor Task in Humans.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Uehara, Shintaro; Hirose, Satoshi; Yamamoto, Shinji; Naito, Eiichi

    2016-01-01

    Motor performance fluctuates trial by trial even in a well-trained motor skill. Here we show neural substrates underlying such behavioral fluctuation in humans. We first scanned brain activity with functional magnetic resonance imaging while healthy participants repeatedly performed a 10 s skillful sequential finger-tapping task. Before starting the experiment, the participants had completed intensive training. We evaluated task performance per trial (number of correct sequences in 10 s) and depicted brain regions where the activity changes in association with the fluctuation of the task performance across trials. We found that the activity in a broader range of frontoparietocerebellar network, including the bilateral dorsolateral prefrontal cortex (DLPFC), anterior cingulate and anterior insular cortices, and left cerebellar hemisphere, was negatively correlated with the task performance. We further showed in another transcranial direct current stimulation (tDCS) experiment that task performance deteriorated, when we applied anodal tDCS to the right DLPFC. These results indicate that fluctuation of brain activity in the nonmotor frontoparietocerebellar network may underlie trial-by-trial performance variability even in a well-trained motor skill, and its neuromodulation with tDCS may affect the task performance.

  12. The fourth dimension: A motoric perspective on the anxiety–performance relationship

    Science.gov (United States)

    Carson, Howie J.; Collins, Dave

    2016-01-01

    ABSTRACT This article focuses on raising concern that anxiety–performance relationship theory has insufficiently catered for motoric issues during, primarily, closed and self-paced skill execution (e.g., long jump and javelin throw). Following a review of current theory, we address the under-consideration of motoric issues by extending the three-dimensional model put forward by Cheng, Hardy, and Markland (2009) (‘Toward a three-dimensional conceptualization of performance anxiety: Rationale and initial measurement development, Psychology of Sport and Exercise, 10, 271–278). This fourth dimension, termed skill establishment, comprises the level and consistency of movement automaticity together with a performer's confidence in this specific process, as providing a degree of robustness against negative anxiety effects. To exemplify this motoric influence, we then offer insight regarding current theories’ misrepresentation that a self-focus of attention toward an already well-learned skill always leads to a negative performance effect. In doing so, we draw upon applied literature to distinguish between positive and negative self-foci and suggest that on what and how a performer directs their attention is crucial to the interaction with skill establishment and, therefore, performance. Finally, implications for skill acquisition research are provided. Accordingly, we suggest a positive potential flow from applied/translational to fundamental/theory-generating research in sport which can serve to freshen and usefully redirect investigation into this long-considered but still insufficiently understood concept. PMID:26692896

  13. Electric Motor Thermal Management R&D. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-01

    With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.

  14. Effect of Early Physical Activity Programs on Motor Performance and Neuromuscular Development in Infants Born Preterm: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Leila Valizadeh

    2017-03-01

    Full Text Available Introduction: Although the survival rate of infants born preterm has increased, the prevalence of developmental problems and motor disorders among this population of infants remains the same. This study investigated the effect of physical activity programs in and out of water on motor performance and neuromuscular development of infants born preterm and had induced immobility by mechanical ventilation.Methods: This study was carried out in Al-Zahra hospital, Tabriz. 76 premature infants were randomly assigned into four groups. One group received daily passive range of motion to all extremities based on the Moyer-Mileur protocol. Hydrotherapy group received exercises for shoulders and pelvic area in water every other day. A combination group received physical activity programs in and out of water on alternating days. Infants in a containment group were held in a fetal position. Duration of study was two weeks ‘from 32 through 33 weeks post menstrual age (PMA. Motor outcomes were measured by the Test of Infant Motor Performance. Neuromuscular developmental was assessed by New Ballard scale and leg recoil and Ankle dorsiflexion items from Dubowitz scale. Data were analyzed using SPSS version 13.Results: TIMP and neuromuscular scores improved in all groups. Motor performance did not differ between groups at 34 weeks PMA. Postural tone of leg recoil was significantly higher in physical activity groups post intervention.Conclusion: Physical activities and containment didn’t have different effects on motor performance in infants born preterm. Leg recoil of neuromuscular development items was affected by physical activity programs.

  15. Motor Performance as Predictor of Physical Activity in Children: The CHAMPS Study-DK.

    Science.gov (United States)

    Larsen, Lisbeth Runge; Kristensen, Peter Lund; Junge, Tina; Rexen, Christina Trifonov; Wedderkopp, Niels

    2015-09-01

    Physical activity (PA) is associated with several health benefits in children, and PA habits developed in childhood tend to persist into adulthood. PA may be the foundation of a healthy lifestyle, and motor performance has been shown to be positively associated with PA in cross-sectional studies. The purpose of this study was to explore the longitudinal relation between motor performance and PA in a 3-yr follow-up study. Longitudinal analyses were performed using data from 673 participants (44% boys, 6-12 yr old) who had been included in the Childhood Health Activity and Motor Performance School study-DK. Baseline motor performance tests consisted of vertical jump, shuttle run, hand grip strength, backward balance, precision throw, and cardiovascular fitness. Composite z-scores were generated to express health-related fitness and performance-related fitness. PA was measured by accelerometer at baseline and at 3-yr follow-up and was expressed as a percentage of time in moderate-to-vigorous PA. Cardiovascular fitness, vertical jump, health-related fitness, and performance-related fitness showed significant positive associations with 3-yr follow-up measures of PA in both sexes. Furthermore, shuttle run showed significant inverse associations with follow-up measures of PA for both sexes. Cardiorespiratory fitness, shuttle run, vertical jump, health-related fitness, and performance-related fitness were significantly associated with time spent in moderate-to-vigorous PA at 3-yr follow-up. The clinical relevance of the results indicates that cardiorespiratory fitness and shuttle run in childhood may be important determinants of PA in adolescence.

  16. Trends in Motor Performance of First Graders: A Comparison of Cohorts from 2006 to 2015.

    Science.gov (United States)

    Spengler, Sarah; Rabel, Matthias; Kuritz, Arvid Marius; Mess, Filip

    2017-01-01

    Motor performance is an important factor for health. Already in childhood, motor performance is associated with, e.g., obesity and risk factors for cardiovascular diseases. It is widely believed that the motor performance of children has declined over recent years. However, this belief is lacking clear evidence. The objective of this study was to examine trends in motor performance of first grade students during a period of 10 years (2006-2015). We examined trends in (a) aerobic fitness, (b) strength, (c) speed, and (d) balance for boys and girls separately and considered body mass index (BMI) as a potential confounder. From 2006 to 2015, we tested 5,001 first graders [50.8% boys; mean age 6.76 (0.56) years] of 18 primary schools in Germany. Each year between 441 and 552 students of the same schools were surveyed. Performance tests were taken from the Motorik-Module Study and the "German Motor Ability Test": "6-min run," "push-ups," "20-m sprint," and "static stand." Linear regression models were conducted for statistical analysis. A slightly negative trend in aerobic fitness performance was revealed in boys (β = -0.050; p  = 0.012) but not in girls. In the strength performance test no trend over time was detected. Performance in speed (boys: β = -0.094; girls: β = -0.143; p  ≤ 0.001) and balance tests (boys: β = -0.142; girls: β = -0.232; p  ≤ 0.001) increased over time for both boys and girls. These findings held true when BMI was considered. This study only partly supported the assumption that motor performance of children has declined: in our study, aerobic fitness declined (only in boys), while strength remained stable and speed and balance even increased in both sexes. Moreover, it seems as if BMI can explain changes in performance only to a small extent. Changed lifestyles might be a substantial cause. Further research on recent trends of motor performance and interacting variables is needed to support the results

  17. A novel automatic method for monitoring Tourette motor tics through a wearable device.

    Science.gov (United States)

    Bernabei, Michel; Preatoni, Ezio; Mendez, Martin; Piccini, Luca; Porta, Mauro; Andreoni, Giuseppe

    2010-09-15

    The aim of this study was to propose a novel automatic method for quantifying motor-tics caused by the Tourette Syndrome (TS). In this preliminary report, the feasibility of the monitoring process was tested over a series of standard clinical trials in a population of 12 subjects affected by TS. A wearable instrument with an embedded three-axial accelerometer was used to detect and classify motor tics during standing and walking activities. An algorithm was devised to analyze acceleration data by: eliminating noise; detecting peaks connected to pathological events; and classifying intensity and frequency of motor tics into quantitative scores. These indexes were compared with the video-based ones provided by expert clinicians, which were taken as the gold-standard. Sensitivity, specificity, and accuracy of tic detection were estimated, and an agreement analysis was performed through the least square regression and the Bland-Altman test. The tic recognition algorithm showed sensitivity = 80.8% ± 8.5% (mean ± SD), specificity = 75.8% ± 17.3%, and accuracy = 80.5% ± 12.2%. The agreement study showed that automatic detection tended to overestimate the number of tics occurred. Although, it appeared this may be a systematic error due to the different recognition principles of the wearable and video-based systems. Furthermore, there was substantial concurrency with the gold-standard in estimating the severity indexes. The proposed methodology gave promising performances in terms of automatic motor-tics detection and classification in a standard clinical context. The system may provide physicians with a quantitative aid for TS assessment. Further developments will focus on the extension of its application to everyday long-term monitoring out of clinical environments. © 2010 Movement Disorder Society.

  18. Effects of Motor Learning on Clinical Isokinetic Test Performance in Knee Osteoarthritis Patients

    Directory of Open Access Journals (Sweden)

    José Messias Rodrigues-da-Silva

    Full Text Available OBJECTIVES: To analyze the effects of motor learning on knee extension-flexion isokinetic performance in knee osteoarthritis patients. METHODS: One hundred and thirty-six middle-aged and older sedentary individuals (111 women, 64.3±9.9 years with knee osteoarthritis (130 patients with bilateral and who had never performed isokinetic testing underwent two bilateral knee extension-flexion (concentric-concentric isokinetic evaluations (5 repetitions at 60°/sec. The tests were first performed on the dominant leg with 2 min of recovery between test, and following a standardized warm-up that included 3 submaximal isokinetic repetitions. The same procedure was repeated on the non-dominant leg. The peak torque, peak torque adjusted for the body weight, total work, coefficient of variation and agonist/antagonist ratio were compared between tests. RESULTS: Patients showed significant improvements in test 2 compared to test 1, including higher levels of peak torque, peak torque adjusted for body weight and total work, as well as lower coefficients of variation. The agonist/antagonist relationship did not significantly change between tests. No significant differences were found between the right and left legs for all variables. CONCLUSION: The results suggest that performing two tests with a short recovery (2 min between them could be used to reduce motor learning effects on clinical isokinetic testing of the knee joint in knee osteoarthritis patients.

  19. Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance.

    Science.gov (United States)

    Molero-Chamizo, Andrés; Alameda Bailén, José R; Garrido Béjar, Tamara; García López, Macarena; Jaén Rodríguez, Inmaculada; Gutiérrez Lérida, Carolina; Pérez Panal, Silvia; González Ángel, Gloria; Lemus Corchero, Laura; Ruiz Vega, María J; Nitsche, Michael A; Rivera-Urbina, Guadalupe N

    2018-02-01

    Anodal transcranial direct current stimulation (tDCS) induces long-term potentiation-like plasticity, which is associated with long-lasting effects on different cognitive, emotional, and motor performances. Specifically, tDCS applied over the motor cortex is considered to improve reaction time in simple and complex tasks. The timing of tDCS relative to task performance could determine the efficacy of tDCS to modulate performance. The aim of this study was to compare the effects of a single session of anodal tDCS (1.5 mA, for 15 min) applied over the left primary motor cortex (M1) versus sham stimulation on performance of a go/no-go simple reaction-time task carried out at three different time points after tDCS-namely, 0, 30, or 60 min after stimulation. Performance zero min after anodal tDCS was improved during the whole course of the task. Performance 30 min after anodal tDCS was improved only in the last block of the reaction-time task. Performance 60 min after anodal tDCS was not significantly different throughout the entire task. These findings suggest that the motor cortex excitability changes induced by tDCS can improve motor responses, and these effects critically depend on the time interval between stimulation and task performance.

  20. Cerebellar contribution to motor and cognitive performance in multiple sclerosis: An MRI sub-regional volumetric analysis.

    Science.gov (United States)

    D'Ambrosio, Alessandro; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo; Rocca, Maria A

    2017-08-01

    To investigate the role of cerebellar sub-regions on motor and cognitive performance in multiple sclerosis (MS) patients. Whole and sub-regional cerebellar volumes, brain volumes, T2 hyperintense lesion volumes (LV), and motor performance scores were obtained from 95 relapse-onset MS patients and 32 healthy controls (HC). MS patients also underwent an evaluation of working memory and processing speed functions. Cerebellar anterior and posterior lobes were segmented using the Spatially Unbiased Infratentorial Toolbox (SUIT) from Statistical Parametric Mapping (SPM12). Multivariate linear regression models assessed the relationship between magnetic resonance imaging (MRI) measures and motor/cognitive scores. Compared to HC, only secondary progressive multiple sclerosis (SPMS) patients had lower cerebellar volumes (total and posterior cerebellum). In MS patients, lower anterior cerebellar volume and brain T2 LV predicted worse motor performance, whereas lower posterior cerebellar volume and brain T2 LV predicted poor cognitive performance. Global measures of brain volume and infratentorial T2 LV were not selected by the final multivariate models. Cerebellar volumetric abnormalities are likely to play an important contribution to explain motor and cognitive performance in MS patients. Consistently with functional mapping studies, cerebellar posterior-inferior volume accounted for variance in cognitive measures, whereas anterior cerebellar volume accounted for variance in motor performance, supporting the assessment of cerebellar damage at sub-regional level.

  1. Linear methods for reducing EMG contamination in peripheral nerve motor decodes.

    Science.gov (United States)

    Kagan, Zachary B; Wendelken, Suzanne; Page, David M; Davis, Tyler; Hutchinson, Douglas T; Clark, Gregory A; Warren, David J

    2016-08-01

    Signals recorded from the peripheral nervous system (PNS) with high channel count penetrating microelectrode arrays, such as the Utah Slanted Electrode Array (USEA), often have electromyographic (EMG) signals contaminating the neural signal. This common-mode signal source may prevent single neural units from successfully being detected, thus hindering motor decode algorithms. Reducing this EMG contamination may lead to more accurate motor decode performance. A virtual reference (VR), created by a weighted linear combination of signals from a subset of all available channels, can be used to reduce this EMG contamination. Four methods of determining individual channel weights and six different methods of selecting subsets of channels were investigated (24 different VR types in total). The methods of determining individual channel weights were equal weighting, regression-based weighting, and two different proximity-based weightings. The subsets of channels were selected by a radius-based criteria, such that a channel was included if it was within a particular radius of inclusion from the target channel. These six radii of inclusion were 1.5, 2.9, 3.2, 5, 8.4, and 12.8 electrode-distances; the 12.8 electrode radius includes all USEA electrodes. We found that application of a VR improves the detectability of neural events via increasing the SNR, but we found no statistically meaningful difference amongst the VR types we examined. The computational complexity of implementation varies with respect to the method of determining channel weights and the number of channels in a subset, but does not correlate with VR performance. Hence, we examined the computational costs of calculating and applying the VR and based on these criteria, we recommend an equal weighting method of assigning weights with a 3.2 electrode-distance radius of inclusion. Further, we found empirically that application of the recommended VR will require less than 1 ms for 33.3 ms of data from one USEA.

  2. Static and Dynamic Performance Simulation of Direct-Acting Force Motor Valve

    Science.gov (United States)

    Ye, Xinghai; Ding, Jianjun; Zheng, Gang; Jiang, Kunpeng; Chen, Dongdong

    2017-07-01

    This work focuses on static and dynamic characteristics of direct-acting force motor valve. First, we analyzed the structure features and operating principle of the Mitsubishi-Hitachi force motor valve (FMV) and the operating principle of its internal permanent-magnet moving-coil force motor magnetic circuit, determined the transfer function of the FMV force motor system, and established a mathematical model for the system. Secondly, we established a static performance analysis model using the AMESIM software and utilized the model in combination with experimental results to analyze the effects of electro-hydraulic servo valve structural parameters on static characteristics. Lastly, we deduced the trajectory equation of the system, established the relationship between dynamic characteristic indexes and structural parameters, and analyzed the effects of different parameter values on the dynamic characteristics of the system. This research can provide a theoretical guidance for designing and manufacturing the FMV body.

  3. Effects of truncal motor imagery practice on trunk performance, functional balance, and daily activities in acute stroke

    Directory of Open Access Journals (Sweden)

    Priyanka Shah

    2016-01-01

    Full Text Available Background: Motor imagery is beneficial to treat upper and lower limbs motor impairments in stroke patients, but the effects of imagery in the trunk recovery have not been reported. Hence, the aim is to test the effects of truncal motor imagery practice on trunk performance, functional balance, and daily activities in acute stroke patients. Methods: This pilot randomized clinical trial was conducted in acute stroke unit. Acute stroke patients with hemodynamic stability, aged between 30 and 70 years, first time stroke, and scoring <20 on trunk impairment scale (TIS were included in the study. Patients in the experimental group practiced trunk motor imagery in addition to physical training. Control group was given conventional physical therapy. The treatment intensity was 90 min/day, 6 days a week for 3 weeks duration. Trunk control test, TIS, brunel balance assessment (BBA, and Barthel index (BI were considered as the outcome measures. Results: Among 23 patients included in the study, 12 and 11 patients, respectively, in the control and experimental groups completed the intervention. Repeated measures ANOVA, i.e., timeFNx01 group factor analysis and effect size showed statistically significant improvements (P = 0.001 in the scores of TIS (1.64, BBA (1.83, and BI (0.67. Conclusion: Motor imagery of trunk in addition to the physical practice showed benefits in improving trunk performance, functional balance, and daily living in acute stroke.

  4. The effect of caffeine on cognitive task performance and motor fatigue

    NARCIS (Netherlands)

    van Duinen, Hiske; Lorist, Monicque M.; Zijdewind, Inge

    Rationale: In everyday life, people are usually capable of performing two tasks simultaneously. However, in a previous study we showed that during a fatiguing motor task, cognitive performance declined progressively. There is extensive literature on the ( positive) effects of caffeine on cognitive

  5. Passing thoughts on the evolutionary stability of implicit motor behaviour: performance retention under physiological fatigue.

    Science.gov (United States)

    Poolton, J M; Masters, R S W; Maxwell, J P

    2007-06-01

    Heuristics of evolutionary biology (e.g., survival of the fittest) dictate that phylogenetically older processes are inherently more stable and resilient to disruption than younger processes. On the grounds that non-declarative behaviour emerged long before declarative behaviour, Reber (1992) argues that implicit (non-declarative) learning is supported by neural processes that are evolutionarily older than those supporting explicit learning. Reber suggested that implicit learning thus leads to performance that is more robust than explicit learning. Applying this evolutionary framework to motor performance, we examined whether implicit motor learning, relative to explicit motor learning, conferred motor output that was resilient to physiological fatigue and durable over time. In Part One of the study a fatigued state was induced by a double Wingate Anaerobic test protocol. Fatigue had no affect on performance of participants in the implicit condition; whereas, performance of participants in the explicit condition deteriorated significantly. In Part Two of the study a convenience sample of participants was recalled following a one-year hiatus. In both the implicit and the explicit condition retention of performance was seen and, contrary to the findings in Part One, so was resilience to fatigue. The resilient performance in the explicit condition after one year may have resulted from forgetting (the decay of declarative knowledge) or from consolidation of declarative knowledge as implicit memories. In either case, implicit processes were left to more effectively support motor performance.

  6. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    Science.gov (United States)

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  7. Over-focused? The relation between patients' inclination for conscious control and single- and dual-task motor performance after stroke.

    Science.gov (United States)

    Denneman, R P M; Kal, E C; Houdijk, H; Kamp, J van der

    2018-05-01

    Many stroke patients are inclined to consciously control their movements. This is thought to negatively affect patients' motor performance, as it disrupts movement automaticity. However, it has also been argued that conscious control may sometimes benefit motor performance, depending on the task or patientś motor or cognitive capacity. To assess whether stroke patients' inclination for conscious control is associated with motor performance, and explore whether the putative association differs as a function of task (single- vs dual) or patientś motor and cognitive capacity. Univariate and multivariate linear regression analysis were used to assess associations between patients' disposition to conscious control (i.e., Conscious Motor Processing subscale of Movement-Specific Reinvestment Scale; MSRS-CMP) and single-task (Timed-up-and-go test; TuG) and motor dual-task costs (TuG while tone counting; motor DTC%). We determined whether these associations were influenced by patients' walking speed (i.e., 10-m-walk test) and cognitive capacity (i.e., working memory, attention, executive function). Seventy-eight clinical stroke patients (task TuG performance. However, patients with a strong inclination for conscious control showed higher motor DTC%. These associations were irrespective of patients' motor and cognitive abilities. Patients' disposition for conscious control was not associated with single task motor performance, but was associated with higher motor dual task costs, regardless of patients' motor or cognitive abilities. Therapists should be aware that patients' conscious control inclination can influence their dual-task performance while moving. Longitudinal studies are required to test whether reducing patients' disposition for conscious control would improve dual-tasking post-stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Toxicological and performance aspects of oxygenated motor vehicle fuels

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Life Sciences; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    ... COMMITTEE ON TOXICOLOGICAL PERFORMANCE ASPECTS OXYGENATED MOTOR VEHICLE FUELS ENVIRONMENTAL STUDIES TOXICOLOGY COMMISSION LIFE SCIENCES NATIONAL RESEARCH COUNCIL AND OF BOARD ON AND ON NATIONAL ACADEMY PRESS Washington, D.C. 1996 i Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the t...

  9. Learning trajectories for speech motor performance in children with specific language impairment.

    Science.gov (United States)

    Richtsmeier, Peter T; Goffman, Lisa

    2015-01-01

    Children with specific language impairment (SLI) often perform below expected levels, including on tests of motor skill and in learning tasks, particularly procedural learning. In this experiment we examined the possibility that children with SLI might also have a motor learning deficit. Twelve children with SLI and thirteen children with typical development (TD) produced complex nonwords in an imitation task. Productions were collected across three blocks, with the first and second blocks on the same day and the third block one week later. Children's lip movements while producing the nonwords were recorded using an Optotrak camera system. Movements were then analyzed for production duration and stability. Movement analyses indicated that both groups of children produced shorter productions in later blocks (corroborated by an acoustic analysis), and the rate of change was comparable for the TD and SLI groups. A nonsignificant trend for more stable productions was also observed in both groups. SLI is regularly accompanied by a motor deficit, and this study does not dispute that. However, children with SLI learned to make more efficient productions at a rate similar to their peers with TD, revealing some modification of the motor deficit associated with SLI. The reader will learn about deficits commonly associated with specific language impairment (SLI) that often occur alongside the hallmark language deficit. The authors present an experiment showing that children with SLI improved speech motor performance at a similar rate compared to typically developing children. The implication is that speech motor learning is not impaired in children with SLI. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Control and Performance Evaluation of Multiphase FSPM Motor in Low-Speed Region for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Feng Yu

    2015-09-01

    Full Text Available The flux-switching permanent-magnet (FSPM motor has been viewed as a highly reliable machine with both armature windings and magnets on the stator. Owing to the high torque-production capability with low torque ripple, FSPM motors with a higher number of phases are potential candidates for traction applications in hybrid electric vehicles (HEVs. However, existing research has mostly focused on the principles and static performance of multiphase FSPM motors, and little attention has been paid to advanced control strategies. In this paper, the fully decoupled current control of a 36/34-pole nine-phase FSPM (NP-FSPM motor is developed and the performance under different operating conditions is investigated. The aim of the design is to alleviate cross coupling effects and unwanted low-order stator harmonic currents, to guarantee fast transient response and small steady-state error. In addition, its fault-tolerance is further elaborated. These features are very important in automotive applications where low torque pulsation, high fault-tolerant capability and high dynamic performance are of major importance. Firstly, the research status of multiphase FSPM motors is briefly reviewed. Secondly, the mathematical model in the dq reference frames and control strategies are presented. Then, the control and performance of the NP-FSPM motor are evaluated by using MATLAB/Simulink. Finally, experiments on an NP-FSPM motor prototype are carried out to validate the study.

  11. System and method for determining stator winding resistance in an AC motor

    Science.gov (United States)

    Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Theisen, Peter J [West Bend, WI

    2011-05-31

    A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.

  12. Self-Concept in Adolescents—Relationship between Sport Participation, Motor Performance and Personality Traits

    OpenAIRE

    Markus Klein; Michael Fröhlich; Eike Emrich

    2017-01-01

    The relationship between sport participation, personality development, self-concept and self-esteem has been discussed repeatedly. In this research, a standardized written survey together with tests on motor performance were carried out with 1399 students (707 male; 692 female) in school years 7 (12.9 ± 0.6 years) and 10 (15.8 ± 0.6 years) to measure the extent of a relationship between physical self-concept (self-developed short scale) and sporting activity, measured motor performance (Germa...

  13. Individual Differences Influencing Immediate Effects of Internal and External Focus Instructions on Children's Motor Performance.

    Science.gov (United States)

    van Abswoude, Femke; Nuijen, Nienke B; van der Kamp, John; Steenbergen, Bert

    2018-06-01

    A large pool of evidence supports the beneficial effect of an external focus of attention on motor skill performance in adults. In children, this effect has been studied less and results are inconclusive. Importantly, individual differences are often not taken into account. We investigated the role of working memory, conscious motor control, and task-specific focus preferences on performance with an internal and external focus of attention in children. Twenty-five children practiced a golf putting task in both an internal focus condition and external focus condition. Performance was defined as the average distance toward the hole in 3 blocks of 10 trials. Task-specific focus preference was determined by asking how much effort it took to apply the instruction in each condition. In addition, working memory capacity and conscious motor control were assessed. Children improved performance in both the internal focus condition and external focus condition (ŋ p 2  = .47), with no difference between conditions (ŋ p 2  = .01). Task-specific focus preference was the only factor moderately related to the difference between performance with an internal focus and performance with an external focus (r = .56), indicating better performance for the preferred instruction in Block 3. Children can benefit from instruction with both an internal and external focus of attention to improve short-term motor performance. Individual, task-specific focus preference influenced the effect of the instructions, with children performing better with their preferred focus. The results highlight that individual differences are a key factor in the effectiveness in children's motor performance. The precise mechanisms underpinning this effect warrant further research.

  14. Self-Concept in Adolescents—Relationship between Sport Participation, Motor Performance and Personality Traits

    Directory of Open Access Journals (Sweden)

    Markus Klein

    2017-04-01

    Full Text Available The relationship between sport participation, personality development, self-concept and self-esteem has been discussed repeatedly. In this research, a standardized written survey together with tests on motor performance were carried out with 1399 students (707 male; 692 female in school years 7 (12.9 ± 0.6 years and 10 (15.8 ± 0.6 years to measure the extent of a relationship between physical self-concept (self-developed short scale and sporting activity, measured motor performance (German motor performance test DMT (Deutscher Motorik-Test 6–18 and report mark in physical education. Relationships were also analyzed between physical self-concept and general personality traits (neuroticism, extraversion, openness to experiences, compatibility, and conscientiousness, measured with NEO Five Factor Inventory (NEO-FFI. The assessment of own physical attractiveness and own athleticism differs by sex (F(1, 962 = 35.21; p < 0.001, whereby girls assess themselves more critically. Weak significant relationships are displayed between motor performance and the assessment of own physical attractiveness (r(395 = 0.31; p < 0.01. Motor performance is given a higher predictive value with regard to a subject’s own self-concept, (physical attractiveness β = 0.37; t(249 = 5.24; p < 0.001; athleticism β = 0.40; t(248 = 6.81; p < 0.001 than the mark achieved in physical education (physical attractiveness β = −0.01; n.s.; athleticism β = −0.30; t(248 = 5.10; p < 0.001. Relationships were found overall between personality traits and physical self-concept. The influence of the ‘neuroticism’ trait is particularly strong (physical attractiveness β = −0.44; t(947 = −13.58; p < 0.001; athleticism β = −0.27; t(948 = −7.84; p < 0.001. The more pronounced this trait, the lower the assessment of own physical attractiveness and own athleticism.

  15. Motor areas of the frontal cortex in patients with motor eloquent brain lesions.

    Science.gov (United States)

    Bulubas, Lucia; Sabih, Jamil; Wohlschlaeger, Afra; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-12-01

    OBJECTIVE Because of its huge clinical potential, the importance of premotor areas for motor function itself and plastic reshaping due to tumors or ischemic brain lesions has received increased attention. Thus, in this study the authors used navigated transcranial magnetic stimulation (nTMS) to investigate whether tumorous brain lesions induce a change in motor cortex localization in the human brain. METHODS Between 2010 and 2013, nTMS motor mapping was performed in a prospective cohort of 100 patients with brain tumors in or adjacent to the rolandic cortex. Spatial data analysis was performed by normalization of the individual motor maps and creation of overlays according to tumor location. Analysis of motor evoked potential (MEP) latencies was performed regarding mean overall latencies and potentially polysynaptic latencies, defined as latencies longer than 1 SD above the mean value. Hemispheric dominance, lesion location, and motor-function deficits were also considered. RESULTS Graphical analysis showed that motor areas were not restricted to the precentral gyrus. Instead, they spread widely in the anterior-posterior direction. An analysis of MEP latency showed that mean MEP latencies were shortest in the precentral gyrus and longest in the superior and middle frontal gyri. The percentage of latencies longer than 1 SD differed widely across gyri. The dominant hemisphere showed a greater number of longer latencies than the nondominant hemisphere (p < 0.0001). Moreover, tumor location-dependent changes in distribution of polysynaptic latencies were observed (p = 0.0002). Motor-function deficit did not show any statistically significant effect. CONCLUSIONS The distribution of primary and polysynaptic motor areas changes in patients with brain tumors and highly depends on tumor location. Thus, these data should be considered for resection planning.

  16. Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without Autism Spectrum Disorder (ASD).

    Science.gov (United States)

    Kaur, Maninderjit; M Srinivasan, Sudha; N Bhat, Anjana

    2018-01-01

    Children with Autism Spectrum Disorder (ASD) have basic motor impairments in balance, gait, and coordination as well as autism-specific impairments in praxis/motor planning and interpersonal synchrony. Majority of the current literature focuses on isolated motor behaviors or domains. Additionally, the relationship between cognition, symptom severity, and motor performance in ASD is unclear. We used a comprehensive set of measures to compare gross and fine motor, praxis/imitation, motor coordination, and interpersonal synchrony skills across three groups of children between 5 and 12 years of age: children with ASD with high IQ (HASD), children with ASD with low IQ (LASD), and typically developing (TD) children. We used the Bruininks-Oseretsky Test of Motor Proficiency and the Bilateral Motor Coordination subtest of the Sensory Integration and Praxis Tests to assess motor performance and praxis skills respectively. Children were also examined while performing simple and complex rhythmic upper and lower limb actions on their own (solo context) and with a social partner (social context). Both ASD groups had lower gross and fine motor scores, greater praxis errors in total and within various error types, lower movement rates, greater movement variability, and weaker interpersonal synchrony compared to the TD group. In addition, the LASD group had lower gross motor scores and greater mirroring errors compared to the HASD group. Overall, a variety of motor impairments are present across the entire spectrum of children with ASD, regardless of their IQ scores. Both, fine and gross motor performance significantly correlated with IQ but not with autism severity; however, praxis errors (mainly, total, overflow, and rhythmicity) strongly correlated with autism severity and not IQ. Our study findings highlight the need for clinicians and therapists to include motor evaluations and interventions in the standard-of-care of children with ASD and for the broader autism community to

  17. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    Science.gov (United States)

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  18. Effects of 6 weeks motor-enrichment-intervention to improve math performance in preadolescent children

    DEFF Research Database (Denmark)

    Wienecke, Jacob; Beck, Mikkel Malling; Lind, Rune Rasmussen

    al., 2015). We conducted a six-week cluster-randomized intervention study of motor-enriched mathematics for Danish schoolchildren (n= 148, age= 7.5 ± 0.02). We investigated whether low intensity motor activity congruently integrated during solving of math problems could enhance math performance....... Three groups were included: 1) Control group with normal math teaching, CON (used pencil, paper but refrained from additional motor activity). 2) Fine-motor-enriched-group, FM (motor-manipulating LEGO bricks integrated in the lessons). 3) Gross-motor-enriched-group, GM (full-body movements integrated...... in the lessons). In FM and GM, all math classes (six lessons pr. week) had motor activity integrated in the math lessons and the teachers of all groups followed a detailed description for the conduction of the lessons. This aimed at ensuring homogeneity between groups concerning the taught themes. The children...

