WorldWideScience

Sample records for methanolic fraction dielectric

  1. Conversion of methane to methanol in an ac dielectric barrier discharge

    International Nuclear Information System (INIS)

    Aghamir, F M; Matin, N S; Jalili, A H; Esfarayeni, M H; Khodagholi, M A; Ahmadi, R

    2004-01-01

    A dielectric barrier discharge (DBD) has been used to investigate the conversion of methane to methanol and higher hydrocarbons in ac non-equilibrium plasmas. Experiments were carried out at atmospheric pressure and ambient temperature. A non-equilibrium plasma was generated in a DBD reactor by applying a high voltage to the reactor electrodes. Activation of methane molecules led to the production of C 2 hydrocarbons and methanol. The effect of the applied voltage, residence time and feed mixture such as helium and oxygen on the methane conversion and product selectivity was studied. Helium appears to have no effect on the conversion and selectivity at our applied voltages. The methane conversion increases significantly on introduction of oxygen in the feed stream. Inclusion of oxygen leads to the formation of methanol. Our results show that production of methanol is initiated around an applied voltage of 12 kV and the conversion of methane increases with increasing voltage and residence time, while the product selectivity is independent of the applied voltage

  2. Antioxidant Activities of Methanol Extract and Solvent Fractions of ...

    African Journals Online (AJOL)

    Purpose: To determine the antioxidant activity of methanol extract (ME) and solvent fractions of Avrainvillea erecta as well as their total phenolic and flavonoid contents. Methods: The antioxidant activities of ME as well as its chloroform, butanol, and aqueous fractions (CF, BF and WF, respectively) of A. erecta were ...

  3. Methanol fractionations of Catha edulis frosk (Celastraceae ...

    African Journals Online (AJOL)

    The study investigated the effect of methanol extract and its fractionations obtained from Yemeni khat on the smooth muscle isometric tension in Lewis rat aortal ring preparations and compared the effects of the crimson and green leaves. Khat leaves were sorted into green (khat Light; KL) and crimson (khat Dark; KD) leaves ...

  4. Modeling methanol transfer in the mesoporous catalyst for the methanol-to-olefins reaction by the time-fractional diffusion equation

    Science.gov (United States)

    Zhokh, Alexey A.; Strizhak, Peter E.

    2018-04-01

    The solutions of the time-fractional diffusion equation for the short and long times are obtained via an application of the asymptotic Green's functions. The derived solutions are applied to analysis of the methanol mass transfer through H-ZSM-5/alumina catalyst grain. It is demonstrated that the methanol transport in the catalysts pores may be described by the obtained solutions in a fairly good manner. The measured fractional exponent is equal to 1.20 ± 0.02 and reveals the super-diffusive regime of the methanol mass transfer. The presence of the anomalous transport may be caused by geometrical restrictions and the adsorption process on the internal surface of the catalyst grain's pores.

  5. Evaluating the ethyl-acetate fraction of crude methanol leaf extract of ...

    African Journals Online (AJOL)

    Ointment formulations of the ethyl acetate fraction of the crude methanol leaf extract of Ocimum gratissimum was in this study evaluated for wound healing activities in rat using the excision wound model. The air-dried and pulversied leaves were extracted with methanol in a Soxhlet extraction apparatus to obtain the ...

  6. Fractionation of deuterium and protium between water and methanol

    International Nuclear Information System (INIS)

    Rolston, J.H.; Gale, K.L.

    1984-01-01

    The overall deuterium-protium separation factor, α, between hydrogen gas and aqueous methanol mixtures has been measured over the full composition range at temperatures between 25 and 55 0 C. At each temperature α increases smoothly with increasing mole fraction of methanol but the values fall significantly below the straight line joining the separation factors for the methanol-hydrogen and water-hydrogen systems. The equilibrium constant, K 1 (1), for exchange of a deuterium atom tracer between the hydroxyl groups of methanol and liquid water, calculated from the values of α for each solution, is independent of composition within experimental error. The value of K 1 (1) at 25 0 C is 0.54 +/- 0.02, so that deuterium favors the methanol environment rather than water. The dependence of k 1 (1) on absolute temperature, T, is given by the expression 1n K 1 (1) = -0.776 + 52.6/T, which corresponds to a reaction enthalpy of -0.43 kJ mol -1 . 24 references, 2 figures, 2 tables

  7. Effect of Dielectric Properties of a Solvent-Water Mixture Used in Microwave-Assisted Extraction of Antioxidants from Potato Peels

    Directory of Open Access Journals (Sweden)

    Ashutosh Singh

    2014-02-01

    Full Text Available The dielectric properties of a methanol-water mixture were measured at different temperatures from 20 to 80 °C at two frequencies 915 MHz and 2450 MHz. These frequencies are most commonly used on industrial and domestic scales respectively. In this study, the dielectric properties of a methanol-water mixture were found to be dependent on temperature, solvent concentration, and presence of plant matrix. Linear and quadratic equations were developed to establish the dependency between factors. At 2450 MHz, the dielectric constant of methanol-water mixtures was significantly affected by concentration of methanol rather than by temperature, whereas the dielectric loss factor was significantly affected by temperature rather than by methanol concentration. Introduction of potato peel led to an increase in the effect of temperature on the dielectric properties of the methanol fractions. At 915 MHz, both the dielectric properties were significantly affected by the increase in temperature and solvent concentration, while the presence of potato peel had no significant effect on the dielectric properties. Statistical analysis of the dissipation factor at 915 and 2450 MHz revealed that both temperature and solvent concentration had a significant effect on it, whereas introduction of potato peels at 915 MHz reduced the effect of temperature as compared to 2450 MHz. The total phenolic yield of the microwave-assisted extraction process was significantly affected by the solvent concentration, the dissipation factor of the methanol-water mixture and the extraction time.

  8. Bio-guided fractionation of methanol extract of Ziziphus mauritiana Lam. (bark and effect of the most active fraction on cancer cell lines

    Directory of Open Access Journals (Sweden)

    Richard Simo Tagne

    2015-04-01

    Full Text Available Objective: To investigate the anticancer and antioxidant potential of methanol bark extract of Ziziphus mauritiana (Z. mauritiana, which is used by traditional healers to cure some cases of cancer in Cameroon. Methods: The methanol crude extract of Z. mauritiana has the antiproliferative activity on four cancer cell lines and its antioxidant activity. The extract was partitioned in five different solvents, and each fraction was tested. The effect of the most antiproliferative fraction on cell cycle was determined. Bio-guided fractionation was performed on the fraction with the highest antiproliferative and the highest antioxidant activities. Results: Z. mauritiana methanol extract was active on all tested cells, and showed promising antioxidant activity. All fractions except hexane fraction were active with the dichloromethane fraction being the most active and showed S and G2-M phase arrest (P<0.01 on cell cycle progression of NCI-H460 and MCF-7, respectively. Bio-guided fractionation of the dichloromethane fraction led to lupeol and betulinic acid. The greatest antioxidant activity was recorded with ethyl acetate fraction and its fractionation led to catechin and epigallocatechin. Conclusions: Overall, this study showed that Z. mauritiana barks has benefits as a chemoprevention agent cancer.

  9. Ab initio molecular dynamics study of temperature and pressure-dependent infrared dielectric functions of liquid methanol

    Directory of Open Access Journals (Sweden)

    C. C. Wang

    2017-03-01

    Full Text Available The temperature and pressure-dependent dielectric functions of liquids are of great importance to the thermal radiation transfer and the diagnosis and control of fuel combustion. In this work, we apply the state-of-the-art ab initio molecular dynamics (AIMD method to calculate the infrared dielectric functions of liquid methanol at 183–573 K and 0.1–160 MPa in the spectral range 10−4000 cm−1, and study the temperature and pressure effects on the dielectric functions. The AIMD approach is validated by the Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE experimental measurements at 298 K and 0.1 MPa, and the proposed IR-VASE method is verified by comparison with paper data of distilled water. The results of the AIMD approach agrees well with the experimental values of IR-VASE. The experimental and theoretical analyses indicate that the temperature and pressure exert a noticeable influence on the infrared dielectric functions of liquid methanol. As temperature increases, the average molecular dipole moment decreases. The amplitudes of dominant absorption peaks reduce to almost one half as temperature increases from 183 to 333 K at 0.1 MPa and from 273 to 573 K at 160 MPa. The absorption peaks below 1500 cm–1 show a redshift, while those centered around 3200 cm–1 show a blueshift. Moreover, larger average dipole moments are observed as pressure increases. The amplitudes of dominant absorption peaks increase to almost two times as pressure increases from 1 to 160 MPa at 373 K.

  10. Hypolipidemic activity of ethyl acetate fraction of methanolic seed ...

    African Journals Online (AJOL)

    Parts of Persea americana Mill are used for various ethnomedicinal purposes. The aqueous seed extract is used locally by herbalists for the treatment of hyperlipidemia. In this study, our objective was to investigate the possible hypolipidemic effect of ethyl acetate fraction (EAF) of the methanolic seed extract on olive oil- ...

  11. Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves.

    Science.gov (United States)

    Billah, Muhammad Mutassim; Islam, Rafikul; Khatun, Hajera; Parvin, Shahnaj; Islam, Ekramul; Islam, Sm Anisul; Mia, Akbar Ali

    2013-05-12

    Caesalpinia bonducella is an important medicinal plant for its traditional uses against different types of diseases. Therefore, the present study investigated the antimicrobial, antidiarrhoeal, and cytotoxic activities of the methanol extract and ethyl acetate, chloroform, and petroleum ether (pet. ether) fractions of C. bonducella leaves. The antibacterial potentialities of methanol extract and its fractions of C. bonducella leaves were investigated by the disc diffusion method against four gram-positive and five gram-negative bacteria at 300, 500 and 800 μg/disc. Kanamycin (30 μg/disc) was used as the standard drug. Antidiarrhoeal activities of leaf extracts were evaluated at two doses (200 and 400 mg/kg) and compared with loperamide in a castor oil-induced diarrhoeal model in rat. The fractions were subjected to a brine shrimp lethality test to evaluate their cytotoxicity. The methanol extract and other three fractions exhibited better activities at higher concentrations. Amongst, the chloroform fraction showed maximum activity at all three concentrations (300, 500, and 800 μg/disc) against almost all bacteria. S. aureus and P. aeruginosa showed better sensitivities to all extracts at all three concentrations excluding the pet. ether fraction. Bacillus megaterium and Klebsiella spp. were two bacteria amongst nine that showed lowest sensitivity to the extracts. Maximum zone of inhibition (25-mm) was obtained by the methanol extract at an 800 μg/disc concentration against S. aureus. In the antidiarrhoeal test, all fractions exhibited dose-dependent actions, which were statistically significant (p extract and its three fractions compared with the standard drug vincristine sulfate in the brine shrimp bioassay. In the present study, the LC50 values of the methanol crude extract and ethyl acetate, chloroform, pet. ether fractions and vincristine sulfate were 223.87, 281.84, 112.2, 199.53, and 12.59 μg/mL, respectively. Therefore, the ethyl acetate fraction

  12. Analgesic and Antipyretic Activities of Methanol Extract and Its Fraction from the Root of Schoenoplectus grossus

    Directory of Open Access Journals (Sweden)

    Nirmal Kumar Subedi

    2016-01-01

    Full Text Available The study aims to evaluate analgesic and antipyretic activities of the methanol extract and its different fractions from root of Schoenoplectus grossus using acetic acid induced writhing and radiant heat tail flick method of pain models in mice and yeast induced pyrexia in rats at the doses of 400 and 200 mg/kg. In acetic acid writhing test, the methanol extract, petroleum ether, and carbon tetrachloride fractions produced significant (P<0.001 and P<0.05 inhibition of writhing responses in dose dependent manner. The methanol extract at 400 and 200 mg/kg being more protective with 54% and 45.45% of inhibition compared to diclofenac sodium of 56% followed by petroleum ether fractions of 49.69% and 39.39% at the same doses. The extracts did not produce any significant antinociceptive activity in tail flick test except standard morphine. When studied on yeast induced pyrexia, methanol and petroleum ether fractions significantly lowered the rectal temperature time dependently in a manner similar to standard drug paracetamol and distinctly more significant (P<0.001 after second hour. These findings suggest that the root extracts of S. grossus possess significant peripherally acting analgesic potential and antipyretic property. The phytochemical screening showed the presence of flavonoids, alkaloids, and tannins.

  13. Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves

    OpenAIRE

    Billah, Muhammad Mutassim; Islam, Rafikul; Khatun, Hajera; Parvin, Shahnaj; Islam, Ekramul; Islam, SM Anisul; Mia, Akbar Ali

    2013-01-01

    Background Caesalpinia bonducella is an important medicinal plant for its traditional uses against different types of diseases. Therefore, the present study investigated the antimicrobial, antidiarrhoeal, and cytotoxic activities of the methanol extract and ethyl acetate, chloroform, and petroleum ether (pet. ether) fractions of C. bonducella leaves. Methods The antibacterial potentialities of methanol extract and its fractions of C. bonducella leaves were investigated by the disc diffusion m...

  14. In vitro antioxidant and, α-glucosidase inhibitory activities and comprehensive metabolite profiling of methanol extract and its fractions from Clinacanthus nutans.

    Science.gov (United States)

    Alam, Md Ariful; Zaidul, I S M; Ghafoor, Kashif; Sahena, F; Hakim, M A; Rafii, M Y; Abir, H M; Bostanudin, M F; Perumal, V; Khatib, A

    2017-03-31

    This study was aimed to evaluate antioxidant and α-glucosidase inhibitory activity, with a subsequent analysis of total phenolic and total flavonoid content of methanol extract and its derived fractions from Clinacanthus nutans accompanied by comprehensive phytochemical profiling. Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS). The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p < 0.05) impact on DPPH free radical scavenging and α-glucosidase inhibitory activity. Current results proposed the therapeutic potential of Clinacanthus nutans, especially ethyl acetate and butanol fraction as chemotherapeutic agent against oxidative related cellular damages and control the

  15. Cytotoxicity and genotoxicity of Agaricus blazei methanolic extract fractions assessed using gene and chromosomal mutation assays

    Directory of Open Access Journals (Sweden)

    Marilanda Ferreira Bellini

    2008-01-01

    Full Text Available Functional food investigations have demonstrated the presence of substances that could be beneficial to human health when consumed. However, the toxic effects of some substances contained in foods have been determined. Reported medicinal and nutritive properties have led to the extensive commercialization of the basidiomycete fungi Agaricus blazei Murrill (sensu Heinemann, also known as Agaricus brasiliensis Wasser et al., Agaricus subrufescens Peck or the Brazilian medical mushroom (BMM. Different methanolic extract fractions (ME of this mushroom were submitted to the cytokinesis-block micronucleus (CBMN clastogenic assay and the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT assay for gene mutation, both using Chinese hamster ovary cells clone K1 (CHO-K1. The results suggest that all the fractions tested possess cytotoxic and mutagenic potential but no clastogenic effects. Further information is needed on the biochemical components of the A. blazei methanol fractions to identify any substances with cytotoxic and/or mutagenicity potential. These findings indicate that A. blazei methanolic extract should not be used due to their genotoxicity and care should be taken in the use of A. blazei by the general population until further biochemical characterization of this fungi is completed.

  16. In vitro anthelmintic activity and chemical composition of methanol extracts and fractions of Croton paraguayensis and Vernonia brasiliana against Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Andrea Leticia Cáceres

    2017-02-01

    Full Text Available Objective: To evaluate the chemical composition and the anthelmintic activity of the methanol extracts and the acid and basic fractions of Croton paraguayensis (C. paraguayensis and Vernonia brasiliana (V. brasiliana against Eisenia fetida. Methods: A preliminary phytochemical analysis was performed to assess the presence of groups of secondary metabolites. The plants were extracted with methanol to obtain the crude extracts. A differential pH extraction was performed to isolate basic compounds like alkaloids. The methanolic extracts and the fractions obtained were tested for anthelmintic activity against Eisenia fetida, using albendazole as positive control. Results: The phytochemical test demonstrated the presence of alkaloids in the crude extracts and alkaline fractions, along with flavonoids, coumarins, steroids/triterpenes and tannins. The anthelmintic activity of the extracts and fractions of C. paraguayensis and V. brasiliana showed a statistically significant decrease of the times for paralysis and death compared to albendazole. Conclusions: The methanolic extracts and fractions of C. paraguayensis and V. brasiliana contain compounds that possess anthelmintic activity. The isolation of the substances responsible for the biological effect described could result in the development of new drugs to treat helminth diseases.

  17. Formaldehyde, methanol and hydrocarbon emissions from methanol-fueled cars

    International Nuclear Information System (INIS)

    Williams, R.L.; Lipari, F.; Potter, R.A.

    1990-01-01

    Exhaust and evaporative emissions tests were conducted on several methanol- and gasoline-fueled vehicles. Separate samples for chromatographic analysis of formaldehyde, methanol, and individual hydrocarbons were collected in each of the three phases of the driving cycle and in each of the two portions of the evaporative emissions test. One vehicle, equipped with an experimental variable-fuel engine, was tested using methanol/gasoline fuel mixtures of 100, 85, 50, 15, and 0 percent methanol. Combustion-generated hydrocarbons were lowest using methanol fuel, and increased several-fold as the gasoline fraction was increased. Gasoline components in the exhaust increased from zero as the gasoline fraction of the fuel was increased. On the other hand, formaldehyde emissions were several times higher using methanol fuel than they were using gasoline. A dedicated methanol car and the variable-fuel car gave similar emissions patterns when they both were tested using methanol fuel. The organic-carbon composition of the exhaust was 85-90 percent methanol, 5-7 percent formaldehyde, and 3-9 percent hydrocarbons. Several cars that were tested using gasoline emitted similar distributions of hydrocarbons, even through the vehicles represented a broad range of current and developmental engine families and emissions control systems

  18. Cardiovascular activity of the n-butanol fraction of the methanol extract of Loranthus ferrugineus Roxb.

    Directory of Open Access Journals (Sweden)

    O.Z. Ameer

    2010-02-01

    Full Text Available We investigated the vascular responses and the blood pressure reducing effects of different fractions obtained from the methanol extract of Loranthus ferrugineus Roxb. (F. Loranthaceae. By means of solvent-solvent extraction, L. ferrugineus methanol extract (LFME was successively fractionated with chloroform, ethyl acetate and n-butanol. The ability of these LFME fractions to relax vascular smooth muscle against phenylephrine (PE- and KCl-induced contractions in isolated rat aortic rings was determined. In another set of experiments, LFME fractions were tested for blood pressure lowering activity in anesthetized adult male Sprague-Dawley rats (250-300 g, 14-18 weeks. The n-butanol fraction of LFME (NBF-LFME produced a significant concentration-dependent inhibition of PE- and KCl-induced aortic ring contractions compared to other fractions. Moreover, NBF-LFME had a significantly higher relaxant effect against PE- than against high K+-induced contractions. In anesthetized Sprague-Dawley rats, NBF-LFME significantly lowered blood pressure in a dose-dependent manner and with a relatively longer duration of action compared to the other fractions. HPLC, UV and IR spectra suggested the presence of terpenoid constituents in both LFME and NBF-LFME. Accordingly, we conclude that NBF-LFME is the most potent fraction producing a concentration-dependent relaxation in vascular smooth muscle in vitro and a dose-dependent blood pressure lowering activity in vivo. The cardiovascular effects of NBF-LFME are most likely attributable to its terpenoid content.

  19. PURIFICATION AND FRACTIONAL ANALYSIS OF METHANOLIC EXTRACT OF WEDELIA TRILOBATA POSSESSING APOPTOTIC AND ANTI-LEUKEMIC ACTIVITY

    Science.gov (United States)

    Venkatesh, Uday; Javarasetty, Chethan; Murari, Satish Kumar

    2017-01-01

    Background: Wedelia trilobata (L.) Hitch (WT), commonly known as yellow dots or creeping daisy, is a shrub possessing potent biological activities, and is traditionally used a medicinal plant in Ayurveda, Siddha and Unani systems of medicines, and it has also been tried against leukemia cell line MEG- 01. In the present study, purification and screening of the plant was done for bioactive compounds in methanolic extract of WT for apoptotic and anti-leukemia activity. Materials and methods: The methanolic extract of WT was initially purified through thin layer chromatography (TLC) and screened for the apoptotic and anti-leukemia activities. The positive band of TLC was subjected to silica gel column chromatography for further purification and the fractions obtained from it were screened again for anti-leukemia activity through thymidine uptake assay and apoptotic activity by DNA fragmentation, nuclear staining and flow cytometry assays. The fraction with positive result was subjected to HPLC for analysis of bioactive components. Results: Out of many combinations of solvents, the methanol and dichloromethane combination in the ratio 6:4 has revealed two bands in TLC, among which the second band showed positive results for apoptotic and anti-leukemic activities. Further purification of second band through silica gel chromatography gave five fractions in which the 3rd fraction gave positive results and it shows single peak during compositional analysis through HPLC. Conclusion: The single peak revealed through HPLC indicates the presence of pure compound with apoptotic and anti-leukemia activities encouraging for further structural analysis. PMID:28480428

  20. Suppression of thermal and chemical nociception in rats by methanol extract and its sub-fraction from lantana camara

    International Nuclear Information System (INIS)

    Simjee, S.U.; Perveen, H.; Zehra, S.Q.

    2016-01-01

    The traditional use of Lantana camara (Verbenaceae) is reported to include anti-nociceptive, antimicrobial, and immunosuppressant activity. To our knowledge no systematic study has been carried out on the anti-nociceptive activity of L. camara. The present study was designed to delineate the analgesic activity of L. camara extract and its fractions to elucidate the traditional belief in the painkilling effects. Experimental models employed were thermal and chemical-induced nociception assays. After initial screening of the methanol extract and its fractions prepared from the aerial parts of the plant, the dose of 50,100 and 200 mg/kg were selected and route of administration was i.p. The test samples were tested against a reference drug indomethacine (i.p. 5 mg/kg). The observations were made at 15, 30, 60, and 120 seconds following the administration of the samples or reference drug. Experiments on naloxone antagonism were conducted to determine involvement of opioid receptors. Compared to concurrent controls, a significant anti-nociceptive activity was observed in methanol extract LC (ED50 50 mg/kg, P < 0.002) and its sub-fractions LCEA-AQ (ED50 50 mg/kg, P < 0.004), LCEA (ED50 100 mg/kg, P < 0.004) and LCEA-PEI (ED50 100 mg/kg, P < 0.005). No apparent acute toxicity was observed in any test groups. The anti-nociceptive activity was not precipitated by naloxone antagonism indicating that these fractions do not act through opioid receptors. The methanol extract and active fractions of Lantana camara possess anti-nociceptive activity. Further investigations are needed to elucidate the mechanism of its action. (author)

  1. A Four-Site Molecular Model for Simulations of Liquid Methanol and Water-Methanol Mixtures: MeOH-4P.

    Science.gov (United States)

    Martínez-Jiménez, Manuel; Saint-Martin, Humberto

    2018-04-17

    In this work, we present a new four-site potential for methanol, MeOH-4P, fitted to reproduce the dielectric constant ε, the surface tension γ s , and the liquid density ρ of the pure liquid at T = 298.15 K and p = 1 bar. The partial charges on each site were taken from the OPLS/2016 model with the only difference of putting the negative charge on the fourth site ( M) instead of on the O atom, as done in four-site water models. The original Lennard-Jones (LJ) parameters of OPLS/2016 for the methyl moiety (Me) were modified for the fitting of ρ and γ s , whereas the parameters of the TIP4P-FB water model were used for the O atom without change. Taking into account the energetic cost of the enhanced dipole relative to the isolated molecule, the results from simulations with this model showed good agreement with experiments for ρ, α p , κ T , C p , and Δ H v- l . Also, the temperature dependence of γ s and ε is satisfactory in the interval between 260 and 360 K, and the critical point description is similar to that of OPLS/2016. It is shown that orientational correlations, described by the Kirkwood factor G k , play a prominent role in the appropriate description of dielectric constants in existing models; unfortunately, the enhancement of the dipole moment produced a low diffusion coefficient D MeOH ; thus, a compromise was required between a good reproduction of ε and an acceptable D MeOH . The use of a fourth site resulted in a significant improvement for water-methanol mixtures described with TIP4P-FB and MeOH-4P, respectively, but required the modification of the LJ geometric combination rule to allow a good description of the methanol molar-fraction dependence of ρ, ε, and methanol (water) diffusion coefficients D MeOH ( D H 2 O ) and excess volume of mixing Δ V mix in the entire range of composition. The resulting free energy of hydration Δ G hyd shows excellent agreement with experiments in the interval between 280 and 360 K.

  2. Phase behaviour of heavy petroleum fractions in pure propane and n-butane and with methanol as co-solvent

    International Nuclear Information System (INIS)

    Canziani, D.; Ndiaye, P.M.; Franceschi, Elton; Corazza, Marcos L.; Vladimir Oliveira, J.

    2009-01-01

    This work reports phase equilibrium experimental results for heavy petroleum fractions in pure propane and n-butane as primary solvents and using methanol as co-solvent. Three kinds of oils were investigated from Marlim petroleum: a relatively light fraction coming from the first distillation of crude petroleum at atmospheric pressure (GOP - heavy gas oil of petroleum), the residue of such distillation (RAT) and the crude petroleum sample. Phase equilibrium measurements were performed in a high-pressure, variable-volume view cell, following the static synthetic method, over the temperature range of 323 K to 393 K, pressures up to 10 MPa and overall compositions of heavy component varying from 1 wt% to 40 wt%. Transition pressures for low methanol and oil concentrations were very close for GOP, RAT, and crude Marlim when using propane as the primary solvent. Close to propane critical temperature, two and three-phase transitions were observed for GOP and Marlim when methanol was increased. When n-butane was used as primary solvent, all transitions observed were of (vapour + liquid) type with transition pressure values smaller than those obtained for propane.

  3. The (p, ρ, T) of (methanol + benzene) and (methanol + ethylbenzene)

    International Nuclear Information System (INIS)

    Naziev, Yashar M.; Shahverdiyev, Astan N.; Hasanov, Vaqif H.

    2005-01-01

    The (p, ρ, T) of methanol, ethylbenzene and (methanol + benzene) and (methanol + ethylbenzene) at temperatures between (290 and 500) K and pressures in the range (0.1 to 60) MPa have been measured with a magnetic suspension densimeter with an uncertainty of ±0.1%. Our measurements with methanol deviate from the literature values by less than 0.2%. The (p, ρ, T) measurements were fitted with experimental uncertainties by an empirical equation. The temperature and mole fraction dependence of the coefficients of the equation of state are presented

  4. Thermosetting resins with high fractions of free volume and inherently low dielectric constants.

    Science.gov (United States)

    Lin, Liang-Kai; Hu, Chien-Chieh; Su, Wen-Chiung; Liu, Ying-Ling

    2015-08-18

    This work demonstrates a new class of thermosetting resins, based on Meldrum's acid (MA) derivatives, which have high fractions of free volume and inherently low k values of about 2.0 at 1 MHz. Thermal decomposition of the MA groups evolves CO2 and acetone to create air-trapped cavities so as to reduce the dielectric constants.

  5. nduced hyperlipidemic rats. Methods: Column chromatographic fractionation of butanol fraction of total methanol extract of leaves of Bauhinia variegata (Linn. yields four sub-fractions (sub-fraction A-D. All sub-fractions tested for their anti-hyperlipidemic activity. Sub-fractions administered at a dose of 65 mg/kg (oral to the Triton WR-1339 induced hyperlipidemic rats and total cholesterol, triglycerides, HDL, LDL and VLDL

    Directory of Open Access Journals (Sweden)

    Deepak Kumar

    2012-10-01

    Full Text Available Objective: To investigate the effect and evaluation of Anti-hyperlipidemic activity guided subfraction isolated from total methanolic extract of Bauhinia variegata (Linn. leaves on Triton WR-1339 induced hyperlipidemic rats. Methods: Column chromatographic fractionation of butanol fraction of total methanol extract of leaves of Bauhinia variegata (Linn. yields four subfractions (sub-fraction A-D. All sub-fractions tested for their anti-hyperlipidemic activity. Subfractions administered at a dose of 65 mg/kg (oral to the Triton WR-1339 induced hyperlipidemic rats and total cholesterol, triglycerides, HDL, LDL and VLDL level in the blood were checked. Results: Sub-fraction D showed significant reduction (P<0.05 among four sub-fraction in comparison with standard drug fenofibrate. Conclusions: From the above study it could be concluded that butanol sub-fraction D of Bauhinia variegata (Linn. not only have resulted in significant reduction in cholesterol, triglyceride, LDL, VLDL level but also increases the HDL level at a reduced dose level.

  6. Methanol fractionations of Catha edulis Frosk (Celastraceae) contracted Lewis rat aorta in vitro: a comparison between crimson and green leaves.

    Science.gov (United States)

    Mahmood, Samira Abdulla; Pavlovic, Dragan; Hoffmann, Ulrich

    2009-05-07

    The study investigated the effect of methanol extract and its fractionations obtained from Yemeni khat on the smooth muscle isometric tension in Lewis rat aortal ring preparations and compared the effects of the crimson and green leaves. Khat leaves were sorted into green (khat Light; KL) and crimson (khat Dark; KD) leaves, extracted with methanol, followed with solvent-solvent extraction (benzene, chloroform and ethylacetate). The contractile activity of the fractions was tested using aortal ring preparations. The control (phenylepherine contraction) methanol extracts contracted aortas at concentrations 250, 125 and 67.5 microg/ml buffer by 80.2%, 57.3%, 26.4% and 81.5%, 65.6%, 24.6% for KL and KD, respectively. Fractions of benzene (BF) and ethylacetate (EaF) contracted the aorta with 2 microgm, whereas, chloroform (ChF) with 1 microgm/1 ml buffer was less potent. The shape of contraction curve produced by EaF differed from that of ChF and BF of both (KL and KD). The EaF induced-contraction peaked after 3.3 +/- 0.94 mins, whereas those of BF and CHF peaked after 18.0 +/- 2.2, 19.7 +/- 0.94 mins, respectively. Pre-incubation with nifedipine (10(-6) M) insignificantly reduced the contraction induced by all fractionations, but prazosin (10(-6) M) reduced the contraction by 81.9%, 63.1%, 71.8% with p = 0.23, 0.09, 0.15 for BF, ChF and EaF of KL, respectively. It significantly reduced contraction of ChF, 64.1%; p = 0.02, and of EaF, 73.5%; p = 0.04 of KD, while the reduction in contraction of BF was 63.1%; p = 0.06. In conclusion, fractions of green and crimson Yemeni khat leaves contracted aortas of Lewis rats. Both leaves behave almost similarly. Contraction induced by chloroform fraction produced alpha-sympathetic activity.

  7. The first experimental confirmation of the fractional kinetics containing the complex-power-law exponents: Dielectric measurements of polymerization reactions

    Science.gov (United States)

    Nigmatullin, R. R.; Arbuzov, A. A.; Salehli, F.; Giz, A.; Bayrak, I.; Catalgil-Giz, H.

    2007-01-01

    For the first time we achieved incontestable evidence that the real process of dielectric relaxation during the polymerization reaction of polyvinylpyrrolidone (PVP) is described in terms of the fractional kinetic equations containing complex-power-law exponents. The possibility of the existence of the fractional kinetics containing non-integer complex-power-law exponents follows from the general theory of dielectric relaxation that has been suggested recently by one of the authors (R.R.N). Based on the physical/geometrical meaning of the fractional integral with complex exponents there is a possibility to develop a general theory of dielectric relaxation based on the self-similar (fractal) character of the reduced (averaged) microprocesses that take place in the mesoscale region. This theory contains some essential predictions related to existence of the non-integer power-law kinetics and the results of this paper can be considered as the first confirmation of existence of the kinetic phenomena that are described by fractional derivatives with complex-power-law exponents. We want to stress here that with the help of a new complex fitting function for the complex permittivity it becomes possible to describe the whole process for real and imaginary parts simultaneously throughout the admissible frequency range (30 Hz-13 MHz). The fitting parameters obtained for the complex permittivity function for three temperatures (70, 90 and 110 °C) confirm in general the picture of reaction that was known qualitatively before. They also reveal some new features, which improve the interpretation of the whole polymerization process. We hope that these first results obtained in the paper will serve as a good stimulus for other researches to find the traces of the existence of new fractional kinetics in other relaxation processes unrelated to the dielectric relaxation. These results should lead to the reconsideration and generalization of irreversibility and kinetic phenomena that

  8. Four new depsides in Origanum dictamnus methanol extract

    NARCIS (Netherlands)

    Exarchou, V.; Takis, P.G.; Malouta, M.; Vervoort, J.; Karali, E.; Troganis, A.N.

    2013-01-01

    We herein describe the identification of four new depsides present in methanol extract of Origanum dictamnus. O. dictamnus’ (dittany) aerial parts methanol extract was subjected to semi-preparative RP-HPLC fractionation followed by identification of individual compounds in each fraction using 1D/2D

  9. Antioxidant, antimicrobial, cytotoxic studies of methanolic extract, fractions and essential oil of curry patta (chalcas koeingii) from pakistan

    International Nuclear Information System (INIS)

    Bokhari, T.; Hussain, M.; Zubair, M.; Hina, S.

    2013-01-01

    The present study was carried out to examine the antioxidant antimicrobial activities and cytotoxicity of methanolic extract and essential oil of Chalcas koeingii leaves. The ground leaves were extracted with absolute methanol and further fractionated by solvent-solvent extraction method with increasing polarity based absolute solvents i.e. n-hexane, chloroform, ethyl acetate and n-butanol. The Chalcas koeingii leaves extract and fractions contained appreciable levels of total phenolic contents (99.82 -1750.23 CE, mg/100g) and total flavonoid contents (70.23 -1159.23 GAE, mg/100g). The GC-MS analysis of Chalcas koeingii essential oil revealed the presence of 19 compounds, with 3,7,11,15-tetramethyl-2-hexadecane(19.76 %), Crocetane (13.28 %), Benzene,1,1-(thiobis(methylene))bis(4-chloro (12.77 %), 2-chloro-1,2-diphenylethanone (9.24 %), Hexatriacontane (6.99 %) as the major components. Chalcas koeingii leaves extracts also exhibited good DPPH radical scavenging activity, showing IC50 ranged from 17.37-84.23 microg/mL and % inhibition linoleic acid peroxidation 37.23-91.09 respectively. The results of the present study demonstrated significant (p<0.05) variations in the antioxidant activities of Chalcas koeingii leaves essential oil, extract and fractions. (author)

  10. Integrated methanol synthesis

    International Nuclear Information System (INIS)

    Jaeger, W.

    1982-01-01

    This invention concerns a plant for methanol manufacture from gasified coal, particularly using nuclear power. In order to reduce the cost of the hydrogen circuits, the methanol synthesis is integrated in the coal gasification plant. The coal used is gasified with hydration by means of hydrogen and the crude gas emerging, after cooling and separating the carbon dioxide and hydrogen sulphide, is mixed with the synthetic gas leaving the methane cracking furnace. This mixture is taken to the methanol synthesis and more than 90% is converted into methanol in one pass. The gas mixture remaning after condensation and separation of methanol is decomposed into three fractions in low temperature gas decomposition with a high proportion of unconverted carbon monoxide. The flow of methane is taken to the cracking furnace with steam, the flow of hydrogen is taken to the hydrating coal gasifier, and the flow of carbon monoxide is taken to the methanol synthesis. The heat required for cracking the methane can either be provided by a nuclear reactor or by the coke left after hydrating gasification. (orig./RB) [de

  11. Thermodynamics of R-(+)-2-(4-Hydroxyphenoxy)propanoic Acid Dissolution in Methanol, Ethanol, and Methanol-Ethanol Mixture

    Science.gov (United States)

    Liu, Wei; Ma, Jinju; Yao, Xinding; Fang, Ruina; Cheng, Liang

    2018-05-01

    The solubilities of R-(+)-2-(4-hydroxyphenoxy)propanoic acid (D-HPPA) in methanol, ethanol and various methanol-ethanol mixtures are determined in the temperature range from 273.15 to 323.15 K at atmospheric pressure using a laser detecting system. The solubilities of D-HPPA increase with increasing mole fraction of ethanol in the methanol-ethanol mixtures. Experimental data were correlated with Buchowski-Ksiazczak λ h equation and modified Apelblat equation; the first one gives better approximation for the experimental results. The enthalpy, entropy and Gibbs free energy of D-HPPA dissolution in methanol, ethanol and methanol-ethanol mixtures were also calculated from the solubility data.

  12. Antinociceptive and antipyretic activities of extracts and fractions from Dracaena loureiri in experimental animals

    Directory of Open Access Journals (Sweden)

    Pisit Bouking

    2003-07-01

    Full Text Available Dried coarsely powdered material from the stem woods of Dracaena loureiri Gagnep (D loureiri has extracted with hexane and methanol to give hexane and methanol extracts, respectively. The methanol extract was roughly separated into four fractions. They were methanol, methanol + water, chloroform and ethyl acetate fractions. The effects of the methanol extract, hexane extract, methanol fraction, methanol + water fraction, ethyl acetate fraction and chloroform fraction on nociceptive response using writhing, hot plate and formalin tests in mice and the antipyretic activity in yeast-induced fever in rats, were examined. General behavior was also examined using pentobarbital-induced sleep in mice. The LD5 0 value of intraperitoneally injected the methanol extract, hexane extract, methanol fraction, ethyl acetate fraction and chloroform fraction in mice was 1.67 g/kg, >7 g/kg, 739.73 mg/kg, 489.77 mg/kg and 1.67 g/kg, respectively. Oral administration of the methanol extract and methanol fraction of D. loureiri (100-400 mg/kg dose de- pendently decreased the number of writhings and stretchings induced by acetic acid and licking activity of the late phase in the formalin test. All extracts or fractions of D. loureiri had no effects on heat-induced pain in mice. Only the methanol fraction of D. loureiri suppressed yeast-induced fever in rats. Neither extracts nor fractions affected paw edema induced by carrageenin in rats. The methanol extract of D. loureiri (100- 400 mg/kg, p.o. prolonged the duration of pentobarbital-induced sleep in mice. These results suggest that the methanol extract and the methanol fraction of D. loureiri possess analgesic effect. Only the methanol fraction of the extract exhibited antipyretic effect.

  13. Effect of methanolic fraction of Kalanchoe crenata on metabolic parameters in adriamycin-induced renal impairment in rats.

    Science.gov (United States)

    Kamgang, René; Foyet, Angèle F; Essame, Jean-Louis O; Ngogang, Jeanne Y

    2012-01-01

    To investigate the effect of Kalanchoe crenata methanolic fraction (MEKC) on proteinuria, glucosuria, and some other biochemical parameters in adriamycin-induced renal impairment in rats. Ether anesthetized rats received three intravenous injections (days 0, 14, and 28) of 2 mg/kg body weight of adriamycin. Repeated doses of the extract (0, 50, and 68 mg/kg b.w.) and losartan (10 mg/kg b.w.) were administered orally once daily, for 6 weeks, to these rats. Kidney functions were assessed through biochemical parameters. MEKC decreased proteinuria and also the urinary excretion of creatinine, glucose, and urea significantly in diseased rats. A decrease in serum levels of creatinine, urea, potassium, alkaline phosphatase, conjugate bilirubin, and alanine transaminase level was also recorded in nephropathic rats, but plasma levels of uric acid and glucose remained unchanged. Moreover, the plant extract markedly (P < 0.05) increased plasma sodium and decreased (P < 0.01) the urinary sodium and potassium levels. The results indicated that the treatment with the methanolic fraction of K. crenata may improve proteinuria and all other symptoms due to adriamycin-induced nephropathy and, more than losartan, could ameliorate kidney and liver functions. K. crenata could be a potential source of new oral antinephropathic drug.

  14. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    system, with respect to functionalization, is achieved. It is investigated how the different functionalization variables affect essential DE properties, including dielectric permittivity, dielectric loss, elastic modulus and dielectric breakdown strength, and the optimal degree of chemical......%) was obtained without compromising other vital DE properties such as elastic modulus, gel fraction, dielectric and viscous loss and electrical breakdown strength....

  15. Biological activities (anti-inflammatory and anti-oxidant) of fractions ...

    African Journals Online (AJOL)

    Biological activities (anti-inflammatory and anti-oxidant) of fractions and methanolic extract of Philonotis hastate (Duby Wijk & MargaDant). ... The fractions and methanolic extract exhibited moderate antioxidant potentials with various models. The flavonoid contents of the methanol extract and fractions ranged between 1.70 ...

  16. Neutralization of pharmacological and toxic activities of Bothrops jararacussu snake venom and isolated myotoxins by Serjania erecta methanolic extract and its fractions

    Directory of Open Access Journals (Sweden)

    RS Fernandes

    2011-01-01

    Full Text Available Most of the snakebites recorded in Brazil are caused by the Bothrops genus. Given that the local tissue damage caused by this genus cannot be treated by antivenom therapy, numerous studies are focusing on supplementary alternatives, such as the use of medicinal plants. Serjania erecta has already demonstrated anti-inflammatory, antiseptic and healing properties. In the current study, the aerial parts of S. erecta were extracted with methanol, then submitted to chromatographic fractionation on a Sephadex LH20 column and eluted with methanol, which resulted in four main fractions. The crude extract and fractions neutralized the toxic activities of Bothrops jararacussu snake venom and isolated myotoxins (BthTX-I and II. Results showed that phospholipase A2, fibrinogenolytic, myotoxic and hemorrhagic activities were inhibited by the extract. Moreover, the myotoxic and edematous activities induced by BthTX-I, and phospholipase A2 activity induced by BthTX-II, were inhibited by the extract of S. erecta and its fraction. The clotting time on bovine plasma was significantly prolonged by the inhibitory action of fractions SF3 and SF4. This extract is a promising source of natural inhibitors, such as flavonoids and tannins, which act by forming complexes with metal ions and proteins, inhibiting the action of serineproteases, metalloproteases and phospholipases A2.

  17. A closer study of methanol adsorption and its impact on solute retentions in supercritical fluid chromatography.

    Science.gov (United States)

    Glenne, Emelie; Öhlén, Kristina; Leek, Hanna; Klarqvist, Magnus; Samuelsson, Jörgen; Fornstedt, Torgny

    2016-04-15

    Surface excess adsorption isotherms of methanol on a diol silica adsorbent were measured in supercritical fluid chromatography (SFC) using a mixture of methanol and carbon dioxide as mobile phase. The tracer pulse method was used with deuterium labeled methanol as solute and the tracer peaks were detected using APCI-MS over the whole composition range from neat carbon dioxide to neat methanol. The results indicate that a monolayer (4Å) of methanol is formed on the stationary phase. Moreover, the importance of using the set or the actual methanol fractions and volumetric flows in SFC was investigated by measuring the mass flow respective pressure and by calculations of the actual volume fraction of methanol. The result revealed a significant difference between the value set and the actually delivered volumetric methanol flow rate, especially at low modifier fractions. If relying only on the set methanol fraction in the calculations, the methanol layer thickness should in this system be highly overestimated. Finally, retention times for a set of solutes were measured and related to the findings summarized above concerning methanol adsorption. A strongly non-linear relationship between the logarithms of the retention factors and the modifier fraction in the mobile phase was revealed, prior to the established monolayer. At modifier fractions above that required for establishment of the methanol monolayer, this relationship turns linear which explains why the solute retention factors are less sensitive to changes in modifier content in this region. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. N-Butanol and Aqueous Fractions of Red Maca Methanolic Extract Exerts Opposite Effects on Androgen and Oestrogens Receptors (Alpha and Beta in Rats with Testosterone-Induced Benign Prostatic Hyperplasia

    Directory of Open Access Journals (Sweden)

    Diego Fano

    2017-01-01

    Full Text Available Benign Prostatic Hyperplasia (BPH affects, worldwide, 50% of 60-year-old men. The Peruvian plant red maca (Lepidium meyenii inhibits BPH in rodents. This study aimed to determine the effects of methanolic red maca extract and its n-butanol and aqueous fractions on expression of androgen and oestrogen receptors in rats with testosterone enanthate-induced BPH. Thirty-six rats in six groups were studied. Control group received 2 mL of vehicle orally and 0.1 mL of propylene glycol intramuscularly. The second group received vehicle orally and testosterone enanthate (TE (25 mg/0.1 mL intramuscularly in days 1 and 7. The other four groups were BPH-induced with TE and received, during 21 days, 3.78 mg/mL of finasteride, 18.3 mg/mL methanol extract of red maca, 2 mg/mL of n-butanol fraction, or 16.3 mg/mL of aqueous fraction from red maca. Treatments with red maca extract and its n-butanol but not aqueous fraction reduced prostate weight similar to finasteride. All maca treated groups restored the expression of ERβ, but only the aqueous fraction increased androgen receptors and ERα. In conclusion, butanol fraction of red maca reduced prostate size in BPH by restoring expression of ERβ without affecting androgen receptors and ERα. This effect was not observed with aqueous fraction of methanolic extract of red maca.

  19. N-Butanol and Aqueous Fractions of Red Maca Methanolic Extract Exerts Opposite Effects on Androgen and Oestrogens Receptors (Alpha and Beta) in Rats with Testosterone-Induced Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Fano, Diego; Vásquez-Velásquez, Cinthya; Gonzales-Castañeda, Cynthia; Guajardo-Correa, Emanuel; Orihuela, Pedro A; Gonzales, Gustavo F

    2017-01-01

    Benign Prostatic Hyperplasia (BPH) affects, worldwide, 50% of 60-year-old men. The Peruvian plant red maca (Lepidium meyenii) inhibits BPH in rodents. This study aimed to determine the effects of methanolic red maca extract and its n-butanol and aqueous fractions on expression of androgen and oestrogen receptors in rats with testosterone enanthate-induced BPH. Thirty-six rats in six groups were studied. Control group received 2 mL of vehicle orally and 0.1 mL of propylene glycol intramuscularly. The second group received vehicle orally and testosterone enanthate (TE) (25 mg/0.1 mL) intramuscularly in days 1 and 7. The other four groups were BPH-induced with TE and received, during 21 days, 3.78 mg/mL of finasteride, 18.3 mg/mL methanol extract of red maca, 2 mg/mL of n-butanol fraction, or 16.3 mg/mL of aqueous fraction from red maca. Treatments with red maca extract and its n-butanol but not aqueous fraction reduced prostate weight similar to finasteride. All maca treated groups restored the expression of ER β , but only the aqueous fraction increased androgen receptors and ER α . In conclusion, butanol fraction of red maca reduced prostate size in BPH by restoring expression of ER β without affecting androgen receptors and ER α . This effect was not observed with aqueous fraction of methanolic extract of red maca.

  20. N-Butanol and Aqueous Fractions of Red Maca Methanolic Extract Exerts Opposite Effects on Androgen and Oestrogens Receptors (Alpha and Beta) in Rats with Testosterone-Induced Benign Prostatic Hyperplasia

    Science.gov (United States)

    Vásquez-Velásquez, Cinthya

    2017-01-01

    Benign Prostatic Hyperplasia (BPH) affects, worldwide, 50% of 60-year-old men. The Peruvian plant red maca (Lepidium meyenii) inhibits BPH in rodents. This study aimed to determine the effects of methanolic red maca extract and its n-butanol and aqueous fractions on expression of androgen and oestrogen receptors in rats with testosterone enanthate-induced BPH. Thirty-six rats in six groups were studied. Control group received 2 mL of vehicle orally and 0.1 mL of propylene glycol intramuscularly. The second group received vehicle orally and testosterone enanthate (TE) (25 mg/0.1 mL) intramuscularly in days 1 and 7. The other four groups were BPH-induced with TE and received, during 21 days, 3.78 mg/mL of finasteride, 18.3 mg/mL methanol extract of red maca, 2 mg/mL of n-butanol fraction, or 16.3 mg/mL of aqueous fraction from red maca. Treatments with red maca extract and its n-butanol but not aqueous fraction reduced prostate weight similar to finasteride. All maca treated groups restored the expression of ERβ, but only the aqueous fraction increased androgen receptors and ERα. In conclusion, butanol fraction of red maca reduced prostate size in BPH by restoring expression of ERβ without affecting androgen receptors and ERα. This effect was not observed with aqueous fraction of methanolic extract of red maca. PMID:29375645

  1. Application of polythiophene to methanol vapor detection: an ab initio study.

    Science.gov (United States)

    Shokuhi Rad, Ali

    2015-11-01

    The interaction of methanol with terthiophene (3PT; a model of polythiophene) was investigated using density functional theory (DFT) at the BLYP-D3/6-31+G(d,p) level of theory. The computed density of states (DOS) pointed to considerable orbital hybridization upon the interaction of methanol with 3PT. Natural population analysis (NPA) was used to determine the charge distribution as well as the net charge transfer within the 3PT-methanol system, and thus to assess the sensing ability of terthiophene. The computed dipole moment revealed that the dielectric μ D changes upon the interaction of methanol with 3PT. Using calculated changes in the HOMO-LUMO energy gap, it was deduced that the electronic properties of 3PT are sensitive to the interaction of 3PT with methanol. After full energy relaxation, the interaction energy of methanol with 3PT in the most stable configuration was calculated to be -16.4 (counterpoise-corrected energy: -13.5) kJ mol(-1), providing proof that methanol is physisorbed by 3PT. Graphical Abstract Adsorption of methanol on polythiophene.

  2. Evaluation of the antidiarrhoeal activity of 80% methanol extract and ...

    African Journals Online (AJOL)

    Lantana camara L. is one of the medicinal plants traditionally used for the treatment of diarrhoea in Ethiopia. The aim of this study was to evaluate antidiarrhoeal activity of the 80% methanol extract and solvent fractions using mice model of diarrhoea. The 80% methanol extract was prepared by maceration and the fractions ...

  3. Experimental Validation of Methanol Crossover in a Three-dimensional, Two-Fluid Model of a Direct Methanol Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A fully coupled three-dimensional, steady-state, two-fluid, multi-component and non-isothermal DMFC model has been developed in the commercial CFD package CFX 13 (ANSYS inc.). It accounts for the presence of micro porous layers, non-equilibrium phase change, and methanol and water uptake...... in the ionomer phase of the catalytic layer, and detailed membrane transport of methanol and water. In order to verify the models ability to predict methanol crossover, simulation results are compared with experimental measurements under different current densities along with air and methanol stoichiometries....... Methanol crossover is indirectly measured based on the combined anode and cathode exhaust CO2 mole fraction and by accounting for the CO2 production at the anode as a function of current density. This approach is simple and assumes that all crossed over methanol is oxidized. Moreover, it takes CO2...

  4. Phytochemical and antioxidant potential of crude methanolic extract and fractions of Celtis eriocarpa Decne. leaves from lesser Himalaya Region of Pakistan

    International Nuclear Information System (INIS)

    Ahmed, E.; Arshad, M.; Bibi, Y.; Ahmed, M.S.

    2018-01-01

    Celtis eriocarpa Decne. belongs to family cannabaceae. It is commonly found in Indo-Pak subcontinent and is used in healthcare practices. Decoction of leaves is used against amenorrhoea, fruits are used against colic. Powdered bark is used to treat pimples, sprain, contusions and joint pain. Leaves of Celtis eriocarpa were collected from lesser Himalayan region of Pakistan (Murree and Galliyat) in April 2014, and subjected to proximate analysis, qualitative and quantitative phytochemicals and DPPH antioxidant determination after fractionation. Quantitative determination of total phenolic (TPC), total flavonoid (TFC) and DPPH antioxidant activity was carried out through spectrophotometric methods. Proximate analysis revealed low moisture content, higher protein, carbohydrate and nutritive values. Qualitative phytochemical analysis revealed presence of phenolics, tannins, flavonoids, terpenoids and saponins while absence of alkaloids. Higher TPC was found in Crude methanolic extract (79.96+-0.32 mg GAE /g) followed by ethyl acetate fraction (59.62+-1.00 mg GAE /g) and lowest TPC was found in n-Hexane fraction (24.97+-0.67 mg GAE/g) at p<0.05. Higher TFC was found in Crude methanolic extract (63.88+-0.40 mg QE/g) followed by ethyl acetate fraction (55.49+-1.22 mg QE /g) and lowest TFC was found in n-Hexane fraction (6.01+-0.66mg QE /g) at p<0.05. Ethyl acetate fraction showed higher DPPH EC50 value (324.81 mu g/ml) while n-hexane fraction showed lowest EC50 value (2981 mug/ml) at p<0.05. The mean EC50 value of ascorbic acid at p<0.05 was 10.86mu g/ml. As DPPH EC50 value, total phenolic content and total flavonoid content in the leaves of C. eriocarpa is considerably high therefore this plant could be a source of bioactive compounds. This study will be a benchmark for detailed evaluation of therapeutic potential of Celtis eriocarpa. (author)

  5. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures

    International Nuclear Information System (INIS)

    Delgado, Daniel R.; Almanza, Ovidio A.; Martínez, Fleming; Peña, María A.; Jouyban, Abolghasem; Acree, William E.

    2016-01-01

    Highlights: • Solubility of sulfamethazine (SMT) was measured in (methanol + water) mixtures. • SMT solubility was correlated with Jouyban–Acree model. • Gibbs energy, enthalpy, and entropy of dissolution of SMT were calculated. • Non-linear enthalpy–entropy relationship was observed for SMT. • Preferential solvation of SMT by methanol was analyzed by using the IKBI method. - Abstract: The solubility of sulfamethazine (SMT) in {methanol (1) + water (2)} co-solvent mixtures was determined at five different temperatures from (293.15 to 313.15) K. The sulfonamide exhibited its highest mole fraction solubility in pure methanol (δ 1 = 29.6 MPa 1/2 ) and its lowest mole fraction solubility in water (δ 2 = 47.8 MPa 1/2 ) at each of the five temperatures studied. The Jouyban–Acree model was used to correlate/predict the solubility values. The respective apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution were obtained from the solubility data through the van’t Hoff and Gibbs equations. Apparent thermodynamic quantities of mixing were also calculated for this drug using values of the ideal solubility reported in the literature. A non-linear enthalpy–entropy relationship was noted for SMT in plots of both the enthalpy vs. Gibbs energy of mixing and the enthalpy vs. entropy of mixing. These plots suggest two different trends according to the slopes obtained when the composition of the mixtures changes. Accordingly, the mechanism for SMT transfer processes in water-rich mixtures from water to the mixture with 0.70 in mass fraction of methanol is entropy driven. Conversely, the mechanism is enthalpy driven in mixtures whenever the methanol composition exceeds 0.70 mol fraction. An inverse Kirkwood–Buff integral analysis of the preferential solvation of SMT indicated that the drug is preferentially solvated by water in water-rich mixtures but is preferentially solvated by methanol in methanol-rich mixtures.

  6. Fractional Dynamics and Control

    CERN Document Server

    Machado, José; Luo, Albert

    2012-01-01

    Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation  Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics  Develops new methods for control and synchronization of...

  7. Experimental study on methanol recovery through flashing vaporation in continuous production of biodiesel via supercritical methanol

    International Nuclear Information System (INIS)

    Wang Cunwen; Chen Wen; Wang Weiguo; Wu Yuanxin; Chi Ruan; Tang Zhengjiao

    2011-01-01

    To improve the oil conversion, high methanol/oil molar ratio is required in the continuous production of biodiesel via supercritical methanol transesterification in tubular reactor. And thus the subsequent excess methanol recovery needs high energy consumption. Based on the feature of high temperature and high pressure in supercritical methanol transesterification, excess methanol recovery in reaction system by flashing vaporation is conducted and the effect of reaction temperature, reaction pressure and flashing pressure on methanol recovery and methanol concentration in gas phase is discussed in detail in this article. Results show that at the reaction pressure of 9-15 MPa and the reaction temperature of 240-300 o C, flashing pressure has significant influence on methanol recovery and methanol content in gas phase, which can be effectively improved by reducing flashing pressure. At the same time, reaction temperature and reaction pressure also have an important effect on methanol recovery and methanol content in gas phase. At volume flow of biodiesel and methanol 1:2, tubular reactor pressure 15 MPa, tubular reactor temperature 300 o C and the flashing pressure 0.4 MPa, methanol recovery is more than 85% and methanol concentration of gas phase (mass fraction) is close to 99% after adiabatic braising; therefore, the condensate liquid of gas phase can be injected directly into methanol feedstock tank to be recycled. Research abstracts: Biodiesel is an important alternative energy, and supercritical methanol transesterification is a new and green technology to prepare biodiesel with some obvious advantages. But it also exists some problems: high reaction temperature, high reaction pressure and large molar ratio of methanol/oil will cause large energy consumption which restricts supercritical methanol for the industrial application of biodiesel. So a set of tubular reactor-coupled flashing apparatus is established for continuous preparing biodiesel in supercritical

  8. Antifungal evaluation and phytochemical screening of methanolic ...

    African Journals Online (AJOL)

    The objective of the study was to further examine the medicinal value of Boswellia dalzielii plant by evaluating the antifungal activity and carrying out phytochemical screening of methanolic extract, hexane, ethyl acetate, aqueous fractions and the sub-fractions of the stem bark of the plant. Standard methods were used for ...

  9. Meta-atom microfluidic sensor for measurement of dielectric properties of liquids

    Science.gov (United States)

    Awang, Robiatun A.; Tovar-Lopez, Francisco J.; Baum, Thomas; Sriram, Sharath; Rowe, Wayne S. T.

