WorldWideScience

Sample records for methanol production plant

  1. Enhanced methanol production in plants provides broad spectrum insect resistance.

    Directory of Open Access Journals (Sweden)

    Sameer Dixit

    Full Text Available Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR and spectra showed up to 16 fold higher methanol as compared to control wild type (WT plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid and Bemisia tabaci (whitefly, respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants.

  2. Enhanced Methanol Production in Plants Provides Broad Spectrum Insect Resistance

    Science.gov (United States)

    Dixit, Sameer; Upadhyay, Santosh Kumar; Singh, Harpal; Sidhu, Om Prakash; Verma, Praveen Chandra; K, Chandrashekar

    2013-01-01

    Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR) and spectra showed up to 16 fold higher methanol as compared to control wild type (WT) plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid) and Bemisia tabaci (whitefly), respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants. PMID:24223989

  3. Catalytic production of hydrogen from methanol for mobile, stationary and portable fuel-cell power plants

    International Nuclear Information System (INIS)

    Lukyanov, Boris N

    2008-01-01

    Main catalytic processes for hydrogen production from methanol are considered. Various schemes of fuel processors for hydrogen production in stationary, mobile and portable power plants based on fuel cells are analysed. The attention is focussed on the design of catalytic reactors of fuel processors and on the state-of-the-art in the design of catalysts for methanol conversion, carbon monoxide steam conversion and carbon monoxide selective oxidation. Prospects for the use of methanol in on-board fuel processors are discussed.

  4. Efficacy of different methanolic plant extracts on anti-methanogenesis, rumen fermentation and gas production kinetics in vitro

    OpenAIRE

    P. Pandey; N. Goel; S.K. Sirohi

    2012-01-01

    The present study was carried out to evaluate the effect of methanolic extracts of three plants, mehandi (Lawsonia inermis), jaiphal (Myristica fragrans) and green chili (Capsicum annuum) on methanogenesis, rumen fermentation and fermentation kinetic parameters by in vitro gas production techniques. Single dose of each plant extract (1 ml / 30 ml buffered rumen fluid) and two sorghum fodder containing diets (high and low fiber diets) were used for evaluating the effect on methanogenesis and r...

  5. Efficacy of different methanolic plant extracts on anti-methanogenesis, rumen fermentation and gas production kinetics in vitro.

    Science.gov (United States)

    Sirohi, S K; Goel, N; Pandey, P

    2012-01-01

    The present study was carried out to evaluate the effect of methanolic extracts of three plants, mehandi (Lawsonia inermis), jaiphal (Myristica fragrans) and green chili (Capsicum annuum) on methanogenesis, rumen fermentation and fermentation kinetic parameters by in vitro gas production techniques. Single dose of each plant extract (1 ml / 30 ml buffered rumen fluid) and two sorghum fodder containing diets (high and low fiber diets) were used for evaluating the effect on methanogenesis and rumen fermentation pattern, while sequential incubations (0, 1, 2, 3, 6 9, 12, 24, 36, 48, 60, 72 and 96 h) were carried out for gas production kinetics. Results showed that methane production was reduced, ammonia nitrogen was increased significantly, while no significant effect was found on pH and protozoal population following addition of different plant extracts in both diets except mehandi. Green chili significantly reduced digestibility of dry matter, total fatty acid and acetate concentration at incubation with sorghum based high and low fiber diets. Among all treatments, green chili increased potential gas production, while jaiphal decreased the gas production rate constant significantly. The present results demonstrate that methanolic extracts of different plants are promising rumen modifying agents. They have the potential to modulate the methane production, potential gas production, gas production rate constant, dry matter digestibility and microbial biomass synthesis.

  6. Methanol plant ship: Appendix. Export trade information

    International Nuclear Information System (INIS)

    1988-01-01

    The document is an appendix to the final report on a proposed methanol plant ship off of the coast of Trinidad. The document incorporates the results of the redetermination of capital required to implement the project. It also presents a revised cost analysis, with better accuracy, for the project. The projected operating revenues and revised expenses are also given. As a continuation of the information presented in the final report, the methanol market and proposed products are discussed in the report

  7. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  8. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  9. Methanol plant ship: implementation study. Export trade information

    International Nuclear Information System (INIS)

    1988-01-01

    The study compiled the economic, commercial and financing requirements of a floating plant ship with a production capacity of 3,000 tons of methanol a day. The raw material for the methanol production would be supplied from a natural gas reserve off the coast of Trinidad. The report has a separate section for each aspect of the plant ship project, such as methanol storage; logistics of transporting methanol to the United States; the required sub-sea installation to bring natural gas to the plant ship; and plant ship design and equipment. It gives a detailed description of a proposed organizational structure and its tax consequences. The project's financial requirements and economic impact are examined. The environmental consequences and other operator issues are analyzed. Tables and figures accompany the report

  10. Methanol production by Mycobacterium smegmatis

    International Nuclear Information System (INIS)

    Weisman, L.S.; Ballou, C.E.

    1988-01-01

    Mycobacterium smegmatis cells produce [ 3 H]methanol when incubated with [methyl- 3 H]methionine. The methanol is derived from S-adenosylmethionine rather than methyltetrahydrofolate. M. smegmatis cells carboxymethylate several proteins, and some of the methanol probably results from their demethylation, but most of the methanol may come from an unidentified component with a high gel mobility. Although methanol in the medium reached 19 μM, it was not incorporated into the methylated mannose polysaccharide, a lipid carrier in this organism

  11. UO2 production process with methanol washing

    International Nuclear Information System (INIS)

    Sondermann, T.

    1978-01-01

    The invention refers to a process for the recovery of methanol used for washing the ammonium uranyl carbonate obtained during UO 2 production. The methanol contains about 50% H 2 O, about 10% (NH 4 ) 2 CO 3 , and is radioactive. According to the invention the methanol is purified at reduced pressure in a distillation unit and then led back to the washing unit. (UWI) 891 HP/UWI 892 MBE [de

  12. Renewable hydrogen utilisation for the production of methanol

    International Nuclear Information System (INIS)

    Galindo Cifre, P.; Badr, O.