  19. Age-specific neural strategies to maintain motor performance after an acute social stress bout.

    Science.gov (United States)

    Mehta, Ranjana K; Rhee, Joohyun

    2017-07-01

    Stress due to cognitive demands and fatigue have shown to impair motor performance in older adults; however, the effect of social stress and its influence on prefrontal cortex (PFC) functioning in older adults during upper extremity motor performance tasks is not known. The present study explored the after-effects of an acute social stress bout on neural strategies, measured using PFC and hand/arm muscle activation, and adopted by younger and older adults to maintain handgrip force control. Nine older [74.1 (6.5) years; three men, six women] and ten younger [24.2 (5.0) years, four men, six women] adults performed handgrip force control trials at 30% maximum voluntary contractions before and after the Trier Social Stress Test (TSST). PFC activity was measured using functional near infrared spectroscopy and muscle activity from the flexor and extensor carpi radialis (FCR/ECR) was measured using electromyography. In general, aging was associated with decreased force steadiness and force complexity with a concomitant increase in bilateral PFC activity. While motor performance remained comparable before and after the TSST stress session in both age groups, the associated neural strategies differed between groups. While the stress condition was associated with lower FCR and ECR activity in younger adults despite no change in the PFC activation, stress was associated with increases in FCR activity in older adults. This stress-related compensatory neural strategy of increasing hand/arm muscle activation, potentially via the additional recruitment of the stress-motor neural circuitry, may have played a role in maintaining motor performance in older adults.

  20. Two-Degree-of-Freedom Self-Tuning Control for Motor Drives Using Pole-Zero Cancellation Method

    Science.gov (United States)

    Takano, Akio

    In this paper, we present an excellent method named pole-zero cancellation (PZC) for designing motor control systems. PZC is performed in the z plane. A control system consists of three controllers, i.e., a speed controller, a position controller, and an adaptive identifier. The speed controller has two degrees of freedom: disturbance suppression and tracking speed, both of which can be regulated. The pulse transfer function used for regulating the tracking speed has two poles and one zero. When one pole and one zero coincide and cancel each other, the pulse transfer function is of the first-order lag type, and overshoots do not appear. The adaptive controller determines the coefficients of the pulse transfer function and adjusts the speed controller automatically so that the poles and zeros coincide. The transfer function of the position controller also has one pole and one zero, which cancel another pole and zero; pole 1 in the closed loop is not cancelled, and hence, position overshoots do not appear. A 2.2-kW induction motor is tested. The motor torque is controlled using a rapid torque control method. In this paper, first, the tracking-speed characteristics and the tracking-position characteristics are presented. Next, the identified transient coefficients are given, and finally, the disturbance-suppression characteristics are discussed. The experimental results prove the usefulness of the proposed method.

  1. Identifying patterns of motor performance, executive functioning, and verbal ability in preschool children: A latent profile analysis.

    Science.gov (United States)

    Houwen, Suzanne; Kamphorst, Erica; van der Veer, Gerda; Cantell, Marja

    2018-04-30

    A relationship between motor performance and cognitive functioning is increasingly being recognized. Yet, little is known about the precise nature of the relationship between both domains, especially in early childhood. To identify distinct constellations of motor performance, executive functioning (EF), and verbal ability in preschool aged children; and to explore how individual and contextual variables are related to profile membership. The sample consisted of 119 3- to 4-year old children (62 boys; 52%). The home based assessments consisted of a standardized motor test (Movement Assessment Battery for Children - 2), five performance-based EF tasks measuring inhibition and working memory, and the Receptive Vocabulary subtest from the Wechsler Preschool and Primary Scale of Intelligence Third Edition. Parents filled out the Behavior Rating Inventory of Executive Function - Preschool version. Latent profile analysis (LPA) was used to delineate profiles of motor performance, EF, and verbal ability. Chi-square statistics and multinomial logistic regression analysis were used to examine whether profile membership was predicted by age, gender, risk of motor coordination difficulties, ADHD symptomatology, language problems, and socioeconomic status (SES). LPA yielded three profiles with qualitatively distinct response patterns of motor performance, EF, and verbal ability. Quantitatively, the profiles showed most pronounced differences with regard to parent ratings and performance-based tests of EF, as well as verbal ability. Risk of motor coordination difficulties and ADHD symptomatology were associated with profile membership, whereas age, gender, language problems, and SES were not. Our results indicate that there are distinct subpopulations of children who show differential relations with regard to motor performance, EF, and verbal ability. The fact that we found both quantitative as well as qualitative differences between the three patterns of profiles underscores

  2. Touch Screen Performance by Individuals With and Without Motor Control Disabilities

    Science.gov (United States)

    Chen, Karen B.; Savage, Anne B.; Chourasia, Amrish O.; Wiegmann, Douglas A.; Sesto, Mary E.

    2012-01-01

    Touch technology is becoming more prevalent as functionality improves and cost decreases. Therefore, it is important that this technology is accessible to users with diverse abilities. The objective of this study was to investigate the effects of button and gap size on performance by individuals with varied motor abilities. Participants with (n=38) and without (n=15) a motor control disability completed a digit entry task. Button size ranged from 10 to 30 mm and gap size was either 1 or 3 mm. Results indicated that as button size increased, there was a decrease in misses, errors, and time to complete tasks. Performance for the non-disabled group plateaued at button size 20mm, with minimal, if any gains observed with larger button sizes. In comparison, the disabled group’s performance continued to improve as button size increased. Gap size did not affect user performance. These results may help to improve accessibility of touch technology. PMID:23021630

  3. Performance variation in motor imagery brain-computer interface: a brief review.

    Science.gov (United States)

    Ahn, Minkyu; Jun, Sung Chan

    2015-03-30

    Brain-computer interface (BCI) technology has attracted significant attention over recent decades, and has made remarkable progress. However, BCI still faces a critical hurdle, in that performance varies greatly across and even within subjects, an obstacle that degrades the reliability of BCI systems. Understanding the causes of these problems is important if we are to create more stable systems. In this short review, we report the most recent studies and findings on performance variation, especially in motor imagery-based BCI, which has found that low-performance groups have a less-developed brain network that is incapable of motor imagery. Further, psychological and physiological states influence performance variation within subjects. We propose a possible strategic approach to deal with this variation, which may contribute to improving the reliability of BCI. In addition, the limitations of current work and opportunities for future studies are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Determinants of gross motor skill performance in children with visual impairments.

    Science.gov (United States)

    Haibach, Pamela S; Wagner, Matthias O; Lieberman, Lauren J

    2014-10-01

    Children with visual impairments (CWVI) generally perform poorer in gross motor skills when compared with their sighted peers. This study examined the influence of age, sex, and severity of visual impairment upon locomotor and object control skills in CWVI. Participants included 100 CWVI from across the United States who completed the Test of Gross Motor Development II (TGMD-II). The TGMD-II consists of 12 gross motor skills including 6 object control skills (catching, kicking, striking, dribbling, throwing, and rolling) and 6 locomotor skills (running, sliding, galloping, leaping, jumping, and hopping). The full range of visual impairments according to United States Association for Blind Athletes (USABA; B3=20/200-20/599, legally blind; B2=20/600 and up, travel vision; B1=totally blind) were assessed. The B1 group performed significantly worse than the B2 (0.000 ≤ p ≤ 0.049) or B3 groups (0.000 ≤ p ≤ 0.005); however, there were no significant differences between B2 and B3 except for the run (p=0.006), catch (p=0.000), and throw (p=0.012). Age and sex did not play an important role in most of the skills, with the exception of boys outperforming girls striking (p=0.009), dribbling (p=0.013), and throwing (p=0.000), and older children outperforming younger children in dribbling (p=0.002). The significant impact of the severity of visual impairment is likely due to decreased experiences and opportunities for children with more severe visual impairments. In addition, it is likely that these reduced experiences explain the lack of age-related differences in the CWVI. The large disparities in performance between children who are blind and their partially sighted peers give direction for instruction and future research. In addition, there is a critical need for intentional and specific instruction on motor skills at a younger age to enable CWVI to develop their gross motor skills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Performance test of a 1 MW class HTS synchronous motor for industrial application

    International Nuclear Information System (INIS)

    Kwon, Y.K.; Kim, H.M.; Baik, S.K.; Lee, E.Y.; Lee, J.D.; Kim, Y.C.; Lee, S.H.; Hong, J.P.; Jo, Y.S.; Ryu, K.S.

    2008-01-01

    This paper deals with development activities of high temperature superconducting (HTS) synchronous motor at DOOSAN heavy industry and Korea Electrotechnology Research Institute (KERI) in Korea, and is sponsored by DAPAS program which is supported by Korean government. The final aim of the project is realization of HTS motor in the field of industry such as large driving pumps, fans and compressors for utility and industrial environments. At present time, 1 MW HTS motor is developed for the purpose to fully represent the design and manufacturing issues for the larger capacity machine. The number of pole and rotating speed of machine are 2 pole and 3600 rpm. The HTS field coil of the developed motor is cooled by way of neon thermosyphon mechanism and the stator coil is cooled by water through hollow copper conductor. This paper describes status of 1 MW HTS motor development, such as design, fabrication and performance test results, which was conducted at steady state in generator mode and motor mode

  6. Determination of performance characteristics of robotic manipulator's permanent magnet synchronous motor by learning its FEM model

    International Nuclear Information System (INIS)

    Bharadvaj, Bimmi; Saini, Surendra Singh; Swaroop, Teja Tumapala; Sarkar, Ushnish; Ray, Debashish Datta

    2016-01-01

    Permanent Magnet Synchronous Motors (PMSM) are widely used as actuators because of high torque density, high efficiency and reliability. Robotic Manipulator designed for specific task generally requires actuators with very high intermittent torque and speed for their operation in limited space. Hence accurate performance characteristics of PMSM must be known beforehand under these conditions as it may damage the motor. Therefore an advanced mathematical model of PMSM is required for its control synthesis and performance analysis over wide operating range. The existing mathematical models are developed considering ideal motor without including the geometrical deviations that occur during manufacturing process of the motor or its components. These manufacturing tolerance affect torque ripple, operating current range etc. thereby affecting motor performance. In this work, the magnetically non-linear dynamic model is further exploited to refine the FE model using a proposed algorithm to iteratively compensate for the experimentally observed deviations due to manufacturing. (author)

  7. Effect of the Level of Coordinated Motor Abilities on Performance in Junior Judokas

    Science.gov (United States)

    Lech, Grzegorz; Jaworski, Janusz; Lyakh, Vladimir; Krawczyk, Robert

    2011-01-01

    The main focus of this study was to identify coordinated motor abilities that affect fighting methods and performance in junior judokas. Subjects were selected for the study in consideration of their age, competition experience, body mass and prior sports level. Subjects’ competition history was taken into consideration when analysing the effectiveness of current fight actions, and individual sports level was determined with consideration to rank in the analysed competitions. The study sought to determine the level of coordinated motor abilities of competitors. The scope of this analysis covered the following aspects: kinaesthetic differentiation, movement frequency, simple and selective reaction time (evoked by a visual or auditory stimulus), spatial orientation, visual-motor coordination, rhythmization, speed, accuracy and precision of movements and the ability to adapt movements and balance. A set of computer tests was employed for the analysis of all of the coordination abilities, while balance examinations were based on the Flamingo Balance Test. Finally, all relationships were determined based on the Spearman’s rank correlation coefficient. It was observed that the activity of the contestants during the fight correlated with the ability to differentiate movements and speed, accuracy and precision of movement, whereas the achievement level during competition was connected with reaction time. PMID:23486723

  8. A rapid method of detecting motor blocks in patients with Parkinson's disease during volitional hand movements

    Directory of Open Access Journals (Sweden)

    Popović Mirjana B.

    2002-01-01

    Full Text Available INTRODUCTION An algorithm to study hand movements in patients with Parkinson's disease (PD who experience temporary, involuntary inability to move a hand have been developed. In literature, this rather enigmatic phenomenon has been described in gait, speech, handwriting and tapping, and noted as motor blocks (MB or freezing episodes. Freezing refers to transient periods in which the voluntary motor activity being attempted by an individual is paused. It is a sudden, unplanned state of immobility that appears to arise from deficits in initiating or simultaneously and sequentially executing movements, in correcting inappropriate movements or in planning movements. The clinical evaluation of motor blocks is difficult because of a variability both within and between individuals and relationship of blocks to time of drug ingestion. In literature the terms freezing, motor block or motor freezing are used in parallel. AIM In clinical settings classical manifestations of Parkinson's Disease (akinesia bradykinesia, rigidity, tremor, axial motor performance and postural instability are typically evaluated. Recently, in literature, new computerized methods are suggested for their objective assessment. We propose monitoring of motor blocks during hand movements to be integrated. For this purpose we have developed a simple method that comprises PC computer, digitizing board and custom made software. Movement analysis is "off line", and the result is the data that describe the number, duration and onset of motor blocks. METHOD Hand trajectories are assessed during simple volitional self paced point-to-point planar hand movement by cordless magnetic mouse on a digitizing board (Drawing board III, 305 x 457 mm, GTCO Cal Comp Inc, Fig. 1. Testing included 8 Parkinsonian patients and 8 normal healthy controls, age matched, with unknown neurologic motor or sensory disorders, Table 1. Three kinematic indicators of motor blocks: 1 duration (MBTJ; 2 onset (t%; and 3

  9. Motor Skill Performance by Low SES Preschool and Typically Developing Children on the PDMS-2

    Science.gov (United States)

    Liu, Ting; Hoffmann, Chelsea; Hamilton, Michelle

    2017-01-01

    The purpose of this study was to compare the motor skill performance of preschool children from low socioeconomic (SES) backgrounds to their age matched typically developing peers using the Peabody Developmental Motor Scales-2 (PDMS-2). Sixty-eight children (34 low SES and 34 typically developing; ages 3-5) performed the PDMS-2. Standard scores…

  10. Fuzzy control of small servo motors

    Science.gov (United States)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  11. Analysis of Operating Performance and Three Dimensional Magnetic Field of High Voltage Induction Motors with Stator Chute

    Directory of Open Access Journals (Sweden)

    WANG Qing-shan

    2017-06-01

    Full Text Available In view of the difficulties on technology of rotor chute in high voltage induction motor,the desig method adopted stator chute structure is put forward. The mathematical model of three dimensional nonlinear transient field for solving stator chute in high voltage induction motor is set up. Through the three dimensional entity model of motor,three dimensional finite element method based on T,ψ - ψ electromagnetic potential is adopted for the analysis and calculation of stator chute in high voltage induction motor under rated condition. The distributions long axial of fundamental wave magnetic field and tooth harmonic wave magnetic field are analyzed after stator chute,and the weakening effects on main tooth harmonic magnetic field are researched. Further more,the comparison analysis of main performance parameters of chute and straight slot is carried out under rated condition. The results show that the electrical performance of stator chute is better than that of straight slot in high voltage induction motor,and the tooth harmonic has been sharply decreased

  12. The relative age effect in the German Football TID Programme: biases in motor performance diagnostics and effects on single motor abilities and skills in groups of selected players.

    Science.gov (United States)

    Votteler, Andreas; Höner, Oliver

    2014-01-01

    This study examined the disturbing effects of relative age on the talent identification process in the talent development programme of the German Football Association. The bias in the selection rate was examined via the extent of relative age effects. The bias in motor performance diagnostics was analysed by comparing the motor performance of selected players with normal motor development. The mechanisms underlying the relative age biases in motor performance were examined by modelling the direct and indirect effects of relative age on single motor performance tests for sprint, running agility, dribbling and ball passing and control. Data from 10,130 selected football players from the U12 to U15 age groups were collected in autumn 2010. The birth distribution differed significantly from the reference population with approximately 61% of the players born in the first half of the year. The selection probability was approximately two times higher for players born in the first quarter of the year than for players born in the last quarter. Revised motor performance diagnostics showed better results on average for relatively younger players. Path analysis revealed significant direct and indirect relative age effects for physiologically demanding tests and almost no effects for technically demanding tests. Large sample sizes allowed high resolution in relative age with additional informational content and multivariate modelling of the complex relationships among relative age, physical development and motor performance. The results are discussed on how relative age affects the effectiveness and fairness of talent identification and development processes.

  13. High variability impairs motor learning regardless of whether it affects task performance.

    Science.gov (United States)

    Cardis, Marco; Casadio, Maura; Ranganathan, Rajiv

    2018-01-01

    Motor variability plays an important role in motor learning, although the exact mechanisms of how variability affects learning are not well understood. Recent evidence suggests that motor variability may have different effects on learning in redundant tasks, depending on whether it is present in the task space (where it affects task performance) or in the null space (where it has no effect on task performance). We examined the effect of directly introducing null and task space variability using a manipulandum during the learning of a motor task. Participants learned a bimanual shuffleboard task for 2 days, where their goal was to slide a virtual puck as close as possible toward a target. Critically, the distance traveled by the puck was determined by the sum of the left- and right-hand velocities, which meant that there was redundancy in the task. Participants were divided into five groups, based on both the dimension in which the variability was introduced and the amount of variability that was introduced during training. Results showed that although all groups were able to reduce error with practice, learning was affected more by the amount of variability introduced rather than the dimension in which variability was introduced. Specifically, groups with higher movement variability during practice showed larger errors at the end of practice compared with groups that had low variability during learning. These results suggest that although introducing variability can increase exploration of new solutions, this may adversely affect the ability to retain the learned solution. NEW & NOTEWORTHY We examined the role of introducing variability during motor learning in a redundant task. The presence of redundancy allows variability to be introduced in different dimensions: the task space (where it affects task performance) or the null space (where it does not affect task performance). We found that introducing variability affected learning adversely, but the amount of

  14. WHICH MOTOR ABILITIES HAVE THE HIGHEST IMPACT ON WORKING PERFORMANCE OF SLOVENIAN SOLDIERS?

    Directory of Open Access Journals (Sweden)

    Maja Pori

    2010-09-01

    Full Text Available The objective of the research was to find a correlation between motor abilities and working efficiency of soldiers in a battle unit of Slovenia Armed Forces (SAF. The subject consisted of 115 soldiers (age = 27,1 ± 3,7 years who were serving in the first brigade of the SAF. Motor abilities were measured with 11 motor tests, assessing the level of flexibility, speed, strength and coordination. To evaluate working efficiency of soldiers a special questionnaire was used, which consisted of 19 statements. Superior officer was asked to fill a questionnaire for each inferior soldier with values from 1 to 5. The correlation between motor abilities and working efficiency was assessed with the Pearson’s correlation coefficient. We have found 5 statistically significant correlations. Motor tests correlating most with working performance were tests of arm strength.

  15. Does the Animal Fun program improve motor performance in children aged 4-6 years?

    Science.gov (United States)

    Piek, J P; McLaren, S; Kane, R; Jensen, L; Dender, A; Roberts, C; Rooney, R; Packer, T; Straker, L

    2013-10-01

    The Animal Fun program was designed to enhance the motor ability of young children by imitating the movements of animals in a fun, inclusive setting. The efficacy of this program was investigated through a randomized controlled trial using a multivariate nested cohort design. Pre-intervention scores were recorded for 511 children aged 4.83 years to 6.17 years (M=5.42 years, SD=3.58 months). Six control and six intervention schools were compared 6 months later following the intervention, and then again at 18 months after the initial testing when the children were in their first school year. Changes in motor performance were examined using the Bruininks-Oseretsky Test of Motor Proficiency short form. Data were analyzed using multi-level-mixed effects linear regression. A significant Condition×Time interaction was found, F(2,1219)=3.35, p=.035, demonstrating that only the intervention group showed an improvement in motor ability. A significant Sex×Time interaction was also found, F(2,1219)=3.84, p=.022, with boys improving over time, but not girls. These findings have important implications for the efficacy of early intervention of motor skills and understanding the differences in motor performance between boys and girls. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. An Asymmetrical Space Vector Method for Single Phase Induction Motor

    DEFF Research Database (Denmark)

    Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt

    2002-01-01

    Single phase induction motors are the workhorses in low-power applications in the world, and also the variable speed is necessary. Normally it is achieved either by the mechanical method or by controlling the capacitor connected with the auxiliary winding. Any above method has some drawback which...

  17. Rotor Design of IPMSM Traction Motor Based on Multi- Objective Optimization using BFGS Method and Train Motion Equations

    Directory of Open Access Journals (Sweden)

    S. Ahmadi

    2015-09-01

    Full Text Available In this paper a multiobjective optimal design method of interior permanent magnet synchronous motor ( IPMSM for traction applications so as to maximize average torque and to minimize torque ripple has been presented. Based on train motion equations and physical properties of train, desired specifications such as steady state speed, rated output power, acceleration time and rated speed of traction motor are related to each other. By considering the same output power, steady state speed, rated voltage, rated current and different acceleration time for a specified train, multiobjective optimal design has been performed by Broyden–Fletcher–Goldfarb–Shanno (BFGS method and finite element method (FEM has been chosen as an analysis tool. BFGS method is one of Quasi Newton methods and is counted in classic approaches. Classic optimization methods are appropriate when FEM is applied as an analysis tool and objective function isn’t expressed in closed form in terms of optimization variables.

  18. Profiles of Motor Laterality in Young Athletes' Performance of Complex Movements: Merging the MOTORLAT and PATHoops Tools

    Science.gov (United States)

    Castañer, Marta; Andueza, Juan; Hileno, Raúl; Puigarnau, Silvia; Prat, Queralt; Camerino, Oleguer

    2018-01-01

    Laterality is a key aspect of the analysis of basic and specific motor skills. It is relevant to sports because it involves motor laterality profiles beyond left-right preference and spatial orientation of the body. The aim of this study was to obtain the laterality profiles of young athletes, taking into account the synergies between the support and precision functions of limbs and body parts in the performance of complex motor skills. We applied two instruments: (a) MOTORLAT, a motor laterality inventory comprising 30 items of basic, specific, and combined motor skills, and (b) the Precision and Agility Tapping over Hoops (PATHoops) task, in which participants had to perform a path by stepping in each of 14 hoops arranged on the floor, allowing the observation of their feet, left-right preference and spatial orientation. A total of 96 young athletes performed the PATHoops task and the 30 MOTORLAT items, allowing us to obtain data about limb dominance and spatial orientation of the body in the performance of complex motor skills. Laterality profiles were obtained by means of a cluster analysis and a correlational analysis and a contingency analysis were applied between the motor skills and spatial orientation actions performed. The results obtained using MOTORLAT show that the combined motor skills criterion (for example, turning while jumping) differentiates athletes' uses of laterality, showing a clear tendency toward mixed laterality profiles in the performance of complex movements. In the PATHoops task, the best spatial orientation strategy was “same way” (same foot and spatial wing) followed by “opposite way” (opposite foot and spatial wing), in keeping with the research assumption that actions unfolding in a horizontal direction in front of an observer's eyes are common in a variety of sports. PMID:29930527

  19. Method and system for early detection of incipient faults in electric motors

    Science.gov (United States)

    Parlos, Alexander G; Kim, Kyusung

    2003-07-08

    A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.

  20. The relationship between joint mobility and motor performance in children with and without the diagnosis of developmental coordination disorder

    NARCIS (Netherlands)

    Jelsma, Dorothee; Geuze, Reint; Klerks, M.; Niemeijer, Anuschka; Smits-Engelsman, B.C.M.

    2013-01-01

    Background: The purpose of this study was to determine whether joint mobility is associated with motor performance in children referred for Developmental Coordination Disorder (DCD-group) in contrast to a randomly selected group of children between 3-16 years of age (Random-Group). Methods: 36

  1. A METHOD OF AUTOMATIC DETERMINATION OF THE NUMBER OF THE ELECTRICAL MOTORS SIMULTANEOUSLY WORKING IN GROUP

    Directory of Open Access Journals (Sweden)

    A. V. Voloshko

    2016-11-01

    Full Text Available Purpose. Propose a method of automatic determination of the number of operating high voltage electric motors in the group of the same type based on the determination and analysis of the account data of power consumption, obtained from of electric power meters installed at the connection of motors. Results. The algorithm of the automatic determination program for the number of working in the same group of electric motors, which is based on the determination of the motor power minimum value at which it is considered on, was developed. Originality. For the first time a method of automatic determination of the number of working of the same type high-voltage motors group was proposed. Practical value. Obtained results may be used for the introduction of an automated accounting run of each motor, calculating the parameters of the equivalent induction motor or a synchronous motor.

  2. An analytical method for the calculation of static characteristics of linear step motors for control rod drives in nuclear reactors

    International Nuclear Information System (INIS)

    Khan, S.H.; Ivanov, A.A.

    1995-01-01

    An analytical method for calculating static characteristics of linear dc step motors (LSM) is described. These multiphase passive-armature motors are now being developed for control rod drives (CRD) in large nuclear reactors. The static characteristics of such LSM is defined by the variation of electromagnetic force with armature displacement and it determines motor performance in its standing and dynamic modes of operation. The proposed analytical technique for calculating this characteristic is based on the permeance analysis method applied to phase magnetic circuits of LSM. Reluctances of various parts of phase magnetic circuit is calculated analytically by assuming probable flux paths and by taking into account complex nature of magnetic field distribution in it. For given armature positions stator and armature iron saturations are taken into account by an efficient iterative algorithm which gives fast convergence. The method is validated by comparing theoretical results with experimental ones which shows satisfactory agreement for small stator currents and weak iron saturation

  3. Remote Adaptive Motor Resistance Training Exercise Apparatus and Method of Use Thereof

    Science.gov (United States)

    Reich, Alton (Inventor); Shaw, James (Inventor)

    2017-01-01

    The invention comprises a method and/or an apparatus using a computer configured exercise system equipped with an electric motor to provide physical resistance to user motion in conjunction with means for sharing exercise system related data and/or user performance data with a secondary user, such as a medical professional, a physical therapist, a trainer, a computer generated competitor, and/or a human competitor. For example, the exercise system is used with a remote trainer to enhance exercise performance, with a remote medical professional for rehabilitation, and/or with a competitor in a competition, such as in a power/weightlifting competition or in a video game. The exercise system is optionally configured with an intelligent software assistant and knowledge navigator functioning as a personal assistant application.

  4. Cognitive and motor dual task gait training improve dual task gait performance after stroke - A randomized controlled pilot trial.

    Science.gov (United States)

    Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau

    2017-06-22

    This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.

  5. Daily-life tele-monitoring of motor performance in stroke survivors

    NARCIS (Netherlands)

    Veltink, Petrus H.; van Meulen, Fokke; van Beijnum, Bernhard J.F.; Klaassen, Bart; Hermens, Hermanus J.; Droog, Adriaan; Weusthof, Marcel H.H.; Lorussi, F.; Tognetti, A.; Reenalda, J.; Reenalda, Jasper; Nikamp, C.D.M.; Nikamp-Simons, Corien Diana Maria; Baten, Christian T.M.; Buurke, Jaap; Held, J.; Luft, A.; Luinge, H.; De Toma, G.; Mancuso, C.; Paradiso, R.; Aminian, Kamiar

    2014-01-01

    The objective of the EU project INTERACTION is to develop an unobtrusive and modular sensing system for objective monitoring of daily-life motor performance of stroke survivors. This will enable clinical professionals to advise their patients about their continued daily-life activity profile and

  6. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Science.gov (United States)

    Mokienko, Olesya A.; Chervyakov, Alexander V.; Kulikova, Sofia N.; Bobrov, Pavel D.; Chernikova, Liudmila A.; Frolov, Alexander A.; Piradov, Mikhail A.

    2013-01-01

    Background: Motor imagery (MI) is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms. Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI). Subjects and Methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years) were either trained with an MI-based BCI (BCI-trained, n = 5) or received no BCI training (n = 6, controls). Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS). Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17%) during MI, which was also observed only in BCI-trained subjects. Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy. PMID:24319425

  7. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Directory of Open Access Journals (Sweden)

    Olesya eMokienko

    2013-11-01

    Full Text Available Background: Motor imagery (MI is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms.Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI.Subjects and methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years were either trained with an MI-based BCI (BCI-trained, n = 5 or received no BCI training (n = 6, controls. Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS.Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17% during MI, which was also observed only in BCI-trained subjects.Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy.

  8. Polyphasic Temporal Behavior of Finger-Tapping Performance: A Measure of Motor Skills and Fatigue.

    Science.gov (United States)

    Aydin, Leyla; Kiziltan, Erhan; Gundogan, Nimet Unay

    2016-01-01

    Successive voluntary motor movement involves a number of physiological mechanisms and may reflect motor skill development and neuromuscular fatigue. In this study, the temporal behavior of finger tapping was investigated in relation to motor skills and fatigue by using a long-term computer-based test. The finger-tapping performances of 29 healthy male volunteers were analyzed using linear and nonlinear regression models established for inter-tapping interval. The results suggest that finger-tapping performance exhibits a polyphasic nature, and has several characteristic time points, which may be directly related to muscle dynamics and energy consumption. In conclusion, we believe that future studies evaluating the polyphasic nature of the maximal voluntary movement will lead to the definition of objective scales that can be used in the follow up of some neuromuscular diseases, as well as, the determination of motor skills, individual ability, and peripheral fatigue through the use of a low cost, easy-to-use computer-based finger-tapping test.

  9. Estimation of Mechanical Signals in Induction Motors using the Recursive Prediction Error Method

    DEFF Research Database (Denmark)

    Børsting, H.; Knudsen, Morten; Rasmussen, Henrik

    1993-01-01

    Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed ........Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed .....

  10. Correlations between Motor Symptoms across Different Motor Tasks, Quantified via Random Forest Feature Classification in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Andreas Kuhner

    2017-11-01

    Full Text Available BackgroundObjective assessments of Parkinson’s disease (PD patients’ motor state using motion capture techniques are still rarely used in clinical practice, even though they may improve clinical management. One major obstacle relates to the large dimensionality of motor abnormalities in PD. We aimed to extract global motor performance measures covering different everyday motor tasks, as a function of a clinical intervention, i.e., deep brain stimulation (DBS of the subthalamic nucleus.MethodsWe followed a data-driven, machine-learning approach and propose performance measures that employ Random Forests with probability distributions. We applied this method to 14 PD patients with DBS switched-off or -on, and 26 healthy control subjects performing the Timed Up and Go Test (TUG, the Functional Reach Test (FRT, a hand coordination task, walking 10-m straight, and a 90° curve.ResultsFor each motor task, a Random Forest identified a specific set of metrics that optimally separated PD off DBS from healthy subjects. We noted the highest accuracy (94.6% for standing up. This corresponded to a sensitivity of 91.5% to detect a PD patient off DBS, and a specificity of 97.2% representing the rate of correctly identified healthy subjects. We then calculated performance measures based on these sets of metrics and applied those results to characterize symptom severity in different motor tasks. Task-specific symptom severity measures correlated significantly with each other and with the Unified Parkinson’s Disease Rating Scale (UPDRS, part III, correlation of r2 = 0.79. Agreement rates between different measures ranged from 79.8 to 89.3%.ConclusionThe close correlation of PD patients’ various motor abnormalities quantified by different, task-specific severity measures suggests that these abnormalities are only facets of the underlying one-dimensional severity of motor deficits. The identification and characterization of this underlying motor deficit

  11. Sleep and memory consolidation: motor performance and proactive interference effects in sequence learning.

    Science.gov (United States)

    Borragán, Guillermo; Urbain, Charline; Schmitz, Rémy; Mary, Alison; Peigneux, Philippe

    2015-04-01

    That post-training sleep supports the consolidation of sequential motor skills remains debated. Performance improvement and sensitivity to proactive interference are both putative measures of long-term memory consolidation. We tested sleep-dependent memory consolidation for visuo-motor sequence learning using a proactive interference paradigm. Thirty-three young adults were trained on sequence A on Day 1, then had Regular Sleep (RS) or were Sleep Deprived (SD) on the night after learning. After two recovery nights, they were tested on the same sequence A, then had to learn a novel, potentially competing sequence B. We hypothesized that proactive interference effects on sequence B due to the prior learning of sequence A would be higher in the RS condition, considering that proactive interference is an indirect marker of the robustness of sequence A, which should be better consolidated over post-training sleep. Results highlighted sleep-dependent improvement for sequence A, with faster RTs overnight for RS participants only. Moreover, the beneficial impact of sleep was specific to the consolidation of motor but not sequential skills. Proactive interference effects on learning a new material at Day 4 were similar between RS and SD participants. These results suggest that post-training sleep contributes to optimizing motor but not sequential components of performance in visuo-motor sequence learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Perceived Motor Competence Differs From Actual Performance in 8-Year-Old Neonatal ECMO Survivors

    NARCIS (Netherlands)

    Toussaint, L.C.; Cammen-van Zijp, M.H. van der; Janssen, A.J.; Tibboel, D.; Heijst, A.F. van; Ijsselstijn, H.