    2017-03-01

    High sensitivity microwave frequency microfluidic sensing is gaining popularity in chemical and biosensing applications for evaluating the dielectric properties of liquid samples. Here, we show that a tiny microfluidic channel positioned in the gaps of a dual-gap meta-atom split-ring resonator can exploit the electric field sensitivity to predict the dielectric properties of liquid samples. Employing an empirical relation between resonant characteristics of the fabricated sensor and the complex permittivity of water-ethanol or water-methanol mixtures produces good congruence to standardized values from the literature. This microfluidic sensor offers a potential lab-on-chip solution for liquid dielectric characterization without external electrical connections.

  10. Solvation of graphite oxide in water-methanol binary polar solvents

    Energy Technology Data Exchange (ETDEWEB)

    You, Shujie; Yu, Junchun; Sundqvist, Bertil; Talyzin, Alexandr V. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden)

    2012-12-15

    The phase transition between two solvated phases was studied by DSC for graphite oxide (GO) powders immersed in water-methanol mixtures of various compositions. GO forms solid solvates with two different compositions when immersed in methanol. Reversible phase transition between two solvate states due to insertion/desertion of methanol monolayer occurs upon temperature variations. The temperature point and the enthalpy ({Delta}H) of the phase transition are maximal for pure methanol and decrease linearly with increase of water fraction up to 30%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira [Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-ku, Sapporo, Hokkaido 060-0819 (Japan); Takano, Yoshinori, E-mail: oba@lowtem.hokudai.ac.jp [Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061 (Japan)

    2016-08-10

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH{sub 2}DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  12. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    International Nuclear Information System (INIS)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira; Takano, Yoshinori

    2016-01-01

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH 2 DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  13. Microwave dielectric study of polar liquids at 298 K

    Science.gov (United States)

    Maharolkar, Aruna P.; Murugkar, A.; Khirade, P. W.

    2018-05-01

    Present paper deals with study of microwave dielectric properties like dielectric constant, viscosity, density and refractive index for the binary mixtures of Dimethylsulphoxide (DMSO) and Methanol over the entire concentration range were measured at 298K. The experimental data further used to determine the excess properties viz. excess static dielectric constant, excess molar volume, excess viscosity& derived properties viz. molar refraction&Bruggman factor. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure breaking factor in the mixture predominates in the system.

  14. Measurement of subcutaneous fibrosis after postmastectomy radiotherapy by dielectric properties of breast skin

    International Nuclear Information System (INIS)

    Lahtinen, T.; Tirkkonen, A.; Tenhunen, M.; Nuutinen, J.; Nuortio, L.; Auvinen, P.

    1995-01-01

    Dielectric properties of a biological material determine the interaction of high frequency electromagnetic (EM) fields and material. Since radiation induces changes in the structure and composition of the tissue, measurement of the altered dielectric properties could yield useful data on the radiation reactions. Dielectric constant of irradiated breast skin of 36 patients was measured 64 to 99 months after postmastectomy radiotherapy with three dose-fractionation schedules. A single dose-fractionation schedule consisted of a photon and electron or a photon and 150 kV x-ray beam. An EM frequency of 300 MHz was guided into the skin via a specially constructed coaxial probe. The attenuation and the phase shift of the reflected wave was measured by the network analyzer. From these data the dielectric constant of the skin could be calculated. Although there was a general tendency that the dielectric constant in the treated side was higher than in the untreated side, the increase was statistically significant only with one photon and electron beam. A significant negative correlation was found between the dielectric constant and the occurrence of clinically assessed mild fibrosis or when all degrees of fibrosis were combined. The study demonstrates that the dielectric measurements are useful in the assessment of the response of radiotherapy dose-fractionation schedules for the development and follow-up of subcutaneous fibrosis. Due to the large variation of the dielectric constants between patients in various dose-fractionation schedules, the dielectric measurements are not capable of differentiating different degrees of fibrosis

  15. THE ROLE OF METHANOL IN THE CRYSTALLIZATION OF TITAN'S PRIMORDIAL OCEAN

    International Nuclear Information System (INIS)

    Deschamps, Frederic; Mousis, Olivier; Sanchez-Valle, Carmen; Lunine, Jonathan I.

    2010-01-01

    A key parameter that controls the crystallization of primordial oceans in large icy moons is the presence of anti-freeze compounds, which may have maintained primordial oceans over the age of the solar system. Here we investigate the influence of methanol, a possible anti-freeze candidate, on the crystallization of Titan's primordial ocean. Using a thermodynamic model of the solar nebula and assuming a plausible composition of its initial gas phase, we first calculate the condensation sequence of ices in Saturn's feeding zone, and show that in Titan's building blocks methanol can have a mass fraction of ∼4 wt% relative to water, i.e., methanol can be up to four times more abundant than ammonia. We then combine available data on the phase diagram of the water-methanol system and scaling laws derived from thermal convection to estimate the influence of methanol on the dynamics of the outer ice I shell and on the heat transfer through this layer. For a fraction of methanol consistent with the building blocks composition we determined, the vigor of convection in the ice I shell is strongly reduced. The effect of 5 wt% methanol is equivalent to that of 3 wt% ammonia. Thus, if methanol is present in the primordial ocean of Titan, the crystallization may stop, and a sub-surface ocean may be maintained between the ice I and high-pressure ice layers. A preliminary estimate indicates that the presence of 4 wt% methanol and 1 wt% ammonia may result in an ocean of thickness at least 90 km.

  16. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant.

    Science.gov (United States)

    Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S; Akins, Daniel L; Steingart, Daniel A; Li, Jackie; O'Brien, Stephen

    2013-10-18

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The

  17. The coordination number of Lu(III) in a mixed system of methanol and water

    International Nuclear Information System (INIS)

    Arisaka, M.; Takuwa, N.; Suganuma, H.

    2000-01-01

    The stability constants (β 1(F) ) of the monofluoro complex of Lu(III) and those (β 1(Cl) ) of the monochloride solvent-shared ion-pair of Lu(III) have been determined in mixed solvents of methanol and water at 0.10 and 1.00 mol x dm -3 ionic strengths, respectively. The variation in lnβ 1(F) with an increase in the mole fraction of methanol (X s ) in the mixed solvent system showed an acute-angled convex inflection point at X s ∼ 0.12, an acute-angled concave inflection point at X s ∼ 0.22, and another acute-angled convex inflection point at X s ∼ 0.27. It was concluded that the first and the second convex inflection points denoted the CN of Lu 3+ from CN = 8 to a mixture of CN = 8 and 7 and from CN = 8 and 7 to a mixture containing CN = 6, respectively. The concave point is the starting point of a change in the CN of Lu(III) in LuF 2+ from CN = 8 to a mixture of CN = 8 and 7. The values at two inflection points of the CN around Lu 3+ are consistent with the inflection points of the variation in the values of lnβ 1(Cl ) versus the dielectric constant of the mixed solvent. (author)

  18. High-speed conversion of carbon dioxide into methanol using catalyst. Shokubai ni yoru nisanka tanso no kosoku methanol ka

    Energy Technology Data Exchange (ETDEWEB)

    Inui, T. (Kyoto University, Kyoto (Japan). Faculty of Enineering)

    1993-02-01

    This paper describes high-speed conversion of CO2 into methanol. When a Cu-Zn-Cr-Al oxide-based catalyst (MSCp catalyst) prepared by using a sedimentation process used for synthesizing methanol from CO is applied to converting CO2 into methanol, the methanol yield decreases down to a several fraction of CO to methanol conversion, with a possibility of greater catalytic deactivation. If this catalyst prepared by using a homogeneous gelation process (MSCg catalyst) is used, the yield of methanol from CO2 increases by 240 plus percent over the case of using the MSCp catalyst, and no catalytic deactivation occurs at all during a use for ten and odd hours. Further, when La2O3 is added to the MSCg catalyst at 4% by weight, the methanol yield increases by about two times as much as the case without addition, and the temperature at which the maximum yield is achieved shifts to a lower temperature side by about 20[degree]C. Combining Ag or Pd with the MSCg catalyst provides the same effects. The paper touches on an attempt of high-speed CO2 conversion using this catalyst loaded with ceramic fibers. 15 refs., 5 figs., 2 tabs.

  19. Larvicidal activity of the methanol extract and fractions of the green fruits of Solanum lycocarpum (Solanaceae against the vector Culex quinquefasciatus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Thamer Matias Pereira

    2014-10-01

    Full Text Available Introduction The larvicidal activity of Solanum lycocarpum against Culex quinquefasciatus is unknown. Methods We evaluated the larvicidal activity of extracts of the green fruits of Solanum lycocarpum against third and fourth instar larvae of C. quinquefasciatus. Results Dichloromethane and ethyl acetate fractions showed the greatest larvicidal effect at 200mg/L (83.3% and 86.7%, respectively. The methanol and dichloromethane, ethyl acetate, and hydromethanolic fractions demonstrated larvicidal effects against C. quinquefasciatus, with LC50 values of 126.24, 75.13, 83.15, and 207.05mg/L, respectively. Conclusions Thus, when considering new drugs with larvicidal activity from natural products, S. lycocarpum fruits may be good candidate sources.

  20. Dielectric inspection of erythrocyte morphology

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-01-01

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes

  1. Dielectric inspection of erythrocyte morphology

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Asami, Koji [Laboratory of Molecular Aggregation Analysis, Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)], E-mail: Yoshihito.Hayashi@jp.sony.com

    2008-05-21

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  2. The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways.

    Science.gov (United States)

    Sousa, Diana Z; Visser, Michael; van Gelder, Antonie H; Boeren, Sjef; Pieterse, Mervin M; Pinkse, Martijn W H; Verhaert, Peter D E M; Vogt, Carsten; Franke, Steffi; Kümmel, Steffen; Stams, Alfons J M

    2018-01-16

    Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in deep-subsurface environments, where thermophilic sulfate-reducing bacteria of the genus Desulfotomaculum have key roles. Here, we study the methanol metabolism of Desulfotomaculum kuznetsovii strain 17 T , isolated from a 3000-m deep geothermal water reservoir. We use proteomics to analyze cells grown with methanol and sulfate in the presence and absence of cobalt and vitamin B12. The results indicate the presence of two methanol-degrading pathways in D. kuznetsovii, a cobalt-dependent methanol methyltransferase and a cobalt-independent methanol dehydrogenase, which is further confirmed by stable isotope fractionation. This is the first report of a microorganism utilizing two distinct methanol conversion pathways. We hypothesize that this gives D. kuznetsovii a competitive advantage in its natural environment.

  3. Dielectric and piezoelectric properties of percolative three-phase piezoelectric polymer composites

    Science.gov (United States)

    Sundar, Udhay

    Three-phase piezoelectric bulk composites were fabricated using a mix and cast method. The composites were comprised of lead zirconate titanate (PZT), aluminum (Al) and an epoxy matrix. The volume fraction of the PZT and Al were varied from 0.1 to 0.3 and 0.0 to 0.17, respectively. The influences of three entities on piezoelectric and dielectric properties: inclusion of an electrically conductive filler (Al), poling process (contact and Corona) and Al surface treatment, were observed. The piezoelectric strain coefficient, d33, effective dielectric constant, epsilon r, capacitance, C, and resistivity were measured and compared according to poling process, volume fraction of constituent phases and Al surface treatment. The maximum values of d33 were 3.475 and 1.0 pC/N for Corona and contact poled samples respectively, for samples with volume fractions of 0.40 and 0.13 of PZT and Al (surface treated) respectively. Also, the maximum dielectric constant for the surface treated Al samples was 411 for volume fractions of 0.40 and 0.13 for PZT and Al respectively. The percolation threshold was observed to occur at an Al volume fraction of 0.13. The composites achieved a percolated state for Al volume fractions >0.13 for both contact and corona poled samples. In addition, a comparative time study was conducted to examine the influence of surface treatment processing time of Al particles. The effectiveness of the surface treatment, sample morphology and composition was observed with the aid of SEM and EDS images. These images were correlated with piezoelectric and dielectric properties. PZT-epoxy-aluminum thick films (200 mum) were also fabricated using a two-step spin coat deposition and annealing method. The PZT volume fraction were varied from 0.2, 0.3 and 0.4, wherein the Aluminum volume fraction was varied from 0.1 to 0.17 for each PZT volume fraction, respectively. The two-step process included spin coating the first layer at 500 RPM for 30 seconds, and the second

  4. Nonlinear electroelastic deformations of dielectric elastomer composites: II - Non-Gaussian elastic dielectrics

    Science.gov (United States)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi

  5. Metabolic Engineering of Corynebacterium glutamicum for Methanol Metabolism

    Science.gov (United States)

    Witthoff, Sabrina; Schmitz, Katja; Niedenführ, Sebastian; Nöh, Katharina; Noack, Stephan

    2015-01-01

    Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the utilization of methanol as an auxiliary carbon source in a sugar-based medium. Initial oxidation of methanol to formaldehyde was achieved by heterologous expression of a methanol dehydrogenase from Bacillus methanolicus, whereas assimilation of formaldehyde was realized by implementing the two key enzymes of the ribulose monophosphate pathway of Bacillus subtilis: 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. The recombinant C. glutamicum strain showed an average methanol consumption rate of 1.7 ± 0.3 mM/h (mean ± standard deviation) in a glucose-methanol medium, and the culture grew to a higher cell density than in medium without methanol. In addition, [13C]methanol-labeling experiments revealed labeling fractions of 3 to 10% in the m + 1 mass isotopomers of various intracellular metabolites. In the background of a C. glutamicum Δald ΔadhE mutant being strongly impaired in its ability to oxidize formaldehyde to CO2, the m + 1 labeling of these intermediates was increased (8 to 25%), pointing toward higher formaldehyde assimilation capabilities of this strain. The engineered C. glutamicum strains represent a promising starting point for the development of sugar-based biotechnological production processes using methanol as an auxiliary substrate. PMID:25595770

  6. Studies on the structural, optical and dielectric properties of samarium coordinated with salicylic acid single crystal

    Science.gov (United States)

    Singh, Harjinder; Slathia, Goldy; Gupta, Rashmi; Bamzai, K. K.

    2018-04-01

    Samarium coordinated with salicylic acid was successfully grown as a single crystal by low temperature solution technique using mixed solvent of methanol and water in equal ratio. Structural characterization was carried out by single crystal X-ray diffraction analysis and it crystallizes in centrosymmetric space group P121/c1. FTIR and UV-Vis-NIR spectroscopy confirmed the compound formation and help to determine the mode of binding of the ligand to the rare earth-metal ion. Dielectric constant and dielectric loss have been measured over the frequency range 100 Hz - 30MHz. The decrease in dielectric constant with increases in frequency is due to the transition from interfacial polarization to dipolar polarization. The small value of dielectric constant at higher frequency ensures that the crystal is good candidate for NLO devices. Dielectric loss represents the resistive nature of the material.

  7. LINEAR POLARIZATION OF CLASS I METHANOL MASERS IN MASSIVE STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Kang, Ji-hyun; Byun, Do-Young; Kim, Kee-Tae; Kim, Jongsoo; Lyo, A-Ran; Vlemmings, W. H. T.

    2016-01-01

    Class I methanol masers are found to be good tracers of the interaction between outflows from massive young stellar objects with their surrounding media. Although polarization observations of Class II methanol masers have been able to provide information about magnetic fields close to the central (proto)stars, polarization observations of Class I methanol masers are rare, especially at 44 and 95 GHz. We present the results of linear polarization observations of 39 Class I methanol maser sources at 44 and 95 GHz. These two lines are observed simultaneously with one of the 21 m Korean VLBI Network telescopes in single-dish mode. Approximately 60% of the observed sources have fractional polarizations of a few percent in at least one transition. This is the first reported detection of linear polarization of the 44 GHz methanol maser. The two maser transitions show similar polarization properties, indicating that they trace similar magnetic environments, although the fraction of the linear polarization is slightly higher at 95 GHz. We discuss the association between the directions of polarization angles and outflows. We also discuss some targets having different polarization properties at both lines, including DR21(OH) and G82.58+0.20, which show the 90° polarization angle flip at 44 GHz.

  8. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  9. Strawberry (cv. Romina Methanolic Extract and Anthocyanin-Enriched Fraction Improve Lipid Profile and Antioxidant Status in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Tamara Y. Forbes-Hernández

    2017-05-01

    Full Text Available Dyslipidemia and oxidation of low density lipoproteins (LDL are recognized as critical factors in the development of atherosclerosis. Healthy dietary patterns, with abundant fruit and vegetable consumption, may prevent the onset of these risk factors due to the presence of phytochemical compounds. Strawberries are known for their high content of polyphenols; among them, flavonoids are the major constituents, and it is presumed that they are responsible for the biological activity of the fruit. Nevertheless, there are only a few studies that actually evaluate the effects of different fractions isolated from strawberries. In order to assess the effects of two different strawberry extracts (whole methanolic extract/anthocyanin-enriched fraction on the lipid profile and antioxidant status in human hepatocellular carcinoma (HepG2 cells, the triglycerides and LDL-cholesterol content, lipid peroxidation, intracellular reactive oxygen species (ROS content and antioxidant enzymes’ activity on cell lysates were determined. Results demonstrated that both strawberry extracts not only improved the lipid metabolism by decreasing triglycerides and LDL-cholesterol contents, but also improved the redox state of HepG2 cells by modulating thiobarbituric acid-reactive substances production, antioxidant enzyme activity and ROS generation. The observed effects were more pronounced for the anthocyanin-enriched fraction.

  10. Oxidation of aromatic alcohols by purified methanol dehydrogenase from Methylosinus trichosporium.

    OpenAIRE

    Mountfort, D O

    1990-01-01

    Methanol dehydrogenase was found to be present in subcellular preparations of methanol-grown Methylosinus trichosporium and occurred almost wholly in the soluble fraction of the cell. The enzyme, purified by DEAE-Sephadex and Sephadex G-100 chromatography, showed broad specificity toward different substrates and oxidized the aromatic alcohols benzyl, vanillyl, and veratryl alcohols in addition to a range of aliphatic primary alcohols. No enzyme activity was found toward the corresponding alde...

  11. Low temperature fabrication of barium titanate hybrid films and their dielectric properties

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio; Saito, Hirobumi; Kinoshita, Takafumi; Nagao, Daisuke; Konno, Mikio

    2011-01-01

    A method for incorporating BT nano-crystalline into barium titanate (BT) films is proposed for a low temperature fabrication of high dielectric constant films. BT nanoparticles were synthesized by hydrolysis of a BT complex alkoxide in 2-methoxyethanol (ME)/ethanol cosolvent. As the ME volume fraction in the cosolvent (ME fraction) increased from 0 to 100%, the particle and crystal sizes tended to increase from 13.4 to 30.2 nm and from 15.8 to 31.4 nm, respectively, and the particle dispersion in the solution became more improved. The BT particles were mixed with BT complex alkoxide dissolved in an ME/ethanol cosolvent for preparing a precursor solution that was then spin-coated on a Pt substrate and dried at 150 o C. The dielectric constant of the spin-coated BT hybrid film increased with an increase in the volume fraction of the BT particles in the film. The dissipation factor of the hybrid film tended to decrease with an increase in the ME fraction in the precursor solution. The hybrid film fabricated at a BT fraction of 30% and an ME fraction of 25% attained a dielectric constant as high as 94.5 with a surface roughness of 14.0 nm and a dissipation factor of 0.11.

  12. Suppressive Effects of Clerodendrum volubile P Beauv. [Labiatae] Methanolic Extract and Its Fractions on Type 2 Diabetes and Its Complications

    Directory of Open Access Journals (Sweden)

    Ochuko L. Erukainure

    2018-02-01

    Full Text Available Type 2 diabetes is the most prominent of all diabetes types, contributing to global morbidity and mortality. Availability and cost of treatment with little or no side effect especially in developing countries, remains a huge burden. This has led to the search of affordable alternative therapies especially from medicinal plants. In this study, the antidiabetic effect of the methanolic extract, dichloromethane (DCM, butanol (BuOH and aqueous fractions of Clerodendrum volubile leaves were investigated in type 2 diabetic rats for their effect on glucose homeostasis, serum insulin level and hepatic biomarkers, lipid profile, pancreatic redox balance and Ca2+ levels, and β-cell distribution and function. The DCM was further fractionated to isolate the active compounds, biochanin and 5,7,4′-trimethoxykaempferol. They were investigated for their toxicity and ADMET properties, α-glucosidase and angiotensin I converting enzyme (ACE inhibitory activities in silico. There were significant (p < 0.05 decrease in blood glucose, cholesterol, LDL-C, vLDL-C, triglyceride, AST and ALT levels in all treated groups, with DCM fraction showing the best activity. All treated rats showed significantly (p < 0.05 improved anti-oxidative activities. Treatment with the DCM fraction led to significant (p < 0.05 increased serum insulin and pancreatic Ca2+ levels, as well as improved β-cell distribution and function. DCM fraction also showed improved glucose tolerance. DCM fraction dose-dependently inhibited ACE activity. The toxicity class of the isolated compounds was predicted to be 5. They were also predicted to be potent inhibitors of cytochrome P (CYPs 1A2, 2D6 and 3A4. They docked well with α-glucosidase and ACE. These results indicate the therapeutic potential of the plant against type 2 diabetes, with the DCM fraction being the most potent which may be attributed to the isolated flavones. It further suggests antihypertensive potentials of the DCM fraction

  13. Free Radicals Scavenging Activity of Essential Oils and Different Fractions of Methanol Extract of Zataria Multiflora, Salvia Officinalis, Rosmarinus Officinalis, Mentha Pulegium and Cinnamomum Zeylanicum

    Directory of Open Access Journals (Sweden)

    S Changizi Ashtiani

    2012-04-01

    Full Text Available Introduction: Essential oils and extracts from medicinal plants are regarded as natural food preservatives and health promoting drugs. Considering their antioxidant activity, most of them can prevent oxidative stress. The present study was aimed to evaluate free radicals scavenging activity of essential oils and different fractions of methanol extracts from cinnamon, pennyroyal, black cumin, sage, rosemary and azkand. Methods: Antioxidant property of essential oils and different fractions of these medicinal plants was studied by determining their DPPH(2,2-diphenyl-1-picrylhydrazyl free radicals scavenging activity. Results: There were significant differences among the free radical scavenging activity of studied essential oils and different fractions. Ethyl acetate fractions were identified as the most active fractions than other ones and even synthetic antioxidant (BHT, IC50 value of 239.5μg/ml with the highest activity in Mentha pulegium (47.2 μg/ml μg/ml. Among others, n-hexane fraction of rosemary (969 μg/ml, dichloromethane fraction of rosemary (205.46 μg/ml and zatar (344 μg/ml and aqueous fractions of cinnamon (117.6 μg/ml and sage (321.3 μg/ml exhibited appreciable antioxidant activity. Conclusion: Regarding considerable activity of studied extracts, they have the potential to be used as natural antioxidants in relevant industries.

  14. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  15. High temperature measurements of the microwave dielectric properties of ceramics

    International Nuclear Information System (INIS)

    Baeraky, T.A.

    1999-06-01

    Equipment has been developed for the measurement of dielectric properties at high temperature from 25 to 1700 deg. C in the microwave frequency range 614.97 to 3620.66 MHz using the cavity perturbation technique, to measure the permittivity of a range of ceramic materials. The complex permittivities of the standard materials, water and methanol, were measured at low temperature and compared with the other published data. A statistical analysis was made for the permittivity measurements of water and methanol using sample holders of different diameter. Also the measurements of these materials were used to compare the simple perturbation equation with its modifications and alternation correction methods for sample shape and the holes at the two endplates of the cavity. The dielectric properties of solid materials were investigated from the permittivity measurements on powder materials, shown in table 4.7, using the dielectric mixture equations. Two kinds of ceramics, oxide and nitrides, were selected for the high temperature dielectric measurements in microwave frequency ranges. Pure zirconia, yttria-stabilised zirconia, and Magnesia-stabilised zirconia are the oxide ceramics while aluminium nitride and silicon nitride are the nitride ceramics. A phase transformation from monoclinic to tetragonal was observed in pure zirconia in terms of the complex permittivity measurements, and the conduction mechanism in three regions of temperature was suggested to be ionic in the first region and a mixture of ionic and electronic in the second. The phase transition disappeared with yttria-stabilised zirconia but it was observed with magnesia-stabilised zirconia. Yttria doped zirconia was fully stabilised while magnesia stabilised was partially stabilised zirconia. The dielectric property measurements of aluminium nitride indicated that there is a transition from AIN to AlON, which suggested that the external layer of the AIN which was exposed to the air, contains alumina. It was

  16. Development of methanol evaporation plate to reduce methanol crossover in a direct methanol fuel cell

    Science.gov (United States)

    Zhang, Ruiming

    This research focuses on methanol crossover reduction in direct methanol fuel cells (DMFC) through separating the methanol vapor from its liquid phase and feeding the vapor passively at low temperature range. Membrane electrode assemblies (MEAs) were fabricated by using commercial available membrane with different thickness at different anode catalyst loading levels, and tested under the operating conditions below 100°C in cell temperature and cathode exit open to ambient pressure. Liquid methanol transport from the anode through the membrane into cathode ("methanol crossover") is identified as one of the major efficiency losses in a DMFC. It is known that the methanol crossover rate in the vapor phase is much lower than in liquid phase. Vapor feed can be achieved by heating the liquid methanol to elevated temperatures (>100°C), but other issues limit the performance of the cell when operating above 100°C. High temperature membranes and much more active cathode catalyst structures are required, and a complex temperature control system must be employed. However, methanol vapor feed can also occur at a lower temperature range (evaporation through a porous body. The methanol crossover with this vapor feed mode is lower compared with the direct liquid methanol feed. A new method of using a methanol evaporation plate (MEP) to separate the vapor from its liquid phase to reduce the liquid methanol crossover at low temperature range is developed. A MEP plays the roles of liquid/vapor methanol phase separation and evaporation in a DMFC. The goal of this study is to develop a MEP with the proper properties to achieve high methanol phase separation efficiency and fast methanol evaporation rate over a wide range of temperature, i.e., from room temperature up to near boiling temperature (100°C). MEP materials were selected and characterized. MEPs made from three different types were tested extensively with different MEA and porous back layer configurations. The benefits of

  17. Induction of Apoptosis and Reduction of Endogenous Glutathione Level by the Ethyl-Acetate Soluble Fraction of the Methanol Extract of the Roots of Potentilla fulgens in Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Debabrata Tripathy

    Full Text Available Potentilla fulgens root traditionally used as a folk remedy in Meghalaya, India. However, systematic evaluation of its anticancer efficacy was limited. We investigated the anticancer potentials of the various extracts prepared by partitioning of the methanol extract of the root with the aim to discover major contributing factors from the most effective fractions. Methanol extract of P. fulgens roots (PRE was prepared by maceration which was subsequently fractionated into hexane, ethyl-acetate (EA and n-butanol soluble fractions. Various assays (clonogenic assay, Flow cytometry analysis, western blot, semiquantitative RT-PCR and the level of endogenous glutathione were used to evaluate different parameters, such as Cell survivability, PARP-1 proteolysis, expression pattern of anti-apoptotic and γ-glutamyl-cysteine synthetase heavy subunit (GCSC genes in both MCF-7 and U87 cancer cell lines. Since the EA-fraction showed most efficient growth inhibitory effect, it was further purified and a total of nine compounds and some monomeric and dimeric flavan-3-ols were identified and characterized. Three compounds viz., epicatechin (EC, gallic acid (GA and ursolic acid (UA were taken on the basis of their higher yield and 10 μg/ml of each was mixed together. The concentration used in this study for PRE, EA- and Hex-fraction was 100 μg/ml, which was higher than the IC50 value. Apoptotic cell death in the PRE, EA-fraction and EC+GA+UA treated cancer cell cultures was significantly greater than in normal cells due to suppression of anti-apoptotic protein Bcl2 following treatment. Depletion of glutathione by downregulating GCSC was also observed. Induction of apoptosis and lowering the level of glutathione are considered to be positive activity for an anticancer agent. Therefore, modulation of GSH concentration in tumor cells by PRE and its EA-fraction opened up the possibility of a new therapeutic approach because these plant products are not harmful to

  18. Lipid peroxidation inhibition and antiradical activities of some leaf fractions of Mangifera indica.

    Science.gov (United States)

    Badmus, Jelili A; Adedosu, Temitope O; Fatoki, John O; Adegbite, Victor A; Adaramoye, Oluwatosin A; Odunola, Oyeronke A

    2011-01-01

    This study was undertaken to assess in vitro lipid peroxidation inhibitions and anti-radical activities of methanolic, chloroform, ethyl acetate and water fractions of Mangifera indica leaf. Inhibition of Fe(2+)-induced lipid peroxidation (LPO) in egg, brain, and liver homogenates, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (OH-) radical scavenging activities were evaluated. Total phenol was assessed in all fractions, and the reducing power of methanolic fraction was compared to gallic acid and ascorbic acid. The results showed that Fe2+ induced significant lipid peroxidation (LPO) in all the homogenates. Ethyl acetate fraction showed the highest percentage inhibition of LPO in both egg yolk (68.3%) and brain (66.3%), while the aqueous fraction exerted the highest inhibition in liver homogenate (89.1%) at a concentration of 10 microg/mL. These observed inhibitions of LPO by these fractions were higher than that of ascorbic acid used as a standard. The DPPH radical scavenging ability exhibited by ethyl acetate fraction was found to be the highest with IC50 value of 1.5 microg/mL. The ethyl acetate and methanolic fractions had the highest OH- radical scavenging ability with the same IC50 value of 5 microg/mL. The total phenol content of ethyl acetate fraction was the highest with 0.127 microg/mg gallic acid equivalent (GAE). The reductive potential of methanolic fraction showed a concentration-dependent increase. This study showed that inhibition of LPO and the DPPH and OH- radicals scavenging abilities of Mangifera indica leaf could be related to the presence of phenolic compounds. Therefore, the ethyl acetate fraction of the leaf may be a good source of natural antioxidative agent.

  19. Photocatalytic conversion of methane to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  20. A dielectric method for measuring early and late reactions in irradiated human skin

    International Nuclear Information System (INIS)

    Nuutinen, J.; Lahtinen, T.; Turunen, M.; Alanen, E.; Tenhunen, M.; Usenius, T.; Kolle, R.

    1998-01-01

    Background and purpose: To measure the dielectric constant of irradiated human skin in order to test the feasibility of the dielectric measurements in the quantitation of acute and late radiation reactions. Materials and methods: The dielectric constant of irradiated breast skin was measured at an electromagnetic frequency of 300 MHz in 21 patients during postmastectomy radiotherapy. The measurements were performed with an open-ended coaxial line reflection method. The irradiation technique consisted of an anterior photon field to the lymph nodes and a matched electron field to the chest wall using conventional fractionation of five fractions/week to 50 Gy. Fourteen out of the 21 patients were remeasured 2 years later and the skin was palpated for subcutaneous fibrosis. Results: At 5 weeks the dielectric constant had decreased by 31 and 39% for the investigated skin sites of the photon and electron fields, respectively. There was a statistically significant inverse correlation between the mean dielectric constant and the clinical score of erythema. An unexpected finding was a decrease of the dielectric constant of the contralateral healthy skin during radiotherapy. Two years later a statistically significant positive correlation was found between the dielectric constant at the irradiated skin sites and the clinical score of subcutaneous fibrosis. Conclusions: Dielectric measurements non-invasively yield quantitative information concerning radiation-induced skin reactions. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Anti-Inflammatory and Antioxidant Activities of Methanol Extracts and ...

    African Journals Online (AJOL)

    Background: Methanol extracts and alkaloid fractions of different parts of four plant species belonging to Solanaceae family and used in Mexican traditional medicine were investigated for their total phenolic contents, anti-inflammatory and antioxidant properties. Materials and Methods: The total phenolic compounds of each ...

  2. Comparative study of the methane and methanol mass transfer in the mesoporous H-ZSM-5/alumina extruded pellet

    Science.gov (United States)

    Zhokh, Alexey A.; Strizhak, Peter E.

    2018-07-01

    H-ZSM-5/alumina catalyst pellet was prepared using extrusion method. The as-prepared mesoporous material was characterized using nitrogen adsorption, IR, XRD, and TEM methods. Transport of methane and methanol in the obtained H-ZSM-5/alumina extruded grain was studied. We demonstrate that the methanol transport may be described by the time-fractional diffusion equation in a fairly good manner. The measured value of the fractional order of the time-fractional derivative reveals the fast super-diffusive regime of the methanol transport in the mesoporous solid. Contrary, the methane transport has been found to follow a standard diffusion and described by the second Fick's law. These findings show that mass transfer kinetics is characterized by the order of the temporal derivative. The latter is a unique property of the individual porous media and the diffusing agent.

  3. Comparative study of the methane and methanol mass transfer in the mesoporous H-ZSM-5/alumina extruded pellet

    Science.gov (United States)

    Zhokh, Alexey A.; Strizhak, Peter E.

    2018-01-01

    H-ZSM-5/alumina catalyst pellet was prepared using extrusion method. The as-prepared mesoporous material was characterized using nitrogen adsorption, IR, XRD, and TEM methods. Transport of methane and methanol in the obtained H-ZSM-5/alumina extruded grain was studied. We demonstrate that the methanol transport may be described by the time-fractional diffusion equation in a fairly good manner. The measured value of the fractional order of the time-fractional derivative reveals the fast super-diffusive regime of the methanol transport in the mesoporous solid. Contrary, the methane transport has been found to follow a standard diffusion and described by the second Fick's law. These findings show that mass transfer kinetics is characterized by the order of the temporal derivative. The latter is a unique property of the individual porous media and the diffusing agent.

  4. Process for obtaining methanol. Verfahren zur Gewinnung von Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Link, H; Watson, A

    1983-12-08

    Synthetic gas is generated and converted to methanol in a reactor. After the separation of the crude methanol, there is a multi-stage methanol distillation. Condensate occurring during distillation is at least partly fed back before the methanol synthesis.

  5. Antimicrobial Activity Investigation on Wuyiencin Fractions of Different Polarity

    Directory of Open Access Journals (Sweden)

    Zengjie Cui

    2010-04-01

    Full Text Available The aim of this study was to evaluate the antimicrobial activity of Wuyiencin fractions with different polarities against six indicator microorganisms: Rhodotorula rubra, Bacillus subtilis, Bacillus megaterium, Escherichia coli, Cladosporium fulvum and Staphylococcus aureus. The fermentation broth of Wuyiencin was submitted to AB-8 macroporous adsorptive resin and fractionated with solvents of different polarity. The fraction eluted with water had remarkably antimicrobial activity against all the microorganisms investigated except for C. fulvum and S. aureus (MIC ≤ 0.0625 mg/mL, probably due to the presence of active components. The fraction eluted with methanol showed potential antimicrobial activity against all the test microorganisms except for R.rubra, with MIC values of0.5 and 2 mg/mL. In conclusion, fractions eluted with water and methanol, respectively, represent the main active-part of Wuyiencin, and could be emphasized for agricultural applications in the future.

  6. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T.

    1995-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  7. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T

    1996-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  8. The Role of Solvent Polarity on Low-Temperature Methanol Synthesis Catalyzed by Cu Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahoba-Sam, Christian [Department of Process, Energy and Environmental Technology, University College of Southeast Norway, Porsgrunn (Norway); Olsbye, Unni [Department of Chemistry, University of Oslo, Oslo (Norway); Jens, Klaus-Joachim, E-mail: Klaus.J.Jens@usn.no [Department of Process, Energy and Environmental Technology, University College of Southeast Norway, Porsgrunn (Norway)

    2017-07-14

    Methanol syntheses at low temperature in a liquid medium present an opportunity for full syngas conversion per pass. The aim of this work was to study the role of solvents polarity on low-temperature methanol synthesis reaction using eight different aprotic polar solvents. A “once through” catalytic system, which is composed of Cu nanoparticles and sodium methoxide, was used for methanol synthesis at 100°C and 20 bar syngas pressure. Solvent polarity rather than the 7–10 nm Cu (and 30 nm Cu on SiO{sub 2}) catalyst used dictated trend of syngas conversion. Diglyme with a dielectric constant (ε) = 7.2 gave the highest syngas conversion among the eight different solvents used. Methanol formation decreased with either increasing or decreasing solvent ε value of diglyme (ε = 7.2). To probe the observed trend, possible side reactions of methyl formate (MF), the main intermediate in the process, were studied. MF was observed to undergo two main reactions; (i) decarbonylation to form CO and MeOH and (ii) a nucleophilic substitution to form dimethyl ether and sodium formate. Decreasing polarity favored the decarbonylation side reaction while increasing polarity favored the nucleophilic substitution reaction. In conclusion, our results show that moderate polarity solvents, e.g., diglyme, favor MF hydrogenolysis and, hence, methanol formation, by retarding the other two possible side reactions.

  9. Preliminary study on fractions' activities of red betel vine (Piper crocatum Ruiz & Pav) leaves ethanol extract toward Mycobacterium tuberculosis

    Science.gov (United States)

    Rachmawaty, Farida Juliantina; Julianto, Tatang Shabur; Tamhid, Hady Anshory

    2018-04-01

    This research aims to identify the antimycobacterial activity of fraction of red betel vine leaves ethanol extract (methanol fraction, ethyl acetate, and chloroform) toward M. tuberculosis. Red betel vine leaves ethanol extract was made with maceration method using ethanol solvent 70%. Resulted extract was then fractionated using Liquid Vacuum Chromatography (LVC) with methanol, ethyl acetate, and chloroform solvent. Each fractionation was exposed to M. tuberculosis with serial dilution method. Controls of fraction, media, bacteria, and isoniazid as standard drug were included in this research. The group of compound from the most active fraction was then identified. The research found that the best fraction for antimycobacterial activity toward M. tuberculosisis chloroform fraction. The compound group of chloroform fraction was then identified. The fraction contains flavonoid, tannin, alkaloid, and terpenoid. The fraction of methanol, ethyl acetate, and chloroform from red betel vine leaves has antimycobacterial activity toward M. tuberculosis. Chloroform fraction has the best antimycobacterial activity and it contains flavonoid, tannin, alkaloid, and terpenoid.

  10. Effect of butanolic fraction of yellow and black maca (Lepidium meyenii) on the sperm count of adult mice.

    Science.gov (United States)

    Inoue, N; Farfan, C; Gonzales, G F

    2016-10-01

    Lepidium meyenii, known as maca, is a popular nutraceutical food which is grown over 4,000 m above sea level in the Peruvian central highlands. Maca contains alkaloids, but there are no studies on their biological effects. The butanol fraction obtained from methanol extract of maca hypocotyls contains alkaloids. The effects of butanol/aqueous fractions partitioned from methanol extract of yellow and black maca were examined. Total phenolic content (TPC) and antioxidant capacity by 2,2'-diphenyl-1-picrylhydrazyl were used to evaluate maca fractions in vitro. Daily sperm production and sperm count in epididymis and vas deferens in mice were determined as biological effect of maca extracts in vivo. Yellow maca (21.7%±0.69) had better antioxidant capacity than black maca (18.2% ± 0.12; p maca. TPC is higher in the aqueous fraction than in the methanolic extract of yellow or black maca. Black maca administration resulted in higher concentration of sperm count in epididymis and vas deferens compared to yellow maca. A higher biological effect was observed in methanolic extract and in aqueous extract than in the butanol fraction of maca. In conclusion, better biological effect was observed in the methanolic extract of maca than in its partitioned fractions. © 2016 Blackwell Verlag GmbH.

  11. Phytochemical and toxicological investigations of crude methanolic extracts, subsequent fractions and crude saponins of Isodon rugosus

    Directory of Open Access Journals (Sweden)

    Anwar Zeb Abdul Sadiq

    2014-01-01

    Full Text Available BACKGROUND: Isodon rugosus is used traditionally in the management of hypertension, rheumatism, tooth-ache and pyrexia. Present study was arranged to investigate I. rugosus for phytoconstituents, phytotoxic and cytotoxic activities to explore its toxicological, pharmacological potentials and to rationalize its ethnomedicinal uses. Briefly, qualitative phytochemical analysis of the plant extracts were carried out for the existence of alkaloids, flavonoids, saponins, oils, glycosides, anthraquinones, terpenoids, sterols and tannins. Plant crude methanolic extract (Ir.Cr, its subsequent fractions; n-hexane (Ir.Hex, chloroform (Ir.Chf, ethyl acetate (Ir.EtAc, aqueous (Ir.Aq and saponins (Ir.Sp in different concentrations were tested for phytotoxic and cytotoxic activities using radish seeds and brine shrimps (Artemia salina respectively. The phytotoxic activity was determined by percent root length inhibition (RLI and percent seeds germination inhibition (SGI while the cytotoxicity was obtained with percent lethality of the brine shrimps. RESULTS: Ir.Cr was tested positive for the presence of alkaloids, glycosides, flavonoids, oils, terpenoids, saponins, tannins and anthraquinones. Among different fractions Ir.Sp, Ir.Chf, Ir.EtAc, and Ir.Cr were most effective causing 93.55, 89.32, 81.32 and 58.68% inhibition of seeds in phytotoxicity assay, with IC50 values of 0.1, 0.1, 0.1 and 52 μg/ml respectively. Similarly, among all the tested samples, Ir.Sp exhibited the highest phytotoxic effect causing 91.33% root length inhibition with IC50 of 0.1 μg/ml. Ir.Sp and Ir.Chf were most effective against brine shrimps showing 92.23 and 76.67% lethality with LC50 values of 10 and 12 μg/ml respectively. CONCLUSIONS: It may be inferred from the current investigations that I. rugosus contains different secondary metabolites and is a potential source for the isolation of natural anticancer and herbicidal drug molecules. Different fractions exhibited phytotoxic and

  12. Analysis of Methanol Sensitivity on SnO2-ZnO Nanocomposite

    Science.gov (United States)

    Bassey, Enobong E.; Sallis, Philip; Prasad, Krishnamachar

    This research reports on the sensing behavior of a nanocomposite of tin dioxide (SnO2) and zinc oxide (ZnO). SnO2-ZnO nanocomposites were fabricated into sensor devices by the radio frequency sputtering method, and used for the characterization of the sensitivity behavior of methanol vapor. The sensor devices were subjected to methanol concentration of 200 ppm at operating temperatures of 150, 250 and 350 °C. A fractional difference model was used to normalize the sensor response, and determine the sensitivity of methanol on the sensor. Response analysis of the SnO2-ZnO sensors to the methanol was most sensitive at 350 °C, followed by 250 and 150 °C. Supported by the morphology (FE-SEM, AFM) analyses of the thin films, the sensitivity behavior confirmed that the nanoparticles of coupled SnO2 and ZnO nanocomposites can promote the charge transportation, and be used to fine-tune the sensitivity of methanol and sensor selectivity to a desired target gas.

  13. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    Science.gov (United States)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  14. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    Directory of Open Access Journals (Sweden)

    Roman Beloborodov

    2017-01-01

    Full Text Available High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for the design of techniques for effective hydrocarbon extraction and production from unconventional reservoirs. Although applicability of dielectric measurements is intriguing, the data interpretation is very challenging due to many factors influencing the dielectric response. For instance, dielectric permittivity is determined by mineralogical composition of solid fraction, volumetric content and composition of saturating fluid, rock microstructure and geometrical features of its solid components and pore space, temperature, and pressure. In this experimental study, we investigate the frequency dependent dielectric properties of artificial shale rocks prepared from silt-clay mixtures via mechanical compaction. Samples are prepared with various clay contents and pore fluids of different salinity and cation compositions. Measurements of dielectric properties are conducted in two orientations to investigate the dielectric anisotropy as the samples acquire strongly oriented microstructures during the compaction process.

  15. Piezoelectric and dielectric characterization of corona and contact poled PZT-epoxy-MWCNT bulk composites

    Science.gov (United States)

    Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.

    2016-11-01

    Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.

  16. Bioactive fractions from cantabrian anchovy (Engraulis encrarischolus viscera

    Directory of Open Access Journals (Sweden)

    Armando BURGOS-HERNÁNDEZ

    2016-01-01

    Full Text Available Abstract The potential of cantabrian anchovy (Engraulis encrarischolus viscera as a source of bioactive compounds is of interest for both, pharmaceutical and food industries. Cantabrian anchovy guts and heads were freeze-dried, extracted with methanol and subjected to fractionation by solvent partitioning using hexane, ethyl acetate, and butanol. Fractions were tested for antimutagenic, antioxidant, antifungal, and antibacterial activity using the Ames test; DPPH, ABTS, and FRAP assays; the radial grown inhibition assay; and the microbroth dilution method, respectively. Five fractions were obtained from the anchovy gut methanolic extract, in addition to the hexane- (HF, ethyl acetate- (EAF, and butanol-soluble (BF fractions, an aqueous-soluble fraction (ALF and precipitated crystals (ACF in this were also obtained. HF and EAF resulted to be antimutagenic, HF and ALF showed antifungal activity, BF and ACF showed the highest antioxidant potential, and HF and BF were antibacterial against several strains. Anchovy gut, which to the present study had not been reported for any bioactivity, has antimutagenic, antifungal, antioxidant, and antibacterial compounds, which need to be isolated for full characterization and study.

  17. Dielectric relaxation studies of some primary alcohols and their mixture with water

    International Nuclear Information System (INIS)

    Ahmad, S.S.; Yaqub, M.

    2003-01-01

    The complex dielectric constant of ethyl alcohol, methyl alcohol and 1- propanol and their mixtures with water of different concentration, (0 to 100% by weight) at the temperature of 303K has been evaluated, within the frequency range of (100KHz- 100 MHz). Moreover, the viscosity mu of each alcohol and its mixture with water have been measured at this temperature. The dielectric properties have been evaluated by Hartshorn and Ward apparatus. The purpose of this work is to study the influence of aliphatic group, size and shape on the extent of hydrogen bonding and also to obtain the thermodynamic data on hydrogen bond formation in the pure liquid state and its mixture. The width of the semicircle plot determines the distribution of average relaxation time. Dielectric relaxation time in pure alcohols and their water mixture has been calculated from the respected Cole-Cole plot and dielectric data. A single relaxation time of 117.16ps has been obtained for the molecules of pure methanol, whereas, the dielectric data of prophyl alcohol which indicates the viscosity water have been measured at the temperature 303 K. The dielectric properties in distribution of relaxation time, which is in good agreement with the Davidson-cole representation. The molecules in liquid mixture within frequency range, the mixture has more than one relaxation item, leading to the shortening of main relaxation time as compared with the pure alcohol and broadening of the complex permitivity spectra. The dependence of the dielectric relaxation on composition shows a remarkable behavior. Results are discussed in the light of H-bonded molecules. (author)

  18. Phase behavior of (CO2 + methanol + lauric acid) system

    International Nuclear Information System (INIS)

    Ferreira, Franciele M.; Ramos, Luiz P.; Ndiaye, Papa M.; Corazza, Marcos L.

    2011-01-01

    Highlights: → We measured SVL, LLE and VLE for the binary system {lauric acid + methanol + CO 2 }. → Bubble point and dew point were measured at high pressures. → The experimental data were modeled using the Peng-Robinson equation of state with the classical van der Waals mixing rule. - Abstract: In this study the phase equilibrium behaviors of the binary system (CO 2 + lauric acid) and the ternary system (CO 2 + methanol + lauric acid) were determined. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (293 to 343) K and pressures up to 24 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.7524 to 0.9955) for the binary system (CO 2 + lauric acid); (0.4616 to 0.9895) for the ternary system (CO 2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (2:1); and (0.3414 to 0.9182) for the system (CO 2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (6:1). For these systems (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid), and (solid + fluid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng-Robinson equation of state with the classical van der Waals mixing rule with a satisfactory correlation between experimental and calculated values.

  19. Evaluation of In-vivo Antimalarial Activity of Methanol Leaf Extract of ...

    African Journals Online (AJOL)

    Abstract. Purpose: To evaluate the in-vivo antimalarial activity of the methanol extract of the leaves of Glyphaea brevis in ... alternative malarial drugs, with novel modes of action [4]. ... The mean lethal dose of the three fractions. (ethylacetate ...

  20. Modelling effective dielectric properties of materials containing diverse types of biological cells

    International Nuclear Information System (INIS)

    Huclova, Sonja; Froehlich, Juerg; Erni, Daniel

    2010-01-01

    An efficient and versatile numerical method for the generation of different realistically shaped biological cells is developed. This framework is used to calculate the dielectric spectra of materials containing specific types of biological cells. For the generation of the numerical models of the cells a flexible parametrization method based on the so-called superformula is applied including the option of obtaining non-axisymmetric shapes such as box-shaped cells and even shapes corresponding to echinocytes. The dielectric spectra of effective media containing various cell morphologies are calculated focusing on the dependence of the spectral features on the cell shape. The numerical method is validated by comparing a model of spherical inclusions at a low volume fraction with the analytical solution obtained by the Maxwell-Garnett mixing formula, resulting in good agreement. Our simulation data for different cell shapes suggest that around 1MHz the effective dielectric properties of different cell shapes at different volume fractions significantly deviate from the spherical case. The most pronounced change exhibits ε eff between 0.1 and 1 MHz with a deviation of up to 35% for a box-shaped cell and 15% for an echinocyte compared with the sphere at a volume fraction of 0.4. This hampers the unique interpretation of changes in cellular features measured by dielectric spectroscopy when simplified material models are used.

  1. Phytochemical Compositions and In vitro Assessments of Antioxidant and Antidiabetic Potentials of Fractions from Ehretia cymosa Thonn.

    Science.gov (United States)

    Ogundajo, Akintayo; Ashafa, Anofi Tom

    2017-10-01

    Ehretia cymosa Thonn. is a popular medicinal plant used in different parts of West Africa for the treatment of various ailments including diabetes mellitus. The current study investigates bioactive constituents and in vitro antioxidant and antidiabetic potentials of fractions from extract of E. cymosa . Phytochemical investigation and antioxidant assays were carried out using standard procedures. Antidiabetic potential was assessed by evaluating the inhibitory effects of the fractions on the activities of α-amylase and α-glucosidase, while bioactive constituent's identification was carried out using gas chromatography-mass spectrometric (GC-MS) analysis. The phytochemistry tests of the fractions revealed the presence of tannins, phenols, flavonoids, steroids, terpene, alkaloid, and cardiac glycosides. Methanol fraction shows higher phenolic (27.44 mg gallic acid/g) and flavonoid (235.31 mg quercetin/g) contents, while ethyl acetate fraction revealed higher proanthocyanidins (28.31 mg catechin/g). Methanol fraction displayed higher ( P fractions displayed higher inhibition ( P fraction also inhibited α-amylase and α-glucosidase in competitive and noncompetitive modes, respectively. The GC-MS chromatogram of the methanol fraction revealed 24 compounds, which include phytol (1.78%), stearic acid (1.02%), and 2-hexadecyloxirane (34.18%), which are known antidiabetic and antioxidant agents. The results indicate E. cymosa leaves as source of active phytochemicals with therapeutic potentials in the management of diabetes. E. cymosa fractions possess antioxidant and antidiabetic activities. Hence, it is a source of active phytochemicals with therapeutic potentials in the management of diabetesThe high flavonoid, phenolic, and proanthocyanidin contents of fractions from E. cymosa also contribute to its antioxidant and antidiabetic propertiesMethanol fraction of E. cymosa displayed better antidiabetic activities compared to acarbose as revealed by their half maximal

  2. Solubility and preferential solvation of some n-alkyl-parabens in methanol + water mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Cárdenas, Zaira J.; Jiménez, Daniel M.; Delgado, Daniel R.; Almanza, Ovidio A.; Jouyban, Abolghasem; Martínez, Fleming; Acree, William E.

    2017-01-01

    Highlights: • Parabens equilibrium solubility was determined in methanol + water binary mixtures at 298.15 K. • Solubility values were correlated with the Jouyban-Acree model. • Preferential solvation parameters were derived by using the IKBI method. • δx 1,3 values are negative in water-rich mixtures but positive in the other mixtures. - Abstract: Methyl, ethyl and propyl parabens equilibrium solubility was determined in (methanol + water) binary mixtures at 298.15 K. The mole fraction solubility of these compounds increased in 503 (from 2.40 × 10 −4 to 0.121), 1377 (from 9.86 × 10 −5 to 0.136) and 4597 (from 3.73 × 10 −5 to 0.171) times when passing from neat water to neat methanol, for methyl, ethyl and propyl parabens, respectively. All these solubility values were correlated with the Jouyban-Acree model. Preferential solvation parameters by methanol (δx 1,3 ) of these parabens were derived from their thermodynamic solution properties using the inverse Kirkwood-Buff integrals (IKBI) method. For all compounds δx 1,3 values are negative in water-rich mixtures but positive in mixtures with methanol mole fraction greater than 0.32. It is conjecturable that in the former case the hydrophobic hydration around non-polar groups of parabens plays a relevant role in the solvation. Besides, the preferential solvation of these solutes by methanol in mixtures of similar co-solvent compositions and in methanol-rich mixtures could be explained in terms of the higher basic behaviour of methanol.

  3. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    Science.gov (United States)

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  4. Two-phase, mass-transport model for direct methanol fuel cells with effect of non-equilibrium evaporation and condensation

    Science.gov (United States)

    Yang, W. W.; Zhao, T. S.

    A two-phase, mass-transport model for liquid-feed direct methanol fuel cells (DMFCs) is developed by taking into account the effect of non-equilibrium evaporation and condensation of methanol and water. The comparison between the present model and other models indicates that the present model yields more reasonable predictions of cell performance. Particularly, it is shown that the models that invoke a thermodynamic-equilibrium assumption between phases will overestimate mass-transport rates of methanol and water, thereby resulting in an inaccurate prediction of cell performance. The parametric study using the present model reveals that the gas coverage at the flow channel-diffusion-layer interface is directly related to the gas-void fraction inside the anode porous region; increasing the gas-void fraction will increase the mass-transfer resistance of methanol and thus lower cell performance. The effects of the geometric dimensions of the cell structure, such as channel width and rib width, on cell performance are also investigated with the model developed in this work.

  5. In vitro antiplasmodial activity and prophylactic potentials of extract and fractions of Trema orientalis (Linn.) stem bark.

    Science.gov (United States)

    Olanlokun, John Oludele; David, Oluwole Moses; Afolayan, Anthony Jide

    2017-08-15

    Trema orientalis (T. orientalis Linn) has been used in the management of malaria in the western part of Nigeria and despite its application in ethnomedicine, there is dearth of scientific evidence to justify the acclaimed prophylactic antimalarial usage of the plant. The aim of this study is to assess the in vitro antiplasmodial cell-free assay and chemopreventive efficacy of the methanol extract of the stem bark of T. orientalis and its fractions as a prophylactic regimen for malaria prevention. Also, the antimicrobial activities of the extract and the fractions were investigated. Vacuum liquid chromatography was used to obtain dichloromethane, ethylacetate and methanol fractions from the methanol extract of T. orientalis. The fractions were tested for their prophylactic and cell-free antimalarial activity using murine models and β-hematin formation assay respectively. Disc diffusion method was used to determine the antibacterial activity of the extract and its fractions against both Gram-positive and Gram-negative bacteria. In the prophylactic experiment, dichloromethane (DCMF), methanol fraction (MF) and extract (ME) (in this order) showed significant chemopreventive effects against P. berghei invasion of the red blood cells when compared with both Sulfadoxine-Pyrimethamine (SP) and untreated controls. Results of the in vitro study showed that the DCMF had the highest effect in preventing the formation of β-hematin when compared with other fractions. The DCMF also had the highest percentage inhibition of β-hematin formation when compared with chloroquine. The extract and fractions showed a concentration dependent antibacterial activity. Methanol extract had a pronounced inhibitory effect on Enterobacter cloaca ATCC 13047 and Enterococcus faecalis ATCC 29212. Serratia mercescens ATCC 9986 and Pseudomonas aeruginosa ATCC 19582 were the most susceptible bacteria. The results obtained showed that both extract and fractions of T. orientalis possessed

  6. ANTIBACTERIAL ACTIVITY STUDY OF ACTIVE FRACTION FROM CHICK WEED PLANTS (Ageratum Conyzoides L. AGAINST Bacillus Subtilis AND Vibrio Cholerae

    Directory of Open Access Journals (Sweden)

    Ratih Anggara

    2017-07-01

    Full Text Available The purpose of this research to determine the fractions of Chick Weed which has strong antibacterial activity  against bacteria test categories of Bacillus subtilis and Vibriocholerae.determine the value of the minimum in hibitory concentration(MIC of the active fraction antibacterial Chick Weed.This research was carried out in August up to November 2016. The method used in this study  were extracted by maceration, fractionation by liquid-liquid fractionation, separation by column chromatography fractions, antibacterial activity test by theKirby-Bauermethod, while the determination of minimum in hibitory concentration by dilution broth,with test bacteria Bacillus subtilis and Vibriocholerae.The data presented in tabular form based on the average value and percent.The results of this study showed that the methanol extract Chick Weed active against test bacteria Bacillus subtilis and Vibrio cholerae. Fractionation which has strong category to standard antibiotics are methanol fraction by fraction column S4.The concentration MIC1000;500;250;125;62.5;31.2515.62; 7.81 ppm. The minimum in hibitory concentration column fractions S4 to test bacteria Vibrio cholerae of 62.5 ppm gives half the antibacterial activity of the antibacterial activity of standard antibiotics streptomycin and penicillin,tetracycline while giving a quarter activity. It can be concluded that the active fraction of methanol extractisa methanol fraction by fraction column S4 to test bacteria Vibrio cholerae. Keywords: Chick Weed, Minimum Inhibitory Concentration (MIC, active compound, Bacillus subtilis, Vibriocholera.