    2007-01-01

    Electrolytic hydrogen production is an efficient way of storing renewable energy generated electricity and securing the contribution of renewables in the future electricity supply. The use of this hydrogen for the production of methanol results in a liquid fuel that can be utilised directly with minor changes in the existing infrastructure. To utilise the renewable generated hydrogen for production of renewable methanol, a sustainable carbon source is needed. This carbon can be provided by biomass or CO 2 in the flue gases of fossil fuel-fired power stations, cement factories, fermentation processes and water purification plants. Methanol production pathways via biomass gasification and CO 2 recovery from the flue gasses of a fossil fuel-fired power station have been reviewed in this study. The cost of methanol production from biomass was found to lie in the range of 300-400 EUR/tonne of methanol, and the production cost of CO 2 based methanol was between 500 and 600 EUR/tonne. Despite the higher production costs compared with methanol produced by conventional natural gas reforming (i.e. 100-200 EUR/tonne, aided by the low current price of natural gas), these new processes incorporate environmentally beneficial aspects that have to be taken into account. (author)

  13. Energy conservation in methanol plant using CHP system

    International Nuclear Information System (INIS)

    Azadi, Marjan; Tahouni, Nassim; Panjeshahi, M. Hassan

    2016-01-01

    Highlights: • Feasibility of turbo expander integration with an industrial plant was studied. • Combined pinch-exergy analysis was used to achieve optimum performance of process. • Generation of power led to profitability of gas turbine integrated plant. - Abstract: Today, the efficient use of energy is a significant critical issue in various industries such as petrochemical industries. Hence, it seems essential to apply proper strategies to reduce energy consumption in such processes. A methanol production plant at a live Petrochemical Complex was selected as the case study in this research. The plant was first evaluated with combined pinch and exergy analysis from exergetic dissipation point of view. Owing to high temperature and pressure of reactor outlet stream, methanol synthesis reactor products contain considerable content of exergy. For the purpose of the present survey, the available content of exergy was used for power production by integrating a turbine expander with methanol reactor product. Utilization of reactor product’s high pressure in turbine reduces the temperature of turbine outlet stream to levels lower than those required for heating demands of existing streams in methanol synthesis cycle. Therefore, to keep the stream thermally balanced, the required hot utility of the process is increased and to compensate this increase, the heat exchanger network of the process was retrofitted based on pinch analysis concepts. The results showed that in gas turbine integrated scheme, approximately a net power of 7.5 MW is produced. Also, the total investment of turbine, compressor and heat exchangers area equals to 18.2 × 10 6 US$, and the annual saving value is about 6.1 × 10 6 US$/y. Based on economic data, payback period is estimated to be 3 years.

  14. Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard; Houbak, N.; Elmegaard, Brian

    2010-01-01

    , and the low-temperature waste heat is used for district heat production. This results in high total energy efficiencies (similar to 90%) for the plants. The specific methanol costs for the six plants are in the range 11.8-25.3 (sic)/GJ(exergy). The lowest cost is obtained by a plant using electrolysis......Methanol production process configurations based on renewable energy sources have been designed. The processes were analyzed in the thermodynamic process simulation tool DNA. The syngas used for the catalytic methanol production was produced by gasification of biomass, electrolysis of water, CO2...... with a different syngas production method, were compared. The plants achieve methanol exergy efficiencies of 59-72%, the best from a configuration incorporating autothermal reforming of biogas and electrolysis of water for syngas production. The different processes in the plants are highly heat integrated...

  15. Experimental study on methanol recovery through flashing vaporation in continuous production of biodiesel via supercritical methanol

    International Nuclear Information System (INIS)

    Wang Cunwen; Chen Wen; Wang Weiguo; Wu Yuanxin; Chi Ruan; Tang Zhengjiao

    2011-01-01

    To improve the oil conversion, high methanol/oil molar ratio is required in the continuous production of biodiesel via supercritical methanol transesterification in tubular reactor. And thus the subsequent excess methanol recovery needs high energy consumption. Based on the feature of high temperature and high pressure in supercritical methanol transesterification, excess methanol recovery in reaction system by flashing vaporation is conducted and the effect of reaction temperature, reaction pressure and flashing pressure on methanol recovery and methanol concentration in gas phase is discussed in detail in this article. Results show that at the reaction pressure of 9-15 MPa and the reaction temperature of 240-300 o C, flashing pressure has significant influence on methanol recovery and methanol content in gas phase, which can be effectively improved by reducing flashing pressure. At the same time, reaction temperature and reaction pressure also have an important effect on methanol recovery and methanol content in gas phase. At volume flow of biodiesel and methanol 1:2, tubular reactor pressure 15 MPa, tubular reactor temperature 300 o C and the flashing pressure 0.4 MPa, methanol recovery is more than 85% and methanol concentration of gas phase (mass fraction) is close to 99% after adiabatic braising; therefore, the condensate liquid of gas phase can be injected directly into methanol feedstock tank to be recycled. Research abstracts: Biodiesel is an important alternative energy, and supercritical methanol transesterification is a new and green technology to prepare biodiesel with some obvious advantages. But it also exists some problems: high reaction temperature, high reaction pressure and large molar ratio of methanol/oil will cause large energy consumption which restricts supercritical methanol for the industrial application of biodiesel. So a set of tubular reactor-coupled flashing apparatus is established for continuous preparing biodiesel in supercritical

  16. 1995 world methanol conference

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The 20 papers contained in this volume deal with the global markets for methanol, the production of MTBE, integrating methanol production into a coal-to-SNG complex, production of methanol from natural gas, catalysts for methanol production from various synthesis gases, combined cycle power plants using methanol as fuel, and economics of the methanol industry. All papers have been processed for inclusion on the data base

  17. Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Lyke, S.E.; Moore, R.H.

    1981-01-01

    The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

  18. Methanol production from Eucalyptus wood chips. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fishkind, H.H.

    1982-06-01

    This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.

  19. Sulfur Rich Coal Gasification and Low Impact Methanol Production

    Directory of Open Access Journals (Sweden)

    Andrea Bassani

    2018-03-01

    Full Text Available In recent times, the methanol was employed in numerous innovative applications and is a key compound widely used as a building block or intermediate for producing synthetic hydrocarbons, solvents, energy storage medium and fuel. It is a source of clean, sustainable energy that can be produced from traditional and renewable sources: natural gas, coal, biomass, landfill gas and power plant or industrial emissions. An innovative methanol production process from coal gasification is proposed in this work. A suitable comparison between the traditional coal to methanol process and the novel one is provided and deeply discussed. The most important features, with respect to the traditional ones, are the lower carbon dioxide emissions (about 0.3% and the higher methanol production (about 0.5% without any addition of primary sources. Moreover, it is demonstrated that a coal feed/fuel with a high sulfur content allows higher reductions of carbon dioxide emissions. The key idea is to convert hydrogen sulfide and carbon dioxide into syngas (a mixture of hydrogen and carbon monoxide by means of a regenerative thermal reactor. This is the Acid Gas to Syngas technology, a completely new and effective route of processing acid gases. The main concept is to feed an optimal ratio of hydrogen sulphide and carbon monoxide and to preheat the inlet acid gas before the combustion. The reactor is simulated using a detailed kinetic scheme.