    2016-01-01

    OBJECTIVE: To assess perceived motor competence, social competence, self-worth, health-related quality of life, and actual motor performancein 8-year-old survivors of neonatal extracorporeal membrane oxygenation (ECMO). METHODS: In a prospective nationwide study, 135 children completed the extended

  13. A new motor screening assessment for children at risk for motor disorders: construct validity

    Directory of Open Access Journals (Sweden)

    Paola Matiko Martins Okuda

    Full Text Available ABSTRACT Objective: To develop a motor screening assessment and provide preliminary evidence of its psychometric properties. Methods: A sample of 365 elementary school students was assessed, with structural equation modeling applied to obtain evidence of the adequacy of the factor structure of the motor screening assessment. As well, differential item functioning was used to evaluate whether various identifiable subgroups of children (i.e., sex and grade perform particular tasks differently. Results: Overall, girls obtained higher scores than boys while, for both sexes, the assessment scores increased with age. Furthermore, differential item function analysis revealed that the precision of the test was highest for those with moderate to low motor performance, suggesting that this tool would be appropriate for identifying individuals with movement difficulties. Conclusion: Although further tests of its psychometric properties are required, the motor screening assessment appears to be a reliable, valid, and quickly-administered tool for screening children's movements.

  14. Efficiency Optimization Control of IPM Synchronous Motor Drives with Online Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Sadegh Vaez-Zadeh

    2011-04-01

    Full Text Available This paper describes an efficiency optimization control method for high performance interior permanent magnet synchronous motor drives with online estimation of motor parameters. The control system is based on an input-output feedback linearization method which provides high performance control and simultaneously ensures the minimization of the motor losses. The controllable electrical loss can be minimized by the optimal control of the armature current vector. It is shown that parameter variations except at near the nominal conditions have undesirable effect on the controller performance. Therefore, a parameter estimation method based on the second method of Lyapunov is presented which guarantees the stability and convergence of the estimation. The extensive simulation results show the feasibility of the proposed controller and observer and their desirable performances.

  15. Gross motor skill performance in children with and without visual impairments--research to practice.

    Science.gov (United States)

    Wagner, Matthias O; Haibach, Pamela S; Lieberman, Lauren J

    2013-10-01

    The aim of this study was to provide an empirical basis for teaching gross motor skills in children with visual impairments. For this purpose, gross motor skill performance of 23, 6-12 year old, boys and girls who are blind (ICD-10 H54.0) and 28 sighted controls with comparable age and gender characteristics was compared on six locomotor and six object control tasks using the Test of Gross Motor Development-Second Edition. Results indicate that children who are blind perform significantly (pskills, whereby running, leaping, kicking and catching are the most affected skills, and corresponding differences are related to most running, leaping, kicking and catching component. Practical implications are provided. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Deficits in motor abilities and developmental fractionation of imitation performance in high-functioning autism spectrum disorders.

    Science.gov (United States)

    Biscaldi, Monica; Rauh, Reinhold; Irion, Lisa; Jung, Nikolai H; Mall, Volker; Fleischhaker, Christian; Klein, Christoph

    2014-07-01

    The co-occurrence of motor and imitation disabilities often characterises the spectrum of deficits seen in patients with autism spectrum disorders (ASD). Whether these seemingly separate deficits are inter-related and whether, in particular, motor deficits contribute to the expression of imitation deficits is the topic of the present study and was investigated by comparing these deficits' cross-sectional developmental trajectories. To that end, different components of motor performance assessed in the Zurich Neuromotor Assessment and imitation abilities for facial movements and non-meaningful gestures were tested in 70 subjects (aged 6-29 years), including 36 patients with high-functioning ASD and 34 age-matched typically developed (TD) participants. The results show robust deficits in probands with ASD in timed motor performance and in the quality of movement, which are all independent of age, with one exception. Only diadochokinesis improves moderately with increasing age in ASD probands. Imitation of facial movements and of non-meaningful hand, finger, hand finger gestures not related to social context or tool use is also impaired in ASD subjects, but in contrast to motor performance this deficit overall improves with age. A general imitation factor, extracted from the highly inter-correlated imitation tests, is differentially correlated with components of neuromotor performance in ASD and TD participants. By developmentally fractionating developmentally stable motor deficits from developmentally dynamic imitation deficits, we infer that imitation deficits are primarily cognitive in nature.

  17. cTBS disruption of the supplementary motor area perturbs cortical sequence representation but not behavioural performance.

    Science.gov (United States)

    Solopchuk, Oleg; Alamia, Andrea; Dricot, Laurence; Duque, Julie; Zénon, Alexandre

    2017-12-01

    Neuroimaging studies have repeatedly emphasized the role of the supplementary motor area (SMA) in motor sequence learning, but interferential approaches have led to inconsistent findings. Here, we aimed to test the role of the SMA in motor skill learning by combining interferential and neuroimaging techniques. Sixteen subjects were trained on simple finger movement sequences for 4 days. Afterwards, they underwent two neuroimaging sessions, in which they executed both trained and novel sequences. Prior to entering the scanner, the subjects received inhibitory transcranial magnetic stimulation (TMS) over the SMA or a control site. Using multivariate fMRI analysis, we confirmed that motor training enhances the neural representation of motor sequences in the SMA, in accordance with previous findings. However, although SMA inhibition altered sequence representation (i.e. between-sequence decoding accuracy) in this area, behavioural performance remained unimpaired. Our findings question the causal link between the neuroimaging correlate of elementary motor sequence representation in the SMA and sequence generation, calling for a more thorough investigation of the role of this region in performance of learned motor sequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Performance Analysis of Three-Phase Induction Motor with AC Direct and VFD

    Science.gov (United States)

    Kumar, Dinesh

    2018-03-01

    The electrical machine analysis and performance calculation is a very important aspect of efficient drive system design. The development of power electronics devices and power converters provide smooth speed control of Induction Motors by changing the frequency of input supply. These converters, on one hand are providing a more flexible speed control that also leads to problems of harmonics and their associated ailments like pulsating torque, distorted current and voltage waveforms, increasing losses etc. This paper includes the performance analysis of three phase induction motor with three-phase AC direct and variable frequency drives (VFD). The comparison has been concluded with respect to various parameters. MATLAB-SIMULINKTM is used for the analysis.

  19. Influence of operating conditions upon the dynamic steady-state performance of a switched reluctance motor

    International Nuclear Information System (INIS)

    Faiz, J.; Shafagh, E.

    1999-01-01

    In order to obtain more accurate predicted dynamic steady-state performance with shorter computation time, an available mathematical model is modified and presented. Using this modified model, performance of a typical switched reluctance motor under a wide range of variations of operating conditions is obtained and discussed. These include variations of speed, voltage, load and switching angle. The static test characteristics of the motor are carefully measured and measured flux-linkage data are then used to predict the steady-state performance

  20. The relationship of overweight and obesity to the motor performance ...

    African Journals Online (AJOL)

    Objectives: This study aimed to determine the relationship between overweight and obesity and the motor performance of nine- to 13-year-old South African children. Design: The study used a one-way cross-sectional design based on baseline measurements. Settings and subjects: The research group comprised 280 ...

  1. Dynamic neural networks based on-line identification and control of high performance motor drives

    Science.gov (United States)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  2. Efficient speed control of induction motor using RBF based model reference adaptive control method

    OpenAIRE

    Kilic, Erdal; Ozcalik, Hasan Riza; Yilmaz, Saban

    2017-01-01

    This paper proposes a model reference adaptive speed controller based on artificial neural network for induction motor drives. The performance of traditional feedback controllers has been insufficient in speed control of induction motors due to nonlinear structure of the system, changing environmental conditions, and disturbance input effects. A successful speed control of induction motor requires a nonlinear control system. On the other hand, in recent years, it has been demonstrated that ar...

  3. Motor carrier industry profile study : financial and operating performance profiles by industry segment, 2001-2002.

    Science.gov (United States)

    2004-09-01

    This report profiles the motor carrier industry and its significant operating segments. It is one of a series of reports analyzing various aspects of the motor carrier industry. Other reports in the series focus on the safety performance of the indus...

  4. Motor of Lift RSG-GAS Performance Analysis after Repair

    International Nuclear Information System (INIS)

    Asep-Saepuloh; Yayan-Andriyanto; Yuyut-Suraniyanto

    2006-01-01

    The out of order an equipment is ordinary natural process happened, above all the equipment be used continually with very old time, as for as out of order can be resulted from kinds of cause. Lift motor out of order can be result by motor is broken or happened the body shorten then affected do not function it the lift, so until done rewinding process. The rewinding is furl to repeat at motor coils. Motor of Lift represent main activator machine turning around shares pulley. Lift Motor will work if there is called in normal operation condition or the moment manual switch if done maintenance. Motor used at lift is motor three phases with two speeds that is low speed and high speed. Rewinding process must be done removed the motor from Lift machine and have to be done by professional workshop. In during function test take place, temperature at coil reach 70 o C (exceeding boundary permitted). After done installation addition thermal at motor coil hence his temperature become normal that is only reach 50 o C. (author)

  5. Transcranial direct current stimulation over multiple days enhances motor performance of a grip task.

    Science.gov (United States)

    Fan, Julie; Voisin, Julien; Milot, Marie-Hélène; Higgins, Johanne; Boudrias, Marie-Hélène

    2017-09-01

    Recovery of handgrip is critical after stroke since it is positively related to upper limb function. To boost motor recovery, transcranial direct current stimulation (tDCS) is a promising, non-invasive brain stimulation technique for the rehabilitation of persons with stroke. When applied over the primary motor cortex (M1), tDCS has been shown to modulate neural processes involved in motor learning. However, no studies have looked at the impact of tDCS on the learning of a grip task in both stroke and healthy individuals. To assess the use of tDCS over multiple days to promote motor learning of a grip task using a learning paradigm involving a speed-accuracy tradeoff in healthy individuals. In a double-blinded experiment, 30 right-handed subjects (mean age: 22.1±3.3 years) participated in the study and were randomly assigned to an anodal (n=15) or sham (n=15) stimulation group. First, subjects performed the grip task with their dominant hand while following the pace of a metronome. Afterwards, subjects trained on the task, at their own pace, over 5 consecutive days while receiving sham or anodal tDCS over M1. After training, subjects performed de novo the metronome-assisted task. The change in performance between the pre and post metronome-assisted task was used to assess the impact of the grip task and tDCS on learning. Anodal tDCS over M1 had a significant effect on the speed-accuracy tradeoff function. The anodal tDCS group showed significantly greater improvement in performance (39.28±15.92%) than the sham tDCS group (24.06±16.35%) on the metronome-assisted task, t(28)=2.583, P=0.015 (effect size d=0.94). Anodal tDCS is effective in promoting grip motor learning in healthy individuals. Further studies are warranted to test its potential use for the rehabilitation of fine motor skills in stroke patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Relationships between academic performance, SES school type and perceptual-motor skills in first grade South African learners: NW-CHILD study.

    Science.gov (United States)

    Pienaar, A E; Barhorst, R; Twisk, J W R

    2014-05-01

    Perceptual-motor skills contribute to a variety of basic learning skills associated with normal academic success. This study aimed to determine the relationship between academic performance and perceptual-motor skills in first grade South African learners and whether low SES (socio-economic status) school type plays a role in such a relationship. This cross-sectional study of the baseline measurements of the NW-CHILD longitudinal study included a stratified random sample of first grade learners (n = 812; 418 boys and 394 boys), with a mean age of 6.78 years ± 0.49 living in the North West Province (NW) of South Africa. The Beery-Buktenica Developmental Test of Visual-Motor Integration-4 (VMI) was used to assess visual-motor integration, visual perception and hand control while the Bruininks Oseretsky Test of Motor Proficiency, short form (BOT2-SF) assessed overall motor proficiency. Academic performance in math, reading and writing was assessed with the Mastery of Basic Learning Areas Questionnaire. Linear mixed models analysis was performed with spss to determine possible differences between the different VMI and BOT2-SF standard scores in different math, reading and writing mastery categories ranging from no mastery to outstanding mastery. A multinomial multilevel logistic regression analysis was performed to assess the relationship between a clustered score of academic performance and the different determinants. A strong relationship was established between academic performance and VMI, visual perception, hand control and motor proficiency with a significant relationship between a clustered academic performance score, visual-motor integration and visual perception. A negative association was established between low SES school types on academic performance, with a common perceptual motor foundation shared by all basic learning areas. Visual-motor integration, visual perception, hand control and motor proficiency are closely related to basic academic skills

  7. Effect of a trampoline exercise on the anthropometric measures and motor performance of adolescent students

    Directory of Open Access Journals (Sweden)

    Bahman Aalizadeh

    2016-01-01

    Full Text Available Background: Physical exercises can influence some anthropometric and fitness components differently. The aim of present study was to evaluate how a relatively long-term training program in 11-14-year-old male Iranian students affects their anthropometric and motor performance measures. Methods: Measurements were conducted on the anthropometric and fitness components of participants (n = 28 prior to and following the program. They trained 20 weeks, 1.5 h/session with 10 min rest, in 4 times trampoline training programs per week. Motor performance of all participants was assessed using standing long jump and vertical jump based on Eurofit Test Battery. Results: The analysis of variance (ANOVA repeated measurement test showed a statistically significant main effect of time in calf girth P = 0.001, fat% P = 0.01, vertical jump P = 0.001, and long jump P = 0.001. The ANOVA repeated measurement test revealed a statistically significant main effect of group in fat% P = 0.001. Post hoc paired t-tests indicated statistical significant differences in trampoline group between the two measurements about calf girth (t = −4.35, P = 0.001, fat% (t = 5.87, P = 0.001, vertical jump (t = −5.53, P = 0.001, and long jump (t = −10.00, P = 0.001. Conclusions: We can conclude that 20-week trampoline training with four physical activity sessions/week in 11-14-year-old students seems to have a significant effect on body fat% reduction and effective results in terms of anaerobic physical fitness. Therefore, it is suggested that different training model approach such as trampoline exercises can help students to promote the level of health and motor performance.

  8. Thermal performance of 2350 kW totally enclosed air to air cooled motor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.C.; Kuo, S.C.; Chen, S.L. [National Taiwan Univ., Taipei, Taiwan (China). Dept. of Mechanical Engineering; Cheng, T.F. [TATUNG CO., Sanhsia, Taiwan (China)

    2009-07-01

    This study investigated numerically and experimentally the thermal performance of a 2350 kW enclosed air-to-air cooled motor. The experiment was divided into 2 sections. The centrifugal fans were tested using a standard test apparatus. Flow rates, output power, and pressure drop between the inlet and outlet were obtained. The motor was then tested to measure the flow rate of the external flow, and inlet and outlet temperatures of the external and internal flow in the heat exchanger. Motor performance was then simulated using a computational fluid dynamics (CFD) tool. Heat transfer within the motor was divided into external and internal flows. External flow was driven by the rotation of the centrifugal fan mounted to the frame on the motor shaft and passing through the tubes of a staggered heat exchanger mounted on the top of the frame. Internal flow was circulated through the heat exchanger by 2 axial fans located on either side of the rotor and cooled by the external flow. Axial and centrifugal fan simulations were in good agreement with results obtained during the experiments. The study demonstrated that the calculated velocity distributions of external flow fluids through the heat exchanger tubes are non-uniform. Air outlet temperatures for internal and external flows were estimated within 2 per cent. However, stator and rotor simulations were 3 per cent lower than experimental measured values. 7 refs., 1 tab., 15 figs.

  9. A contribution to the energy conservation and to the three-phase induction motors rotor in cage maintenance; Uma contribuicao a conservacao de energia e a manutencao de motores de inducao trifasicos de rotor em gaiola

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Antonio Tadeu Lyrio de

    1993-11-01

    The thesis introduces two methods for three-phase rotor in cage induction motors. These methods evaluate performance with reliability and rapidity with seen to the application in electric power conservation and in maintenance. The first method it bases in tests executed in machine with free rotor and with locked rotor. The second method it bases in the motor characteristic greatnesses values treatment from manufacturers catalogs data. They are both methods where the equivalent circuit parameters in T are identified from a statistical optimization process in every motor operation band, including the departure. The performance from both methods was going evaluated in tests executed in 40 motors using the method B of the norm IEEE-112 and 54 motors using the norm IEC-34-2 after the adequate numeric treatment.

  10. Performance analysis of PM synchronous motor using fuzzy logic and self tuning fuzzy PI speed controls

    International Nuclear Information System (INIS)

    Karakaya, A.; Karakas, E.

    2008-01-01

    Permanent Magnet Synchronous Motors have nonlinear characteristics whose dynamics changes with time. In spite of this structure the permanent magnet synchronous motor has answered engineering problems in industry such as motion control which need high torque values. This paper obtains a nonlinear mathematical model for Permanent Magnet Synchronous Motor and realizes stimulation of the obtained model in the Matlab/Simulink program. Motor parameters are determined by an experimental set-up and they are used in the motor model. Speed control of motor model is made with Fuzzy Logic and Self Tuning logic PI controllers. Using the speed graphs obtained, rise time, overshoot, steady-state error and settling time are analyzed and controller performances are compared. (author)

  11. Working memory and fine motor skills predict early numeracy performance of children with cerebral palsy.

    Science.gov (United States)

    Van Rooijen, Maaike; Verhoeven, Ludo; Steenbergen, Bert

    2016-01-01

    Early numeracy is an important precursor for arithmetic performance, academic proficiency, and work success. Besides their apparent motor difficulties, children with cerebral palsy (CP) often show additional cognitive disturbances. In this study, we examine whether working memory, non-verbal intelligence, linguistic skills, counting and fine motor skills are positively related to the early numeracy performance of 6-year-old children with CP. A total of 56 children (M = 6.0, SD = 0.61, 37 boys) from Dutch special education schools participated in this cross-sectional study. Of the total group, 81% of the children have the spastic type of CP (33% unilateral and 66% bilateral), 9% have been diagnosed as having diskinetic CP, 8% have been diagnosed as having spastic and diskinetic CP and 2% have been diagnosed as having a combination of diskinetic and atactic CP. The children completed standardized tests assessing early numeracy performance, working memory, non-verbal intelligence, sentence understanding and fine motor skills. In addition, an experimental task was administered to examine their basic counting performance. Structural equation modeling showed that working memory and fine motor skills were significantly related to the early numeracy performance of the children (β = .79 and p working memory and early numeracy (β = .57, p working memory for early numeracy performance in children with CP and they warrant further research into the efficacy of intervention programs aimed at working memory training.

  12. Performance comparison of three-phase flux reversal permanent magnet motors in BLDC and BLAC operation mode

    International Nuclear Information System (INIS)

    Stumberger, B.; Stumberger, G.; Hadziselimovic, M.; Hamler, A.; Gorican, V.; Jesenik, M.; Trlep, M.

    2008-01-01

    The paper presents a comparison of torque capability and flux-weakening performance of three-phase flux reversal permanent magnet motors with surface and inset permanent magnets. Finite element analysis is employed to determine the performance of each motor in BLDC and BLAC operation mode. It is shown that the torque capability and flux-weakening performance of surface or inset permanent magnet configuration is strongly dependent on the stator teeth number/rotor pole number combination

  13. Motor Decline in Clinically Presymptomatic Spinocerebellar Ataxia Type 2 Gene Carriers

    Science.gov (United States)

    Velázquez-Perez, Luis; Díaz, Rosalinda; Pérez-González, Ruth; Canales, Nalia; Rodríguez-Labrada, Roberto; Medrano, Jacquelín; Sánchez, Gilberto; Almaguer-Mederos, Luis; Torres, Cira; Fernandez-Ruiz, Juan

    2009-01-01

    Background Motor deficits are a critical component of the clinical characteristics of patients with spinocerebellar ataxia type 2. However, there is no current information on the preclinical manifestation of those motor deficits in presymptomatic gene carriers. To further understand and characterize the onset of the clinical manifestation in this disease, we tested presymptomatic spinocerebellar ataxia type 2 gene carriers, and volunteers, in a task that evaluates their motor performance and their motor learning capabilities. Methods and Findings 28 presymptomatic spinocerebellar ataxia type 2 gene carriers and an equal number of control volunteers matched for age and gender participated in the study. Both groups were tested in a prism adaptation task known to be sensible to both motor performance and visuomotor learning deficits. Our results clearly show that although motor learning capabilities are intact, motor performance deficits are present even years before the clinical manifestation of the disease start. Conclusions The results show a clear deficit in motor performance that can be detected years before the clinical onset of the disease. This motor performance deficit appears before any motor learning or clinical manifestations of the disease. These observations identify the performance coefficient as an objective and quantitative physiological biomarker that could be useful to assess the efficiency of different therapeutic agents. PMID:19401771

  14. The relationship of overweight and obesity to the motor performance ...

    African Journals Online (AJOL)

    2011-11-02

    Nov 2, 2011 ... Objectives: This study aimed to determine the relationship between overweight and obesity and the motor performance of nine- to 13-year-old ... Body coordination is an indication of balance skills, as well as ..... who work with overweight and obese learners in these age .... statement: life skills grade 4-6.

  15. Cardiorespiratory Fitness and Motor Skills in Relation to Cognition and Academic Performance in Children – A Review

    Science.gov (United States)

    Haapala, Eero A.

    2013-01-01

    Different elements of physical fitness in children have shown a declining trend during the past few decades. Cardiorespiratory fitness and motor skills have been associated with cognition, but the magnitude of this association remains unknown. The purpose of this review is to provide an overview of the relationship of cardiorespiratory fitness and motor skills with cognitive functions and academic performance in children up to 13 years of age. Cross-sectional studies suggest that children with higher cardiorespiratory fitness have more efficient cognitive processing at the neuroelectric level, as well as larger hippocampal and basal ganglia volumes, compared to children with lower cardiorespiratory fitness. Higher cardiorespiratory fitness has been associated with better inhibitory control in tasks requiring rigorous attention allocation. Better motor skills have been related to more efficient cognitive functions including inhibitory control and working memory. Higher cardiorespiratory fitness and better motor skills have also been associated with better academic performance. Furthermore, none of the studies on cardiorespiratory fitness have revealed independent associations with cognitive functions by controlling for motor skills. Studies concerning the relationship between motor skills and cognitive functions also did not consider cardiorespiratory fitness in the analyses. The results of this review suggest that high levels of cardiorespiratory fitness and motor skills may be beneficial for cognitive development and academic performance but the evidence relies mainly on cross-sectional studies. PMID:23717355

  16. Coupling with concentric contact around motor shaft for line start synchronous motor

    Science.gov (United States)

    Melfi, Michael J.; Burdeshaw, Galen E.

    2017-10-03

    A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, and driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.

  17. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naoki eIso

    2016-01-01

    Full Text Available The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME and motor imagery (MI by using near-infrared spectroscopy (NIRS, as this technique is more clinically expedient than established methods (e.g. fMRI. Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb concentration. Oxy-Hb in the somatosensory motor cortex (SMC increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA and premotor area (PMA, oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  18. Effects of High-Definition Anodal Transcranial Direct Current Stimulation Applied Simultaneously to Both Primary Motor Cortices on Bimanual Sensorimotor Performance

    Directory of Open Access Journals (Sweden)

    Nils H. Pixa

    2017-07-01

    Full Text Available Many daily activities, such as tying one’s shoe laces, opening a jar of jam or performing a free throw in basketball, require the skillful coordinated use of both hands. Even though the non-invasive method of transcranial direct current stimulation (tDCS has been repeatedly shown to improve unimanual motor performance, little is known about its effects on bimanual motor performance. More knowledge about how tDCS may improve bimanual behavior would be relevant to motor recovery, e.g., in persons with bilateral impairment of hand function. We therefore examined the impact of high-definition anodal tDCS (HD-atDCS on the performance of a bimanual sequential sensorimotor task. Thirty-two volunteers (age M = 24.25; SD = 2.75; 14 females participated in this double-blind study and performed sport stacking in six experimental sessions. In sport stacking, 12 specially designed cups must be stacked (stacked up and dismantled (stacked down in predefined patterns as fast as possible. During a pretest, posttest and follow-up test, two sport stacking formations (3-6-3 stack and 1-10-1 stack were performed. Between the pretest and posttest, all participants were trained in sport stacking with concurrent brain stimulation for three consecutive days. The experimental group (STIM-M1 received HD-atDCS over both primary motor cortices (M1, while the control group received a sham stimulation (SHAM. Three-way analysis of variance (ANOVA revealed a significant main effect of TIME and a significant interaction of TIME × GROUP. No significant effects were found for GROUP, nor for the three-way interaction of TIME × GROUP × FORMATION. Further two-way ANOVAs showed a significant main effect of TIME and a non-significant main effect for GROUP in both sport stacking formations. A significant interaction between TIME × GROUP was found only for the 3-6-3 formation, indicating superior performance gains for the experimental group (STIM-M1. To account and control for

  19. Effects of High-Definition Anodal Transcranial Direct Current Stimulation Applied Simultaneously to Both Primary Motor Cortices on Bimanual Sensorimotor Performance

    Science.gov (United States)

    Pixa, Nils H.; Steinberg, Fabian; Doppelmayr, Michael

    2017-01-01

    Many daily activities, such as tying one’s shoe laces, opening a jar of jam or performing a free throw in basketball, require the skillful coordinated use of both hands. Even though the non-invasive method of transcranial direct current stimulation (tDCS) has been repeatedly shown to improve unimanual motor performance, little is known about its effects on bimanual motor performance. More knowledge about how tDCS may improve bimanual behavior would be relevant to motor recovery, e.g., in persons with bilateral impairment of hand function. We therefore examined the impact of high-definition anodal tDCS (HD-atDCS) on the performance of a bimanual sequential sensorimotor task. Thirty-two volunteers (age M = 24.25; SD = 2.75; 14 females) participated in this double-blind study and performed sport stacking in six experimental sessions. In sport stacking, 12 specially designed cups must be stacked (stacked up) and dismantled (stacked down) in predefined patterns as fast as possible. During a pretest, posttest and follow-up test, two sport stacking formations (3-6-3 stack and 1-10-1 stack) were performed. Between the pretest and posttest, all participants were trained in sport stacking with concurrent brain stimulation for three consecutive days. The experimental group (STIM-M1) received HD-atDCS over both primary motor cortices (M1), while the control group received a sham stimulation (SHAM). Three-way analysis of variance (ANOVA) revealed a significant main effect of TIME and a significant interaction of TIME × GROUP. No significant effects were found for GROUP, nor for the three-way interaction of TIME × GROUP × FORMATION. Further two-way ANOVAs showed a significant main effect of TIME and a non-significant main effect for GROUP in both sport stacking formations. A significant interaction between TIME × GROUP was found only for the 3-6-3 formation, indicating superior performance gains for the experimental group (STIM-M1). To account and control for baseline

  20. A novel method for estimating the initial rotor position of PM motors without the position sensor

    International Nuclear Information System (INIS)

    Rostami, Alireza; Asaei, Behzad

    2009-01-01

    Permanent magnet (PM) motors have been used widely in the industrial applications. However, a need of the position sensor is a drawback of their control system. The sensorless methods using the back-EMF (electromotive force) cannot detect the rotor position at a standstill; recently, a few methods proposed to detect the initial rotor position, but they have high estimation error which reduces starting torque of the motor. Therefore, in this paper, a novel method to detect the initial rotor position of the PM motors is proposed, first, by using a space vector model, response of the stator current space vector to the saturation of the stator core is analyzed; then a novel method based on the saturation effect is presented that estimates the initial rotor position and the maximum estimation error is less than 3.8 deg. Simulation results confirm this method is effective and precise, and variation of the motor parameters does not affect its precision.

  1. A novel method for estimating the initial rotor position of PM motors without the position sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Alireza; Asaei, Behzad [School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran)

    2009-08-15

    Permanent magnet (PM) motors have been used widely in the industrial applications. However, a need of the position sensor is a drawback of their control system. The sensorless methods using the back-EMF (electromotive force) cannot detect the rotor position at a standstill; recently, a few methods proposed to detect the initial rotor position, but they have high estimation error which reduces starting torque of the motor. Therefore, in this paper, a novel method to detect the initial rotor position of the PM motors is proposed, first, by using a space vector model, response of the stator current space vector to the saturation of the stator core is analyzed; then a novel method based on the saturation effect is presented that estimates the initial rotor position and the maximum estimation error is less than 3.8. Simulation results confirm this method is effective and precise, and variation of the motor parameters does not affect its precision. (author)

  2. Quantitative assessment of finger motor impairment in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Laura Bonzano

    Full Text Available OBJECTIVE: To address the disability impact on fine hand motor functions in patients with Multiple Sclerosis (MS by quantitatively measuring finger opposition movements, with the aim of providing a new "score" integrating current methods for disability assessment. METHODS: 40 MS patients (Expanded Disability Status Scale (EDSS: 0-7 and 80 healthy controls (HC performed a repetitive finger-to-thumb opposition sequence with their dominant hand at spontaneous and maximal velocity, and uni- and bi-manually metronome-paced. A sensor-engineered glove was used to measure finger motor performance. Twenty-seven HC were tested twice, one month apart, to assess test-retest reliability. RESULTS: The motor parameters showed a good reproducibility in HC and demonstrated significantly worse performance in MS patients with respect to HC. A multivariate model revealed that rate of movement in the spontaneous velocity condition and inter-hand interval (IHI, indicating bimanual coordination, contributed independently to differentiate the two groups. A finger motor impairment score based on these two parameters was able to discriminate HC from MS patients with very low EDSS scores (p<0.001: a significant difference was already evident for patients with EDSS = 0. Further, in the MS group, some motor performance parameters correlated with the clinical scores. In particular, significant correlations were found between IHI and EDSS (r = 0.56; p<0.0001, MS Functional Composite (r = -0.40; p = 0.01, Paced Auditory Serial Addition (r = -0.38; p = 0.02. No motor performance parameter correlated with Timed 25-Foot Walk. CONCLUSIONS: A simple, quantitative, objective method measuring finger motor performance could be used to define a score discriminating healthy controls and MS patients, even with very low disability. This sensitivity might be of crucial importance for monitoring the disease course and the treatment effects in early MS patients, when

  3. How to make spinal motor neurons.

    Science.gov (United States)

    Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin

    2014-02-01

    All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.

  4. Motor performance is impaired following vestibular stimulation in ageing mice.

    Directory of Open Access Journals (Sweden)

    Victoria W.K. Tung

    2016-02-01

    Full Text Available Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5-6, 8-9 and 27-28 months were tested using a combination of standard (such as grip strength and rotarod and newly-developed behavioural tests (including balance beam and walking trajectory tests with a vestibular stimulus. In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2-3 Hz and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip from the beam. Furthermore, aged mice (27-28 months that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13, and 27-28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13, and 27-28 months. Conclusion: This study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioural changes in task performance were observed.

  5. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice.

    Science.gov (United States)

    Tung, Victoria W K; Burton, Thomas J; Quail, Stephanie L; Mathews, Miranda A; Camp, Aaron J

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5-6, 8-9 and 27-28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2-3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27-28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27-28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27-28 months. this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed.

  6. Analysis on Bilateral Hindlimb Mapping in Motor Cortex of the Rat by an Intracortical Microstimulation Method

    OpenAIRE

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-01-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the righ...

  7. Neuroplasticity & Motor Learning

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye

    Practice of a new motor task is usually associated with an improvement in performance. Indeed, if we stop practicing and return the next day to the same task, we find that our performance has been maintained and may even be better than it was at the start of the first day. This improvement...... is a measure of our ability to form and store a motor memory of the task. However, the initial memory of the task is labile and may be subject to interference. During and following motor learning plastic changes occur within the central nervous system. On one hand these changes are driven by motor practice......, on the other hand the changes underlie the formation of motor memory and the retention of improved motor performance. During motor learning changes may occur at many different levels within the central nervous system dependent on the type of task and training. Here, we demonstrate different studies from our...

  8. Can a single session of motor imagery promote motor learning of locomotion in older adults? A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Nicholson VP

    2018-04-01

    Full Text Available Vaughan P Nicholson,1 Justin WL Keogh,2–4 Nancy L Low Choy1 1School of Physiotherapy, Australian Catholic University, Brisbane, QLD, Australia; 2Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia; 3Human Potential Centre, AUT University, Auckland, New Zealand; 4Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia Purpose: To investigate the influence of a single session of locomotor-based motor imagery training on motor learning and physical performance. Patients and methods: Thirty independent adults aged >65 years took part in the randomized controlled trial. The study was conducted within an exercise science laboratory. Participants were randomly divided into three groups following baseline locomotor testing: motor imagery training, physical training, and control groups. The motor imagery training group completed 20 imagined repetitions of a locomotor task, the physical training group completed 20 physical repetitions of a locomotor task, and the control group spent 25 minutes playing mentally stimulating games on an iPad. Imagined and physical performance times were measured for each training repetition. Gait speed (preferred and fast, timed-up-and-go, gait variability and the time to complete an obstacle course were completed before and after the single training session. Results: Motor learning occurred in both the motor imagery training and physical training groups. Motor imagery training led to refinements in motor planning resulting in imagined movements better matching the physically performed movement at the end of training. Motor imagery and physical training also promoted improvements in some locomotion outcomes as demonstrated by medium to large effect size improvements after training for fast gait speed and timed-up-and-go. There were no training effects on gait variability. Conclusion: A single session

  9. Manipulating motor performance and memory through real-time fMRI neurofeedback

    Science.gov (United States)

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-01-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. PMID:25796342

  10. System and Method for Determining Rate of Rotation Using Brushless DC Motor

    Science.gov (United States)

    Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2000-01-01

    A system and method are provided for measuring rate of rotation. A brushless DC motor is rotated and produces a back electromagnetic force (emf) on each winding thereof. Each winding's back-emf is squared. The squared outputs associated with each winding are combined, with the square root being taken of such combination, to produce a DC output proportional only to the rate of rotation of the motor's shaft.