  7. Dielectric Behaviour of Binary Mixture of 2-Chloroaniline with 2-Methoxyethanol and 2-Ethoxyethanol

    Directory of Open Access Journals (Sweden)

    Bhupesh G. Nemmaniwar

    2013-05-01

    Full Text Available Densities, viscosities, refractive indices, dielectric constant (ε' and dielectric loss (ε'' of 2-chloroaniline (2CA + 2-methoxyethanol (2ME and 2-chloroaniline (2CA + 2-ethoxyethanol (2EE for different mole fractions of 2-chloroaniline in binary mixture have been measured at single microwave frequency 10.985 GHz at 300C by Surber method using microwave X-band. The values of dielectric parameters (ε' and ε''   have been used to evaluate the molar polarization (P12 loss tangent (tanδ, viscosity (η, activation energy (Ea, excess permittivity (Δε', excess dielectric loss (Δε'', excess viscosities (Δη, excess polarization (ΔP12 and excess activation energy (ΔEa  have also been estimated. These parameters have been used to explain the formation of complexes in the system. It is found that dielectric constant (ε', dielectric loss (ε'', loss tangent (tanδ, molar polarization (P12 varies non-linearly but activation energy (Ea , viscosity (η ,density (ρ, and refractive index (n varies linearly with increasing mole fraction in binary mixture of 2-chloroaniline (2-CA + 2-methoxyethanol (2-ME and 2-chloroaniline (2-CA + 2-ethoxyethanol (2-EE. Hence, solute-solvent molecular associations have been reported. 

  8. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Khalid Khazzal Hummadi

    2009-06-01

    Full Text Available The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK, 10 atm (1013 kPa, with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a commercial catalyst; maximum selectivity (82.3% was obtained at 573oK when the conversion was 59.7%. Catalysts prepared by reacting iron (III and molybdate by kneading or precipitation followed by evaporation, omitting a filtration stage, were less active and less selective. The selectivity-activity relationships of these catalysts as a function of temperature were discussed in relation to the method of preparation, surface areas and composition. By combing this catalytic data with data from the patent literature we demonstrate a synergy between iron and molybdenum in regard to methanol oxidation to formaldehyde; the optimum composition corresponded to an iron mole fraction 0.2-0.3. The selectivity to formaldehyde was practically constant up to an iron mole fraction 0.3 and then decreased at higher iron concentrations. The iron component can be regarded as the activity promoter. The iron molybdate catalysts can thus be related to other two-component MoO3-based selective oxidation catalysts, e.g. bismuth and cobalt molybdates. The iron oxide functions as a relatively basic oxide abstracting, in the rate-controlling step, a proton from the methyl of a bound methoxy group of chemisorbed methanol. It was proposed that a crucial feature of the sought after iron(III molybdate catalyst is the presence of -O-Mo-O-Fe-O-Mo-O- groups as found in the compound Fe2(MoO43 and for Fe3+ well dispersed in MoO3 generally. At the higher iron(III concentrations the loss of

  9. Antibacterial activity of crude methanolic extract and various fractions of Vitex agnus castus and Myrsine africana against clinical isolates of Methicillin Resistant Staphylococcus aureus.

    Science.gov (United States)

    Ahmad, Bashir; Hafeez, Nabia; Ara, Gulshan; Azam, Sadiq; Bashir, Shumaila; Khan, Ibrar

    2016-11-01

    Staphylococcus aureus is a nosocomial pathogen that resides in the soft tissues causing many diseases. The current study was conducted to determine the prevalence of Methicillin Resistant S. aureus (MRSA) in ear discharge and pus of patients and antibacterial activity of crude methanolic extract (Cr. MeOH Ext.) and various fractions of M. Africana and V. agnus castus against clinical isolates of MRSA. A total of 40 samples were collected from ear, nose and throat (ENT) outpatient department and wards of Khyber Teaching Hospital (KTH), Peshawar. Out of 40 samples, 36 (90%) samples showed growth on Mannitol Salt Agar (MSA) media out of which 9(25%) were MRSA and the remaining 27(75%) were methicillin susceptible S. aureus (MSSA). A good antibacterial activity was observed for the Cr. MeOH Ext. (76.1%) and ethyl acetate (EtOAc) fraction of V. agnus castus against S11 (71.4%). The n-hexane fraction also showed good antibacterial effect (70%) against S 26 . The chloroform (CHCl3), butanol (BuOH) and aqueous fractions of M. africana showed good antibacterial activity against S 11 (71.4%), S32 (70%) and S 26 (75%), respectively. The above results revealed that the selected plants can be further utilized for isolation of the active ingredients as the crude extracts were found good for inhibition of MRSA.

  10. Variation of the solvation number of Eu(III) in mixed system of methanol and water

    International Nuclear Information System (INIS)

    Suganuma, H.; Arisaka, M.; Omori, T.; Satoh, I.; Choppin, G.R.

    1999-01-01

    The stability constants (β 1 ) of the monofluoride complex of Eu(III) have been determined in mixed solvents of methanol and water at a 0.10 M ionic strength using a solvent extraction technique. The values of ln β 1 increase as the mole fraction of methanol in the mixed solvent system increases. The variation in the stability constants can be correlated with both the large effect due to the solvation of F and the small effect due to both (1) the solvation of cations in connection with complexation and (2) the electrostatic attraction between Eu 3+ and F - . Based on the variation in the sum of (1) and (2) in water and the mixed solvent solutions, it was determined that the coordination number (CN) of Eu(III) varied from a mixture of CN = 9 and 8 to CN = 8 at about a 0.03 mole fraction of methanol in the mixed solvent. (orig.)

  11. Antifungal activity of methanolic root extract of Withania somnifera

    African Journals Online (AJOL)

    Proff.Adewunmi

    remedy for many diseases in various regions of the world, especially in ... For control, 2 mL of DMSO was added to 16 mL of water, and 4 mL of this .... 3E). Since the four organic solvents used for fractionation of methanolic root .... Purification of a Lectin-Like Antifungal Protein from the Medicinal Herb, Withania Somnifera.

  12. Investigations of anticholinestrase and antioxidant potentials of methanolic extract, subsequent fractions, crude saponins and flavonoids isolated from Isodon rugosus

    Directory of Open Access Journals (Sweden)

    Anwar Zeb

    2014-01-01

    Full Text Available BACKGROUND: Based on the ethnomedicinal uses and the effective outcomes of natural products in various diseases, this study was designed to evaluate Isodon rugosus as possible remedy in oxidative stress, alzheimer's and other neurodegenerative diseases. Acetylecholinestrase (AChE and butyrylcholinesterase (BChE inhibitory activities of crude methanolic extract (Ir.Cr, resultant fractions (n-hexane (Ir.Hex, chloroform (Ir.Cf, ethyl acetate (Ir.EtAc, aqueous (Ir.Aq, flavonoids (Ir.Flv and crude saponins (Ir.Sp of I. rugosus were investigated using Ellman's spectrophotometric method. Antioxidant potential of I. rugosus was determined using DPPH, H2O2 and ABTS free radicals scavenging assays. Total phenolic and flavonoids contents of plant extracts were determined and expressed in mg GAE/g dry weight and mg RTE/g of dry sample respectively. RESULTS: Among different fractions Ir.Flv and Ir.Cf exhibited highest inhibitory activity against AChE (87.44 ± 0.51, 83.73 ± 0.64% and BChE (82.53 ± 0.71, 88.55 ± 0.77% enzymes at 1 mg/ml with IC50 values of 45, 50 for AChE and 40, 70 μg/ml for BChE respectively. Activity of these fractions were comparable to galanthamine causing 96.00 ± 0.30 and 88.61 ± 0.43% inhibition of AChE and BChE at 1 mg/ml concentration with IC50 values of 20 and 47 μg/ml respectively. In antioxidant assays, Ir.Flv, Ir.Cf, and Ir.EtAc demonstrated highest radicals scavenging activities in DPPH and H2O2 assays which were comparable to ascorbic acid. Ir.Flv was found most potent with IC50 of 19 and 24 μg/ml against DPPH and H2O2 radicals respectively. Whereas antioxidant activates of plant samples against ABTS free radicals was moderate. Ir.Cf, Ir.EtAc and Ir.Cr showed high phenolic and flavonoid contents and concentrations of these compounds in different fractions correlated well to their antioxidant and anticholinestrase activities. CONCLUSION: It may be inferred from the current investigations that the

  13. Neuropharmacological activities of the aqueous fraction of methanol ...

    African Journals Online (AJOL)

    aminopyridine-induced seizures. At all the doses tested (125-500 mg/kg), the fraction significantly (p < 0.05) reduced the number of head dips (in the hole board test), upward stairs climbed and rearings (in the stair case test). In the beam walking assay, ...

  14. Predicting soil-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls by desorption with methanol-water mixtures at different temperatures.

    Science.gov (United States)

    Krauss, M; Wilcke, W

    2001-06-01

    We evaluated a method to determine organic carbon-normalized soil-water partition coefficients (Koc) of 20 PAHs and 12 PCBs by desorption in the presence of a cosolvent (methanol fractions of 0.1-0.9) and at different temperatures (20-80 degrees C). The Koc values, the deviation factor from ideal sorption alpha, and the desorption enthalpies delta Hdes were estimated by nonlinear regression of log Koc on the methanol fractions and on T. The Koc values of individual compounds varied up to a factor of 100 among the studied 11 urban soils. The calculated alpha and delta Hdes of individual compounds varied considerably among the soils (coefficients of variation 5-20% and 20-30%, respectively), alpha increased with increasing hydrophobicity of the compounds. A sequential extraction with four temperature/methanol fraction combinations followed by a nonlinear regression allowed for the direct determination of the Koc, alpha, and delta Hdes. The use of less temperature/methanol fraction combinations requires a suitable estimation of alpha and delta Hdes, as their choice may change the obtained Koc values by up to a factor of 10. The proposed method is suitable for a routine determination of Koc values of PAHs and PCBs for small soil samples (2-6 g) and low concentrations (down to 0.3 mg kg-1 of sigma 20 PAHs and 1.2 micrograms kg-1 of sigma 12 PCBs).

  15. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves.

    Science.gov (United States)

    Shabbir, Maria; Khan, Muhammad Rashid; Saeed, Naima

    2013-06-22

    Maytenus royleanus is traditionally used in gastro-intestinal disorders. The aim of this study was to evaluate the methanol extract of leaves and its derived fractions for various antioxidant assays and for its potential against lipid peroxidation and hemolytic activity. Various parameters including scavenging of free-radicals (DPPH, ABTS, hydroxyl and superoxide radical), hydrogen peroxide scavenging, Fe3+ to Fe2+ reducing capacity, total antioxidant capacity, anti-lipid peroxidation and anti-hemolytic activity were investigated. Methanol extract and its derived fractions were also subjected for chemical constituents. LC-MS was also performed on the methanol extract. Qualitative analysis of methanol extract exhibited the presence of alkaloids, anthraquinones, cardiac glycosides, coumarins, flavonoids, saponins, phlobatannins, tannins and terpenoids. LC-MS chromatogram indicated the composition of diverse compounds including flavonoids, phenolics and phytoestrogens. Methanol extract, its ethyl acetate and n-butanol fractions constituted the highest amount of total phenolic and flavonoid contents and showed a strong correlation coefficient with the IC50 values for the scavenging of DPPH, hydrogen peroxide radicals, superoxide radicals, anti-lipid peroxidation and anti-hemolytic efficacy. Moreover, n-butanol fraction showed the highest scavenging activity for ABTS radicals and for reduction of Fe3+ to Fe2+. Present results suggested the therapeutic potential of Maytenus royleanus leaves, in particular, methanol extract, ethyl acetate and n-butanol fraction as therapeutic agent against free-radical associated damages. The protective potential of the extract and or fraction may be attributed due to the high concentration of phenolic, flavonoid, tannins and terpenoids.

  16. Hypolipidemic effect of methanol fraction of Aconitum heterophyllum wall ex Royle and the mechanism of action in diet-induced obese rats.

    Directory of Open Access Journals (Sweden)

    Arun Koorappally Subash

    2012-01-01

    Full Text Available Aconitum heterophyllum is an endangered Himalayan plant included in "lekhaneyagana," a pharmacological classification mentioned by Charaka in "Charakasamhita" which means reduce excess fat. The subterranean part of the plant is used for the treatment of diseases like nervous system disorders, fever, diarrhea, obesity, etc. In the present study, we are reporting the hypolipidemic effect of methanol fraction of A. heterophyllum. The methanol extract of A. heterophyllum was orally administered in diet-induced obese rats. After four weeks treatment, blood samples were collected for the estimation of serum lipids and lecithin-cholesterol acyltransferase (LCAT. Liver was collected for the assay of HMG-CoA reductase (HMGR. The fecal samples were also collected to estimate the fecal fat content. The A. heterophyllum treatment markedly lowered total cholesterol, triglycerides and apolipoprotein B concentrations in blood serum. It also showed positive effects (increase on serum high-density lipoprotein cholesterol (HDL-c and apolipoprotein A1 concentrations. On the other hand, A. heterophyllum treatment lowered HMGR activity, which helps to reduce endogenous cholesterol synthesis and also activated LCAT, helping increase in HDL-c. An increase in fecal fat content is also an indication of the hypolipidemic effect of A. heterophyllum. The significant hypolipidemic effect of A. heterophyllum may be linked to its ability to inhibit HMGR activity and block intestinal fat absorption. The increase in HDL-c may be linked to its ability to activate LCAT enzyme.

  17. Hypolipidemic effect of methanol fraction of Aconitum heterophyllum wall ex Royle and the mechanism of action in diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    Arun Koorappally Subash

    2012-01-01

    Full Text Available Aconitum heterophyllum is an endangered Himalayan plant included in "lekhaneyagana," a pharmacological classification mentioned by Charaka in "Charakasamhita" which means reduce excess fat. The subterranean part of the plant is used for the treatment of diseases like nervous system disorders, fever, diarrhea, obesity, etc. In the present study, we are reporting the hypolipidemic effect of methanol fraction of A. heterophyllum. The methanol extract of A. heterophyllum was orally administered in diet-induced obese rats. After four weeks treatment, blood samples were collected for the estimation of serum lipids and lecithin-cholesterol acyltransferase (LCAT. Liver was collected for the assay of HMG-CoA reductase (HMGR. The fecal samples were also collected to estimate the fecal fat content. The A. heterophyllum treatment markedly lowered total cholesterol, triglycerides and apolipoprotein B concentrations in blood serum. It also showed positive effects (increase on serum high-density lipoprotein cholesterol (HDL-c and apolipoprotein A1 concentrations. On the other hand, A. heterophyllum treatment lowered HMGR activity, which helps to reduce endogenous cholesterol synthesis and also activated LCAT, helping increase in HDL-c. An increase in fecal fat content is also an indication of the hypolipidemic effect of A. heterophyllum. The significant hypolipidemic effect of A. heterophyllum may be linked to its ability to inhibit HMGR activity and block intestinal fat absorption. The increase in HDL-c may be linked to its ability to activate LCAT enzyme.

  18. Electric Conductivity and Dielectric-Breakdown Behavior for Polyurethane Magnetic Elastomers.

    Science.gov (United States)

    Sasaki, Shuhei; Tsujiei, Yuri; Kawai, Mika; Mitsumata, Tetsu

    2017-02-23

    The electric-voltage dependence of the electric conductivity for cross-linked and un-cross-linked magnetic elastomers was measured at various magnetic fields, and the effect of cross-linking on the electric conductivity and the dielectric-breakdown behavior was investigated. The electric conductivity for un-cross-linked elastomers at low voltages was independent of magnetic fields and the volume fraction of magnetic particles, indicating the electric conduction in the polyurethane matrix. At high voltages, the electric conductivity increased with the magnetic field, showing the electric conduction via chains of magnetic particles. On the other hand, the electric conductivity at low voltages for cross-linked elastomers with volume fractions below 0.06 was independent of the magnetic field, suggesting the electric conduction in the polyurethane matrix. At volume fractions above 0.14, the electric conductivity increased with the magnetic field, suggesting the electric conduction via chains of magnetic particles. At high voltages, the electric conductivity for cross-linked elastomers with a volume fraction of 0.02 was independent of the magnetic field, indicating the electric conduction through the polyurethane matrix. At volume fractions above 0.06, the electric conductivity suddenly increased at a critical voltage, exhibiting the dielectric breakdown at the bound layer of magnetic particles and/or the discontinuous part between chains.

  19. 1995 world methanol conference

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The 20 papers contained in this volume deal with the global markets for methanol, the production of MTBE, integrating methanol production into a coal-to-SNG complex, production of methanol from natural gas, catalysts for methanol production from various synthesis gases, combined cycle power plants using methanol as fuel, and economics of the methanol industry. All papers have been processed for inclusion on the data base

  20. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  1. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Maaroufi, A., E-mail: maaroufi@fsr.ac.ma [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Oabi, O. [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Lucas, B. [XLIM UMR 7252 – Université de Limoges/CNRS, 123 avenue Albert Thomas, 87060 Limoges Cedex (France)

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO–55 mol%P{sub 2}O{sub 5}, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator – semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10{sup −1} S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10{sup −8} S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 10{sup 5} for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson–Cole and Havriliak–Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson–Cole model, and an account of the interpretation of results is given. - Highlights: • Composites of ZnO-P{sub 2}O{sub 5}/metal were investigated by impedance spectroscopy. • Original ac-conductivity behavior was discovered in ZnO-P{sub 2}O{sub 5}/metal composites. • High dielectric constant is measured in ZnO-P{sub 2}O{sub 5}/metal composites. • Dielectric constant as filler function is well interpreted with percolation theory. • Observed relaxation processes are well described using electric modulus formalism.

  2. A numerical study on RCCI engine fueled by biodiesel/methanol

    International Nuclear Information System (INIS)

    Zhou, D.Z.; Yang, W.M.; An, H.; Li, J.; Shu, C.

    2015-01-01

    Highlights: • Numerical study is done to investigate RCCI engine fueled by biodiesel/methanol. • A new biodiesel/methanol dual-fuel chemical reaction mechanism is developed. • Engine performance is improved with fuel reactivity stratification formed. • Soot and NO x significant reduce with methanol induction and fuel reactivity stratification. - Abstract: A 3-D numerical simulation platform based on the KIVA4-CHEMKIN code was constructed by incorporating a newly developed skeletal chemical kinetics mechanism to study the reactivity controlled compression ignition (RCCI) engine performance, combustion and emission characteristics. In the present study, methanol is assumed to be induced into the engine through the intake port, while biodiesel is directly injected into the engine by the end of the compression stroke. The skeletal biodiesel and methanol dual fuel chemical reaction mechanism coupled with CO, NO x and soot formation mechanisms was developed and validated by comparing the ignition delay predicted by the developed mechanism with that of the detailed biodiesel and methanol mechanisms, and also by comparing the simulation results of KIVA-CHEMKIN with the experimental results under different engine operating conditions. A good agreement has been achieved in terms of ignition delay, in-cylinder pressure and heat release rate (HRR). The methanol mass fraction was varied from 0% to 80% at an interval of 20% to form different reactivity stratification. Simulation results revealed that under 10% load conditions, the increasing methanol reduced the peak pressure and heat release rate, whereas under 50% and 100% loads, the peak pressure both appeared at 60% methanol induction. Also, the reactivity distribution and ringing intensity were discussed, aiming at investigating the fuel gradient effects and knocking level, respectively. For the emissions, a general decreasing trend on CO emission was observed at both 50% and 100% loads while at 10% load, a slight

  3. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol

    DEFF Research Database (Denmark)

    Alberico, E.; Nielsen, Martin

    2015-01-01

    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous...

  4. Sperm Quality and Testicular Histomorphometry of Wistar Rats Supplemented with Extract and Fractions of Fruit of Tribulus terrestris L.

    Directory of Open Access Journals (Sweden)

    Nelma Neylanne Pinho Muniz Oliveira

    2015-12-01

    Full Text Available ABSTRACT The aim of this study was to assess the sperm quality and testicular histomorphometry of Wistar rats supplemented with extract and fractions of fruits of Tribulus terrestris L. The ethanolic extract was obtained by dynamic maceration of spray-dried fruit. This extract was fractionated by liquid-liquid partition, using increasing polarity solvents. Twenty male rats were separated in four groups, with five rats in each group. The control was supplemented with distilled water, while the others were daily given the ethanolic extract, hexanic or aqueous fraction soluble in methanol in a dose of 42 mg.kg-1.day-1 for 70 days. Sperm was obtained from the right epididymal tail for the analysis of motility, count, morphology and viability. The testicular weight of groups supplemented with ethanolic extract and aqueous fraction soluble in methanol was higher when compared to the control. The gonadosomatic index increased in the group supplemented with ethanolic extract. The nuclear, cytoplasmic and individual volume of Leydig cells increased in supplementation with hexanic and aqueous fractions soluble in methanol. It was concluded that the extract influenced the spermatogenesis, while hexanic and aqueous fractions soluble in methanol promoted the changes in the intertubular compartment. Therefore, Tribulus terrestris did not improve the sperm quality of the rats.

  5. Fractionation and antioxidant activity potency of the extract of Garcinia lateriflora Blume var. javanica Boerl leaf

    Science.gov (United States)

    Mahayasih, Putu Gita Maya Widyaswari; Elya, Berna; Hanafi, Muhammad

    2018-02-01

    Garcinia lateriflora leaves extract of the family Guttiferae has been known to have excellent antioxidant activity. The objective of the study was to determine the antioxidant effect of the n-hexane, ethyl acetate and methanol extracts of G. lateriflora leaves extract. The antioxidant activity was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging methods and Feric Reducing Antioxidant Power (FRAP) to determine the antioxidant properties. The extracts were fractionated by using column chromatography. The Methanol extract exhibited the strongest antioxidant activity with EC50 values are 13.95 and 19.65 µg/mL by DPPH and FRAP methods respectively. E13 fraction was the most active fraction from ethyl acetate extract with EC50 value for DPPH scavenging method was 37.14 µg/mL and 34.46 µg/mL for reducing power by the FRAP method. Meanwhile M3 fraction was the most active fraction in methanol extract with EC50 value for DPPH scavenging method was 50.02 µg/mL and 37.32 µg/mL for reducing power by the FRAP method.

  6. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  7. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    International Nuclear Information System (INIS)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-01-01

    In this work we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations

  8. Analgesic activity of Gleditsia triacanthos methanolic fruit extract and its saponin-containing fraction.

    Science.gov (United States)

    Saleh, Dalia Osama; Kassem, Iman; Melek, Farouk Rasmy

    2016-01-01

    Gleditsia triacanthos L. (Leguminosae) pods are used in folk medicine for pain relief as anodyne and narcotic. The objective of this study is to evaluate analgesic activity of Gleditsia triacanthos methanolic fruit extract (MEGT) and its saponin-containing fraction (SFGT). Peripheral analgesic activity was assessed using the acetic acid-induced writhing model in mice at doses of 140, 280, and 560 mg/kg and formalin test in rats at 100, 200, and 400 mg/kg doses. Central analgesic activity was evaluated using the hotplate method in rats (100, 200, and 400 mg/kg). In the writhing test, six mice groups treated with MEGT and SFGT found ED50 values 268.2 and 161.2 mg/kg, respectively, displayed a significant decrease in writhing count compared with the group treated with standard drug indomethacin (14 mg/kg). SFGT (280 and 560 mg/kg) showed 64.94 and 70.78% protection, respectively, which are more than double % protection caused by indomethacin (31.82%). In the formalin test, MEGT and SFGT (ED50 values 287.6 and 283.4 mg/kg for phase I as well as 295.1 and 290.4 mg/kg for phase II, respectively) at 400 mg/kg showed significant % inhibition in both phase I (18.86 and 52.57%) and phase II (39.36 and 44.29%) with reference to 10 mg/kg indomethacin (56.0 and 32.29%). MEGT and SFGT caused significant delay in responses in hotplate model (ED50 values 155.4 and 200.6 mg/kg, respectively) compared with that of 10 mg/kg indomethacin at 30, 60, and 120 min. Central and peripheral analgesic activities induced by Gleditsia triacanthos fruits might account for its uses in folk medicine.

  9. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    Energy Technology Data Exchange (ETDEWEB)

    Shewamare, Sisay, E-mail: sisayshewa20@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Mal' nev, V.N., E-mail: vadimnmalnev@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2012-12-15

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.

  10. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    International Nuclear Information System (INIS)

    Shewamare, Sisay; Mal'nev, V.N.

    2012-01-01

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.

  11. Environmental effects of using Methanol as a biofuel into the combustion chamber of a heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    kianoosh shojae

    2016-12-01

    Full Text Available Methanol as a biofuel is an environmentally friendly substitute for pure diesel and can be obtained from biomasses. The use of biofuels such as methanol for the combustion process is associated with positive impacts on the environment. Using pure methanol or a blend of diesel/methanol fuel in motorized vehicles has been proposed by researchers. In this paper, pure methanol was injected into the combustion chamber of a ISM 370 HD diesel engine and the exhaust emissions were evaluated by using AVL FIRE CFD code software at four engine speeds (1200, 1400, 1600 and 1800 rpm. Additionally, the influences of EGR mass fraction and various injection timings were investigated. In order to validate the simulation results, in-cylinder mean pressure and rate of heat release (RHR were compared with experimental data, and the results gave an acceptable agreement. The obtained results from the conducted simulation showed that the use of methanol fuel in the combustion chamber dramatically reduced the amount of exhaust emissions such as NO, soot, CO, and CO2 to 90%, 75%, 40%, and 26%, respectively. In addition, a mass fraction of EGR (20% caused a reduction in the amount of exhaust NO to about 12%. It was determined that when a system is equipped with a fueling system at 3 deg before top dead center (BTDC, the exhaust NO and soot are reduced by 5.8% and 3%.

  12. Temporal variation of dielectric properties of preserved blood

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-01-01

    Rabbit blood was preserved at 277 K in Alsever's solution for 37 days, and its dielectric permittivity was monitored in a frequency range from 0.05 to 110 MHz throughout the period. The relaxation time and Cole-Cole parameter of the interfacial polarization process for erythrocytes remained nearly constant during the first 20 days and then started to increase and decrease, respectively. On the other hand, the relaxation strength and the cell volume fraction continued to decrease for 37 days, but the decrease rates of both changed discontinuously on about the 20th day. Microscope observation showed that approximately 90% of the erythrocytes were spinous echinocytes at the beginning of preservation and started to be transformed into microspherocytes around the 20th day. Therefore, dielectric spectroscopy is a sensitive tool to monitor the deterioration of preserved blood accompanied by morphological transition of erythrocytes through the temporal variation of their dielectric properties

  13. Antioxidant Activities of Methanol Extract and Solvent Fractions of ...

    African Journals Online (AJOL)

    2015-02-09

    : The antioxidant activities of ME as well as its chloroform, butanol, and aqueous fractions (CF,. BF and WF ... quantified to determine if these phytochemical parameters ..... food items using reversed-phase HPLC. Food Chem.

  14. Methanol Fuel Cell

    Science.gov (United States)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  15. Geometrical enhancement of the electric field: Application of fractional calculus in nanoplasmonics

    Science.gov (United States)

    Baskin, E.; Iomin, A.

    2011-12-01

    We developed an analytical approach, for a wave propagation in metal-dielectric nanostructures in the quasi-static limit. This consideration establishes a link between fractional geometry of the nanostructure and fractional integro-differentiation. The method is based on fractional calculus and permits to obtain analytical expressions for the electric-field enhancement.

  16. Physical and dielectric properties of irradiated polypropylene and poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Kita, H.; Okamoto, K.

    1986-01-01

    The effect of high-energy electron irradiation in air and in nitrogen on the physical and dielectric properties of polypropylene and poly(ethylene terephthalate) has been studied by measurements of electric strength, dielectric constant, dissipation factor, tensile strength, gel fraction and molecular weight distribution. Electric strength of polypropylene was improved by irradiation, while dielectric properties of poly(ethylene terephthalate) were virtually unaffected by irradiation of 1.0-20 Mrad. Possible mechanisms for increasing electric strength are discussed from the point of view of degradation and oxidation taking place simultaneously with crosslinking of polypropylene. The maximum dose level to improve the electric strength of polypropylene is determined to be about 5 Mrad. (author)

  17. Conductivity Measurements of Alkali Metal Thiocyanates in Water-Methanol Mixtures; Mizu-metanoru kongoyoubai ni okeru arukari kinzoku chioshiansan`en no denki dendodo sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Eiji.; Horimoto, Sanaki. [Shinshu University, Nagano (Japan). Faculty of Science

    1999-03-10

    The counductivity of several alkali nmetal thiocyanates in water-methanol mixtures was measured at 25degreeC. the data were analyzed using Lee-Wheaton theory for symmetrical electroyers to cbtain ion association constant, K{sub A}, limiting molar sonductivity, {Lambda}{sub 0}, and limiting ionic molar conductivity, lamnda{sub 0}{+-}. In all the solvent systems, calculated{lambda}{sub 0}{sup +} values of the alkali metal ions increase in the order L{sub i}{sup +}fraction of methanol was ca.0.4. The changes in {lambda}{sub 0}{+-} of these alkali metal ions and thiocyanate ion with the molar fraction of methanol agree with change in the viscosity of the solvent or the heat of mixing of wateer-methanol mixtures. These alkali metal thiocyanates from little or no ion aggregated in water and water-methanol mixtures. These alkali metal thiocyanates K{sub A}=15-24 dm{sup 3} mol{sub -1} in methanol. (author)

  18. New seminal variety of Stevia rebaudiana: Obtaining fractions with high antioxidant potential of leaves.

    Science.gov (United States)

    Milani, Paula G; Formigoni, Maysa; Dacome, Antonio S; Benossi, Livia; Costa, Cecília E M DA; Costa, Silvio C DA

    2017-01-01

    The aim of this study was to determine the composition and antioxidant potential of leaves of a new variety of Stevia rebaudiana (Stevia UEM-13). Stevia leaves of UEM-13 contain rebaudioside A as the main glycoside, while most wild Stevia plants contain stevioside. Furthermore can be multiplied by seed, which reduces the cost of plant culture techniques as other clonal varieties are multiplied by buds, requiring sophisticated and expensive seedling production systems. Ethanol and methanol were used in the extraction to determine the bioactive compounds. The methanolic extract was fractionated sequentially with hexane, chloroform, ethyl acetate and isobutanol, and the highest concentration of phenolic compounds and flavonoids was obtained in the ethyl acetate fraction (524.20 mg galic acid equivalent/g; 380.62 µg quercetin equivalent/g). The glycoside content varied greatly among the fractions (0.5% - 65.3%). Higher antioxidant potential was found in the methanol extract and the ethyl acetate fraction with 93.5% and 97.32%, respectively. In addition to being an excellent source for obtaining of extracts rich in glycoside, this new variety can also be used as raw material for the production of extracts or fractions with a significant amount of antioxidant activity and potential to be used as additives in food.

  19. New seminal variety of Stevia rebaudiana: Obtaining fractions with high antioxidant potential of leaves

    Directory of Open Access Journals (Sweden)

    PAULA G. MILANI

    2017-08-01

    Full Text Available ABSTRACT The aim of this study was to determine the composition and antioxidant potential of leaves of a new variety of Stevia rebaudiana (Stevia UEM-13. Stevia leaves of UEM-13 contain rebaudioside A as the main glycoside, while most wild Stevia plants contain stevioside. Furthermore can be multiplied by seed, which reduces the cost of plant culture techniques as other clonal varieties are multiplied by buds, requiring sophisticated and expensive seedling production systems. Ethanol and methanol were used in the extraction to determine the bioactive compounds. The methanolic extract was fractionated sequentially with hexane, chloroform, ethyl acetate and isobutanol, and the highest concentration of phenolic compounds and flavonoids was obtained in the ethyl acetate fraction (524.20 mg galic acid equivalent/g; 380.62 µg quercetin equivalent/g. The glycoside content varied greatly among the fractions (0.5% - 65.3%. Higher antioxidant potential was found in the methanol extract and the ethyl acetate fraction with 93.5% and 97.32%, respectively. In addition to being an excellent source for obtaining of extracts rich in glycoside, this new variety can also be used as raw material for the production of extracts or fractions with a significant amount of antioxidant activity and potential to be used as additives in food.

  20. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    Science.gov (United States)

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  1. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com [Department of Physics, Amity Institute of Applied Sciences, AmityUniversity, Noida (U.P.) (India); Kumar, Narendra [Department of Physics (CASH), Modi University of Science and Technology, Lakshmangarh, Sikar, Rajsthan (India); Thapa, Khem B. [Department of Physics, U I E T, ChhatrapatiShahu Ji Maharaj University, Kanpur- (UP) (India); Ojha, S. P. [Department of Physics IIT, Banaras Hindu University (India)

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  2. Thermoelectric generation coupling methanol steam reforming characteristic in microreactor

    International Nuclear Information System (INIS)

    Wang, Feng; Cao, Yiding; Wang, Guoqiang

    2015-01-01

    Thermoelectric (TE) generator converts heat to electric energy by thermoelectric material. However, heat removal on the cold side of the generator represents a serious challenge. To address this problem and for improved energy conversion, a thermoelectric generation process coupled with methanol steam reforming (SR) for hydrogen production is designed and analyzed in this paper. Experimental study on the cold spot character in a micro-reactor with monolayer catalyst bed is first carried out to understand the endothermic nature of the reforming as the thermoelectric cold side. A novel methanol steam reforming micro-reactor heated by waste heat or methanol catalytic combustion for hydrogen production coupled with a thermoelectric generation module is then simulated. Results show that the cold spot effect exists in the catalyst bed under all conditions, and the associated temperature difference first increases and then decreases with the inlet temperature. In the micro-reactor, the temperature difference between the reforming and heating channel outlets decreases rapidly with an increase in thermoelectric material's conductivity coefficient. However, methanol conversion at the reforming outlet is mainly affected by the reactor inlet temperature; while at the combustion outlet, it is mainly affected by the reactor inlet velocity. Due to the strong endothermic effect of the methanol steam reforming, heat supply of both kinds cannot balance the heat needed at reactor local areas, resulting in the cold spot at the reactor inlet. When the temperature difference between the thermoelectric module's hot and cold sides is 22 K, the generator can achieve an output voltage of 55 mV. The corresponding molar fraction of hydrogen can reach about 62.6%, which corresponds to methanol conversion rate of 72.6%. - Highlights: • Cold spot character of methanol steam reforming was studied through experiment. • Thermoelectric generation Coupling MSR process has been

  3. Statistical Modelling of the Soil Dielectric Constant

    Science.gov (United States)

    Usowicz, Boguslaw; Marczewski, Wojciech; Bogdan Usowicz, Jerzy; Lipiec, Jerzy

    2010-05-01

    The dielectric constant of soil is the physical property being very sensitive on water content. It funds several electrical measurement techniques for determining the water content by means of direct (TDR, FDR, and others related to effects of electrical conductance and/or capacitance) and indirect RS (Remote Sensing) methods. The work is devoted to a particular statistical manner of modelling the dielectric constant as the property accounting a wide range of specific soil composition, porosity, and mass density, within the unsaturated water content. Usually, similar models are determined for few particular soil types, and changing the soil type one needs switching the model on another type or to adjust it by parametrization of soil compounds. Therefore, it is difficult comparing and referring results between models. The presented model was developed for a generic representation of soil being a hypothetical mixture of spheres, each representing a soil fraction, in its proper phase state. The model generates a serial-parallel mesh of conductive and capacitive paths, which is analysed for a total conductive or capacitive property. The model was firstly developed to determine the thermal conductivity property, and now it is extended on the dielectric constant by analysing the capacitive mesh. The analysis is provided by statistical means obeying physical laws related to the serial-parallel branching of the representative electrical mesh. Physical relevance of the analysis is established electrically, but the definition of the electrical mesh is controlled statistically by parametrization of compound fractions, by determining the number of representative spheres per unitary volume per fraction, and by determining the number of fractions. That way the model is capable covering properties of nearly all possible soil types, all phase states within recognition of the Lorenz and Knudsen conditions. In effect the model allows on generating a hypothetical representative of

  4. High field dielectric properties of anisotropic polymer-ceramic composites

    International Nuclear Information System (INIS)

    Tomer, V.; Randall, C. A.

    2008-01-01

    Using dielectrophoretic assembly, we create anisotropic composites of BaTiO 3 particles in a silicone elastomer thermoset polymer. We study a variety of electrical properties in these composites, i.e., permittivity, dielectric breakdown, and energy density as function of ceramic volume fraction and connectivity. The recoverable energy density of these electric-field-structured composites is found to be highly dependent on the anisotropy present in the system. Our results indicate that x-y-aligned composites exhibit higher breakdown strengths along with large recoverable energy densities when compared to 0-3 composites. This demonstrates that engineered anisotropy can be employed to control dielectric breakdown strengths and nonlinear conduction at high fields in heterogeneous systems. Consequently, manipulation of anisotropy in high-field dielectric properties can be exploited for the development of high energy density polymer-ceramic systems

  5. Anticancer potential of Thevetia peruviana fruit methanolic extract.

    Science.gov (United States)

    Ramos-Silva, Alberto; Tavares-Carreón, Faviola; Figueroa, Mario; De la Torre-Zavala, Susana; Gastelum-Arellanez, Argel; Rodríguez-García, Aída; Galán-Wong, Luis J; Avilés-Arnaut, Hamlet

    2017-05-02

    Thevetia peruviana (Pers.) K. Schum or Cascabela peruviana (L.) Lippold (commonly known as ayoyote, codo de fraile, lucky nut, or yellow oleander), native to Mexico and Central America, is a medicinal plant used traditionally to cure diseases like ulcers, scabies, hemorrhoids and dissolve tumors. The purpose of this study was to evaluate the cytotoxic, antiproliferative and apoptotic activity of methanolic extract of T. peruviana fruits on human cancer cell lines. The cytotoxic activity of T. peruviana methanolic extract was carried out on human breast, colorectal, prostate and lung cancer cell lines and non-tumorigenic control cells (fibroblast and Vero), using the MTT assay. For proliferation and motility, clonogenic and wound-healing assays were performed. Morphological alterations were monitored by trypan blue exclusion, as well as DNA fragmentation and AO/EB double staining was performed to evaluate apoptosis. The extract was separated using flash chromatography, and the resulting fractions were evaluated on colorectal cancer cells for their cytotoxic activity. The active fractions were further analyzed through mass spectrometry. The T. peruviana methanolic extract exhibited cytotoxic activity on four human cancer cell lines: prostate, breast, colorectal and lung, with values of IC 50 1.91 ± 0.76, 5.78 ± 2.12, 6.30 ± 4.45 and 12.04 ± 3.43 μg/mL, respectively. The extract caused a significant reduction of cell motility and colony formation on all evaluated cancer cell lines. In addition, morphological examination displayed cell size reduction, membrane blebbing and detachment of cells, compared to non-treated cancer cell lines. The T. peruviana extract induced apoptotic cell death, which was confirmed by DNA fragmentation and AO/EB double staining. Fractions 4 and 5 showed the most effective cytotoxic activity and their MS analysis revealed the presence of the secondary metabolites: thevetiaflavone and cardiac glycosides. T. peruviana extract has

  6. Effects of Berberis vulgaris fractions on PTZ Induced seizure in male rats

    Directory of Open Access Journals (Sweden)

    2017-11-01

    Full Text Available Background and objectives: Berberis vulgaris L (Berberidaceae is a medicinal plant that is distributed in different parts of Iran; it is grown as a wild or cultivated plant. It has different pharmacological activities such as antioxidant, anti-inflammatory, anti-arrhythmic, sedative and anti-malaria effects. In this study, the anti-seizure activity of different fractions of this plant was evaluated. Methods: Seventy two rats were randomly divided in to nine groups (n=8 in each group. (1: negative control group (normal saline 10mL/kg, (2: positive control group (sodium valproate 1 mg/kg, (3, 4, 5: hydroalcoholic extract-treated groups (100, 200, 400 mg/kg, (6, 7: methanol fraction-treated groups (100 and 200 mg/kg and (8, 9: chloroform fraction-treated group (100 and 200 mg/kg. Thirty minute after peritoneal injection of different doses of extract, fractions, saline and gavage of sodium valproate, PTZ (45 mg/kg was injected and they were immediately transferred to a special cage, and the seizure parameters were evaluated for 30 min. Result: The injection of different doses of hydroalcoholic extract and different fractions had a dose-dependent effect on prolongation of latency to the onset of seizures. The effective dose was 400 mg/kg of hydroalcoholic extract and 200 mg/kg of methanol fraction. They decreased the rate of mortality and the number of suddenly seizures jumping significantly. Conclusion: The present study demonstrated that the hydroalcoholic extract and methanol fraction of B. vulgaris showed anticonvulsant activity in PTZ-induced seizures in mice. Therefore, this plant may be more useful in petit mal epilepsy.

  7. Photoacoustic and dielectric spectroscopic studies of 4-dimethylamino-n-methyl-4-stilbazolium tosylate single crystal: An efficient terahertz emitter

    Science.gov (United States)

    Manivannan, M.; Martin Britto Dhas, S. A.; Jose, M.

    2016-12-01

    Bulk terahertz emitting single crystal of 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) was synthesized by condensation method and grown by slow solvent evaporation technique from methanol. The structure and cell parameters of the grown crystals were derived from single crystal and powder X-ray diffraction analyses and the optical properties of the crystal were analyzed by UV-Vis Spectrophotometer. The presence of functional groups was identified by FTIR and FT-Raman spectroscopic studies. We demonstrated that in DAST crystal, the thermal transport properties such as thermal conductivity, thermal diffusivity and thermal effusivity are better than several well recognized standard materials using photoacoustic spectrophotometer. The dielectric measurement was made as a function of frequency (1 Hz-35 MHz) at different temperatures (30-200 °C). The dielectric constant and dielectric loss were found to be strongly dependent on temperature and frequency of the applied electric field. The semicircle in the cole-cole plot showed the presence of dielectric relaxation in the crystal with its diameter representing the resistance of the crystal. The resistivity and ac conductivity were calculated from the measured dielectric data.

  8. Solubility measurement and correlation of 4-nitrophthalimide in (methanol, ethanol, or acetone) + N,N-dimethylformamide mixed solvents at temperatures from 273.15 K to 323.15 K

    International Nuclear Information System (INIS)

    Li, Rongrong; Han, Shuo; Du, Cunbin; Cong, Yang; Wang, Jian; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 4-nitrophthalimide in binary mixed solvents were determined. • Solubility data were correlated and calculated by four models. • The standard dissolution enthalpy for the dissolution processes were calculated. - Abstract: The solubility of 4-nitrophthalimide in binary (methanol + N,N-dimethylformamide (DMF), ethanol + DMF) and (acetone + DMF) solvent mixtures were investigated by the isothermal dissolution equilibrium method under atmosphere pressure. These studies were carried out at different mass fractions of methanol, ethanol or acetone ranging from 0.1 to 0.9 at temperature T = (273.15–323.15) K. For the nine groups of each solvent mixture studied, the solubility of 4-nitrophthalimide in mixed solutions increased with increasing temperature and mass fraction of methanol, ethanol or acetone for the three systems including (methanol + DMF), (ethanol + DMF) and (acetone + DMF). At the same temperature and mass fraction of methanol, ethanol or acetone, the mole fraction solubility of 4-nitrophthalimide in (acetone + DMF) was greater than that in the other two binary solvents. In addition, the experimental mole fraction solubility was correlated by four models (Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, modified Apelblat–Jouyban–Acree model and Sun model). The Jouyban–Acree model gave best representation for the experimental solubility values. Furthermore, the standard molar enthalpies of 4-nitrophthalimide during the dissolving process (Δ sol H o ) were also obtained in this work, and the results show that the dissolution process is endothermic. The experimental solubility and the models used in this work will be helpful in separating 4-nitrophthalimide from its isomeric mixtures.

  9. Methanol fuel update

    International Nuclear Information System (INIS)

    Colledge, R.; Spacek, J.

    1992-01-01

    An overview is presented of methanol fuel developments, with particular reference to infrastructure, supply and marketing. Methanol offers reduced emissions, easy handling, is cost effective, can be produced from natural gas, coal, wood, or municipal waste, is a high performance fuel, is safer than gasoline, and contributes to energy security. Methanol supply, environmental benefits, safety/health issues, economics, passenger car economics, status of passenger car technology, buses, methanol and the prosperity initiative, challenges to implementation, and the role of government and original equipment manufacturers are discussed. Governments must assist in the provision of methanol refuelling infrastructure, and in providing an encouraging regulatory atmosphere. Discriminatory and inequitable taxing methods must be addressed, and an air quality agenda must be defined to allow the alternative fuel industry to respond in a timely manner

  10. Temporal variation of dielectric properties of preserved blood

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yoshihito [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Oshige, Ikuya [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Katsumoto, Yoichi [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Omori, Shinji [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Yasuda, Akio [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Asami, Koji [Laboratory of Molecular Aggregation Analysis, Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2008-01-07

    Rabbit blood was preserved at 277 K in Alsever's solution for 37 days, and its dielectric permittivity was monitored in a frequency range from 0.05 to 110 MHz throughout the period. The relaxation time and Cole-Cole parameter of the interfacial polarization process for erythrocytes remained nearly constant during the first 20 days and then started to increase and decrease, respectively. On the other hand, the relaxation strength and the cell volume fraction continued to decrease for 37 days, but the decrease rates of both changed discontinuously on about the 20th day. Microscope observation showed that approximately 90% of the erythrocytes were spinous echinocytes at the beginning of preservation and started to be transformed into microspherocytes around the 20th day. Therefore, dielectric spectroscopy is a sensitive tool to monitor the deterioration of preserved blood accompanied by morphological transition of erythrocytes through the temporal variation of their dielectric properties.

  11. L-band Dielectric Constant Measurements of Seawater (Oral presentation and SMOS Poster)

    Science.gov (United States)

    Lang, Roger H.; Utku, Cuneyt; LeVine, David M.

    2003-01-01

    This paper describes a resonant cavity technique for the measurement of the dielectric constant of seawater as a function of its salinity. Accurate relationships between salinity and dielectric constant (which determines emissivity) are needed for sensor systems such as SMOS and Aquarius that will monitor salinity from space in the near future. The purpose of the new measurements is to establish the dependence of the dielectric constant of seawater on salinity in contemporary units (e.g. psu) and to take advantage of modern instrumentation to increase the accuracy of these measurements. The measurement device is a brass cylindrical cavity 16cm in diameter and 7cm in height. The seawater is introduced into the cavity through a slender glass tube having an inner diameter of 0.1 mm. By assuming that this small amount of seawater slightly perturbs the internal fields in the cavity, perturbation theory can be employed. A simple formula results relating the real part of the dielectric constant to the change in resonant frequency of the cavity. In a similar manner, the imaginary part of the dielectric constant is related to the change in the cavity s Q. The expected accuracy of the cavity technique is better than 1% for the real part and 1 to 2% for the imaginary part. Presently, measurements of methanol have been made and agree with precision measurements in the literature to within 1% in both real and imaginary parts. Measurements have been made of the dielectric constant of seawater samples from Ocean Scientific in the United Kingdom with salinities of 10, 30, 35 and 38 psu. All measurements were made at room temperature. Plans to make measurements at a range of temperatures and salinities will be discussed.

  12. Integrated anode structure for passive direct methanol fuel cells with neat methanol operation

    Science.gov (United States)

    Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui

    2014-02-01

    A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.

  13. Thermodynamic models for determination of 3-chloro-N-phenylphthalimide solubility in binary solvent mixtures of (acetone, ethyl acetate or 1,4-dioxane + methanol)

    International Nuclear Information System (INIS)

    Xie, Yong; Shi, Hongwei; Du, Cunbin; Cong, Yang; Wang, Jian; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 3-chloro-N-phenylphthalimide in binary mixed solvents were determined. • Solubility data were correlated and calculated by five models. • The standard molar enthalpy for the dissolution processes were calculated. - Abstract: The solubility of 3-chloro-N-phenylphthalimide in binary mixed solvents of (acetone + methanol, ethyl acetate + methanol and 1,4-dioxane + methanol) were determined experimentally by using the isothermal dissolution equilibrium method within the temperature range from (288.15 to 323.15) K under atmosphere pressure. For the binary systems of (acetone + methanol) and (1,4-dioxane + methanol), the solubility of 3-chloro-N-phenylphthalimide increased with increasing temperature and mass fraction of acetone or 1,4-dioxane; and for the (ethyl acetate + methanol) system, at a given composition of ethyl acetate, the solubility of 3-chloro-N-phenylphthalimide increased with an increase in temperature; nevertheless at the same temperature, they increased at first and then decreased with increasing mass fraction of 1,4-dioxane. At the same temperature and mass fraction of acetone, ethyl acetate or 1,4-dioxane, the solubility of 3-chloro-N-phenylphthalimide was greater in (1,4-dioxane + methanol) than in the other two mixed solvents. The solubility values were correlated by employing the Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, Apelblat–Jouyban–Acree model, Ma model, and Sun model. On the whole, the Ma model and Sun model were proven to provide good representation of the experimental solubility results. Furthermore, the dissolution enthalpies of the dissolution process were calculated. The dissolution process of 3-chloro-N-phenylphthalimide in these mixed solvents is endothermic. The experimental solubility and the models in this study could be helpful in purifying 3-chloro-N-phenylphthalimide.

  14. Electrostatic field and charge distribution in small charged dielectric droplets

    Science.gov (United States)

    Storozhev, V. B.

    2004-08-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.

  15. Electrostatic field and charge distribution in small charged dielectric droplets

    International Nuclear Information System (INIS)

    Storozhev, V.B.

    2004-01-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm

  16. Anticancer Activity from Active Fraction of Sea Cucumber

    Directory of Open Access Journals (Sweden)

    Nurul Mutia Putram

    2017-05-01

    Full Text Available Sea Cucumber Holothuria atra is one of marine organisms has been used as a new source of novel bioactive compounds. Many of them have been used as the lead compounds in discovery of new anticancer drugs. The objective of this study was to determine the active fractions of sea cucumber (H. atra which have anticancer activity. H. atra was macerated using ethanol and the extract was freezedried using a freeze dryer. The crude extract was partitioned using n-hexane, ethyl acetate, and methanol-water (3:1:1:1. Cytotoxicity test was performed using HeLa (cervic cancer cell line and MCF-7 (breast cancer cell line based on the MTT assay. The crude extract of H. atra showed the best cytotoxic activity against HeLa cells (IC50 = 12.48 µg/mL and MCF-7 cells (IC50 = 17.90 µg/mL. The toxicity tests showed the IC50 value of the n-hexane fraction, ethyl acetate fraction, and methanol-water fraction against HeLa cells HeLa (IC50 = 76.45 µg/mL; 77.95 µg/mL;  14.27 µg/mL and MCF-7 cells (IC50 = 58.50 µg/mL; 59.59 µg/mL; 14.33 µg/mL.

  17. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2016-12-15

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

  18. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    International Nuclear Information System (INIS)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu; Sunagawa, Takeyoshi

    2016-01-01

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy

  19. Determination and modeling of the solubility of (limonin in methanol or acetone + water) binary solvent mixtures at T = 283.2 K to 318.2 K

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Zheng, Bing; Liao, Dan-Dan; Yu, Jia-Xin; Cao, Ya-Hui; Zhang, Xue-Hong; Zhu, Jian-Hang

    2016-01-01

    Highlights: • The solubilities of limonin were measured in the binary solvent mixtures methanol + water and acetone + water. • The solubility data were correlated by nine models. • The solubility of limonin had a maximum point at 0.9 mol fraction of acetone in acetone + water mixtures. - Abstract: The solubility of limonin in the binary solvent mixtures (methanol + water) and (acetone + water) with various initial mole fractions of methanol or acetone was measured by high-performance liquid chromatography (HPLC) at different temperatures ranging from 283.2 K to 318.2 K. The solubility of limonin increased with increasing initial mole fraction of methanol in (methanol + water) mixtures, whereas it had a maximum point at 0.9 mol fraction of acetone in (acetone + water) mixtures. The solubility of limonin increased with increasing temperature in the two binary solvent mixtures. The solubility of limonin was correlated with temperature by the van’t Hoff model and the modified Apelblat model, and the fitting results showed that the modified Apelblat model had better correlation. The CNIBS/Redlich–Kister model and the simplified CNIBS/Redlich–Kister model were used to correlate the solubility data with the initial solvent composition, the results show that the CNIBS/Redlich–Kister model reveals better agreement with the experimental values. Furthermore, to illustrate the effects of both temperature and initial solvent composition on the changes in the solubility of limonin, the solubility values were fitted by the Jouyban–Acree, van’t Hoff–Jouyban–Acree, modified Apelblat–Jouyban–Acree, Ma and Sun models. Among the five models, the Jouyban–Acree model give the best correlation results for (methanol + water) binary solvent mixtures, while the experimental solubility in the (acetone + water) system was most accurately correlated by the van’t Hoff–Jouyban–Acree model.

  20. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  1. Effect of Phenotypic Screening of Extracts and Fractions of Erythrophleum ivorense Leaf and Stem Bark on Immature and Adult Stages of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Gertrude Kyere-Davies

    2018-01-01

    Full Text Available Schistosomiasis is a disease caused by a flatworm parasite that infects people in tropical and subtropical regions of Sub-Saharan Africa, South America, China, and Southeast Asia. The reliance on just one drug for current treatment emphasizes the need for new chemotherapeutic strategies. The aim of this study was to determine the phenotypic effects of extracts and fractions of leaf and stem bark of Erythrophleum ivorense (family Euphorbiaceae, a tree that grows in tropical parts of Africa, on two developmental stages of Schistosoma mansoni, namely, postinfective larvae (schistosomula or somules and adults. Methanol leaf and stem bark extracts of E. ivorense were successively fractionated with acetone, petroleum ether, ethyl acetate, and methanol. These fractions were then incubated with somules at 0.3125 to 100 μg/mL and with adults at 1.25 μg/mL. The acetone fractions of both the methanol leaf and bark of E. ivorense were most active against the somules whereas the petroleum ether fractions showed least activity. For adult parasites, the acetone fraction of methanol bark extract also elicited phenotypic changes. The data arising provide the first step in the discovery of new treatments for an endemic infectious disease using locally sourced African medicinal plants.

  2. Method of making dielectric capacitors with increased dielectric breakdown strength

    Science.gov (United States)

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  3. Short-term inhalation toxicity of methanol, gasoline, and methanol/gasoline in the rat.

    Science.gov (United States)

    Poon, R; Chu, I; Bjarnason, S; Vincent, R; Potvin, M; Miller, R B; Valli, V E

    1995-01-01

    Four- to five-week-old male and female Sprague Dawley rats were exposed to vapors of methanol (2500 ppm), gasoline (3200 ppm), and methanol/gasoline (2500/3200 ppm, 570/3200 ppm) six hours per day, five days per week for four weeks. Control animals were exposed to filtered room air only. Depression in body weight gain and reduced food consumption were observed in male rats, and increased relative liver weight was detected in rats of both sexes exposed to gasoline or methanol/gasoline mixtures. Rats of both sexes exposed to methanol/gasoline mixtures had increased relative kidney weight and females exposed to gasoline and methanol/gasoline mixtures had increased kidney weight. Decreased serum glucose and cholesterol were detected in male rats exposed to gasoline and methanol/gasoline mixtures. Decreased hemoglobin was observed in females inhaling vapors of gasoline and methanol/gasoline at 570/3200 ppm. Urine from rats inhaling gasoline or methanol/gasoline mixtures had up to a fourfold increase in hippuric acid, a biomarker of exposure to the toluene constituent of gasoline, and up to a sixfold elevation in ascorbic acid, a noninvasive biomarker of hepatic response. Hepatic mixed-function oxidase (aniline hydroxylase, aminopyrine N-demethylase and ethoxyresorufin O-deethylase) activities and UDP-glucuronosyltransferase activity were elevated in rats exposed to gasoline and methanol/gasoline mixtures. Histopathological changes were confined to very mild changes in the nasal passages and in the uterus, where decreased incidence or absence of mucosal and myometrial eosinophilia was observed in females inhaling gasoline and methanol/gasoline at 570/3200 ppm. It was concluded that gasoline was largely responsible for the adverse effects, the most significant of which included depression in weight gain in the males, increased liver weight and hepatic microsomal enzyme activities in both sexes, and suppression of uterine eosinophilia. No apparent interactive effects

  4. Inverse synchronization of coupled fractional-order systems through ...

    Indian Academy of Sciences (India)

    netic waves [8], boundary layer effects in ducts [9], dielectric polarization [10], and ... fractional-order systems [27–34] due to its potential applications in secure ..... Now, according to the stability theorem of linear FDEs [61], we can derive the ...

  5. Chromatographic finger print analysis of anti-inflammatory active extract fractions of aerial parts of Tribulus terrestris by HPTLC technique.