  20. Development of sustainable CO2 conversion processes for the methanol production

    DEFF Research Database (Denmark)

    Roh, Kosan; Nguyen, Tuan B.H.; Suriyapraphadilok, Uthaiporn

    2015-01-01

    reforming process has to be integrated with the existing conventional methanol plant to obtain a reduced CO2 emission as well as lowered production costs. On the other hand, the CO2 hydrogenation based methanol plant could achieve a reduction of net CO2 emission at a reasonable production cost only......Utilization of CO2 feedstock through CO2 conversion for producing valuable chemicals as an alternative to sequestration of the captured CO2 is attracting increasing attention in recent studies. Indeed, the methanol production process via thermochemical CO2 conversion reactions is considered a prime...... candidate for commercialization. The aim of this study is to examine two different options for a sustainable methanol plant employing the combined reforming and CO2 hydrogenation reactions, respectively. In addition, process improvement strategies for the implementation of the developed processes are also...

  1. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Sang-Yong; Lee, Jung-Kul; Kim, In-Won

    2016-04-28

    Methane (CH₄) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH₄ can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH₄; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl₂ as a methanol dehydrogenase inhibitor, 50% CH₄ concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH₄.

  2. On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology.

    Science.gov (United States)

    Genner, Andreas; Gasser, Christoph; Moser, Harald; Ofner, Johannes; Schreiber, Josef; Lendl, Bernhard

    2017-01-01

    On-line monitoring of key chemicals in an industrial production plant ensures economic operation, guarantees the desired product quality, and provides additional in-depth information on the involved chemical processes. For that purpose, rapid, rugged, and flexible measurement systems at reasonable cost are required. Here, we present the application of a flexible mid-IR filtometer for industrial gas sensing. The developed prototype consists of a modulated thermal infrared source, a temperature-controlled gas cell for absorption measurement and an integrated device consisting of a Fabry-Pérot interferometer and a pyroelectric mid-IR detector. The prototype was calibrated in the research laboratory at TU Wien for measuring methanol and methyl formate in the concentration ranges from 660 to 4390 and 747 to 4610 ppmV. Subsequently, the prototype was transferred and installed at the project partner Metadynea Austria GmbH and linked to their Process Control System via a dedicated micro-controller and used for on-line monitoring of the process off-gas. Up to five process streams were sequentially monitored in a fully automated manner. The obtained readings for methanol and methyl formate concentrations provided useful information on the efficiency and correct functioning of the process plant. Of special interest for industry is the now added capability to monitor the start-up phase and process irregularities with high time resolution (5 s).

  3. A New Process for Co-production of Ammonia and Methanol

    International Nuclear Information System (INIS)

    Soliman, A.

    2004-01-01

    A new process for co-production of ammonia and methanol is proposed. The process involves the production of synthesis gas by oxygen blown auto thermal reformer (ATR) at a pressure of 40-100 bars, a methanol synthesis loop at a pressure of 50-100 bars and an ammonia synthesis loop at a pressure of 200-300 bars. The oxygen required for the ATR is supplied by an air separation plant. The synthesis gases from the ATR are cooled and compressed, in a first stage compression, to the required methanol loop pressure. The purge stream from the methanol loop is sent to an intermediate temperature shift converter ITSC followed by a physical solvent CO 2 removal unit and them purified in a pressure Swing Adsorber (PSA). The purified hydrogen from the PSA together with the almost pure nitrogen from the air separation plant are re compressed, in a second stage compression

  4. Biodiesel Production from Acidified Oils via Supercritical Methanol

    Directory of Open Access Journals (Sweden)

    Jianxin Li

    2011-12-01

    Full Text Available In biodiesel production, the vegetable oil used as raw material for transesterification should be free of water and free fatty acids (FFAs, which may consume catalyst and reduce catalyst efficiency. In this work biodiesel was prepared from acidified oils (AO through a supercritical methanol route, in which the esterification of FFAs and transesterification of glyceride with methanol occurred simultaneously. The effects of the mass ratio of methanol to AO, the operation temperature as well as the water content on the FFAs conversion and glycerol yield were investigated. The results indicated that the FFAs conversion for esterification under the condition of 1:1 methanol/oil ratio, 310 °C and 15 min reaction time reached 98.7%, and the glycerol yield for transesterification under 0.25:1 methanol/oil ratio, 290 °C and 20 min reaction time reached 63.5% respectively.

  5. Notes on HTR applications in methanol production

    International Nuclear Information System (INIS)

    Santoso, B.; Barnert, H.

    1997-01-01

    Notes on the study of HTR applications are presented. The study in particular should be directed toward the most feasible applications of HTR for process heat generation. A prospective study is the conversion of CO 2 gas from Natuna to methanol or formic acid. Further studies needs to be deepened under the auspices of IAEA and countries that have similar interest. (author). 3 refs, 3 figs

  6. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    Directory of Open Access Journals (Sweden)

    Tracy J Mincer

    Full Text Available Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus, and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans.

  7. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    Science.gov (United States)

    Mincer, Tracy J; Aicher, Athena C

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans.

  8. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton

    Science.gov (United States)

    Mincer, Tracy J.; Aicher, Athena C.

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8–13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09–0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world’s oceans. PMID:26963515

  9. A LCA (life cycle assessment) of the methanol production from sugarcane bagasse

    International Nuclear Information System (INIS)

    Reno, Maria Luiza Grillo; Lora, Electo Eduardo Silva; Palacio, Jose Carlos Escobar; Venturini, Osvaldo Jose; Buchgeister, Jens; Almazan, Oscar

    2011-01-01

    Nowadays one of the most important environmental issues is the exponential increase of the greenhouse effect by the polluting action of the industrial and transport sectors. The production of biofuels is considered a viable alternative for the pollution mitigation but also to promote rural development. The work presents an analysis of the environmental impacts of the methanol production from sugarcane bagasse, taking into consideration the balance of the energy life cycle and its net environmental impacts, both are included in a LCA (Life Cycle Assessment) approach. The evaluation is done as a case study of a 100,000 t/y methanol plant, using sugarcane bagasse as raw material. The methanol is produced through the BTL (Biomass to Liquid) route. The results of the environmental impacts were compared to others LCA studies of biofuel and it was showed that there are significant differences of environmental performance among the existing biofuel production system, even for the same feedstock. The differences are dependent on many factors such as farming practices, technology of the biomass conversion. With relation to the result of output/input ratio, the methanol production from sugarcane bagasse showed to be a feasible alternative for the substitution of an amount of fossil methanol obtained from natural gas. -- Highlights: → High and favorable energy ratio value of methanol from bagasse. → Sugarcane production has a low participation on environmental impacts. → The gasification and methanol synthesis can be combined in a biorefinery. → Farming biomass could cause the environmental impact land competition. → The trash of sugarcane can be used successfully in methanol production.