  11. Comparison of Linear Induction Motor Theories for the LIMRV and TLRV Motors

    Science.gov (United States)

    1978-01-01

    The Oberretl, Yamamura, and Mosebach theories of the linear induction motor are described and also applied to predict performance characteristics of the TLRV & LIMRV linear induction motors. The effect of finite motor width and length on performance ...

  12. Motor skills and school performance in children with daily physical education in school--a 9-year intervention study.

    Science.gov (United States)

    Ericsson, I; Karlsson, M K

    2014-04-01

    The aim was to study long-term effects on motor skills and school performance of increased physical education (PE). All pupils born 1990-1992 from one school were included in a longitudinal study over nine years. An intervention group (n = 129) achieved daily PE (5 × 45 min/week) and if needed one extra lesson of adapted motor training. The control group (n = 91) had PE two lessons/week. Motor skills were evaluated by the Motor Skills Development as Ground for Learning observation checklist and school achievements by marks in Swedish, English, Mathematics, and PE and proportion of pupils who qualified for upper secondary school. In school year 9 there were motor skills deficits in 7% of pupils in the intervention group compared to 47% in the control group (P motor skills deficit than among pupils with motor skills deficits (P motor skills training during the compulsory school years is a feasible way to improve not only motor skills but also school performance and the proportion of pupils who qualify for upper secondary school. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    Science.gov (United States)

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Split-phase motor running as capacitor starts motor and as capacitor run motor

    OpenAIRE

    Yahaya Asizehi ENESI; Jacob TSADO; Mark NWOHU; Usman Abraham USMAN; Odu Ayo IMORU

    2016-01-01

    In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...

  15. Temperature Field Accurate Modeling and Cooling Performance Evaluation of Direct-Drive Outer-Rotor Air-Cooling In-Wheel Motor

    Directory of Open Access Journals (Sweden)

    Feng Chai

    2016-10-01

    Full Text Available High power density outer-rotor motors commonly use water or oil cooling. A reasonable thermal design for outer-rotor air-cooling motors can effectively enhance the power density without the fluid circulating device. Research on the heat dissipation mechanism of an outer-rotor air-cooling motor can provide guidelines for the selection of the suitable cooling mode and the design of the cooling structure. This study investigates the temperature field of the motor through computational fluid dynamics (CFD and presents a method to overcome the difficulties in building an accurate temperature field model. The proposed method mainly includes two aspects: a new method for calculating the equivalent thermal conductivity (ETC of the air-gap in the laminar state and an equivalent treatment to the thermal circuit that comprises a hub, shaft, and bearings. Using an outer-rotor air-cooling in-wheel motor as an example, the temperature field of this motor is calculated numerically using the proposed method; the results are experimentally verified. The heat transfer rate (HTR of each cooling path is obtained using the numerical results and analytic formulas. The influences of the structural parameters on temperature increases and the HTR of each cooling path are analyzed. Thereafter, the overload capability of the motor is analyzed in various overload conditions.

  16. BIOFEEDBACK: A NEW METHOD FOR CORRECTION OF MOTOR DISORDERS IN PATIENTS WITH MULTIPLE SCLEROSIS

    Directory of Open Access Journals (Sweden)

    Ya. S. Pekker

    2014-01-01

    Full Text Available Major disabling factors in multiple sclerosis is motor disorders. Rehabilitation of such violations is one of the most important medical and social problems. Currently, most of the role given to the development of methods for correction of motor disorders based on accessing natural resources of the human body. One of these methods is the adaptive control with biofeedback (BFB. The aim of our study was the correction of motor disorders in multiple sclerosis patients using biofeedback training. In the study, we have developed scenarios for training rehabilitation program computer EMG biofeedback aimed at correction of motor disorders in patients with multiple sclerosis (MS. The method was tested in the neurological clinic of SSMU. The study included 9 patients with definite diagnosis of MS with the presence of the clinical picture of combined pyramidal and cerebellar symptoms. Assessed the effectiveness of rehabilitation procedures biofeedback training using specialized scales (rating scale functional systems Kurtzke; questionnaire research quality of life – SF-36, evaluation of disease impact Profile – SIP and score on a scale fatigue – FSS. In the studied group of patients decreased score on a scale of fatigue (FSS, increased motor control (SIP2, the physical and mental components of health (SF-36. The tendency to reduce the amount of neurological deficit by reducing the points on the pyramidal Kurtske violations. Analysis of the exchange rate dynamics of biofeedback training on EMG for trained muscles indicates an increase in the recorded signal OEMG from session to session. Proved a tendency to increase strength and coordination trained muscles of patients studied.Positive results of biofeedback therapy in patients with MS can be recommended to use this method in the complex rehabilitation measures to correct motor and psycho-emotional disorders.

  17. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  18. Direct and Conceptual Replications of Burgmer & Englich (2012: Power May Have Little to No Effect on Motor Performance.

    Directory of Open Access Journals (Sweden)

    Margaret Cusack

    Full Text Available Burgmer and Englich (2012 have reported that manipulating feelings of power can substantially improve performance on two motor tasks: golf and darts. We conducted two high-powered direct replications of the effects of power on golf, two online conceptual replications using mirror-tracing as a performance measure, and an additional conceptual replication using a cognitive performance measure (word-search. Overall, we found little to no effect of power on motor skill (d = 0.09, 95% CI[-0.07, 0.22], n = 603. We varied task difficulty, re-analyzed data without participants showing weak responses on manipulation checks, and tried adjusting performance scores for age, gender, and initial task skill. None of these secondary analyses revealed a strong effect of power on performance. A meta-analysis integrating our data with Burgmer & Englich leaves open the possibility that manipulating power could provide a modest boost in motor skill (d = 0.19, 95% CI [0.001, 0.38], n = 685. Unfortunately, the pattern of performance changes we observed was unrelated to group differences in perceived and rated power, suggesting that what motor effects do occur with this protocol may not be directly related to the construct of power. [Burgmer, P., &Englich, B. (2012. Bullseye!: How Power Improves Motor Performance. Social Psychological and Personality Science, 4(2, 224-232.].

  19. A neural network-based optimal spatial filter design method for motor imagery classification.

    Directory of Open Access Journals (Sweden)

    Ayhan Yuksel

    Full Text Available In this study, a novel spatial filter design method is introduced. Spatial filtering is an important processing step for feature extraction in motor imagery-based brain-computer interfaces. This paper introduces a new motor imagery signal classification method combined with spatial filter optimization. We simultaneously train the spatial filter and the classifier using a neural network approach. The proposed spatial filter network (SFN is composed of two layers: a spatial filtering layer and a classifier layer. These two layers are linked to each other with non-linear mapping functions. The proposed method addresses two shortcomings of the common spatial patterns (CSP algorithm. First, CSP aims to maximize the between-classes variance while ignoring the minimization of within-classes variances. Consequently, the features obtained using the CSP method may have large within-classes variances. Second, the maximizing optimization function of CSP increases the classification accuracy indirectly because an independent classifier is used after the CSP method. With SFN, we aimed to maximize the between-classes variance while minimizing within-classes variances and simultaneously optimizing the spatial filter and the classifier. To classify motor imagery EEG signals, we modified the well-known feed-forward structure and derived forward and backward equations that correspond to the proposed structure. We tested our algorithm on simple toy data. Then, we compared the SFN with conventional CSP and its multi-class version, called one-versus-rest CSP, on two data sets from BCI competition III. The evaluation results demonstrate that SFN is a good alternative for classifying motor imagery EEG signals with increased classification accuracy.

  20. A novel magnetic resonance imaging-compatible motor control method for image-guided robotic surgery

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Liao, Hongen; Kobayashi, Etsuko; Sakuma, Ichiro

    2006-01-01

    For robotic surgery assistance systems that use magnetic resonance imaging (MRI) for guidance, the problem of electromagnetic interference is common. Image quality is particularly degraded if motors are running during scanning. We propose a novel MRI-compatible method considering the pulse sequence of imaging. Motors are driven for a short time when the MRI system stops signal acquisition (i.e., awaiting relaxation of the proton), so the image does not contain noise from the actuators. The MRI system and motor are synchronized using a radio frequency pulse signal (8.5 MHz) as the trigger, which is acquired via a special antenna mounted near the scanner. This method can be widely applied because it only receives part of the scanning signal and neither hardware nor software of the MRI system needs to be changed. As a feasibility evaluation test, we compared the images and signal-to-noise ratios between the cases with and without this method, under the condition that a piezoelectric motor was driven during scanning as a noise source, which was generally used as a MRI-compatible actuator. The results showed no deterioration in image quality and the benefit of the new method even though the choice of available scanning sequences is limited. (author)

  1. Interventions to improve gross motor performance in children with neurodevelopmental disorders: a meta-analysis.

    Science.gov (United States)

    Lucas, Barbara R; Elliott, Elizabeth J; Coggan, Sarah; Pinto, Rafael Z; Jirikowic, Tracy; McCoy, Sarah Westcott; Latimer, Jane

    2016-11-29

    Gross motor skills are fundamental to childhood development. The effectiveness of current physical therapy options for children with mild to moderate gross motor disorders is unknown. The aim of this study was to systematically review the literature to investigate the effectiveness of conservative interventions to improve gross motor performance in children with a range of neurodevelopmental disorders. A systematic review with meta-analysis was conducted. MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, PEDro, Cochrane Collaboration, Google Scholar databases and clinical trial registries were searched. Published randomised controlled trials including children 3 to ≤18 years with (i) Developmental Coordination Disorder (DCD) or Cerebral Palsy (CP) (Gross Motor Function Classification System Level 1) or Developmental Delay or Minimal Acquired Brain Injury or Prematurity (gross motor outcomes obtained using a standardised assessment tool. Meta-analysis was performed to determine the pooled effect of intervention on gross motor function. Methodological quality and strength of meta-analysis recommendations were evaluated using PEDro and the GRADE approach respectively. Of 2513 papers, 9 met inclusion criteria including children with CP (n = 2) or DCD (n = 7) receiving 11 different interventions. Only two of 9 trials showed an effect for treatment. Using the least conservative trial outcomes a large beneficial effect of intervention was shown (SMD:-0.8; 95% CI:-1.1 to -0.5) with "very low quality" GRADE ratings. Using the most conservative trial outcomes there is no treatment effect (SMD:-0.1; 95% CI:-0.3 to 0.2) with "low quality" GRADE ratings. Study limitations included the small number and poor quality of the available trials. Although we found that some interventions with a task-orientated framework can improve gross motor outcomes in children with DCD or CP, these findings are limited by the very low quality of the available evidence. High quality intervention

  2. The cognitive complexity of concurrent cognitive-motor tasks reveals age-related deficits in motor performance

    DEFF Research Database (Denmark)

    Oliveira, Anderson Souza; Reiche, Mikkel Staall; Vinescu, Cristina Ioana

    2018-01-01

    Aging reduces cognitive functions, and such impairments have implications in mental and motor performance. Cognitive function has been recently linked to the risk of falls in older adults. Physical activities have been used to attenuate the declines in cognitive functions and reduce fall incidence......, but little is known whether a physically active lifestyle can maintain physical performance under cognitively demanding conditions. The aim of this study was to verify whether physically active older adults present similar performance deficits during upper limb response time and precision stepping walking...... tasks when compared to younger adults. Both upper limb and walking tasks involved simple and complex cognitive demands through decision-making. For both tasks, decision-making was assessed by including a distracting factor to the execution. The results showed that older adults were substantially slower...

  3. Performance analysis of variable speed multiphase induction motor with pole phase modulation

    Directory of Open Access Journals (Sweden)

    Liu Huijuan

    2016-09-01

    Full Text Available The pole phase modulation (PPM technique is an effective method to extend speed range and torque capabilities for an integrated starter and hybrid electric vehicles applications. In this paper, the five pole-phase combination types of a multiphase induction motor (IM with 36 stator slots and 36 stator conductors are presented and compared quantitatively by using the time-stepping finite element method (TS-FEM. The 36 stator conductors of the proposed multiphase IM are fed by a 36 leg inverter and the current phase angle and amplitude of each stator conductor can be controlled independently. This paper focuses on the winding connection, the PPM technique and the performance comparative analysis of each pole-phase combination types of the proposed multiphase IM. The flux distribution, air-gap flux density, output torque, core losses and efficiency of five pole-phase combination types have been investigated.

  4. System and method for motor fault detection using stator current noise cancellation

    Science.gov (United States)

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  5. A firm size and safety performance profile of the U.S. motor carrier industry : [executive summary].

    Science.gov (United States)

    2015-11-01

    Motor carrier crashes continue to present a societal and public policy : problem. Large commercial truck crashes are a topic of serious concern : in Iowa. Statistics illustrate the need to make further progress on the : safety performance of motor ca...

  6. Development of Rotor Diagnosis Method via Motor Current Signature Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Seok; Huh, Hyung; Kim, Min Hwan; Jeong, Kyeong Hoon; Lee, Gyu Mhan; Park, Jin Ho; Park, Keun Bae; Lee, Cheol Kwon; Hur, S

    2006-01-15

    A study on motor current signature analysis has been performed to monitor a journal bearing fault due to increasing clearance. It was known that the journal bearing clearance produces side band frequencies, the supplied current frequency plus and minus rotational rotor frequency in motor current. But the existence information of the side band frequencies is not sufficient to diagnose whether the journal bearing is safe or not. Four journal bearing sets with different clearances are used to measure the side band frequency amplitude and the rotor vibration amplitude versus the journal bearing clearance. The side band frequency amplitude and the rotor vibration amplitude are increased as the journal bearing clearance is increasing. This trend assures that ASME OM vibration guide line can be applied to estimate the journal bearing clearance size. In this research, 2.5 times the reference side band amplitude is suggested as an indicator of a journal bearing fault. Further study is necessary to make out more specific quantitative relations between the side band frequency amplitude and the journal bearing clearance of a motor.

  7. Development of Rotor Diagnosis Method via Motor Current Signature Analysis

    International Nuclear Information System (INIS)

    Park, Jin Seok; Huh, Hyung; Kim, Min Hwan; Jeong, Kyeong Hoon; Lee, Gyu Mhan; Park, Jin Ho; Park, Keun Bae; Lee, Cheol Kwon; Hur, S.

    2006-01-01

    A study on motor current signature analysis has been performed to monitor a journal bearing fault due to increasing clearance. It was known that the journal bearing clearance produces side band frequencies, the supplied current frequency plus and minus rotational rotor frequency in motor current. But the existence information of the side band frequencies is not sufficient to diagnose whether the journal bearing is safe or not. Four journal bearing sets with different clearances are used to measure the side band frequency amplitude and the rotor vibration amplitude versus the journal bearing clearance. The side band frequency amplitude and the rotor vibration amplitude are increased as the journal bearing clearance is increasing. This trend assures that ASME OM vibration guide line can be applied to estimate the journal bearing clearance size. In this research, 2.5 times the reference side band amplitude is suggested as an indicator of a journal bearing fault. Further study is necessary to make out more specific quantitative relations between the side band frequency amplitude and the journal bearing clearance of a motor

  8. Effect of Experimental Hand Pain on Training-Induced Changes in Motor Performance and Corticospinal Excitability

    Directory of Open Access Journals (Sweden)

    Nicolas Mavromatis

    2017-02-01

    Full Text Available Pain influences plasticity within the sensorimotor system and the aim of this study was to assess the effect of pain on changes in motor performance and corticospinal excitability during training for a novel motor task. A total of 30 subjects were allocated to one of two groups (Pain, NoPain and performed ten training blocks of a visually-guided isometric pinch task. Each block consisted of 15 force sequences, and subjects modulated the force applied to a transducer in order to reach one of five target forces. Pain was induced by applying capsaicin cream to the thumb. Motor performance was assessed by a skill index that measured shifts in the speed–accuracy trade-off function. Neurophysiological measures were taken from the first dorsal interosseous using transcranial magnetic stimulation. Overall, the Pain group performed better throughout the training (p = 0.03, but both groups showed similar improvements across training blocks (p < 0.001, and there was no significant interaction. Corticospinal excitability in the NoPain group increased halfway through the training, but this was not observed in the Pain group (Time × Group interaction; p = 0.01. These results suggest that, even when pain does not negatively impact on the acquisition of a novel motor task, it can affect training-related changes in corticospinal excitability.

  9. Comparison of torque capability of three-phase permanent magnet synchronous motors with different permanent magnet arrangement

    International Nuclear Information System (INIS)

    Stumberger, Bojan; Stumberger, Gorazd; Hadziselimovic, Miralem; Hamler, Anton; Gorican, Viktor; Jesenik, Marko; Trlep, Mladen

    2007-01-01

    The paper presents a comparison of torque capability of three-phase permanent magnet synchronous motors with different permanent magnet arrangement. Motors with the following permanent magnet topologies were accounted for in the comparison: the surface-mounted permanent magnet synchronous motor (SMPMSM), the interior permanent magnet synchronous motor (IPMSM), the permanent magnet-assisted synchronous reluctance motor (PMASRM) and the flux reversal permanent magnet motor (FRPMM). Finite element method analysis is employed to determine the performance of each motor. Calculated performance of four-pole IPMSM determined by finite element method calculation is confirmed with the measurements at nearly constant nominal output power in the range of speed 3000-10,000 rpm

  10. Analysis of a hysteresis motor on asynchronous speed using complex permeability

    International Nuclear Information System (INIS)

    Horii, T.; Yuge, N.; Wakui, G.

    1994-01-01

    Although hysteresis motors have a comparatively small output for their mechanical dimensions compared with other types of motor, they offer the advantages of extremely low vibration and noise levels, and so are widely used as driving motors in acoustic equipment and uranium gas centrifuges. This paper deals with a method for determining the complex permeability in analysis of hysteresis motors. The method assumes that the magnetic intensity distribution is sinusoidal in the direction of rotation. Analysis of the asynchronous speed of a hysteresis motor is then performed for cylindrical coordinates, using modified Bessel functions. The results of calculations are in good agreement with experimental results, confirming the effectiveness of the proposed model and method for determining the complex permeability

  11. Geometry optimization of five-phase permanent magnet synchronous motors using Bees algorithm

    Directory of Open Access Journals (Sweden)

    R Ilka

    2015-12-01

    Full Text Available Among all types of electrical motors, permanent magnet synchronous motors (PMSMs are reliable and efficient motors in industrial applications. Because of their superiority over other kinds of motors, they are replacing conventional electric motors. On the other hand, high-phase PMSMs are good candidates to be used in certain industrial and military projects such as electric vehicles, spacecrafts, naval systems and etc. In these cases, the motor has to be designed with minimum volume and high torque and efficiency. Design optimization can improve their features noticeably, thus reduce volume and enhance performance of motors. In this paper, a new method for optimum design of a five-phase surface-mounted permanent magnet synchronous motor is presented to achieve minimum permanent magnets (PMs volume with an increased torque and efficiency. Design optimization is performed in search for optimum dimensions of the motor and its permanent magnets using Bees Algorithm (BA. The design optimization results in a motor with great improvement regarding the original motor which is compared with two well-known evolutionary algorithms i.e. GA and PSO. Finally, finite element method simulation is utilized to validate the accuracy of the design.

  12. The Feldenkrais Method: A Dynamic Approach to Changing Motor Behavior.

    Science.gov (United States)

    Buchanan, Patricia A.; Ulrich, Beverly D.

    2001-01-01

    Describes the Feldenkrais Method of somatic education, noting parallels with a dynamic systems theory (DST) approach to motor behavior. Feldenkrais uses movement and perception to foster individualized improvement in function. DST explains that a human-environment system continually adapts to changing conditions and assembles behaviors…

  13. Discerning measures of conscious brain processes associated with superior early motor performance: Capacity, coactivation, and character.

    Science.gov (United States)

    van Duijn, Tina; Buszard, Tim; Hoskens, Merel C J; Masters, Rich S W

    2017-01-01

    This study explored the relationship between working memory (WM) capacity, corticocortical communication (EEG coherence), and propensity for conscious control of movement during the performance of a complex far-aiming task. We were specifically interested in the role of these variables in predicting motor performance by novices. Forty-eight participants completed (a) an assessment of WM capacity (an adapted Rotation Span task), (b) a questionnaire that assessed the propensity to consciously control movement (the Movement Specific Reinvestment Scale), and (c) a hockey push-pass task. The hockey push-pass task was performed in a single task (movement only) condition and a combined task (movement plus decision) condition. Electroencephalography (EEG) was used to examine brain activity during the single task. WM capacity best predicted single task performance. WM capacity in combination with T8-Fz coherence (between the visuospatial and motor regions of the brain) best predicted combined task performance. We discuss the implied roles of visuospatial information processing capacity, neural coactivation, and propensity for conscious processing during performance of complex motor tasks. © 2017 Elsevier B.V. All rights reserved.

  14. Motor Skill Assessment of Children: Is There an Association between Performance-Based, Child-Report, and Parent-Report Measures of Children's Motor Skills?

    Science.gov (United States)

    Kennedy, Johanna; Brown, Ted; Chien, Chi-Wen

    2012-01-01

    Client-centered practice requires therapists to actively seek the perspectives of children and families. Several assessment tools are available to facilitate this process. However, when evaluating motor skill performance, therapists typically concentrate on performance-based assessment. To improve understanding of the information provided by the…

  15. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.

    Science.gov (United States)

    Mysoet, Julien; Canu, Marie-Hélène; Gillet, Christophe; Fourneau, Julie; Garnier, Cyril; Bastide, Bruno; Dupont, Erwan

    2017-01-15

    Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Normalized Index of Synergy for Evaluating the Coordination of Motor Commands

    Science.gov (United States)

    Togo, Shunta; Imamizu, Hiroshi

    2015-01-01

    Humans perform various motor tasks by coordinating the redundant motor elements in their bodies. The coordination of motor outputs is produced by motor commands, as well properties of the musculoskeletal system. The aim of this study was to dissociate the coordination of motor commands from motor outputs. First, we conducted simulation experiments where the total elbow torque was generated by a model of a simple human right and left elbow with redundant muscles. The results demonstrated that muscle tension with signal-dependent noise formed a coordinated structure of trial-to-trial variability of muscle tension. Therefore, the removal of signal-dependent noise effects was required to evaluate the coordination of motor commands. We proposed a method to evaluate the coordination of motor commands, which removed signal-dependent noise from the measured variability of muscle tension. We used uncontrolled manifold analysis to calculate a normalized index of synergy. Simulation experiments confirmed that the proposed method could appropriately represent the coordinated structure of the variability of motor commands. We also conducted experiments in which subjects performed the same task as in the simulation experiments. The normalized index of synergy revealed that the subjects coordinated their motor commands to achieve the task. Finally, the normalized index of synergy was applied to a motor learning task to determine the utility of the proposed method. We hypothesized that a large part of the change in the coordination of motor outputs through learning was because of changes in motor commands. In a motor learning task, subjects tracked a target trajectory of the total torque. The change in the coordination of muscle tension through learning was dominated by that of motor commands, which supported the hypothesis. We conclude that the normalized index of synergy can be used to evaluate the coordination of motor commands independently from the properties of the

  17. Conveyor Performance based on Motor DC 12 Volt Eg-530ad-2f using K-Means Clustering

    Science.gov (United States)

    Arifin, Zaenal; Artini, Sri DP; Much Ibnu Subroto, Imam

    2017-04-01

    To produce goods in industry, a controlled tool to improve production is required. Separation process has become a part of production process. Separation process is carried out based on certain criteria to get optimum result. By knowing the characteristics performance of a controlled tools in separation process the optimum results is also possible to be obtained. Clustering analysis is popular method for clustering data into smaller segments. Clustering analysis is useful to divide a group of object into a k-group in which the member value of the group is homogeny or similar. Similarity in the group is set based on certain criteria. The work in this paper based on K-Means method to conduct clustering of loading in the performance of a conveyor driven by a dc motor 12 volt eg-530-2f. This technique gives a complete clustering data for a prototype of conveyor driven by dc motor to separate goods in term of height. The parameters involved are voltage, current, time of travelling. These parameters give two clusters namely optimal cluster with center of cluster 10.50 volt, 0.3 Ampere, 10.58 second, and unoptimal cluster with center of cluster 10.88 volt, 0.28 Ampere and 40.43 second.

  18. Rocket motors incorporating basalt fiber and nanoclay compositions and methods of insulating a rocket motor with the same

    Science.gov (United States)

    Gajiwala, Himansu M. (Inventor)

    2011-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.

  19. Association Between Gross-Motor and Executive Function Depends on Age and Motor Task Complexity

    DEFF Research Database (Denmark)

    Spedden, Meaghan E; Malling, Anne Sofie B; Andersen, Ken K

    2017-01-01

    The objective was to examine associations between motor and executive function across the adult lifespan and to investigate the role of motor complexity in these associations. Young, middle-aged and older adults (n = 82; 19-83y) performed two gross-motor tasks with different levels of complexity...... and a Stroop-like computer task. Performance was decreased in older adults. The association between motor and cognitive performance was significant for older adults in the complex motor task (p = 0.03, rs = -0.41), whereas no significant associations were found for young or middle-aged groups, suggesting...... that the link between gross-motor and executive function emerges with age and depends on motor complexity....

  20. Determination of efficiencies, loss mechanisms, and performance degradation factors in chopper controlled dc vehical motors. Section 2: The time dependent finite element modeling of the electromagnetic field in electrical machines: Methods and applications. Ph.D. Thesis

    Science.gov (United States)

    Hamilton, H. B.; Strangas, E.

    1980-01-01

    The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.

  1. Exercise-induced expression of monocarboxylate transporter 2 in the cerebellum and its contribution to motor performance.

    Science.gov (United States)

    Hoshino, Daisuke; Setogawa, Susumu; Kitaoka, Yu; Masuda, Hiroyuki; Tamura, Yuki; Hatta, Hideo; Yanagihara, Dai

    2016-10-28

    Monocarboxylate transporter 2 (MCT2) is an important component of the lactate transport system in neurons of the adult brain. Purkinje cells in the cerebellum have been shown to have high levels of MCT2, suggesting that this protein has a key function in energy metabolism and neuronal activities in these cells. However, it is not known whether inhibition of lactate transport via MCT2 in the cerebellum affects motor performance. To address this question, we examined motor performance in mice following the inhibition of lactate transport via MCT2 in the cerebellum using α-cyano-4-hydroxycinnamate (4-CIN). 4-CIN or saline was injected into the subarachnoidal space of the cerebellum of mice and motor performance was analyzed by a rotarod test both before and after injection. 4-CIN injection reduced retention time in the rotarod test by approximately 80% at 1h post-injection compared with pre-injection. No effect was observed at 2h post-injection or in mice treated with the vehicle control. Because we observed that MCT2 plays an important role in motor performance, we next investigated the effects of acute exercise on MCT2 transcription and protein levels in mice sampled pre-exercise and at 0 and 5h after 2h of treadmill running. We found a significant increase in MCT2 mRNA levels, but not of protein levels, in the cerebellum at 5h after exercise. Our results indicate that lactate transport via MCT2 in the cerebellum may play an important role in motor performance and that exercise can increase MCT2 expression at the transcriptional level. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The influence of a real job on upper limb performance in motor skill tests: which abilities are transferred?

    Science.gov (United States)

    Giangiardi, Vivian Farahte; Alouche, Sandra Regina; de Freitas, Sandra Maria Sbeghen Ferreira; Pires, Raquel Simoni; Padula, Rosimeire Simprini

    2018-06-01

    To investigate whether the specificities of real jobs create distinctions in the performance of workers in different motor tests for the upper limbs, 24 participants were divided into two groups according to their specific job: fine and repetitive tasks and general tasks. Both groups reproduced tasks related to aiming movements, handling and strength of the upper limbs. There were no significant differences between groups in the dexterity and performance of aiming movements. However, the general tasks group had higher grip strength than the repetitive tasks group, demonstrating differences according to job specificity. The results suggest that a particular motor skill in a specific job cannot improve performance in other tasks with the same motor requirements. The transfer of the fine and gross motor skills from previous experience in a job-specific task is the basis for allocating training and guidance to workers.

  3. Asbestos exposures of mechanics performing clutch service on motor vehicles.

    Science.gov (United States)

    Cohen, Howard J; Van Orden, Drew R

    2008-03-01

    A study was conducted to assess historical asbestos exposures of mechanics performing clutch service on motor vehicles. For most of the 20th century, friction components used in brakes and manual transmission clutches contained approximately 25-60% chrysotile asbestos. Since the late 1960s, asbestos exposure assessment studies conducted on mechanics performing brake service have frequently reported levels below the current OSHA permissible exposure limit (PEL) of 0.1 fiber/cc (flcc). Although there is a robust asbestos exposure data set for mechanics performing brake service, there are almost no data for mechanics removing and replacing clutches in manual transmission vehicles. Personal and area airborne asbestos samples were collected during the removal of asbestos-containing clutches from 15 manual transmissions obtained from salvage facilities by an experienced mechanic. Clutch plates and debris were analyzed for asbestos using EPA and ISO published analytical methods. More than 100 personal and area air samples were collected and analyzed for asbestos fibers using NIOSH methods 7400 and 7402. A separate study involved a telephone survey of 16 automotive mechanics who began work prior to 1975. The mechanics were asked about the duration, frequency, and methods used to perform clutch service. Wear debris in the bell housing surrounding clutches had an average of 0.1% chrysotile asbestos by weight, a value consistent with similar reports of brake debris. Asbestos air sampling data collected averaged 0.047 flcc. Mechanics participating in the telephone survey indicated that clutch service was performed infrequently, the entire clutch assembly was normally replaced, and there was no need to otherwise handle the asbestos-containing clutch plates. These mechanics also confirmed that wet methods were most frequently used to clean debris from the bell housing. Combining the asbestos exposure that occurred when mechanics performed clutch service, along with the duration

  4. Slot Optimization Design of Induction Motor for Electric Vehicle

    Science.gov (United States)

    Shen, Yiming; Zhu, Changqing; Wang, Xiuhe

    2018-01-01

    Slot design of induction motor has a great influence on its performance. The RMxprt module based on magnetic circuit method can be used to analyze the influence of rotor slot type on motor characteristics and optimize slot parameters. In this paper, the authors take an induction motor of electric vehicle for a typical example. The first step of the design is to optimize the rotor slot by RMxprt, and then compare the main performance of the motor before and after the optimization through Ansoft Maxwell 2D. After that, the combination of optimum slot type and the optimum parameters are obtained. The results show that the power factor and the starting torque of the optimized motor have been improved significantly. Furthermore, the electric vehicle works at a better running status after the optimization.

  5. Structural optimisation of cage induction motors using finite element analysis

    Science.gov (United States)

    Palko, S.

    The current trend in motor design is to have highly efficient, low noise, low cost, and modular motors with a high power factor. High torque motors are useful in applications like servo motors, lifts, cranes, and rolling mills. This report contains a detailed review of different optimization methods applicable in various design problems. Special attention is given to the performance of different methods, when they are used with finite element analysis (FEA) as an objective function, and accuracy problems arising from the numerical simulations. Also an effective method for designing high starting torque and high efficiency motors is presented. The method described in this work utilizes FEA combined with algorithms for the optimization of the slot geometry. The optimization algorithm modifies the position of the nodal points in the element mesh. The number of independent variables ranges from 14 to 140 in this work.

  6. Manipulating motor performance and memory through real-time fMRI neurofeedback.

    Science.gov (United States)

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-05-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Cognitive Motor Coordination Training Improves Mental Rotation Performance in Primary School-Aged Children

    Science.gov (United States)

    Pietsch, Stefanie; Böttcher, Caroline; Jansen, Petra

    2017-01-01

    The long-term physical activity in specific sport activities can change the quality of mental rotation performance. This study investigates the influence of "Life Kinetik"--a motion program with tasks of cognition and motor coordination--on mental rotation performance of 44 primary school-aged children. While the experimental group…

  8. Gross Motor Performance and Physical Fitness in Children with Psychiatric Disorders

    Science.gov (United States)

    Emck, Claudia; Bosscher, Ruud J.; van Wieringen, Piet C. W.; Doreleijers, Theo; Beek, Peter J.

    2011-01-01

    Aim: Gross motor performance appears to be impaired in children with psychiatric disorders but little is known about which skill domains are affected in each disorder, nor about possible accompanying deficits in physical fitness. The present study has sought to provide information about these issues in children with emotional, behavioural, and…

  9. Theory of mind performance in Parkinson's disease is associated with motor and cognitive functions, but not with symptom lateralization.