    Science.gov (United States)

    Mohammed, Mona Salih; Alajmi, Mohamed Fahad; Alam, Perwez; Khalid, Hassan Subki; Mahmoud, Abelkhalig Muddathir; Ahmed, Wadah Jamal

    2014-03-01

    To develop HPTLC fingerprint profile of anti-inflammatory active extract fractions of Tribulus terrestris (family Zygophyllaceae). The anti-inflammatory activity was tested for the methanol and its fractions (chloroform, ethyl acetate, n-butanol and aqueous) and chloroform extract of Tribulus terrestris (aerial parts) by injecting different groups of rats (6 each) with carrageenan in hind paw and measuring the edema volume before and 1, 2 and 3 h after carrageenan injection. Control group received saline i.p. The extracts treatment was injected i.p. in doses of 200 mg/kg 1 h before carrageenan administration. Indomethacin (30 mg/kg) was used as standard. HPTLC studies were carried out using CAMAG HPTLC system equipped with Linomat IV applicator, TLC scanner 3, Reprostar 3, CAMAG ADC 2 and WIN CATS-4 software for the active fractions of chloroform fraction of methanol extract. The methanol extract showed good antiedematous effect with percentage of inhibition more than 72%, indicating its ability to inhibit the inflammatory mediators. The methanol extract was re-dissolved in 100 mL of distilled water and fractionated with chloroform, ethyl acetate and n-butanol. The four fractions (chloroform, ethyl acetate, n-butanol and aqueous) were subjected to anti-inflammatory activity. Chloroform fraction showed good anti-inflammatory activity at dose of 200 mg/kg. Chloroform fraction was then subjected to normal phase silica gel column chromatography and eluted with petroleum ether-chloroform, chloroform-ethyl acetate mixtures of increasing polarity which produced 15 fractions (F1-F15). Only fractions F1, F2, F4, F5, F7, F9, F11 and F14 were found to be active, hence these were analyzed with HPTLC to develop their finger print profile. These fractions showed different spots with different Rf values. The different chloroform fractions F1, F2, F4, F5, F7, F9, F11 and F14 revealed 4, 7, 7, 8, 9, 7, 7 and 6 major spots, respectively. The results obtained in this experiment

  6. In vivo hypoglycemic, antinociceptive and in vitro antioxidant activities of methanolic bark extract of Crataeva nurvala

    Directory of Open Access Journals (Sweden)

    Uddin Jalal

    2017-11-01

    Full Text Available Objective: To rationalize the folkloric use of hypoglycemic, antinociceptive and antioxidant potentials with phytochemical screening of methanolic bark extract of Crataeva nurvala (C. nurvala in vivo and in vitro. Methods: The collected bark was dried and grinded. The coarse powder was soaked in 2 000 mL of 90% methanol for several days then filtrated. At 40 °C the volume of crude methanolic extract (CME was reduced by a vacuum rotary evaporator, then the aqueous methanol extract was separated into petroleum ether, carbon tetrachloride, and aqueous soluble fractions by Kupchan protocol. Then the extracts were subjected to evaluate in vivo analgesic, hypoglycemic activities in Swiss albino mice model and antioxidant in vitro. Results: In quantitative phytochemical analysis, total phenolic content was found maximum (235.94 mg of GAE/g in aqueous soluble fraction; in case of antioxidant potentials, DPPH free radical scavenging assay showed IC50 value of 9.25 μg/mL exhibited by aqueous soluble fraction in comparison to ascorbic acid (8.27 μg/mL as a reference standard. The CMEs potentially (P < 0.05 reduced the acetic acid-induced writhing and increased (P < 0.05; P < 0.01 latency period in the tail immersion method at a dose dependent manner. The CME significantly reduced blood sugar level of diabetic rat induced by alloxan monohydrate. Conclusions: This study was conducted to validate the extensive use of C. nurvala bark as folk medicine with antinociceptive, hypoglycemic and antioxidant effects. It can be concluded that the bark of C. nurvala possesses good antinociceptive, moderate hypoglycemic and antioxidant activities. However, further chemical and pharmacological revise are needed to elucidate the detail mode of action behind this and identify the responsible active principles.

  7. Methanol from biomass and hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    For Hawaii in the near term, the only liquid fuels indigenous sources will be those that can be made from biomass, and of these, methanol is the most promising. In addition, hydrogen produced by electrolysis can be used to markedly increase the yield of biomass methanol. This paper calculates cost of producing methanol by an integrated system including a geothermal electricity facility plus a plant producing methanol by gasifying biomass and adding hydrogen produced by electrolysis. Other studies cover methanol from biomass without added hydrogen and methanol from biomass by steam and carbon dioxide reforming. Methanol is made in a two-step process: the first is the gasification of biomass by partial oxidation with pure oxygen to produce carbon oxides and hydrogen, and the second is the reaction of gases to form methanol. Geothermal steam is used to generate the electricity used for the electrolysis to produce the added hydrogen

  8. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  9. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  10. Dielectric studies of Graphene and Glass Fiber reinforced composites

    Science.gov (United States)

    Praveen, D.; Shashi Kumar, M. E.; Pramod, R.

    2018-02-01

    Graphene and E-glass fibres are one of the key materials used currently due to their unique chemical and mechanical properties. Lately graphene has attracted many researchers across academic fraternity as it can yield better properties with lesser reinforcement percentages. The current research emphasizes on the development of graphene-based nanocomposites and its investigation on dielectric applications. The composites were fabricated by adding graphene reinforcements from 1%-3% by weight using conventional Hand-lay process. A thorough investigation was carried out to determine the dielectric behaviour of the nano-composites using impedance analyser according to ASTM standards. The dielectric measurements were carried out in the temperature range of 300K to 400K in a step of 20K. The current research proposes the material for application in capacitor industry as the sample of 2.5% weight fraction showed highest value of K with 14 at 26.1 Hz and 403K.

  11. Combustion of Methanol Droplets in Air-Diluent Environments with Reduced and Normal Gravity

    Directory of Open Access Journals (Sweden)

    Benjamin Shaw

    2012-01-01

    Full Text Available Reduced and normal gravity combustion experiments were performed with fiber-supported methanol droplets with initial diameters in the 1 mm size range. Experiments were performed with air-diluent mixtures at about 0.101 MPa and 298 K, where carbon dioxide, helium, or xenon was separately used as the diluent gas. Results indicate that ambient gas transport properties play an important role in determining flammability and combustion behaviors including burning rates and radiant heat output histories of the droplets. Droplets would burn with significantly higher mole fractions of xenon than helium or carbon dioxide. In reduced gravity, droplets would burn steadily with a xenon mole fraction of 0.50 but would not burn steadily if helium or carbon dioxide mole fractions were 0.50. Comparison with previous experimental data shows that ignitability and combustion characteristics of droplets are influenced by the fuel type and also the gravitational level. Burning rates were about 40% to 70% higher in normal gravity than in reduced gravity. Methanol droplets also had burning rates that were typically larger than 1-propanol burning rates by about 20% in reduced gravity. In normal gravity, however, burning rate differences between the two fuels were significantly smaller.

  12. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    Science.gov (United States)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  13. (Asteraceae) Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquidliquid extraction ...

  14. The kinetics of the methanol synthesis on a copper catalyst: An experimental study

    NARCIS (Netherlands)

    Bos, A.N.R.; Borman, P.C.; Kuczynski, M.; Westerterp, K.R.

    1989-01-01

    The kinetics of the low pressure of methanol from feed gases containing solely CO and H2 were studied in an internally recycled gradientless reactor. As experimental accuracy impeded the application of high CO contents, the experimental range of mole fraction of CO was limited to 0.04 to 0.22. The

  15. Larvicidal activity of Annona senegalensis and Boswellia dalzielii leaf fractions against Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Younoussa Lame

    2014-12-01

    Full Text Available The purpose of the present study was to evaluate the larvicidal activity of leaf fractions of Annona senegalensis and Boswellia dalzielii against fourth instar larvae of Aedes aegypti. Fourth instar larvae of Ae. aegypti were exposed for 24 hours to various concentrations (312.5-2500 mg/L of methanolic crude extract and its fractions obtained with n-hexane, chloroform, ethyl-acetate and methanol solvents, following WHO method. The mortalities recorded were subjected to ANOVA test for mean comparison and Probit analysis to determine LC50. Preliminary phytochemical screening test for some components of the plants assessed were also evaluated. The phytochemical screening of the two plants revealed the presence of alkaloids, steroids, phenolic compounds, terpenoids, fats and oils in the crude extracts which, after splitting were most distributed in n-hexane and chloroform fractions. Apart from methanol fraction, all products used showed a significant (P<0.001 concentration-dependent toxicity against Ae. aegypti larvae. The LC50 recorded with crude extract were 759.6 and 830.4 mg/L for A. senegalensis and B. dalzielli respectively. After fractionation, n-hexane and chloroform fractions of A. senegalensis revealed more effective activity than others with CL50 values of 379.3 and 595.2 mg/L respectively. As for B. dalzielli, n-hexane (LC50=537.1 mg/L and chloroform (LC50=585.5 mg/L fractions were also the most effective. These results suggest that the n-hexane and chloroform fractions of these plants as a promising larvicide against Ae. aegypti and can constitute the best basic and vital step in the development of a botanical insecticide source.

  16. Insecticidal activities and phytochemical screening of crude extracts and its derived fractions from three medicinal plants Nepeta leavigata, Nepeta kurramensis and Rhynchosia reniformis

    International Nuclear Information System (INIS)

    Ahmad, N.; Shinwari, Z.K.

    2016-01-01

    The extracts and its derived fractions from three medicinal plants species Nepeta leavigata, Nepeta kurramensis and Rhynchosia reniformis were tested for insecticidal activities and preliminary phytochemical evaluation with the intention of standardization and proper manage of bioactive principles in such heterogonous botanicals and to encourage drug finding work with plants. The crude extracts and fractions from Nepeta plants showed moderate to strong insecticidal activity. Among the fractions from Nepeta kurramensis the n-butanol fraction showed strongest insecticidal activity with 89% mortality rate against Tribolium castaneum followed by methanol extract with 88% mortality ratio and in case of Nepeta leavigata the potential activity was showed by methanol extracts with 93% mortality rate against the tested insect. Surprisingly none of the extract / fractions obtained from Rhynchosia reniformis plant exhibited any insecticidal activity. The phytochemicals screening results revealed that both species of Nepeta showed similar phytochemicals profile. The group of chemicals terpenes, flavonoids and glycosides were observed in all the extracts/fractions of Nepeta plants. While phenolic compounds, acidic compounds and alkaloids were found in methanolic extracts, chloroform fraction and ethyl acetate fraction. The Rhynchosia reniformis was observed to be a good source of phenolic compounds, flavonoids, terpenes, alkaloids and fats. (author)

  17. A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut+/pAOX1-lacZ strain

    Science.gov (United States)

    2013-01-01

    Background One of the main challenges for heterologous protein production by the methylotrophic yeast Pichia pastoris at large-scale is related to its high oxygen demand. A promising solution is a co-feeding strategy based on a methanol/sorbitol mixture during the induction phase. Nonetheless, a deep understanding of the cellular physiology and the regulation of the AOX1 promoter, used to govern heterologous protein production, during this co-feeding strategy is still scarce. Results Transient continuous cultures with a dilution rate of 0.023 h-1 at 25°C were performed to quantitatively assess the benefits of a methanol/sorbitol co-feeding process with a Mut+ strain in which the pAOX1-lacZ construct served as a reporter gene. Cell growth and metabolism, including O2 consumption together with CO2 and heat production were analyzed with regard to a linear change of methanol fraction in the mixed feeding media. In addition, the regulation of the promoter AOX1 was investigated by means of β-galactosidase measurements. Our results demonstrated that the cell-specific oxygen consumption (qO2) could be reduced by decreasing the methanol fraction in the feeding media. More interestingly, maximal β-galactosidase cell-specific activity (>7500 Miller unit) and thus, optimal pAOX1 induction, was achieved and maintained in the range of 0.45 ~ 0.75 C-mol/C-mol of methanol fraction. In addition, the qO2 was reduced by 30% at most in those conditions. Based on a simplified metabolic network, metabolic flux analysis (MFA) was performed to quantify intracellular metabolic flux distributions during the transient continuous cultures, which further shed light on the advantages of methanol/sorbitol co-feeding process. Finally, our observations were further validated in fed-batch cultures. Conclusion This study brings quantitative insight into the co-feeding process, which provides valuable data for the control of methanol/sorbitol co-feeding, aiming at enhancing biomass and

  18. IDENTIFICATION AND ANTIOXIDANT ACTIVITY TEST OF SOME COMPOUNDS FROM METHANOL EXTRACT PEEL OF BANANA (Musa paradisiaca Linn.

    Directory of Open Access Journals (Sweden)

    Sri Atun

    2010-06-01

    Full Text Available The objective of these research was measured activity as antioxidant some compounds in methanol extracts of peel of banana (Musa paradisiaca Linn., isolated some compounds which had activities as antioxidant, and determined this structure. Method of this study was extracted powdered peel of banana with methanol at room temperature. Extract was concentrated in vaccuo and then successively was partitioned with n-hexane, chloroform, etyl acetate, and buthanol. Antioxidant test from each fractions was measured by hydroxyl radical scavenger test with Fenton reaction method. The result of this study showed activity each fractions as  hydroxyl radical scavenger activity of chloroform, etyl acetate, and buthanol fraction were IC50 693.15; 2347.40; and 1071.14 mg/mL respectively. The isolation of secondary metabolite compounds from chloroform fraction obtained two isolate compounds. Identification by spectroscopy IR,  MS, 1H and 13C NMR one and two dimension showed that the compounds are 5,6,7,4'-tetrahidroxy-3,4-flavan-diol and a new compound cyclohexenon derivative (2-cyclohexene-1-on-2,4,4-trimethyl-3-O-2'-hydroxypropyl ether.   Keywords: antioxidant, peel of banana, Musa paradisiaca, hydroxyl radical scavenger

  19. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    Science.gov (United States)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  20. Stretched-exponential decay functions from a self-consistent model of dielectric relaxation

    International Nuclear Information System (INIS)

    Milovanov, A.V.; Rasmussen, J.J.; Rypdal, K.

    2008-01-01

    There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this Letter we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives

  1. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  2. Characterization and microwave dielectric properties of Mg{sub 2}YVO{sub 6} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chia-Hui; Wang, Yi-Sheng; Huang, Cheng-Liang, E-mail: huangcl@mail.ncku.edu.tw

    2015-08-25

    Highlights: • Study the microwave dielectric properties and microstructure of Mg{sub 2}YVO{sub 6}. • Mg{sub 2}YVO{sub 6} possesses excellent dielectric properties. • Both extrinsic and intrinsic factors have effects on Q × f of specimens. - Abstract: Tetragonal-structured Mg{sub 2}YVO{sub 6} ceramics were prepared by conventional solid-state method, and their physical and microwave dielectric properties were investigated for the first time. The forming of Mg{sub 2}YVO{sub 6} main phase was confirmed by XRD diffraction pattern. XPS and Raman spectrum were recorded to clarify the chemical states of elements and vibration and rotation modes of the specimen, respectively. In addition, the relationships between sintering temperature, packing fraction, and microwave dielectric properties in Mg{sub 2}YVO{sub 6} ceramics were also studied. The new microwave dielectric material Mg{sub 2}YVO{sub 6} ceramics sintered at 1290 °C for 4 h has a dielectric constant (ε{sub r}) of ∼10.88, a Q × f of ∼68,300 GHz (f = 10.389 GHz), and a τ{sub f} ∼ −53.9 ppm/°C, demonstrating a candidate for microwave application.

  3. Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics

    International Nuclear Information System (INIS)

    Ramarao, S.D.; Murthy, V.R.K.

    2013-01-01

    Graphical abstract: -- The effects of substituting different cations (Mn, Zn, Mg and Co) at the A-site of AZrNb 2 O 8 compounds on structural parameters such as packing fraction and B-site octahedral distortion were studied using X-ray powder diffraction in conjunction with Rietveld refinement. Variations in the dielectric constant (ε r ) were explained by the ionic polarizability of the compositions. The quality factor (Q × f) and temperature coefficient of resonant frequency (τ f ) were correlated with the packing fraction and B-site octahedral distortions (δ) in these compositions, respectively

  4. Methanol production by Mycobacterium smegmatis

    International Nuclear Information System (INIS)

    Weisman, L.S.; Ballou, C.E.

    1988-01-01

    Mycobacterium smegmatis cells produce [ 3 H]methanol when incubated with [methyl- 3 H]methionine. The methanol is derived from S-adenosylmethionine rather than methyltetrahydrofolate. M. smegmatis cells carboxymethylate several proteins, and some of the methanol probably results from their demethylation, but most of the methanol may come from an unidentified component with a high gel mobility. Although methanol in the medium reached 19 μM, it was not incorporated into the methylated mannose polysaccharide, a lipid carrier in this organism

  5. Study of the influence of surfactants on the activity coefficients and mass transfer coefficients of methanol in aqueous mixtures by reversed-flow gas chromatography.

    Science.gov (United States)

    Kotsalos, Efthimios; Brezovska, Boryana; Sevastos, Dimitrios; Vagena, Artemis; Koliadima, Athanasia; Kapolos, John; Karaiskakis, George

    2017-11-17

    This work focuses on the influences of surfactants on the activity coefficients, γ, of methanol in binary mixtures with water, as well as on the mass transfer coefficients, k c , for the evaporation of methanol, which is a ubiquitous component in the troposphere, from mixtures of methanol with water at various surfactant's and methanol's concentrations. The technique used is the Reversed-Flow Gas Chromatography (R.F.G.C.), a version of Inverse Gas Chromatography, which allows determining both parameters by performing only one experiment for the k c parameter and two experiments for the γ parameter. The k c and γ values decrease in the presence of the three surfactants used (CTAB, SDS, TRITON X-100) at all methanol's and surfactant's concentrations. The decrease in the methanol's molar fraction, at constant number of surfactant films leads to a decrease in the k c and γ values, while the decrease in the surfactant's concentration, at constant methanol's molar fraction leads to an increase in both the k c and γ parameters. Mass transfer coefficients for the evaporation of methanol at the surfactant films, are also calculated which are approximately between 4 and 5 orders of magnitude larger than the corresponding mass transfer coefficients at the liquid films. Finally, thicknesses of the boundary layer of methanol in the mixtures of methanol with water were determined. The quantities found are compared with those given in the literature or calculated theoretically using various empirical equations. The precision of the R.F.G.C. method for measuring γ and k c parameters is approximately high (94.3-98.0%), showing that R.F.G.C. can be used with success not only for the thermodynamic study of solutions, but also for the interphase transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. SORPTION OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN TO SOILS FROM WATER/METHANOL MIXTURES

    Science.gov (United States)

    Sorption of 14C-labeled 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to soils from water/methanol mixtures has been evaluated by batch shake testing. Uncontaminated soils from Times Beach, MO, were used in these experiments and ranged in fraction organic carbon (U...

  7. Electro-oxidation of methanol diffused through proton exchange membrane on Pt surface: crossover rate of methanol

    International Nuclear Information System (INIS)

    Jung, Inhwa; Kim, Doyeon; Yun, Yongsik; Chung, Suengyoung; Lee, Jaeyoung; Tak, Yongsug

    2004-01-01

    Methanol crossover rate through proton exchange membrane (Nafion 117) was investigated with a newly designed electrochemical stripping cell. Nanosize Pt electrode was prepared by the electroless deposition. Distinct electrocatalytic oxidation behaviors of methanol inside membrane were similar to the methanol oxidation in aqueous electrolyte, except adsorption/desorption of hydrogen. The amount of methanol diffused through membrane was calculated from the charge of methanol oxidation during repetitive cyclic voltammetry (CV) and methanol crossover rate was estimated to be 0.69 nmol/s

  8. FRACTIONATION OF FATTY ACID OMEGA 3, 6 AND 9 FROM SNAIL (Achatina fulica USING COLOUM CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    Winarto Haryadi

    2010-06-01

    Full Text Available The extraction of fat from snail has been carried out by Soxhlet extractor with petroleum ether solvent. Fatty product from extraction was transesterificated in BF3/methanol solvent for an hour by reflux procedure, then extracted by n-hexane to produce methyl ester fatty acid. Free water fatty acid methyl ester was analyzed by Gas Chromatography-Mass spectrometer (GC-MS. Fatty acid ester was separated from its fractions use column chromatography in n-hexane, n-hexane:dietil eter (2:1 v/v, dietil eter, aseton, ethanol and methanol. This fractions wer also analized by GC-MS. From GC-MS data sheet can be obtained 5 fractions which details are; fraction 1 contains omega 3: 27.54 %, omega 6: 15.40 % and omega 9: 6.77 %. Fraction 2 contains omega 3: 3.08 %, omega 6: 15.62 % and omega 9: 10.72 %. Fraction 3 contains omega 6: 3.57 %, omega 9: 7.02 % and none omega 3 inside it. Omega 3, 6 and 9 can't be identification in fraction 4 and 5.   Keywords: extraction, transesterification, column chromatography, GC-MS

  9. Effect of carbon derivatives in sulfonated poly(etherimide)-liquid crystal polymer composite for methanol vapor sensing

    Science.gov (United States)

    Bag, Souvik; Rathi, Keerti; Pal, Kaushik

    2017-05-01

    A class of highly sensitive chemiresistive sensors is developed for methanol (MeOH) vapor detection in ambient atmosphere by introducing conductive nanofillers like carbon black, multi-wall carbon nanotubes, and reduced graphene oxide into sulfonated poly(etherimide) (PEI)/liquid crystal polymer (LCP) composite (sPEI-LCP). Polar composites are prepared by a sulfonation process for instantaneous enhancement in adsorption capability of the sensing films to the target analyte (MeOH). Sensing properties exhibit that polymer composite-based fabricated sensors are efficient for the detection of different concentration of methanol vapor from 300-1200 parts-per-million (ppm) at room temperature. The incorporation of nanofiller induces the dramatic change in sensing behavior of base composite film (sPEI-LCP). Thus, less mass fraction of nanofillers (i.e. 2 wt%) influences the nonlinear sensing behavior for the entire range of methanol vapor. The simple method and low fabrication cost of the prepared sensor are compelling reasons that methanol vapor sensor is suitable for environmental monitoring.

  10. Central depressant activity of butanol fraction of Securinega virosa root bark in mice.

    Science.gov (United States)

    Magaji, Mohammed Garba; Yaro, Abdullahi Hamza; Musa, Aliyu Muhammad; Anuka, Joseph Akponso; Abdu-Aguye, Ibrahim; Hussaini, Isa Marte

    2012-05-07

    Securinega virosa is a commonly used medicinal plant in African traditional medicine in the management of epilepsy and mental illness. Previous studies in our laboratory showed that the crude methanol root bark extract of the plant possesses significant behavioral effect in laboratory animals. In an attempt to isolate and characterize the biological principles responsible for the observed activity, this study is aimed at evaluating the central depressant activity of the butanol fraction of the methanol root bark extract of Securinega virosa. The medial lethal dose of the butanol fraction was estimated using the method of Lorke. Preliminary phytochemical screening was conducted on the butanol fraction using standard protocol. The behavioral effect of the butanol fraction (75, 150 and 300mg/kg) was evaluated using diazepam induced sleep test, hole-board test, beam walking assay, staircase test, open field test and elevated plus maze assay, all in mice. The median lethal dose of the butanol fraction was estimated to be 1256.9mg/kg. The preliminary phytochemical screening revealed the presence of tannins, saponins, alkaloids, flavonoids, cardiac glycosides, similar to those found in the crude methanol extract. The butanol fraction significantly (Ptime taken to complete the task and number of foot slips in the beam walking assay, suggesting that it does not induce significant motor coordination deficit. Diazepam (2mg/kg), the standard agent used significantly (Popen field test, the butanol fraction significantly reduced the number of square crossed as well as the number of rearing. However, the butanol fraction did not significantly alter the behavior of mice in the elevated plus maze assay, while diazepam (0.5mg/kg) significantly (Ptime spent in the open arm and reduced the number of closed arm entry. The findings of this study suggest that the butanol fraction of Securinega virosa root bark contains some bioactive principles that are sedative in nature. Copyright

  11. Experimental analysis of methanol cross-over in a direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, Andrea [Dipartimento di Energetica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)]. E-mail: andrea.casalegno@polimi.it; Grassini, Paolo [Dipartimento di Energetica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)]. E-mail: PGrassini@seal.it; Marchesi, Renzo [Dipartimento di Energetica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)]. E-mail: renzo.marchesi@polimi.it

    2007-03-15

    Methanol cross-over through the polymeric membrane is one of the main causes limiting direct methanol fuel cell performances. It causes fuel wasting and enhances cathode overpotential. A repeatable and reproducible measurement system, that assures the traceability of the measurement to international reference standards, is necessary to compare different fuel cell construction materials. In this work a method to evaluate methanol cross-over rate and operating condition influence is presented and qualified in term of measurement uncertainty. In the investigated range, the methanol cross-over rate results mainly due to diffusion through the membrane, in fact it is strongly affected by temperature. Moreover the cross-over influence on fuel utilization and fuel cell efficiency is investigated. The methanol cross-over rate appears linearly proportional to electrochemical fuel utilization and values, obtained by measurements at different anode flow rate but constant electrochemical fuel utilization, are roughly equal; methanol wasting, due to cross-over, is considerable and can still be higher than electrochemical utilization. The fuel recirculation effect on energy efficiency has been investigated and it was found that fuel recirculation gives more advantage at low temperature, but fuel cell energy efficiency results are in any event higher at high temperature.

  12. Experimental analysis of methanol cross-over in a direct methanol fuel cell

    International Nuclear Information System (INIS)

    Casalegno, Andrea; Grassini, Paolo; Marchesi, Renzo

    2007-01-01

    Methanol cross-over through the polymeric membrane is one of the main causes limiting direct methanol fuel cell performances. It causes fuel wasting and enhances cathode overpotential. A repeatable and reproducible measurement system, that assures the traceability of the measurement to international reference standards, is necessary to compare different fuel cell construction materials. In this work a method to evaluate methanol cross-over rate and operating condition influence is presented and qualified in term of measurement uncertainty. In the investigated range, the methanol cross-over rate results mainly due to diffusion through the membrane, in fact it is strongly affected by temperature. Moreover the cross-over influence on fuel utilization and fuel cell efficiency is investigated. The methanol cross-over rate appears linearly proportional to electrochemical fuel utilization and values, obtained by measurements at different anode flow rate but constant electrochemical fuel utilization, are roughly equal; methanol wasting, due to cross-over, is considerable and can still be higher than electrochemical utilization. The fuel recirculation effect on energy efficiency has been investigated and it was found that fuel recirculation gives more advantage at low temperature, but fuel cell energy efficiency results are in any event higher at high temperature

  13. METHANOL REMOVAL FROM METHANOL-WATER MIXTURE USING ACTIVATED SLUDGE, AIR STRIPPING AND ADSORPTION PROCESS: COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    SALAM K. AL-DAWERY

    2015-12-01

    Full Text Available An experimental research has been carried out in order to examine the removal of methanol from methanol-water mixtures using three different methods; activated sludge; activated carbon and air stripping. The results showed that the methanol was totally consumed by the bacteria as quickly as the feed entered the activated sludge vessel. Air stripping process has a limited ability for removing of methanol due to strong intermolecular forces between methanol and water; however, the results showed that the percentage of methanol removed using air pressure at 0.5 bar was higher than that of using air pressure of 0.25 bar. Removal of methanol from the mixture with a methanol content of 5% using activated carbon was not successful due to the limited capacity of the of the activated carbon. Thus, the activated sludge process can be considered as the most suitable process for the treatment of methanol-water mixtures.

  14. Characterization and Optimization of the Glyoxalation of a Methanol-Fractionated Alkali Lignin using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Aikfei Ang

    2015-06-01

    Full Text Available The glyoxalation of a methanol-fractionated alkali lignin was executed at 60 °C for 8 h with different amounts of glyoxal (40% in water and 30% NaOH. The weights of the lignin and water were fixed at 10.0 and 15.0 g, respectively. The gel permeation chromatography (GPC results indicated that depolymerization of lignin molecules occurred during the glyoxalation process. However, a higher polydispersity index (Mw/Mn of all glyoxalated lignins compared to the unmodified lignin (ML showed that lignin polymers with a variety of chain lengths were generated through the crosslinking and through the repolymerization of lignin molecules via methylene (CH2 bridges and new, strong C-C bonds after the condensation reaction. This was confirmed by thermogravimetry analysis (TGA. Optimum amounts of glyoxal and NaOH to be used in the glyoxalation process were ascertained by quantifying the intensity of relative absorbance for the CH2 bands obtained from FT-IR spectra and by using response surface methodology (RSM and central composite design (CCD, which facilitated the development of a lignin with appropriate reactivity for wood adhesive formulation. The experimental values were in good agreement with the predicted ones, and the model was highly significant, with a coefficient of determination of 0.9164. The intensity of the relative absorbance for the CH2 band of 0.42 was obtained when the optimum amounts of glyoxal and NaOH, i.e., 0.222 and 0.353, respectively, were used in the glyoxalation process.

  15. Disclosed dielectric and electromechanical properties of hydrogenated nitrile–butadiene dielectric elastomer

    International Nuclear Information System (INIS)

    Yang, Dan; Tian, Ming; Dong, Yingchao; Liu, Haoliang; Yu, Yingchun; Zhang, Liqun

    2012-01-01

    This paper presents a comprehensive study of the effects of acrylonitrile content, crosslink density and plasticization on the dielectric and electromechanical performances of hydrogenated nitrile–butadiene dielectric elastomer. It was found that by increasing the acrylonitrile content of hydrogenated nitrile–butadiene dielectric elastomer, the dielectric constant will be improved accompanied with a sharp decrease of electrical breakdown strength leading to a small actuated strain. At a fixed electric field, a high crosslink density increased the elastic modulus of dielectric elastomer, but it also enhanced the electrical breakdown strength leading to a high actuated strain. Adding a plasticizer into the dielectric elastomer decreased the dielectric constant and electrical breakdown strength slightly, but reduced the elastic modulus sharply, which was beneficial for obtaining a large strain at low electric field from the dielectric elastomer. The largest actuated strain of 22% at an electric field of 30 kV mm −1 without any prestrain was obtained. Moreover, the hydrogenated nitrile–butadiene dielectric actuator showed good history dependence. This proposed material has great potential to be an excellent dielectric elastomer. (paper)

  16. Modelling and experimental studies on a direct methanol fuel cell working under low methanol crossover and high methanol concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [Instituto Nacional de Energia e Geologia, Fuel Cells and Hydrogen, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)

    2009-08-15

    A number of issues need to be resolved before DMFC can be commercially viable such as the methanol crossover and water crossover which must be minimised in portable DMFCs. The main gain of this work is to systematically vary commercial MEA materials and check their influence on the cell performance of a direct methanol fuel cell operating at close to room temperature. A detailed experimental study on the performance of an <> developed DMFC with 25 cm{sup 2} of active membrane area, working near the ambient conditions is described. Tailored MEAs (membrane-electrode assemblies), with different structures and combinations of gas diffusion layers (GDLs), were designed and tested in order to select optimal working conditions at high methanol concentration levels without sacrificing performance. The experimental polarization and power density curves were successfully compared with the predictions of a steady state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the DMFC recently developed by the same authors. The influence of the anode gas diffusion layer media, the membrane thickness and the MEA properties on the cell performance are explained under the light of the predicted methanol crossover rate across the membrane. A tailored MEA build-up with the common available commercial materials was proposed to achieve relatively low methanol crossover, operating at high methanol concentrations. The use of adequate materials for the gas diffusion layers (carbon paper at the anode GDL and carbon cloth at the cathode GDL) enables the use of thinner membranes enhancing the water back diffusion which is essential to work at high methanol concentrations. (author)

  17. Brine shrimp cytotoxicity of Caesalpinia pulcherrima aerial parts, antimicrobial activity and characterisation of isolated active fractions.

    Science.gov (United States)

    Chanda, Sumitra; Baravalia, Yogesh

    2011-12-01

    Caesalpinia pulcherrima Swartz. is an ornamental plant, shrub or a small tree belonging to the family Caesalpiniaceae. The plant has been used for the treatment of inflammatory disorders, skin diseases and so on. In this study, the cytotoxicity of the methanol extract of the aerial parts of C. pulcherrima was tested using an Artemia salina (brine shrimp) bioassay. Further, the methanol extract was fractionated by silica gel column chromatography using a solvent gradient of hexane:ethyl acetate:methanol in different ratios and 56 fractions were collected. On the basis of thin layer chromatography profiles, 13 major fractions were obtained, which were tested for antimicrobial activity against 14 microorganisms using the agar disc diffusion method and also tested for their minimal inhibitory concentration and minimal bactericidal concentration values. In terms of cytotoxicity, the extract caused 26% mortality of brine shrimp larvae after 24 h at a concentration of 1000 µg mL(-1). Fractions 3, 9 and 10 showed significant antimicrobial activities. Phytochemical analysis of these three fractions led to the identification of 11 compounds, and their structures were established by means of gas chromatography-mass spectroscopy techniques. These findings suggest that these bioactive compounds may be useful as potential antimicrobials. Further investigation is needed to establish the mode of action of these bioactive compounds.

  18. Sorption phenomena of methanol on heat treated coal; Netsushori wo hodokoshita sekitan no methanol kyuchaku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, H.; Kaiho, M.; Yamada, O.; Soneda, Y.; Kobayashi, M.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Experiments were carried out to learn methanol sorption characteristics of heat-treated coal. When Taiheiyo coal is heat-treated at 125{degree}C, performed with a first methanol adsorption at 25{degree}C, and then desorption at 25{degree}C, a site with strong interaction with methanol and a site with relatively weak interaction are generated in test samples. A small amount of methanol remains in both sites. Then, when the methanol is desorbed at as low temperature as 70{degree}C, the methanol in the site with strong interaction remains as it has existed therein, but the methanol in the site with relatively weak interaction desorbs partially, hence the adsorption amount in a second adsorption at 25{degree}C increases. However, when desorption is performed at as high temperature as 125{degree}C, the methanol in the site with strong interaction also desorbs, resulting in increased adsorption heat in the second adsorption. The adsorption velocity drops, however. Existence of methanol in a site with strong interaction affects the adsorption velocity, but no effect is given by methanol in a site with weak interaction. 3 refs., 4 figs.

  19. [Isolation of a methanol-utilizing strain and its application for determining methanol].

    Science.gov (United States)

    Guo, Jun; Gao, Wei; Zhang, Qiang; Qu, Fei; Lu, Dongtao; Zheng, Jun; Pang, Jinmei; Yang, Yujing

    2013-08-04

    To isolate and characterize bacteria that can be used todevelop microbial biosensor for methanol (MeOH) determination. We used selective medium and streak plate to isolate bacteria. Morphological, physiological characteristics and 16S rDNA sequence analysis were used to identify the strain. An MeOH biosensor was then developed by immobilizing M211 along with dissolved oxygen (O2) sensor. An MeOH utilizing bacterium was isolated from biogas-producing tank using methanol as the sole carbon source, and identified as Methylobacteriumorganophilium. Decrease of O2 concentration is linearly related to the MeOH concentration in the range from 0.02% to 1%, with the MeOH detection limit of 0.27 mg/L. The response time of the biosensor is within 20 min. Furthermore, the result of interference test and the detection of methanol sample are both satisfactory. Good results are obtained in interference test and the detection of methanol sample. The proposed method seems very attractive in monitoring methanol.

  20. A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut⁺/pAOX1-lacZ strain.

    Science.gov (United States)

    Niu, Hongxing; Jost, Laurent; Pirlot, Nathalie; Sassi, Hosni; Daukandt, Marc; Rodriguez, Christian; Fickers, Patrick

    2013-04-08

    One of the main challenges for heterologous protein production by the methylotrophic yeast Pichia pastoris at large-scale is related to its high oxygen demand. A promising solution is a co-feeding strategy based on a methanol/sorbitol mixture during the induction phase. Nonetheless, a deep understanding of the cellular physiology and the regulation of the AOX1 promoter, used to govern heterologous protein production, during this co-feeding strategy is still scarce. Transient continuous cultures with a dilution rate of 0.023 h(-1) at 25°C were performed to quantitatively assess the benefits of a methanol/sorbitol co-feeding process with a Mut+ strain in which the pAOX1-lacZ construct served as a reporter gene. Cell growth and metabolism, including O2 consumption together with CO2 and heat production were analyzed with regard to a linear change of methanol fraction in the mixed feeding media. In addition, the regulation of the promoter AOX1 was investigated by means of β-galactosidase measurements. Our results demonstrated that the cell-specific oxygen consumption (qO2) could be reduced by decreasing the methanol fraction in the feeding media. More interestingly, maximal β-galactosidase cell-specific activity (>7500 Miller unit) and thus, optimal pAOX1 induction, was achieved and maintained in the range of 0.45 ~ 0.75 C-mol/C-mol of methanol fraction. In addition, the qO2 was reduced by 30% at most in those conditions. Based on a simplified metabolic network, metabolic flux analysis (MFA) was performed to quantify intracellular metabolic flux distributions during the transient continuous cultures, which further shed light on the advantages of methanol/sorbitol co-feeding process. Finally, our observations were further validated in fed-batch cultures. This study brings quantitative insight into the co-feeding process, which provides valuable data for the control of methanol/sorbitol co-feeding, aiming at enhancing biomass and heterologous protein productivities

  1. Dietary methanol and autism.

    Science.gov (United States)

    Walton, Ralph G; Monte, Woodrow C

    2015-10-01

    The authors sought to establish whether maternal dietary methanol during pregnancy was a factor in the etiology of autism spectrum disorders. A seven item questionnaire was given to women who had given birth to at least one child after 1984. The subjects were solicited from a large primary care practice and several internet sites and separated into two groups - mothers who had given birth to a child with autism and those who had not. Average weekly methanol consumption was calculated based on questionnaire responses. 550 questionnaires were completed by women who gave birth to a non-autistic child. On average these women consumed 66.71mg. of methanol weekly. 161 questionnaires were completed by women who had given birth to an autistic child. The average estimated weekly methanol consumption for this group was 142.31mg. Based on the results of the Wilcoxon rank sum-test, we see a significant difference between the reported methanol consumption rates of the two groups. This study suggests that women who have given birth to an autistic child are likely to have had higher intake of dietary sources of methanol than women who have not. Further investigation of a possible link of dietary methanol to autism is clearly warranted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Chromatographic finger print analysis of anti-inflammatory active extract fractions of aerial parts of Tribulus terrestris by HPTLC technique

    Science.gov (United States)

    Mohammed, Mona Salih; Alajmi, Mohamed Fahad; Alam, Perwez; Khalid, Hassan Subki; Mahmoud, Abelkhalig Muddathir; Ahmed, Wadah Jamal

    2014-01-01

    Objective To develop HPTLC fingerprint profile of anti-inflammatory active extract fractions of Tribulus terrestris (family Zygophyllaceae). Methods The anti-inflammatory activity was tested for the methanol and its fractions (chloroform, ethyl acetate, n-butanol and aqueous) and chloroform extract of Tribulus terrestris (aerial parts) by injecting different groups of rats (6 each) with carrageenan in hind paw and measuring the edema volume before and 1, 2 and 3 h after carrageenan injection. Control group received saline i.p. The extracts treatment was injected i.p. in doses of 200 mg/kg 1 h before carrageenan administration. Indomethacin (30 mg/kg) was used as standard. HPTLC studies were carried out using CAMAG HPTLC system equipped with Linomat IV applicator, TLC scanner 3, Reprostar 3, CAMAG ADC 2 and WIN CATS-4 software for the active fractions of chloroform fraction of methanol extract. Results The methanol extract showed good antiedematous effect with percentage of inhibition more than 72%, indicating its ability to inhibit the inflammatory mediators. The methanol extract was re-dissolved in 100 mL of distilled water and fractionated with chloroform, ethyl acetate and n-butanol. The four fractions (chloroform, ethyl acetate, n-butanol and aqueous) were subjected to anti-inflammatory activity. Chloroform fraction showed good anti-inflammatory activity at dose of 200 mg/kg. Chloroform fraction was then subjected to normal phase silica gel column chromatography and eluted with petroleum ether-chloroform, chloroform-ethyl acetate mixtures of increasing polarity which produced 15 fractions (F1-F15). Only fractions F1, F2, F4, F5, F7, F9, F11 and F14 were found to be active, hence these were analyzed with HPTLC to develop their finger print profile. These fractions showed different spots with different Rf values. Conclusions The different chloroform fractions F1, F2, F4, F5, F7, F9, F11 and F14 revealed 4, 7, 7, 8, 9, 7, 7 and 6 major spots, respectively. The

  3. Growth, spectral, dielectric and antimicrobial studies on 4-piperidinium carboxylamide picrate crystals

    Science.gov (United States)

    Dhanabal, T.; Tharanitharan, V.; Amirthaganesan, G.; Dhandapani, M.

    2014-07-01

    Single crystal of 4-piperidinium carboxylamide picrate was grown by slow evaporation solution growth technique at ambient temperature. The average dimensions of grown crystal were 0.7 × 0.3 × 0.2 cm3. The solubility of the compound was analyzed using methanol and acetone. Optical property of the compound was ascertained by UV-visible absorption spectral study. The sharp and well defined Bragg peaks observed in the powder X-ray diffraction pattern confirm its crystallinity. The different kinds of protons and carbons in the compound were confirmed by 1H and 13C NMR spectral analyses. The presence of various functional groups in the compound was assigned through polarized Raman spectral study. The mechanical property of the crystal was measured by Vicker's microhardness test and the compound was found to be soft material. The dielectric constant and dielectric loss of the crystal decrease with increase in frequency. The antibacterial and antifungal activities of the crystal were studied by disc diffusion method and found that the compound shows good inhibition efficiency against various bacteria and fungi species.

  4. Hot new gamble on methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, J.

    1981-10-01

    Methanol from coal, wood, or natural gas is being considered as an extender or an alternative source of gasoline. Firms such as Nova and Celanese are gambling millions on the proposition that methanol is a crucial steppingstone to the fuels and chemicals of the future. With a new process developed by Mobil Oil, methanol from coal could be converted into gasoline. By the 1990s Imperial Oil Ltd. expects there will be at least one methanol plant using Alberta coal. These and other plans by the Alberta and British Columbia governments and by Canadian industry to produce methanol are reported.

  5. Analytical chemical study of alkaloid fraction of methanolic extract of Croton baillonianus (AUBL) leaves

    International Nuclear Information System (INIS)

    Fuertes R, Cesar M.; Benavides, Angelyne; Pizza, Cosimo; Napolitano, Asunta; Basarello, Carla; Piacente, Sonia; Carbone Virginia

    2012-01-01

    The objective of the present study has been to extract and isolate the alkaloids from leaves of Croton baillonianus, corresponding to the methanolic extract by exclusion chromatography with Sephadex LH-20 followed by a purification by high performance liquid chromatography, obtaining six alkaloids. Two low polarity alkaloid and two glycoside alkaloids were analyzed by Electronic System impact mass spectrometry; these alkaloids belong to bencylisoquinolinic type; the study has connection to the determination of its antioxidant, antiulcerose and cytotoxic properties. (author).

  6. Sensing methanol concentration in direct methanol fuel cell with total harmonic distortion: Theory and application

    International Nuclear Information System (INIS)

    Mao Qing; Krewer, Ulrike

    2012-01-01

    The nonlinear frequency response of a direct methanol fuel cell (DMFC) is studied by analyzing the total harmonic distortion (THD) spectra. The dependence of the THD spectra on methanol concentration and methanol oxidation kinetics is investigated by means of both simulation and experiment. Simulation using a continuous stirred tank reactor network model suggests that the methanol concentration profile in the anode has a strong impact on the THD spectra. The experimentally observed nonlinear behavior of the DMFC anode can be qualitatively reproduced with a model containing a three-step methanol oxidation mechanism with Kauranen–Frumkin/Temkin kinetics. Both experiment and simulation results show that THD value has a monotonic correlation with methanol concentration at certain frequencies and its sensitivity to concentration is improved with increased current amplitude. The monotonic relationship enables the THD to sense the methanol concentration level by the DMFC itself, which is of mayor interest for the portable application as an external sensor for the system can be omitted.

  7. Metabolism of methanol in acetogenic bacteria

    International Nuclear Information System (INIS)

    Ivey, D.K.W.

    1987-01-01

    Acetogens can grown on methanol in the presence of a cosubstrate that is more oxidized than methanol. Three mol of acetate is formed from 4 mol methanol and 2 mol CO 2 . One mol of methanol is oxidized to CO 2 . The levels of the tetrahydrofolate enzymes, carbon monoxide dehydrogenase, and corrinoids indicate the presence of the acetyl CoA pathway when growing on methanol. The acetyl-CoA pathway of acetate synthesis as presently understood does not include methanol as a substrate. It is demonstrated that methanol is oxidized to formaldehyde and then to formate by a methanol dehydrogenase. It is also possible that the methyl group of methanol is transferred directly to either a corrinoid-type enzyme, or tetrahydrofolate. When cells of C. thermoautotrophicum are grown on 14 CO 2 , acetate becomes labeled in both carbons with a ratio 14 CH 3 / 14 COOH of 0.7. In addition, methanol gets labeled. When cells are grown on 14 CH 3 OH, label appears in both acetate carbons with a ratio of 3.3, and also appears in CO 2 . Thus methanol is preferentially incorporated into the methyl group of acetate, whereas CO 2 is the preferred source of the carboxyl carbon

  8. The Asian methanol market

    International Nuclear Information System (INIS)

    Nagase, Hideki

    1995-01-01

    For the purpose of this presentation, Asia has been broadly defined as a total of 15 countries, namely Japan, Korea, Taiwan, China, Hong Kong, the Philippines, Thailand, Malaysia, Singapore, Indonesia, Myanmar, India, Vietnam, Australia and New Zealand. In 1994 and the first half of 1995, the methanol industry and its derivative industries experienced hard time, because of extraordinarily high methanol prices. In spite of this circumstance, methanol demand in Asian countries has been growing steadily and remarkably, following Asian high economic growth. Most of this growth in demand has been and will continue to be met by outside supply. However, even with increased import of methanol from outside of Asia, as a result of this growth, Asian trade volume will be much larger in the coming years. Asian countries must turn their collective attention to making logistics and transportation for methanol and its derivatives more efficient in the Asian region to make better use of existing supply resources. The author reviews current economic growth as his main topic, and explains the forecast of the growth of methanol demand and supply in Asian countries in the near future

  9. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar, E-mail: gude@cee.msstate.edu

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  10. Dielectric study of molecular association in the binary mixtures (2-ethyl-1-hexanol + alcohol) and (cyclohexane + alcohol) at 298.2 K

    Energy Technology Data Exchange (ETDEWEB)

    Ghanadzadeh, A. [Department of Chemistry, Guilan University, Rasht (Iran, Islamic Republic of)]. E-mail: aggilani@guilan.ac.ir; Ghanadzadeh, H. [Department of Chemical Engineering, Guilan University, Rasht (Iran, Islamic Republic of); Sariri, R. [Department of Chemistry, Guilan University, Rasht (Iran, Islamic Republic of); Ebrahimi, L. [Department of Chemistry, Guilan University, Rasht (Iran, Islamic Republic of)

    2005-04-15

    Experimental results of dielectric investigations of three binary mixtures (ethanol + 2-ethyl-1-hexanol), (n-butanol + 2-ethyl-1-hexanol), and (tert-butanol + 2-ethyl-1-hexanol) were reported for various mole fractions at 298.2 K. The variations of dipole moment and correlation factor, g, with mole fraction in these mixtures were investigated using a unified quasichemical method described by Durov. The molecular associations of (ethanol + cyclohexane), (n-butanol + cyclohexane), and (tert-butanol + cyclohexane) binary mixtures were also investigated using the static dielectric method. A similar trend was observed in the variation of the dipole moments with the solute mole fractions in the both binary systems (i.e., alcohol + 2-ethyl-1-hexanol and alcohol + cyclohexane)

  11. The Methanol Economy Project

    Energy Technology Data Exchange (ETDEWEB)

    Olah, George [Univ. of Southern California, Los Angeles, CA (United States); Prakash, G. K. [Univ. of Southern California, Los Angeles, CA (United States)

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  12. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models.

    Science.gov (United States)

    Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G

    2015-01-14

    We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.

  13. Influence of humic fractions on retention of isoproturon residues in two Moroccan soils.

    Science.gov (United States)

    Elkhattabi, Kaouakeb; Bouhaouss, Ahmed; Scrano, Laura; Lelario, Filomena; Bufo, Sabino A

    2007-01-01

    The influence of different fractions of soil organic matter on the retention of the herbicide isoproturon (IPU) has been evaluated. Water and methanol extractable residues of (14)C labeled isoproturon have been determined in two Moroccan soils by beta -counting-liquid chromatography. The quantification of bound residues in soil and in different fractions of soil humic substances has been performed using pyrolysis/scintillation-detected gas-chromatography. Microbial mineralization of the herbicide and soil organic matter has been also monitored. Retention of isoproturon residues after 30-days incubation ranged from 22% to 32% (non-extractable fraction). The radioactivity extracted in an aqueous environment was from 20% to 33% of the amount used for the treatment; meanwhile, methanol was able to extract another 48%. Both soils showed quantities of bound residues into the humin fraction higher than humic and fulvic acids. The total amount of residues retained into the organic matter of the soils was about 65 % of non-extractable fraction, and this percentage did not change with incubation time; on the contrary, the sorption rate of the retention reaction is mostly influenced by the clay fraction and organic content of the soil. Only a little part of the herbicide was mineralized during the experimental time.

  14. Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane.

    Science.gov (United States)

    Li, Jing; Cai, Weiwei; Ma, Liying; Zhang, Yunfeng; Chen, Zhangxian; Cheng, Hansong

    2015-04-18

    We report here a novel proton exchange membrane with remarkably high methanol-permeation resistivity and excellent proton conductivity enabled by carefully designed self-assembled ionic conductive channels. A direct methanol fuel cell utilizing the membrane performs well with a 20 M methanol solution, very close to the concentration of neat methanol.

  15. Computational study of textured ferroelectric polycrystals: Dielectric and piezoelectric properties of template-matrix composites

    Science.gov (United States)

    Zhou, Jie E.; Yan, Yongke; Priya, Shashank; Wang, Yu U.

    2017-01-01

    Quantitative relationships between processing, microstructure, and properties in textured ferroelectric polycrystals and the underlying responsible mechanisms are investigated by phase field modeling and computer simulation. This study focuses on three important aspects of textured ferroelectric ceramics: (i) grain microstructure evolution during templated grain growth processing, (ii) crystallographic texture development as a function of volume fraction and seed size of the templates, and (iii) dielectric and piezoelectric properties of the obtained template-matrix composites of textured polycrystals. Findings on the third aspect are presented here, while an accompanying paper of this work reports findings on the first two aspects. In this paper, the competing effects of crystallographic texture and template seed volume fraction on the dielectric and piezoelectric properties of ferroelectric polycrystals are investigated. The phase field model of ferroelectric composites consisting of template seeds embedded in matrix grains is developed to simulate domain evolution, polarization-electric field (P-E), and strain-electric field (ɛ-E) hysteresis loops. The coercive field, remnant polarization, dielectric permittivity, piezoelectric coefficient, and dissipation factor are studied as a function of grain texture and template seed volume fraction. It is found that, while crystallographic texture significantly improves the polycrystal properties towards those of single crystals, a higher volume fraction of template seeds tends to decrease the electromechanical properties, thus canceling the advantage of ferroelectric polycrystals textured by templated grain growth processing. This competing detrimental effect is shown to arise from the composite effect, where the template phase possesses material properties inferior to the matrix phase, causing mechanical clamping and charge accumulation at inter-phase interfaces between matrix and template inclusions. The computational

  16. Endogenous Methanol Regulates Mammalian Gene Activity

    Science.gov (United States)

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  17. Endogenous methanol regulates mammalian gene activity.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.

  18. Developments in the European methanol market

    International Nuclear Information System (INIS)

    Speed, J.

    1995-01-01

    In the late eighties/early nineties the World Methanol Market was basically divided into three regional markets--America, Asia Pacific and Europe. These markets were interrelated but each had its own specific characteristics and traditional suppliers. Now the situation has changed; in the mid nineties there is a Global Methanol Market with global players and effective global pricing and the European market is governed by events world-wide. Europe is however a specific market with specific characteristics which are different from those of other markets although it is also part of the Global Market. Hence before the author focuses on Europe he looks at the World Market. The paper discusses world methanol production and consumption by region, world methanol consumption by end use, world methanol supply demand balance, the west European market, western European methanol production, methanol imports to W. Europe, the Former Soviet Union supplies, W. European methanol consumption by end use, MTBE in Europe, duties on methanol imports into W. Europe, investment in Europe, the effect of the 1994/95 price spike, and key issues for the future of the industry

  19. Computation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics.

    Science.gov (United States)

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2016-09-20

    The dielectric response of a material is central to numerous processes spanning the fields of chemistry, materials science, biology, and physics. Despite this broad importance across these disciplines, describing the dielectric environment of a molecular system at the level of first-principles theory and computation remains a great challenge and is of importance to understand the behavior of existing systems as well as to guide the design and synthetic realization of new ones. Furthermore, with recent advances in molecular electronics, nanotechnology, and molecular biology, it has become necessary to predict the dielectric properties of molecular systems that are often difficult or impossible to measure experimentally. In these scenarios, it is would be highly desirable to be able to determine dielectric response through efficient, accurate, and chemically informative calculations. A good example of where theoretical modeling of dielectric response would be valuable is in the development of high-capacitance organic gate dielectrics for unconventional electronics such as those that could be fabricated by high-throughput printing techniques. Gate dielectrics are fundamental components of all transistor-based logic circuitry, and the combination high dielectric constant and nanoscopic thickness (i.e., high capacitance) is essential to achieving high switching speeds and low power consumption. Molecule-based dielectrics offer the promise of cheap, flexible, and mass producible electronics when used in conjunction with unconventional organic or inorganic semiconducting materials to fabricate organic field effect transistors (OFETs). The molecular dielectrics developed to date typically have limited dielectric response, which results in low capacitances, translating into poor performance of the resulting OFETs. Furthermore, the development of better performing dielectric materials has been hindered by the current highly empirical and labor-intensive pace of synthetic

  20. 37 GHz METHANOL MASERS : HORSEMEN OF THE APOCALYPSE FOR THE CLASS II METHANOL MASER PHASE?

    International Nuclear Information System (INIS)

    Ellingsen, S. P.; Breen, S. L.; Sobolev, A. M.; Voronkov, M. A.; Caswell, J. L.; Lo, N.

    2011-01-01

    We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  1. Structure sensitivity of methanol electrooxidation pathways on platinum : an on-line electrochemical mass spectrometry study

    NARCIS (Netherlands)

    Housmans, T.H.M.; Wonders, A.H.; Koper, M.T.M.

    2006-01-01

    By monitoring the mass fractions of CO2 (m/z 44) and methylformate (m/z 60, formed from CH3OH + HCOOH) with on-line electrochemical mass spectrometry (OLEMS), the selectivity and structure sensitivity of the methanol oxidation pathways were investigated on the basal planesPt(111), Pt(110), and

  2. Effect of sorbed methanol, current, and temperature on multicomponent transport in nafion-based direct methanol fuel cells.

    Science.gov (United States)

    Rivera, Harry; Lawton, Jamie S; Budil, David E; Smotkin, Eugene S

    2008-07-24

    The CO2 in the cathode exhaust of a liquid feed direct methanol fuel cell (DMFC) has two sources: methanol diffuses through the membrane electrode assembly (MEA) to the cathode where it is catalytically oxidized to CO2; additionally, a portion of the CO2 produced at the anode diffuses through the MEA to the cathode. The potential-dependent CO2 exhaust from the cathode was monitored by online electrochemical mass spectrometry (ECMS) with air and with H2 at the cathode. The precise determination of the crossover rates of methanol and CO2, enabled by the subtractive normalization of the methanol/air to the methanol/H2 ECMS data, shows that methanol decreases the membrane viscosity and thus increases the diffusion coefficients of sorbed membrane components. The crossover of CO2 initially increases linearly with the Faradaic oxidation of methanol, reaches a temperature-dependent maximum, and then decreases. The membrane viscosity progressively increases as methanol is electrochemically depleted from the anode/electrolyte interface. The crossover maximum occurs when the current dependence of the diffusion coefficients and membrane CO2 solubility dominate over the Faradaic production of CO2. The plasticizing effect of methanol is corroborated by measurements of the rotational diffusion of TEMPONE (2,2,6,6-tetramethyl-4-piperidone N-oxide) spin probe by electron spin resonance spectroscopy. A linear inverse relationship between the methanol crossover rate and current density confirms the absence of methanol electro-osmotic drag at concentrations relevant to operating DMFCs. The purely diffusive transport of methanol is explained in terms of current proton solvation and methanol-water incomplete mixing theories.

  3. Study on fuel supplying method and methanol concentration sensor for the high efficient operation of methanol fuel cells. Methanol nenryo denchi no unten ni okeru nenryo kyokyu hoho no kento to methanol nodo sensor no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsukui, Tsutomu; Doi, Ryota; Yasukawa, Saburo; Kuroda, Osamu [Hirachi, Ltd., Tokyo, (Japan)

    1990-01-20

    A fuel supplying method was studied and demonstrated, essential to the high efficient operation of methanol fuel cells. Methanol and water were supplied independently from each tank to an anordic electrolyte tank in a circulating system, detecting a methanol concentration and liquid level of anordic electrolyte by each sensor, respectively. A methanol sensor was also developed to detect accurately the concentration based on electrochemical reaction under a constant voltage. A detection control circuit was insulated from a constant-voltage power supply to prevent external noises. The methanol sensor output was compensated for temperature, and a new level sensing method was adopted to send out a command comparing different responses to electrolyte shortage. As the methanol fuel cell was operated with this fuel supplying system, the stable characteristics of the cell were obtained within the variation of {plus minus} 0.1mol/l from the specified methanol concentration. 6 refs., 17 figs., 1 tab.