  10. Methanol production from eucalyptus wood chips. Attachment IV. Health and safety aspects of the eucalypt biomass to methanol energy system

    Energy Technology Data Exchange (ETDEWEB)

    Fishkind, H.H.

    1982-06-01

    The basic eucalyptus-to-methanol energy process is described and possible health and safety risks are identified at all steps of the process. The toxicology and treatment for exposure to these substances are described and mitigating measures are proposed. The health and safety impacts and risks of the wood gasification/methanol synthesis system are compared to those of the coal liquefaction and conversion system. The scope of this report includes the health and safety risks of workers (1) in the laboratory and greenhouse, where eucalyptus seedlings are developed, (2) at the biomass plantation, where these seedlings are planted and mature trees harvested, (3) transporting these logs and chips to the refinery, (4) in the hammermill, where the logs and chips will be reduced to small particles, (5) in the methanol synthesis plant, where the wood particles will be converted to methanol, and (6) transporting and dispensing the methanol. Finally, the health and safety risks of consumers using methanol is discussed.

  11. The industrial production of dimethyl carbonate from methanol and carbon dioxide

    NARCIS (Netherlands)

    De Groot, Frank F T; Lammerink, Roy R G J; Heidemann, Casper; Van Der Werff, Michiel P M; Garcia, Taiga Cafiero; Van Der Ham, Louis A G J; Van Den Berg, Henk

    2014-01-01

    This work discusses the design of a dimethyl carbonate (DMC) production plant based on methanol and CO2 as feed materials, which are a cheap and environment-friendly feedstock. DMC is a good alternative for methyl-tert-butyl ether (MTBE) as a fuel oxygenating agent, due to its low toxicity and fast

  12. Production of synthetic methanol from air and water using controlled thermonuclear reactor power

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.

    1977-01-01

    Energy requirement and process development of methanol production from air and water using controlled thermonuclear fusion power was discussed in Part 1 (Steinberg et al., Energy conversion;17:97(1977)). This second part presents an economic analysis of the nine processes presented for obtaining carbon dioxide recovery from the atmosphere or the sea for methanol production. It is found that the most economical process of obtaining carbon dioxide is by stripping from sea water. The process of absorption/stripping by dilute potassium carbonate solution is found to be the most economical for the extraction of carbon dioxide from air at atmospheric pressure. The total energy required for methanol synthesis from these sources of carbon dioxide is 3.90 kWh(e)/lb methanol of which 90% is used for generation of hydrogen. The process which consumes the greatest amount of energy is the absorption/stripping of air by water at high pressure and amounts to 13.2 kWh(e)/lb methanol. With nuclear fusion power plants of 1000to 9000 MW(e), it is found that the cost of methanol using the extraction of carbon dioxide from air with dilute potassium carbonate solution is estimated to be in the range between Pound1.73 and Pound2.90/MMB.t.u. (energy equivalent - 1974 cost) for plant capacities of 21 400 to 193 000 bbl/day methanol. This methanol cost is competitive with gasoline in the range of 19 approximately equal to 33c/gallon. For the process of stripping of carbon dioxide from sea water, the cost is found to lie in the range of Pound1.65 to Pound2.71/MMB.t.u. (energy equivalent) for plant capacities of 21 700 to 195 000 bbl/day methanol which is competitive with gasoline in the range of 18 approximately equal to 30 c/gallon. Projection of methanol demand in the year 2020 is presented based on both its conventional use as chemicals and as a liquid fuel substituting for oil and gas. (author)

  13. Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026.

    Science.gov (United States)

    Zhao, Xin-Mei; Wang, Zhang-Qian; Shu, Shao-Hua; Wang, Wen-Juan; Xu, Hai-Jie; Ahn, Young-Joon; Wang, Mo; Hu, Xuebo

    2013-01-01

    Huperzine A (HupA) is a plant alkaloid that is of great interest as a therapeutic candidate for the treatment of Alzheimer's disease. However, the current production of HupA from plants in large quantity is unsustainable because the plant resource is scarce and the content of HupA in plants is extremely low. Surprisingly, this compound was recently found to be produced by various endophytic fungi, which are much more controllable than the plants due to simpler genetics and ease of manipulation. However, it might be due to the innate properties of endophytic symbiosis, that production of this chemical in large quantity from endophytes has not yet been put into practice. Endophytic Colletotrichum gloeosporioides ES026 was previously isolated from a HupA producing plant and the fungi also proved to produce HupA. In this study, various fermentation conditions were tried to optimize the production of HupA from C. gloeosporioides ES026. Optimization of these parameters resulted in a 25.58% increase in HupA yield. Potato extracts supplemented with glucose or sucrose but not maltose facilitated HupA producing from the fungi. A final concentration of 0.5-2% ethanol stimulated the growth of fungi while methanol with the same treatment slightly inhibited the growth. However, both methanol and ethanol greatly increased the HupA production with the highest yield of HupA (51.89% increment) coming from ethanol treatment. Further analysis showed that both ethanol and methanol were strong inducers of HupA production, while ethanol was partially used as a carbon source during fermentation. It was noticed that the color of that ethanol treated mycelia gradually became dark while methanol treated ones stayed grey during fermentation. The present study sheds light on the importance of optimizing the fermentation process, which, combined with effective inducers, maximizes production of chemicals of important economic interest from endophytic fungi.

  14. Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026.