    Science.gov (United States)

    Nobis, Lisa; Schindlbeck, Katharina; Ehlen, Felicitas; Tiedt, Hannes; Rewitzer, Charlotte; Duits, Annelien A; Klostermann, Fabian

    2017-09-01

    Next to the typical motor signs, Parkinson's disease (PD) goes along with neuropsychiatric symptoms, amongst others affecting social cognition. Particularly, Theory of Mind (ToM) impairments have mostly been associated with right hemispherical brain dysfunction, so that it might prevail in patients with left dominant PD. Fourty-four PD patients, twenty-four with left and twenty with right dominant motor symptoms, engaged in the Reading the Mind in the Eyes (RME) and the Faux Pas Detection Test (FPD) to assess affective and cognitive ToM. The results were correlated with performance in further cognitive tests, and analyzed with respect to associations with the side of motor symptom dominance and severity of motor symptoms. No association of ToM performance with right hemispheric dysfunction was found. RME results were inversely correlated with motor symptom severity, while FPD performance was found to correlate with the performance in verbal fluency tasks and the overall cognitive evaluation. Affective ToM was found associated with motor symptom severity and cognitive ToM predominantly with executive function, but no effect of PD lateralization on this was identified. The results suggest that deficits in social cognition occur as a sequel of the general corticobasal pathology in PD, rather than as a result of hemisphere-specific dysfunction.

  10. Gross motor skill development of kindergarten children in Japan.

    Science.gov (United States)

    Aye, Thanda; Kuramoto-Ahuja, Tsugumi; Sato, Tamae; Sadakiyo, Kaori; Watanabe, Miyoko; Maruyama, Hitoshi

    2018-05-01

    [Purpose] The purposes of this study were to assess and explore the gender-based differences in gross motor skill development of 5-year-old Japanese children. [Subjects and Methods] This cross-sectional study recruited 60 healthy 5-year-old (third-year kindergarten, i.e., nencho ) children (34 boys, 26 girls) from one local private kindergarten school in Otawara city, Tochigi Prefecture, Japan. Gross motor skills, including six locomotor and six object control skills, were assessed using the test of gross motor development, second edition (TGMD-2). All subjects performed two trials of each gross motor skill, and the performances were video-recorded and scored. Assessment procedures were performed according to the standardized guidelines of the TGMD-2. [Results] The majority of subjects had an average level of overall gross motor skills. Girls had significantly better locomotor skills. Boys had significantly better object control skills. [Conclusion] The gross motor skill development of 5-year-old Japanese children involves gender-based differences in locomotor and object control skills. This study provided valuable information that can be used to establish normative references for the gross motor skills of 5-year-old Japanese children.

  11. Research on the Method of Setting Waiting Area for Non-motor Vehicle at Signal Control Intersection

    Directory of Open Access Journals (Sweden)

    Wang Yun Xia

    2018-01-01

    Full Text Available Electric bicycle has become an indispensable important component of the transportation system. The fact is that traffic organization and channelizing design of signal control intersection is not intensive, which cannot adapt to the current traffic demand of non-motor vehicle, such as unclear traffic rules and poor visibility, thus the traffic safety of non-motor vehicle is not optimistic. Therefore, it is necessary to study on traffic organization method based on the demand of non-motor vehicle, which can provide certain theoretical basis for traffic administrative department to make policy and traffic design. This article focuses on the method of setting waiting area for non-motor vehicle at signal control intersection, including the advantages, disadvantages and the applicable conditions.

  12. Over-focused? The relation between patients’ inclination for conscious control and single- and dual-task motor performance after stroke

    NARCIS (Netherlands)

    Denneman, R. P.M.; Kal, E. C.; Houdijk, H.; Kamp, J. van der

    Background: Many stroke patients are inclined to consciously control their movements. This is thought to negatively affect patients’ motor performance, as it disrupts movement automaticity. However, it has also been argued that conscious control may sometimes benefit motor performance, depending on

  13. Initial position estimation method for permanent magnet synchronous motor based on improved pulse voltage injection

    DEFF Research Database (Denmark)

    Wang, Z.; Lu, K.; Ye, Y.

    2011-01-01

    According to saliency of permanent magnet synchronous motor (PMSM), the information of rotor position is implied in performance of stator inductances due to the magnetic saturation effect. Researches focused on the initial rotor position estimation of PMSM by injecting modulated pulse voltage...... vectors. The relationship between the inductance variations and voltage vector positions was studied. The inductance variation effect on estimation accuracy was studied as well. An improved five-pulses injection method was proposed, to improve the estimation accuracy by choosing optimaized voltage vectors...

  14. Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system

    International Nuclear Information System (INIS)

    Atlam, Ozcan; Kolhe, Mohan

    2013-01-01

    Photovoltaic (PV) powered directly coupled electro-mechanical system has wide applications (e.g. PV powered cooling fans in green houses, PV water pumping system, solar vehicles). The objective of this work is to analyse the operation of directly PV powered DC PM (direct current permanent magnet) motor – propeller system for selection of motor parameters. The performance of such system mainly depends on the incident solar radiation, operating cell temperature, DC motor and propeller load parameters. It is observed that the operating points of the PV DC PM motor – propeller system matches very closely with the maximum power points (MPPs) of the PV array, if the DC PM motor – propeller parameters have been properly selected. It is found that for a specific application of such type of system, matching of torque–speed operating points with respect to the maximum power points of PV array are very important. It is ascertained through results that the DC PM motor's armature resistance, magnetic field constant, starting current to overcome the starting torque and torque coefficient are the main parameters. In designing a PV powered DC PM motor for a specific application, selection of these parameters are important for maximum utilization of the PV array output. The results of this system are useful for designing of directly PV powered DC PM motor's for aerodynamic applications. - Highlights: • We analyse the performance of directly PV powered DC PM motor – propeller system. • We examine PV electro-mechanical system for selection of DC motor parameters. • Matching of torque–speed curve to maximum power points of PV array is important

  15. Performance Evaluation of an In-Wheel Motor Cooling System in an Electric Vehicle/Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Dong Hyun Lim

    2014-02-01

    Full Text Available High power and miniaturization of motors in an in-wheel drive system, which is installed inside the wheels of a vehicle, are required for directly driving the wheels. In addition, an efficient cooling system is required to ensure high driving performance and durability. This study experimentally evaluated the heat dissipation performance of a 35-kW-class large-capacity in-wheel motor equipped with an internal-circulation-type oil-cooling system that exhibits high cooling performance and can be easily miniaturized to this motor. Temperatures of the coil and stator core of cooling systems with and without a radiator were measured in real time under in-wheel motor driving conditions. It was found that operating the cooling system at a continuous-rating maximum speed without the radiator was difficult. We confirmed that under continuous-rating base speed and continuous-rating maximum speed driving conditions, the cooling system with the radiator showed thermally stable operation. Furthermore, under maximum-rating base speed and maximum-rating maximum speed driving conditions, the cooling system with the radiator provided additional driving times of approximately 22 s and 2 s, respectively.

  16. Study on a high thrust force bi-double-sided permanent magnet linear synchronous motor

    Directory of Open Access Journals (Sweden)

    Liang Tong

    2016-03-01

    Full Text Available A high thrust force bi-double-sided permanent magnet linear synchronous motor used in gantry-type five-axis machining center is designed and its performance was tested in this article. This motor is the subproject of Chinese National Science and Technology Major Project named as “development of domestic large thrust linear motor used in high-speed gantry-type five-axis machining center project” jointly participated by enterprises and universities. According to the requirement of the application environment and motor performance parameters, the linear motor’s basic dimensions, form of windings, and magnet arrangement are preliminarily specified through theoretical analysis and calculation. To verify the correctness of the result of the calculation, the finite element model of the motor is established. The static and dynamic characteristics of the motor are studied and analyzed through the finite element method, and the initial scheme is revised. The prototype of the motor is manufactured based on the final revised structure parameters, and the performance of the motor is fully tested using the evaluation platform for direct-drive motor component. Experimental test results meet the design requirements and show the effectiveness of design method and process.

  17. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.

    Science.gov (United States)

    van Bolhuis, A I; Holsheimer, J; Savelberg, H H

    2001-05-30

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.

  18. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice

    Science.gov (United States)

    Tung, Victoria W. K.; Burton, Thomas J.; Quail, Stephanie L.; Mathews, Miranda A.; Camp, Aaron J.

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5–6, 8–9 and 27–28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2–3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27–28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27–28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27–28 months. Conclusion: this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed. PMID:26869921

  19. Is it me or not me? Modulation of perceptual-motor awareness and visuomotor performance by mindfulness meditation

    Directory of Open Access Journals (Sweden)

    Naranjo José

    2012-07-01

    Full Text Available Abstract Background Attribution of agency involves the ability to distinguish our own actions and their sensory consequences which are self-generated from those generated by external agents. There are several pathological cases in which motor awareness is dramatically impaired. On the other hand, awareness-enhancement practices like tai-chi and yoga are shown to improve perceptual-motor awareness. Meditation is known to have positive impacts on perception, attention and consciousness itself, but it is still unclear how meditation changes sensorimotor integration processes and awareness of action. The aim of this study was to investigate how visuomotor performance and self-agency is modulated by mindfulness meditation. This was done by studying meditators’ performance during a conflicting reaching task, where the congruency between actions and their consequences is gradually altered. This task was presented to novices in meditation before and after an intensive 8 weeks mindfulness meditation training (MBSR. The data of this sample was compared to a group of long-term meditators and a group of healthy non-meditators. Results Mindfulness resulted in a significant improvement in motor control during perceptual-motor conflict in both groups. Novices in mindfulness demonstrated a strongly increased sensitivity to detect external perturbation after the MBSR intervention. Both mindfulness groups demonstrated a speed/accuracy trade-off in comparison to their respective controls. This resulted in slower and more accurate movements. Conclusions Our results suggest that mindfulness meditation practice is associated with slower body movements which in turn may lead to an increase in monitoring of body states and optimized re-adjustment of movement trajectory, and consequently to better motor performance. This extended conscious monitoring of perceptual and motor cues may explain how, while dealing with perceptual-motor conflict, improvement in motor

  20. The Effect of Resistance Training on Performance of Gross Motor Skills and Balance in Children with Spastic Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Ebrahim Zarrinkalam

    2016-03-01

    Full Text Available Objective: Cerebral palsy is the most common chronic motor disability in children and can have negative effect on motor functions. The purpose of this study was to investigate the effect of eight weeks resistance training on gross motor ability, balance and walking speed in a group of such children. Methods: 21 cerebral palsy boys with spastic diplegia, aged between 12 and 16 years (mean, 13.66 years, participated in this study. A pre-test, involving walking, sitting, standing and walking up stairs. They were randomly divided into an experimental and control groups. Then, the experimental group participated in 8 weeks of resistance training.  The data was attained from a 10 meter walk test, Berg Balance Test, gross motor ability Section E, D and GMFCS tests.  Kolmogorov-Smirnov test, sample t-test were used for analyzing the data. Results: The results showed a significant improvement in the performance of experimental group in gross motor abilities section  E and D, balance and walking speed after 8 weeks of resistance training (P <0.05(. However, significant differences were not observed in the control group before and after the study (P <0.05.  Conclusion: The results showed that resistance training improves gross motor ability, balance and gait in children with cerebral palsy hence, it is recommended that resistance exercise be used as a therapeutic modality for children with cerebral palsy.

  1. Apraxia and motor dysfunction in corticobasal syndrome.

    Directory of Open Access Journals (Sweden)

    James R Burrell

    Full Text Available BACKGROUND: Corticobasal syndrome (CBS is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM, is associated with motor system dysfunction and limb apraxia in CBS. METHODS: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R, with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM. RESULTS: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/- 6.6 years were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices. CONCLUSIONS: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and

  2. The relation between cognitive and motor performance and their relevance for children's transition to school: a latent variable approach.

    Science.gov (United States)

    Roebers, Claudia M; Röthlisberger, Marianne; Neuenschwander, Regula; Cimeli, Patrizia; Michel, Eva; Jäger, Katja

    2014-02-01

    Both theoretically and empirically there is a continuous interest in understanding the specific relation between cognitive and motor development in childhood. In the present longitudinal study including three measurement points, this relation was targeted. At the beginning of the study, the participating children were 5-6-year-olds. By assessing participants' fine motor skills, their executive functioning, and their non-verbal intelligence, their cross-sectional and cross-lagged interrelations were examined. Additionally, performance in these three areas was used to predict early school achievement (in terms of mathematics, reading, and spelling) at the end of participants' first grade. Correlational analyses and structural equation modeling revealed that fine motor skills, non-verbal intelligence and executive functioning were significantly interrelated. Both fine motor skills and intelligence had significant links to later school achievement. However, when executive functioning was additionally included into the prediction of early academic achievement, fine motor skills and non-verbal intelligence were no longer significantly associated with later school performance suggesting that executive functioning plays an important role for the motor-cognitive performance link. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The Test of Infant Motor Performance at 3 months predicts language, cognitive, and motor outcomes in infants born preterm at 2 years of age.

    Science.gov (United States)

    Peyton, Colleen; Schreiber, Michael D; Msall, Michael E

    2018-03-13

    To determine the relationship between the Test of Infant Motor Performance (TIMP) at 3 months and cognitive, language, and motor outcomes on the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) at 2 years of age in high-risk infants born preterm. One hundred and six infants (47 females, 59 males) born at earlier than 31 weeks gestational age were prospectively tested with the TIMP at 10 to 15 weeks after term age and were assessed again with the Bayley-III at 2 years corrected age. Sensitivity and specificity were calculated for various cut points of the TIMP z-score and Bayley-III composite scores of no more than 85. The TIMP z-scores at 10 to 15 weeks of age were significantly associated with all three subscales on the Bayley-III at 2 years of age (pcognitive (87%), language (88%), and motor (89%) outcomes, but sensitivity was low (cognitive 41%, language 49%, motor 57%). This study demonstrates that the TIMP is related to cognitive, language, and motor outcomes on the Bayley-III at 2 years of age in high-risk infants born preterm. The Test of Infant Motor Performance (TIMP) predicts Bayley Scales of Infant and Toddler Development, Third Edition outcomes at 2 years of age. The TIMP is relatively good at discriminating between children who will and will not have typical development. © 2018 Mac Keith Press.

  4. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children.

    Directory of Open Access Journals (Sweden)

    Svend Sparre Geertsen

    Full Text Available To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests.This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls. Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C. Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension.Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001, whereas exercise capacity was only associated with better sustained attention (P<0.046 and spatial working memory (P<0.038. Fine and gross motor skills (all P<0.001, exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension.The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the

  5. Anxiety disorders in 8-11-year-old children: motor skill performance and self-perception of competence.

    Science.gov (United States)

    Ekornås, Belinda; Lundervold, Astri J; Tjus, Tomas; Heimann, Mikael

    2010-06-01

    This study investigates motor skill performance and self-perceived competence in children with anxiety disorders compared with children without psychiatric disorders. Motor skills and self-perception were assessed in 329 children aged 8 to 11 years, from the Bergen Child Study. The Kiddie-SADS PL diagnostic interview was employed to define a group of children with an anxiety disorder without comorbid diagnosis, and a control group (no diagnosis) matched according to gender, age, and full-scale IQ. Children in the anxiety disorder group displayed impaired motor skills and poor self-perceived peer acceptance and physical competence compared with the control group. Two-thirds of the anxious boys scored on the Motor Assessment Battery for Children (MABC) as having motor problems. The present study demonstrated impaired motor skills in boys with "pure" anxiety disorders. Anxious children also perceived themselves as being less accepted by peers and less competent in physical activities compared with children in the control group.

  6. Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning

    Science.gov (United States)

    Cheung, Vincent C. K.; DeBoer, Caroline; Hanson, Elizabeth; Tunesi, Marta; D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Cattaneo, Antonino; Goosens, Ki A.

    2013-01-01

    The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation. PMID:23637843

  7. Motor experience with a sport-specific implement affects motor imagery

    Science.gov (United States)

    Zhu, Hua; Shen, Cheng; Zhang, Jian

    2018-01-01

    The present study tested whether sport-specific implements facilitate motor imagery, whereas nonspecific implements disrupt motor imagery. We asked a group of basketball players (experts) and a group of healthy controls (novices) to physically perform (motor execution) and mentally simulate (motor imagery) basketball throws. Subjects produced motor imagery when they were holding a basketball, a volleyball, or nothing. Motor imagery performance was measured by temporal congruence, which is the correspondence between imagery and execution times estimated as (imagery time minus execution time) divided by (imagery time plus execution time), as well as the vividness of motor imagery. Results showed that experts produced greater temporal congruence and vividness of kinesthetic imagery while holding a basketball compared to when they were holding nothing, suggesting a facilitation effect from sport-specific implements. In contrast, experts produced lower temporal congruence and vividness of kinesthetic imagery while holding a volleyball compared to when they were holding nothing, suggesting the interference effect of nonspecific implements. Furthermore, we found a negative correlation between temporal congruence and the vividness of kinesthetic imagery in experts while holding a basketball. On the contrary, the implement manipulation did not modulate the temporal congruence of novices. Our findings suggest that motor representation in experts is built on motor experience associated with specific-implement use and thus was subjected to modulation of the implement held. We conclude that sport-specific implements facilitate motor imagery, whereas nonspecific implements could disrupt motor representation in experts. PMID:29719738

  8. Training with anxiety has a positive effect on expert perceptual-motor performance under pressure

    NARCIS (Netherlands)

    Oudejans, R.R.D.; Pijpers, J.R.

    2009-01-01

    In two experiments, we examined whether training with anxiety can prevent choking in experts performing perceptual-motor tasks. In Experiment 1, 17 expert basketball players practised free throws over a 5-week period with or without induced anxiety. Only after training with anxiety did performance

  9. Presentation of electric motor and motor control technology for electric vehicles and hybrid vehicles; Denki jidosha hybrid sha yo motor oyobi motor seigyo gijutsu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Matsudaira, N.; Masakik, R.; Tajima, F. [Hitachi, Ltd., Tokyo (Japan)

    1999-02-01

    The authors have developed a motor drive system for electric vehicles and hybrid vehicles. This system consists of a permanent magnet type synchronous motor, an inverter using insulated gate bipolar transistors (IGBTs) and a controller based on a single-chip microcomputer. To achieve a compact and light weight synchronous motor, an internal permanent magnet type rotor structure was designed. This paper presents motor control technology for electric vehicles, such as an optimization method of field weakening control and a new current control method. (author)

  10. Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children

    Directory of Open Access Journals (Sweden)

    Jesper Lundbye-Jensen

    2017-04-01

    Full Text Available Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children.Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD participated in the study. Prior to the main experiment age, BMI, fitness status and general physical activity level was assessed in all children and they were then randomly allocated to three groups. All children practiced a visuomotor tracking task followed by 20 min of rest (CON, high intensity intermittent floorball (FLB or running (RUN with comparable exercise intensity and duration for exercise groups. Delayed retention of motor memory was assessed 1 h, 24 h and 7 days after motor skill acquisition.Results: During skill acquisition, motor performance improved significantly to the immediate retention test with no differences between groups. One hour following skill acquisition, motor performance decreased significantly for RUN. Twenty-four hours following skill acquisition there was a tendency towards improved performance for FLB but no significant effects. Seven days after motor practice however, both FLB and RUN performed better when compared to their immediate retention test indicating significant offline gains. This effect was not observed for CON. In contrast, 7 days after motor practice, retention of motor memory was significantly better for FLB and RUN compared to CON. No differences were observed when comparing FLB and RUN.Conclusions: Acute intense intermittent exercise performed immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The

  11. EPRI flow-loop/in situ test program for motor-operated valves

    International Nuclear Information System (INIS)

    Hosler, J.F.; Dorfman, L.S.

    1994-01-01

    The Electric Power Research Institute is undertaking a comprehensive research program to develop and validate methods for predicting the performance of common motor-operated gate, global, and butterfly valves. To assess motor-operated valve (MOV) performance characteristics and provide a basis for methods validation, full-scale testing was conducted on 62 MOVs. Tests were performed in four flow-loop facilities and in nine nuclear units. Forty-seven gate, five globe, and 10 butterfly valves were tested under a wide range of flow and differential pressure conditions. The paper describes the test program scope, test configurations, instrumentation and data acquisition, testing approach, and data analysis methods. Key results are summarized

  12. Electric motor handbook

    CERN Document Server

    Chalmers, B J

    2013-01-01

    Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit

  13. Individual differences in motor timing and its relation to cognitive and fine motor skills.

    Directory of Open Access Journals (Sweden)

    Håvard Lorås

    Full Text Available The present study investigated the relationship between individual differences in timing movements at the level of milliseconds and performance on selected cognitive and fine motor skills. For this purpose, young adult participants (N = 100 performed a repetitive movement task paced by an auditory metronome at different rates. Psychometric measures included the digit-span and symbol search subtasks from the Wechsler battery as well as the Raven SPM. Fine motor skills were assessed with the Purdue Pegboard test. Motor timing performance was significantly related (mean r = .3 to cognitive measures, and explained both unique and shared variance with information-processing speed of Raven's scores. No significant relations were found between motor timing measures and fine motor skills. These results show that individual differences in cognitive and motor timing performance is to some extent dependent upon shared processing not associated with individual differences in manual dexterity.

  14. Limited Angle Torque Motors Having High Torque Density, Used in Accurate Drive Systems

    Directory of Open Access Journals (Sweden)

    R. Obreja

    2011-01-01

    Full Text Available A torque motor is a special electric motor that is able to develop the highest possible torque in a certain volume. A torque motor usually has a pancake configuration, and is directly jointed to a drive system (without a gear box. A limited angle torque motor is a torque motor that has no rotary electromagnetic field — in certain papers it is referred to as a linear electromagnet. The main intention of the authors for this paper is to present a means for analyzing and designing a limited angle torque motor only through the finite element method. Users nowadays require very high-performance limited angle torque motors with high density torque. It is therefore necessary to develop the highest possible torque in a relatively small volume. A way to design such motors is by using numerical methods based on the finite element method.

  15. Can stereotype threat affect motor performance in the absence of explicit monitoring processes? Evidence using a strength task.

    Science.gov (United States)

    Chalabaev, Aïna; Brisswalter, Jeanick; Radel, Rémi; Coombes, Stephen A; Easthope, Christopher; Clément-Guillotin, Corentin

    2013-04-01

    Previous evidence shows that stereotype threat impairs complex motor skills through increased conscious monitoring of task performance. Given that one-step motor skills may not be susceptible to these processes, we examined whether performance on a simple strength task may be reduced under stereotype threat. Forty females and males performed maximum voluntary contractions under stereotypical or nullified-stereotype conditions. Results showed that the velocity of force production within the first milliseconds of the contraction decreased in females when the negative stereotype was induced, whereas maximal force did not change. In males, the stereotype induction only increased maximal force. These findings suggest that stereotype threat may impair motor skills in the absence of explicit monitoring processes, by influencing the planning stage of force production.

  16. Improving motor reliability in nuclear power plants: Volume 3, Failure analysis and diagnostic tests on a naturally aged large electric motor

    International Nuclear Information System (INIS)

    Subudhi, M.; Taylor, J.H.; Sheets, M.W.

    1987-11-01

    Stator coils of a naturally failed 400 hp motor from the Brookhaven National Laboratory test reactor facility were tested for their dielectric integrities. The motor was used to drive the primary reactor coolant pump for the last 20 years. Maintenance activities on this motor during its entire service life were minimal, with the exception of meggering it periodically. The stator consisted of ninety individual coils which were separated for testing. Seven different dielectric tests were performed on the coils. Each set of data from the tested coils indicated a spectrum of variation depending on their aging conditions and characteristics. By comparing the test data to baseline data, the test methods were assessed for application to motor maintenance programs in nuclear power plants. Also included in this study are results of an investigation to determine the cause of this motor failure. Recommendations are provided on the aged condition of a second identical primary pump motor which is the same age and presently in operation. Recommendations are also presented relating to each of the dielectric test methods applicability to motor maintenance programs. 6 refs., 11 figs., 5 tabs

  17. Motor intensive anti-gravity training improves performance in dynamic balance related tasks in persons with Parkinson's disease

    DEFF Research Database (Denmark)

    Malling, Anne Sofie Bøgh; Jensen, Bente Rona

    2016-01-01

    , the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor intensive...... antigravity training. Seventeen healthy males constituted a control group (CON). Performance during a five repetition sit-to-stand test (STS; sagittal plane) and a dynamic postural balance test (DPB; transversal plane) was evaluated. Effect measures were completion time, functional rates of force development...

  18. Two-phase strategy of controlling motor coordination determined by task performance optimality.

    Science.gov (United States)

    Shimansky, Yury P; Rand, Miya K

    2013-02-01

    A quantitative model of optimal coordination between hand transport and grip aperture has been derived in our previous studies of reach-to-grasp movements without utilizing explicit knowledge of the optimality criterion or motor plant dynamics. The model's utility for experimental data analysis has been demonstrated. Here we show how to generalize this model for a broad class of reaching-type, goal-directed movements. The model allows for measuring the variability of motor coordination and studying its dependence on movement phase. The experimentally found characteristics of that dependence imply that execution noise is low and does not affect motor coordination significantly. From those characteristics it is inferred that the cost of neural computations required for information acquisition and processing is included in the criterion of task performance optimality as a function of precision demand for state estimation and decision making. The precision demand is an additional optimized control variable that regulates the amount of neurocomputational resources activated dynamically. It is shown that an optimal control strategy in this case comprises two different phases. During the initial phase, the cost of neural computations is significantly reduced at the expense of reducing the demand for their precision, which results in speed-accuracy tradeoff violation and significant inter-trial variability of motor coordination. During the final phase, neural computations and thus motor coordination are considerably more precise to reduce the cost of errors in making a contact with the target object. The generality of the optimal coordination model and the two-phase control strategy is illustrated on several diverse examples.

  19. Motor function and respiratory capacity in patients with late-onset pompe disease

    DEFF Research Database (Denmark)

    Illes, Zsolt; Mike, Andrea; Trauninger, Anita

    2014-01-01

    Introduction: The relationship between skeletal muscle strength and respiratory dysfunction in Pompe disease has not been examined by quantitative methods. We investigated correlations among lower extremity proximal muscle strength, respiratory function, and motor performance. Methods: Concentric...... strength of the knee extensor and flexor muscles were measured with a dynamometer, and pulmonary function was evaluated using spirometry in 7 adult patients. The six-minute walk test and the four-step stair-climb test were used for assessing aerobic endurance and anaerobic power, respectively. Results......: Anaerobic motor performance correlated with strength of both thigh muscles. Respiratory function did not correlate with either muscle strength or motor function performance. Conclusions: Respiratory and lower extremity proximal muscles could be differentially affected by the disease in individual patients...

  20. Electrical performance analysis of HTS synchronous motor based on 3D FEM

    International Nuclear Information System (INIS)

    Baik, S.K.; Kwon, Y.K.; Kim, H.M.; Lee, J.D.; Kim, Y.C.; Park, G.S.

    2010-01-01

    A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.

  1. Impulse-variability theory: implications for ballistic, multijoint motor skill performance.

    Science.gov (United States)

    Urbin, M A; Stodden, David F; Fischman, Mark G; Weimar, Wendi H

    2011-01-01

    Impulse-variability theory (R. A. Schmidt, H. N. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979) accounts for the curvilinear relationship between the magnitude and resulting variability of the muscular forces that influence the success of goal-directed limb movements. The historical roots of impulse-variability theory are reviewed in the 1st part of this article, including the relationship between movement speed and spatial error. The authors then address the relevance of impulse-variability theory for the control of ballistic, multijoint skills, such as throwing, striking, and kicking. These types of skills provide a stark contrast to the relatively simple, minimal degrees of freedom movements that characterized early research. However, the inherent demand for ballistic force generation is a strong parallel between these simple laboratory tasks and multijoint motor skills. Therefore, the authors conclude by recommending experimental procedures for evaluating the adequacy of impulse variability as a theoretical model within the context of ballistic, multijoint motor skill performance. Copyright © Taylor & Francis Group, LLC

  2. Anodal vs cathodal stimulation of motor cortex: a modeling study

    NARCIS (Netherlands)

    Manola, L.; Holsheimer, J.; Veltink, Petrus H.; Buitenweg, Jan R.

    Objective. To explore the effects of electrical stimulation performed by an anode, a cathode or a bipole positioned over the motor cortex for chronic pain management. Methods. A realistic 3D volume conductor model of the human precentral gyrus (motor cortex) was used to calculate the

  3. Combined motor point associative stimulation (MPAS) and transcranial direct current stimulation (tDCS) improves plateaued manual dexterity performance.

    Science.gov (United States)

    Hoseini, Najmeh; Munoz-Rubke, Felipe; Wan, Hsuan-Yu; Block, Hannah J

    2016-10-28

    Motor point associative stimulation (MPAS) in hand muscles is known to modify motor cortex excitability and improve learning rate, but not plateau of performance, in manual dexterity tasks. Central stimulation of motor cortex, such as transcranial direct current stimulation (tDCS), can have similar effects if accompanied by motor practice, which can be difficult and tiring for patients. Here we asked whether adding tDCS to MPAS could improve manual dexterity in healthy individuals who are already performing at their plateau, with no motor practice during stimulation. We hypothesized that MPAS could provide enough coordinated muscle activity to make motor practice unnecessary, and that this combination of stimulation techniques could yield improvements even in subjects at or near their peak. If so, this approach could have a substantial effect on patients with impaired dexterity, who are far from their peak. MPAS was applied for 30min to two right hand muscles important for manual dexterity. tDCS was simultaneously applied over left sensorimotor cortex. The motor cortex input/output (I/O) curve was assessed with transcranial magnetic stimulation (TMS), and manual dexterity was assessed with the Purdue Pegboard Test. Compared to sham or cathodal tDCS combined with MPAS, anodal tDCS combined with MPAS significantly increased the plateau of manual dexterity. This result suggests that MPAS has the potential to substitute for motor practice in mediating a beneficial effect of tDCS on manual dexterity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Evaluation of Esophageal Motor Function With High-resolution Manometry

    Science.gov (United States)

    2013-01-01

    For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094

  5. Permanent Magnet Synchronous Motor with Different Rotor Structures for Traction Motor in High Speed Trains

    Directory of Open Access Journals (Sweden)

    Marcel Torrent

    2018-06-01

    Full Text Available In this work we proposed to study the use of permanent magnet synchronous motors (PMSM for railway traction in the high-speed trains (HST of Renfe Operadora (the Spanish national railway operator. Currently, induction motors (IM are used in AVE classes 102–112 trains, so, the IM used as a traction motor in these trains has been studied and characterized by comparing the results with data provided by Renfe. A PMSM of equivalent power to the IM has been dimensioned, and different electromagnetic structures of the PMSM rotor have been evaluated. The simulation by the finite element method and analysis of the equivalent electrical circuit used in all the motors have been studied to evaluate the performance of the motors in this application. Efficiency is calculated at different operating points due to its impact on the energy consumption of railway traction. The implementation of the PMSM evaluated is recommended, mainly due to the improvements achieved in efficiency as compared with the IM currently used.

  6. A Recommended New Approach on Motorization Ratio Calculations of Stepper Motors

    Science.gov (United States)

    Nalbandian, Ruben; Blais, Thierry; Horth, Richard

    2014-01-01

    Stepper motors are widely used on most spacecraft mechanisms requiring repeatable and reliable performance. The unique detent torque characteristics of these type of motors makes them behave differently when subjected to low duty cycle excitations where the applied driving pulses are only energized for a fraction of the pulse duration. This phenomenon is even more pronounced in discrete permanent magnet stepper motors used in the space industry. While the inherent high detent properties of discrete permanent magnets provide desirable unpowered holding performance characteristics, it results in unique behavior especially in low duty cycles. Notably, the running torque reduces quickly to the unpowered holding torque when the duty cycle is reduced. The space industry's accepted methodology of calculating the Motorization Ratio (or Torque Margin) is more applicable to systems where the power is continuously applied to the motor coils like brushless DC motors where the cogging torques are low enough not to affect the linear performance of the motors as a function of applied current. This paper summarizes the theoretical and experimental studies performed on a number of space qualified motors under different pulse rates and duty cycles. It is the intention of this paper to introduce a new approach to calculate the Motorization Ratios for discrete permanent magnet steppers under all full and partial duty cycle regimes. The recommended approach defines two distinct relationships to calculate the Motorization Ratio for 100 percent duty cycle and partial duty cycle, when the motor detent (unpowered holding torque) is the main contributor to holding position. These two computations reflect accurately the stepper motor physical behavior as a function of the command phase (ON versus OFF times of the pulses), pointing out how the torque contributors combine. Important points highlighted under this study are the torque margin computations, in particular for well characterized

  7. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults

    NARCIS (Netherlands)

    Berghuis, K. M. M.; Veldman, M. P.; Solnik, S.; Koch, G.; Zijdewind, I.; Hortobagyi, T.