  4. Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new algorithm is proposed for the sensor-less control of methanol concentration. • Two different strategies are used depending on the ambient temperatures. • Energy efficiency of the DMFC system has been improved by using the new algorithm. - Abstract: A new version of an algorithm is used to control the methanol concentration in the feed of DMFC systems without using methanol sensors under varying ambient temperatures. The methanol concentration is controlled indirectly by controlling the temperature of the DMFC stack, which correlates well with the methanol concentration. Depending on the ambient temperature relative to a preset reference temperature, two different strategies are used to control the stack temperature: either reducing the cooling rate of the methanol solution passing through an anode-side heat exchanger; or, lowering the pumping rate of the pure methanol to the depleted feed solution. The feasibility of the algorithm is evaluated using a DMFC system that consists of a 200 W stack and the balance of plant (BOP). The DMFC system includes a sensor-less methanol controller that is operated using a LabView system as the central processing unit. The algorithm is experimentally confirmed to precisely control the methanol concentration and the stack temperature at target values under an environment of varying ambient temperatures

  5. Activity-guided separation of Chromolaena odorata leaf extract reveals fractions with rice disease-reducing properties

    DEFF Research Database (Denmark)

    Rodriguez Algaba, Julian; Sørensen, Jens Christian; Sørensen, Hilmer

    2015-01-01

    with water and methanol and the extracts separated using a group separation system followed by analysis using capillary electrophoresis. The fractions from the extracts were tested in vitro and in planta using Bipolaris oryzae (cause of brown spot of rice) to test for their potential to reduce disease...... severity. Activity-guided separation of the C. odorata extracts indicated that compounds with activity could, at least partly, be isolated on a weakly acidic cation exchange column. Further purification yielded fractions with disease reducing effects of up to 72 % at 15 days after inoculation. Activity...... was found both in methanol and water extracts, indicating that the bioactive compound(s) are hydrophilic, low molecular weight compounds. The disease-reducing fractions did not display any direct antimicrobial effects, but data indicate that they protect the plants by induced resistance as evidenced from...

  6. Anti-inflammatory and analgesic activities of solvent fractions of the leaves of Moringa stenopetala Bak. (Moringaceae) in mice models.

    Science.gov (United States)

    Tamrat, Yohannes; Nedi, Teshome; Assefa, Solomon; Teklehaymanot, Tilahun; Shibeshi, Workineh

    2017-09-29

    Many people still experience pain and inflammation regardless of the available drugs for treatments. In addition, the available drugs have many side effects, which necessitated a quest for new drugs from several sources in which medicinal plants are the major one. This study evaluated the analgesic and anti- inflammatory activity of the solvent fractions of Moringa stenopetala in rodent models of pain and inflammation. Successive soxhlet and maceration were used as methods of extractions using solvents of increasing polarity; chloroform, methanol and water. Swiss albino mice models were used in radiant tail flick latency, acetic acid induced writhing and carrageenan induced paw edema to assess the analgesic and anti-inflammatory activities. The test groups received different doses (100 mg/kg, 200 mg/kg and 400 mg/kg) of the three fractions (chloroform, methanol and aqueous). The positive control groups received morphine (20 mg/kg) or aspirin (100 mg/kg or 150 mg/kg) based on the respective models. The negative control groups received the 10 ml/kg of vehicles (distilled water or 2% Tween 80). In all models, the chloroform fraction had protections only at a dose of 400 mg/kg. However, the methanol and aqueous fraction at all doses have shown significant central and peripheral analgesic activities with a comparable result to the standards. The aqueous and methanol fractions significantly reduced carrageenan induced inflammation in a dose dependent manner, in which the highest reduction of inflammation was observed in aqueous fraction at 400 mg/kg. This study provided evidence on the traditionally claimed uses of the plant in pain and inflammatory diseases, and Moringa stenopetala could be potential source for development of new analgesic and anti-inflammatory drugs.

  7. Generation of gaseous methanol reference standards

    International Nuclear Information System (INIS)

    Geib, R.C.

    1991-01-01

    Methanol has been proposed as an automotive fuel component. Reliable, accurate methanol standards are essential to support widespread monitoring programs. The monitoring programs may include quantification of methanol from tailpipe emissions, evaporative emissions, plus ambient air methanol measurements. This paper will present approaches and results in the author's investigation to develop high accuracy methanol standards. The variables upon which the authors will report results are as follows: (1) stability of methanol gas standards, the studies will focus on preparation requirements and stability results from 10 to 1,000 ppmv; (2) cylinder to instrument delivery system components and purge technique, these studies have dealt with materials in contact with the sample stream plus static versus flow injection; (3) optimization of gas chromatographic analytical system will be discussed; (4) gas chromatography and process analyzer results and utility for methanol analysis will be presented; (5) the accuracy of the methanol standards will be qualified using data from multiple studies including: (a) gravimetric preparation; (b) linearity studies; (c) independent standards sources such as low pressure containers and diffusion tubes. The accuracy will be provided as a propagation of error from multiple sources. The methanol target concentrations will be 10 to 500 ppmv

  8. The effect of electrical conductivity on nanosecond discharges in distilled water and in methanol with argon bubbles

    KAUST Repository

    Hamdan, Ahmad

    2017-03-27

    We investigated the effect of a liquid\\'s electrical conductivity (EC) on the physical characteristics of electrical discharges in liquids with gaseous bubbles. Argon gas was supplied into the liquid to form an array of gaseous bubbles in between two electrodes (a pin-to-hollow electrode setup). Methanol and water were considered as base liquids, representing a low and a high dielectric permittivity (ϵ) liquid respectively, while potassium chloride (KCl) was added to control the EC of the liquids. When increasing the EC of the liquids, we found that the discharge probability was reduced by 46% for in-water and 38% for in-methanol discharges. We also found that the injected charge decreased by ∼4 μC as the EC increased. Moreover, as the gap distance increased from 1 to 2.5 mm, the injected charge decreased by 2 μC for in-water discharge and by 4 μC for in-methanol discharge. The plasma emission is another important parameter in characterizing discharges. With increasing the EC, the plasma emission volume decreased linearly by a factor of ∼5. The plasma lifetime was shortened by around 33% for in-water and 20% for in-methanol discharges in the case of d = 1 mm, while the decrease was 40% for in-water and 30% for in-methanol discharges in the case of d = 2.5 mm. Using the broadening characteristics of the Hα line, the electron density was estimated during the first 100 ns by ∼3 × 10 cm for in-water discharges and by ∼2 × 10 cm for in-methanol discharges, and it decreased by about one order of magnitude after 800 ns; note that n dependence on the EC was not significant. The reported findings provide further understanding of electrical discharges in bubbled liquids and highlight the influence of a liquid\\'s EC, which are useful in the development and optimization of the applications based on such process.

  9. Methanol from biomass: A technoeconomic analysis

    International Nuclear Information System (INIS)

    Stevens, D.J.

    1991-01-01

    Biomass-derived methanol offers significant potential as an alternative transportation fuel. Methanol is cleaner burning and has a lower flame temperature than gasoline. These characteristics can result in lower carbon monoxide and nitrogen oxide emissions when methanol is used as a fuel. Methanol produced from biomass offers potential advantages over that from other sources. When produced from biomass which is subsequently regrown, methanol does not contribute net emissions of carbon dioxide, a greenhouse gas, to the atmosphere. The introduction of alternative fuels will likely be driven by a number of political and economic decisions. The ability of biomass to compete with other resources will be determined in part by the economics of the production systems. In this paper, recent technoeconomic analyses of biomass-methanol systems are presented. The results are compared with methanol production from coal and natural gas

  10. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Alcinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Shindler, Y.; Tatrtakovsky, L.; Zvirin, Y.

    1998-01-01

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  11. Methanol as an energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, P.; Grube, T.; Hoehlein, B. (eds.)

    2006-07-01

    For the future, a strongly growing energy demand is expected in the transport sector worldwide. Economically efficient oil production will run through a maximum in the next decade. Higher fuel prices and an environmentally desirable reduction of emissions will increase the pressure for reducing fuel consumption and emissions in road traffic. These criteria show the urgent necessity of structural changes in the fuel market. Due to its advantages concerning industrial-scale production, storage and global availability, methanol has the short- to medium-term potential for gaining increased significance as a substitution product in the energy market. Methanol can be produced both from fossil energy sources and from biomass or waste materials through the process steps of synthesis gas generation with subsequent methanol synthesis. Methanol has the potential to be used in an environmentally friendly manner in gasoline/methanol mixtures for flexible fuel vehicles with internal combustion engines and in diesel engines with pure methanol. Furthermore, it can be used in fuel cell vehicles with on-board hydrogen production in direct methanol fuel cell drives, and in stationary systems for electricity and heat generation as well as for hydrogen production. Finally, in portable applications it serves as an energy carrier for electric power generation. In this book, the processes for the production and use of methanol are presented and evaluated, markets and future options are discussed and issues of safety and environmental impacts are addressed by a team of well-known authors. (orig.)

  12. Memory regeneration phenomenon in dielectrics: the fractional derivative approach

    International Nuclear Information System (INIS)

    Uchaikin, V; Sibatov, R; Uchaikin, D

    2009-01-01

    Classical theory predicts that a capacitor's charging current obeys the first-order differential equation and hence follows the exponential Debye law. However, there are many experimental results confirming the inverse-power Curie-von Schweidler law of the charging current. The principal difference between the Curie-von Schweidler law and the Debye law is the presence of memory: the process depends not only on initial conditions but also on the whole prehistory. We constructed and investigated the capacitor model that extends the fractional Westerlund model by accounting for the resistance of the capacitor. To follow the transition to classical Debye theory, we investigated the solution of the fractional equation for the order α close to 1. The calculations show that the solution obeys the exponential law up to some point of time independently of the prehistory and then changes its behavior to the inverse power law depending on the prehistory. Comparison with experimental data confirmed the existence of this effect. We named it the regenerated memory effect.

  13. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model

    Energy Technology Data Exchange (ETDEWEB)

    Ciuchi, Ioana Veronica; Olariu, Cristina Stefania, E-mail: oocristina@yahoo.com; Mitoseriu, Liliana, E-mail: lmtsr@uaic.ro

    2013-11-20

    Highlights: • Mineral volume fraction of a bone sample was determined. • Dielectric properties for bone sample and for the collagen type I were determined by impedance spectroscopy. • Bruggeman effective medium approximation was applied in order to evaluate mineral volume fraction of the sample. • The computed values were compared with ones derived from a histogram test performed on SEM micrographs. -- Abstract: Measurements by impedance spectroscopy and Bruggeman effective medium approximation model were employed in order to determine the mineral volume fraction of dry bone. This approach assumes that two or more phases are present into the composite: the matrix (environment) and the other ones are inclusion phases. A fragment of femur diaphysis dense bone from a young pig was investigated in its dehydrated state. Measuring the dielectric properties of bone and its main components (hydroxyapatite and collagen) and using the Bruggeman approach, the mineral volume filling factor was determined. The computed volume fraction of the mineral volume fraction was confirmed by a histogram test analysis based on the SEM microstructures. In spite of its simplicity, the method provides a good approximation for the bone mineral volume fraction. The method which uses impedance spectroscopy and EMA modeling can be further developed by considering the conductive components of the bone tissue as a non-invasive in situ impedance technique for bone composition evaluation and monitoring.

  14. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model

    International Nuclear Information System (INIS)

    Ciuchi, Ioana Veronica; Olariu, Cristina Stefania; Mitoseriu, Liliana

    2013-01-01

    Highlights: • Mineral volume fraction of a bone sample was determined. • Dielectric properties for bone sample and for the collagen type I were determined by impedance spectroscopy. • Bruggeman effective medium approximation was applied in order to evaluate mineral volume fraction of the sample. • The computed values were compared with ones derived from a histogram test performed on SEM micrographs. -- Abstract: Measurements by impedance spectroscopy and Bruggeman effective medium approximation model were employed in order to determine the mineral volume fraction of dry bone. This approach assumes that two or more phases are present into the composite: the matrix (environment) and the other ones are inclusion phases. A fragment of femur diaphysis dense bone from a young pig was investigated in its dehydrated state. Measuring the dielectric properties of bone and its main components (hydroxyapatite and collagen) and using the Bruggeman approach, the mineral volume filling factor was determined. The computed volume fraction of the mineral volume fraction was confirmed by a histogram test analysis based on the SEM microstructures. In spite of its simplicity, the method provides a good approximation for the bone mineral volume fraction. The method which uses impedance spectroscopy and EMA modeling can be further developed by considering the conductive components of the bone tissue as a non-invasive in situ impedance technique for bone composition evaluation and monitoring

  15. Electron depletion via cathode spot dispersion of dielectric powder into an overhead plasma

    International Nuclear Information System (INIS)

    Gillman, Eric D.; Foster, John E.

    2013-01-01

    The effectiveness of cathode spot delivered dielectric particles for the purpose of plasma depletion is investigated. Here, cathode spot flows kinetically entrain and accelerate dielectric particles originally at rest into a background plasma. The time variation of the background plasma density is tracked using a cylindrical Langmuir probe biased approximately at electron saturation. As inferred from changes in the electron saturation current, depletion fractions of up to 95% are observed. This method could be exploited as a means of communications blackout mitigation for manned and unmanned reentering spacecraft as well as any high speed vehicle enveloped by a dense plasma layer

  16. Systematic Search for Chemical Reactions in Gas Phase Contributing to Methanol Formation in Interstellar Space.

    Science.gov (United States)

    Gamez-Garcia, Victoria G; Galano, Annia

    2017-10-05

    A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.

  17. Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanoparticle blends.

    Science.gov (United States)

    Grabowski, Christopher A; Koerner, Hilmar; Meth, Jeffrey S; Dang, Alei; Hui, Chin Ming; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Durstock, Michael F; Vaia, Richard A

    2014-12-10

    Demands to increase the stored energy density of electrostatic capacitors have spurred the development of materials with enhanced dielectric breakdown, improved permittivity, and reduced dielectric loss. Polymer nanocomposites (PNCs), consisting of a blend of amorphous polymer and dielectric nanofillers, have been studied intensely to satisfy these goals; however, nanoparticle aggregates, field localization due to dielectric mismatch between particle and matrix, and the poorly understood role of interface compatibilization have challenged progress. To expand the understanding of the inter-relation between these factors and, thus, enable rational optimization of low and high contrast PNC dielectrics, we compare the dielectric performance of matrix-free hairy nanoparticle assemblies (aHNPs) to blended PNCs in the regime of low dielectric contrast to establish how morphology and interface impact energy storage and breakdown across different polymer matrices (polystyrene, PS, and poly(methyl methacrylate), PMMA) and nanoparticle loadings (0-50% (v/v) silica). The findings indicate that the route (aHNP versus blending) to well-dispersed morphology has, at most, a minor impact on breakdown strength trends with nanoparticle volume fraction; the only exception being at intermediate loadings of silica in PMMA (15% (v/v)). Conversely, aHNPs show substantial improvements in reducing dielectric loss and maintaining charge/discharge efficiency. For example, low-frequency dielectric loss (1 Hz-1 kHz) of PS and PMMA aHNP films was essentially unchanged up to a silica content of 50% (v/v), whereas traditional blends showed a monotonically increasing loss with silica loading. Similar benefits are seen via high-field polarization loop measurements where energy storage for ∼15% (v/v) silica loaded PMMA and PS aHNPs were 50% and 200% greater than respective comparable PNC blends. Overall, these findings on low dielectric contrast PNCs clearly point to the performance benefits of

  18. Operation characteristic analysis of a direct methanol fuel cell system using the methanol sensor-less control method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y.; Chang, C.L. [Institute of Nuclear Energy Research (INER), Longtan Township, Taoyuan County (China); Sung, C.C. [National Taiwan University (China)

    2012-10-15

    The application of methanol sensor-less control in a direct methanol fuel cell (DMFC) system eliminates most of the problems encountered when using a methanol sensor and is one of the major solutions currently used in commercial DMFCs. This study focuses on analyzing the effect of the operating characteristics of a DMFC system on its performance under the methanol sensor-less control as developed by Institute of Nuclear Energy Research (INER). Notably, the influence of the dispersion of the methanol injected on the behavior of the system is investigated systematically. In addition, the mechanism of the methanol sensor-less control is investigated by varying factors such as the timing of the injection of methanol, the cathode flow rate, and the anode inlet temperature. These results not only provide insight into the mechanism of methanol sensor-less control but can also aid in the improvement and application of DMFC systems in portable and low-power transportation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Study of SI engine fueled with methanol vapor and dissociation gas based on exhaust heat dissociating methanol

    International Nuclear Information System (INIS)

    Fu, Jianqin; Deng, Banglin; Liu, Jingping; Wang, Linjun; Xu, Zhengxin; Yang, Jing; Shu, Gequn

    2014-01-01

    Highlights: • The full load power decreases successively from gasoline engine, methanol vapor engine to dissociated methanol engine. • Both power and thermal efficiency of dissociated methanol engine can be improved by boosting pressure. • The conversion efficiency of recovered exhaust gas energy is largely influenced by the BMEP. • At the same BMEP, dissociated methanol engine has higher thermal efficiency than methanol vapor engine and gasoline engine. - Abstract: To improve the fuel efficiency of internal combustion (IC) engine and also achieve the goal of direct usage of methanol fuel on IC engine, an approach of exhaust heat dissociating methanol was investigated, which is a kind of method for IC engine exhaust heat recovery (EHR). A bottom cycle system is coupled with the IC engine exhaust system, which uses the exhaust heat to evaporate and dissociate methanol in its catalytic cracker. The methanol dissociation gas (including methanol vapor) is used as the fuel for IC engine. This approach was applied to both naturally aspirated (NA) engine and turbocharged engine, and the engine performance parameters were predicted by the software GT-power under various kinds of operating conditions. The improvement to IC engine performance and the conversion efficiency of recovered exhaust gas energy can be evaluated by comparing the performances of IC engine fueled with various kinds of fuels (or their compositions). Results show that, from gasoline engine, methanol vapor engine to dissociated methanol engine, the full load power decreases successively in the entire speed area due to the declining of volumetric efficiency, while it is contrary in the thermal efficiency at the same brake mean effective pressure (BMEP) level because of the improving of fuel heating value. With the increase of BMEP, the conversion efficiency of recovered exhaust gas energy is promoted. All those results indicate that the approach of exhaust heat dissociating methanol has large

  20. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  1. Dielectric barrier discharge in a two-phase mixture

    Energy Technology Data Exchange (ETDEWEB)

    Ye Qizheng; Zhang Ting; Lu Fei; Li Jin; He Zhenghao; Lin Fuchang [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2008-01-21

    This paper reports the experimental investigation of the dielectric barrier discharge in which the gap area is filled with a two-phase mixture (TPM), air and solid particles. We found that there are two kinds of discharges in the TPM. One is the surface discharge generated on the surface of the solid particles and the other is the filament discharge generated in the air void. For the case of low volume fraction of solid particles, the surface discharge starts to occur when the applied voltage is higher than the onset voltage. At a further voltage increase, the filament discharge takes place at the same time. For the case of high volume fraction, such as the packed-bed reactor, only the surface discharge exists. Under the condition of the same volume fraction, the larger the diameter of the solid particles, the lower the surface discharge onset voltage. As a conclusion, we think that the plasma reactor using the form of low volume fraction of solid particles may be a better choice for waste-gas treatment enhanced by catalysts.

  2. Biodiesel from Jojoba oil-wax: Transesterification with methanol and properties as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Canoira, Laureano; Alcantara, Ramon; Garcia-Martinez, Jesus; Carrasco, Jesus [Department of Chemical Engineering and Fuels, School of Mines, Polytechnic University of Madrid, Rios Rosas 21, 28003-Madrid (Spain)

    2006-01-15

    The Jojoba oil-wax is extracted from the seeds of the Jojoba (Simmondsia chinensis Link Schneider), a perennial shrub that grows in semi desert areas in some parts of the world. The main uses of Jojoba oil-wax are in the cosmetics and pharmaceutical industry, but new uses could arise related to the search of new energetic crops. This paper summarizes a process to convert the Jojoba oil-wax to biodiesel by transesterification with methanol, catalysed with sodium methoxide (1wt% of the oil). The transesterification reaction has been carried out in an autoclave at 60 deg C, with a molar ratio methanol/oil 7.5:1, and vigorous stirring (600rpm), reaching a quantitative conversion of the oil after 4h. The separation of the fatty acid methyl esters (the fraction rich in FAME, 79% FAME mixture; 21% fatty alcohols; 51% of methyl cis-11-eicosenoate) from the fatty alcohols rich fraction (72% fatty alcohols; 28% FAME mixture; 26% of cis-11-eicosen-1-ol, 36% of cis-13-docosen-1-ol) has been accomplished in a single crystallization step at low temperature (-18 deg C) from low boiling point petroleum ether. The fraction rich in FAME has a density (at 15 deg C), a kinematic viscosity (at 40 deg C), a cold filter plugging point and a high calorific value in the range of the European standard for biodiesel (EN 14214)

  3. Electroactive Phase Induced Bi4Ti3O12-Poly(Vinylidene Difluoride) Composites with Improved Dielectric Properties

    Science.gov (United States)

    Bhardwaj, Sumit; Paul, Joginder; Chand, Subhash; Raina, K. K.; Kumar, Ravi

    2015-10-01

    Lead-free ceramic-polymer composite films containing Bi4Ti3O12 (BIT) nanocrystals as the active phase and poly(vinylidene difluoride) as the passive matrix were synthesized by spin coating. The films' structural, morphological, and dielectric properties were systemically investigated by varying the weight fraction of BIT. Formation of electroactive β and γ phases were strongly affected by the presence of BIT nanocrystals. Analysis was performed by Fourier-transform infrared and Raman spectroscopy. Morphological studies confirmed the homogeneous dispersion of BIT particles within the polymer matrix. The composite films had dielectric constants as high as 52.8 and low dielectric loss of 0.1 at 100 Hz when the BIT content was 10 wt.%. We suggest that the enhanced electroactive phase content of the polymer matrix and interfacial polarization may contribute to the improved dielectric performance of these composite films. Dielectric modulus analysis was performed to enable understanding of the dielectric relaxation process. Non-Debye-type relaxation behavior was observed for the composite films at high temperature.

  4. Antimicrobial activities of the crude methanol extract of Acorus calamus Linn.

    Directory of Open Access Journals (Sweden)

    Souwalak Phongpaichit

    2005-08-01

    Full Text Available A partially-purified fraction obtained from column chromatographic preparation of the crude methanol extract of Acorus calamus Linn. rhizomes was investigated for its antimicrobial activities on various microorganisms including bacteria, yeasts and filamentous fungi. It exhibited high activity againstfilamentous fungi: Trichophyton rubrum, Microsporum gypseum, and Penicillium marneffei with IC50 values of 0.2, 0.2 and 0.4 mg/ml, respectively. However, it showed moderate activity against yeasts: Candida albicans, Cryptococcus neoformans and Saccharomyces cerevisiae (MIC 0.1-1 mg/ml and low activity against bacteria (MIC 5->10 mg/ml. Scanning electron microscopic observation revealed that hyphae and conidia treated with this fraction were shrunken and collapsed, which might be due to cell fluid leakage.

  5. Antimicrobial efficacy of the extract, fractions and essential oils from ...

    African Journals Online (AJOL)

    Eugenia uniflora leaves is employed in Nigerian traditional system of medicine for the treatment of cough, bronchitis, skin and wound infections. In this study, the in vitro antimicrobial activities of the methanolic extract, fractions and essential oils from the leaves of Eugenia uniflora were investigated on some multidrug ...

  6. Soil and groundwater remediation guidelines for methanol

    International Nuclear Information System (INIS)

    2010-12-01

    Methanol is used by oil and gas operators to inhibit hydrate formation in the recovery of heavy oils, in natural gas production and transport, as well as in various other production applications. Emissions from methanol primary occur from miscellaneous solvent usage, methanol production, end-product manufacturing, and storage and handling losses. This document provided soil and groundwater remediation guidelines for methanol releases into the environment. The guidelines were consistent with the Alberta Environment tier 1 soil and groundwater framework. The chemical and physical properties of methanol were reviewed. The environmental fate and behavior of methanol releases was discussed, and the behaviour and effects of methanol in terrestrial and aquatic biota were evaluated. The toxicity of methanol and its effects in humans and mammalian species were reviewed. Soil quality and ground water quality guidelines were presented. Surface water and soil guideline calculation methods were provided, and ecological exposure and ground water pathways were discussed. Management limits for methanol concentrations were also provided. 162 refs., 18 tabs., 4 figs.

  7. Triboluminescence and associated decomposition of solid methanol

    International Nuclear Information System (INIS)

    Trout, G.J.; Moore, D.E.; Hawke, J.G.

    1975-01-01

    The decomposition is initiated by the cooling of solid methanol through the β → α transiRon at 157.8K, producing the gases hydrogen, carbon monoxide, and methane. The passage through this lambda transition causes the breakup of large crystals of β-methanol into crystallites of α-methanol and is accompanied by light emission as well as decomposition. This triboluminescence is accompanied by, and apparently produced by, electrical discharges through methanol vapor in the vicinity of the solid. The potential differences needed to produce the electrical breakdown of the methanol vapor apparently arise from the disruption of the long hydrogen bonded chains of methanol molecules present in crystalline methanol. Charge separation following crystal deformation is a characteristic of substances which exhibit gas discharge triboluminescence; solid methanol has been found to emit such luminescence when mechanically deformed in the absence of the β → α transition The decomposition products are not produced directly by the breaking up of the solid methanol but from the vapor phase methanol by the electrical discharges. That gas phase decomposition does occur was confirmed by observing that the vapors of C 2 H 5 OH, CH 3 OD, and CD 3 OD decompose on being admitted to a vessel containing methanol undergoing the β → α phase transition. (U.S.)

  8. Phase equilibrium data and thermodynamic modeling of the system (CO2 + biodiesel + methanol) at high pressures

    International Nuclear Information System (INIS)

    Pinto, Leandro F.; Segalen da Silva, Diogo Italo; Rosa da Silva, Fabiano; Ramos, Luiz P.; Ndiaye, Papa M.; Corazza, Marcos L.

    2012-01-01

    Highlights: → We measured phase behavior for the system involving {CO 2 + biodiesel + methanol}. → The saturation pressures were obtained using a variable-volume view cell. → The experimental data were modeled using PR-vdW2 and PR-WS equations of state. - Abstract: The main objective of this work was to investigate the high pressure phase behavior of the binary systems {CO 2 (1) + methanol(2)} and {CO 2 (1) + soybean methyl esters (biodiesel)(2)} and the ternary system {CO 2 (1) + biodiesel(2) + methanol(3)} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {CO 2 (1) + methanol(2)}; (0.4201 to 0.9931) for the binary system {CO 2 (1) + biodiesel(2)}; (0.4864 to 0.9767) for the ternary system {CO 2 (1) + biodiesel(2) + methanol(3)} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {CO 2 + biodiesel + methanol} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng-Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR-WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR-WS presented the best performance.

  9. Metallic nanoparticles in dielectrics: A comparative study

    KAUST Repository

    Agambayev, Agamyrat; Farhat, Mohamed; Bagci, Hakan; Salama, Khaled N.

    2017-01-01

    The Maxwell-Garnett method is used to predict the effective dielectric constant and the tangent loss of various composites consisting of a PVDF-TrFE-CFE-matrix and metallic microsphere fillers made of Cu, Ni, W, Zn, or Fe. Simulation results demonstrate that for small filler fraction values and at low frequencies, the electrical properties of the resulting composite do not depend on the conductivity of the filler. These findings show that composites fabricated using cheaper metal nanoparticle fillers are as effective as those fabricated using expensive ones.

  10. Metallic nanoparticles in dielectrics: A comparative study

    KAUST Repository

    Agambayev, Agamyrat

    2017-10-25

    The Maxwell-Garnett method is used to predict the effective dielectric constant and the tangent loss of various composites consisting of a PVDF-TrFE-CFE-matrix and metallic microsphere fillers made of Cu, Ni, W, Zn, or Fe. Simulation results demonstrate that for small filler fraction values and at low frequencies, the electrical properties of the resulting composite do not depend on the conductivity of the filler. These findings show that composites fabricated using cheaper metal nanoparticle fillers are as effective as those fabricated using expensive ones.

  11. Study on the changes in blood plasma electroconductivity and dielectric constant in irradiated mammals

    International Nuclear Information System (INIS)

    Paskalev, Z.; Bancheva, E.

    1975-01-01

    Blood plasma electroconductivity and dielectric constant were measured in C57BL mice exposed to an uncontaminated gamma or neutron field or a mixed gamma-neutron field at a total dose of 5, 10, 15, 20, or 25 rad. Measurements were also made with blood plasma from Wistar rats given 200, 400, or 600 R X-rays. The results obtained revealed a characteristic pattern of radiation-induced changes in electroconductivity and dielectric constant, these end-points being indicative, respectively, or shifts in saline concentrations and in conformation of protein fractions of blood plasma. Analysis of the data showed that within a few days after exposure there were changes occurring in cellular and tissue water-salt metabolism, followed by enhancement or recovery to norm, depending on the dose. A possibility is thus rendered to use the blood plasma parameters studied as a test for detecting early shifts in cellular water-salt metabolism and in conformation of protein fractions at a time when no characteristic changes are yet to be observed in amounts of individual types of protein fractions from blood plasma of irradiated organisms. (author)

  12. Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System

    Science.gov (United States)

    Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon

    2016-01-01

    In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.

  13. Total Phenol amd Flavonoid contents of Crude Extract and Fractions ...

    African Journals Online (AJOL)

    Phenolic compounds are numerous in plants and are essential part of human diet. Picralima nitida has been extensively used in African folk medicine especially in West Africa. The present study evaluated the total phenolic and flavonoid contents of the extract and fractions of Picralima nitida. The methanol extracts of P.

  14. Use of Monomer Fraction Data in the Parametrization of Association Theories

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Tsivintzelis, Ioannis; von Solms, Nicolas

    2010-01-01

    the monomer fraction of hydrogen bonding compounds and their mixtures. Monomer fraction data are obtained from spectroscopic measurements and they are available for a few compounds such as pure water and alcohols as well as for some alcohol–alkane and similar mixtures. These data are useful...... “improved” model parameters can be obtained if monomer fraction data are included in the parameter estimation together with vapor pressures and liquid densities. The expression “improved” implies parameters which can represent several pure compound properties as well as monomer fraction data for pure......, liquid densities and monomer fractions of water and alcohols. The 4C scheme is the best choice for water, while for methanol there is small difference between the 2B and 3B association schemes....

  15. Structure and dielectric properties in the radio frequency range of polymer composites based on vanadium dioxide

    Directory of Open Access Journals (Sweden)

    Kolbunov V.R.

    2015-06-01

    Full Text Available Polymer composites with active fillers are recently considered to be promising materials for the design of new functional devices with controllable properties and are intensively investigated. Dielectric studies are one of the most effective methods for studying structural features and mechanisms of conductivity formation for this type of two-component systems. The paper presents research results of the dielectric characteristics in the range of radio frequency of 50 kHz — 10 MHz and temperature range of 30—60°C of polyethylene composites of vanadium dioxide with different volume fractions of filler. Two dispersion areas were found: a high-frequency area caused by the Maxwell charge separation on the boundaries of the polyethylene matrix — conductive filler of VI2 crystallites, and a low frequency area associated with the presence of the transition layer at this boundary. The relative permittivity of the composite has a tendency to a decrease in absolute value with increasing temperature. The analysis of the low-frequency dependence of the dielectric constant of the value of the filler’s volume fraction revealed that the investigated composite belongs to two-component statistical mixtures with a transition layer between the components.

  16. Chemometric evaluation of the combined effect of temperature, pressure, and co-solvent fractions on the chiral separation of basic pharmaceuticals using actual vs set operational conditions.

    Science.gov (United States)

    Forss, Erik; Haupt, Dan; Stålberg, Olle; Enmark, Martin; Samuelsson, Jörgen; Fornstedt, Torgny

    2017-05-26

    The need to determine the actual operational conditions, instead of merely using the set operational conditions, was investigated for in packed supercritical fluid chromatography (SFC) by design of experiments (DoE) using a most important type of compounds, pharmaceutical basics, as models. The actual values of temperature, pressure, and methanol levels were recorded and calculated from external sensors, while the responses in the DoE were the retention factors and selectivity. A Kromasil CelluCoat column was used as the stationary phase, carbon dioxide containing varying methanol contents as the mobile phase, and the six racemates of alprenolol, atenolol, metoprolol, propranolol, clenbuterol, and mianserin were selected as model solutes. For the retention modeling, the most important term was the methanol fraction followed by the temperature and pressure. Significant differences (p<0.05) between most of the coefficients in the retention models were observed when comparing models from set and actual conditions. The selectivity was much less affected by operational changes, and therefore was not severely affected by difference between set and actual conditions. The temperature differences were usually small, maximum ±1.4°C, whereas the pressure differences were larger, typically approximately +10.5bar. The set and actual fractions of methanol also differed, usually by ±0.4 percentage points. A cautious conclusion is that the primary reason for the discrepancy between the models is a mismatch between the set and actual methanol fractions. This mismatch is more serious in retention models at low methanol fractions. The study demonstrates that the actual conditions should almost always be preferred. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The equivalent electrical permittivity of gas-solid mixtures at intermediate solid volume fractions.

    Energy Technology Data Exchange (ETDEWEB)

    Torczynski, John Robert; Ceccio, Steven Louis; Tortora, Paul Richard

    2005-07-01

    Several mixture models are evaluated for their suitability in predicting the equivalent permittivity of dielectric particles in a dielectric medium for intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, Rayleigh, Bottcher and Bruggeman models are compared to computational simulations of several arrangements of solid particles in a gas and to the experimentally determined permittivity of a static particle bed. The experiment uses spherical glass beads in air, so air and glass permittivity values (1 and 7, respectively) are used with all of the models and simulations. The experimental system used to measure the permittivity of the static particle bed and its calibration are described. The Rayleigh model is found to be suitable for predicting permittivity over the entire range of solid volume fractions (0-0.6).

  18. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  19. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    Science.gov (United States)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  20. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  1. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    International Nuclear Information System (INIS)

    Fauzi, N F I; Hasran, U A; Kamarudin, S K

    2015-01-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell. (paper)

  2. Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength

    Science.gov (United States)

    Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary

    2014-06-10

    A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.

  3. Characterization of dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  4. Methanol May Function as a Cross-Kingdom Signal

    Science.gov (United States)

    Dorokhov, Yuri L.; Komarova, Tatiana V.; Petrunia, Igor V.; Kosorukov, Vyacheslav S.; Zinovkin, Roman A.; Shindyapina, Anastasia V.; Frolova, Olga Y.; Gleba, Yuri Y.

    2012-01-01

    Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in

  5. A three-dimensional non-isothermal model for a membraneless direct methanol redox fuel cell

    Science.gov (United States)

    Wei, Lin; Yuan, Xianxia; Jiang, Fangming

    2018-05-01

    In the membraneless direct methanol redox fuel cell (DMRFC), three-dimensional electrodes contribute to the reduction of methanol crossover and the open separator design lowers the system cost and extends its service life. In order to better understand the mechanisms of this configuration and further optimize its performance, the development of a three-dimensional numerical model is reported in this work. The governing equations of the multi-physics field are solved based on computational fluid dynamics methodology, and the influence of the CO2 gas is taken into consideration through the effective diffusivities. The numerical results are in good agreement with experimental data, and the deviation observed for cases of large current density may be related to the single-phase assumption made. The three-dimensional electrode is found to be effective in controlling methanol crossover in its multi-layer structure, while it also increases the flow resistance for the discharging products. It is found that the current density distribution is affected by both the electronic conductivity and the concentration of reactants, and the temperature rise can be primarily attributed to the current density distribution. The sensitivity and reliability of the model are analyzed through the investigation of the effects of cell parameters, including porosity values of gas diffusion layers and catalyst layers, methanol concentration and CO2 volume fraction, on the polarization characteristics.

  6. Antiproliferative effect of a polysaccharide fraction of a 20% methanolic extract of stinging nettle roots upon epithelial cells of the human prostate (LNCaP).

    Science.gov (United States)

    Lichius, J J; Lenz, C; Lindemann, P; Müller, H H; Aumüller, G; Konrad, L

    1999-10-01

    In Germany, plant extracts are often used in the treatment of early stages of benign prostate hyperplasia (BPH). The effects of different concentrations of the polysaccharide fraction of the 20% methanolic extract of stinging nettle roots (POLY-M) on the cellular proliferation of lymph node carcinoma of the prostate (LNCaP) cells were determined by measurement of the genomic DNA content of the samples. All concentrations of POLY-M showed an inhibitory effect on the growth of the LNCaP cells during 7 days except the two lowest concentrations. The reduced proliferation of POLY-M treated LNCaP cells was significantly (p < 0.05) different from the untreated control. The inhibition was time- and concentration-dependent with the maximum suppression (50%) on day 6 and at concentrations of 1.0E-9 and 1.0E-11 mg/ml. No cytotoxic effect of POLY-M on cell proliferation was observed. The in vitro results show for the first time an antiproliferative effect of Urtica compounds on human prostatic epithelium and confirm our previous in vivo findings.

  7. Determination of methanol in Iranian herbal distillates.

    Science.gov (United States)

    Shirani, Kobra; Hassani, Faezeh Vahdati; Azar-Khiavi, Kamal Razavi; Moghaddam, Zohreh Samie; Karimi, Gholamreza

    2016-06-01

    Herbal distillates have been used as beverages, for flavoring, or as phytomedicines in many countries for a long time. Recently, the occurrence of blindness after drinking herbal distillates has created concerns in Iran. The aim of this study was to determine the concentrations of methanol in herbal distillates produced in Iran. Eighty-four most commonly used herbal distillates purchased from herbal distillate factories were analyzed for methanol contents by gas chromatography and flame ionization detection, with ethanol as internal standard. In 15 herbal distillates, the methanol concentration was below the limit of quantitation. The methanol concentrations in all samples ranged from 43 to 277 mg/L. Forty-five samples contained methanol in excess of the Iranian standard. The maximum concentration was found in an herbal distillate of Mentha piperita (factory E) (277±12), and the minimum in a distillate of Carum carvi (factory B) (42.6 ± 0.5). Since the 45 Iranian herbal distillates containing methanol levels were beyond the legal limits according to the Iranian standard, it seems necessary to monitor the amount of methanol and give a warning to watch out for the latent risk problem of methanol uptake, and establish a definitive relationship between the degree of intoxication observed and the accumulation of methanol in the blood.

  8. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Mazurek, Piotr Stanislaw

    2016-01-01

    elastomer matrix, with high dielectric permittivity and a low Young's modulus, aligned with no loss of mechanical stability, was prepared through the use of commercially available chloropropyl-functional silicone oil mixed into a tough commercial liquid silicone rubber silicone elastomer. The addition...... also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses.......Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young's modulus or increasing the dielectric permittivity of silicone elastomers, or a combination...

  9. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  10. Physical and chemical parameters of sediment extraction and fractionation that influence toxicity, as evaluated by microtox (trade name)

    International Nuclear Information System (INIS)

    Ho, K.T.Y.; Quinn, J.G.

    1993-01-01

    Several physical and chemical parameters of sediment extraction and fractionation of organic compounds that influence bioassay results were evaluated. Each parameter was evaluated with a photoluminescent bacterial bioassay (Microtox) as an end point. Three solvents (acetonitrile, acetone, and methanol) were studied for their ability to extract toxic organic components from marine sediments. Acetone extracted the most toxicity, with no difference between acetonitrile and methanol. Two methods of fractionating sediment extracts (silica-gel-column chromatography (SGCC) and acid-base fractionation) were compared. SGCC was more useful because it resulted in a wider range of responses and was faster to perform than acid-base fractionation. Microtox was used to rank four marine sediments with respect to toxicity and to determine if one chemical class (or fraction) was consistently more toxic among different sediments. With some caveats, Microtox results agreed with general chemical concentration trends and other bioassay results in distinguishing between contaminated and noncontaminated sediments. Although results indicated there was not a consistently most toxic fraction among sediments, there was a consistently least toxic fraction. The effect of sediment storage time on toxicity was also evaluated. Results indicated that the most stable chemical fraction (containing nonpolar hydrocarbons) did not change toxicologically for 30 weeks, whereas the more chemically active fraction (containing ketones, quinones, and carboxyls) changed as soon as one week

  11. Batch extractive distillation for high purity methanol

    International Nuclear Information System (INIS)

    Zhang Weijiang; Ma Sisi

    2006-01-01

    In this paper, the application in chemical industry and microelectronic industry, market status and the present situation of production of high purity methanol at home and abroad were introduced firstly. Purification of industrial methanol for high purity methanol is feasible in china. Batch extractive distillation is the best separation technique for purification of industrial methanol. Dimethyl sulfoxide was better as an extractant. (authors)

  12. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  13. Recycling of greenhouse gases via methanol

    Energy Technology Data Exchange (ETDEWEB)

    Bill, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Eliasson, B; Kogelschatz, U [ABB Corporate Research Center, Baden-Daettwil (Switzerland)

    1997-06-01

    Greenhouse gas emissions to the atmosphere can be mitigated by using direct control technologies (capture, disposal or chemical recycling). We report on carbon dioxide and methane recycling with other chemicals, especially with hydrogen and oxygen, to methanol. Methanol synthesis from CO{sub 2} is investigated on various catalysts at moderate pressures ({<=}30 bar) and temperatures ({<=}300{sup o}C). The catalysts show good methanol activities and selectivities. The conversion of CO{sub 2} and CH{sub 4} to methanol is also studied in a silent electrical discharge at pressures of 1 to 4 bar and temperatures close to room temperature. Methanol yields are given for mixtures of CO{sub 2}/H{sub 2}, CH{sub 4}/O{sub 2} and also for CH{sub 4} and air mixtures. (author) 2 figs., 5 refs.

  14. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor.

    Science.gov (United States)

    Balk, Melike; Weijma, Jan; Goorissen, Heleen P; Ronteltap, Mariska; Hansen, Theo A; Stams, Alfons J M

    2007-01-01

    A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H2/CO2, no apparent inhibition occurred up to a concentration of 500 mg l(-1). When strain WW1 was co-cultured under the same conditions with the methanol-utilizing, non-sulfate-reducing bacteria, Thermotoga lettingae and Moorella mulderi, both originating from the same bioreactor, growth and sulfide formation were observed up to 430 mg l(-1). These results indicated that in the co-cultures, a major part of the electron flow was directed from methanol via H2/CO2 to the reduction of sulfate to sulfide. Besides methanol, acetate, and hydrogen, strain WW1 was also able to use formate, malate, fumarate, propionate, succinate, butyrate, ethanol, propanol, butanol, isobutanol, with concomitant reduction of sulfate to sulfide. In the absence of sulfate, strain WW1 grew only on pyruvate and lactate. On the basis of 16S rRNA analysis, strain WW1 was most closely related to Desulfotomaculum thermocisternum and Desulfotomaculum australicum. However, physiological properties of strain WW1 differed in some aspects from those of the two related bacteria.

  15. Method for the quantification of vanadyl porphyrins in fractions of crude oils by High Performance Liquid Chromatography-Flow Injection-Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.

    2016-05-01

    High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.

  16. Dielectric nanoresonators for light manipulation

    Science.gov (United States)

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  17. Radiation Characteristics Enhancement of Dielectric Resonator Antenna Using Solid/Discrete Dielectric Lenses

    Directory of Open Access Journals (Sweden)

    H. A. E. Malhat

    2015-02-01

    Full Text Available The radiation characteristics of the dielectric resonator antennas (DRA is enhanced using different types of solid and discrete dielectric lenses. One of these approaches is by loading the DRA with planar superstrate, spherical lens, or by discrete lens (transmitarray. The dimensions and dielectric constant of each lens are optimized to maximize the gain of the DRA. A comparison between the radiations characteristics of the DRA loaded with different lenses are introduced. The design of the dielectric transmitarray depends on optimizing the heights of the dielectric material of the unit cell. The optimized transmitarray achieves 7 dBi extra gain over the single DRA with preserving the circular polarization. The proposed antenna is suitable for various applications that need high gain and focused antenna beam.

  18. Examination of Effective Dielectric Constants Derived from Non-Spherical Melting Hydrometeor

    Science.gov (United States)

    Liao, L.; Meneghini, R.

    2009-04-01

    The bright band, a layer of enhanced radar echo associated with melting hydrometeors, is often observed in stratiform rain. Understanding the microphysical properties of melting hydrometeors and their scattering and propagation effects is of great importance in accurately estimating parameters of the precipitation from spaceborne radar and radiometers. However, one of the impediments in the study of the radar signature of the melting layer is the determination of effective dielectric constants of melting hydrometeors. Although a number of mixing formulas are available to compute the effective dielectric constants, their results vary to a great extent when water is a component of the mixture, such as in the case of melting snow. It is also physically unclear as to how to select among these various formulas. Furthermore, the question remains as to whether these mixing formulas can be applied to computations of radar polarimetric parameters from non-spherical melting particles. Recently, several approaches using numerical methods have been developed to derive the effective dielectric constants of melting hydrometeors, i.e., mixtures consisting of air, ice and water, based on more realistic melting models of particles, in which the composition of the melting hydrometeor is divided into a number of identical cells. Each of these cells is then assigned in a probabilistic way to be water, ice or air according to the distribution of fractional water contents for a particular particle. While the derived effective dielectric constants have been extensively tested at various wavelengths over a range of particle sizes, these numerical experiments have been restricted to the co-polarized scattering parameters from spherical particles. As polarimetric radar has been increasingly used in the study of microphysical properties of hydrometeors, an extension of the theory to polarimetric variables should provide additional information on melting processes. To account for polarimetric

  19. Inertial polarization of dielectrics

    OpenAIRE

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  20. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    Science.gov (United States)

    Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.

    2018-05-01

    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.

  1. A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Hwang, Jinyeon; Ha, Heung Yong

    2016-01-01

    This study proposes a novel method for controlling the methanol concentration without using methanol sensors for DMFC (direct methanol fuel cell) systems that have a recycling methanol-feed loop. This method utilizes the amplitudes of output voltage fluctuations of DMFC as a feedback parameter to control the methanol concentration. The relationship between the methanol concentrations and the amplitudes of output voltage fluctuations is correlated under various operating conditions and, based on the experimental correlations, an algorithm to control the methanol concentration with no sensor is established. Feasibility tests of the algorithm have been conducted under various operating conditions including varying ambient temperature with a 200 W-class DMFC system. It is demonstrated that the sensor-less controller is able to control the methanol-feed concentration precisely and to run the DMFC systems more energy-efficiently as compared with other control systems. - Highlights: • A new sensor-less algorithm is proposed to control the methanol concentration without using a sensor. • The algorithm utilizes the voltage fluctuations of DMFC as a feedback parameter to control the methanol feed concentration. • A 200 W DMFC system is operated to evaluate the validity of the sensor-less algorithm. • The algorithm successfully controls the methanol feed concentration within a small error bound.

  2. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  3. Dielectric materials for electrical engineering

    CERN Document Server

    Martinez-Vega, Juan

    2013-01-01

    Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric poly

  4. Cast dielectric composite linear accelerator

    Science.gov (United States)

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  5. Improved Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard

    1994-01-01

    Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.

  6. NMR studies on graphite-methanol system

    International Nuclear Information System (INIS)

    El-Akkad, T.M.

    1977-01-01

    The nuclear magnetic relaxation times for protons of methanol on graphite have been studied. The perpendicular and the transversal magnetization as a function of temperature were measured. The results show that the presence of graphite slowed down the methanol movement compared with that in the pure alcohol, and that the methanol molecules are attached to the graphite surface via methyl groups. (author)

  7. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Goorissen, H.P.; Ronteltap, M.; Hansen, T.A.; Stams, A.J.M.

    2007-01-01

    A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H-2/CO2, no

  8. Waste-to-methanol: Process and economics assessment.

    Science.gov (United States)

    Iaquaniello, Gaetano; Centi, Gabriele; Salladini, Annarita; Palo, Emma; Perathoner, Siglinda; Spadaccini, Luca

    2017-11-01

    The waste-to-methanol (WtM) process and related economics are assessed to evidence that WtM is a valuable solution both from economic, strategic and environmental perspectives. Bio-methanol from Refuse-derived-fuels (RdF) has an estimated cost of production of about 110€/t for a new WtM 300t/d plant. With respect to waste-to-energy (WtE) approach, this solution allows various advantages. In considering the average market cost of methanol and the premium as biofuel, the WtM approach results in a ROI (Return of Investment) of about 29%, e.g. a payback time of about 4years. In a hybrid scheme of integration with an existing methanol plant from natural gas, the cost of production becomes a profit even without considering the cap for bio-methanol production. The WtM process allows to produce methanol with about 40% and 30-35% reduction in greenhouse gas emissions with respect to methanol production from fossil fuels and bio-resources, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ceramic-polymer nanocomposites with increased dielectric permittivity and low dielectric loss

    International Nuclear Information System (INIS)

    Bhardwaj, Sumit; Paul, Joginder; Raina, K. K.; Thakur, N. S.; Kumar, Ravi

    2014-01-01

    The use of lead free materials in device fabrication is very essential from environmental point of view. We have synthesized the lead free ferroelectric polymer nanocomposite films with increased dielectric properties. Lead free bismuth titanate has been used as active ceramic nanofillers having crystallite size 24nm and PVDF as the polymer matrix. Ferroelectric β-phase of the polymer composite films was confirmed by X-ray diffraction pattern. Mapping data confirms the homogeneous dispersion of ceramic particles into the polymer matrix. Frequency dependent dielectric constant increases up to 43.4 at 100Hz, whereas dielectric loss decreases with 7 wt% bismuth titanate loading. This high dielectric constant lead free ferroelectric polymer films can be used for energy density applications

  10. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    Science.gov (United States)

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Investigations into low pressure methanol synthesis

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek

    The central topic of this work has been synthesis, characterization and optimization of novel Ni-Ga based catalysts for hydrogenation of CO2 to methanol. The overall goal was to search for materials that could be used as a low temperature (and low pressure) methanol synthesis catalyst....... This is required for small scale delocalized methanol production sites, where installation of energy demanding compression units should be avoided. The work was triggered by DFT calculations, which showed that certain bimetallic systems are active towards methanol synthesis from CO2 and H2 at ambient pressure...... containing 5:3 molar ratio of Ni:Ga, the intrinsic activity (methanol production rate per active surface area) is comparable to that of highly optimised Cu/ZnO/Al2O3. Formation of the catalyst was investigated with the aid of in-situ XRD and in-situ XAS techniques. The mechanism of alloying was proposed...

  12. The fate of methanol in anaerobic bioreactors

    NARCIS (Netherlands)

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical

  13. Site-specific and multielement approach to the determination of liquid-vapor isotope fractionation parameters. The case of alcohols

    International Nuclear Information System (INIS)

    Moussa, I.; Naulet, N.; Martin, M.L.; Martin, G.J.

    1990-01-01

    Isotope fractionation phenomena occurring at the natural abundance level in the course of liquid-vapor transformation have been investigated by using the SNIF-NMR method (site-specific natural isotope fractionation studied by NMR) which has a unique capability of providing simultaneous access to fractionation parameters associated with different molecular isotopomers. This new approach has been combined with the determination of overall carbon and hydrogen fractionation effects by isotope ratio mass spectrometry (IRMS). The results of distillation and evaporation experiments of alcohols performed in technical conditions of practical interest have been analyzed according to the Rayleigh-type model. In order to check the performance of the column, unit fractionation factors were measured beforehand for water and for the hydroxylic sites of methanol and ethanol for which liquid-vapor equilibrium constants were already known. Inverse isotope effects are determined in distillation experiments for the overall carbon isotope ratio and for the site-specific hydrogen isotope ratios associated with the methyl and methylene sites of methanol and ethanol. In contrast, normal isotope effects are produced by distillation for the hydroxylic sites and by evaporation for all the isotopic ratios

  14. Engineering Escherichia coli for methanol conversion.

    Science.gov (United States)

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stéphanie; Quax, Wim J; Wendisch, Volker F; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia A

    2015-03-01

    Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Methods of conditioning direct methanol fuel cells

    Science.gov (United States)

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  16. Sedimentation in Particulate Aqueous Suspensions as studied by means of Dielectric Time Domain Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Bjoernar Hauknes

    1997-12-31

    Many problems in offshore oil production and multiphase transport are related to surface and colloid chemistry. This thesis applies dielectric spectroscopy as an experimental technique to study the behaviour of particle suspensions in polar media. The thesis opens with an introduction to suspensions and time domain dielectric spectroscopy. It then investigates the dielectric properties of silica and alumina dispersed in polar solvents. It is found that theoretical models can be used to calculate the volume fraction disperse phase in the suspension and that the particle sedimentation depends on the wetting of the particles, charge on the particle surface and viscosity of the solvent, and that this dependency can be measured by time domain dielectric spectroscopy. When the surface properties of silica and alumina particles were modified by coating them with a non-ionic polymer and a non-ionic surfactant, then different degrees of packing in the sedimented phase at the bottom of the sedimentation vessel occurred. Chemometrical methods on the synthesis of monodisperse silica particles were used to investigate what factors influence the particle size. It turned out that it is insufficient to consider only main variables when discussing the results of the synthesis. By introducing interaction terms, the author could explain the variation in the size of particles synthesized. The difference in the sedimentation rate of monodisperse silica particles upon variation of volume fraction particles, pH, salinity, amount of silanol groups at the particle surface and temperature was studied. The cross interactions play an important role and a model explaining the variation in sedimentation is introduced. Finally, magnetic particles dispersed in water and in an external magnetic field were used to study the impact on the sedimentation due to the induced flocculation. 209 refs., 90 figs., 9 tabs.

  17. Growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes as affected from formaldehyde and methylformate.

    Science.gov (United States)

    Aggelis, G; Margariti, N; Kralli, C; Flouri, F

    2000-06-23

    Formaldehyde and methylformate affect the growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes. The presence of both intermediates in the feeding medium caused an increase in biomass yield and productivity and a decrease in the specific rate of methanol consumption. In the presence of formaldehyde, the activity of formaldehyde dehydrogenase and formate dehydrogenase was essentially increased, whereas the activity of methanol oxidase was decreased. On the contrary, the presence of methylformate caused an increase of the activity of methanol oxidase and a decrease of the activity of formaldehyde dehydrogenase and formate dehydrogenase. Interpretations concerning the yeast behavior in the presence of intermediate oxidation products were considered and discussed.

  18. Dielectric effect on electric fields in the vicinity of the metal–vacuum–dielectric junction

    International Nuclear Information System (INIS)

    Chung, M.S.; Mayer, A.; Miskovsky, N.M.; Weiss, B.L.; Cutler, P.H.

    2013-01-01

    The dielectric effect was theoretically investigated in order to describe the electric field in the vicinity of a junction of a metal, dielectric, and vacuum. The assumption of two-dimensional symmetry of the junction leads to a simple analytic form and to a systematic numerical calculation for the field. The electric field obtained for the triple junction was found to be enhanced or reduced according to a certain criterion determined by the contact angles and dielectric constant. Further numerical calculations of the dielectric effect show that an electric field can experience a larger enhancement or reduction for a quadruple junction than that achieved for the triple junction. It was also found that even though it changes slowly in comparison with the shape effect, the dielectric effect was noticeably large over the entire range of the shape change. - Highlights: ► This work explains how a very strong electric field can be produced due to the dielectric in the vicinity of metal–dielectric contact. ► This work deals with configurations which enhance electric fields using the dielectric effect. The configuration is a type of junction at which metal, vacuum and dielectric meet. ► This work suggests the criterion to determine whether field enhancement occurs or not in the triple junction of metal, vacuum and dielectric. ► This work suggests that a quadruple junction is more effective in enhancing the electric field than a triple junction. The quadruple junction is formed by an additional vacuum portion to the triple junction. ► This work suggests that a triple junction can be a breakthrough candidate for a cold electron source

  19. Phase equilibrium data and thermodynamic modeling of the system (CO{sub 2} + biodiesel + methanol) at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Leandro F.; Segalen da Silva, Diogo Italo [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Rosa da Silva, Fabiano; Ramos, Luiz P. [Department of Chemistry, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Ndiaye, Papa M. [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Corazza, Marcos L., E-mail: corazza@ufpr.br [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil)

    2012-01-15

    Highlights: > We measured phase behavior for the system involving {l_brace}CO{sub 2} + biodiesel + methanol{r_brace}. > The saturation pressures were obtained using a variable-volume view cell. > The experimental data were modeled using PR-vdW2 and PR-WS equations of state. - Abstract: The main objective of this work was to investigate the high pressure phase behavior of the binary systems {l_brace}CO{sub 2}(1) + methanol(2){r_brace} and {l_brace}CO{sub 2}(1) + soybean methyl esters (biodiesel)(2){r_brace} and the ternary system {l_brace}CO{sub 2}(1) + biodiesel(2) + methanol(3){r_brace} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {l_brace}CO{sub 2}(1) + methanol(2){r_brace}; (0.4201 to 0.9931) for the binary system {l_brace}CO{sub 2}(1) + biodiesel(2){r_brace}; (0.4864 to 0.9767) for the ternary system {l_brace}CO{sub 2}(1) + biodiesel(2) + methanol(3){r_brace} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {l_brace}CO{sub 2} + biodiesel + methanol{r_brace} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng-Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR-WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR-WS presented the best performance.