    Directory of Open Access Journals (Sweden)

    Xin-Mei Zhao

    Full Text Available Huperzine A (HupA is a plant alkaloid that is of great interest as a therapeutic candidate for the treatment of Alzheimer's disease. However, the current production of HupA from plants in large quantity is unsustainable because the plant resource is scarce and the content of HupA in plants is extremely low. Surprisingly, this compound was recently found to be produced by various endophytic fungi, which are much more controllable than the plants due to simpler genetics and ease of manipulation. However, it might be due to the innate properties of endophytic symbiosis, that production of this chemical in large quantity from endophytes has not yet been put into practice. Endophytic Colletotrichum gloeosporioides ES026 was previously isolated from a HupA producing plant and the fungi also proved to produce HupA. In this study, various fermentation conditions were tried to optimize the production of HupA from C. gloeosporioides ES026. Optimization of these parameters resulted in a 25.58% increase in HupA yield. Potato extracts supplemented with glucose or sucrose but not maltose facilitated HupA producing from the fungi. A final concentration of 0.5-2% ethanol stimulated the growth of fungi while methanol with the same treatment slightly inhibited the growth. However, both methanol and ethanol greatly increased the HupA production with the highest yield of HupA (51.89% increment coming from ethanol treatment. Further analysis showed that both ethanol and methanol were strong inducers of HupA production, while ethanol was partially used as a carbon source during fermentation. It was noticed that the color of that ethanol treated mycelia gradually became dark while methanol treated ones stayed grey during fermentation. The present study sheds light on the importance of optimizing the fermentation process, which, combined with effective inducers, maximizes production of chemicals of important economic interest from endophytic fungi.

  15. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    Science.gov (United States)

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  16. Methanol Extract of Hydroclathrus clathratus Inhibits Production of ...

    African Journals Online (AJOL)

    Methanol Extract of Hydroclathrus clathratus Inhibits Production of Nitric Oxide, Prostaglandin E2 and Tumor Necrosis Factor-α in Lipopolysaccharidestimulated BV2 Microglial Cells via Inhibition of NF-κB Activity. RGPT Jayasooriya, D-O Moon, YH Chol, C-H Yoon, G-Y Kim ...

  17. Hynol: An economic process for methanol production from biomass and natural gas with reduced CO2 emission

    Science.gov (United States)

    Steinberg, M.; Dong, Yuanji

    1993-10-01

    The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H2-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO2 emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

  18. Production of synthetic methanol from air and water using controlled thermonuclear reactor power. 2. Capital investment and production costs

    Energy Technology Data Exchange (ETDEWEB)

    Dang, V D; Steinberg, M [Brookhaven National Lab., Upton, N.Y. (USA)

    1977-01-01

    Energy requirement and process development of methanol production from air and water using controlled thermonuclear fusion power was discussed in Part 1 (Steinberg et al., Energy conversion;17:97(1977)). This second part presents an economic analysis of the nine processes presented for obtaining carbon dioxide recovery from the atmosphere or the sea for methanol production. It is found that the most economical process of obtaining carbon dioxide is by stripping from sea water. The process of absorption/stripping by dilute potassium carbonate solution is found to be the most economical for the extraction of carbon dioxide from air at atmospheric pressure. The total energy required for methanol synthesis from these sources of carbon dioxide is 3.90 kWh(e)/lb methanol of which 90% is used for generation of hydrogen. The process which consumes the greatest amount of energy is the absorption/stripping of air by water at high pressure and amounts to 13.2 kWh(e)/lb methanol. With nuclear fusion power plants of 1000to 9000 MW(e), it is found that the cost of methanol using the extraction of carbon dioxide from air with dilute potassium carbonate solution is estimated to be in the range between Pound1.73 and Pound2.90/MMB.t.u. (energy equivalent - 1974 cost) for plant capacities of 21 400 to 193 000 bbl/day methanol. This methanol cost is competitive with gasoline in the range of 19 approximately equal to 33c/gallon. For the process of stripping of carbon dioxide from sea water, the cost is found to lie in the range of Pound1.65 to Pound2.71/MMB.t.u. (energy equivalent) for plant capacities of 21 700 to 195 000 bbl/day methanol which is competitive with gasoline in the range of 18 approximately equal to 30 c/gallon. Projection of methanol demand in the year 2020 is presented based on both its conventional use as chemicals and as a liquid fuel substituting for oil and gas.

  19. General report of entrustment investigation for demonstration tests of turnover from oil to methanol in the thermal power plants in fiscal 1995. Total assessment of methanol using power generation technology; 1995 nendo sekiyu karyoku hatsudensho methanol tenkan nado jissho shiken itaku gyomu hokokusho sokatsu hokokusho. Methanol riyo hatsuden gijutsu sogo hyoka chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    To promote the introduction of methanol fuel into the thermal power plants, total assessment was provided. For calculating the methanol production cost, the plant was assumed to be constructed in the Southeast Asia or Middle East. Two methods, i.e., steam reforming and gaseous phase fluid methods, were investigated. Since the price of natural gas is low in the Middle East, the methanol production cost by the gaseous phase fluid method is estimated to be about 1.5 yen per thousand kcal. The transportation cost can be reduced into one-half to one-third of current cost using a large-scale tanker. Although the heating value of methanol per weight is lower than that of LNG, the volume flow of methanol is similar to that of LNG due to its low specific gravity. Conceptual designs were conducted for some power generation systems, such as gas turbine of combined cycle, diesel engine, and fuel cell. The power generation cost was estimated to be 8 to 9 yen per kWh, which depends on the receiving price of methanol. It is nearly equivalent to that of LNG combined cycle power generation. There are no problems of air pollution and ash disposal. When considering the long-term security of energy sources, the use of methanol would be one of the selections as utilization of natural gas. 6 refs., 33 figs., 25 tabs.

  20. Design of novel DME/methanol synthesis plants based on gasification of biomass

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    -scale DME plants based on gasification of torrefied biomass. 2. Small-scale DME/methanol plants based on gasification of wood chips. 3. Alternative methanol plants based on electrolysis of water and gasification of biomass. The plants were modeled by using the component based thermodynamic modeling...... why the differences, in biomass to DME/methanol efficiency, between the small-scale and the large-scale plants, showed not to be greater, was the high cold gas efficiency of the gasifier used in the small-scale plants (93%). By integrating water electrolysis in a large-scale methanol plant, an almost...... large-scale DME plant) to 63%, due to the relatively inefficient electrolyser....

  1. Dimethyl ether production from methanol and/or syngas

    Science.gov (United States)

    Dagle, Robert A; Wang, Yong; Baker, Eddie G; Hu, Jianli

    2015-02-17

    Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.

  2. Survey on the technological development issues for large-scale methanol engine power generation plant; Ogata methanol engine hatsuden plant ni kansuru gijutsu kaihatsu kadai chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Based on the result of `Survey on the feasibility of large-scale methanol engine power generation plant` in fiscal 1992, concrete technological development issues were studied for its practical use, and the technological R & D scheme was prepared for large-scale methanol engine power plant featured by low NOx and high efficiency. Technological development issues of this plant were as follows: improvement of thermal efficiency, reduction of NOx emission, improvement of the reliability and durability of ignition and fuel injection systems, and reduction of vibration. As the economical effect of the technological development, the profitability of NOx control measures was compared between this methanol engine and conventional heavy oil diesel engines or gas engines. As a result, this engine was more economical than conventional engines. It was suggested that development of the equipment will be completed in nearly 4 years through every component study, single-cylinder model experiment and real engine test. 21 refs., 43 figs., 19 tabs.