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation

  8. Effect of Wii-intervention on balance of children with poor motor performance

    NARCIS (Netherlands)

    Mombarg, Remo; Jelsma, Dorothee; Hartman, Esther

    The purpose of this study was to investigate the effects of training with the Wii-balance board on balance and balance-related skills of children with poor motor performance. Twenty-nine children (23 boys, 6 girls; aged 7-12 years) participated in this study and were randomly assigned to an

  9. Effect of Wii-intervention on balance of children with poor motor performance

    NARCIS (Netherlands)

    Mombarg, Remo; Jelsma, Dorothee; Hartman, Esther

    2013-01-01

    The purpose of this study was to investigate the effects of training with the Wii-balance board on balance and balance-related skills of children with poor motor performance. Twenty-nine children (23 boys, 6 girls; aged 7–12 years) participated in this study and were randomly assigned to an

  10. The Influence of Parkinson’s Disease Motor Symptom Asymmetry on Hand Performance: An Examination of the Grooved Pegboard Task

    Directory of Open Access Journals (Sweden)

    Sara M. Scharoun

    2015-01-01

    Full Text Available This study examined the influence of motor symptom asymmetry in Parkinson’s disease (PD on Grooved Pegboard (GP performance in right-handed participants. The Unified Parkinson’s Disease Rating Scale was used to assess motor symptoms and separate participants with PD into two groups (right-arm affected, left-arm affected for comparison with a group of healthy older adults. Participants completed the place and replace GP tasks two times with both hands. Laterality quotients were computed to quantify performance differences between the two hands. Comparisons among the three groups indicated that when the nonpreferred hand is affected by PD motor symptoms, superior preferred hand performance (as seen in healthy older adults is further exaggerated in tasks that require precision (i.e., place task. Regardless of the task, when the preferred hand is affected, there is an evident shift to superior left-hand performance, which may inevitably manifest as a switch in hand preference. Results add to the discussion of the relationship between handedness and motor symptom asymmetry in PD.

  11. Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning.

    Science.gov (United States)

    Wulf, Gabriele; Lewthwaite, Rebecca

    2016-10-01

    Effective motor performance is important for surviving and thriving, and skilled movement is critical in many activities. Much theorizing over the past few decades has focused on how certain practice conditions affect the processing of task-related information to affect learning. Yet, existing theoretical perspectives do not accommodate significant recent lines of evidence demonstrating motivational and attentional effects on performance and learning. These include research on (a) conditions that enhance expectancies for future performance, (b) variables that influence learners' autonomy, and (c) an external focus of attention on the intended movement effect. We propose the OPTIMAL (Optimizing Performance through Intrinsic Motivation and Attention for Learning) theory of motor learning. We suggest that motivational and attentional factors contribute to performance and learning by strengthening the coupling of goals to actions. We provide explanations for the performance and learning advantages of these variables on psychological and neuroscientific grounds. We describe a plausible mechanism for expectancy effects rooted in responses of dopamine to the anticipation of positive experience and temporally associated with skill practice. Learner autonomy acts perhaps largely through an enhanced expectancy pathway. Furthermore, we consider the influence of an external focus for the establishment of efficient functional connections across brain networks that subserve skilled movement. We speculate that enhanced expectancies and an external focus propel performers' cognitive and motor systems in productive "forward" directions and prevent "backsliding" into self- and non-task focused states. Expected success presumably breeds further success and helps consolidate memories. We discuss practical implications and future research directions.

  12. Enhanced Component Performance Study: Motor-Driven Pumps 1998-2014

    International Nuclear Information System (INIS)

    Schroeder, John Alton

    2016-01-01

    This report presents an enhanced performance evaluation of motor-driven pumps at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The motor-driven pump failure modes considered for standby systems are failure to start, failure to run less than or equal to one hour, and failure to run more than one hour; for normally running systems, the failure modes considered are failure to start and failure to run. An eight hour unreliability estimate is also calculated and trended. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified in pump run hours per reactor year. Statistically significant decreasing trends were identified for standby systems industry-wide frequency of start demands, and run hours per reactor year for runs of less than or equal to one hour.

  13. Unifying practice schedules in the timescales of motor learning and performance.

    Science.gov (United States)

    Verhoeven, F Martijn; Newell, Karl M

    2018-06-01

    In this article, we elaborate from a multiple time scales model of motor learning to examine the independent and integrated effects of massed and distributed practice schedules within- and between-sessions on the persistent (learning) and transient (warm-up, fatigue) processes of performance change. The timescales framework reveals the influence of practice distribution on four learning-related processes: the persistent processes of learning and forgetting, and the transient processes of warm-up decrement and fatigue. The superposition of the different processes of practice leads to a unified set of effects for massed and distributed practice within- and between-sessions in learning motor tasks. This analysis of the interaction between the duration of the interval of practice trials or sessions and parameters of the introduced time scale model captures the unified influence of the between trial and session scheduling of practice on learning and performance. It provides a starting point for new theoretically based hypotheses, and the scheduling of practice that minimizes the negative effects of warm-up decrement, fatigue and forgetting while exploiting the positive effects of learning and retention. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. HTSL massive motor. Project: Motor field calculation. Final report

    International Nuclear Information System (INIS)

    Gutt, H.J.; Gruener, A.

    2003-01-01

    HTS motors up to 300 kW were to be developed and optimized. For this, specific calculation methods were enhanced to include superconducting rotor types (hysteresis, reluctance and permanent magnet HTS rotors). The experiments were carried out in a SHM70-45 hysteresis motor. It was shown how static and dynamic trapped field magnetisation of the rotor with YBCO rings will increase flux in the air gap motor, increasing the motor capacity to twice its original level. (orig.) [de

  15. The relationships between gross motor coordination and sport-specific skills in adolescent non-athletes

    Directory of Open Access Journals (Sweden)

    Chagas Daniel V

    2017-12-01

    Full Text Available Purpose. While the usefulness of gross motor coordination score as predictor of sports performance in young athletes has been demonstrated, practical applications in the settings where the focus is not on elite performance is limited. Further, little is known about the extent to which gross motor coordination score is associated with sport-specific skills among adolescent nonathletes. The aim of this study was to analyse the relationship between the degree of gross motor coordination and execution in specific volleyball tests among adolescent non-athletes. Methods. The total of 34 students (27 females and 7 males aged 13-14 years who regularly participated in volleyball during physical education classes were randomly recruited. Gross motor coordination was assessed with the Körperkoordinationstest für Kinder. Motor performance on volley-specific skills was indicated by two product-oriented tasks: volleyball under service and service reception. Correlation and linear regression analyses were applied to examine the associations between motor coordination scores and motor performance in volley-specific skills. Results. Motor coordination score was positively correlated with motor performance on specific skills (r = 0.503, p = 0.02. Linear regression analysis revealed that motor coordination score accounted for 23% of the variance in the motor performance on volleyball skills (R2 = 0.253, R2 adjusted = 0.230, F = 10.836, p = 0.02. Conclusions. The degree of gross motor coordination seems to play a significant role in the execution of specific volleyball tasks.

  16. Straight and chopped DC performance data for a reliance EV-250AT motor with a General Electric EV-1 controller

    Science.gov (United States)

    Edie, P. C.

    1981-01-01

    Straight and chopped DC motor performances for a Reliance EV-250AT motor with an EV-1 controller were examined. Effects of motor temperature and operating voltage are shown. It is found that the maximum motor efficiency is approximately 85% at low operating temperatures in the straight DC mode. Chopper efficiency is 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight DC mode.

  17. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance.

    Science.gov (United States)

    Wang, Minlin; Ren, Xuemei; Chen, Qiang

    2018-01-01

    The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Parametric study and performance analysis of hybrid rocket motors with double-tube configuration

    Science.gov (United States)

    Yu, Nanjia; Zhao, Bo; Lorente, Arnau Pons; Wang, Jue

    2017-03-01

    The practical implementation of hybrid rocket motors has historically been hampered by the slow regression rate of the solid fuel. In recent years, the research on advanced injector designs has achieved notable results in the enhancement of the regression rate and combustion efficiency of hybrid rockets. Following this path, this work studies a new configuration called double-tube characterized by injecting the gaseous oxidizer through a head end injector and an inner tube with injector holes distributed along the motor longitudinal axis. This design has demonstrated a significant potential for improving the performance of hybrid rockets by means of a better mixing of the species achieved through a customized injection of the oxidizer. Indeed, the CFD analysis of the double-tube configuration has revealed that this design may increase the regression rate over 50% with respect to the same motor with a conventional axial showerhead injector. However, in order to fully exploit the advantages of the double-tube concept, it is necessary to acquire a deeper understanding of the influence of the different design parameters in the overall performance. In this way, a parametric study is carried out taking into account the variation of the oxidizer mass flux rate, the ratio of oxidizer mass flow rate injected through the inner tube to the total oxidizer mass flow rate, and injection angle. The data for the analysis have been gathered from a large series of three-dimensional numerical simulations that considered the changes in the design parameters. The propellant combination adopted consists of gaseous oxygen as oxidizer and high-density polyethylene as solid fuel. Furthermore, the numerical model comprises Navier-Stokes equations, k-ε turbulence model, eddy-dissipation combustion model and solid-fuel pyrolysis, which is computed through user-defined functions. This numerical model was previously validated by analyzing the computational and experimental results obtained for

  19. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity

    OpenAIRE

    Künstler, E. C. S.; Finke, K.; Günther, A.; Klingner, C.; Witte, O.; Bublak, P.

    2017-01-01

    Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the ‘theory of visual attention’ (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual sh...

  20. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    Science.gov (United States)

    Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  1. Concurrent TMS to the primary motor cortex augments slow motor learning

    Science.gov (United States)

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L.; Fox, Peter T.

    2013-01-01

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H215O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy. PMID:23867557

  2. Effects of hippotherapy on gross motor function and functional performance of children with cerebral palsy.

    Science.gov (United States)

    Park, Eun Sook; Rha, Dong Wook; Shin, Jung Soon; Kim, Soohyeon; Jung, Soojin

    2014-11-01

    The purpose of our study was to investigate the effects of hippotherapy on gross motor function and functional performance in children with spastic cerebral palsy (CP). We recruited 34 children (M:F=15:19, age: 3-12 years) with spastic CP who underwent hippotherapy for 45 minutes twice a week for 8 weeks. Twenty-one children with spastic CP were recruited for control group. The distribution of gross motor function classification system level and mean age were not significantly different between the two groups. Outcome measures, including the Gross Motor Function Measure (GMFM)-66, GMFM-88 and the Pediatric Evaluation of Disability Inventory: Functional Skills Scale (PEDI-FSS), were assessed before therapy and after the 8-weeks intervention as outcome measures. There were no significant differences between intervention and control groups in mean baseline total scores of GMFM-66, GMFM-88 or PEDI-FSS. After the 8-weeks intervention, mean GMFM-66 and GMFM-88 scores were significantly improved in both groups. However, the hippotherapy group had significantly greater improvement in dimension E and GMFM-66 total score than the control group. The total PEDI-FSS score and the sub-scores of its 3 domains were significantly improved in the hippotherapy group, but not in the control group. The results of our study demonstrate the beneficial effects of hippotherapy on gross motor function and functional performance in children with CP compared to control group. The significant improvement in PEDI-FSS scores suggests that hippotherapy may be useful to maximize the functional performance of children with CP.

  3. Improving Asphalt Mixture Performance by Partially Replacing Bitumen with Waste Motor Oil and Elastomer Modifiers

    Directory of Open Access Journals (Sweden)

    Sara Fernandes

    2017-08-01

    Full Text Available The environmental concern about waste generation and the gradual decrease of oil reserves has led the way to finding new waste materials that may partially replace the bitumens used in the road paving industry. Used motor oil from vehicles is a waste product that could answer that demand, but it can also drastically reduce the viscosity, increasing the asphalt mixture’s rutting potential. Therefore, polymer modification should be used in order to avoid compromising the required performance of asphalt mixtures when higher amounts of waste motor oil are used. Thus, this study was aimed at assessing the performance of an asphalt binder/mixture obtained by replacing part of a paving grade bitumen (35/50 with 10% waste motor oil and 5% styrene-butadiene-styrene (SBS as an elastomer modifier. A comparison was also made with the results of a previous study using a blend of bio-oil from fast pyrolysis and ground tire rubber modifier as a partial substitute for usual PG64-22 bitumen. The asphalt binders were tested by means of Fourier infrared spectra and dynamic shear rheology, namely by assessing their continuous high-performance grade. Later, the water sensitivity, fatigue cracking resistance, dynamic modulus and rut resistance performance of the resulting asphalt mixtures was evaluated. It was concluded that the new binder studied in this work improves the asphalt mixture’s performance, making it an excellent solution for paving works.

  4. Arranque de un motor de inducción usando control difuso

    Directory of Open Access Journals (Sweden)

    Camilo Barriga Turriago

    2011-12-01

    Full Text Available This paper presents the use of fuzzy logic as part of artiÞ cial intelligence in the area of power electronics and motor drivers to improve performance during the startup of an induction motor. To feed the induction motor, two circuit configurations have been chosen to use: a series of thyristors connected in ant parallel and a threephaseinverter. Control strategies such as soft start and Direct Torque Control incorporating fuzzy control have been current proposals to reduce and improve torque. The results of a simulated induction motor squirrel cage of 1.1 KW to these electronic methods show an improvement in performance at boot time, reducing power and increasingthe torque.

  5. Comparing the Efficacy of Excitatory Transcranial Stimulation Methods Measuring Motor Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Vera Moliadze

    2014-01-01

    Full Text Available The common aim of transcranial stimulation methods is the induction or alterations of cortical excitability in a controlled way. Significant effects of each individual stimulation method have been published; however, conclusive direct comparisons of many of these methods are rare. The aim of the present study was to compare the efficacy of three widely applied stimulation methods inducing excitability enhancement in the motor cortex: 1 mA anodal transcranial direct current stimulation (atDCS, intermittent theta burst stimulation (iTBS, and 1 mA transcranial random noise stimulation (tRNS within one subject group. The effect of each stimulation condition was quantified by evaluating motor-evoked-potential amplitudes (MEPs in a fixed time sequence after stimulation. The analyses confirmed a significant enhancement of the M1 excitability caused by all three types of active stimulations compared to sham stimulation. There was no significant difference between the types of active stimulations, although the time course of the excitatory effects slightly differed. Among the stimulation methods, tRNS resulted in the strongest and atDCS significantly longest MEP increase compared to sham. Different time courses of the applied stimulation methods suggest different underlying mechanisms of action. Better understanding may be useful for better targeting of different transcranial stimulation techniques.

  6. Improving motor performance without training: the effect of combining mirror visual feedback with transcranial direct current stimulation.

    Science.gov (United States)

    von Rein, Erik; Hoff, Maike; Kaminski, Elisabeth; Sehm, Bernhard; Steele, Christopher J; Villringer, Arno; Ragert, Patrick

    2015-04-01

    Mirror visual feedback (MVF) during motor training has been shown to improve motor performance of the untrained hand. Here we thought to determine if MVF-induced performance improvements of the left hand can be augmented by upregulating plasticity in right primary motor cortex (M1) by means of anodal transcranial direct current stimulation (a-tDCS) while subjects trained with the right hand. Participants performed a ball-rotation task with either their left (untrained) or right (trained) hand on two consecutive days (days 1 and 2). During training with the right hand, MVF was provided concurrent with two tDCS conditions: group 1 received a-tDCS over right M1 (n = 10), whereas group 2 received sham tDCS (s-tDCS, n = 10). On day 2, performance was reevaluated under the same experimental conditions compared with day 1 but without tDCS. While baseline performance of the left hand (day 1) was not different between groups, a-tDCS exhibited stronger MVF-induced performance improvements compared with s-tDCS. Similar results were observed for day 2 (without tDCS application). A control experiment (n = 8) with a-tDCS over right M1 as outlined above but without MVF revealed that left hand improvement was significantly less pronounced than that induced by combined a-tDCS and MVF. Based on these results, we provide novel evidence that upregulating activity in the untrained M1 by means of a-tDCS is capable of augmenting MVF-induced performance improvements in young normal volunteers. Our findings suggest that concurrent MVF and tDCS might have synergistic and additive effects on motor performance of the untrained hand, a result of relevance for clinical approaches in neurorehabilitation and/or exercise science. Copyright © 2015 the American Physiological Society.

  7. Development of method for detecting signs deterioration in insulator of high-voltage motors. 2. Test Results of a new on-line partial discharge monitor for high-voltage motors in nuclear power stations

    International Nuclear Information System (INIS)

    Tochio, Atsushi; Kaneda, Yoshiharu; Urakawa, Nobuo

    2000-01-01

    For the purpose of early detection of deterioration of insulators in high-voltage motors which are widely utilized in nuclear power stations, a new on-line partial discharge (PD) monitor was developed and was tested for sixteen motors which were practically running in nuclear power stations. From the test results, it is seen that (1) good signal to noise ratio is obtained by adopting a two frequency correlation method, (2) a resistance temperature detector (RTD) in a motor has sufficient sensitivity to detect PD, (3) when RTD is not installed or is unable to use for this purpose, a radio frequency current transformer (RFCT) can be utilized, although its sensitivity is about 1/10 of that of the RTD monitor. Finally we found a good correlation between the results of this on-line method and the conventional off-line method in which the insulator resistance of a concerned motor was measured during its shut-down, and thereby we demonstrated that this method could be applicable to the on-line test of high-voltage motors in nuclear power stations. (author)

  8. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children.

    Science.gov (United States)

    Geertsen, Svend Sparre; Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper

    2016-01-01

    To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all Pmotor skills (all Pmotor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations.

  9. Coupling of analytical and numerical methods for the analysis of line start permanent magnet synchronous motors; Kopplung numerischer und analytischer Verfahren zur Berechnung von permanenterregten Synchronmaschinen fuer Selbstanlauf

    Energy Technology Data Exchange (ETDEWEB)

    Brune, Eva; Stuebig, Cornelia; Tegeler, Sebastian; Wehner, Meike; Ponick, Bernd [Hannover Univ. (Germany). Inst. fuer Antriebssysteme und Leistungselektronik

    2011-07-01

    Due to stricter efficiency legislation for electrical machines, it becomes increasingly important to predict a motor's performance with regard to start and operational behaviour correctly. In consequence of the higher efficiency required for electrical machines, permanent magnet synchronous machines become an interesting alternative also for motors with direct on-line starting. This paper describes a method to calculate these motor's behaviour reliably and accurately based on a combined analytical and numerical approach developed at the Institute for Drive Systems and Power Electronics of Leibniz Universitaet Hannover. (orig.)

  10. Prediction of kindergarteners' behavior on Metropolitan Readiness Tests from preschool perceptual and perceptual-motor performances: a validation study.

    Science.gov (United States)

    Belka, D E

    1981-06-01

    Multiple regression equations were generated to predict cognitive achievement for 40 children (ages 57 to 68 mo.) 1 yr. after administration of a battery of 6 perceptual and perceptual-motor tests to determine if previous results from Toledo could be replicated. Regression equations generated from maximum R2 improvement techniques indicated that performance at prekindergarten is useful for prediction of cognitive performance (total score and total score without the copying subtest on the Metropolitan Readiness Tests) 1 yr. later at the end of kindergarten. The optimal battery included scores on auditory perception, fine perceptual-motor, and gross perceptual-motor tasks. The moderate predictive power of the equations obtained was compared with high predictive power generated in the Toledo study.

  11. Motor demand-dependent activation of ipsilateral motor cortex.

    Science.gov (United States)

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  12. Thermal Performance of Motor and Inverter in an Integrated Starter Generator System for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Sung Chul Kim

    2013-11-01

    Full Text Available If the integrated starter generator (ISG motor and inverter operate under continuously high loading conditions, the system’s performance and durability will decrease and the heat dissipation requirements will increase. Therefore, in this study, we developed two cooling designs for the ISG motor and inverter, and then carried out both a model analysis and an experiment on the fluid flow and thermal characteristics of the system under various operating conditions. As the outdoor temperature increased from 25 °C to 95 °C, the coil temperature of the air-cooled motor increased by about 82 °C. Under the harsh-air condition of 95 °C, the coil of the air-cooled motor increased to a maximum temperature of about 158.5 °C. We also determined that the temperature of the metal-oxide-semiconductor field-effect transistor (MOSFET chip in the liquid-cooled inverter increased to a maximum temperature of about 96.8 °C under a coolant flow rate of 4 L/min and a coolant temperature of 65 °C. The observed thermal performance of the ISG motor and inverter using the proposed cooling structures was found to be sufficient for heat loads under various real driving conditions for a hybrid electric vehicle (HEV.

  13. Method and apparatus for sensorless operation of brushless permanent magnet motors

    Science.gov (United States)

    Sriram, Tillasthanam V.

    1998-01-01

    A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle.

  14. Straight and chopped dc performance data for a Prestolite MTC-4001 motor and a general electric EV-1 controller

    Science.gov (United States)

    Edie, P. C.

    1981-01-01

    Performance data on the Prestolite MTC-4001 series wound dc motor and General Electric EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data are provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing show the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 76% and 82%, regardless of temperature or mode of operation.

  15. Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities

    Directory of Open Access Journals (Sweden)

    Jan-Christoph Kattenstroth

    2010-07-01

    Full Text Available Aging is associated with a progressive decline of mental and physical abilities. Considering the current demographic changes in many civilizations there is an urgent need for measures permitting an independent lifestyle into old age. The critical role of physical exercise in mediating and maintaining physical and mental fitness is well-acknowledged. Dance, in addition to physical activity, combines emotions, social interaction, sensory stimulation, motor coordination and music, thereby creating enriched environmental conditions for human individuals. Here we demonstrate the impact of multi-year (average 16.5 years amateur dancing (AD in a group of elderly subjects (aged 65 to 84 years as compared to education-, gender- and aged-matched controls (CG having no record of dancing or sporting activities. Besides posture and balance parameters, we tested reaction times, motor behavior, tactile and cognitive performance. In each of the different domains investigated, the AD group had a superior performance as compared to the non-dancer CG group. Analysis of individual performance revealed that the best participants of the AD group were not better than individuals of the CG group. Instead, the AD group lacked individuals showing poor performance, which was frequently observed for the CG group. This observation implies that maintaining a regular schedule of dancing into old age can preserve cognitive, motor and perceptual abilities and prevent them from degradation. We conclude that the far-reaching beneficial effects found in the AD group make dance, beyond its ability to facilitate balance and posture, a prime candidate for the preservation of everyday life competence of elderly individuals.

  16. Analysis on bilateral hindlimb mapping in motor cortex of the rat by an intracortical microstimulation method.

    Science.gov (United States)

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-04-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any movement of the hindlimbs was noted. The majority (80%± 11%) of responses were not restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. The size and shape of hindlimb motor cortex was variable among rats, but existed on the convex side of the cerebral hemisphere in all rats. The results did not show symmetry according to specific joints in each rats. Conclusively, the hindlimb representation in the rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-individual variability suggest that precise individual mapping is needed to clarify motor distribution in rats.

  17. performance characteristics of an armature voltage controlled dc motor

    African Journals Online (AJOL)

    Dr Obe

    . INTRODUCTION. The good control properties of the d.c. motor have made possible its initial large scale application in industry [1]. In spite of the present superiority of the solid state squirrel cage induction motor drive, especially at supply ...

  18. Quantitative motor performance and sleep benefit in Parkinson disease

    NARCIS (Netherlands)

    van Gilst, Merel; van Mierlo, P.; Bloem, B.R.; Overeem, S.

    2015-01-01

    STUDY OBJECTIVES: Many people with Parkinson disease experience "sleep benefit": temporarily improved mobility upon awakening. Here we used quantitative motor tasks to assess the influence of sleep on motor functioning in Parkinson disease. DESIGN: Eighteen Parkinson patients with and 20 without

  19. PERFORMANCE OPTIMIZATION OF LINEAR INDUCTION MOTOR BY EDDY CURRENT AND FLUX DENSITY DISTRIBUTION ANALYSIS

    Directory of Open Access Journals (Sweden)

    M. S. MANNA

    2011-12-01

    Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.

  20. Fine motor skills in adult Tourette patients are task-dependent

    Directory of Open Access Journals (Sweden)

    Neuner Irene

    2012-10-01

    Full Text Available Abstract Background Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics. Deficient motor inhibition underlying tics is one of the main hypotheses in its pathophysiology. Therefore the question arises whether this supposed deficient motor inhibition affects also voluntary movements. Despite severe motor tics, different personalities who suffer from Tourette perform successfully as neurosurgeon, pilot or professional basketball player. Methods For the investigation of fine motor skills we conducted a motor performance test battery in an adult Tourette sample and an age matched group of healthy controls. Results The Tourette patients showed a significant lower performance in the categories steadiness of both hands and aiming of the right hand in comparison to the healthy controls. A comparison of patients’ subgroup without comorbidities or medication and healthy controls revealed a significant difference in the category steadiness of the right hand. Conclusions Our results show that steadiness and visuomotor integration of fine motor skills are altered in our adult sample but not precision and speed of movements. This alteration pattern might be the clinical vignette of complex adaptations in the excitability of the motor system on the basis of altered cortical and subcortical components. The structurally and functionally altered neuronal components could encompass orbitofrontal, ventrolateral prefrontal and parietal cortices, the anterior cingulate, amygdala, primary motor and sensorimotor areas including altered corticospinal projections, the corpus callosum and the basal ganglia.

  1. NRC inspections of licensee activities to improve the performance of motor-operated valves

    International Nuclear Information System (INIS)

    Scarbrough, T.G.

    1992-01-01

    The NRC regulations require that components important to the safe operation of a nuclear power plant be treated in a manner that provides assurance of their proper performance. Despite these regulatory requirements, operating experience and research programs have raised concerns regarding the performance of motor-operated valves (MOVs) in nuclear power plants. In June 1990, the staff issued NUREG-1352, Action Plans for Motor-Operated Valves and Check Valves, which contains planned actions to organize the activities aimed at resolving the concerns about MOV performance. A significant task of the MOV action plan is the staff's review of the implementation of Generic Letter (GL) 89-10 (June 28, 1989), 'Safety-Related Motor-Operated Valve Testing and Surveillance,' and its supplements, by nuclear power plant licensees. The NRC staff has issued several supplements to GL 89-10 to provide additional guidance for use by licensees in responding to the generic letter. The NRC staff has conducted initial inspections of the GL 89-10 programs at most licensee facilities. This paper outlines some of the more significant findings of those inspections. For example, licensees who have begun differential pressure and flow testing have found some MOVs to require more thrust to operate than predicted by the standard industry equation with typical valve factors assumed in the past. The NRC staff has found weaknesses in licensee procedures for conducting the differential pressure and flow tests, the acceptance criteria for the tests in evaluating the capability of the MOV to perform its safety function under design basis conditions, and feedback of the test results into the methodology used by the licensee in predicting the thrust requirements for other MOVs. Some licensees have not made adequate progress toward resolving the MOV issue for their facilities within the recommended schedule of GL 89-10

  2. Adaptive Motor Resistance Video Game Exercise Apparatus and Method of Use Thereof

    Science.gov (United States)

    Reich, Alton (Inventor); Shaw, James (Inventor)

    2015-01-01

    The invention comprises a method and/or an apparatus using computer configured exercise equipment and an electric motor provided physical resistance in conjunction with a game system, such as a video game system, where the exercise system provides real physical resistance to a user interface. Results of user interaction with the user interface are integrated into a video game, such as running on a game console. The resistance system comprises: a subject interface, software control, a controller, an electric servo assist/resist motor, an actuator, and/or a subject sensor. The system provides actual physical interaction with a resistance device as input to the game console and game run thereon.

  3. Mood states and motor performance: a study with high performance voleybol athletes

    Directory of Open Access Journals (Sweden)

    Lenamar Fiorese Vieira

    2008-07-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n1p62 The objective of this research was to investigate the relationship between the sporting performance and mood states of high performance volleyball athletes. Twenty-three adult athletes of both sexes were assessed. The measurement instrument adopted was the POMS questionnaire. Data collection was carried out individually during the state championships. Dada were analyzed using descriptive statistics; the Friedman test for analysis of variance and the Mann-Whitney test for differences between means. The results demonstrated that both teams exhibited the mood state profi le corresponding to the “iceberg” profile. In the male team, vigor remained constant throughout all phases of the competition, while in the female team this element was unstable. The male team’s fatigue began low, during the training phase, with rates that rose as the competition progressed, with statistically significant differences between the fi rst and last matches the team played. In the female team, the confusion factor, which was at a high level during training, reduced progressively throughout the competition, with a difference that was signifi cant to p ≤ 0.05. With relation to performance and mood profi le, the female team exhibited statistically significant differences between the mean vigor and fatigue factors of high and low performance athletes. It is therefore concluded that the mood state profi le is a factor that impacts on the motor performance of these high performance teams.

  4. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O

    1999-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  5. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  6. Non-physical practice improves task performance in an unstable, perturbed environment: Motor imagery and observational balance training

    Directory of Open Access Journals (Sweden)

    Wolfgang eTaube

    2014-12-01

    Full Text Available For consciously performed motor tasks executed in a defined and constant way, both motor imagery (MI and action observation (AO have been shown to promote motor learning. It is not known whether these forms of non-physical training also improve motor actions when these actions have to be variably applied in an unstable and unpredictable environment. The present study therefore investigated the influence of MI balance training (MI_BT and a balance training combining AO and MI (AO+MI_BT on postural control of undisturbed and disturbed upright stance on unstable ground. As spinal reflex excitability after classical (i.e., physical balance training (BT is generally decreased, we tested whether non-physical BT also has an impact on spinal reflex circuits. Thirty-six participants were randomly allocated into an MI_BT group, in which participants imagined postural exercises, an AO+MI_BT group, in which participants observed videos of other people performing balance exercises and imagined being the person in the video, and a non-active control group (CON. Before and after 4 weeks of non-physical training, balance performance was assessed on a free-moving platform during stance without perturbation and during perturbed stance. Soleus H-reflexes were recorded during stable and unstable stance. The post measurement revealed significantly decreased postural sway during undisturbed and disturbed stance after both MI_BT and AO+MI_BT. Spinal reflex excitability remained unchanged. This is the first study showing that non-physical training (MI_BT and AO+MI_BT not only promotes motor learning of ‘rigid’ postural tasks but also improves performance of highly variable and unpredictable balance actions. These findings may be relevant to improve postural control and thus reduce the risk of falls in temporarily immobilized patients.

  7. Effects of a trampoline exercise intervention on motor performance and balance ability of children with intellectual disabilities.

    Science.gov (United States)

    Giagazoglou, Paraskevi; Kokaridas, Dimitrios; Sidiropoulou, Maria; Patsiaouras, Asterios; Karra, Chrisanthi; Neofotistou, Konstantina

    2013-09-01

    Balance and motor impairments are most evident among inactive individuals with ID that might be particularly susceptible to a loss of basic functioning and further limit the person's autonomy in activities of daily living. The aim of the study was to assess the effect of a 12-week trampoline exercise intervention program on motor and balance ability of school aged children with intellectual disability (ID). Eighteen healthy schools aged children (mean age=10.3 ± 1.6 years) with moderate ID were assigned either to an experimental group (n=9) or a control group (n=9). The experiment group attended a 12 weeks trampoline training intervention program consisting of daily individualized 20-min sessions, while the control group followed the regular school schedule. Balance was assessed using three tasks of increased difficulty (double-leg stance with eyes opened or closed, and one-leg stance with eyes opened) performed while standing on an electronic pressure platform (EPS). Motor performance of all participants was tested using sit and reach test and long and vertical jump tests all derived from the Eurofit Test Battery of physical fitness. Trampoline intervention resulted in significant improvements of participants' performance in all motor and balance tests. In conclusion, trampoline training can be an effective intervention for improving functional outcomes and can be recommended as an alternative mode of physical activity programming for improving balance and motor performance. Furthermore, it also supports the idea that individuals with ID require enjoyable and interesting intervention programs such as the trampoline program used in this study so as to remain active and consequently to facilitate their overall development and promote a more active and healthier way of life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Method and apparatus for sensorless operation of brushless permanent magnet motors

    Science.gov (United States)

    Sriram, T.V.

    1998-04-14

    A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle. 23 figs.