  20. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    Science.gov (United States)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  1. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Hou, Weiqiang; Wang, Jingtao; Xiao, Lulu; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China)

    2010-07-01

    Organophosphorylated titania submicrospheres (OPTi) are prepared and incorporated into a chitosan (CS) matrix to fabricate hybrid membranes with enhanced methanol resistance and proton conductivity for application in direct methanol fuel cells (DMFC). The pristine monodispersed titania submicrospheres (TiO{sub 2}) of controllable particle size are synthesized through a modified sol-gel method and then phosphorylated by amino trimethylene phosphonic acid (ATMP) via chemical adsorption, which is confirmed by XPS, FTIR and TGA. The morphology and thermal property of the hybrid membranes are explored by SEM and TGA. The ionic cross-linking between the -PO{sub 3}H{sub 2} groups on OPTi and the -NH{sub 2} groups on CS lead to better compatibility between the inorganic fillers and the polymer matrix, as well as a decreased fractional free volume (FFV), which is verified by positron annihilation lifetime spectroscopy (PALS). The effects of particle size and content on the methanol permeability, proton conductivity, swelling and FFV of the membranes are investigated. Compared to pure CS membrane, the hybrid membranes exhibit an increased proton conductivity to an acceptable level of 0.01 S cm{sup -1} for DMFC application and a reduced methanol permeability of 5 x 10{sup -7} cm{sup 2} s{sup -1} at a 2 M methanol feed. (author)

  2. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix

    Science.gov (United States)

    Wu, Hong; Hou, Weiqiang; Wang, Jingtao; Xiao, Lulu; Jiang, Zhongyi

    Organophosphorylated titania submicrospheres (OPTi) are prepared and incorporated into a chitosan (CS) matrix to fabricate hybrid membranes with enhanced methanol resistance and proton conductivity for application in direct methanol fuel cells (DMFC). The pristine monodispersed titania submicrospheres (TiO 2) of controllable particle size are synthesized through a modified sol-gel method and then phosphorylated by amino trimethylene phosphonic acid (ATMP) via chemical adsorption, which is confirmed by XPS, FTIR and TGA. The morphology and thermal property of the hybrid membranes are explored by SEM and TGA. The ionic cross-linking between the -PO 3H 2 groups on OPTi and the -NH 2 groups on CS lead to better compatibility between the inorganic fillers and the polymer matrix, as well as a decreased fractional free volume (FFV), which is verified by positron annihilation lifetime spectroscopy (PALS). The effects of particle size and content on the methanol permeability, proton conductivity, swelling and FFV of the membranes are investigated. Compared to pure CS membrane, the hybrid membranes exhibit an increased proton conductivity to an acceptable level of 0.01 S cm -1 for DMFC application and a reduced methanol permeability of 5 × 10 -7 cm 2 s -1 at a 2 M methanol feed.

  3. Dielectric dispersion, relaxation dynamics and thermodynamic studies of Beta-Alanine in aqueous solutions using picoseconds time domain reflectometry

    Science.gov (United States)

    Vinoth, K.; Ganesh, T.; Senthilkumar, P.; Sylvester, M. Maria; Karunakaran, D. J. S. Anand; Hudge, Praveen; Kumbharkhane, A. C.

    2017-09-01

    The aqueous solution of beta-alanine characterised and studied by their dispersive dielectric properties and relaxation process in the frequency domain of 10×106 Hz to 30×109 Hz with varying concentration in mole fractions and temperatures. The molecular interaction and dielectric parameters are discussed in terms of counter-ion concentration theory. The static permittivity (ε0), high frequency dielectric permittivity (ε∞) and excess dielectric parameters are accomplished by frequency depended physical properties and relaxation time (τ). Molecular orientation, ordering and correlation factors are reported as confirmation of intermolecular interactions. Ionic conductivity and thermo dynamical properties are concluded with the behaviour of the mixture constituents. Solute-solvent, solute-solute interaction, structure making and breaking abilities of the solute in aqueous medium are interpreted. Fourier Transform Infrared (FTIR) spectra of beta- alanine single crystal and liquid state have been studied. The 13C Nuclear Magnetic Resonance (NMR) spectral studies give the signature for resonating frequencies and chemical shifts of beta-alanine.

  4. Uptake of methanol on mixed HNO3/H2O clusters: An absolute pickup cross section

    Science.gov (United States)

    Pysanenko, A.; Lengyel, J.; Fárník, M.

    2018-04-01

    The uptake of atmospheric oxidized organics on acid clusters is relevant for atmospheric new particle formation. We investigate the pickup of methanol (CH3OH) on mixed nitric acid-water clusters (HNO3)M(H2O)N by a combination of mass spectrometry and cluster velocity measurements in a molecular beam. The mass spectra of the mixed clusters exhibit (HNO3)m(H2O)nH+ series with m = 0-3 and n = 0-12. In addition, CH3OH.(HNO3)m(H2O)nH+ series with very similar patterns appear in the spectra after the methanol pickup. The velocity measurements prove that the undoped (HNO3)m(H2O)nH+ mass peaks in the pickup spectra originate from the neutral (HNO3)M(H2O)N clusters which have not picked up any CH3OH molecule, i.e., methanol has not evaporated upon the ionization. Thus the fraction of the doped clusters can be determined and the mean pickup cross section can be estimated, yielding σs ¯ ≈ 20 Å2. This is compared to the lower estimate of the mean geometrical cross section σg ¯ ≈ 60 Å2 obtained from the theoretical cluster geometries. Thus the "size" of the cluster corresponding to the methanol pickup is at least 3-times smaller than its geometrical size. We have introduced a method which can yield the absolute pickup cross sections relevant to the generation and growth of atmospheric aerosols, as illustrated in the example of methanol and nitric acid clusters.

  5. Methanol synthesis beyond chemical equilibrium

    NARCIS (Netherlands)

    van Bennekom, J. G.; Venderbosch, R. H.; Winkelman, J. G. M.; Wilbers, E.; Assink, D.; Lemmens, K. P. J.; Heeres, H. J.

    2013-01-01

    In commercial methanol production from syngas, the conversion is thermodynamically limited to 0.3-0.7 leading to large recycles of non-converted syngas. This problem can be overcome to a significant extent by in situ condensation of methanol during its synthesis which is possible nowadays due to the

  6. Optimal Super Dielectric Material

    Science.gov (United States)

    2015-09-01

    plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with dielectric values orders of... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...circuit modeling, from [44], and B) SDM capacitor charge and discharge ...................................................22 Figure 15. Dielectric

  7. Methanol decomposition and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Ludwig, W.; Bakker, J.W.; Gluhoi, A.C.; Nieuwenhuys, B.E.

    2007-01-01

    The adsorption, decompn., and oxidn. of methanol (CH3OH) has been studied on Ir(111) using temp.-programmed desorption and high-energy resoln. fast XPS. Mol. methanol desorption from a methanol-satd. surface at low temp. shows three desorption peaks, around 150 K (alpha ), around 170 K (beta 1), and

  8. Anti-oxidant and anti-inflammatory activity of leaf extracts and fractions of Mangifera indica.

    Science.gov (United States)

    Mohan, C G; Deepak, M; Viswanatha, G L; Savinay, G; Hanumantharaju, V; Rajendra, C E; Halemani, Praveen D

    2013-04-13

    To evaluate the anti-oxidant and anti-inflammatory activity of leaf extracts and fractions of Mangifera indica in in vitro conditions. In vitro DPPH radical scavenging activity and lipoxygenase (LOX) inhibition assays were used to evaluate the anti-oxidant and anti-inflammatory activities respectively. Methanolic extract (MEMI), successive water extract (SWMI) and ethyl acetate fraction (EMEMI), n-butanol fraction (BMEMI) and water soluble fraction (WMEMI) of methanolic extract were evaluated along with respective reference standards. In in vitro DPPH radical scavenging activity, the MEMI, EMEMI and BMEMI have offered significant antioxidant activity with IC(50) values of 13.37, 3.55 and 14.19 μg/mL respectively. Gallic acid, a reference standard showed significant antioxidant activity with IC(50) value of 1.88 and found to be more potent compared to all the extracts and fractions. In in vitro LOX inhibition assay, the MEMI, EMEMI and BMEMI have showed significant inhibition of LOX enzyme activity with IC(50) values of 96.71, 63.21 and 107.44 μg/mL respectively. While, reference drug Indomethacin also offered significant inhibition against LOX enzyme activity with IC(50) of 57.75. Furthermore, MEMI was found to more potent than SWMI and among the fractions EMEMI was found to possess more potent antioxidant and anti-inflammatory activity. These findings suggest that the MEMI and EMEMI possess potent anti-oxidant and anti-inflammatory activities in in vitro conditions. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  9. Methanol in the L1551 Circumbinary Torus

    OpenAIRE

    White, Glenn J.; Fridlund, C. W. M.; Bergman, P.; Beardsmore, A.; Liseau, Rene; Phillips, R. R.

    2006-01-01

    We report observations of gaseous methanol in an edge-on torus surrounding the young stellar object L1551 IRS5. The peaks in the torus are separated by ~ 10,000 AU from L1551 IRS5, and contain ~ 0.03 earth masses of cold methanol. We infer that the methanol abundance increases in the outer part of the torus, probably as a result of methanol evaporation from dust grain surfaces heated by the shock luminosity associated with the shocks associated with the jets of an externally located x-ray sou...

  10. Groundwater issues relating to an Alaskan methanol spill

    International Nuclear Information System (INIS)

    Robertson, S.B.

    1992-01-01

    This paper reports on a Dec. 1989 methanol spill which resulted from sabotage to three railroad tank cars. Samples taken from nearby drinking-water wells and groundwater-monitoring wells were below the analytical detection limit. Monitoring well data demonstrated that groundwater flow was not toward local residential wells. Dilution by snow and subsequent freezing in the soil limited the downward spread of the methanol, an advantage not found in milder, more temperate conditions. Contaminated material was removed and processed to reclaim the methanol. Volatilization and biodegradation should remove any remaining methanol. Cleanup options were limited by the possible hazardous waste classification of the contaminated soil. The regulatory status of spilled methanol waste should be re-evaluated, especially if use of methanol as a motor fuel increases

  11. Sorption of methanol in alkali exchange zeolites

    NARCIS (Netherlands)

    Rep, M.; Rep, M.; Corma, Avelino; Palomares, A.E.; Palomares gimeno, A.E.; van Ommen, J.G.; Lefferts, Leonardus; Lercher, J.A.

    2000-01-01

    Metal cation methanol sorption complexes in MFI (ZSM5), MOR and X have been studied by in situ i.r. spectroscopy in order to understand the nature of interactions of methanol in the molecular sieve pores. The results show that (a) a freely vibrating hydroxy and methyl group of methanol exist on

  12. Development of a dielectric ceramic based on diatomite-titania part two: dielectric properties characterization

    Directory of Open Access Journals (Sweden)

    Medeiros Jamilson Pinto

    1998-01-01

    Full Text Available Dielectric properties of sintered diatomite-titania ceramics are presented. Specific capacitance, dissipation factor, quality factor and dielectric constant were determined as a function of sintering temperature, titania content and frequency; the temperature coefficient of capacitance was measured as a function of frequency. Besides leakage current, the dependence of the insulation resistance and the dielectric strength on the applied dc voltage were studied. The results show that diatomite-titania compositions can be used as an alternative dielectric.

  13. Atmospheric deposition of methanol over the Atlantic Ocean

    Science.gov (United States)

    Yang, Mingxi; Nightingale, Philip D.; Beale, Rachael; Liss, Peter S.; Blomquist, Byron; Fairall, Christopher

    2013-01-01

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air–sea methanol transfer along a ∼10,000-km north–south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air–sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface—an important term for improving air–sea gas exchange models. PMID:24277830

  14. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum.

    Science.gov (United States)

    Yang, Zehui; Nakashima, Naotoshi

    2015-07-20

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2'-(2,6-pyridine)-5,5'-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance.

  15. Compact Fuel-Cell System Would Consume Neat Methanol

    Science.gov (United States)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  16. Characterization and blood coagulation evaluation of the water-soluble chitooligosaccharides prepared by a facile fractionation method.

    Science.gov (United States)

    Lin, Chia-Wen; Lin, Jui-Che

    2003-01-01

    Water-soluble chitooligosaccharides have been reported to have specific biological activities. In this study, the chitosan samples with different degree of acetylation were used separately to prepare chitooligosaccharide (COS) and highly deacetylated chitooligosaccharide (HDCOS) through the nitrous acid depolymerization. Rather than using the conventional fractionation schemes commonly employed, such as dialysis and ultrafiltration which require a large amount of deionized water as well as a fair long dwell time, an unique fractionation scheme is explored to recover and desalt these nitrous-acid depolymerized chitosan with different molecular weights. This fractionation scheme is based on the differential solubility variation of depolymerized products within the aqueous solutions that contain various ratios of methanol. It was noted that chitosan with different molecular weight can be successfully recovered and fractionated with methanol added sequentially up to a volume of four times of original depolmerized product. In addition, chemical characterization of the fractionated water-soluble COS and HDCOS by 1H NMR spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicated that the chitosan depolymerization reaction is greatly influenced by the degree of acetylation of the parental chitosan reactant. Moreover, the modified whole blood clotting time assay and the platelet coagulation test suggested that the 1:2 fractionated water-soluble COS and HDCOS obtained are much less procoagulant than their parental chitosan compound and can be of use in biomedical applications in which blood coagulation is not desired.

  17. Time domain reflectometry-measuring dielectric permittivity to detect soil non-acqeous phase liquids contamination-decontamination processes

    Directory of Open Access Journals (Sweden)

    A. Comegna

    2013-09-01

    Full Text Available Contamination of soils with non-aqueous phase liquids (NAPL constitutes a serious geo-environmental problem, given the toxicity level and high mobility of these organic compounds. To develop effective decontamination methods, characterisation and identification of contaminated soils are needed. The objective of this work is to explore the potential of dielectric permittivity measurements to detect the presence of NAPLs in soils. The dielectric permittivity was measured by Time Domain Reflectometry method (TDR in soil samples with either different volumetric content of water (w and NAPL (NAPL or at different stages during immiscible displacement test carried out with two different flushing solutions. A mixing model proposed by Francisca and Montoro, was calibrated to estimate the volume fraction of contaminant present in soil. Obtained results, showed that soil contamination with NAPL and the monitoring of immiscible fluid displacement, during soil remediation processes, can be clearly identified from dielectric measurements.

  18. Nitrofurantoin methanol monosolvate

    Directory of Open Access Journals (Sweden)

    Venu R. Vangala

    2011-03-01

    Full Text Available The antibiotic nitrofurantoin {systematic name: (E-1-[(5-nitro-2-furylmethylideneamino]imidazolidine-2,4-dione} crystallizes as a methanol monosolvate, C8H6N4O5·CH4O. The nitrofurantoin molecule adopts a nearly planar conformation (r.m.s. deviation = 0.0344 Å. Hydrogen bonds involve the co-operative N—H...O—H...O heterosynthons between the cyclic imide of nitrofurantoin and methanol O—H groups. There are also C—H...O hydrogen bonds involving the nitrofurantoin molecules which support the key hydrogen-bonding synthon. The overall crystal packing is further assisted by weak C—H...O interactions, giving a herringbone pattern.

  19. Methanol suppression of trichloroethylene degradation by M. trichosporium

    International Nuclear Information System (INIS)

    Palumbo, A.V.; Eng, W.

    1990-01-01

    Biodegradation by methylotrophs has been considered a potential method for in situ remediation, but delivery of sufficient methane could be a problem. Since methanol could be delivered more readily into soil, the authors examined TCE degradation under methane (0.89 M), methanol (1.187 mM), and combined methane (0.89 mM) methanol (1.187 mM) stimulated treatments using M. trichosporium and mixed cultures JS and DT. Degradation of TCE was determined by the summation of radiolabeled CO 2 , water-soluble intermediates, and biomass transformed from 14 C TCE. M. trichosporium degraded 0.36 ± 2.08% (mean ± std dev) of the initial TCe (0.3 mg/l) with methanol stimulation, compared to 9.07 ± 1.04% with methane stimulation. JS and DT cultures degraded 4.34 ± 0.11% on methanol compared to 24.3 ± 1.38% and 34.3 ± 3.0% on methane, respectively. If methanol was added to methane-stimualted cultures, TCE degradation was reduced to 1.08 ± 1.74% for M. trichosporium, and 5.08 ± 0.56% for JS culture. Methanol retarded the rates of methane and oxygen utilization as well. However, methanol-stimulated cultures grew to a greater extent than methane-stimulated cultures with 14 mg/l TCE. Previous workers have shown that methanol suppresses methane monooxygenase, and they suggest this may explain the reduced amount of TCE degraded

  20. Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial

    Directory of Open Access Journals (Sweden)

    Tianhuan Luo

    2015-01-01

    Full Text Available With a deep study of the metamaterial, its unit cells have been widely extended from metals to dielectrics. The dielectric based unit cells attract much attention because of the advantage of easy preparation, tunability, and higher frequency response, and so forth. Using the conventional solid state method, we prepared a kind of incipient ferroelectrics (calcium titanate, CaTiO3 with higher microwave permittivity and lower loss, which can be successfully used to construct metamaterials. The temperature and frequency dependence of dielectric constant are also measured under different sintering temperatures. The dielectric spectra showed a slight permittivity decrease with the increase of temperature and exhibited a loss of 0.0005, combined with a higher microwave dielectric constant of ~167 and quality factor Q of 2049. Therefore, CaTiO3 is a kind of versatile and potential metamaterial unit cell. The permittivity of CaTiO3 at higher microwave frequency was also examined in the rectangular waveguide and we got the permittivity of 165, creating a new method to test permittivity at higher microwave frequency.

  1. Methanol production from eucalyptus wood chips. Attachment IV. Health and safety aspects of the eucalypt biomass to methanol energy system

    Energy Technology Data Exchange (ETDEWEB)

    Fishkind, H.H.

    1982-06-01

    The basic eucalyptus-to-methanol energy process is described and possible health and safety risks are identified at all steps of the process. The toxicology and treatment for exposure to these substances are described and mitigating measures are proposed. The health and safety impacts and risks of the wood gasification/methanol synthesis system are compared to those of the coal liquefaction and conversion system. The scope of this report includes the health and safety risks of workers (1) in the laboratory and greenhouse, where eucalyptus seedlings are developed, (2) at the biomass plantation, where these seedlings are planted and mature trees harvested, (3) transporting these logs and chips to the refinery, (4) in the hammermill, where the logs and chips will be reduced to small particles, (5) in the methanol synthesis plant, where the wood particles will be converted to methanol, and (6) transporting and dispensing the methanol. Finally, the health and safety risks of consumers using methanol is discussed.

  2. Methanol production from Eucalyptus wood chips. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fishkind, H.H.

    1982-06-01

    This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.

  3. In vivo wound healing activity and phytochemical screening of the crude extract and various fractions of Kalanchoe petitiana A. Rich (Crassulaceae) leaves in mice.

    Science.gov (United States)

    Mekonnen, Awol; Sidamo, Temesgen; Asres, Kaleab; Engidawork, Ephrem

    2013-01-30

    The leaves of Kalanchoe petitiana A. Rich (Crassulaceae) are used in Ethiopian folk medicine for treatment of evil eye, fractured surface for bone setting and several skin disorders including for the treatment of sores, boils, and malignant wounds. In order to scientifically prove the claimed utilization of the plant, the effects of the extracts and the fractions were investigated using in vivo excision, incision and dead space wound models. Mice were used for wound healing study, while rats and rabbit were used for skin irritation test. For studying healing activity 80% methanolic extract and the fractions were formulated in strength of 5% and 10%, either as ointment (hydroalcoholic extract, aqueous and methanol fractions) or gel (chloroform fraction). Oral administration of the crude extract was used for dead space model. Negative controls were treated either with simple ointment or sodium carboxyl methyl cellulose xerogel, while positive controls with nitrofurazone (0.2 w/v) skin ointment. Negative controls for dead space model were treated with 1% carboxy methyl cellulose. Parameters, including rate of wound contraction, period of complete epithelializtion, hydroxyproline contents and skin breaking strength were evaluated. Significant wound healing activity was observed with ointment formulated from the crude extract at both 5% and 10% concentration (pKalanchoe petitiana A. Rich possess remarkable wound healing activities supporting the folkloric assertion of the plant. Fractionation revealed that polar or semi polar compound may play vital role, as both aqueous and methanolic fractions were endowed with wound healing activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells.

    Science.gov (United States)

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-08-15

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  5. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jiyoung Kim

    2016-08-01

    Full Text Available Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC. The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR activities and the electrochemical double layer compared with common carbon black (CB. To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  6. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2014-01-01

    Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric...

  7. World scale fuel methanol facility siting

    International Nuclear Information System (INIS)

    Stapor, M.C.; Hederman, W.F.

    1990-01-01

    Since the Administration announced a clean alternative fuels initiative, industry and government agencies' analyses of the economics of methanol as an alternative motor vehicle fuel have accelerated. In the short run, methanol appears attractive because excess production capacity currently has depressed methanol prices and marginal costs of production are lower than other fuels (current excess capacity). In the long run, however, full costs are the more relevant. To lower average production costs, U.S. policy interest has focused on production from a world-scale, 10,000 tons per day (tpd) methanol plant facility on a foreign site. This paper reviews several important site and financial considerations in a framework to evaluate large scale plant development. These considerations include: risks associated with a large process plant; supply economics of foreign sites; and investment climates and financial incentives for foreign investment at foreign sites

  8. A rare presentation of methanol toxicity

    Directory of Open Access Journals (Sweden)

    Nikhil Gupta

    2013-01-01

    Full Text Available Methanol is a highly toxic alcohol resembling ethanol in smell and taste. Methanol poisoning is a lethal form of poisoning that can cause severe metabolic acidosis, visual disturbances, and neurological deficit. Brain lesions typically described in methanol toxicity are in the form of hemorrhagic and non-hemorrhagic necrosis of the basal ganglia and sub-cortical white matter. To our knowledge, lesions in the parietal, temporal, or frontal areas of cerebrum and cerebellar hemispheres have been rarely reported so far. We herewith report this rare presentation.

  9. The non-separability of ''dielectric'' and ''mechanical'' friction in molecular systems: A simulation study

    International Nuclear Information System (INIS)

    Kumar, P. V.; Maroncelli, M.

    2000-01-01

    Simulations of the time-dependent friction controlling rotational, translational, and vibrational motions of dipolar diatomic solutes in acetonitrile and methanol have been used to examine the nature of ''dielectric'' friction. The way in which electrical interactions increase the friction beyond that present in nonpolar systems is found to be rather different than what is anticipated by most theories of dielectric friction. Long-range electrostatic forces do not simply add an independent contribution to the friction due to short-ranged or ''mechanical'' sources (modeled here in terms of Lennard-Jones forces). Rather, the electrical and Lennard-Jones contributions are found to be strongly anticorrelated and not separable in any useful way. For some purposes, the mechanism by which electrical interactions increase friction is better viewed as a static electrostriction effect: electrical forces cause a subtle increase in atomic density in the solute's first solvation shell, which increases the amplitude of the force fluctuations derived from the Lennard-Jones interactions, i.e., the mechanical friction. However, electrical interactions also modify the dynamics of the friction, typically adding a long-time tail, which significantly increases the integral friction. Both of these effects must be included in a correct description of friction in the presence of polar interactions. (c) 2000 American Institute of Physics

  10. Liquid densities and excess molar volumes for (ionic liquids + methanol + water) ternary system at atmospheric pressure and at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Deenadayalu, Nirmala [Department of Chemistry, Durban University of Technology, Steve Biko Campus, P.O. Box 1334, Durban, KwaZulu-Natal 4001 (South Africa)], E-mail: NirmalaD@dut.ac.za; Kumar, Satish; Bhujrajh, Pravena [Department of Chemistry, Durban University of Technology, Steve Biko Campus, P.O. Box 1334, Durban, KwaZulu-Natal 4001 (South Africa)

    2007-09-15

    Excess molar volumes, V{sub m}{sup E} have been evaluated from density measurements over the entire composition range for ternary liquid system of ionic liquid (1-ethyl-3-methyl-imidazolium diethylenglycol monomethylether sulphate {l_brace}[EMIM][CH{sub 3}(OCH{sub 2}CH{sub 2}){sub 2}OSO{sub 3}]) (1) + methanol (2) + water (3){r_brace} at T = (298.15, 303.15, and 313.15) K. A vibrating tube densimeter was used for these measurements at atmospheric pressure. The V{sub m}{sup E} values were found to be negative at T = (298.15 and 303.15) K. For {l_brace}[EMIM][CH{sub 3}(OCH{sub 2}CH{sub 2}){sub 2}OSO{sub 3}] (1) + methanol (2) + water (3){r_brace} at T = 313.15 K the V{sub m}{sup E} values become positive at higher mole fraction of ionic liquid and at a corresponding decrease in mole fraction of water. All the experimental data were fitted with the Redlich-Kister equation. The results have also been analysed in term of graph theoretical approach.

  11. Super Dielectric Materials.

    Science.gov (United States)

    Fromille, Samuel; Phillips, Jonathan

    2014-12-22

    Evidence is provided here that a class of materials with dielectric constants greater than 10⁵ at low frequency (dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 10⁸ in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 10⁴. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc. ), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to "short" the individual water droplets. Potentially NPS capacitor stacks can surpass "supercapacitors" in volumetric energy density.

  12. Characterization of a dielectric microdroplet thermal interface material with dispersed nanoparticles

    International Nuclear Information System (INIS)

    Hamdan, A.; Sahli, F.; Richards, R.; Richards, C.

    2012-01-01

    This work presents the fabrication and characterization of a dielectric microdroplet thermal interface material (TIM). Glycerin droplets, 1 μL, were tested as TIMs in this study. Copper nanoparticles having a diameter of 25 nm were dispersed in glycerin at different volume fractions to enhance its thermal conductivity. An increase of 57.5% in the thermal conductivity of glycerin was measured at a volume fraction of 15%. A minimum thermal interface resistance of 30.37 mm 2 K/W was measured for the glycerin microdroplets at a deformed droplet height of 10.2 μm. Good agreement between experimental measurements and the predictions of a model based on Maxwell’s equation of rules of mixtures was obtained. The effect of nanoparticles' size on the effective thermal conductivity of glycerin was studied. Nanoparticles with diameters of 60–80 and 300 nm were dispersed in glycerin at a volume fraction of 5%, and their results were compared to those of the 25 nm particles.

  13. Methanol adsorption on Pt(111)

    International Nuclear Information System (INIS)

    Melo, A.V.; Chottiner, G.S.; Hoffman, R.W.; O'Grady, W.E.

    1984-12-01

    High resolution electron energy loss spectroscopy has been used to study the decomposition of methanol on a Pt(111) surface. Several intermediate states in the decomposition are identified by quenching the sample when reactions occur. At 100 K a set of peaks at 800, 1040, 1350, and 2890 cm -1 indicates the presence of a multilayer molecularly adsorbed methanol. As the sample is warmed to 130 K peaks develop at 1700 and 2780 cm -1 , suggesting the formation of formaldehyde on the surface. With further heating, peaks grow at 1820 and 2560 cm -1 due to the formation of a formyl species during the decomposition of methanol over Pt(111). Further heating leads to the final conversion of the surface species to adsorbed CO and carbonaceous residues

  14. Resonant wave energy harvester based on dielectric elastomer generator

    Science.gov (United States)

    Moretti, Giacomo; Pietro Rosati Papini, Gastone; Righi, Michele; Forehand, David; Ingram, David; Vertechy, Rocco; Fontana, Marco

    2018-03-01

    Dielectric elastomer generators (DEGs) are a class of capacitive solid-state devices that employ highly stretchable dielectrics and conductors to convert mechanical energy into high-voltage direct-current electricity. Their promising performance in terms of convertible energy and power density has been mostly proven in quasi-static experimental tests with prescribed deformation. However, the assessment of their ability in harvesting energy from a dynamic oscillating source of mechanical energy is crucial to demonstrate their effectiveness in practical applications. This paper reports a first demonstration of a DEG system that is able to convert the oscillating energy carried by water waves into electricity. A DEG prototype is built using a commercial polyacrylate film (VHB 4905 by 3M) and an experimental campaign is conducted in a wave-flume facility, i.e. an artificial basin that makes it possible to generate programmed small-scale waves at different frequencies and amplitudes. In resonant conditions, the designed system demonstrates the delivery of a maximum of 0.87 W of electrical power output and 0.64 J energy generated per cycle, with corresponding densities per unit mass of dielectric elastomer of 197 W kg-1 and 145 J kg-1. Additionally, a notable maximum fraction of 18% of the input wave energy is converted into electricity. The presented results provide a promising demonstration of the operation and effectiveness of ocean wave energy converters based on elastic capacitive generators.

  15. Contemporary dielectric materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

  16. ( Asteraceae ) methanol extracts against Helicobacter pylori

    African Journals Online (AJOL)

    Methanol vehicle did not affect H. pylori growth. Conclusion: The observed antibacterial effect of G. glutinosum extracts may be of benefit as an adjuvant treatment of diseases caused by H. pylori. Key words: Gymnosperma glutinosum, Helicobacter pylori, methanol extract, minimal inhibitory concentration (MIC).

  17. UO2 production process with methanol washing

    International Nuclear Information System (INIS)

    Sondermann, T.

    1978-01-01

    The invention refers to a process for the recovery of methanol used for washing the ammonium uranyl carbonate obtained during UO 2 production. The methanol contains about 50% H 2 O, about 10% (NH 4 ) 2 CO 3 , and is radioactive. According to the invention the methanol is purified at reduced pressure in a distillation unit and then led back to the washing unit. (UWI) 891 HP/UWI 892 MBE [de

  18. Structural Study of Reduced Graphene Oxide/ Polypyrrole Composite as Methanol Sensor in Direct Methanol Fuel Cell

    International Nuclear Information System (INIS)

    Mumtazah Atiqah Hassan; Siti Kartom Kamarudin; Siti Kartom Kamarudin

    2016-01-01

    Density functional theory (DFT) computations were performed on the optimized geometric and electronic properties of reduced graphene oxide/polypyrole (rGO/ PPy) composite in comparison with pure graphene and graphene oxide structures. Incorporation of both reduced GO (rGO) and PPy will form a good composite which have advantages from both materials such as good mechanical strength and excellent electrical conductivity. These composite would be very suitable in fabrication of methanol sensor in direct methanol fuel cell (DMFC). The HOMO-LUMO energy (eV) was also calculated. These computations provide a theoretical explanation for the good performance of rGO/ PPy composite as electrode materials in methanol sensor. (author)

  19. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control

    International Nuclear Information System (INIS)

    Nelson, S.O.; Bartley, P.G. Jr.; Lawrence, K.C.

    1998-01-01

    The permittivities of bulk samples of adult insects of the rice weevil, red flour beetle, sawtoothed grain beetle, and lesser grain borer were measured at single frequencies of 9.4 and 11.7 Ghz in X-band waveguide at about 23 degrees C, and permittivities of homogenized samples of the same species were measured from 0.2 to 20 GHz at temperatures from 10 to 70 degrees C with an open-ended coaxial-line probe and network analyzer. Sample densities for the coaxial-line probe measurements were determined from the X-band measurements with a linear relationship between the cube root of the dielectric constant and sample bulk density determined from permittivity measurements on bulk samples of the adult insects in a waveguide sample holder taken with the short-circuited line technique. Since linearity of the cube root of the dielectric constant with bulk density is consistent with the Landau and Lifshitz, Looyenga dielectric mixture equation, this equation was used to calculate estimated dielectric constants and loss factors of the insects from measured permittivities and volume fractions determined from measured bulk density and adult insect density determined by air-comparison pycnometer measurements. Estimated dielectric constants and loss factors of the insects are presented graphically for temperatures from 10 to 70 degrees C, and tabulated data are provided for range information and comparative purposes

  20. Dielectric properties of (CuO,CaO2, and BaO)y/CuTl-1223 composites

    International Nuclear Information System (INIS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Hussain, S.Tajammul; Kamran, M.

    2013-01-01

    We synthesized (CuO, CaO 2 , and BaO) y /Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties such as real and imaginary part of dielectric constant, dielectric loss, and ac-conductivity of these composites are studied by capacitance and conductance measurement as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). The x-ray diffraction analysis reveals that the characteristic behavior of Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ superconductor phase and its structure is nearly undisturbed by doping of nanoparticles. The scanning electron microscopy images show the improvement in the intergranular links among the superconducting grains with increasing nanoparticles concentration. Microcracks are healed up with the inclusion of these nanoparticles and superconducting volume fraction is also increased. The dielectric properties of these composites strongly depend upon the frequency and temperature. The zero resistivity critical temperature and dielectric properties show opposite trend with the addition of nanoparticles in Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ superconductor matrix.

  1. A New 95 GHz Methanol Maser Catalog. I. Data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenjin; Xu, Ye; Lu, Dengrong; Ju, Binggang; Li, Yingjie [Purple Mountain Observatory, Chinese Academy of Science, Nanjing 210008 (China); Chen, Xi [Center for Astrophysics, GuangZhou University, Guangzhou 510006 (China); Ellingsen, Simon P., E-mail: wjyang@pmo.ac.cn, E-mail: xuye@pmo.ac.cn, E-mail: chenxi@shao.ac.cn [School of Physical Sciences, University of Tasmania, Hobart, Tasmania (Australia)

    2017-08-01

    The Purple Mountain Observatory 13.7 m radio telescope has been used to search for 95 GHz (8{sub 0}–7{sub 1}A{sup +}) class I methanol masers toward 1020 Bolocam Galactic Plane Survey (BGPS) sources, leading to 213 detections. We have compared the line width of the methanol and HCO{sup +} thermal emission in all of the methanol detections, and on that basis, we find that 205 of the 213 detections are very likely to be masers. This corresponds to an overall detection rate of 95 GHz methanol masers toward our BGPS sample of 20%. Of the 205 detected masers, 144 (70%) are new discoveries. Combining our results with those of previous 95 GHz methanol maser searches, a total of 481 95 GHz methanol masers are now known. We have compiled a catalog listing the locations and properties of all known 95 GHz methanol masers.

  2. Flow of CO2 ethanol and of CO2 methanol in a non-adiabatic microfluidic T-junction at high pressures

    NARCIS (Netherlands)

    Blanch Ojea, R.; Tiggelaar, Roald M.; Pallares, J.; Grau, F.X.; Gardeniers, Johannes G.E.

    2012-01-01

    In this work, an experimental investigation of the single- and multiphase flows of two sets of fluids, CO2–ethanol and CO2–methanol, in a non-adiabatic microfluidic T-junction is presented. The operating conditions ranged from 7 to 18 MPa, and from 294 to 474 K. The feed mass fraction of CO2 in the

  3. Developmental and Reproductive Toxicology of Methanol

    Science.gov (United States)

    Methanol is a high production volume chemical used as a feedstock for chemical syntheses and as a solvent and fuel additive. Methanol is acutely toxic to humans, causing acidosis, blindness in death at high dosages, but its developmental and reproductive toxicity in humans is poo...

  4. UNJUK KERJA REAKTOR PLASMA DIELECTRIC BARRIER DISCHARGE UNTUK PRODUKSI BIODIESEL DARI MINYAK KELAPA SAWIT

    Directory of Open Access Journals (Sweden)

    Ardian Dwi Yudhistira

    2013-10-01

    Full Text Available Biodiesel is one of alternative renewable energy source to substitute diesel fuel. Various biodiesel productionprocesses through transesterification reaction with a variety of catalysts have been developed by previousresearcher. This process still has the disadvantage of a long reaction time, and high energy need. DielectricBarrier Discharge (DBD plasma electro-catalysis may become a solution to overcome the drawbacks in theconventional transesterification process. This process only needs a short time reaction and low energy process.The purpose of this study was to assess the performance of DBD plasma rector in making biodiesel such as: theeffect of high voltage electric value, electrodes gap, mole ratio of methanol / oil, and reaction time. TheResearch method was using GC-MS (Gas Cromatography-Mass Spectrofotometry and FTIR (FourierTransform Infrared Spectrofotometry and then it will be analysed the change of chemical bond betweenreactant and product. So, the reaction mechanism can be predicted. Biodiesel is produced using methanol andpalm oil as reactants and DBD plasma used as reactor in batch system. Then, reactants contacted by highvoltage electric. From the results of this research can be concluded that the reaction mechanism occurs in theprocess is the reaction mechanism of cracking, the higher of electric voltage and the longer of reaction time leadto increasing of product yield. The more of mole ratio of methanol / oil and widening the gap between theelectrodes lead to decreased product yield. From this research, product yield maksimum is 89,8% in the variableof rasio mol metanol/palm oil 3:1, voltage 10 kV, electrode gap 1,5 cm, and reaction time 30 seconds.

  5. Bifunctional anode catalysts for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Ferrin, Peter; Tritsaris, Georgios

    2012-01-01

    Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties......: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to react off surface intermediates (such as CO* and OH*). Based on this analysis, an alloy catalyst made up of Cu and Pt should have a synergistic effect facilitating the activity towards methanol electro-oxidation....... Adding Cu to a Pt(111) surface increases the methanol oxidation current by more than a factor of three, supporting our theoretical predictions for improved electrocatalysts....

  6. Integrative CO2 Capture and Hydrogenation to Methanol with Reusable Catalyst and Amine: Toward a Carbon Neutral Methanol Economy.

    Science.gov (United States)

    Kar, Sayan; Sen, Raktim; Goeppert, Alain; Prakash, G K Surya

    2018-02-07

    Herein we report an efficient and recyclable system for tandem CO 2 capture and hydrogenation to methanol. After capture in an aqueous amine solution, CO 2 is hydrogenated in high yield to CH 3 OH (>90%) in a biphasic 2-MTHF/water system, which also allows for easy separation and recycling of the amine and catalyst for multiple reaction cycles. Between cycles, the produced methanol can be conveniently removed in vacuo. Employing this strategy, catalyst Ru-MACHO-BH and polyamine PEHA were recycled three times with 87% of the methanol producibility of the first cycle retained, along with 95% of catalyst activity after four cycles. CO 2 from dilute sources such as air can also be converted to CH 3 OH using this route. We postulate that the CO 2 capture and hydrogenation to methanol system presented here could be an important step toward the implementation of the carbon neutral methanol economy concept.

  7. Antidermatophytic and Toxicological Evaluations of Dichloromethane-Methanol Extract, Fractions and Compounds Isolated from Coula edulis

    Directory of Open Access Journals (Sweden)

    Jean De Dieu Tamokou

    2011-06-01

    Full Text Available Background: Coula edulis Bail (Olacaceae, is an evergreen tree growing to a height of 25-38 m. This study aimed at evaluating the antidermatophytic and toxicological properties of the stem bark of C. edulis extract as well as fractions and compounds isolated from it. Methods: The plant extract was prepared by maceration in CH2Cl2-MeOH (1:1 v/v. The fractionation of this extract was done by silica gel column chromatography. Antidermatophytic activities were assayed using agar dilution method. The acute and sub-acute toxicities of oral administrations of the extract were studied in rodents. Results: The crude extract of C. edulis displayed antidermatophytic activity against the tested microorganisms with highest activity against Microsporum audouinii and Trichophyton mentagrophytes. The fractionation enhanced the antidermatophytic activity in fraction F3 (MIC=0.62-1.25 mg/ml compared to the crude extract (MIC=1.25-5 mg/ml. Further fractionation and purification of the fractions F2 and F3 gave respectively 3-O-β-D-glucopyranoside of sitosterol (MIC=0.20-0.40 mg/ml and a mixture of β-sitosterol, stigmasterol and n-hexadecanoid acid (MIC=0.80 mg/ml. The median lethal doses (LD50 of the crude extract were 16.8 and 19.6 g/kg body weight (BW in male and female mice, respectively. At 200 mg/kg BW, there was a decrease in body weight gain, food and water consumptions. Gross anatomical analysis revealed white vesicles on the liver of the rats treated with the extract at 200 mg/kg BW. This dose also induced significant (P<0.05 changes on hematological and biochemical parameters in rats after 28 days of treatment. Conclusion: These data suggest that the CH2Cl2-MeOH (1:1 v/v extract of C. edulis stem bark possesses antidermatophytic properties. They also show that at high doses (≥ 200 mg/kg BW, the extract has significant hepatotoxic and nephrotoxic activities

  8. The fate of methanol in anaerobic bioreactors

    OpenAIRE

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical oxygen demand (COD) removal, whereas with the formation of volatile fatty acids (VFA) little COD removal is achieved. Moreover, the accumulation of VFA can lead to reactor instability due to pH drops...

  9. Thermal unimolecular decomposition of methanol. Zum thermischen unimolekularen Zerfall von Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, K

    1979-01-01

    The thermal unimolecular decomposition of methanol and that of acetone (1B) were investigated experimentally after reflected shockwaves, by following up the OH and CH/sub 3/ absorption or the CH/sub 3/ and acetone absorption respectively. A computer simulation of the decomposition of methanol and the subsequent reactions was done. This gave velocity constants for some reactions, which are different from those that are found in the literature. The experimental investigation of the decomposition of acetone, from comparison of the results with the data in the literature, shows that the observations of CH/sub 3/ absorption are very suitable for obtaining velocity constants for decomposition reactions, where CH/sub 3/ radicals are formed in the first stage.

  10. Chemical effects of 13N produced by recoil protons and deuterons in pile-irradiated methanol and methanol-d4

    International Nuclear Information System (INIS)

    Sensui, Y.; Tomura, K.; Matsuura, T.

    1982-01-01

    The stabilized chemical forms of 13 N resulting from the reactions 13 C(p,n) 13 N by a recoil proton and 12 C(d,n) 13 N by a recoil deuteron, were studied in pile-irradiated methanol and methanol-d 4 in the temperature range from 77 to 295 K. Contrary to the target of benzene, cyclohexane, acetone and diethyl ether previously studied, the relative yield of 13 N-compounds did not depend on the irradiation temperature in the present media. In the yield of 13 N-compounds no marked change was observed between methanol and methanol-d 4 , differing from the results between benzene and benzene-d 6 . A mechanism is proposed to explain the results. (author)

  11. Super Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Samuel Fromille

    2014-12-01

    Full Text Available Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz, herein called super dielectric materials (SDM, can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc., filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution, herein called New Paradigm Super (NPS capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density.

  12. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision......-induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric...... function of liquids at terahertz frequencies. We will review the current understanding of the high-frequency dielectric spectrum of water, and discuss the relation between the dielectric spectrum and the thermodynamic properties of certain aqueous solutions....

  13. Calorimetric determination of enthalpies for the proton ionization of N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid (BES) and N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid (TES) in water-methanol mixtures

    International Nuclear Information System (INIS)

    Bulos, B.N.; Jumean, F.H.

    2004-01-01

    The enthalpies of proton ionization of the biochemical buffers N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid (BES) and N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid (TES) were obtained in water-methanol mixtures in which the methanol mole fraction (X m ) varied in the range 0-0.36. For both buffers, ionization enthalpy for the first proton (ΔH 1 ) was small in all solvent media. However, upon addition of methanol, ΔH 2 increased steadily from 22.2 to a maximum of 27.2 kJ mol -1 for BES, whereas for TES it varied from 30.0 to 32.4, with a minimum of 28.6 kJ mol -1 at X m =0.123. It is noteworthy that this solvent composition lies within the region of maximum structure enhancement of water by methanol. The results were interpreted in terms of methanol-water interactions

  14. Development of tartaric esters as bifunctional additives of methanol-gasoline.

    Science.gov (United States)

    Zhang, Jie; Yang, Changchun; Tang, Ying; Zhou, Rui; Wang, Xiaoli; Xu, Lianghong

    2014-01-01

    Methanol has become an alternative fuel for gasoline, which is facing a rapidly rising world demand with a limited oil supply. Methanol-gasoline has been used in China, but phase stability and vapor lock still need to be resolved in methanol-gasoline applications. In this paper, a series of tartaric esters were synthesized and used as phase stabilizers and saturation vapor pressure depressors for methanol-gasoline. The results showed that the phase stabilities of tartaric esters for methanol-gasoline depend on the length of the alkoxy group. Several tartaric esters were found to be effective in various gasoline-methanol blends, and the tartaric esters display high capacity to depress the saturation vapor pressure of methanol-gasoline. According to the results, it can be concluded that the tartaric esters have great potential to be bifunctional gasoline-methanol additives.

  15. Deciphering Periodic Methanol Masers

    Science.gov (United States)

    Stecklum, Bringfried; Caratti o Garatti, Alessio; Henning, Thomas; Hodapp, Klaus; Hopp, Ulrich; Kraus, Alex; Linz, Hendrik; Sanna, Alberto; Sobolev, Andrej; Wolf, Verena

    2018-05-01

    Impressive progress has been made in recent years on massive star formation, yet the involved high optical depths even at submm/mm wavelengths make it difficult to reveal its details. Recently, accretion bursts of massive YSOs have been identified to cause flares of Class II methanol masers (methanol masers for short) due to enhanced mid-IR pumping. This opens a new window to protostellar accretion variability, and implies that periodic methanol masers hint at cyclic accretion. Pinning down the cause of the periodicity requires joint IR and radio monitoring. We derived the first IR light curve of a periodic maser host from NEOWISE data. The source, G107.298+5.639, is an intermediate-mass YSO hosting methanol and water masers which flare every 34.5 days. Our recent joint K-band and radio observations yielded first but marginal evidence for a phase lag between the rise of IR and maser emission, respectively, and revealed that both NEOWISE and K-band light curves are strongly affected by the light echo from the ambient dust. Both the superior resolution of IRAC over NEOWISE and the longer wavelengths compared to our ground-based imaging are required to inhibit the distractive contamination by the light echo. Thus, we ask for IRAC monitoring of G107 to cover one flare cycle, in tandem with 100-m Effelsberg and 2-m Wendelstein radio and NIR observations to obtain the first high-quality synoptic measurements of this kind of sources. The IR-maser phase lag, the intrinsic shape of the IR light curves and their possible color variation during the cycle allow us to constrain models for the periodic maser excitation. Since methanol masers are signposts of intermediate-mass and massive YSOs, deciphering their variability offers a clue to the dynamics of the accretion-mediated growth of massive stars and their feedback onto the immediate natal environment. The Spitzer light curve of such a maser-hosting YSO would be a legacy science product of the mission.

  16. Methanex, Hoechst Celanese dissolve methanol partnership

    International Nuclear Information System (INIS)

    Morris, G.D.L.

    1993-01-01

    One of the many joint venture alliances recently announced in the petrochemical sector is ending in divorce. Hoechst Celanese Chemical (Dallas) and Methanex Corp. (Vancouver) are in the process of dissolving the partnership they had formed to restart Hoechst Celanese's methanol plant at Clear Lake, TX. Hoechst Celanese says it is actively seeking replacement partners and has several likely prospects, while Methanex is concentrating on its other ventures. Those include its just-completed acquisition of Fletcher Challenge's (Auckland, NZ) methanol business and a joint venture with American Cyanamid to convert an ammonia plant at Fortier, LA to methanol. Methanex will still be the world's largest producer of methanol. Officially, the negotiations between Methanex and Hoechst Celanese 'just broke down over the last month or so,' says Steve Yurich, operations manager for the Clear Lake plant. Market sources, however, say that Methanex found itself 'with too many irons in the fire' and pulled out before it ran into financial or perhaps even antitrust difficulties

  17. Silicone-based Dielectric Elastomers

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    Efficient conversion of energy from one form to another (transduction) is an important topic in our daily day, and it is a necessity in moving away from the fossil based society. Dielectric elastomers hold great promise as soft transducers, since they are compliant and light-weight amongst many...... energy efficient solutions are highly sought. These properties allow for interesting products ranging very broadly, e.g. from eye implants over artificial skins over soft robotics to huge wave energy harvesting plants. All these products utilize the inherent softness and compliance of the dielectric...... elastomer transducers. The subject of this thesis is improvement of properties of silicone-based dielectric elastomers with special focus on design guides towards electrically, mechanically, and electromechanically reliable elastomers. Strategies for improving dielectric elastomer performance are widely...

  18. Renewable hydrogen utilisation for the production of methanol

    International Nuclear Information System (INIS)

    Galindo Cifre, P.; Badr, O.

    2007-01-01

    Electrolytic hydrogen production is an efficient way of storing renewable energy generated electricity and securing the contribution of renewables in the future electricity supply. The use of this hydrogen for the production of methanol results in a liquid fuel that can be utilised directly with minor changes in the existing infrastructure. To utilise the renewable generated hydrogen for production of renewable methanol, a sustainable carbon source is needed. This carbon can be provided by biomass or CO 2 in the flue gases of fossil fuel-fired power stations, cement factories, fermentation processes and water purification plants. Methanol production pathways via biomass gasification and CO 2 recovery from the flue gasses of a fossil fuel-fired power station have been reviewed in this study. The cost of methanol production from biomass was found to lie in the range of 300-400 EUR/tonne of methanol, and the production cost of CO 2 based methanol was between 500 and 600 EUR/tonne. Despite the higher production costs compared with methanol produced by conventional natural gas reforming (i.e. 100-200 EUR/tonne, aided by the low current price of natural gas), these new processes incorporate environmentally beneficial aspects that have to be taken into account. (author)

  19. Comparison between constant methanol feed and on-line ...

    African Journals Online (AJOL)

    Two methanol feeding methods, namely constant methanol feed and on-line monitoring feed control by methanol sensor were investigated to improve the production of recombinant human growth hormone (rhGH) in high cell density cultivation of Pichia pastoris KM71 in 2 L bioreactor. The yeast utilized glycerol as a carbon ...

  20. Effect of alkanolammonium formates ionic liquids on vapour liquid equilibria of binary systems containing water, methanol, and ethanol

    International Nuclear Information System (INIS)

    Li Xuemei; Shen Chong; Li Chunxi

    2012-01-01

    Highlights ► Vapour pressures for six ternary systems containing an IL were measured. ► Components studied were water, ethanol, methanol, and alkanolammonium formates. ► The isobaric VLE were predicted using the fitted binary NRTL parameters. ► The ILs studied can generate a promising salt effect on VLE of azeotrope. ► [HMEA][HCOO] might be used as a potential entrainer in extractive distillation. - Abstract: Vapour pressures were measured using a quasi-static ebulliometer for the pseudo-binary mixtures of (water + ethanol), (water + methanol), and (methanol + ethanol) containing an alkanolammonium-based ionic liquid (IL), namely, mono-ethanolammonium formate ([HMEA][HCOO]) and di-ethanolammonium formate ([HDEA][HCOO]), respectively, with fixed IL mass fraction of 0.30 and over the temperature ranges of (292.12 to 371.13) K. The vapour pressures of the IL-containing ternary systems were favourably correlated using the NRTL model with an overall average absolute relative deviation (AARD) of 0.0082. Further, the salt effects of [HMEA][HCOO] and [HDEA][HCOO] on isobaric vapour liquid equilibria (VLE) of azeotrope and close boiling mixture, especially for the mixtures of (water + ethanol) and (methanol + ethanol), were investigated and compared with other ILs in terms of the x′–y phase diagrams predicted with the binary NRTL parameters. It is demonstrated that the relative volatilities of ethanol to water and ethanol to methanol are enhanced, and [HMEA][HCOO] might be used as a promising entrainer for the efficient separation of ethanol aqueous solution by special rectification.

  1. Protection against methanol-induced retinal toxicity by LED photostimulation

    Science.gov (United States)

    Whelan, Harry T.; Wong-Riley, Margaret T. T.; Eells, Janis T.

    2002-06-01

    We have initiated experiments designed to test the hypothesis that 670-nm Light-Emitting Diode (LED) exposure will attenuate formate-induced retinal dysfunction in a rodent model of methanol toxicity. Methanol intoxication produces toxic injury to the retina. The toxic metabolite formed in methanol intoxication is formic acid, a mitochondrial toxin known to inhibit cytochrome oxidase activity. 670-nm LED light has been hypothesized to act by stimulating cytochrome oxidase activity. To test this hypothesis, one group of animals was intoxicated with methanol, a second group was intoxicated with methanol and LED-treated and a third group was untreated. LED treatment (670 nm for 1 min 45 seconds equals 50 mW/cm2, 4 joules/cm2) was administered at 5, 25, and 50 hours after the initial dose of methanol. At 72 hours of methanol intoxication, retinal function was assessed by measurement of ERG responses and retinas were prepared for histologic analysis. ERG responses recorded in methanol-intoxicated animals revealed profound attenuation of both rod-dominated and UV-cone mediated responses. In contrast, methanol- intoxicated animals exposed to LED treatment exhibited a nearly complete recovery of rod-dominated ERG responses and a slight improvement of UV-cone mediated ERG responses. LED treatment also protected the retina against the histopathologic changes produced by formate in methanol intoxication. These data provide evidence that LED phototherapy protects the retina against the cytotoxic actions of formate and are consistent with the hypothesis that LED photostimulation improves mitochondrial respiratory chain function.

  2. Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase.

    Science.gov (United States)

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2007-01-05

    The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.

  3. High dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites with low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties.

    Science.gov (United States)

    Kumar, G Sudheer; Vishnupriya, D; Chary, K Suresh; Patro, T Umasankar

    2016-09-23

    The composite processing technique and nanofiller concentration and its functionalization significantly alter the properties of polymer nanocomposites. To realize this, multi-walled carbon nanotubes (CNT) were dispersed in a poly(vinylidene fluoride) (PVDF) matrix at carefully selected CNT concentrations by two illustrious methods, such as solution-cast and melt-mixing. Notwithstanding the processing method, CNTs induced predominantly the γ-phase in PVDF, instead of the commonly obtained β-phase upon nanofiller incorporation, and imparted significant improvements in dielectric properties. Acid-treatment of CNT improved its dispersion and interfacial adhesion significantly with PVDF, and induced a higher γ-phase content and better dielectric properties in PVDF as compared to pristine CNT. Further, the γ-phase content was found to be higher in solution-cast composites than that in melt-mixed counterparts, most likely due to solvent-induced crystallization in a controlled environment and slow solvent evaporation in the former case. However, interestingly, the melt-mixed composites showed a significantly higher dielectric constant at the onset of the CNT networked-structure as compared to the solution-cast composites. This suggests the possible role of CNT breakage during melt-mixing, which might lead to higher space-charge polarization at the polymer-CNT interface, and in turn an increased number of pseudo-microcapacitors in these composites than the solution-cast counterparts. Notably, PVDF with 0.13 vol% (volume fraction, f c  = 0.0013) of acid-treated CNTs, prepared by melt-mixing, displayed the relative permittivity of ∼217 and capacitance of ∼5430 pF, loss tangent of ∼0.4 at 1 kHz and an unprecedented figure of merit of ∼10(5). We suggest a simple hypothesis for the γ-phase formation and evolution of the high dielectric constant in these composites. Further, the high-dielectric composite film showed marked improvements in mechanical and thermal

  4. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Sang-Yong; Lee, Jung-Kul; Kim, In-Won

    2016-04-28

    Methane (CH₄) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH₄ can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH₄; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl₂ as a methanol dehydrogenase inhibitor, 50% CH₄ concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH₄.

  5. Hypoglycaemic and hypolipidaemic effects of crude extracts and chromatographic fractions of Morinda morindoides root bark in diabetic rats

    Directory of Open Access Journals (Sweden)

    Johnny Olufemi Olukunle

    2012-01-01

    Full Text Available Hypoglycaemic and hypolipidaemic effects of different extracts and fractions of root bark from the plant Morinda morindoides (Baker Milne-Redh of the family Rubiaceae were evaluated in alloxan-induced diabetic rats. The aqueous and methanolic extracts were administered to 48 rats orally at a dose of 400 mg·kg-1 for 21 days. Fractions (hydromethanol, hexane, chloroform and ethyl acetate from bio-activity guided fractionation and chromatographic sub fractions (CsF A-F from accelerated gradient chromatography were also evaluated in 45 rats for the hypoglycaemic activity at doses of 400 mg·kg-1, 200 mg·kg-1 and 100 mg·kg-1 of solvent fractions and (CsF A-F, respectively. Glibenclamide was used as positive control. Polyoxyethylene sorbitan monooleate and distilled water administered to rats were used as negative controls. The dose of 400 mg·kg-1 of aqueous and methanolic extracts and 100 mg·kg-1 of chloroform CsF B of Morinda morindoides caused (62.8%, 56% and 74%, respectively reductions in blood glucose level (BGL. The aqueous extract caused significant (P -1, low density lipoprotein (66.38 ± 2.5 mg·dl-1 and significant (P -1 when compared to the control. These results confirm the folkloric claim of the hypoglycaemic and hypolipidaemic activities of Morinda morindoides root bark.

  6. Temperature dependence on mutual solubility of binary (methanol + limonene) mixture and (liquid + liquid) equilibria of ternary (methanol + ethanol + limonene) mixture

    International Nuclear Information System (INIS)

    Tamura, Kazuhiro; Li Xiaoli; Li Hengde

    2009-01-01

    Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model

  7. Synthesis, growth, structural, optical, thermal, dielectric and mechanical studies of an organic guanidinium p-nitrophenolate crystal

    Science.gov (United States)

    Dhavamurthy, M.; Peramaiyan, G.; Mohan, R.

    2014-08-01

    Guanidinium p-nitrophenolate (GUNP), a novel organic compound, was synthesized and crystals were grown from methanol solution by a slow evaporation solution growth technique. A single crystal X-ray diffraction study elucidated the crystal structure of GUNP belonging to the orthorhombic crystal system with space group Pnma. Thermal studies revealed that the GUNP crystal is thermally stable up to 192 °C. The lower cut-off wavelength of GUNP was found to be 505 nm by UV-vis-NIR spectral studies. The luminescence properties of the GUNP crystal were investigated. The three independent tensor coefficients ε11, ε22 and ε33 of the dielectric permittivity were calculated. The mechanical properties of the grown crystal were studied by Vickers' microhardness hardness technique.