  3. Methanol production via pressurized entrained flow biomass gasification – Techno-economic comparison of integrated vs. stand-alone production

    International Nuclear Information System (INIS)

    Andersson, Jim; Lundgren, Joakim; Marklund, Magnus

    2014-01-01

    The main objective with this work was to investigate techno-economically the opportunity for integrated gasification-based biomass-to-methanol production in an existing chemical pulp and paper mill. Three different system configurations using the pressurized entrained flow biomass gasification (PEBG) technology were studied, one stand-alone plant, one where the bark boiler in the mill was replaced by a PEBG unit and one with a co-integration of a black liquor gasifier operated in parallel with a PEBG unit. The cases were analysed in terms of overall energy efficiency (calculated as electricity-equivalents) and process economics. The economics was assessed under the current as well as possible future energy market conditions. An economic policy support was found to be necessary to make the methanol production competitive under all market scenarios. In a future energy market, integrating a PEBG unit to replace the bark boiler was the most beneficial case from an economic point of view. In this case the methanol production cost was reduced in the range of 11–18 Euro per MWh compared to the stand-alone case. The overall plant efficiency increased approximately 7%-units compared to the original operation of the mill and the non-integrated stand-alone case. In the case with co-integration of the two parallel gasifiers, an equal increase of the system efficiency was achieved, but the economic benefit was not as apparent. Under similar conditions as the current market and when methanol was sold to replace fossil gasoline, co-integration of the two parallel gasifiers was the best alternative based on received IRR. - Highlights: • Techno-economic results regarding integration of methanol synthesis processes in a pulp and paper mill are presented. • The overall energy efficiency increases in integrated methanol production systems compared to stand-alone production units. • The economics of the integrated system improves compared to stand-alone alternatives. • Tax

  4. Factors affecting methanol content of fermented plant beverage ...

    African Journals Online (AJOL)

    TrueFasterUser

    2013-07-03

    ANZFA) permitted the maximum concentration of methanol in spirit beverages at 8 g/L of ..... German Federal Republic Patent. DE 43 (13)549. Frenkel C, Peters JS, Tieman DM, Tiznado ME, Handa AK (1998). Pectin Methylesterase ...

  5. The consumption, production and transportation of methanol in China: A review

    International Nuclear Information System (INIS)

    Su, Li-Wang; Li, Xiang-Rong; Sun, Zuo-Yu

    2013-01-01

    Methanol is considered as one of the potential materials for fossil-based fuels because of its available applications in the fields of fuels and chemical materials. China has become the biggest methanol production country since 2006; hence, analysing the consumption, production and transportation of methanol in China has great importance. In the present article, the current status of methanol from production to consumption in China has been systematically described. Chinese industry and statistics data are introduced to analyse and discuss the total and segmental methanol amount in both production and consumption. In China, most of the methanol is primarily consumed in the synthesis of formaldehyde, alternative fuels and acetic acid, with the corresponding percentages of 35.0%, 33.0% and 8.0%. In 2011, about 22.27 million tons of methanol was generated on site, of which, 63.7%, 23.0% and 11.3% were produced by coal, natural gas and coke-oven gas, respectively. As regards transportation, approximately 82.6% of methanol was transported by overland freight, 9.0% by sea and the rest 8.4% by train. - Highlights: • The consumption of methanol in China has been reviewed in detail. • The production of methanol in China has been reviewed in detail. • The transportation of methanol in China has been systematically reviewed

  6. Large-scale methanol plants. [Based on Japanese-developed process

    Energy Technology Data Exchange (ETDEWEB)

    Tado, Y

    1978-02-01

    A study was made on how to produce methanol economically which is expected as a growth item for use as a material for pollution-free energy or for chemical use, centering on the following subjects: (1) Improvement of thermal economy, (2) Improvement of process, and (3) Problems of hardware attending the expansion of scale. The results of this study were already adopted in actual plants, obtaining good results, and large-scale methanol plants are going to be realized.

  7. Achieving a More Sustainable Process Design for the Production of Methanol

    DEFF Research Database (Denmark)

    Plaza, Cristina Calvera; Gonzalez Garcia, Marta; Callau, Ana Diez

    Methanol is an important chemical product because it can be used as a raw material for the production of other chemicals (1), for example dimethyl carbonate, formaldehyde and methyl tert-butyl ether and it is also one of the most produced bulk chemicals with an annual global production of 100...... million metric tonnes per year (1). Methanol can be produced using different reaction paths, for example natural gas. If natural gas is used for methanol production then CO2 is produced, utilized and can be emitted. Therefore, achieving a more sustainable design for the production of methanol...

  8. Biodiesel II: A new concept of biodiesel production - transesterification with supercritical methanol

    Directory of Open Access Journals (Sweden)

    Skala Dejan U.

    2004-01-01

    Full Text Available Biodiesel is defined as a fuel that might be used as a pure biofuel or at high concentration in mineral oil derivatives, in accordance with specific quality standards for transport applications. The main raw material used for biodiesel production is rapeseed, which contains mono-unsaturated (about 60% and also, in a lower quantity, poly-unsaturated fatty acids (C 18:1 and C 18:3, as well as some amounts of undesired saturated fatty acids (palmitic and stearic acids. Other raw materials have also been used in the research and industrial production of biodiesel (palm-oil, sunflower-oil, soybean-oil, waste plant oil, animal fats, etc. The historical background of the biodiesel production, installed industrial capacities, as well as Directives of the European Parliament and of the Council (May 2003 regarding the promotion of the use of biofuels or other renewable fuels for transport are discussed in the first part of this article (Chem. Ind. 58 (2004. The second part focused on some new concepts and the future development of technology for biodiesel production based on the use of non-catalytic transesterification under supercritical conditions. A literature review, as well as original results based on the transesterification of animal fats, plant oil and used plant oil were discussed. Obtained results were compared with the traditional concept of transesterification based on base or acid catalysis. Experimental investigations of transesterification with supercritical methanol were performed in a 2 dm3 autoclave at 140 bar pressure and at 300°C with molar ratio of methanol to triglycerides of about 41. The degree of esterification strongly depends on the density of supercritical methanol and on the possibility of reaction occurring in one phase.