  9. The effects of motor vehicle accidents on careers and the work performance of victims

    Directory of Open Access Journals (Sweden)

    Johanna C. Diedericks

    2014-04-01

    Research purpose: The purpose of this study was to contribute to research on the effects of the injuries by investigating the relationship between the severity of the injuries and the careers and growth potential of victims. Motivation for the study: Employers could use the information on the effects of the injuries on the careers of victims to plan interventions and job accommodations to retain employees and to manage their well-being and performance. Research design, approach and method: The author conducted a quantitative survey on a purposive sample (N = 199 of adult victims of motor vehicle accidents in 2010 in South Africa. She used descriptive and inferential statistics to analyse the data. Main findings: The author observed a number of significant relationships between the effects of the different injuries on the careers and growth potential of victims. Practical/managerial implications: Organisations and managers need to recognise the physical and psychological effects of injuries victims sustain in motor accidents and the associated responsibility of organisations to accommodate these employees. Contribution/value-add: The findings of the study can add to the literature and provide insights into the consequences of the injuries. They also provide information that can assist organisations to create an awareness of job accommodation and employee wellness of accident victims.

  10. Precise derating of three phase induction motors with unbalanced voltages

    International Nuclear Information System (INIS)

    Faiz, Jawad; Ebrahimpour, H.

    2007-01-01

    Performance analysis of three phase induction motors under supply voltage unbalance conditions is normally conducted using the well-known symmetrical components analysis. In this analysis, the voltage unbalance level at the terminals of the machine is assessed by means of the NEMA or IEC definitions. Both definitions lead to a relatively large error in predicting the performance of a machine. A method has recently been proposed in which, in addition to the voltage unbalance factor (VUF), the phase angle has been taken into account in the analysis. This means that the voltage unbalance factor is regarded as a complex value. This paper shows that although the use of the complex VUF reduces the computational error considerably, it is still high. This is proven by evaluating the derating factor of a three phase induction motor. A method is introduced to determine the derating factor precisely using the complex unbalance factor for an induction motor operating under any unbalanced supply condition. A practical case for derating of a typical three phase squirrel cage induction motor supplied by an unbalanced voltage is studied in the paper

  11. Improvements in EMC performance of inverter-fed motor drives

    International Nuclear Information System (INIS)

    Zhong, E.; Lipo, T.A.

    1995-01-01

    An experimental investigation of conducted radio-noise emission from a conventional pulse width modulated (PWM) inverter of medium power feeding an induction motor is described. It is determined that the inverter system generates considerable impulse currents through the power leads feeding the system resulting in serious conducted electromagnetic interference (EMI) problems and significant voltage waveform distortion in the power system. The dominant emission sources in the system are identified. A proposed model of the drive system for the purpose of evaluation of EMI are developed. Several low-cost strategies for improvement in EMC performance of the PWM inverter are then proposed. Experimental results demonstrate that disturbance from the modified system can be dramatically reduced and that the EMC performance of the system has come very close to meeting the IEC CISPR and FCC limits on conducted emissions for digital devices

  12. Electric motor predictive and preventive maintenance guide

    International Nuclear Information System (INIS)

    Oliver, J.A.

    1992-07-01

    Electric motor performance is vital to the reliable and efficient operation of power plants. The failure of one or more critical motors could cause lost capacity and excessive repair and maintenance cost. However, existing maintenance recommendations proposed by vendors for electric motors have sometimes encouraged many overly conservative maintenance practices. These practices have lead to excessive maintenance activities and costs which have provided no extra margin of operability. EPRI has sponsored RP2814-35 to develop a guide which provides power plants with information and guidance for establishing an effective maintenance program which will aid in preventing unexpected motor failures and assist in planning motor maintenance efforts. The guide includes a technical description which summarizes technical data relative to the four basic types of motors and their components in general use in power plants. The significant causes of motor failures are investigated and described in detail and methods to optimize service life and minimize maintenance cost through appropriate preventive maintenance and conditioning program are presented. This guide provides a foundation for an effective electric motor maintenance program and simplifies the selection of predictive and preventive maintenance tasks. Its use will enable maintenance personnel in nuclear and fossil plants to plan motor repairs during scheduled outages and avoid costly unexpected failures

  13. CONTRIBUTION OF AXIAL MOTOR IMPAIRMENT TO PHYSICAL INACTIVITY IN PARKINSON'S DISEASE

    Science.gov (United States)

    Bryant, Mon S; Hou, Jyhgong Gabriel; Collins, Robert L; Protas, Elizabeth J

    2015-01-01

    Objective To investigate the relationships between motor symptoms of Parkinson’s disease (PD) and activity limitations in persons with PD. Design/Methods Cross-sectional study of persons with mild to moderate PD (N=90). Associations among axial motor features, limb motor signs, the Physical Activity Scale for Elders (PASE), the ability to perform Activities of Daily Living (ADL) and level of ADL dependency were studied. A composite score of axial motor features included the following UPDRS items: speech, rigidity of the neck, arising from chair, posture, gait and postural stability. A composite score of limb motor signs included the following UPDRS items: tremor at rest of all extremities, action tremor, rigidity of all extremities, finger taps, hand movement, rapid alternating hand movements and foot tapping. Results Axial motor features of PD were significantly correlated with physical inactivity (pphysical inactivity. After controlling for age, gender, disease duration and comorbidity, axial motor features contributed significantly to physical inactivity, decreased ADL and increase in ADL dependency, whereas the limb motor signs did not. Conclusions Axial motor impairment contributed to physical inactivity and decreased ability to perform ADLs in persons with PD. PMID:26368837

  14. Structural optimization of the Halbach array PM rim thrust motor

    Science.gov (United States)

    Cao, Haichuan; Chen, Weihu

    2018-05-01

    The Rim-driven Thruster (RDT) integrates the thrust motor and the propeller, which can effectively reduce the space occupied by the propulsion system, improve the propulsion efficiency, and thus has important research value and broad market prospects. The Halbach Permanent Magnet Rim Thrust Motor (HPMRTM) can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the numerical method is used to study the electromagnetic performance of the motor under different Halbach array parameters. The relationship between motor parameters such as air-gap flux density, electromagnetic torque and Halbach array parameters is obtained, and then the motor structure is optimized. By comparing with Common Permanent Magnet RTM, the advantages of HPMRTM are verified.

  15. Solid Rocket Motor Design Using Hybrid Optimization

    Directory of Open Access Journals (Sweden)

    Kevin Albarado

    2012-01-01

    Full Text Available A particle swarm/pattern search hybrid optimizer was used to drive a solid rocket motor modeling code to an optimal solution. The solid motor code models tapered motor geometries using analytical burn back methods by slicing the grain into thin sections along the axial direction. Grains with circular perforated stars, wagon wheels, and dog bones can be considered and multiple tapered sections can be constructed. The hybrid approach to optimization is capable of exploring large areas of the solution space through particle swarming, but is also able to climb “hills” of optimality through gradient based pattern searching. A preliminary method for designing tapered internal geometry as well as tapered outer mold-line geometry is presented. A total of four optimization cases were performed. The first two case studies examines designing motors to match a given regressive-progressive-regressive burn profile. The third case study studies designing a neutrally burning right circular perforated grain (utilizing inner and external geometry tapering. The final case study studies designing a linearly regressive burning profile for right circular perforated (tapered grains.

  16. Parkinson's Disease Subtypes Identified from Cluster Analysis of Motor and Non-motor Symptoms.

    Science.gov (United States)

    Mu, Jesse; Chaudhuri, Kallol R; Bielza, Concha; de Pedro-Cuesta, Jesus; Larrañaga, Pedro; Martinez-Martin, Pablo

    2017-01-01

    Parkinson's disease is now considered a complex, multi-peptide, central, and peripheral nervous system disorder with considerable clinical heterogeneity. Non-motor symptoms play a key role in the trajectory of Parkinson's disease, from prodromal premotor to end stages. To understand the clinical heterogeneity of Parkinson's disease, this study used cluster analysis to search for subtypes from a large, multi-center, international, and well-characterized cohort of Parkinson's disease patients across all motor stages, using a combination of cardinal motor features (bradykinesia, rigidity, tremor, axial signs) and, for the first time, specific validated rater-based non-motor symptom scales. Two independent international cohort studies were used: (a) the validation study of the Non-Motor Symptoms Scale ( n = 411) and (b) baseline data from the global Non-Motor International Longitudinal Study ( n = 540). k -means cluster analyses were performed on the non-motor and motor domains (domains clustering) and the 30 individual non-motor symptoms alone (symptoms clustering), and hierarchical agglomerative clustering was performed to group symptoms together. Four clusters are identified from the domains clustering supporting previous studies: mild, non-motor dominant, motor-dominant, and severe. In addition, six new smaller clusters are identified from the symptoms clustering, each characterized by clinically-relevant non-motor symptoms. The clusters identified in this study present statistical confirmation of the increasingly important role of non-motor symptoms (NMS) in Parkinson's disease heterogeneity and take steps toward subtype-specific treatment packages.

  17. Early oral-motor management on feeding performance in premature neonates

    Directory of Open Access Journals (Sweden)

    Yan-Lin Liu

    2013-03-01

    Conclusion: Abnormal brain sonography [odds ratio (OR: 2.222, p = 0.047 and necrotizing enterocolitis (NEC (OR: 2.857, p = 0.017 did affect the first trial in the study group. Early intervention of oral-motor management in very-low-birth-weight premature infants improved feeding performance and neonatal outcome in terms of shorter hospital days. Abnormal brain image and NEC could interfere with the success rate of initial challenge of transitioning from tube to oral feeding in the study group.

  18. Desempenho motor fino e funcionalidade em crianças com síndrome de Down Fine motor performance and functionality in children with Down syndrome

    Directory of Open Access Journals (Sweden)

    Aline Cirelli Coppede

    2012-12-01

    Full Text Available O objetivo do estudo foi comparar crianças com síndrome de Down (SD e crianças típicas quanto ao desempenho motor fino, avaliado pela Bayley Scales of Infant and Toddler Development - Third Edition (BSITD-III, e o desempenho em autocuidado segundo o Inventário Pediátrico de Avaliação de Incapacidade (PEDI; e investigar associação entre ambos os domínios. Participaram 12 crianças típicas e 12 crianças com SD, avaliadas na idade de 2 anos. As crianças com SD apresentaram desempenho motor fino e funcionalidade inferior às crianças típicas, possivelmente por dificuldades em desempenhar tarefas que exijam destreza e coordenação manual, como as que compõem a BSITD-III. Apesar disso, sua pontuação em autocuidado foi adequada para a faixa etária, possivelmente porque as habilidades funcionais exigidas nesse período, como retirar calçados/vestimenta, impõem menor demanda motora fina do que tarefas da BSITD-III. Esse fato pode ter contribuído para o bom desempenho funcional das crianças com SD, e para a ausência de associação entre os domínios. Fatores como os cuidados oferecidos à criança pelos cuidadores, bem como ambientes estimuladores provavelmente também contribuíram para os resultados.The aim of study was to compare typically-developing children and children with Down syndrome (DS for their fine motor performance, measured by the Bayley Scales of Infant and Toddler Development - Third Edition (BSITD-III, and for their functional performance in self-care, measured by the Pediatric Evaluation of Disability Inventory (PEDI. Associations between these areas were also investigated. Twelve typically-developing children and 12 children with DS were assessed at the age of 2 years. The children with DS performed poorly in fine motor skills when compared with typical children, which may be explained by the complex motor skills involved in the BSITD-III's tasks. Their self-care scores were also lower in comparison with the

  19. An Efficient Power Regeneration and Drive Method of an Induction Motor by Means of an Optimal Torque Derived by Variational Method

    Science.gov (United States)

    Inoue, Kaoru; Ogata, Kenji; Kato, Toshiji

    When the motor speed is reduced by using a regenerative brake, the mechanical energy of rotation is converted to the electrical energy. When the regenerative torque is large, the corresponding current increases so that the copper loss also becomes large. On the other hand, the damping effect of rotation increases according to the time elapse when the regenerative torque is small. In order to use the limited energy effectively, an optimal regenerative torque should be discussed in order to regenerate electrical energy as much as possible. This paper proposes a design methodology of a regenerative torque for an induction motor to maximize the regenerative electric energy by means of the variational method. Similarly, an optimal torque for acceleration is derived in order to minimize the energy to drive. Finally, an efficient motor drive system with the proposed optimal torque and the power storage system stabilizing the DC link voltage will be proposed. The effectiveness of the proposed methods are illustrated by both simulations and experiments.

  20. Dynamic Takagi-Sugeno Model for the Control of Ultrasonic Motor

    Directory of Open Access Journals (Sweden)

    Shi Jingzhuo

    2011-01-01

    Full Text Available Model of ultrasonic motor is the foundation of the design of ultrasonic motor's speed and position controller. A two-input and one-output dynamic Takagi-Sugeno model of ultrasonic motor driving system is worked out using fuzzy reasoning modeling method in this paper. Many fuzzy reasoning modeling methods are sensitive to the initial values and easy to fall into local minimum, and have a large amount of calculation. In order to overcome these defects, equalized universe method is used in this paper to get clusters centers and obtain fuzzy clustering membership functions, and then, the unknown parameters of the conclusions of fuzzy rules are identified using least-square method. Different experimental data that are tested with different operational conditions are used to examine the validity of the fuzzy model. Comparison between experimental data and calculated data of the model indicates that the model can well describe the nonlinear characteristics among the frequency, amplitude of driving voltage and rotating speed. The proposed fuzzy model can be used to analyze the performance of ultrasonic motor driving system, and also can be used to design the speed and position controller of ultrasonic motor.

  1. Axial Field Electric Motor and Method

    National Research Council Canada - National Science Library

    Cho, Chahee P

    2007-01-01

    .... A hybrid field, brushless, permanent magnet electric motor utilizing a rotor with two sets of permanent magnets oriented such that the flux produced by the two sets of magnets is perpendicular to each...

  2. Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review

    Directory of Open Access Journals (Sweden)

    Rafaela S. Moreira

    2014-04-01

    Full Text Available OBJECTIVES: to examine and synthesize the available knowledge in the literature about the effects of preterm birth on the development of school-age children. SOURCES: This was a systematic review of studies published in the past ten years indexed in MEDLINE/Pubmed, MEDLINE/BVS; LILACS/BVS; IBECS/BVS; Cochrane/BVS, CINAHL, Web of Science, Scopus, and PsycNET in three languages (Portuguese, Spanish, and English. Observational and experimental studies that assessed motor development and/or behavior and/or academic performance and whose target-population consisted of preterm children aged 8 to 10 years were included. Article quality was assessed by the Strengthening the reporting of observational studies in epidemiology (STROBE and Physiotherapy Evidence Database (PEDro scales; articles that did not achieve a score of 80% or more were excluded. SUMMARY OF FINDINGS: the electronic search identified 3,153 articles, of which 33 were included based on the eligibility criteria. Only four studies found no effect of prematurity on the outcomes (two articles on behavior, one on motor performance and one on academic performance. Among the outcomes of interest, behavior was the most searched (20 articles, 61%, followed by academic performance (16 articles, 48% and motor impairment (11 articles, 33%. CONCLUSION: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions.

  3. D-amphetamine improves cognitive deficits and physical therapy promotes fine motor rehabilitation in a rat embolic stroke model

    DEFF Research Database (Denmark)

    Rasmussen, Rune Skovgaard; Overgaard, K; Hildebrandt-Eriksen, E S

    2006-01-01

    regarding gross motor performance. CONCLUSIONS: After embolization, physical therapy improved fine motor performance and D-amph accelerated rehabilitation of cognitive performance as observed in the rats of the THERAPY and D-AMPH groups. As a result of the administration of a high dose of D-amph, the rats......BACKGROUND AND PURPOSE: The purpose of this study was to examine the effects of D-amphetamine (D-amph) and physical therapy separately or combined on fine motor performance, gross motor performance and cognition after middle cerebral artery thromboembolization in rats. METHODS: Seventy-four rats...... on days 21-28 after surgery, rats of the SHAM and THERAPY groups had better fine motor performance than those of the CONTROL (P cognitive performance than CONTROL rats (P

  4. A versatile stepping motor controller for systems with many motors

    International Nuclear Information System (INIS)

    Feng, S.K.; Siddons, D.P.

    1989-01-01

    A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an ''emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab

  5. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  6. Priming Hand Motor Training with Repetitive Stimulation of the Fingertips; Performance Gain and Functional Imaging of Training Effects.

    Science.gov (United States)

    Lotze, Martin; Ladda, Aija Marie; Roschka, Sybille; Platz, Thomas; Dinse, Hubert R

    Application of repetitive electrical stimulation (rES) of the fingers has been shown to improve tactile perception and sensorimotor performance in healthy individuals. To increase motor performance by priming the effects of active motor training (arm ability training; AAT) using rES. We compared the performance gain for the training increase of the averaged AAT tasks of both hands in two groups of strongly right-handed healthy volunteers. Functional Magnetic Resonance Imaging (fMRI) before and after AAT was assessed using three tasks for each hand separately: finger sequence tapping, visually guided grip force modulation, and writing. Performance during fMRI was controlled for preciseness and frequency. A total of 30 participants underwent a two-week unilateral left hand AAT, 15 participants with 20 minutes of rES priming of all fingertips of the trained hand, and 15 participants without rES priming. rES-primed AAT improved the trained left-hand performance across all training tasks on average by 32.9%, non-primed AAT improved by 29.5%. This gain in AAT performance with rES priming was predominantly driven by an increased finger tapping velocity. Functional imaging showed comparable changes for both training groups over time. Across all participants, improved AAT performance was associated with a higher contralateral primary somatosensory cortex (S1) fMRI activation magnitude during the grip force modulation task. This study highlights the importance of S1 for hand motor training gain. In addition, it suggests the usage of rES of the fingertips for priming active hand motor training. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Associations between fine and gross motor skills, aerobic fitness, cognition and academic performance in 7-8 years old Danish children

    DEFF Research Database (Denmark)

    Lind, Rune Rasmussen; Beck, Mikkel Malling; Geertsen, Svend Sparre

    Purpose: The current literature is concentrated around the positive effects of aerobic fitness (AF) on performance in cognitive tests (CP) and academic performance (AP) (reviewed in Hillman 2008). However, motor skills (MS) are often overlooked in this equation, and studies evaluating both AF......, phonological working-memory capacity (PWM), spatial working-memory capacity (SWM), math performance (MP) and fine- and gross-motor skill (FMS & GMS) assessed. Results: Significant associations were found between FMS and MP (P

  8. A Novel Modular-Stator Outer-Rotor Flux-Switching Permanent-Magnet Motor

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2017-07-01

    Full Text Available A novel modular-stator outer-rotor flux-switching permanent-magnet (MSOR-FSPM motor is proposed and studied in this paper. Structure, operation and design principles of the MSOR-FSPM motor are introduced and analyzed. Considering that the combination of different pole number and slot number has a great influence on the motor performance, the optimum rotor pole number for the 12-stator-slot MSOR-FSPM motor is researched to obtain good performance and make full use of the space in the MSOR-FSPM motor. The influences of rotor pole number on cogging torque, torque ripple and electromagnetic torque are analyzed and a 12-slot/10-pole MSOR-FSPM motor was chosen for further study. Then, several main parameters of the 12-slot/10-pole MSOR-FSPM motor were optimized to reduce the torque ripple. Finally, the utilization of permanent magnet (PM in the MSOR-FSPM motor and a conventional outer-rotor flux-switching permanent-magnet (COR-FSPM motor are compared and analyzed from the point of view of magnetic flux path, and verified by the finite element method (FEM. The FEM results show that the PM volume of MSOR-FSPM motor is only 54.04% of that in a COR-FSPM motor, but its average electromagnetic torque can reach more than 75% of the torque of COR-FSPM motor.

  9. How Kinesthetic Motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise.

    Science.gov (United States)

    Ridderinkhof, K Richard; Brass, Marcel

    2015-01-01

    Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits involved in KMI in sports are still poorly understood. In the present article, which aims at bridging the sport sciences and cognitive neurophysiology literatures, we give a brief overview of relevant research in the field of KMI. Furthermore, we develop a theoretical account that relates KMI to predictive motor control theories assuming that it is based on internal activation of anticipatory images of action effects. This mechanism allows improving motor performance solely based on internal emulation of action. In accordance with previous literature, we propose that this emulation mechanism is implemented in brain regions that partially overlap with brain areas involved in overt motor performance including the posterior parietal cortex, the cerebellum, the basal ganglia and the premotor cortex. Finally, we outline one way to test the heuristic value of our theoretical framework for KMI; we suggest that experience with motor performance improves the ability to correctly infer the goals of others, in particular in penalty blocking in soccer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Motor and Perceptual Recovery in Adult Patients with Mild Intellectual Disability

    Directory of Open Access Journals (Sweden)

    Mariagiovanna Cantone

    2018-01-01

    Full Text Available Introduction. The relationship between intellectual disability (ID and hand motor coordination and speed-accuracy, as well as the effect of aging on fine motor performance in patients with ID, has been previously investigated. However, only a few data are available on the impact of the nonpharmacological interventions in adult patients with long-term hand motor deficit. Methods. Fifty adults with mild ID were enrolled. A group of thirty patients underwent a two-month intensive ergotherapic treatment that included hand motor rehabilitation and visual-perceptual treatment (group A; twenty patients performing conventional motor rehabilitation alone (group B served as a control group. Data on attention, perceptual abilities, hand dexterity, and functional independence were collected by a blind operator, both at entry and at the end of the study. Results. After the interventions, group A showed significantly better performance than group B in all measures related to hand movement from both sides and to independence in activities of daily living. Discussion. Multimodal integrated interventions targeting visual-perceptual abilities and motor skills are an effective neurorehabilitative approach in adult patients with mild ID. Motor learning and memory-mediated mechanisms of neural plasticity might underlie the observed recovery, suggesting the presence of plastic adaptive changes even in the adult brain with ID.

  11. Performance Comparisons and Down Selection of Small Motors for Two-Blade Heliogyro Solar Sail 6U CubeSat

    Science.gov (United States)

    Wiwattananon, Peerawan; Bryant, Robert G.

    2015-01-01

    This report compiles a review of 130 commercial small scale motors (piezoelectric and electric motors) and almost 20 researched-type small scale piezoelectricmotors for potential use in a 2 blades Heliogyro Solar Sail 6U CubeSat. In this application, a motor and gearhead (drive system) will deploy a roll of solar sailthin film (2 um thick)accommodated in a 2U CubeSat (100 x 200 x 100 mm) housing. The application requirements are: space rated, output torque at fulldeployment of 0.8 Nm, reel speed of 3 rpm, drive system weight limited to 150 grams, diameter limited to 50 mm, and the length not to exceed 40 mm. The 50mm diameter limit was imposed as motors with larger diameters would likely weigh too much and use more space on the satellite wall. This would limit theamount of the payload. The motors performance are compared between small scale, volume within 3x102 cm3 (3x105 mm3), commercial electric DC motors,commercial piezoelectric motors, and researched-type (non-commercial) piezoelectric motors extracted from scientific and product literature. The comparisonssuggest that piezoelectric motors without a gearhead exhibit larger output torque with respect to their volume and weight and require less input power toproduce high torque. A commercially available electric motor plus a gearhead was chosen through a proposed selection process to meet the applications designrequirements.

  12. Fast Response Three Phase Induction Motor Using Indirect Field Oriented Control (IFOC Based On Fuzzy-Backstepping

    Directory of Open Access Journals (Sweden)

    Rizana Fauzi

    2015-06-01

    Full Text Available Induction Motor in Electrical drive system at a accelleration speed for example in electric cars have a hard speed setting is set on a wide range, causing an inconvenience for motorists and a fast response is required any change of speed. It is necessary for good system performance in control motor speed and torque at low speed or fast speed response, which is operated by Indirect Field Oriented Control (IFOC. Speed control on IFOC methods should be better to improving the performance of rapid response in the induction motor. In this paper presented a method of incorporation of Fuzzy Logic Controller and Backstepping (Fuzzy-Backstepping to improve the dynamically response speed and torque in Induction Motor on electric car, so we get smoothness at any speed change and braking as well as maximum torque of induction motor. Test results showed that Fuzzy-Backstepping can increase the response to changes speed in electric car. System testing is done with variations of the reference point setting speed control system, the simulation results of the research showed that the IFOC method is not perfect in terms of induction motor speed regulation if it’s not use speed control. Fuzzy-Backstepping control is needed which can improve the response of output, so that the induction motor has a good performance, small oscillations when start working up to speed reference. Keywords: Fuzzy-Backstepping, IFOC, induction motor

  13. Detection of a static eccentricity fault in a closed loop driven induction motor by using the angular domain order tracking analysis method

    Science.gov (United States)

    Akar, Mehmet

    2013-01-01

    In this study, a new method was presented for the detection of a static eccentricity fault in a closed loop operating induction motor driven by inverter. Contrary to the motors supplied by the line, if the speed and load, and therefore the amplitude and frequency, of the current constantly change then this also causes a continuous change in the location of fault harmonics in the frequency spectrum. Angular Domain Order Tracking analysis (AD-OT) is one of the most frequently used fault diagnosis methods in the monitoring of rotating machines and the analysis of dynamic vibration signals. In the presented experimental study, motor phase current and rotor speed were monitored at various speeds and load levels with a healthy and static eccentricity fault in the closed loop driven induction motor with vector control. The AD-OT method was applied to the motor current and the results were compared with the traditional FFT and Fourier Transform based Order Tracking (FT-OT) methods. The experimental results demonstrate that AD-OT method is more efficient than the FFT and FT-OT methods for fault diagnosis, especially while the motor is operating run-up and run-down. Also the AD-OT does not incur any additional cost for the user because in inverter driven systems, current and speed sensor coexist in the system. The main innovative parts of this study are that AD-OT method was implemented on the motor current signal for the first time.

  14. Experimental determination of magnetization curves of switched reluctance motors

    Energy Technology Data Exchange (ETDEWEB)

    Andrada, P.; Martinez, E.; Perat, J.I.; Sanchez, J.A.; Torrent, M. [Universitat Politecnica de Catalunya, UPC, Dept. of Enginyeria Electrica, Vilanova i la Geltru (Spain)

    2000-08-01

    Knowledge of magnetic characteristics or magnetization curves of switched reluctance motors is very important for their design and performance evaluation. A test equipment for determination of magnetisation curves of switched reluctance motors is presented. This test equipment is based on a method of measurement of inductance by means of DC current proposed by C.V. Jones, in which a bridge arrangement is used in order to eliminate resistance effects. The main advantage of this setup is that it is an automatic system controlled by P.C., providing easy and user friendly presentation of test results and reducing measurement time and manual errors. Several switched reluctance motors with different structures have been tested using the proposed equipment, giving a good agreement with other experimental and numerical methods. (orig.)

  15. INFLUENCE OF BROKEN ROTOR BARS LOCATION IN THE SQUIRREL CAGE INDUCTION MOTOR USING FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    N. Halem

    2013-06-01

    Full Text Available It is well known that the number of broken bars and varying load affect on the amplitudes of specific harmonic components in the process analysis of induction motors under broken rotor bars. The location of broken bars is an important factor which affects the diagnosis of the broken bars defect. In this paper the simulation is determinate for different cases for distribution of broken bars under induction motor pole in order to show the impact of broken bars location upon the amplitude of harmonic fault. The simulation results are obtained by using time stepping finite elements (TSFE method. The geometrical characteristics of motor, the effects of slotting and the magnetic saturation of lamination core are included in induction motor model.

  16. INFLUENCE OF BROKEN ROTOR BARS LOCATION IN THE SQUIRREL CAGE INDUCTION MOTOR USING FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    N. Halem

    2015-07-01

    Full Text Available It is well known that the number of broken bars and varying load affect on the amplitudes of specific harmonic components  in the process analysis of induction motors under broken rotor bars. The location of broken bars is an important factor which affects the diagnosis of the broken bars defect. In this paper the simulation is determinate for different cases for distribution of broken bars under induction motor pole in order to show the impact of broken bars location upon the amplitude of harmonic fault. The simulation results are obtained by using time stepping finite elements (TSFE method. The geometrical characteristics of motor, the effects of slotting and the magnetic saturation of lamination core are included in induction motor model.

  17. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  18. Motor unit activity when young and old adults perform steady contractions while supporting an inertial load

    Science.gov (United States)

    Gould, Jeffrey R.; Enoka, Roger M.

    2013-01-01

    The purpose of the study was to compare the discharge characteristics of biceps brachii motor units of young and old adults when they performed steady, submaximal contractions while the arm supported different inertial loads. Young (28 ± 4 yr; n = 16) and old (75 ± 4 yr; n = 14) adults performed steady contractions with the elbow flexors at target forces set at either small (11.7 ± 4.4% maximum) or large (17.8 ± 6.5% maximum) differences below the recruitment threshold force of the motor unit (n = 40). The task was to maintain an elbow angle at 1.57 rad until the motor unit was recruited and discharged action potentials for ∼120 s. Time to recruitment was longer for the larger target force difference (187 ± 227 s vs. 23 ± 46 s, P recruited, motor units discharged action potentials either repetitively or intermittently, with a greater proportion of motor units exhibiting the repetitive pattern for old adults. Discharge rate at recruitment and during the steady contraction was similar for the two target force differences for old adults but was greater for the small target force difference for young adults. Discharge variability was similar at recruitment for the two age groups but less for the old adults during the steady contraction. The greatest difference between the present results and those reported previously when the arm pulled against a rigid restraint was that old adults modulated discharge rate less than young adults across the two contraction intensities for both load types. PMID:23221403

  19. Motor development profile in 9-11 year-old children from the municipal education system of Maceio, Alagoas State, presenting low school performance

    Directory of Open Access Journals (Sweden)

    Maria Natália Santos da Silva

    2014-04-01

    Full Text Available Introduction: Children may present motor development delays that can influence their learning process, hence the need for specific assessment for the early detection of such delays in an attempt to resolve or mitigate possible future damage. Objective: Profile of motor development in children aged 9-11 years old presenting low academic achievement in the municipal education system of Maceio, Alagoas state. Methodology: An exploratory, descriptive, transversal study which uses the Motor Development Scale (MDS to analyze the main components of performance. Evaluations were carried out with 43 children of both genders. Results: The children assessed presented motor profiles ranging from “normal” to “far below average”, corroborating the findings in the literature. Conclusions: The results obtained are in agreement with the literature, showing a close relation between motor development and low school performance, emphasizing the importance of psychomotor intervention for the maturation of more complex motor patterns.

  20. Acute exercise and motor memory consolidation: The role of exercise intensity and timing

    DEFF Research Database (Denmark)

    Thomas, Richard; Korsgaard Johnsen, Line; Geertsen, Svend Sparre

    2015-01-01

    Background A single bout of high intensity cycling (~90% VO2peak) immediately after motor skill training enhances motor memory consolidation. It is unclear how different parameters of exercise may influence this process and the underlying mechanisms are poorly understood. We hypothesize......) accompanying skill learning and exercise. Methods Sixty able-bodied male subjects (20-35 years) were randomly assigned to one of five groups that practiced a visuomotor accuracy task. 20 min post motor skill learning (MSL), subjects in Experiment A performed either a single bout of aerobic exercise at 45% (EX...... and baseline motor performance. Delayed retention tests of motor skill were tested 24 hours (R24) & 7 days (R7) post acquisition. Transcranial magnetic stimulation (TMS) was applied to the primary motor cortex to obtain measures of CSE, intracortical inhibition (SICI) and facilitation (SICF) before and after...

  1. Gender Differences in Musical Aptitude, Rhythmic Ability and Motor Performance in Preschool Children

    Science.gov (United States)

    Pollatou, Elisana; Karadimou, Konstantina; Gerodimos, Vasilios

    2005-01-01

    Most of the preschool curricula involve integrated movement activities that combine music, rhythm and locomotor skills. The purpose of the current study was to examine whether there are any differences between boys and girls at the age of five concerning their musical aptitude, rhythmic ability and performance in gross motor skills. Ninety-five…

  2. Chronic treadmill exercise in rats delicately alters the Purkinje cell structure to improve motor performance and toxin resistance in the cerebellum.

    Science.gov (United States)

    Huang, Tung-Yi; Lin, Lung-Sheng; Cho, Keng-Chi; Chen, Shean-Jen; Kuo, Yu-Min; Yu, Lung; Wu, Fong-Sen; Chuang, Jih-Ing; Chen, Hsiun-Ing; Jen, Chauying J

    2012-09-01

    Although exercise usually improves motor performance, the underlying cellular changes in the cerebellum remain to be elucidated. This study aimed to investigate whether and how chronic treadmill exercise in young rats induced Purkinje cell changes to improve motor performance and rendered the cerebellum less vulnerable to toxin insults. After 1-wk familiarization of treadmill running, 6-wk-old male Wistar rats were divided into exercise and sedentary groups. The exercise group was then subjected to 8 wk of exercise training at moderate intensity. The rotarod test was carried out to evaluate motor performance. Purkinje cells in cerebellar slices were visualized by lucifer yellow labeling in single neurons and by calbindin immunostaining in groups of neurons. Compared with sedentary control rats, exercised rats not only performed better in the rotarod task, but also showed finer Purkinje cell structure (higher dendritic volume and spine density with the same dendritic field). The exercise-improved cerebellar functions were further evaluated by monitoring the long-lasting effects of intraventricular application of OX7-saporin. In the sedentary group, OX7-saporin treatment retarded the rotarod performance and induced ∼60% Purkinje cell loss in 3 wk. As a comparison, the exercise group showed much milder injuries in the cerebellum by the same toxin treatment. In conclusion, exercise training in young rats increased the dendritic density of Purkinje cells, which might play an important role in improving the motor performance. Furthermore, as Purkinje cells in the exercise group were relatively toxin resistant, the exercised rats showed good motor performance, even under toxin-treated conditions.