  8. A comment on water’s structure using monomer fraction data and theories

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Maribo-Mogensen, Bjørn; Tsivintzelis, Ioannis

    2016-01-01

    Monomer fraction data for water (and other compounds) can provide useful information about their structure and can be used in “advanced” equations of state, which account explicitly for association phenomena. Recent findings about the performance of association theories in representing the monomer...... fraction of water are reviewed. Three such theories are considered and all of them perform qualitatively similar. They can all represent phase equilibria for water solutions qualitatively well but with parameters which are not in good agreement with Luck’s famous monomer fraction data. While this could set...... the theoretical basis of these theories in doubt, we also show in this work that the findings with these association models are in agreement with a recently presented theory which links monomer fraction to dielectric constants. This new theory, like the three thermodynamic models, predicts more hydrogen bonding...

  9. Methanol from biomass by partial oxidation

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The advantages of methanol should grow when petroleum again becomes scarce and expensive. An active program should be continued to develop technology and resolve outstanding questions. Some of the elements of this program included in this paper are: Make design studies and more accurate cost estimates for the largest plant. The increased size of this plant over the small plant studied by S and W should result in improved methanol yield and better energy efficiency. Continue development of the SERI biomass gasifier for a better understanding of design and operating parameters, for design of larger units, for higher operating pressures, and for gasification of Hawaiian woods and agricultural wastes. An earlier gasifier test bed in Hawaii is very desirable. Develop a plan to build successfully larger methanol plants in Hawaii to provide the basis for a large plant. Develop a plan for large-scale production of biomass in the islands. Elements of the plan might include technical (types of trees, maximizing wood per acre, and harvesting processes), economic (price to be paid for the biomass), social, cultural, and political factors. Develop a plan to convert liquid fuel users to methanol and begin implementing the plan as the initial small plants supply methanol. Develop an overall plant to integrate the various parts of the program covered above

  10. Optics of dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2002-01-01

    From the work carried out within the ph.d. project two topics have been selected for this thesis, namely emission of radiation by sources in dielectric microstructures, and planar photonic crystal waveguides. The work done within the first topic, emission of radiation by sources in dielectric...... microstructures, will be presented in the part I of this thesis consisting of the chapters 2-5. An introductions is given in chapter 2. In part I three methods are presented for calculating spontaneous and classical emission from sources in dielectric microstructures. The first method presented in chapter 3...... is based on the Fermi Golden Rule, and spontaneous emission from emitters in a passive dielectric microstructure is calculated by summing over the emission into each electromagnetic mode of the radiation field. This method is applied to investigate spontaneous emission in a two-dimensional photonic crystal...

  11. Thermal dielectric function

    International Nuclear Information System (INIS)

    Moneta, M.

    1999-01-01

    Thermal dielectric functions ε(k,ω) for homogeneous electron gas were determined and discussed. The ground state of the gas is described by the Fermi-Dirac momentum distribution. The low and high temperature limits of ε(k,ω) were related to the Lindhard dielectric function and to ε(k, omega) derived for Boltzmann and for classical momentum distributions, respectively. (author)

  12. Carbon nanotubes based methanol sensor for fuel cells application.

    Science.gov (United States)

    Kim, D W; Lee, J S; Lee, G S; Overzet, L; Kozlov, M; Aliev, A E; Park, Y W; Yang, D J

    2006-11-01

    An electrochemical sensor is built using vertically grown multi-walled carbon nanotubes (MWNTs) micro-array to detect methanol concentration in water. This study is done for the potential use of the array as methanol sensor for portable units of direct methanol fuel cells (DMFCs). Platinum (Pt) nanoparticles electro-deposited CNTs (Pt/CNTs) electrode shows high sensitivity in the measurement of methanol concentration in water with cyclic voltammetry (CV) measurement at room temperature. Further investigation has also been undertaken to measure the concentration by changing the amount of the mixture of methanol and formic acid in water. We compared the performance of our micro array sensor built with Pt/CNTs electrodes versus that of Pt wire electrode using CV measurement. We found that our Pt/CNTs array sensor shows high sensitivity and detects methanol concentrations in the range of 0.04 M to 0.10 M. In addition, we found that co-use of formic acid as electrolyte enables us to measure up to 1.0 M methanol concentration.

  13. Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes

    Science.gov (United States)

    2017-01-01

    The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential. Analogous data on anatase TiO2 photoanodes indicate similar second-order kinetics for methanol oxidation with a second-order rate constant 2 orders of magnitude higher than that on α-Fe2O3. Kinetic isotope effect studies determine that the rate constant for methanol oxidation on α-Fe2O3 is retarded ∼20-fold by H/D substitution. Employing these data, we propose a mechanism for methanol oxidation under 1 sun irradiation on these metal oxide surfaces and discuss the implications for the efficient PEC methanol oxidation to formaldehyde and concomitant hydrogen evolution. PMID:28735533

  14. Advances in direct oxidation methanol fuel cells

    Science.gov (United States)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  15. Radioisotope tracer study of co-reactions of methanol with ethanol using 11C-labelled methanol over alumina and H-ZSM-5

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Salmi, T.; Murzin, D.Yu

    2005-01-01

    Complete text of publication follows. The transformation of methanol has been investigated over alumina and H-ZSM-5 in our previous experiments by 11 C-radioisotope tracing. The main product in methanol conversion over alumina was dimethyl ether due to Lewis acid sites while over H-ZSM-5 mostly hydrocarbons were formed due to both Lewis and Brrnsted acid sites. With increasing temperature first the ethanol was dehydrated to diethyl ether followed by ethene formation over alumina and H-ZSM-5. In this work, 11 C-labelled methanol as radioisotope tracer was added to non-radioactive methanol for investigation of co-reaction with non-radioactive ethanol over alumina and H- ZSM-5. The 11 C-methanol tracer was used to distinguish the methanol derivates and co-reaction derivates of methanol with ethanol against non-radioactive ethanol derivates. The yield of methyl ethyl ether as mixed ether and the influence of ethanol for the yields of C 1 -C 5 hydrocarbons were studied as a function of reaction temperature and contact time. The 11 C-methanol was formed by a radiochemical process from 11 CO 2 produced at cyclotron. The mixture of methanol and ethanol was added to 11 C-methanol and injected to the catalyst. The catalysis was carried out in a glass tube fixed-bed reactor after its pretreatment. The derivates were analyzed by radio-gas chromatography (gas chromatograph with thermal conductivity detector coupled on-line with a radioactivity detector). The comparative analysis of yields of radioactive and non-radioactive products as a function of reaction temperature gives information about the reaction pathways. Over alumina the yields of dimethyl ether and methyl ethyl ether (co-product) as radioactive and diethyl ether with ethene as non-radioactive main products were monitored as a function of reaction temperature and reaction time in the range of 513-593 K. Alongside ethanol derivates the ethene turns into main product in contrast with methyl ethyl ether and diethyl

  16. Cm3+-F- interaction in a mixed system of methanol and water

    International Nuclear Information System (INIS)

    Satoh, I.; Watanabe, T.; Ishii, Y.; Kawasaki, M.; Suganuma, H.

    2003-01-01

    The stability constants (β 1 ) of the monofluoro complex of Cm(III) have been determined in mixed solvents of methanol and water using the solvent extraction technique. The values of Inβ 1 increase as the molar fraction of methanol (X s ) in the mixed solvent increases. The variation in the stability constants mainly depends on the solvation of F - and slightly depends on both (1) the solvation of cations in connection with the complexation of CmF 2+ and (2) the electrostatic attraction of Cm 3+ -F - . The variation in Inβ 1 for Cm(III) due to the effect of both (1) and (2) is similar to that for Sm(III). By variation of Inβ 1 the coordination number in the primary hydration sphere (CN) of Cm(III) decreased from a value between CN = 9 and CN = 8 to CN = 8, at about X s = 0.02. The X s value of the inflection point of the CN for Cm is slightly lower than X s = 0.06 for Sm(III) and X s = 0.03 for Eu(III), previously obtained. (author)

  17. Optimization of methanol crystallization for highly efficient separation of palmitic acid from palm fatty acid mixture using response surface methodology

    Directory of Open Access Journals (Sweden)

    A. A.W. Japir

    2018-01-01

    Full Text Available The objective of the current study was to develop parameters for the separation of palmitic acid (PA from a crude palm oil saturated fatty acid (SFAs mixture by using the methanol crystallization method. The conditions of methanol crystallization were optimized by the response surface methodology (RSM with the D-optimal design. The procedure of developing the solvent crystallization method was based on various different parameters. The fatty acid composition was carried out using a gas chromatography flame ionization detector (GC-FID as fatty acid methyl esters. The highest percentage of SFAs was more than 96% with the percentage yield of 87.5% under the optimal conditions of fatty acids-to-methanol ratio of 1: 20 (w/v, the crystallization temperature of -15 °C, and the crystallization time of 24 hours, respectively. The composition of separated SFAs in the solid fraction contains 96.7% of palmitic acid (C16:0 as a dominant component and 3.3% of stearic acid (C18:0. The results showed that utilizing methanol as a crystallization solvent is recommended because of its high efficiency, low cost, stability, availability, comparative ease of recovery and its ability to form needle-like crystals which have good filtering and washing characteristics.

  18. Optimization of methanol crystallization for highly efficient separation of palmitic acid from palm fatty acid mixture using response surface methodology

    International Nuclear Information System (INIS)

    Japir, A.A.W.; Salimon, J.; Derawi, D.; Yahaya, B.H.; Jamil, M.S.M.; Yusop, M.R.

    2017-01-01

    The objective of the current study was to develop parameters for the separation of palmitic acid (PA) from a crude palm oil saturated fatty acid (SFAs) mixture by using the methanol crystallization method. The conditions of methanol crystallization were optimized by the response surface methodology (RSM) with the D-optimal design. The procedure of developing the solvent crystallization method was based on various different parameters. The fatty acid composition was carried out using a gas chromatography flame ionization detector (GC-FID) as fatty acid methyl esters. The highest percentage of SFAs was more than 96% with the percentage yield of 87.5% under the optimal conditions of fatty acids-to-methanol ratio of 1: 20 (w/v), the crystallization temperature of -15 °C, and the crystallization time of 24 hours, respectively. The composition of separated SFAs in the solid fraction contains 96.7% of palmitic acid (C16:0) as a dominant component and 3.3% of stearic acid (C18:0). The results showed that utilizing methanol as a crystallization solvent is recommended because of its high efficiency, low cost, stability, availability, comparative ease of recovery and its ability to form needle-like crystals which have good filtering and washing characteristics. [es

  19. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  20. Study on the conditions of methanol use as a secondary refrigerant; Etude sur les conditions d'utilisation du methanol comme refrigerant secondaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    This study examined the advantages and safe use of a water and methanol solution for use in a piped cooling network in skating rinks. A methanol/water solution offers simple repair solutions for leaks under ice, because unlike brine, it does not leave spots or soften the ice. The solution is less corrosive than brine and offers efficient heat transfer in heat exchangers. The standards and regulations that apply to the methanol/water solution were outlined. The following preventive measures are recommended to minimize risk associated with methanol in skating rinks: solutions should be diluted to 25 per cent methanol to avoid storing and handling of more concentrated products; methanol vapour detectors should be installed in service rooms where spills may occur; respiratory and protective eye protection should be available in service rooms; and, protection should be provided against freezing when the product is circulated outside of the arena. This study also examined the negative effects on health, including toxicity. Risks related to the environment, flammability and the physicochemical compatibility of methanol with materials were examined. The properties of the methanol/water solution were listed with reference to flash point, autoignition temperature, and the lower and upper flammable or explosive limits. tabs., figs. appendices.

  1. Calorimetric determination of enthalpies for the proton ionization of N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid (BES) and N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid (TES) in water-methanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Bulos, B.N.; Jumean, F.H

    2004-02-19

    The enthalpies of proton ionization of the biochemical buffers N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid (BES) and N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid (TES) were obtained in water-methanol mixtures in which the methanol mole fraction (X{sub m}) varied in the range 0-0.36. For both buffers, ionization enthalpy for the first proton ({delta}H{sub 1}) was small in all solvent media. However, upon addition of methanol, {delta}H{sub 2} increased steadily from 22.2 to a maximum of 27.2 kJ mol{sup -1} for BES, whereas for TES it varied from 30.0 to 32.4, with a minimum of 28.6 kJ mol{sup -1} at X{sub m}=0.123. It is noteworthy that this solvent composition lies within the region of maximum structure enhancement of water by methanol. The results were interpreted in terms of methanol-water interactions.

  2. Combustion and emissions characteristics of a spark-ignition engine fueled with hydrogen–methanol blends under lean and various loads conditions

    International Nuclear Information System (INIS)

    Zhang, Bo; Ji, Changwei; Wang, Shuofeng; Liu, Xiaolong

    2014-01-01

    Methanol is a promising alternative fuel for the spark-ignition engines. This paper experimentally investigated the performance of a hydrogen-blended methanol engine at lean and various load conditions. The test was conducted on a four-cylinder commercial spark-ignition engine equipped with an electronically controlled hydrogen port injection system. The test was conducted under a typical city driving speed of 1400 rpm and a constant excess air ratio of 1.20. Two hydrogen volume fractions in the intake of 0 and 3% were adopted to investigate the effect of hydrogen addition on combustion and emissions performance of the methanol engine. The test results showed that brake thermal efficiency was improved after the hydrogen addition. When manifolds absolute pressure increased from about 38 to 83 kPa, brake thermal efficiencies after the hydrogen addition were increased by 6.5% and 4.2%. The addition of hydrogen availed shortening flame development and propagation periods. The peak cylinder temperature was raised whereas cylinder temperature at the exhaust valve opening was decreased after the hydrogen addition. The addition of hydrogen contributed to the dropped hydrocarbon and carbon monoxide. However, nitrogen oxides were slightly raised after the hydrogen enrichment. - Highlights: • Load characteristics of a H 2 -blended methanol engine are experimentally studied. • H 2 addition is more effective on raising engine efficiency at low loads. • Flame development and propagation periods are shortened after H 2 addition. • H 2 enrichment contributes to the smooth operation of the methanol engine. • HC and CO emissions from the methanol engine are reduced after H 2 addition

  3. Parameters affecting methanol utilization by yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Foda, M.S.; El-Masry, H.G.

    1981-01-01

    Screening of 28 yeast cultures, representing 22 species of various yeasts, with respect to their capabilities to assimilate methanol, has shown that this property was mostly found in certain species of the two genera Hansenula and Candida. When methanol was used as a sole carbon source for a methanol-adapted strain of Hansenula polymorpha, a linear yield response could be obtained with increasing alcohol up to 2% concentration. The amount of inoculum proved to be the decisive factor in determining a priori the ability of the organism to grow at 6% methanol as final concentration. The optimum pH values for growth ranged between 4.5-5.5 with no growth at pH 6.5 or higher. A marked growth stimulation was obtained when the medium was supplied with phosphate up to 0.08 M as final concentration. Within the nitrogen sources tested, corn steep liquor concentrate gave the highest yield of cells. The significance of the obtained results are discussed with reference to feasibilities of application.

  4. FORMALDEHYDE DISMUTASE ACTIVITIES IN GRAM-POSITIVE BACTERIA OXIDIZING METHANOL

    NARCIS (Netherlands)

    BYSTRYKH, LV; GOVORUKHINA, NI; VANOPHEM, PW; HEKTOR, HJ; DIJKHUIZEN, L; DUINE, JA; Govorukhina, Natalya; Ophem, Peter W. van; Duine, Johannis A.

    Extracts of methanol-grown cells of Amycolatopsis methanolica and Mycobacterium gastri oxidized methanol and ethanol with concomitant reduction of N,N'-dimethyl-4-nitrosoaniline (NDMA). Anion-exchange chromatography revealed the presence of a single enzyme able to catalyse this activity in methanol-

  5. Intermittent hemodialysis is superior to continuous veno-venous hemodialysis/hemodiafiltration to eliminate methanol and formate during treatment for methanol poisoning

    Science.gov (United States)

    Zakharov, Sergey; Pelclova, Daniela; Navratil, Tomas; Belacek, Jaromir; Kurcova, Ivana; Komzak, Ondrej; Salek, Tomas; Latta, Jiri; Turek, Radovan; Bocek, Robert; Kucera, Cyril; Hubacek, Jaroslav A; Fenclova, Zdenka; Petrik, Vit; Cermak, Martin; Hovda, Knut Erik

    2014-01-01

    During an outbreak of methanol poisonings in the Czech Republic in 2012, we were able to study methanol and formate elimination half-lives during intermittent hemodialysis (IHD) and continuous veno-venous hemodialysis/hemodiafiltration (CVVHD/HDF) and the relative impact of dialysate and blood flow rates on elimination. Data were obtained from 11 IHD and 13 CVVHD/HDF patients. Serum methanol and formate concentrations were measured by gas chromatography and an enzymatic method. The groups were relatively comparable, but the CVVHD/HDF group was significantly more acidotic (mean pH 6.9 vs. 7.1 IHD). The mean elimination half-life of methanol was 3.7 and formate 1.6 h with IHD, versus 8.1 and 3.6 h, respectively, with CVVHD/HDF (both significant). The 54% greater reduction in methanol and 56% reduction in formate elimination half-life during IHD resulted from the higher blood and dialysate flow rates. Increased blood and dialysate flow on the CVVHD/HDF also increased elimination significantly. Thus, IHD is superior to CVVHD/HDF for more rapid methanol and formate elimination, and if CVVHD/HDF is the only treatment available then elimination is greater with greater blood and dialysate flow rates. PMID:24621917

  6. Biodiesel Production from Acidified Oils via Supercritical Methanol

    Directory of Open Access Journals (Sweden)

    Jianxin Li

    2011-12-01

    Full Text Available In biodiesel production, the vegetable oil used as raw material for transesterification should be free of water and free fatty acids (FFAs, which may consume catalyst and reduce catalyst efficiency. In this work biodiesel was prepared from acidified oils (AO through a supercritical methanol route, in which the esterification of FFAs and transesterification of glyceride with methanol occurred simultaneously. The effects of the mass ratio of methanol to AO, the operation temperature as well as the water content on the FFAs conversion and glycerol yield were investigated. The results indicated that the FFAs conversion for esterification under the condition of 1:1 methanol/oil ratio, 310 °C and 15 min reaction time reached 98.7%, and the glycerol yield for transesterification under 0.25:1 methanol/oil ratio, 290 °C and 20 min reaction time reached 63.5% respectively.

  7. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    Science.gov (United States)

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  8. Fractionation of the more active extracts of Geranium molle L.: a relationship between their phenolic profile and biological activity.

    Science.gov (United States)

    Graça, V C; Dias, Maria Inês; Barros, Lillian; Calhelha, Ricardo C; Santos, P F; Ferreira, Isabel C F R

    2018-04-25

    Geranium molle L., commonly known as Dove's-foot Crane's-bill or Dovesfoot Geranium, is an herbaceous plant belonging to the Geraniaceae family. Contrary to many other Geranium species, the bioactivity and the phytochemical composition of G. molle seem not to have attracted attention until a recent study from our group regarding the bioactivity of several aqueous and organic extracts of the plant. In particular, we assessed the cytotoxic activity of these extracts against several human tumor cell lines (breast, lung, cervical and hepatocellular carcinomas) and a non-tumor porcine liver primary cell line, inspired by an ethnopharmacological report describing the traditional use of this medicinal plant in some regions of Northeast Portugal for the treatment of cancer. Following this preliminary evaluation, the most active extracts (acetone and methanol) were fractionated by column chromatography and the resulting fractions were evaluated for their antioxidant activity and cytotoxicity against the same cell lines. The bio-guided fractionation of the extracts resulted in several fractions exhibiting improved bioactivity in comparison with the corresponding crude extracts. The fractions obtained from the acetone extract consistently displayed the lowest EC50 and GI50 values and presented the highest content of total phenolic compounds. The phytochemical composition of the most bioactive fractions of the acetone and methanol extracts was also determined and about thirty compounds, mainly flavonoids and phenolic acids, could be identified for the first time in G. molle.

  9. Increased Accuracy in the Measurement of the Dielectric Constant of Seawater at 1.413 GHz

    Science.gov (United States)

    Zhou, Y.; Lang R.; Drego, C.; Utku, C.; LeVine, D.

    2012-01-01

    This paper describes the latest results for the measurements of the dielectric constant at 1.413 GHz by using a resonant cavity technique. The purpose of these measurements is to develop an accurate relationship for the dependence of the dielectric constant of sea water on temperature and salinity which is needed by the Aquarius inversion algorithm to retrieve salinity. Aquarius is the major instrument on the Aquarius/SAC-D observatory, a NASA/CONAE satellite mission launched in June of20ll with the primary mission of measuring global sea surface salinity to an accuracy of 0.2 psu. Aquarius measures salinity with a 1.413 GHz radiometer and uses a scatterometer to compensate for the effects of surface roughness. The core part of the seawater dielectric constant measurement system is a brass microwave cavity that is resonant at 1.413 GHz. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The change of resonance frequency and the cavity Q value are used to determine the real and imaginary parts of the dielectric constant of seawater introduced into the thin tube. Measurements are automated with the help of software developed at the George Washington University. In this talk, new results from measurements made since September 2010 will be presented for salinities 30, 35 and 38 psu with a temperature range of O C to 350 C in intervals of 5 C. These measurements are more accurate than earlier measurements made in 2008 because of a new method for measuring the calibration constant using methanol. In addition, the variance of repeated seawater measurements has been reduced by letting the system stabilize overnight between temperature changes. The new results are compared to the Kline Swift and Meissner Wentz model functions. The importance of an accurate model function will be illustrated by using these model functions to invert the Aquarius brightness temperature to get the salinity values. The salinity values

  10. Ion conductivity and mass spectrometry of methanol diffusion and electroosmotic drag on proton-conducting membranes for the Direct Methanol Fuel Cell (DMFC); Ionische Leitfaehigkeit und massenspektrometrische Bestimmung der Methanol-Diffusion und des 'Electroosmotic Drag' an protonenleitenden Membranen fuer die Direkt-Methanol-Brennstoffzelle (DMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Oeztuerk, N.

    2001-07-01

    The methanol permeability of the nafion membrane is one reason why the DMFC is not marketable as yet. As a result of diffusion, permeation and electroosmotic drag, methanol is transferred to the kation side where it will reduce the fuel cell performance. Research is going on world-wide to develop new materials that will prevent methanol crossover. The report describes the development of a measuring cell that will provide the necessary information on diffusion, permeation, electroosmotic drag and conductivity. [German] Ein wesentlicher Grund, der die Einfuehrung der DMFC noch verhindert, ist die Methanoldurchlaessigkeit der Nafion-Membran. Durch Diffusion und Permeation und durch den Electroosmotic Drag gelangt Methanol auf die Kathodenseite und fuehrt dann zu einem Leistungsabfall der Brennstoffzelle. Daher werden weltweit neue Materialien entwickelt, die bei guter lonenleitfaehigkeit den Methanol-crossover unterdruecken. Zur Beurteilung und Weiterentwicklung der neuen Materialien werden Informationen zur Diffusion, Permeation, zum Electroosmotic Drag und zur Leitfaehigkeit benoetigt. Um diese Parameter schnell und einfach zu bestimmen, wurde im Rahmen der vorliegenden Arbeit eine Messzelle weiter entwickelt. Diese Messzelle erlaubt die schnelle Bestimmung aller vier wichtigen Parameter. (orig.)

  11. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    Science.gov (United States)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  12. The consumption, production and transportation of methanol in China: A review

    International Nuclear Information System (INIS)

    Su, Li-Wang; Li, Xiang-Rong; Sun, Zuo-Yu

    2013-01-01

    Methanol is considered as one of the potential materials for fossil-based fuels because of its available applications in the fields of fuels and chemical materials. China has become the biggest methanol production country since 2006; hence, analysing the consumption, production and transportation of methanol in China has great importance. In the present article, the current status of methanol from production to consumption in China has been systematically described. Chinese industry and statistics data are introduced to analyse and discuss the total and segmental methanol amount in both production and consumption. In China, most of the methanol is primarily consumed in the synthesis of formaldehyde, alternative fuels and acetic acid, with the corresponding percentages of 35.0%, 33.0% and 8.0%. In 2011, about 22.27 million tons of methanol was generated on site, of which, 63.7%, 23.0% and 11.3% were produced by coal, natural gas and coke-oven gas, respectively. As regards transportation, approximately 82.6% of methanol was transported by overland freight, 9.0% by sea and the rest 8.4% by train. - Highlights: • The consumption of methanol in China has been reviewed in detail. • The production of methanol in China has been reviewed in detail. • The transportation of methanol in China has been systematically reviewed

  13. New catalysts for miniaturized methanol fuel cells

    DEFF Research Database (Denmark)

    Pedersen, Christoffer Mølleskov

    The methanol fuel cell is an interesting energy technology, capable of converting the chemical energy of methanol directly into electricity. The technology is specifically attractive for small mobile applications such as laptops, smartphones, tablets etc. since it offers almost instantaneously...

  14. Assessment of effects of phenolic fractions from leaves and petals of dandelion in selected components of hemostasis.

    Science.gov (United States)

    Lis, Bernadetta; Jędrejek, Dariusz; Stochmal, Anna; Olas, Beata

    2018-05-01

    Aerial parts and roots of Taraxacum officinale (dandelion) have been found to be rich sources of polyphenols, including cinnamic acid derivatives, flavonoids and triterpenoids, which exert different biological activities, such as anti-inflammatory, anticancer and antimicrobial. Additionally, the whole plant is recognized as safe and well tolerated by humans, with no reported adverse effects. Nowadays, dandelion is a commonly available dietary supplement and a component of pharmaceutical preparations used for the treatment of bladder, liver, and spleen. Nevertheless, the effect of dandelion on blood platelets and plasma - components of hemostasis involved in the functioning of a cardiovascular system and linked with various cardiovascular diseases, has not been studied yet. Thus, the main objective of our in vitro experiments was to examine the anti-platelet and antioxidant properties of four standardized dandelion phenolic fractions, i.e. leaves 50% and 85% methanol fractions, and petals 50% and 85% methanol fractions, in blood platelets. Additionally, aforementioned plant preparations were investigated for hemostatic activity in plasma, using three selected hemostatic parameters: the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT). None of the studied dandelion fractions, caused the damage of human blood platelets, at the whole tested range. The inhibition of lipid peroxidation in platelets treated with H 2 O 2 /Fe (the donor of OH) was observed for two fractions: leaves and petals 50% fractions, both at the dose 50 μg/mL. Analysis of the effect on the coagulation activity of human plasma demonstrated that three fractions: petals 50% fraction, and leaves and petals 85% fractions, significantly prolonged the thrombin time, at the whole tested range. On the contrary, none of the fractions changed the APTT and the PT. The obtained results demonstrate that dandelion preparations, based on aerial parts, especially rich in

  15. Methanol as an alternative fuel: Economic and health effects

    International Nuclear Information System (INIS)

    Yuecel, M.K.

    1991-01-01

    Switching from gasoline to methanol fuels has important economic and health effects. Replacing gasoline with methanol will affect oil markets by lowering the demand for oil and thus lowering oil prices. Increased demand for the natural gas feedstock will increase natural gas prices. Because methanol is more costly than gasoline, fuel prices will also increase. On the other hand, methanol use will reduce ozone pollution and some of the health risks associated with gasoline. Considering all three markets affected by the phasing-out of gasoline, the switch to methanol results in net gains. The health benefits from lower pollution and the lives saved from the switch from gasoline to methanol are in addition to these gains. Overall, the benefits of the policy far outweigh the costs. However, the gains in the oil market, arising from the US monopsony power in the world oil market, can be captured by other, more efficient policies. 21 refs., 2 figs., 3 tabs

  16. Self-diffusion and molecular association of acetylsalicylic acid and methyl salicylate in methanol- d4 in the temperature range 278-318 K

    Science.gov (United States)

    Golubev, V. A.; Kumeev, R. S.; Gurina, D. L.; Nikiforov, M. Yu.

    2017-05-01

    The effect of concentration on the self-diffusion coefficients of acetylsalicylic acid and methyl salicylate in methanol- d4 is investigated in the temperature range of 278-318 K using NMR. It is found that the self-diffusion coefficients increase along with temperature and fall as concentration rises. Within the limit of an infinitely dilute solution, the effective radii of solute molecules, calculated using the Stokes-Einstein equation shrink as the temperature grows. It is shown that the observed reduction of effective radii is associated with an increase in the fraction of solute monomers as the temperature rises. The physicochemical parameters of heteroassociation of acetylsalicylic acid and methyl salicylate with methanol are determined.

  17. CUPRAC assay-guided profiling of antioxidant compounds in methanol extract of Lentinus squarrosulus Mont. mycelium

    Directory of Open Access Journals (Sweden)

    Sumaiyah ABDULLAH

    2018-04-01

    Full Text Available A cupric reducing antioxidant capacity (CUPRAC-guided purification approach was performed on a methanol extract of Lentinus squarrosulus (LsqMeOH by using reversed phase-high performance liquid chromatography. Using reversed phase-high performance liquid chromatography, three fractions were separated arbitrarily named FR1, FR2 and FR3. Results showed that FR2 exhibited the highest antioxidant activity in CUPRAC assay (A450, 0.86 but not significantly different from LsqMeOH (A450, 0.84. FR1 and FR3 showed much lower absorbance, with values (A450, 0.21 and (A450, 0.36 respectively at 1 mg ml-1. The most active fraction (F3 was further subjected to LC-MS/MS to obtain its detailed chemical profile. Uridine, ganoderic acid derivative, and flavonoids were the first time being found in L. squarrosulus antioxidative fractions. The present results indicate that the fraction extracts of L. squarrosulus possess antioxidant properties and can be used as free radical inhibitors. Therefore, this research suggested the potentials of L. squarrosulus as a source of antioxidant extract to be used in food industries (functional food.

  18. Quantitative NMR spectroscopy of binary liquid mixtures (aldehyde + alcohol) Part I: Acetaldehyde + (methanol or ethanol or 1-propanol)

    International Nuclear Information System (INIS)

    Jaubert, Silke; Maurer, Gerd

    2014-01-01

    Highlights: • Formation of hemiacetal/poly(oxymethylene) hemiacetals in liquid binary mixtures. • Acetaldehyde and a low molecular alcohol (methanol or ethanol or 1-propanol). • Quantitative 13 C NMR spectroscopy at temperatures between (255 and 295) K. • Hemiacetals are the predominant species. • (Acetaldehyde + methanol (50 + 50)) at 255 K: hemiacetal (polymers) >80% (≈10%). -- Abstract: Aldehydes react with alcohols to hemiacetals and poly(oxymethylene) hemiacetals. The chemical reaction equilibria of such reactions, in particular in the liquid state, can have an essential influence on the thermodynamic properties and related phenomena like, for example, on the vapour + liquid phase equilibrium. Therefore, thermodynamic models that aim to describe quantitatively such phase equilibria have to consider the chemical reaction equilibrium in the coexisting phases. This is well known in the literature for systems such as, for example, formaldehyde and methanol. However, experimental information on the chemical reaction equilibria in mixtures with other aldehydes (than formaldehyde) and alcohols is extremely scarce. Therefore, quantitative NMR spectroscopy was used to investigate the chemical reaction equilibria in binary mixtures of acetaldehyde and a single alcohol (here either methanol, ethanol or 1-propanol) at temperatures between (255 and 295) K. The results reveal that the majority of the constituents of the mixture is present as hemiacetal and the first two poly(oxymethylene) hemiacetals: in an equimolar mixture of (acetaldehyde + methanol or ethanol or 1-propanol), between about 90% at T = 255 K and about 75% at 295 K. The mole-fraction based chemical reaction equilibrium constants for the formation of those species were determined and some derived properties are reported

  19. An autopsy case of methanol induced intracranial hemorrhage.

    Science.gov (United States)

    Kim, Hye-Jeong; Na, Joo-Young; Lee, Young-Jik; Park, Jong-Tae; Kim, Hyung-Seok

    2015-01-01

    The major component of car washer fluid is a methanol. Intracranial hemorrhage is a rare but lethal complication in methanol poisoning. We report a case of massive bilateral basal ganglia hematoma in a 32-year-old man with methanol poisoning. He drank car washer solution twice time (about 500 ml), and was admitted to a territorial hospital 10 hours post-ingestion for depressed mental status, lower blood pressure, and high anion gap metabolic acidosis. Computed tomographic (CT) scan showed lesions in both putamen and cerebral deep white matter. Twenty-one days after methanol exposure, he suddenly developed cardiorespiratory arrest. In autopsy, external examination revealed moderate cerebral edema, but no evidence of herniation. Coronal sections of the brain showed softening and about 34 g hematoma in the bilateral putamen and 3rd ventricles. The toxic effect of methanol on the visual system has been noted in the absence of neurologic manifestations; however, there have also been a report of concomitant brain in Korea.

  20. Methane and methanol as energy carriers. Economy study

    Energy Technology Data Exchange (ETDEWEB)

    Deipenau, H

    1977-12-01

    The objective of the study was to develop economic and technical means of supplying LNG and methanol to the industrial centers of Germany using natural gas from the Iranian area as the raw material. The available possibilities for the preparation, transport, and storage of LNG and methanol were clarified and examined. Cost estimates were made of transport from Kangan to Wilhelmshaven. Alternatives were compared from economic and technical viewpoints. Ways in which LNG and methanol could be used in Germany (motor cars, power plants, gas utilities) were evaluated. The evaluations showed that energy costs for LNG in Wilhelmshaven are lower than those for methanol. Large quantities of LNG and methanol from the Persian Gulf can be sold in the various branches of the German energy market on the condition that the crude gas price of the Iranian Gulf does not exceed 1.- to 3.-DM/Gcal. At present the natural gas exporting countries demand crude natural gas prices of about 5.-DM/Gcal.

  1. Light in complex dielectrics

    NARCIS (Netherlands)

    Schuurmans, F.J.P.

    1999-01-01

    In this thesis the properties of light in complex dielectrics are described, with the two general topics of "modification of spontaneous emission" and "Anderson localization of light". The first part focuses on the spontaneous emission rate of an excited atom in a dielectric host with variable

  2. 40 CFR 721.4880 - Methanol, trichloro-, carbonate (2:1).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methanol, trichloro-, carbonate (2:1... Substances § 721.4880 Methanol, trichloro-, carbonate (2:1). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as methanol, trichloro-, carbonate (2:1) (CAS...

  3. Biological activities of Rumex dentatus L: Evaluation of methanol ...

    African Journals Online (AJOL)

    The methanol extracts of leaf and stem inhibited radish seed germination (70 and 61% respectively) and root length more than the hexane extracts. The R. dentatus methanol extract showed presence of alkaloids, saponins, anthraquinones and tannins while flavonoids were also found in both methanol as well as hexane ...

  4. Comparative Neuropharmacological Activities Methanolic Extracts of ...

    African Journals Online (AJOL)

    Comparative neuropharmacological efficacy of the leaf and root 70 % methanol extract of Cissus cornifolia was studied in mice. The extractive values of the leaf and root methanol extract was found to be 31.5 g with yield of 12.6 %(w/w) and 37.8 g with the yield of 15.12 %(w/w) respectively. The acute toxicity (LD50) values ...

  5. Electron transport in ethanol & methanol absorbed defected graphene

    Science.gov (United States)

    Dandeliya, Sushmita; Srivastava, Anurag

    2018-05-01

    In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.

  6. Regulatory aspects of methanol metabolism in yeasts

    International Nuclear Information System (INIS)

    Trotsenko, Y.A.; Bystrykh, L.V.; Ubiyvovk, V.M.

    1984-01-01

    Formaldehyde is the first and key intermediate in the metabolism of methylotrophic yeasts since it stands at a branch point of pathways for methanol oxidation and assimilation. Methanol and, formaldehyde are toxic compounds which severely affect the growth rate, yield coefficient, etc., of yeasts. Two questions arise when considering regulation of methanol metabolism in yeasts how a nontoxic level of formaldehyde is maintained in the cell and how the formaldehyde flow is distributed into oxidation and assimilation. To answer these questions we studied the role of GSH, which spontaneously binds formaldehyde, yielding S-hydroxymethylglutathione; in vivo rates of formaldehyde dissimilation and assimilation by using [ 14 C]methanol; profiles of enzymes responsible for production and utilization of formaldehyde; and levels of metabolites affecting dissimilation and assimilation of formaldehyde. All of the experiments were carried out with the methylotrophic yeast Candida boidinii KD1. 19 refs., 4 figs., 1 tab

  7. Dielectric Modulated FET (DMFET)

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Working Principle: Change in Dielectric constant due to immobilization of biomolecules in the nanogap cavity leads to change in effective gate capacitance and thus gate bias for FET. Working Principle: Change in Dielectric constant due to immobilization of biomolecules in the ...

  8. Analytical solutions of nonlocal Poisson dielectric models with multiple point charges inside a dielectric sphere

    Science.gov (United States)

    Xie, Dexuan; Volkmer, Hans W.; Ying, Jinyong

    2016-04-01

    The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.

  9. Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Belen; Brey, J. Javier; Viera, Inmaculada G. [Hynergreen Technologies, S.A. Avda. de la Buhaira, 2. 41018 Sevilla (Spain); Gonzalez-Elipe, Agustin R.; Cotrino, Jose; Rico, Victor J. [Instituto de Ciencia de los Materiales de Sevilla (CSIC-University Sevilla), Avda. Americo Vespucio, 49, 41092 Sevilla (Spain)

    2007-06-10

    This work reports about the use of plasmas to obtain hydrogen by reforming of hydrocarbons or alcohols in mixtures with CO{sub 2} or H{sub 2}O. The plasma is activated in a dielectric barrier discharge (DBD) reactor working at atmospheric pressure and low temperatures (i.e., about 100 C). The reactor presents a great versatility in operation and a low manufacturing cost. Results are presented for the reforming of methane, methanol and ethanol. Methane transforms up to a 70% into CO and H{sub 2} without formation of any kind of superior hydrocarbon. For the two alcohols 100% conversion into the same products is found for flows much higher than in the case of methane. The work reports a description of the reactor and the operational conditions of the power supply enabling the ignition of the plasma and its steady state operation. (author)

  10. Dielectric properties of binary solutions a data handbook

    CERN Document Server

    Akhadov, Y Y

    1980-01-01

    Dielectric Properties of Binary Solutions focuses on the investigation of the dielectric properties of solutions, as well as the molecular interactions and mechanisms of molecular processes that occur in liquids. The book first discusses the fundamental formulas describing the dielectric properties of liquids and dielectric data for binary systems of non-aqueous solutions. Topics include permittivity and dielectric dispersion parameters of non-aqueous solutions of organic and inorganic compounds. The text also tackles dielectric data for binary systems of aqueous solutions, including permittiv

  11. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2016-01-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas. - Highlights: • Optical nondiffracting nonparaxial fractional Bessel vortex beam is considered. • Negative spin torque on an absorptive dielectric Rayleigh sphere is predicted numerically. • Negative spin torque occurs as the sphere departs from the center of the beam.

  12. Methanol as fuel: evaluation of atmosphere contamination

    International Nuclear Information System (INIS)

    Alonso, C.D.; Romano, J.; Guardani, M.L.G.

    1991-01-01

    With the beginning of methanol use as automotive fuel in Sao Paulo city, 1990, were realized special measurements of methanol, formaldehyde, ethanol and acetaldehyde in atmosphere. Other indicators of air quality as carbon and ozone monoxide were also observed in this study. (C.M.)

  13. Antifeedant activity of botanical crude extracts and their fractions on Bemisia tabaci (Homoptera: Aleyrodidae adults: I. Gliricidia sepium (Fabaceae

    Directory of Open Access Journals (Sweden)

    Guillermo Flores

    2008-12-01

    Full Text Available Bemisia tabaci is an important virus vector on a number of crops worldwide. Therefore, a preventive approach to deal with viral epidemics may be the deployment of repellents or phagodeterrents at earlier stages of plant development (critical period. Thus, the crude extract and four fractions thereof (water, water:methanol, methanol, and diethyl ether of mother-of-cocoa (Gliricidia sepium, Fabaceae were tested for phagodeterrence to B. tabaci adults under greenhouse conditions, on tomato plants, in Costa Rica. Both restricted-choice and unrestricted-choice experiments showed that the crude extract and some fractions exerted such effect on the insect. In the former (in sleeve cages, three fractions caused deterrence at doses as low as 0.1% (methanol, 0.5% (water:methanol and 1.5% (diethyl ether. However, in the latter (plants exposed in a greenhouse no one of the fractions performed well, suggesting that the deterrent principles somehow decomposed under the experimental conditions. Rev. Biol. Trop. 56 (4: 2099-2113. Epub 2008 December 12.Mundialmente, Bemisia tabaci es un importante vector de virus en numerosos cultivos. Por tanto, un enfoque preventivo para enfrentar las epidemias virales podría ser el empleo de sustancias repelentes o fagodisuasivas en las etapas tempranas del desarrollo de las plantas (período crítico. Así, tanto el extracto crudo como cuatro fracciones (agua, agua:metanol, metanol y éter dietílico del madero negro (Gliricidia sepium, Fabaceae fueron evaluadas en cuanto a su actividad fagodisuasiva sobre los adultos de B. tabaci en condiciones de invernadero, utilizando plantas de tomate, en Turrialba, Costa Rica. Tanto los experimentos de escogencia restringida como los de escogencia irrestricta revelaron que el extracto crudo y algunas fracciones mostraron dicha actividad. En los primeros experimentos (en jaulas de manga, tres fracciones causaron fagodisuasión a dosis tan bajas como 0.1% (metanol, 0.5% (agua:metanol y

  14. Silver Nanowire/MnO2 Nanowire Hybrid Polymer Nanocomposites: Materials with High Dielectric Permittivity and Low Dielectric Loss.

    Science.gov (United States)

    Zeraati, Ali Shayesteh; Arjmand, Mohammad; Sundararaj, Uttandaraman

    2017-04-26

    This study reports the fabrication of hybrid nanocomposites based on silver nanowire/manganese dioxide nanowire/poly(methyl methacrylate) (AgNW/MnO 2 NW/PMMA), using a solution casting technique, with outstanding dielectric permittivity and low dielectric loss. AgNW was synthesized using the hard-template technique, and MnO 2 NW was synthesized employing a hydrothermal method. The prepared AgNW:MnO 2 NW (2.0:1.0 vol %) hybrid nanocomposite showed a high dielectric permittivity (64 at 8.2 GHz) and low dielectric loss (0.31 at 8.2 GHz), which are among the best reported values in the literature in the X-band frequency range (8.2-12.4 GHz). The superior dielectric properties of the hybrid nanocomposites were attributed to (i) dimensionality match between the nanofillers, which increased their synergy, (ii) better dispersion state of AgNW in the presence of MnO 2 NW, (iii) positioning of ferroelectric MnO 2 NW in between AgNWs, which increased the dielectric permittivity of nanodielectrics, thereby increasing dielectric permittivity of the hybrid nanocomposites, (iv) barrier role of MnO 2 NW, i.e., cutting off the contact spots of AgNWs and leading to lower dielectric loss, and (v) AgNW aligned structure, which increased the effective surface area of AgNWs, as nanoelectrodes. Comparison of the dielectric properties of the developed hybrid nanocomposites with the literature highlights their great potential for flexible capacitors.

  15. Dielectric spectroscopy of Ag-starch nanocomposite films

    Science.gov (United States)

    Meena; Sharma, Annu

    2018-04-01

    In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.

  16. Dielectric properties of lunar surface

    Science.gov (United States)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  17. Numerical investigation of dielectric barrier discharges

    Science.gov (United States)

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in

  18. A Nafion-Ceria Composite Membrane Electrolyte for Reduced Methanol Crossover in Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Parthiban Velayutham

    2017-02-01

    Full Text Available An alternative Nafion composite membrane was prepared by incorporating various loadings of CeO2 nanoparticles into the Nafion matrix and evaluated its potential application in direct methanol fuel cells (DMFCs. The effects of CeO2 in the Nafion matrix were systematically studied in terms of surface morphology, thermal and mechanical stability, proton conductivity and methanol permeability. The composite membrane with optimum filler content (1 wt. % CeO2 exhibits a proton conductivity of 176 mS·cm−1 at 70 °C, which is about 30% higher than that of the unmodified membrane. Moreover, all the composite membranes possess a much lower methanol crossover compared to pristine Nafion membrane. In a single cell DMFC test, MEA fabricated with the optimized composite membrane delivered a peak power density of 120 mW·cm−2 at 70 °C, which is about two times higher in comparison with the pristine Nafion membrane under identical operating conditions.

  19. Recent Advances in High-Performance Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, S. R.; Chun, W.; Valdez, T. I.; Jeffries-Nakamura, B.; Frank, H.; Surumpudi, S.; Halpert, G.; Kosek, J.; Cropley, C.; La Conti, A. B.; hide

    1996-01-01

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed, direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant.

  20. DMFC performance and methanol cross-over: Experimental analysis and model validation

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Marchesi, R. [Dipartimento di Energia, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2008-10-15

    A combined experimental and modelling approach is proposed to analyze methanol cross-over and its effect on DMFC performance. The experimental analysis is performed in order to allow an accurate investigation of methanol cross-over influence on DMFC performance, hence measurements were characterized in terms of uncertainty and reproducibility. The findings suggest that methanol cross-over is mainly determined by diffusion transport and affects cell performance partly via methanol electro-oxidation at the cathode. The modelling analysis is carried out to further investigate methanol cross-over phenomenon. A simple model evaluates the effectiveness of two proposed interpretations regarding methanol cross-over and its effects. The model is validated using the experimental data gathered. Both the experimental analysis and the proposed and validated model allow a substantial step forward in the understanding of the main phenomena associated with methanol cross-over. The findings confirm the possibility to reduce methanol cross-over by optimizing anode feeding. (author)

  1. A Numerical Study on Mass Transfer and Methanol Conversion Efficiency According to Porosity and Temperature Change of Curved Channel Methanol-Steam Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Hong Seok; Lee, Chung Ho; Suh, Jeong Se [Gyeongsang Nat’l Univ., Jinju (Korea, Republic of)

    2016-11-15

    Micro methanol-steam reformer for fuel cell can effectively produce hydrogen as reforming response to steam takes place in low temperature (less than 250℃). This study conducted numerical research on this reformer. First, study set wall temperature of the reformer at 100, 140, 180 and 220℃ while methanol conversion efficiency was set in 0, 0.072, 3.83 and 46.51% respectively. Then, porosity of catalyst was set in 0.1, 0.35, 0.6 and 0.85 and although there was no significant difference in methanol conversion efficiency, values of pressure drop were 4645.97, 59.50, 5.12 and 0.45 kPa respectively. This study verified that methanol-steam reformer rarely responds under the temperature of 180℃ and porosity does not have much effect on methanol conversion efficiency if the fluid flowing through reformer lowers activation energy by sufficiently contacting reformer.

  2. A Numerical Study on Mass Transfer and Methanol Conversion Efficiency According to Porosity and Temperature Change of Curved Channel Methanol-Steam Reformer

    International Nuclear Information System (INIS)

    Seong, Hong Seok; Lee, Chung Ho; Suh, Jeong Se

    2016-01-01

    Micro methanol-steam reformer for fuel cell can effectively produce hydrogen as reforming response to steam takes place in low temperature (less than 250℃). This study conducted numerical research on this reformer. First, study set wall temperature of the reformer at 100, 140, 180 and 220℃ while methanol conversion efficiency was set in 0, 0.072, 3.83 and 46.51% respectively. Then, porosity of catalyst was set in 0.1, 0.35, 0.6 and 0.85 and although there was no significant difference in methanol conversion efficiency, values of pressure drop were 4645.97, 59.50, 5.12 and 0.45 kPa respectively. This study verified that methanol-steam reformer rarely responds under the temperature of 180℃ and porosity does not have much effect on methanol conversion efficiency if the fluid flowing through reformer lowers activation energy by sufficiently contacting reformer.

  3. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun

    2012-08-28

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  4. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun; Wang, Feng; Li, Kun; Woo, Katchoi; Wang, Jianfang; Li, Quan; Sun, Ling Dong; Zhang, Xixiang; Lin, Haiqing; YAN, Chunhua

    2012-01-01

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  5. Oblique surface waves at an interface between a metal-dielectric superlattice and an isotropic dielectric

    International Nuclear Information System (INIS)

    Vuković, Slobodan M; Miret, Juan J; Zapata-Rodriguez, Carlos J; Jakšić, Zoran

    2012-01-01

    We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal-dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal-dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.

  6. Cellulose Triacetate Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  7. Information draft on the development of air standards for methanol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    Methanol is a clear, colourless. very mobile liquid with a slightly alcoholic odour in pure form, but a repulsive pungent odour in crude form. Methanol is the raw material in the production of many gasoline additives, is used as a solvent or antifreeze in paint strippers, aerosol spray paints, wall paints, carburetor cleaners, and car windshield washer compounds. Methanol is one of the top pollutants by release quantities in Ontario, the highest release being generated by the pulp and paper industry. Other large emissions come from the plastics and synthetic resin industry. Total release to the air in Canada was 3,668 tonnes in 1996 and the top ten methanol emitting facilities were in Ontario. Methanol is readily absorbed through inhalation, ingestion and skin exposures. Once absorbed, it is oxidized to formaldehyde and then to formic acid. Common symptoms of exposure are visual disturbances, dizziness, nausea, vertigo, pain in the extremities, and headaches. No information was found as to the carcinogenicity of methanol to humans or animals. Current Ontario half-hour POI standard for methanol is 84,000 microgram/cubic meter and the 24-hour AAQC is 28,000 microgram/cubic meter. Both values were established more than 20 years ago. Review of relevant literature, summarized in this report, indicates that five US states have promulgated air quality guidelines or reference exposure levels for methanol, based on occupational exposure limits. The US Environmental Protection Agency is currently reviewing its reference concentration value for methanol. The World Health Organization and the Canadian federal government have not set air quality guidelines for methanol. 37 refs., 1 tab., appendix.

  8. Methanol and carbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier-Lafaye, J.; Perron, R.

    1987-01-01

    The overall focus of the book is on homogeneous catalysed processes which were seen to offer the most promising routes to C/sub 2/ oxygenates. The first three chapters review the industrial synthesis and applications of carbon monoxide such as in the manufacture of gasoline (e.g. Fischer-Tropsch, Mobil processes), organic chemicals (e.g. ethanol, acetic acid, etc.), industrial importance of C/sub 2/ oxygenates, and use of methanol as a future feedstock are discussed. The next six chapters are each concerned with the production of a particular C/sub 2/ oxygenate and a detailed analysis of the methods and catalysts used. The hydrocarbonylation of methanol occupies a large chapter (136 references) with a comparative examination of the catalysts available, and their modification to increase selectivity to either acetylaldehyde or ethanol. Following chapters examine the synthesis of ethyl acetate, acetic acid, acetic anhydride, vinyl acetate, ethylene glycol and oxalic acid.

  9. Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Lyke, S.E.; Moore, R.H.

    1981-01-01

    The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

  10. Evidence for Conversion of Methanol to Formaldehyde in Nonhuman Primate Brain.

    Science.gov (United States)

    Zhai, Rongwei; Zheng, Na; Rizak, Joshua; Hu, Xintian

    2016-01-01

    Many studies have reported that methanol toxicity to primates is mainly associated with its metabolites, formaldehyde (FA) and formic acid. While methanol metabolism and toxicology have been best studied in peripheral organs, little study has focused on the brain and no study has reported experimental evidence that demonstrates transformation of methanol into FA in the primate brain. In this study, three rhesus macaques were given a single intracerebroventricular injection of methanol to investigate whether a metabolic process of methanol to FA occurs in nonhuman primate brain. Levels of FA in cerebrospinal fluid (CSF) were then assessed at different time points. A significant increase of FA levels was found at the 18th hour following a methanol injection. Moreover, the FA level returned to a normal physiological level at the 30th hour after the injection. These findings provide direct evidence that methanol is oxidized to FA in nonhuman primate brain and that a portion of the FA generated is released out of the brain cells. This study suggests that FA is produced from methanol metabolic processes in the nonhuman primate brain and that FA may play a significant role in methanol neurotoxicology.

  11. Methanol as a cryoprotectant for equine embryos.

    Science.gov (United States)

    Bass, L D; Denniston, D J; Maclellan, L J; McCue, P M; Seidel, G E; Squires, E L

    2004-09-15

    Equine embryos (n=43) were recovered nonsurgically 7-8 days after ovulation and randomly assigned to be cryopreserved in one of two cryoprotectants: 48% (15M) methanol (n=22) or 10% (136 M) glycerol (n=21). Embryos (300-1000 microm) were measured at five intervals after exposure to glycerol (0, 2, 5, 10 and 15 min) or methanol (0, 15, 35, 75 and 10 min) to determine changes (%) in diameter over time (+/-S.D.). Embryos were loaded into 0.25-ml plastic straws, sealed, placed in a programmable cell freezer and cooled from room temperature (22 degrees C) to -6 degrees C. Straws were then seeded, held at -6 degrees C for 10 min and then cooled to -33 degrees C before being plunged into liquid nitrogen. Two or three embryos within a treatment group were thawed and assigned to be either cultured for 12 h prior to transfer or immediately nonsurgically transferred to a single mare. Embryo diameter decreased in all embryos upon initial exposure to cryoprotectant. Embryos in methanol shrank and recovered slightly to 76+/-8 % of their original diameter; however, embryos in glycerol continued to shrink, reaching 57+/-6 % of their original diameter prior to cryopreservation. Survival rates of embryos through Day 16 of pregnancy were 38 and 23%, respectively (P>0.05) for embryos cryopreserved in the presence of glycerol or methanol. There was no difference in pregnancy rates of mares receiving embryos that were cultured prior to transfer or not cultured (P>0.05). Preliminary experiments indicated that 48% methanol was not toxic to fresh equine embryos but methanol provided no advantage over glycerol as a cryoprotectant for equine blastocysts.

  12. A comparative approach to predicting effective dielectric, piezoelectric and elastic properties of PZT/PVDF composites

    International Nuclear Information System (INIS)

    Ahmad, Zeeshan; Prasad, Ashutosh; Prasad, K.

    2009-01-01

    The present study addresses the problem of quantitative prediction of effective relative permittivity, dielectric loss factor, piezoelectric charge coefficient, and Young's modulus of PZT/PVDF diphasic ceramic-polymer composite as a function of volume fraction of PZT in the different compositions. Theoretical results for effective relative permittivity derived from several dielectric mixture equations like those of Knott, Rother-Lichtenecker, Bruggeman, Maxwell-Wagner-Webmann-Skipetrov or Dias-Dasgupta, Furukawa, Lewin, Wiener, Jayasundere-Smith, Modified Cule-Torquato, Taylor, Poon-Shin and Rao et al. were fitted to the experimental data taken from previous works of Yamada et al. Similarly, the results for effective piezoelectric coefficient and Young's modulus, derived from different appropriate equations were fitted to the corresponding experimental data taken from the literature. The study revealed that only a few equations like modified Rother-Lichtenecker equation, Dias-Dasgupta equation and Rao equation for dielectric and piezoelectric properties while the four new equations developed in the present study of elastic property (Young's modulus) well fitted the corresponding experimental results. Further, the acceptable data put to various regression analyses showed that in most of the cases the third order polynomial regression analysis provided more acceptable fits.

  13. Stability studies of oxytetracycline in methanol solution

    Science.gov (United States)

    Wang, Wei; Wu, Nan; Yang, Jinghui; Zeng, Ming; Xu, Chenshan; Li, Lun; Zhang, Meng; Li, Liting

    2018-02-01

    As one kind of typical tetracycline antibiotics, antibiotic residues of oxytetracycline have been frequently detected in many environmental media. In this study, the stability of oxytetracycline in methanol solution was investigated by high-performance liquid chromatography combined with UV-vis (HPLC-UV). The results show that the stability of oxytetracycline in methanol solution is highly related to its initial concentration and the preserved temperature. Under low temperature condition, the solution was more stable than under room temperature preservation. Under the same temperature preservation condition, high concentrations of stock solutions are more stable than low concentrations. The study provides a foundation for preserving the oxytetracycline-methanol solution.