  9. Life-cycle assessment for coal-based methanol production in China

    DEFF Research Database (Denmark)

    Li, Changhang; Bai, Hongtao; Lu, Yuanye

    2018-01-01

    using the coal coking technology than by producing methanol using the coal gasification technology, especially in terms of acidification, global warming, and photochemical oxidation. In particular, significantly less environmental harm in terms of climate change and radiation is caused by the coal...... coking technology than by the coal gasification technology. Different sub-processes clearly make different contributions to environmental harm. The results indicated that the methanol production process, heating, and desalination are the main sources of environmental harm for both the coal gasification...... technology and coal coking technology. Importantly, the public engineering process rather than the methanol production process itself was found to determine emissions for the different methanol production methods....

  10. Production of gasoline from coal or natural gas by the methanol-to-gasoline process

    Energy Technology Data Exchange (ETDEWEB)

    Heinritz-Adrian, M.; Brandl, A.; Zhoa, Xinjin; Tabak, S. [Uhde GmbH, Dortmund (Germany)

    2007-07-01

    After discussing the basis of the methanol-to-gas (MTG) process, the fixed bed and fluid bed versions are described. The Motunui and MTG complex near Montunui, New Zealand that methanol uses natural gas is briefly described. Shanxi Jincheng, Anthracite Coal Mining Co. is currently building its first coal-based MTG plant. 7 refs., 2 tabs.

  11. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Dongwook; Kim, Sang-Yong; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2016-10-01

    Raw biogas can be an alternative feedstock to pure methane (CH4) for methanol production. In this investigation, we evaluated the methanol production potential of Methylosinus sporium from raw biogas originated from an anaerobic digester. Furthermore, the roles of different gases in methanol production were investigated using synthetic gas mixtures of CH4, carbon dioxide (CO2), and hydrogen (H2). Maximum methanol production was 5.13, 4.35, 6.28, 7.16, 0.38, and 0.36mM from raw biogas, CH4:CO2, CH4:H2, CH4:CO2:H2, CO2, and CO2:H2, respectively. Supplementation of H2 into raw biogas increased methanol production up to 3.5-fold. Additionally, covalent immobilization of M. sporium on chitosan resulted in higher methanol production from raw biogas. This study provides a suitable approach to improve methanol production using low cost raw biogas as a feed containing high concentrations of H2S (0.13%). To our knowledge, this is the first report on methanol production from raw biogas, using immobilized cells of methanotrophs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of methanol feeding strategies on production and yield of recombinant mouse endostatin from Pichia pastoris.

    Science.gov (United States)

    Trinh, L B; Phue, J N; Shiloach, Joseph

    2003-05-20

    Pichia pastoris, a methylotrophic yeast, is an efficient producer of recombinant proteins in which the heterologous gene is under the control of the methanol-induced AOX1 promoter. Hence, the accepted production procedure has two phases: In the first phase, the yeast utilizes glycerol and biomass is accumulated; in the second phase, the yeast utilizes methanol which is used both as an inducer for the expression of the recombinant protein and as a carbon source. Since the yeast is sensitive to methanol concentration, the methanol is supplied gradually to the growing culture. Three methanol addition strategies were evaluated for the purpose of optimizing recombinant endostatin production. Two strategies were based on the yeast metabolism; one responding to the methanol consumption using a methanol sensor, and the other responding to the oxygen consumption. In these two strategies, the methanol supply is unlimited. The third strategy was based on a predetermined exponential feeding rate, controling the growth rate at 0.02 h(-1), in this strategy the methanol supply is limited. Throughout the induction phase glycerol, in addition to methanol, was continuously added at a rate of 1 g L h(-1). Total endostatin production was similar in all three strategies, (400 mg was obtained from 3 L initial volume), but the amount of methanol added and the biomass produced were lower in the predetermined rate method. This caused the specific production of endostatin per biomass and per methanol to be 2 times higher in the predetermined rate than in the other two methods, making the growth control strategy not only more efficient but also more convenient for downstream processing. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 438-444, 2003.

  13. Hydro-methane and methanol combined production from hydroelectricity and biomass: Thermo-economic analysis in Paraguay

    International Nuclear Information System (INIS)

    Rivarolo, M.; Bellotti, D.; Mendieta, A.; Massardo, A.F.

    2014-01-01

    Highlights: • We investigate H 2 /O 2 production from large hydraulic plant by water electrolysis. • We produce methanol and hydro-methane from H 2 /O 2 obtained. • We investigate two different configurations of the plant. • We perform a thermo-economic analysis for three scenarios in Paraguay. • We find plants optimal size using a time-dependent thermo-economic approach. - Abstract: A thermo-economic analysis regarding large scale hydro-methane and methanol production from renewable sources (biomass and renewable electricity) is performed. The study is carried out investigating hydrogen and oxygen generation by water electrolysis, mainly employing the hydraulic energy produced from the 14 GW Itaipu Binacional Plant, owned by Paraguay and Brazil. Oxygen is employed in biomass gasification to synthesize methanol; the significant amount of CO 2 separated in the process is mixed with hydrogen produced by electrolysis in chemical reactors to produce hydro-methane. Hydro-methane is employed to supply natural gas vehicles in Paraguay, methanol is sold to Brazil, that is the largest consumer in South America. The analysis is performed employing time-dependent hydraulic energy related to the water that would normally not be used by the plant, named “spilled energy”, when available; in the remaining periods, electricity is acquired at higher cost by the national grid. For the different plant lay-outs, a thermo-economic analysis has been performed employing two different software, one for the design point and one for the time-dependent one entire year optimization, since spilled energy is strongly variable throughout the year. Optimal sizes for the generation plants have been determined, investigating the influence of electricity cost, size and plant configuration

  14. OBSERVATIONAL CONSTRAINTS ON METHANOL PRODUCTION IN INTERSTELLAR AND PREPLANETARY ICES

    International Nuclear Information System (INIS)

    Whittet, D. C. B.; Cook, A. M.; Herbst, Eric; Chiar, J. E.; Shenoy, S. S.