  3. Theoretical and Experimental Research of Synchronous Reluctance Motor

    Science.gov (United States)

    Dobriyan, R.; Vitolina, S.; Lavrinovicha, L.; Dirba, J.

    2017-10-01

    The paper presents the research on evaluation of accuracy of magnetic field calculations of synchronous reluctance motor in comparison with the results obtained in experiments. Magnetic field calculations are performed with the finite element method to determine values of the magnetic flux and electromagnetic torque according to the current value in motor stator and load angle between the rotor direct-axis and axis of stator magnetomotive force (MMF). Experimental values of magnetic flux and electromagnetic torque are obtained on motor with locked rotor while equivalent direct current is applied to the stator windings. The research shows that the results obtained from the magnetic field calculations coincide well with the experimental data.

  4. Enhanced Component Performance Study: Motor-Driven Pumps 1998–2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This report presents an enhanced performance evaluation of motor-driven pumps at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The motor-driven pump failure modes considered for standby systems are failure to start, failure to run less than or equal to one hour, and failure to run more than one hour; for normally running systems, the failure modes considered are failure to start and failure to run. An eight hour unreliability estimate is also calculated and trended. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified in pump run hours per reactor year. Statistically significant decreasing trends were identified for standby systems industry-wide frequency of start demands, and run hours per reactor year for runs of less than or equal to one hour.

  5. Kontrol Kecepatan Motor Induksi menggunakan Algoritma Backpropagation Neural Network

    Directory of Open Access Journals (Sweden)

    MUHAMMAD RUSWANDI DJALAL

    2017-07-01

    Full Text Available ABSTRAKBanyak strategi kontrol berbasis kecerdasan buatan telah diusulkan dalam penelitian seperti Fuzzy Logic dan Artificial Neural Network (ANN. Tujuan dari penelitian ini adalah untuk mendesain sebuah kontrol agar kecepatan motor induksi dapat diatur sesuai kebutuhan serta membandingkan kinerja motor induksi tanpa kontrol dan dengan kontrol. Dalam penelitian ini diusulkan sebuah metode artificial neural network untuk mengontrol kecepatan motor induksi tiga fasa. Kecepatan referensi motor diatur pada kecepatan 140 rad/s, 150 rad/s, dan 130 rad/s. Perubahan kecepatan diatur pada setiap interval 0.3 detik dan waktu simulasi maksimum adalah 0,9 detik. Kasus 1 tanpa kontrol, menunjukkan respon torka dan kecepatan dari motor induksi tiga fasa tanpa kontrol. Meskipun kecepatan motor induksi tiga fasa diatur berubah pada setiap 0,3 detik tidak akan mempengaruhi torka. Selain itu, motor induksi tiga fasa tanpa kontrol memiliki kinerja yang buruk dikarenakan kecepatan motor induksi tidak dapat diatur sesuai dengan kebutuhan. Kasus 2 dengan control backpropagation neural network, meskipun kecepatan motor induksi tiga fasa berubah pada setiap 0.3 detik tidak akan mempengaruhi torsi. Selain itu, kontrol backpropagation neural network memiliki kinerja yang baik dikarenakan kecepatan motor induksi dapat diatur sesuai dengan kebutuhan.Kata kunci: Backpropagation Neural Network (BPNN, NN Training, NN Testing, Motor.ABSTRACTMany artificial intelligence-based control strategies have been proposed in research such as Fuzzy Logic and Artificial Neural Network (ANN. The purpose of this research was design a control for the induction motor speed that could be adjusted as needed and compare the performance of induction motor without control and with control. In this research, it was proposed an artificial neural network method to control the speed of three-phase induction motors. The reference speed of motor was set at the rate of 140 rad / s, 150 rad / s, and 130

  6. Two is better than one: Physical interactions improve motor performance in humans

    OpenAIRE

    G. Ganesh; A. Takagi; R. Osu; T. Yoshioka; M. Kawato; E. Burdet

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor...

  7. Influence of Methylphenidate on Motor Performance and Attention in Children with Developmental Coordination Disorder and Attention Deficit Hyperactive Disorder

    Science.gov (United States)

    Bart, Orit; Daniel, Liron; Dan, Orrie; Bar-Haim, Yair

    2013-01-01

    Individuals with attention deficit hyperactive disorder (ADHD) often have coexisting developmental coordination disorder (DCD). The positive therapeutic effect of methylphenidate on ADHD symptoms is well documented, but its effects on motor coordination are less studied. We assessed the influence of methylphenidate on motor performance in children…

  8. Artificial molecular motors

    NARCIS (Netherlands)

    Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A.

    2017-01-01

    Motor proteins are nature's solution for directing movement at the molecular level. The field of artificial molecular motors takes inspiration from these tiny but powerful machines. Although directional motion on the nanoscale performed by synthetic molecular machines is a relatively new

  9. An experimental paradigm to compare motor performance under laboratory and under everyday-like conditions.

    Science.gov (United States)

    Bock, Otmar; Hagemann, Anne

    2010-10-30

    Research findings on human motor skills may not necessarily hold in everyday life, since laboratory and everyday scenarios typically differ with respect to the subjects' attention to the skill, their motivation to perform at their best, the goals they try to achieve, and the mode of movement initiation - extrinsic versus intrinsic. Here we present an experimental approach which can be used to substantiate the hypothesized effects of laboratory (L) versus everyday (E) settings on one type of motor skill, i.e., manual prehension. This approach is based on two tasks: In task L, subjects are told that they will participate in an experiment on grasping, and are instructed to seize and move a lever upon appearance of a visual target. In task E, they are told that they will play a computer game, and they have to seize and move the lever in order to proceed from one game level to the next. Both tasks include prehension movements from the same starting position and object to the same terminal position and object; movements differ only in their behavioural context. We exemplify the utility of our approach with a preliminary analysis of kinematic and force data. It shows that the two tasks differ with respect to several performance measures, and that some performance measures make independent contributions to that difference. The existence of independent contributions suggests that behavioural context may influence prehension via several distinct routes. Our approach can be used for comprehensive analyses of the context-dependence of motor skills in various reference groups. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Resting‐state connectivity of pre‐motor cortex reflects disability in multiple sclerosis

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Siebner, Hartwig Roman; Soelberg Sørensen, P.

    2013-01-01

    Objective To characterize the relationship between motor resting-state connectivity of the dorsal pre-motor cortex (PMd) and clinical disability in patients with multiple sclerosis (MS). Materials and methods A total of 27 patients with relapsing–remitting MS (RR-MS) and 15 patients with secondary...... progressive MS (SP-MS) underwent functional resting-state magnetic resonance imaging. Clinical disability was assessed using the Expanded Disability Status Scale (EDSS). Independent component analysis was used to characterize motor resting-state connectivity. Multiple regression analysis was performed in SPM8...... between the individual expression of motor resting-state connectivity in PMd and EDSS scores including age as covariate. Separate post hoc analyses were performed for patients with RR-MS and SP-MS. Results The EDSS scores ranged from 0 to 7 with a median score of 4.3. Motor resting-state connectivity...

  11. Mental Representation and Motor Imagery Training

    Directory of Open Access Journals (Sweden)

    Thomas eSchack

    2014-05-01

    Full Text Available Research in sports, dance and rehabilitation has shown that Basic Action Concepts (BACs are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, SDA-M (structural dimensional analysis of mental representation, to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke.

  12. Effectiveness of the teaching of perceptual-motor practices and rhythmic movement on motor development in children with intellectual disability

    Directory of Open Access Journals (Sweden)

    Behrouz Ghorban Zadeh

    2015-10-01

    Full Text Available Objective: Fundamental motor skills are the foundation of special skills. The purpose of this study was to study the effectiveness of the teaching of perceptual-motor practices and rhythmic movement on motor development in children with intellectual disability. Materials & Methods: In this quasi-excremental study, 30 children aged 7 to 10 years old were selected through random cluster sampling method from elementary schools in Tabriz city. They were homogenized in two experimental groups (perceptual-motor practices and rhythmic movement and one control group based on their age and IQ. Programs were held in 9 weeks, two sessions per week, and each session was 45 minutes. Before beginning the training and at the end of the last session, pre-test and post-test were conducted. In order to assess motor development TGMD-2 test was used, and to analyze data covariance and bonferroni postdoc test were used. Results: The results showed that both perceptual-motor practices and rhythmic movement groups performed better in locomotors and object control skills than the control group (P&le 0.05 and there was no significant difference between these two groups  (P&ge0.05Perceptual-motor skills training group had a greater impact on the development of control object skills than rhythmic movement group. Program rhythmic movement group had a greater impact on the development of object control skills than the control group. Conclusion: According to the results, educational programs which are used can be as an appropriate experiencing motion for children. These programs can be used at schools to to provide suitable program and the opportunity for training and developing motor skills.

  13. Motor learning as a criterion for evaluating coordination motor abilities

    Directory of Open Access Journals (Sweden)

    Boraczynski Tomasz

    2011-10-01

    Full Text Available The aim of the study was to evaluate the ability of motor learning based on objective, metric criteria, in terms of pedagogical process aimed at improving the accuracy of hits a golf ball to the target. A group of 77 students of physical education participated in the study. Within 8 months there were performed 11 measurement sessions. In each session, subjects performed 10 hits a golf ball to the target from a distance of 9 m. Accuracy of hits was recorded. Effect of motor learning has been demonstrated in the progress of 10 consecutive hits a golf ball to the target in each session (operational control; in the dynamics of performance improvement between sessions (current control; as well as in the total result of eight-month experiment (stage control. There were developed norms for quantitative and qualitative assessment of accuracy of hits a golf ball to the target. Developed quantitative and qualitative criteria for assessing the speed of motor learning in various conditions of the educational process creates the possibility of organization the operational, current and stage control of the level of human coordination motor abilities, as required by leading process.

  14. How Kinesthetic Motor Imagery works: A predictive-processing theory of visualization in sports and motor expertise

    NARCIS (Netherlands)

    Ridderinkhof, K.R.; Brass, M.

    2015-01-01

    Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits

  15. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    Science.gov (United States)

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. H-Shaped Multiple Linear Motor Drive Platform Control System Design Based on an Inverse System Method

    Directory of Open Access Journals (Sweden)

    Caiyan Qin

    2017-12-01

    Full Text Available Due to its simple mechanical structure and high motion stability, the H-shaped platform has been increasingly widely used in precision measuring, numerical control machining and semiconductor packaging equipment, etc. The H-shaped platform is normally driven by multiple (three permanent magnet synchronous linear motors. The main challenges for H-shaped platform-control include synchronous control between the two linear motors in the Y direction as well as total positioning error of the platform mover, a combination of position deviation in X and Y directions. To deal with the above challenges, this paper proposes a control strategy based on the inverse system method through state feedback and dynamic decoupling of the thrust force. First, mechanical dynamics equations have been deduced through the analysis of system coupling based on the platform structure. Second, the mathematical model of the linear motors and the relevant coordinate transformation between dq-axis currents and ABC-phase currents are analyzed. Third, after the main concept of inverse system method being explained, the inverse system model of the platform control system has been designed after defining relevant system variables. Inverse system model compensates the original nonlinear coupled system into pseudo-linear decoupled linear system, for which typical linear control methods, like PID, can be adopted to control the system. The simulation model of the control system is built in MATLAB/Simulink and the simulation result shows that the designed control system has both small synchronous deviation and small total trajectory tracking error. Furthermore, the control program has been run on NI controller for both fixed-loop-time and free-loop-time modes, and the test result shows that the average loop computation time needed is rather small, which makes it suitable for real industrial applications. Overall, it proves that the proposed new control strategy can be used in

  17. Catch-slip bonds can be dispensable for motor force regulation during skeletal muscle contraction

    Science.gov (United States)

    Dong, Chenling; Chen, Bin

    2015-07-01

    It is intriguing how multiple molecular motors can perform coordinated and synchronous functions, which is essential in various cellular processes. Recent studies on skeletal muscle might have shed light on this issue, where rather precise motor force regulation was partly attributed to the specific stochastic features of a single attached myosin motor. Though attached motors can randomly detach from actin filaments either through an adenosine triphosphate (ATP) hydrolysis cycle or through "catch-slip bond" breaking, their respective contribution in motor force regulation has not been clarified. Here, through simulating a mechanical model of sarcomere with a coupled Monte Carlo method and finite element method, we find that the stochastic features of an ATP hydrolysis cycle can be sufficient while those of catch-slip bonds can be dispensable for motor force regulation.

  18. Relationships between academic performance, SES school type and perceptual-motor skills in first grade South African learners: NW-CHILD study

    NARCIS (Netherlands)

    Pienaar, A.E.; Barhorst, R.; Twisk, J.W.R.

    2014-01-01

    Background: Perceptual-motor skills contribute to a variety of basic learning skills associated with normal academic success. This study aimed to determine the relationship between academic performance and perceptual-motor skills in first grade South African learners and whether low SES

  19. Motor performance of individuals with cerebral palsy in a virtual game using a mobile phone.

    Science.gov (United States)

    de Paula, Juliana Nobre; de Mello Monteiro, Carlos Bandeira; da Silva, Talita Dias; Capelini, Camila Miliani; de Menezes, Lilian Del Cielo; Massetti, Thais; Tonks, James; Watson, Suzanna; Nicolai Ré, Alessandro Hervaldo

    2017-11-01

    Cerebral palsy (CP) is a permanent disorder of movement, muscle tone or posture that is caused by damage to the immature and developing brain. Research has shown that Virtual Reality (VR) technology can be used in rehabilitation to support the acquisition of motor skills and the achievement of functional tasks. The aim of this study was to explore for improvements in the performance of individuals with CP with practice in the use of a virtual game on a mobile phone and to compare their performance with that of the control group. Twenty-five individuals with CP were matched for age and sex with twenty-five, typically developing individuals. Participants were asked to complete a VR maze task as fast as possible on a mobile phone. All participants performed 20 repetitions in the acquisition phase, five repetitions for retention and five more repetitions for transfer tests, in order to evaluate motor learning from the task. The CP group improved their performance in the acquisition phase and maintained the performance, which was shown by the retention test; in addition, they were able to transfer the performance acquired in an opposite maze path. The CP group had longer task-execution compared to the control group for all phases of the study. Individuals with cerebral palsy were able to learn a virtual reality game (maze task) using a mobile phone, and despite their differences from the control group, this kind of device offers new possibilities for use to improve function. Implications for rehabilitation A virtual game on a mobile phone can enable individuals with Cerebral Palsy (CP) to improve performance. This illustrates the potential for use of mobile phone games to improve function. Individuals with CP had poorer performance than individuals without CP, but they demonstrated immediate improvements from using a mobile phone device. Individuals with CP were able to transfer their skills to a similar task indicating that they were able to learn these motor skills by

  20. The motor intervention as delays prevention factor in motor and cognitive development of infants during the hospital stay

    Directory of Open Access Journals (Sweden)

    arolina Panceri

    2017-09-01

    Full Text Available Introduction: Cognitive-motor tasks intervention is beneficial for the infant’s motor and cognitive development. These interventions in the hospital setting, have been widely studied in neonatal intensive care units, however, few studies evaluate child development within pediatric units. Objective: To evaluate the impact of cognitive-motor intervention in motor and cognitive development of infants hospitalized with respiratory diseases. Method: The research was characterized as quasi-experimental, 22 babies hospitalized in the pediatric unit for respiratory disease were divided into 2 groups (10 in the control group and 12 in the intervention group without significant differences in biological and socioeconomic data. The mean age was 5.50 months (SD ± 4.51, ranging between 1 and 16 months. Questionnaire was conducted with the infant’s parent/guardian for sample characterization. The Alberta Infant Motor Scale (AIMS and the Bayley Scales of Infant Development (BSID-III was used to evaluate motor e cognitive development. Data analysis was performed using descriptive statistics, Student’s t test, General Linear Model and One Way ANOVA. Results: The results show a significant interaction between group x time in motor and cognitive scores. When comparing the two times, the intervention group changed positively and significantly from pre- to post-intervention in motor and cognitive scores. The same was not observed for the control group. Conclusion: The results of this study suggest that the intervention during the hospital stay contributes positively to the motor and cognitive development.

  1. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  2. Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson's Disease.

    Science.gov (United States)

    Memedi, Mevludin; Sadikov, Aleksander; Groznik, Vida; Žabkar, Jure; Možina, Martin; Bergquist, Filip; Johansson, Anders; Haubenberger, Dietrich; Nyholm, Dag

    2015-09-17

    A challenge for the clinical management of advanced Parkinson's disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good

  3. An application of observer for position sensor less stepper motor drives

    International Nuclear Information System (INIS)

    Nor Arymaswati Abdullah; Salinda Buyamin; Glam Hadzir Patai Mohamad; Abu Bakar Ghazali

    2010-01-01

    A control method for stepper motor drives system can be made in open-loop circumstance which mean the system control did not require any feedback input signal in order to run the system. By applying the right sequences of pulses, the stepper motor capable to operate as other motion control. However, the performance of such system cannot be achieved to high level condition and demanded a feedback signal input to compensate the error produced while running the drive system. Therefore, a physical sensor or an encoder is placed in the motor system to obtain the feedback and form a close-loop system for error compensation. Nevertheless, the prices of these instruments are expensive, bulky and also may degrade the system performance. As a result this project presents a sensor less system in stepper motor drive system as an alternative to develop a close-loop system where the input signals are taken from voltage and current of the magnetic flux of the stepper motor. (author)

  4. Implicit motor sequence learning and working memory performance changes across the adult life span

    Directory of Open Access Journals (Sweden)

    Sarah Nadine Meissner

    2016-04-01

    Full Text Available Although implicit motor sequence learning is rather well understood in young adults, effects of aging on this kind of learning are controversial. There is first evidence that working memory (WM might play a role in implicit motor sequence learning in young adults as well as in adults above the age of 65. However the knowledge about the development of these processes across the adult life span is rather limited. As the average age of our population continues to rise, a better understanding of age-related changes in motor sequence learning and potentially mediating cognitive processes takes on increasing significance. Therefore, we investigated aging effects on implicit motor sequence learning and WM. Sixty adults (18-71 years completed verbal and visuospatial n-back tasks and were trained on a serial reaction time task. Randomly varying trials served as control condition. To further assess consolidation indicated by off-line improvement and reduced susceptibility to interference, reaction times (RTs were determined 1 h after initial learning. Young and older but not middle-aged adults showed motor sequence learning. Nine out of 20 older adults (compared to one young/one middle-aged exhibited some evidence of sequence awareness. After 1 h, young and middle-aged adults showed off-line improvement. However, RT facilitation was not specific to sequence trials. Importantly, susceptibility to interference was reduced in young and older adults indicating the occurrence of consolidation. Although WM performance declined in older participants when load was high, it was not significantly related to sequence learning. The data reveal a decline in motor sequence learning in middle-aged but not in older adults. The use of explicit learning strategies in older adults might account for the latter result.

  5. Practical Modeling and Comprehensive System Identification of a BLDC Motor

    Directory of Open Access Journals (Sweden)

    Changle Xiang

    2015-01-01

    Full Text Available The aim of this paper is to outline all the steps in a rigorous and simple procedure for system identification of BLDC motor. A practical mathematical model for identification is derived. Frequency domain identification techniques and time domain estimation method are combined to obtain the unknown parameters. The methods in time domain are founded on the least squares approximation method and a disturbance observer. Only the availability of experimental data for rotor speed and armature current are required for identification. The proposed identification method is systematically investigated, and the final identified model is validated by experimental results performed on a typical BLDC motor in UAV.

  6. Nonlinear analysis of field distribution in electric motor with periodicity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Stabrowski, M M; Sikora, J

    1981-01-01

    Numerical analysis of electromagnetic field distribution in linear motion tubular electric motor has been performed with the aid of finite element method. Two Fortran programmes for the solution of DBBF and BF large linear symmetric equation systems have been developed for purposes of this analysis. A new iterative algorithm, taking into account iron nonlinearity and periodicity conditions, has been introduced. Final results of the analysis in the form of induction diagrammes and motor driving force are directly useful for motor designers.

  7. Performance exploration of an energy harvester near the varying magnetic field of an operating induction motor

    International Nuclear Information System (INIS)

    Uzun, Yunus; Kurt, Erol

    2013-01-01

    Highlights: • This paper explores the piezoelectric harvester performance. • The varying magnetic field generates electricity via exciting harvester. • Generated power should be optimized via load resistance. • 0.11 mW/cm 3 Power can be generated from 500 cm 3 surrounding volume. - Abstract: This paper reports a performance exploration of a piezoelectric harvester which is positioned near an operating induction motor. The harvester includes a magnet knob in a pendulum arrangement, which ascertains mechanical vibrations under the varying magnetic field. This energy harvester transforms the ambient unused magnetic energy into the electricity due to the piezoelectric layer attached to the pendulum. It has been proven that when the motor is under operation, the varying ambient field causes a varying magnetic force at the tip of harvester, then output voltage between the terminals of piezoelectric layer is produced due to the mechanical vibrations. This output signal has some characteristics of the operating induction motor in terms of its operation frequency, number of magnetic pole and natural frequency of the harvester. Since the surrounding field of the induction motor directly depends on the current flowing through the windings and electrical parameters, both the amplitude U and the frequency ω m of the harvested voltage can be characterized after some certain parametrical explorations. It has been proven that the harvested voltage strictly depends on the electrical load, which is attached to the terminals of the harvester, after the rectifying circuit. The harvested power per surrounding volume can be increased up to 0.11 mW/cm 3 , if the entire surrounding volume of the motor is considered

  8. Analysis of Electric Propulsion Performance on Submersible with Motor DC, Supply Power 10260AH at Voltage 115VDC

    Directory of Open Access Journals (Sweden)

    Indra Ranu Kusuma

    2017-03-01

    Full Text Available Electric propulsion is the ship system using propulsion motor to replace performance of main engine. The application of diesel engine as propulsion system have some problems and weaknesses such as diesel engine unability to operate when submersible vessel is operating under sea. To overcome that problems in submersible vessel, alternative solution of ship propulsion is required. DC Motor can be used as this alternative solution. Submersible vessel use electric propulsion system with DC Motor because DC Motor has advantages of easy rotation setting and does not cause noise when submersible vessel is diving. This bachelor thesis will study the application of DC Motor as an electric propulsion system on submersible vessel with length 59,57 m in series and parallel circuit by simulation using MATLAB software. The simulation data obtained are rotation and torque of DC Motor. From these simulation, it can be concluded that parallel circuit rotation is greater than series circuit rotation. It caused the greater speed and lower power in parallel circuit. 

  9. MOTORIC STIMULATION RELATED TO FINE MOTORIC DEVELOPMENT ON CHILD

    Directory of Open Access Journals (Sweden)

    Mira Triharini

    2017-07-01

    Full Text Available Introduction: Motor developmental stimulation is an activity undertaken to stimulate the children basic skills and so they can grow and develop optimally. Children who obtain a direct stimulus will grow faster than who get less stimulus. Mother’s behavior of stimulation is very important for children, it is considering as the basic needs of children and it must be fulfilled. Providing good stimulation could optimize fine motor development in children. The purpose of this study was to analyze mother’s behavior about motor stimulation with fine motor development in toddler age 4-5 years old. Method: Design have been  used in this study was cross sectional. Population were mothers and their toddler in Group A of Dharma Wanita Persatuan Driyorejo Gresik Preschool. Sample were 51 respondents recruited by using purposive sampling technique according to inclusion and exclusion criteria. The independent variable was mother’s behavior about motor stimulation whereas dependent variable was fine motor development in toddler. The data were collected using questionnaire and conducting observation on fine motor development based on Denver Development Screening Test (DDST. Data then analyzed using Spearman Rho (r test to find relation between mother’s behaviors about stimulation motor on their toddler fine motor development. Result: Results  of this study showed that there were correlations between mother’s knowledge and fine motor development in toddler (p=0.000, between mother’s attitude and fine motor development in toddler (p=0.000, and between mother’s actions and fine motor development in toddler (p=0.000. Analysis: In sort study found that there were relation between fine motor development and mother’s behavior. Discussion: Therefore mother’s behavior needed to be improved. Further research about stimulation motor and fine motor development aspects in toddler is required.

  10. DEVELOPMENT OF FINE MOTOR COORDINATION AND VISUAL-MOTOR INTEGRATION IN PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Haris MEMISEVIC

    2013-03-01

    Full Text Available Fine motor skills are prerequisite for many everyday activities and they are a good predictor of a child's later academic outcome. The goal of the present study was to assess the effects of age on the development of fine motor coordination and visual-motor integration in preschool children. The sample for this study consisted of 276 preschool children from Canton Sara­jevo, Bosnia and Herzegovina. We assessed children's motor skills with Beery Visual Motor Integration Test and Lafayette Pegboard Test. Data were analyzed with one-way ANOVA, followed by planned com­parisons between the age groups. We also performed a regression analysis to assess the influence of age and motor coordination on visual-motor integration. The results showed that age has a great effect on the development of fine motor skills. Furthermore, the results indicated that there are possible sensitive periods at preschool age in which the development of fine motor skills is accelerated. Early intervention specialists should make a thorough evaluations of fine motor skills in preschool children and make motor (rehabilitation programs for children at risk of fine motor delays.

  11. Brief Overview of Motor Learning and It's Application to Rehabilitation: Part Ⅰ: Motor Learning Theory

    Institute of Scientific and Technical Information of China (English)

    Christopher A Zaino

    2003-01-01

    @@ 1 DEFINITION OF MOTOR LEARNING Motor learning is the study of how we acquire and modify movements.1 The acquisition of motor skills is the process of learning how to do a particular movement (performance), but the real key to therapeutic intervention is being able to affect permanent changes in motor skills via the process of motor learning. Therefore, motor learning is defined as the ability to retain the ability to perform a motor task at a later time. In rehabilitation, it is important to be cognizant of the concepts of acquisition and retention. We can facilitate acquisition,but do little to assist in the retention of the task (learning). Conversely, we can arrange practice such that acquisition is slowed, but we can actually be assisting learning the task. It is important to have a clear goal in mind and work towards the eventual learning of the task to allow full functional use of that skill.

  12. Piezoelectric Motors, an Overview

    OpenAIRE

    Karl Spanner; Burhanettin Koc

    2016-01-01

    Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ult...

  13. Simple Power Control for Sensorless Induction Motor Drives Fed by a Matrix Converter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Lee, Kyo Beum

    2008-01-01

    This paper presents a new and simple method for sensorless control of matrix converter drives using a power flowing to the motor. The proposed control algorithm is based on controlling the instantaneous real and imaginary powers into the induction motor. To improve low-speed sensorless performance...

  14. Longitudinal motor performance development in early adolescence and its relationship to adult success: An 8-year prospective study of highly talented soccer players.

    Science.gov (United States)

    Leyhr, Daniel; Kelava, Augustin; Raabe, Johannes; Höner, Oliver

    2018-01-01

    Several talent identification and development (TID) programs in soccer have implemented diagnostics to measure players' motor performance. Yet, there is a lack of research investigating the relationship between motor development in adolescence and future, adult performance. This longitudinal study analyzed the three-year development of highly talented young soccer players' speed abilities and technical skills and examined the relevance of this development to their adult success. The current research sample consisted of N = 1,134 players born between 1993 and 1995 who were selected for the German Soccer Association's TID program and participated in nationwide motor diagnostics (sprinting, agility, dribbling, ball control, shooting) four times between the Under 12 (U12) and Under 15 (U15) age class. Relative age (RA) was assessed for all players, and a total motor score was calculated based on performances in the individual tests. In order to investigate players' future success, participants were divided into two groups according to their adult performance level (APL) in the 2014/2015 season: Elite (1st-5th German division; N = 145, 12.8%) and non-elite players (lower divisions; N = 989, 87.2%). Using multilevel regression analyses each motor performance was predicted by Time, Time2 (level-1 predictors), APL, and RA (level-2 covariates) with simultaneous consideration for interaction effects between the respective variables. Time and Time2 were significant predictors for each test performance. A predictive value for RA was confirmed for sprinting and the total motor score. A significant relationship between APL and the motor score as well as between APL and agility, dribbling, ball control, and shooting emerged. Interaction effects distinctly failed to reach significance. The study found a non-linear improvement in players' performance for all considered motor performance factors over a three-year period from early to middle adolescence. While their predictive value

  15. Longitudinal motor performance development in early adolescence and its relationship to adult success: An 8-year prospective study of highly talented soccer players

    Science.gov (United States)

    Kelava, Augustin; Raabe, Johannes; Höner, Oliver

    2018-01-01

    Several talent identification and development (TID) programs in soccer have implemented diagnostics to measure players’ motor performance. Yet, there is a lack of research investigating the relationship between motor development in adolescence and future, adult performance. This longitudinal study analyzed the three-year development of highly talented young soccer players’ speed abilities and technical skills and examined the relevance of this development to their adult success. The current research sample consisted of N = 1,134 players born between 1993 and 1995 who were selected for the German Soccer Association’s TID program and participated in nationwide motor diagnostics (sprinting, agility, dribbling, ball control, shooting) four times between the Under 12 (U12) and Under 15 (U15) age class. Relative age (RA) was assessed for all players, and a total motor score was calculated based on performances in the individual tests. In order to investigate players’ future success, participants were divided into two groups according to their adult performance level (APL) in the 2014/2015 season: Elite (1st-5th German division; N = 145, 12.8%) and non-elite players (lower divisions; N = 989, 87.2%). Using multilevel regression analyses each motor performance was predicted by Time, Time2 (level-1 predictors), APL, and RA (level-2 covariates) with simultaneous consideration for interaction effects between the respective variables. Time and Time2 were significant predictors for each test performance. A predictive value for RA was confirmed for sprinting and the total motor score. A significant relationship between APL and the motor score as well as between APL and agility, dribbling, ball control, and shooting emerged. Interaction effects distinctly failed to reach significance. The study found a non-linear improvement in players’ performance for all considered motor performance factors over a three-year period from early to middle adolescence. While their

  16. Straight and chopped dc performance data for a General Electric 5BT 2366C10 motor and an EV-1 controller

    Science.gov (United States)

    Edie, P. C.

    1981-01-01

    Performance data on the General Electric 5BT 2366C10 series wound dc motor and EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data is provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing shows the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 86% and 87%, regardless of temperature or mode of operation. When the chopper is utilized, maximum motor efficiency occurs when the chopper duty cycle approaches 100%.

  17. Lithographic linear motor, lithographic apparatus, and device manufacturing method

    NARCIS (Netherlands)

    2006-01-01

    A linear motor having a high driving force, high efficiency and low normal force comprises two opposed magnet tracks and an armature comprising three open coil sets. The linear motor may be used to drive a stage, such as, for example, a mask or wafer stage, in a lithographic apparatus.

  18. Benefit on motor and non-motor behavior in a specialized unit for Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas; Öhm, Gabi; Eilert, Kathrin; Möhr, Katharina; Rotter, Stephanie; Haas, Thomas; Küchler, Matthias; Lütge, Sven; Marg, Marion; Rothe, Hartmut

    2017-06-01

    Treatment of patients with Parkinson's disease in specialized units is quite common in Germany. Data on the benefit of this hospitalization of patients with Parkinson's disease on motor and non-motor symptoms in conjunction with standardized tests are rare. Objective was to determine the efficacy of this therapeutic setting. We scored disease severity and performed clinical tests, respectively, instrumental procedures under standardized conditions in consecutively referred in-patients initially and at the end of their hospital stay. There was a decrease of motor and non-motor symptoms. The extent of improvement of non-motor and motor symptoms correlated to each other. Performance of complex movement sequences became better, whereas execution of simple movement series did not ameliorate. The interval for the timed up and go test went down. We demonstrate the effectiveness of an in-patient stay in a specialized unit for Parkinson's disease. Objective standardized testing supplements subjective clinical scoring with established rating scales.

  19. Thermal Performance of Motor and Inverter in an Integrated Starter Generator System for a Hybrid Electric Vehicle

    OpenAIRE

    Sung Chul Kim

    2013-01-01

    If the integrated starter generator (ISG) motor and inverter operate under continuously high loading conditions, the system’s performance and durability will decrease and the heat dissipation requirements will increase. Therefore, in this study, we developed two cooling designs for the ISG motor and inverter, and then carried out both a model analysis and an experiment on the fluid flow and thermal characteristics of the system under various operating conditions. As the outdoor temperature in...

  20. Deficits in vision and visual attention associated with motor performance of very preterm/very low birth weight children.

    Science.gov (United States)

    Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G

    2016-01-01

    To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.