  14. Study of dielectric and piezoelectric properties of CNT reinforced PZT-PVA 0-3 composite

    Science.gov (United States)

    Vyas, Prince; Prajapat, Rampratap; Manmeeta, Saxena, Dhiraj

    2016-05-01

    Ferroelectric ceramic/polymer composites have the compliance of polymers which overcome the problems of brittleness in ceramics. By imbedding piezoelectric ceramic powder into a polymer matrix, 0-3 composites with good mechanical properties and high dielectric breakdown strength can be developed. The obtained composites of 0-3 connectivity exhibit the piezoelectric properties of ceramics and flexibility, strength and lightness of polymer. These composites can be used in vibration sensing and transducer applications specially as piezoelectric sensors. A potential way to improve piezoelectric& dielectric properties of theses composites is by inclusion of another conductive phase in these composites as reported in the literature. In present work, we prepared PZT-PVA 0-3 composites with 60% ceramic volume fraction reinforced with CNTs with volume ranging from 0 to 1.5 vol%. These CNT reinforced composites were obtained using hot press method with thickness of 200 µm having 0-3 conductivity. These composites were poled applying DC voltage. Dielectric properties of these samples were obtained in a wide frequency range (100 Hz to 1 Mhz) at room temperature. The piezoelectric properties of these composites were analyzed by measuring piezoelectric charge constants (d33). The dielectric and piezoelectric properties of these composites were studied as a function of CNT volume content. In these reinforced composites, CNTs act as a conductive filler dispersed in the matrix which in turn facilitates poling and results in an increase of the piezoelectric properties of the composite due to formation of percolation path through the composites. With a CNT content of 0.3 vol.% in PZT/PVA/CNTs, an increase of 61.3 % was observed in piezoelectric strain factors (d33). In these CNT reinforced composites, a substantial increase (approx. 67%) was also observed in dielectric constant and approximately 89% increase was observed in dielectric loss factor. Results so obtained are in the good

  15. Methanol oxidation by temperate soils and environmental determinants of associated methylotrophs

    Science.gov (United States)

    Stacheter, Astrid; Noll, Matthias; Lee, Charles K; Selzer, Mirjam; Glowik, Beate; Ebertsch, Linda; Mertel, Ralf; Schulz, Daria; Lampert, Niclas; Drake, Harold L; Kolb, Steffen

    2013-01-01

    The role of soil methylotrophs in methanol exchange with the atmosphere has been widely overlooked. Methanol can be derived from plant polymers and be consumed by soil microbial communities. In the current study, methanol-utilizing methylotrophs of 14 aerated soils were examined to resolve their comparative diversities and capacities to utilize ambient concentrations of methanol. Abundances of cultivable methylotrophs ranged from 106–108 gsoilDW−1. Methanol dissimilation was measured based on conversion of supplemented 14C-methanol, and occurred at concentrations down to 0.002 μmol methanol gsoilDW−1. Tested soils exhibited specific affinities to methanol (a0s=0.01 d−1) that were similar to those of other environments suggesting that methylotrophs with similar affinities were present. Two deep-branching alphaproteobacterial genotypes of mch responded to the addition of ambient concentrations of methanol (⩽0.6 μmol methanol gsoilDW−1) in one of these soils. Methylotroph community structures were assessed by amplicon pyrosequencing of genes of mono carbon metabolism (mxaF, mch and fae). Alphaproteobacteria-affiliated genotypes were predominant in all investigated soils, and the occurrence of novel genotypes indicated a hitherto unveiled diversity of methylotrophs. Correlations between vegetation type, soil pH and methylotroph community structure suggested that plant–methylotroph interactions were determinative for soil methylotrophs. PMID:23254514

  16. Measurement of methanol diffusion coefficient in polymer electrode membrane by small NMR sensor. 1st report. Development of method of measure methanol diffusion coefficient and evaluation of measured results

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Ito, Kohei

    2010-01-01

    A method for measuring the diffusion coefficient of methanol in a polymer electrolyte membrane (PEM) was developed using the NMR method. A circular coil of 0.6mm inside diameter was used as a small NMR sensor. The PEM was inserted in a penetration cell, where methanol solvent is supplied to one side of the PEM and nitrogen gas is supplied to the other side of the PEM. The small NMR sensor was placed on the nitrogen gas side of the PEM. The small NMR sensor detects the NMR signal from the methanol solvent which permeates the PEM. The CH and OH components of the methanol solvent were obtained from the NMR signal by spectral analysis. The methanol concentration in the PEM was determined by the ratio of CH to OH components. The methanol concentration was acquired at intervals of 30s and was measured for 2000s. After 1500 seconds, the methanol concentration in the PEM reaches a steady state. The final methanol concentration was about 20% of the methanol concentration of the solvent. It assumed that the diffusion phenomenon of methanol in a PEM was a one-dimensional transport phenomenon, and the time-dependent change of methanol concentration was analyzed by parameterizing the diffusion coefficient. The diffusion coefficient of methanol in a PEM was determined by comparison with the measurement result of the time change of methanol concentration and the analysis results. The concentration difference diffusion coefficient of methanol in PEM obtained using this method was 3.5 * 10 -10 m 2 /s. (author)

  17. On the impact of olefins and aromatics in the methanol-to-hydrocarbon conversion over H-ZSM-5 catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.; Mueller, S.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen, Garching (Germany). Dept. of Chemistry

    2012-07-01

    -feeding scarcely affects the formation pathway of propylene originating mainly from the olefin cycle. On the other hand, the contribution of both cycles to the ethylene formation depends largely on the co-feeding. Aromatics enriched feeds lead to significantly higher ethylene selectivity at the expense of C{sub 3+} hydrocarbons formation. In contrast, olefin co-feeding results in unchanged ethylene and C{sub 3+} selectivity, and within C{sub 3+} fraction, the propene selectivity decreases and C{sub 4=} selectivity is enhanced. In addition to the classical hydride transfer between olefins, a different hydrogen transfer pathway involving methanol-related intermediates seems being in place. (orig.)

  18. In vitro Antioxidant and Antiproliferative Activities of Various Solvent Fractions from Clerodendrum viscosum Leaves.

    Science.gov (United States)

    Shendge, Anil Khushalrao; Basu, Tapasree; Chaudhuri, Dipankar; Panja, Sourav; Mandal, Nripendranath

    2017-07-01

    Free radicals such as reactive oxygen and nitrogen species, generated in the body, play an important role in the fulfillment of various physiological functions but their imbalance in the body lead to cellular injury and various clinical disorders such as cancer, neurodegenaration, and inflammation. The objective of this study is to fight this problem, natural antioxidant from plants can be considered as possible protective agents against various diseases such as cancer which might also modify the redox microenvironment to reduce the genetic instability. This study was designed to evaluate the antioxidant and antiproliferative potential of Clerodendrum viscosum fractions against various carcinomas. In this present study, 70% methanolic extract of C. viscosum leaves have been fractionated to obtain hexane, chloroform, ethyl acetate, butanol, and water fractions, which were tested for their antioxidant and anticancer properties. It was observed that chloroform and ethyl acetate fractions showed good free radical scavenging properties as well as inhibited the proliferation of human lung cancer (A459), breast (MCF-7), and brain (U87) cells. Moreover, they arrested the cell cycle at G2/M phase of breast and brain cancer. These inhibitory effects were further confirmed by bromodeoxyuridine uptake imaging. Phytochemical investigations further indicate the presence of tannic acid, quercetin, ellagic caid, gallic acid, reserpine, and methyl gallate which might be the reason for these fractions' antioxidant and antiproliferative activities. Clerodendrum viscosum leaf chloroform and Clerodendrum viscosum leaf ethyl acetate fractions from C. viscosum showed good reactive oxygen species and reactive nitrogen species scavenging potential. Both the fractions arrested cell cycle at G2/M phase in MCF-7 and U87 cells which lead to induce apoptosis. Crude extract of Clerodendrum viscosum leaves was fractionated using different solventsAmong them, chloroform and ethyl acetate fractions

  19. Methanol plant ship: implementation study. Export trade information

    International Nuclear Information System (INIS)

    1988-01-01

    The study compiled the economic, commercial and financing requirements of a floating plant ship with a production capacity of 3,000 tons of methanol a day. The raw material for the methanol production would be supplied from a natural gas reserve off the coast of Trinidad. The report has a separate section for each aspect of the plant ship project, such as methanol storage; logistics of transporting methanol to the United States; the required sub-sea installation to bring natural gas to the plant ship; and plant ship design and equipment. It gives a detailed description of a proposed organizational structure and its tax consequences. The project's financial requirements and economic impact are examined. The environmental consequences and other operator issues are analyzed. Tables and figures accompany the report

  20. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site.

    Science.gov (United States)

    Abanda-Nkpwatt, Daniel; Müsch, Martina; Tschiersch, Jochen; Boettner, Mewes; Schwab, Wilfried

    2006-01-01

    Four Methylobacterium extorquens strains were isolated from strawberry (Fragaria x ananassa cv. Elsanta) leaves, and one strain, called ME4, was tested for its ability to promote the growth of various plant seedlings. Seedling weight and shoot length of Nicotiana tabacum, Lycopersicon esculentum, Sinapis alba, and Fragaria vesca increased significantly in the presence of the pink-pigmented facultative methylotroph (PPFM), but the germination behaviour of seeds from six other plants was not affected. The cell-free supernatant of the bacterial culture stimulated germination, suggesting the production of a growth-promoting agent by the methylotroph. Methanol emitted from N. tabacum seedlings, as determined by proton-transfer-reaction mass spectrometry (PTR-MS), ranged from 0.4 to 0.7 ppbv (parts per billion by volume), while significantly lower levels (0.005 to 0.01 ppbv) of the volatile alcohol were measured when the seedlings were co-cultivated with M. extorquens ME4, demonstrating the consumption of the gaseous methanol by the bacteria. Additionally, by using cells of the methylotrophic yeast Pichia pastoris transformed with the pPICHS/GFP vector harbouring a methanol-sensitive promoter in combination with the green fluorescence protein (GFP) reporter gene, stomata were identified as the main source of the methanol emission on tobacco cotyledons. Methylobacterium extorquens strains can nourish themselves using the methanol released by the stomata and release an agent promoting the growth of the seedlings of some crop plants.

  1. [Fermentation behaviors of recombinant Pichia pastoris under inhibited methanol concentration].

    Science.gov (United States)

    Zhou, Xiang-Shan; Fan, Wei-Min; Zhang, Yuan-Xing

    2003-09-01

    Chemostat culture was performed to characterize the growth, substrate consumption and the hirudin production, and to disclose their interrelations in the fermentation of recombinant Pichia pastoris. The Andrew substrate-inhibited growth model is more suitable than Monod model to simulate the growth of Pichia pastoris on methanol. Therefore, two stationary states can be obtained in the continuous culture at a certain dilution rate because of the substrate inhibition on cell growth. The stationary state could be obtained if only the dilution rate not more than 0.048 h(-1) in the continuous fermentation. The concentrations of cell, methanol and hirudin were constant after 50 h continuous culture with dilution rate at 0.04 h(-1). However, it could not be obtained when the dilution rate more than 0.048 h(-1) because the other stationary point at S > 0.048 h(-1) is unstable. Therefore, it was found that the cell concentration declined and the methanol concentration increased from 2.9 g/L to 18.1 g/L within 18h at dilution rate 0.06 h(-1). Thus, the fed-batch culture with a constant specific growth rate was carried out to disclose the fermentation behavior at high and constant methanol concentration in aid of a methanol sensor. The theoretical maximum specific growth rate, microm = 0.0464 h(-1), was found under critical methanol concentration, Scrit = 3.1 g/L. The growth of P. pastoris was typically methanol-limited at the methanol concentration S Scrit. The maximum specific Hir65 production rate qp was obtained at 0.2 mg/(g x h) when methanol concentration and mu were 0.5 g/L and 0.02 h(-1), respectively. The specific Hir65 production rate qp increased with the increase of mu and S at mu 0.02 h(-1). The specific methanol consumption rate increased with the increase of S when S 5 g/L. At last, the high Hir65 production rate 0.2 mg/(g x h) was obtained in the fermentation conducted under methanol-limited concentration and mu controlled at 0.5 g/L and 0.02 h(-1

  2. Neem by-products in the fight against mosquito-borne diseases: Biotoxicity of neem cake fractions towards the rural malaria vector Anopheles culicifacies (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Balamurugan Chandramohan

    2016-06-01

    Conclusions: Overall, this study suggests that the methanolic fractions of neem cake may be considered as a new and cheap source of highly effective compounds against the rural malaria vector An. culicifacies.

  3. Investigation of the dielectric properties of shale

    International Nuclear Information System (INIS)

    Martemyanov, Sergey M.

    2011-01-01

    The article is dedicated to investigation of the dielectric properties of oil shale. Investigations for samples prepared from shale mined at the deposit in Jilin Province in China were done. The temperature and frequency dependences of rock characteristics needed to calculate the processes of their thermal processing are investigated. Frequency dependences for the relative dielectric constant and dissipation factor of rock in the frequency range from 0,1 Hz to 1 MHz are investigated. The temperature dependences for rock resistance, dielectric capacitance and dissipation factor in the temperature range from 20 to 600°C are studied. Key words: shale, dielectric properties, relative dielectric constant, dissipation factor, temperature dependence, frequency dependence

  4. Antioxidant, Anti-inflammatory, Analgesic Properties, and Phytochemical Characterization of Stem Bark Extract and Fractions of Anthocleista nobilis.

    Science.gov (United States)

    Ngwoke, Kenneth Gerald; Akwagbulam, Amaka Godsaveus; Erhirhie, Ernest Oghenesuvwe; Ajaghaku, Daniel Lotanna; Okoye, Festus Basden Chiedu; Esimone, Charles Okechukwu

    2018-01-01

    Anthocleista nobilis ( Loganiaceae ) is used by Mbano people of Imo State, Nigeria, for the treatment of various ailments. The aim of this study is to evaluate the antioxidant, anti-inflammatory, and analgesic properties of the methanol extract, fractions, and subfractions of A. nobilis . The powdered stem bark was extracted with methanol and sequentially fractionated into n-hexane, ethyl acetate, and butanol fractions. The constituents of the fractions were analyzed using high-pressure liquid chromatography (HPLC), and the components were identified by dereplication. Antioxidant potential of the extracts and fractions was investigated using 2,2-diphenyl-1-picrylhydrazyl free-radical scavenging method. Anti-inflammatory and analgesic activities of the extract and fractions were also investigated using xylene-induced inflammation and acetic acid-induced writhing models, respectively. A total of five compounds isovitexin ( R t = 18.77 min), isovitexin-2''-O-xyl ( R t = 19.68 min), p-Hydroxybenzoic acid ( R t = 11.88 min), Sarasinoside L ( R t = 19.64 min), isovitexin ( R t = 18.77), and apigenin monoglycoside ( R t = 19.64 min) were identified by HPLC analysis and dereplication. The ethyl acetate fraction and subfraction elicited the best anti-inflammatory activity. The ethyl acetate subfraction also inhibited acetic acid-induced pain by 79% and 85.0% at the doses of 100 mg/kg and 200 mg/kg, respectively, which was better than 71.1% and 81.3% observed for diclofenac at similar doses. A. nobilis could be a potential source of anti-inflammatory and analgesic lead compounds. The extract, fractions and subfractions of Anthocleista nobilis were screened or antioxidant, anti-inflammatory and Analgesic properties in vitro and in mice models. Some of the components were identified by dereplication after HPLC analysis. The results demonstrated potent anti-inflammatory and analgesic property of the extracts and fractions. The dereplication analysis also identified vitexin and

  5. Antioxidant, Anti-inflammatory, Analgesic Properties, and Phytochemical Characterization of Stem Bark Extract and Fractions of Anthocleista nobilis

    Science.gov (United States)

    Ngwoke, Kenneth Gerald; Akwagbulam, Amaka Godsaveus; Erhirhie, Ernest Oghenesuvwe; Ajaghaku, Daniel Lotanna; Okoye, Festus Basden Chiedu; Esimone, Charles Okechukwu

    2018-01-01

    Background: Anthocleista nobilis (Loganiaceae) is used by Mbano people of Imo State, Nigeria, for the treatment of various ailments Objective: The aim of this study is to evaluate the antioxidant, anti-inflammatory, and analgesic properties of the methanol extract, fractions, and subfractions of A. nobilis. Materials and Methods: The powdered stem bark was extracted with methanol and sequentially fractionated into n-hexane, ethyl acetate, and butanol fractions. The constituents of the fractions were analyzed using high-pressure liquid chromatography (HPLC), and the components were identified by dereplication. Antioxidant potential of the extracts and fractions was investigated using 2,2-diphenyl-1-picrylhydrazyl free-radical scavenging method. Anti-inflammatory and analgesic activities of the extract and fractions were also investigated using xylene-induced inflammation and acetic acid-induced writhing models, respectively. Results: A total of five compounds isovitexin (Rt = 18.77 min), isovitexin-2''-O-xyl (Rt = 19.68 min), p-Hydroxybenzoic acid (Rt = 11.88 min), Sarasinoside L (Rt = 19.64 min), isovitexin (Rt = 18.77), and apigenin monoglycoside (Rt = 19.64 min) were identified by HPLC analysis and dereplication. The ethyl acetate fraction and subfraction elicited the best anti-inflammatory activity. The ethyl acetate subfraction also inhibited acetic acid-induced pain by 79% and 85.0% at the doses of 100 mg/kg and 200 mg/kg, respectively, which was better than 71.1% and 81.3% observed for diclofenac at similar doses. Conclusion: A. nobilis could be a potential source of anti-inflammatory and analgesic lead compounds. SUMMARY The extract, fractions and subfractions of Anthocleista nobilis were screened or antioxidant, anti-inflammatory and Analgesic properties in vitro and in mice models. Some of the components were identified by dereplication after HPLC analysis. The results demonstrated potent anti-inflammatory and analgesic property of the extracts and

  6. Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Hendrikus; Bottari, Giovanni; Krawzcyk, Krzysztof K.; Barta, Katalin; Heeres, Hero Jan

    In this work, we report on the catalytic valorization of sugar fractions, obtained by aqueous phase extraction of fast pyrolysis oils, in supercritical methanol (scMeOH) and ethanol (scEtOH) over a copper doped porous metal oxide (Cu-PMO). The product mixtures obtained are, in principle, suitable

  7. Short Review: Mitigation of Current Environmental Concerns from Methanol Synthesis

    Directory of Open Access Journals (Sweden)

    Andrew Young

    2013-06-01

    Full Text Available Methanol has become a widely used and globally distributed product. Methanol is very important due to the current depletion of fossil fuels. Industrially, methanol produced from the catalytic reaction of synthetic gas composed of hydrogen, carbon monoxide, and carbon dioxide. Methanol production has brought great attention due to carbon dioxide as the main source of greenhouse gas emissions. Combined of reducing CO2 emissions and supplying an alternative fuel source has created the idea of a carbon neutral cycle called “the methanol economy”. The best catalyst for the methanol economy would show a high CO2 conversion and high selectivity for methanol production. This paper investigates research focused on catalyst development for efficient methanol synthesis from hydrogenation of carbon dioxide through added various supports and additives such as silica, zirconium, and palladium. Catalysts that displayed the highest activity included a zirconia and silicon-titanium oxide promoted Cu/Zn/Al2O3 catalyst. Alternative method of catalyst preparation, include the oxalate-gel, solid-state reaction, co-precipitation and combustion method also investigated.  © 2013 BCREC UNDIP. All rights reservedReceived: 10th October 2012; Revised: 7th February 2012; Accepted: 10th February 2013[How to Cite: Young, A., Lesmana, D., Dai, D.J., Wu, H.S. (2013. Short Review: Mitigation of Current En-vironmental Concerns from Methanol Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 1-13. (doi:10.9767/bcrec.8.1.4055.1-13][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4055.1-13] | View in  |

  8. China's growing methanol economy and its implications for energy and the environment

    International Nuclear Information System (INIS)

    Yang, Chi-Jen; Jackson, Robert B.

    2012-01-01

    For more than a decade, Nobel laureate George Olah and coworkers have advocated the Methanol Economy – replacing petroleum-based fuels and chemicals with methanol and methanol-derivatives – as a path to sustainable development. A first step to this vision appears to be occurring in China. In the past five years, China has quickly built an industry of coal-based methanol and dimethyl ether (DME) that is competitive in price with petroleum-based fuels. Methanol fuels offer many advantages, including a high octane rating and cleaner-burning properties than gasoline. Methanol also has some disadvantages. A coal-based Methanol Economy could enhance water shortages in China, increase net carbon dioxide emissions, and add volatility to regional and global coal prices. China's rapidly expanding Methanol Economy provides an interesting experiment for what could happen elsewhere if methanol is widely adopted, as proposed by Olah and researchers before him. - Highlights: ► China is quickly building a coal-based chemical industry. ► Methanol has become a significant automotive fuel and chemical feedstock in China. ► Coal-based methanol could provide a domestic alternative to imported oil. ► It, however, increases greenhouse gas emissions, and can cause other problems.

  9. Kinetic and reaction pathways of methanol oxidation on platinum

    International Nuclear Information System (INIS)

    McCabe, R.W.; McCready, D.F.

    1986-01-01

    Methanol oxidation kinetics were measured on Pt wires in a flow reactor at pressures between 30 and 130 Pa. The kinetics were measured as a function of oxygen-to-methanol equivalence ratio phi and wire temperature. In methanol-lean feeds (phi 2 CO, CO 2 , and H 2 O were the only products; in methanol-rich feeds (phi > 1), CO, H 2 , H 2 CO, CO 2 , and H 2 O were observed. Experiments with 18 O 2 showed that the principal methanol oxidation pathway does not involve C-O bond dissociation. However, the 18 O 2 experiments, together with other features of the methanol oxidation data, also provided evidence for a minor oxidation pathway (accounting for less than 1% of the product CO 2 ) which proceeds through a carbon intermediate. A mathematical model is presented which describes the principal CH 3 OH oxidation pathway as a series reaction involving adsorbed H 2 CO and CO intermediates. Consistent with experimental results, the model predicts that inhibition by adsorbed CO should be weaker for CH 3 OH and H 2 CO oxidation than for CO oxidation. 34 references, 10 figures, 2 tables

  10. Effects of concentration, temperature and solvent composition on density and apparent molar volume of the binary mixtures of cationic-anionic surfactants in methanol-water mixed solvent media.

    Science.gov (United States)

    Bhattarai, Ajaya; Chatterjee, Sujeet Kumar; Niraula, Tulasi Prasad

    2013-01-01

    The accurate measurements on density of the binary mixtures of cetyltrimethylammonium bromide and sodium dodecyl sulphate in pure water and in methanol(1) + water (2) mixed solvent media containing (0.10, 0.20, and 0.30) volume fractions of methanol at 308.15, 318.15, and 323.15 K are reported. The concentrations are varied from (0.03 to 0.12) mol.l(-1) of sodium dodecyl sulphate in presence of ~ 5.0×10(-4) mol.l(-1) cetyltrimethylammonium bromide. The results showed almost increase in the densities with increasing surfactant mixture concentration, also the densities are found to decrease with increasing temperature over the entire concentration range, investigated in a given mixed solvent medium and these values are found to decrease with increasing methanol content in the solvent composition. The concentration dependence of the apparent molar volumes appear to be negligible over the entire concentration range, investigated in a given mixed solvent medium and the apparent molar volumes increase with increasing temperature and are found to decrease with increasing methanol content in the solvent composition.

  11. Laser amplification in excited dielectrics

    DEFF Research Database (Denmark)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using...... these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400nm femtosecond laser pulse is coherently...

  12. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Silicone elastomers have been heavily investigated as candidates for dielectric elastomers and are as such almost ideal candidates with their inherent softness and compliance but they suffer from low dielectric permittivity. This shortcoming has been sought optimized by many means during recent...... years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...... of silicone elastomers are investigated and different types of breakdown are discussed. Furthermore the use of voltage stabilizers in silicone-based dielectric elastomers is investigated and discussed....

  13. Methanol commercial aviation fuel

    International Nuclear Information System (INIS)

    Price, R.O.

    1992-01-01

    Southern California's heavy reliance on petroleum-fueled transportation has resulted in significant air pollution problems within the south Coast Air Basin (Basin) which stem directly from this near total dependence on fossil fuels. To deal with this pressing issue, recently enacted state legislation has proposed mandatory introduction of clean alternative fuels into ground transportation fleets operating within this area. The commercial air transportation sector, however, also exerts a significant impact on regional air quality which may exceed emission gains achieved in the ground transportation sector. This paper addresses the potential, through the implementation of methanol as a commercial aviation fuel, to improve regional air quality within the Basin and the need to flight test and demonstrate methanol as an environmentally preferable fuel in aircraft turbine engines

  14. Co-catalytic effect of Ni in the methanol electro-oxidation on Pt-Ru/C catalyst for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Wang, Z.B.; Yin, G.P.; Zhang, J.; Sun, Y.C.; Shi, P.F.

    2006-01-01

    This research is aimed to improve the utilization and activity of anodic catalysts, thus to lower the contents of noble metals loading in anodes for methanol electro-oxidation. The direct methanol fuel cell anodic catalysts, Pt-Ru-Ni/C and Pt-Ru/C, were prepared by chemical reduction method. Their performances were tested by using a glassy carbon working electrode through cyclic voltammetric curves, chronoamperometric curves and half-cell measurement in a solution of 0.5 mol/L CH 3 OH and 0.5 mol/L H 2 SO 4 . The composition of the Pt-Ru-Ni and Pt-Ru surface particles were determined by EDAX analysis. The particle size and lattice parameter of the catalysts were determined by means of X-ray diffraction (XRD). XRD analysis showed that both of the catalysts exhibited face-centered cubic structures and had smaller lattice parameters than Pt-alone catalyst. Their sizes are small, about 4.5 nm. No significant differences in the methanol electro-oxidation on both electrodes were found by using cyclic voltammetry, especially regarding the onset potential for methanol electro-oxidation. The electrochemically active-specific areas of the Pt-Ru-Ni/C and Pt-Ru/C catalysts are almost the same. But, the catalytic activity of the Pt-Ru-Ni/C catalyst is higher for methanol electro-oxidation than that of the Pt-Ru/C catalyst. Its tolerance performance to CO formed as one of the intermediates of methanol electro-oxidation is better than that of the Pt-Ru/C catalyst

  15. Optical coherence tomography findings in methanol toxicity.

    Science.gov (United States)

    Klein, Kendra A; Warren, Alexis K; Baumal, Caroline R; Hedges, Thomas R

    2017-01-01

    Methanol toxicity poses a significant public health problem in developing countries, and in Southeast Asia, where the most common source of poisoning is via adulterated liquor in local drinks. Methanol toxicity can have devastating visual consequences and retinal specialists should be aware of the features of this toxic optic neuropathy. The authors report a case of severe systemic methanol toxicity and relatively mild optic neuropathy demonstrating unique retinal changes on optical coherence tomography (OCT). A previously healthy student developed ataxia, difficulty breathing and loss of consciousness hours after drinking homemade alcohol while traveling in Indonesia. She was found to have a serum pH of 6.79 and elevated methanol levels. She was treated with intravenous ethanol, methylprednisolone and sodium bicarbonate. When she awoke she had bilateral central scotomas. At presentation, she had central depression on visual field testing. OCT of the retinal nerve fiber layer (RNFL) was normal but ganglion cell layer analysis (GCL) showed highly selective loss of the nasal fibers in both eyes. Further, OCT of the macula demonstrated inner nuclear layer (INL) microcysts in the corresponding area of selective GCL loss in both eyes. The selective involvement of the papillomacular bundle fibers is common in toxic optic neuropathies and represents damage to the small caliber axons rich in mitochondria. Despite severe systemic toxicity, the relative sparing of the optic nerve in this case enabled characterization of the evolution of methanol toxicity with segmental GCL involvement and preservation of the RNFL, corresponding to the papillomacular bundle. This is the first reported case of INL microcysts in methanol optic neuropathy and supports that they are a non-specific finding, and may represent preferential damage to the papillomacular bundle.

  16. Model studies of methanol synthesis on copper catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, J.; Nakamura, I.; Uchijima, T. [Univ. of Tsukuba, Ibaraki (Japan); Watanabe, T. [Research Inst. of Innovative Technology for Earth, Kyoto (Japan); Fujitani, T. [National Inst. for Resources and Environment, Ibaraki (Japan)

    1996-12-31

    The synthesis of methanol by the hydrogenation of CO{sub 2} over Zn-deposited and Zn-free copper surfaces has been studied using an XPS apparatus combined with a high-pressure flow reactor (18 atm). It was shown that the Zn deposited on Cu(111) and poly-Cu acted as a promoter for methanol synthesis, while the Zn on Cu(110) and Cu(100) had no such a promotional effect. The turnover frequency (TOF) for Zn/Cu(111) linearly increased with Zn coverage below {Theta}Zn--0.19, and then decreased above {Theta}Zn=0.20. The optimum TOF obtained at {Theta}Zn--0-19 was thirteen-fold larger than TOF for the Zn-free Cu(111) surface. On the other hand, no promotional effect of Zn was observed for the reverse water-gas shift reaction on all the surfaces. The results indicate the formation of special sites for methanol synthesis on Zn/Cu(111). The Zn-deposited Cu(111) can be regarded as a model of Cu/ZnO catalysts because the TOF and the activation energy for methanol formation over the Zn-deposited Cu(111) were in fairly good agreement with those for the Cu/ZnO powder catalysts. The post-reaction surface analysis by XPS showed the formation of formate species (HCOOa). The formate coverage was proportional to the activity for methanol formation below {Theta}Zn=0.20, suggesting that the hydrogenation of the formate species is the rate-determining step of methanol formation. The formate species was stabilized by Zn species on Cu(111) in the absence of ZnO species. STM results on the Zn-deposited Cu(111) suggested the formation of a Cu-Zn surface alloy. The presence of special sites for methanol synthesis was also indicated in the results of powder catalysts.

  17. Methanex cuts its methanol costs with Fletcher purchase

    International Nuclear Information System (INIS)

    Plishner, E.S.

    1993-01-01

    Methanex (Vancouver, BC) will 'significantly reduce' its unit cost of methanol production with the acquisition of all of Fletcher Challenge's (Auckland, NZ) methanol assets. These include the 800,000-m.t./year Cape Horn plant in Chile, one of the world's largest single train facilities. That plant is 'by far' the lowest-cost supplier of delivered methanol to the U.S., says analyst Sam Kanes of Scotia McLeod (Toronto), with gas costs below $1/1,000 cu.ft. Also included in the deal are two New Zealand plants: Petralgas, with capacity for 520,000 m.t./year, and Synfuel. Synfuel has the capacity to produce the equivalent of 1.8 million m.t./year of chemical-grade methanol, or 70,000 m.t./year of gasoline, or a combination. Currently rated at 450,000 m.t./year of methanol, that could double in 1994 with the addition of distillation capacity. After the transaction, Methanex will have a total of 2.4 million m.t./year of methanol capacity, plus marketing agreements for 1.0 million m.t./year. The company has plans to add 1.2 million m.t. of production (in Trinidad and the U.S.) and 0.6 million m.t. of further marketing arrangements over the next year and a half, bringing the total to over 5.0 million m.t./year. Methanex could have 'about twice as much capacity as the Saudis,' according to one consultant

  18. Emerging methanol-tolerant AlN nanowire oxygen reduction electrocatalyst for alkaline direct methanol fuel cell.

    Science.gov (United States)

    Lei, M; Wang, J; Li, J R; Wang, Y G; Tang, H L; Wang, W J

    2014-08-11

    Replacing precious and nondurable Pt catalysts with cheap materials is a key issue for commercialization of fuel cells. In the case of oxygen reduction reaction (ORR) catalysts for direct methanol fuel cell (DMFC), the methanol tolerance is also an important concern. Here, we develop AlN nanowires with diameters of about 100-150 nm and the length up to 1 mm through crystal growth method. We find it is electrochemically stable in methanol-contained alkaline electrolyte. This novel material exhibits pronounced electrocatalytic activity with exchange current density of about 6.52 × 10(-8) A/cm(2). The single cell assembled with AlN nanowire cathodic electrode achieves a power density of 18.9 mW cm(-2). After being maintained at 100 mA cm(-2) for 48 h, the AlN nanowire-based single cell keeps 92.1% of the initial performance, which is in comparison with 54.5% for that assembled with Pt/C cathode. This discovery reveals a new type of metal nitride ORR catalyst that can be cheaply produced from crystal growth method.

  19. In Vitro and In Vivo Anticancer Effects of Sterol Fraction from Red Algae Porphyra dentata

    Directory of Open Access Journals (Sweden)

    Katarzyna Kazłowska

    2013-01-01

    Full Text Available Porphyra dentata, an edible red macroalgae, is used as a folk medicine in Asia. This study evaluated in vitro and in vivo the protective effect of a sterol fraction from P. dentata against breast cancer linked to tumor-induced myeloid derived-suppressor cells (MDSCs. A sterol fraction containing cholesterol, β-sitosterol, and campesterol was prepared by solvent fractionation of methanol extract of P. dentata  in silica gel column chromatography. This sterol fraction in vitro significantly inhibited cell growth and induced apoptosis in 4T1 cancer cells. Intraperitoneal injection of this sterol fraction at 10 and 25 mg/kg body weight into 4T1 cell-implanted tumor BALB/c mice significantly inhibited the growth of tumor nodules and increased the survival rate of mice. This sterol fraction significantly decreased the reactive oxygen species (ROS and arginase activity of MDSCs in tumor-bearing mice. Therefore, the sterol fraction from P. dentata showed potential for protecting an organism from 4T1 cell-based tumor genesis.

  20. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    On-line methanol sensor system development for recombinant human serum ... of the methanol sensor system was done in a medium environment with yeast cells ... induction at a low temperature and a pH where protease does not function.

  1. The global methanol industry -- Is it deja vu all over again?

    International Nuclear Information System (INIS)

    Crocco, J.R.

    1995-01-01

    The author reviews the methanol industry in the 1980's and uses this to forecast the future of the industry, attempting to be as realistic as possible. Data are presented on the global methanol supply and demand, anticipated new methanol production capacity, and the 1995 worldwide methanol capacity. Although the global methanol industry, and most especially the producers, are entering some stormy seas, they are not completely uncharted. Those who were around ten or more years ago can see some similarities between current and anticipated market conditions. The similarities and differences are discussed

  2. Applicability of point-dipoles approximation to all-dielectric metamaterials

    DEFF Research Database (Denmark)

    Kuznetsova, S. M.; Andryieuski, Andrei; Lavrinenko, Andrei

    2015-01-01

    All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this paper we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta......-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to approximate to 0.8 of the lattice constant. The results provide important...... guidelines for design and optimization of all-dielectric metamaterials....

  3. The color dielectric model of QCD

    International Nuclear Information System (INIS)

    Pirner, H.-J.; Massachusetts Inst. of Tech., Cambridge, MA; Massachusetts Inst. of Tech., Cambridge, MA

    1992-01-01

    This paper demonstrates the emergence of valence gluons and their bound states, the glueballs from perturbative quantum chromodynamics (QCD). We discuss the phenomenological constraints and theoretical method needed to generate effective glueballs actions. We show how color dielectric confinement works naively and in the lattice model of color dielectrics. This lattice model is derived for SU(2) color by a blockspinning Monte Carlo renormalization group procedure. We interpret the resulting long-distance as a strongly interacting lattice string theory where the valence link gluon fields randomize in the color dielectric background which mimics the integrated out high-frequency gluon modes in the vacuum. The fluctuations of the color dielectric fields are related to color neutral glueballs modes. We give the extension of this color dielectric SU(2) theory for general SU(N) with quarks and address the problems associated with combining confinement and chiral symmetry breaking. Finally we prove the efficiency of the effective theory in applications to the heavy quark system, the the baryon, to the nucleon-nucleon interaction, to baryon models and the gluon plasma transition. In all those cases the behavior of the higher energy gluons can be monitored via the color dielectric fields. An increase in the energy density from ''deconfining'' the higher frequency modes inside the flux tube or in thermally excited matter shows up as an increase in the value of the color dielectric field and its associated energy density. (Author)

  4. Abacavir methanol 2.5-solvate

    Directory of Open Access Journals (Sweden)

    Phuong-Truc T. Pham

    2009-08-01

    Full Text Available The structure of abacavir (systematic name: {(1S,4R-4-[2-amino-6-(cyclopropylamino-9H-purin-9-yl]cyclopent-2-en-1-yl}methanol, C14H18N6O·2.5CH3OH, consists of hydrogen-bonded ribbons which are further held together by additional hydrogen bonds involving the hydroxyl group and two N atoms on an adjacent purine. The asymmetric unit also contains 2.5 molecules of methanol solvate which were grossly disordered and were excluded using SQUEEZE subroutine in PLATON [Spek, (2009. Acta Cryst. D65, 148–155].

  5. Methanol toxicity secondary to inhalant abuse in adult men.

    Science.gov (United States)

    Wallace, Erik A; Green, Adam S

    2009-03-01

    The purpose of this report is to evaluate the presentation, treatment, and outcomes of adults with methanol toxicity from inhalation of carburetor cleaning fluid fumes. Retrospective chart review of adults with positive serum volatile screen for methanol and history of carburetor cleaning fluid fume inhalation. Sixteen patients were admitted 68 times. Eleven Native American patients accounted for 90% of admissions. Sixty-five cases presented with nausea/vomiting; 27 with intoxication or altered mental status; 21 with specific visual complaints. About 93% had a pH or=10 mOsm/L, and 69% had anion gap >16. Ten had an initial serum methanol level or=50 mg/dL. Six patients had a measurable serum ethanol level. Of the 29 patients with a methanol level of 20-49 mg/dL, 20 received intravenous antidote (ethanol or fomepizole); three received an antidote and hemodialysis. All who presented with a serum methanol level >or=50 mg/dL received intravenous ethanol or fomepizole. All visual symptoms resolved before discharge and all patients survived without sequelae. Discussion. This is the largest reported number of cases of methanol toxicity from the inhalation of carburetor cleaning fluid fumes and demonstrates a problem with recurrent abuse among some older Native American men. Intentional inhalation of methanol fumes may produce toxicity. Clinicians need to question patients, especially older Native American men, regarding the possible inhalation of carburetor cleaning fluid fumes in those who present with an unexplained metabolic anion gap acidosis.

  6. The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways

    NARCIS (Netherlands)

    Sousa, Diana Z.; Visser, Michael; Gelder, Van Antonie H.; Boeren, Sjef; Pieterse, Mervin M.; Pinkse, Martijn W.H.; Verhaert, Peter D.E.M.; Vogt, Carsten; Franke, Steffi; Kümmel, Steffen; Stams, Alfons J.M.

    2018-01-01

    Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in

  7. Analysis of electron interactions in dielectric gases

    International Nuclear Information System (INIS)

    Olivet, Aurelio; Duque, Daniel; Vega, Lourdes F.

    2007-01-01

    We present and discuss results concerning electron interactions processes of dielectric gases and their relationship with the macroscopic behavior of these gases, in particular, with their dielectric strength. Such analysis is based on calculating energies of reactions for molecular ionization, dissociative ionization, parent negative ion formation, and dissociative electron attachment processes. We hypothesize that the estimation of the required energy for a reduced number of processes that take place in electrically stressed gases could be related to the gas' capability to manage the electron flow during an electrical discharge. All calculations were done with semiempirical quantum chemistry methods, including an initial optimization of molecular geometry and heat of formation of the dielectric gases and all of species that appear during electron interaction reactions. The performance of semiempirical methods Austin model 1 and Parametric model 3 (PM3) was compared for several compounds, PM3 being superior in most cases. Calculations performed for a sample of nine dielectric gases show that electron attachment and detachment processes occur in different energy bands that do not overlap for any value of the dielectric strength. We have also analyzed the relationship between dielectric strength and two physical properties: electron affinity and ionization energy. Calculations performed for 43 dielectric gases show no clear correlation between them, although certain guidelines for the qualitative estimation of dielectric strength can still be assessed

  8. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    Science.gov (United States)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  9. High Performance and Cost-Effective Direct Methanol Fuel Cells: Fe-N-C Methanol-Tolerant Oxygen Reduction Reaction Catalysts.

    Science.gov (United States)

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Gordon, Jonathan; Atanassov, Plamen; Aricò, Antonino S; Baglio, Vincenzo

    2016-08-09

    Direct methanol fuel cells (DMFCs) offer great advantages for the supply of power with high efficiency and large energy density. The search for a cost-effective, active, stable and methanol-tolerant catalyst for the oxygen reduction reaction (ORR) is still a great challenge. In this work, platinum group metal-free (PGM-free) catalysts based on Fe-N-C are investigated in acidic medium. Post-treatment of the catalyst improves the ORR activity compared with previously published PGM-free formulations and shows an excellent tolerance to the presence of methanol. The feasibility for application in DMFC under a wide range of operating conditions is demonstrated, with a maximum power density of approximately 50 mW cm(-2) and a negligible methanol crossover effect on the performance. A review of the most recent PGM-free cathode formulations for DMFC indicates that this formulation leads to the highest performance at a low membrane-electrode assembly (MEA) cost. Moreover, a 100 h durability test in DMFC shows suitable applicability, with a similar performance-time behavior compared to common MEAs based on Pt cathodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preparation and dielectric properties of Ba0.95Ca0.05Ti0.8Zr0.2O3-polyethersulfone composites

    International Nuclear Information System (INIS)

    Wang Fajun; Li Wen; Jiang Hongliu; Xue Mingshan; Lu Jinshan; Yao Junping

    2010-01-01

    We report the preparation and dielectric properties of ceramic-polymer composites using Ba 0.95 Ca 0.05 Ti 0.8 Zr 0.2 O 3 (BCTZ) as a ceramic filler and polyethersulfone (PES) as a polymer matrix. The BCTZ powders were synthesized by a sol-gel method to fabricate BCZT-PES composites. The composites with various BCTZ volume fractions were prepared by a solution mixing and hot-pressing method. The composite with 50 vol % BCTZ showed high dielectric constant (ε=48.80) and low loss (tan δ=0.042) at 1 kHz and room temperature. Such excellent dielectric properties of the composites displayed an acceptable stability within a wide range of temperature (from 20 to 150 deg. C) and frequency (from 100 Hz to 100 kHz). The present work indicates that the BCTZ-PES composite can be a candidate for embedded capacitors.

  11. Charge accumulation in lossy dielectrics: a review

    DEFF Research Database (Denmark)

    Rasmussen, Jørgen Knøster; McAllister, Iain Wilson; Crichton, George C

    1999-01-01

    At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries such that the mat......At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries...

  12. Transient behavior of Cu/ZnO-based methanol synthesis catalysts

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Chorkendorff, Ib; Knudsen, Ida

    2009-01-01

    Time-resolved measurements of the methanol synthesis reaction over a Cu/ZnO-based catalyst reveal a transient methanol production that depends on the pretreatment gas. Specifically, the methanol production initially peaks after a pretreatment with an intermediate mixture of H2 and CO (20–80% H2...

  13. Fate of methanol spills into rivers of varying geometry

    International Nuclear Information System (INIS)

    Jamali, M.; Lawrence, G.A.; Maloney, K.

    2002-01-01

    This paper describes the results of a study of potential environmental impacts of methanol releases into rivers. A number of hypothetical scenarios are defined, and dispersion of methanol in the selected rivers is investigated using a riverine dispersion-biodegradation model. The downstream variability of river flow and hydraulic geometry due to merging tributaries are included in the model. The model results are presented, and comparison is made with proposed allowable concentrations. An interesting finding is that the river variation has considerable effect on concentration distribution of methanol in the most critical scenario. A sensitivity analysis is made on the key modeling parameters such as the dispersion coefficient and the biodegradation rate. An analysis illustrating when water intake systems should potentially be shutdown in the event of a methanol release is also presented. In general, it is found the human health risks associated with the accidental release of methanol into riverine environments are low. (author)

  14. General report of entrustment investigation for demonstration tests of turnover from oil to methanol in the thermal power plants in fiscal 1995. Total assessment of methanol using power generation technology; 1995 nendo sekiyu karyoku hatsudensho methanol tenkan nado jissho shiken itaku gyomu hokokusho sokatsu hokokusho. Methanol riyo hatsuden gijutsu sogo hyoka chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    To promote the introduction of methanol fuel into the thermal power plants, total assessment was provided. For calculating the methanol production cost, the plant was assumed to be constructed in the Southeast Asia or Middle East. Two methods, i.e., steam reforming and gaseous phase fluid methods, were investigated. Since the price of natural gas is low in the Middle East, the methanol production cost by the gaseous phase fluid method is estimated to be about 1.5 yen per thousand kcal. The transportation cost can be reduced into one-half to one-third of current cost using a large-scale tanker. Although the heating value of methanol per weight is lower than that of LNG, the volume flow of methanol is similar to that of LNG due to its low specific gravity. Conceptual designs were conducted for some power generation systems, such as gas turbine of combined cycle, diesel engine, and fuel cell. The power generation cost was estimated to be 8 to 9 yen per kWh, which depends on the receiving price of methanol. It is nearly equivalent to that of LNG combined cycle power generation. There are no problems of air pollution and ash disposal. When considering the long-term security of energy sources, the use of methanol would be one of the selections as utilization of natural gas. 6 refs., 33 figs., 25 tabs.

  15. New constraints on terrestrial and oceanic sources of atmospheric methanol

    Directory of Open Access Journals (Sweden)

    D. B. Millet

    2008-12-01

    Full Text Available We use a global 3-D chemical transport model (GEOS-Chem to interpret new aircraft, surface, and oceanic observations of methanol in terms of the constraints that they place on the atmospheric methanol budget. Recent measurements of methanol concentrations in the ocean mixed layer (OML imply that in situ biological production must be the main methanol source in the OML, dominating over uptake from the atmosphere. It follows that oceanic emission and uptake must be viewed as independent terms in the atmospheric methanol budget. We deduce that the marine biosphere is a large primary source (85 Tg a−1 of methanol to the atmosphere and is also a large sink (101 Tg a−1, comparable in magnitude to atmospheric oxidation by OH (88 Tg a−1. The resulting atmospheric lifetime of methanol in the model is 4.7 days. Aircraft measurements in the North American boundary layer imply that terrestrial plants are a much weaker source than presently thought, likely reflecting an overestimate of broadleaf tree emissions, and this is also generally consistent with surface measurements. We deduce a terrestrial plant source of 80 Tg a−1, comparable in magnitude to the ocean source. The aircraft measurements show a strong correlation with CO (R2=0.51−0.61 over North America during summer. We reproduce this correlation and slope in the model with the reduced plant source, which also confirms that the anthropogenic source of methanol must be small. Our reduced plant source also provides a better simulation of methanol observations over tropical South America.

  16. Erythropoietin in Treatment of Methanol Optic Neuropathy.

    Science.gov (United States)

    Pakdel, Farzad; Sanjari, Mostafa S; Naderi, Asieh; Pirmarzdashti, Niloofar; Haghighi, Anousheh; Kashkouli, Mohsen B

    2018-06-01

    Methanol poisoning can cause an optic neuropathy that is usually severe and irreversible and often occurs after ingestion of illicit or homemade alcoholic beverages. In this study, we evaluated the potential neuroprotective effect of erythropoietin (EPO) on visual acuity (VA) in patients with methanol optic neuropathy. In a prospective, noncomparative interventional case series, consecutive patients with methanol optic neuropathy after alcoholic beverage ingestion were included. All patients initially received systemic therapy including metabolic stabilization and detoxification. Treatment with intravenous recombinant human EPO consisted of 20,000 units/day for 3 successive days. Depending on clinical response, some patients received a second course of EPO. VA, funduscopy, and spectral domain optical coherence tomography were assessed during the study. Main outcome measure was VA. Thirty-two eyes of 16 patients with methanol optic neuropathy were included. Mean age was 34.2 years (±13.3 years). The mean time interval between methanol ingestion and treatment with intravenous EPO was 9.1 days (±5.56 days). Mean follow-up after treatment was 7.5 months (±5.88 months). Median VA in the better eye of each patient before treatment was light perception (range: 3.90-0.60 logMAR). Median last acuity after treatment in the best eye was 1.00 logMAR (range: 3.90-0.00 logMAR). VA significantly increased in the last follow-up examination (P optic neuropathy and may represent a promising treatment for this disorder.

  17. Selectivity of Direct Methanol Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Antonino S. Aricò

    2015-11-01

    Full Text Available Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK, new generation perfluorosulfonic acid (PFSA systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC. The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2. This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115.

  18. Selectivity of Direct Methanol Fuel Cell Membranes.

    Science.gov (United States)

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  19. Determination of the elemental composition of cyanobacteria cells and cell fractions by atomic emission and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sedykh, Eh.M.; Lyabusheva, O.A.; Bannykh, L.N.; Tambiev, A.Kh.

    2005-01-01

    An approach to studying the elemental composition of cyanobacteria Spirulina platensis and Nostoc commune using a set of complementary analytical methods (ICP-AES, PAAS, and ETAAS) was proposed . The procedures were adapted for the determination of macro- and microelements (Na, K, Mg, Ca, Fe, Mn, Cu, Mo, Zn, B, and Se) in the biomass of cyanobacteria and separated cell fractions (chloroform and water-methanol extracts and precipitates). The conditions for the mineralization of biological materials were optimized for autoclave and microwave sample preparation procedures. The evaporation and atomization of Se and Mo in a graphite furnace in the presence of chloroform and methanol were studied [ru

  20. Methanol exchange dynamics between a temperate cropland soil and the atmosphere

    Science.gov (United States)

    Bachy, A.; Aubinet, M.; Amelynck, C.; Schoon, N.; Bodson, B.; Moureaux, C.; Delaplace, P.; De Ligne, A.; Heinesch, B.

    2018-03-01

    Soil methanol (CH3OH) exchange is often considered as several orders of magnitude smaller than plant methanol exchange. However, for some ecosystems, it is significant in regard with plant exchange and worth thus better consideration. Our study sought to gain a better understanding of soil exchange. Methanol flux was measured at the ecosystem scale on a bare agricultural soil over two contrasted periods using the disjunct eddy covariance by mass scanning technique. A proton-transfer-reaction mass spectrometer was used for the methanol ambient mixing ratio measurements. Bi-directional exchange dynamics were observed. Methanol emission occurred under dry and warm conditions and correlated best with soil surface temperature, whereas methanol uptake occurred under wet and mild conditions and correlated well with the methanol ambient concentration. After having tested a physical adsorption-desorption model and by confronting our data with the literature, we propose that the exchange was ruled by both a physical adsorption/desorption mechanism and by a methanol source, which still needs to be identified. The soil emission decreased when the vegetation developed. The reasons for the decrease still need to be determined. Overall, the dynamics observed at our site were similar to those reported by other studies for both cropland and forest ecosystems. The mechanism proposed in our work can thus be possibly applied to other sites or ecosystems. In addition, the methanol exchange rate was in the upper range of the exchange rates reported by other soil studies, suggesting that cropland soils are more important methanol exchangers than those in other ecosystems and should therefore be further investigated.

  1. Effect of fuel temperature on the methanol spray and nozzle internal flow

    International Nuclear Information System (INIS)

    Chen, Zhifang; Yao, Anren; Yao, Chunde; Yin, Zenghui; Xu, Han; Geng, Peilin; Dou, Zhancheng; Hu, Jiangtao; Wu, Taoyang; Ma, Ming

    2017-01-01

    Highlights: • Cavitation region increases with the increasing of methanol temperature. • The nozzle exit velocity increases with the increasing of methanol temperature. • The discharge coefficient decreases with the increasing of methanol temperature. • Droplet SMD reduces when methanol temperature increases measured by PDPA system. • Droplet velocity has the maximum value when methanol temperature is 60 °C. - Abstract: The increasing of fuel temperature can reduce the droplet size and have an advantage of improving spray atomization, while investigations of the effect of temperature on the methanol injector internal flow and external spray is rare. Firstly, a detailed three dimensional numerical simulations of nozzle internal flow have been conducted to probe into the cavitation in methanol injector nozzles, and then an experimental study has been carried out to investigate the droplet size and velocity of methanol spray at various temperatures using the Phase Doppler Particle Analyzer (PDPA) detecting system. And results show that the region of cavitations in nozzle orifice enlarges as methanol temperature and injection pressure increases, and the temperature for 'super-cavitation' occurring decreases gradually with the increasing of injection pressure. Moreover, the nozzle exit velocity, discharge coefficient and cavitations number were also analyzed. However, the discharge coefficient reduces nearly equal under various pressure when the methanol temperature is higher than 60 °C. In addition, the Sauter Mean Diameter (SMD) and velocity of methanol droplet were also analyzed, and found that the droplet velocity reaches the maximum value when the methanol temperature is 60 °C.

  2. Determination of Methanol Content in Herbal Distillates Produced in Urmia Using Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Mohammad Delirrad

    2012-05-01

    Full Text Available Background: Herbal distillates have been used for many centuries as drinks, flavors, and herbal medicine in Iran, especially in the city of Urmia. Recently, some studies claimed the presence of methanol in different types of herbal distillates. Methanol is a highly toxic compound which can cause acute or chronic toxicity in humans. Acute poisoning with methanol can cause different complications and even death while chronic methanol exposure has a wide range of nonspecific and misleading findings. The main purpose of this study was to determine methanol content in the commonly-used industrial herbal distillates produced in Urmia. Methods: Five samples of six types of most commonly used herbal distillates (peppermint, musk willow, lemon balm, pennyroyal, dill, and rose water were purchased from five active herbal distillates manufacturers in Urmia. All samples were transferred to the laboratory and methanol content of each sample was measured two times according to the standard method of analysis using spectrophotometer. Results: The lowest and highest concentration of methanol were found in rose water (mean=72.4±32.1 ppm and musk willow (mean=278.3±106 ppm samples, respectively. One-way ANOVA showed statistically significant differences among methanol concentrations in the studied herbal distillates (F=60.9, P <0.001. Discussion: Different amounts of methanol were found in herbal distillates and it seems that there are statistically significant differences in methanol concentrations of various types of herbal distillates. Therefore, considering the harmful effects of methanol on human health, further studies are required for determining permitted levels of methanol in herbal distillates.

  3. High thermal conductivity lossy dielectric using a multi layer configuration

    Science.gov (United States)

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  4. Crystal structure of di-μ-chlorido-bis[dichloridobis(methanol-κOiridium(III] dihydrate: a surprisingly simple chloridoiridium(III dinuclear complex with methanol ligands

    Directory of Open Access Journals (Sweden)

    Joseph S. Merola

    2015-05-01

    Full Text Available The reaction between IrCl3·xH2O in methanol led to the formation of small amounts of the title compound, [Ir2Cl6(CH3OH4]·2H2O, which consists of two IrCl4O2 octahedra sharing an edge via chloride bridges. The molecule lies across an inversion center. Each octahedron can be envisioned as being comprised of four chloride ligands in the equatorial plane with methanol ligands in the axial positions. A lattice water molecule is strongly hydrogen-bonded to the coordinating methanol ligands and weak interactions with coordinating chloride ligands lead to the formation of a three-dimensional network. This is a surprising structure given that, while many reactions of iridium chloride hydrate are carried out in alcoholic solvents, especially methanol and ethanol, this is the first structure of a chloridoiridium compound with only methanol ligands.

  5. Antifeedant activity of botanical crude extracts and their fractions on Bemisia tabaci (Homoptera: Aleyrodidae adults: II. Sechium pittieri (Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Guillermo Flores

    2008-12-01

    Full Text Available Bemisia tabaci is a key pest of vegetables and other crops worldwide, but it is a particularly serious problem in the tropics, due to its ability to transmit several types of viruses, especially begomoviruses (Geminiviridae. Therefore, a preventive approach to deal with viral epidemics may be the deployment of repellents or phagodeterrents at earlier stages of plant development (critical period. Thus, the crude extract and four fractions thereof (water, water: methanol, methanol, and diethyl ether of wild "tacaco" (Sechium pittieri, Cucurbitaceae, were tested for phagodeterrence to B. tabaci adults under greenhouse conditions, on tomato plants, in Costa Rica. Both restricted-choice and unrestricted-choice experiments showed that the crude extract as well as some fractions exert such effect on the insect. In the former (in sleeve cages, fractions caused deterrence at doses as low as 0.1% (ether and 0.5% (water and water: methanol, with the methanol fraction showing no activity. However, in the latter (plants exposed in a greenhouse no one of the fractions performed well, suggesting that the deterrent principles somehow decomposed under the experimental conditions. Rev. Biol. Trop. 56 (4: 2115-2129. Epub 2008 December 12.Bemisia tabaci es una plaga clave de hortalizas y otros cultivos, mundialmente, y representa un problema particularmente serio en los trópicos, debido a su habilidad para transmitir varios tipos de virus, especialmente begomovirus (Geminiviridae. Por tanto, un enfoque preventivo para enfrentar las epidemias virales podría consistir en la utilización de sustancias repelentes o disuasivas en las eta-pas tempranas del desarrollo de la planta (período crítico. Así, el extracto crudo y cuatro fracciones (agua, agua: metanol, metanol, y éter dietílico de tacaco cimarrón (Sechium pittieri, Cucurbitaceae, fueron evaluadas por su posible actividad fagodisuasiva sobre B. tabaci en un invernadero, utilizando plantas de tomate, en

  6. Methanol sensor for integration with GaP nanowire photocathode

    Science.gov (United States)

    Novák, J.; Laurenčíková, A.; Hasenohrl, S.; Eliáš, P.; Kováč, J.

    2017-05-01

    We proposed a new type of the methanol concentration sensor that may be integrated directly to the GaP nanostructured photocathode. Necessary attribute for this design is the possibility to make it compatible with p-type of semiconductor. This condition follows from the fact that photocathodes for the CO2 splitting are exclusively prepared from p-type of semiconductors. Design of methanol sensor emanates from this principle. On the GaP substrate is deposited thin Pt supporting layer (100-200 nm thick).This layer is covered by 500 nm thick Nafion membrane that serves as proton filter. On the top of Nafion layer is deposited top Pt contact layer covered by thin nanostructured Pt layer layer with various thickness (0.5 -5 nm). This nanostructured Pt is formed into small islands. It serves as an absorption layer for methanol. Sensor detection properties were estimated from monitoring of I-V characteristics. They were measured in dark and under various methanol concentrations. Dark current values are in order 10-9 A, and this current increases up to order of microamps for methanol of concentration more than 95%.These measurements proved high sensitivity of the GaP compatible sensor structure. Methanol sensors were realized in form of narrow stripe on the side of the photocathode.

  7. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Bogdan [Nuvant Systems Inc., Crown Point, IN (United States)

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  8. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  9. Picosecond infrared activation of methanol in acid zeolites

    NARCIS (Netherlands)

    Bonn, Miacha; van Santen, Rutger A.; Lercher, J.A.; Kleyn, Aart W.; Bakker, H.J.; Bakker, Huib J.

    1997-01-01

    Highly porous, crystalline zeolite catalysts are used industrially to catalyze the conversion of methanol to gasoline. We have performed a picosecond spectroscopic study providing insights into both the structure and the dynamics of methanol adsorbed to acid zeolites. We reveal the adsorption

  10. Trends of microwave dielectric materials for antenna application

    International Nuclear Information System (INIS)

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-01-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such