    2011-01-01

    Methanol (CH 3 OH) is thought to be an important link in the chain of chemical evolution that leads from simple diatomic interstellar molecules to complex organic species in protoplanetary disks that may be delivered to the surfaces of Earthlike planets. Previous research has shown that CH 3 OH forms in the interstellar medium predominantly on the surfaces of dust grains. To enhance our understanding of the conditions that lead to its efficient production, we assemble a homogenized catalog of published detections and limiting values in interstellar and preplanetary ices for both CH 3 OH and the other commonly observed C- and O-bearing species, H 2 O, CO, and CO 2 . We use this catalog to investigate the abundance of ice-phase CH 3 OH in environments ranging from dense molecular clouds to circumstellar envelopes around newly born stars of low and high mass. Results show that CH 3 OH production arises during the CO freezeout phase of ice-mantle growth in the clouds, after an ice layer rich in H 2 O and CO 2 is already in place on the dust, in agreement with current astrochemical models. The abundance of solid-phase CH 3 OH in this environment is sufficient to account for observed gas-phase abundances when the ices are subsequently desorbed in the vicinity of embedded stars. CH 3 OH concentrations in the ices toward embedded stars show order-of-magnitude object-to-object variations, even in a sample restricted to stars of low mass associated with ices lacking evidence of thermal processing. We hypothesize that the efficiency of CH 3 OH production in dense cores and protostellar envelopes is mediated by the degree of prior CO depletion.

  15. Towards a methanol economy: Zeolite catalyzed production of synthetic fuels

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie

    The main focus of this thesis is zeolite catalyzed conversion of oxygenates to hydrocarbon fuels and chemicals. Furthermore, conversion of ethane to higher hydrocarbons has also been studied. After a brief introduction to the concept of “the methanol economy” in the first chapter, the second...... a commercial H-ZSM-5 zeolite impregnated with gallium and/or molybdenum is described. The object was to investigate if the presence of methanol in the feed could enhance the conversion of ethane, but in all cases the opposite is observed; the presence of methanol actually suppresses the conversion of ethane...... various zeolite catalysts is studied in Chapter 4. When 2-propanol or 1-butanol is converted over H-ZSM-5, the total conversion capacities of the catalyst are more than 25 times higher than for conversion of methanol and ethanol. Furthermore, for conversion of C3+ alcohols, the selectivity shifts during...

  16. PHYTOCHEMICALS ANALYSIS AND TLC FINGERPRINTING OF METHANOLIC EXTRACTS OF THREE MEDICINAL PLANTS

    OpenAIRE

    Dutta Jayashree

    2013-01-01

    The present work is done on three medicinal plants (Enhydra fluctuans, Lecuas aspera and Dillinia indica) in order to investigate the presence of the various types of Phytoconstituents. The leaves of all three plants were extracted using methanol as solvents. For the purpose of phytochemical investigation, Preliminary qualitative chemical test and TLC were mainly used. Thin layer chromatography (TLC) has been carried out on all the three plants in two different solvent systems, which showed d...

  17. Ovipositional Deterrence of Methanolic and Etherial Extracts of Five Plants to the Cowpea Bruchid, Callosobruchus maculatus (F. (Coleoptera: Bruchidae

    Directory of Open Access Journals (Sweden)

    E.A. Elhag

    1999-06-01

    Full Text Available Methanol and diethyl ether extracts of Harmal, Rhazya stricta Decne.; neem seed kernels, Azadirachta indica A.Juss; cloves, Syzygeum aromarticum (L.; citrus peel and Ramram, Heliotropium bacciferum (Forssk- were evaluated for their deterrence to oviposition by Callosobruchus maculatus (F. on chickpeas in choice tests. Both extracts of all materials significantly reduced oviposition on treated seeds. Maximum deterrent effects (91.8% were obtained in the neem seed methanol extract at 0.5% concentration, citrus peel O. l% ether extract (90.9%, R stricta 0.5% methanol extract (83.9%, and clove 0. 1% ether extract (80.0%. Methanol extracts of neem seeds and R. stricta evoked higher deterrent effects than their etherial extracts, whereas the responses for cloves and citrus peel were more pronounced in their ether extracts. H. bacirferum % deterrency due to both types of extracts were practically identical. The results encourage future incorporation of such plant extracts as ovipositional deterrents in stored-product lPM programmes.

  18. Screening of Methanol and Acetone Extracts of Fourteen Indian Medicinal Plants for Antimicrobial Activity

    OpenAIRE

    VAGHASIYA, Yogeshkumar; CHANDA, Sumitra V.

    2014-01-01

    The methanol and acetone extracts of 14 plants belonging to different families were evaluated for antimicrobial activity against five Gram-positive bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Bacillus subtilis, Micrococcus flavus; seven Gram-negative bacteria: Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Proteus vulgaris, Salmonella typhimurium, Citrobacter freundii; and three fungi: Candida tropicalis, Cryptococcus lut...

  19. Dynamic Modeling and Plantwide Control of a Hybrid Power and Chemical Plant: An Integrated Gasification Combined Cycle Coupled with a Methanol Plant

    Science.gov (United States)

    Robinson, Patrick J.

    Gasification has been used in industry on a relatively limited scale for many years, but it is emerging as the premier unit operation in the energy and chemical industries. The switch from expensive and insecure petroleum to solid hydrocarbon sources (coal and biomass) is occurring due to the vast amount of domestic solid resources, national security and global warming issues. Gasification (or partial oxidation) is a vital component of "clean coal" technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel gas for driving combustion turbines. Gasification units in a chemical plant generate synthesis gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The coupling of an Integrated Gasification Combined Cycle (IGCC) with a methanol plant can handle swings in power demand by diverting hydrogen gas from a combustion turbine and synthesis gas from the gasifier to a methanol plant for the production of an easily-stored, hydrogen-consuming liquid product. An additional control degree of freedom is provided with this hybrid plant, fundamentally improving the controllability of the process. The idea is to base-load the gasifier and use the more responsive gas-phase units to handle disturbances. During the summer days, power demand can fluctuate up to 50% over a 12-hour period. The winter provides a different problem where spikes of power demand can go up 15% within the hour. The following dissertation develops a hybrid IGCC / methanol plant model, validates the steady-state results with a National Energy Technical Laboratory study, and tests a proposed control structure to handle these significant disturbances. All modeling was performed in the widely used chemical process

  20. Selective methanol or formate production during continuous CO₂ fermentation by the acetogen biocatalysts engineered via integration of synthetic pathways using Tn7-tool.

    Science.gov (United States)

    Tyurin, Michael; Kiriukhin, Michael

    2013-09-01

    Methanol-resistant mutant acetogen Clostridium sp. MT1424 originally producing only 365 mM acetate from CO₂/CO was engineered to eliminate acetate production and spore formation using Cre-lox66/lox71-system to power subsequent methanol production via expressing synthetic methanol dehydrogenase, formaldehyde dehydrogenase and formate dehydrogenase, three copies of each, assembled in cluster and integrated to chromosome using Tn7-based approach. Production of 2.2 M methanol was steady (p integrated cluster comprised only three copies of formate dehydrogenase the respective recombinants produced 95 mM formate (p < 0.005) under the same conditions. For commercialization, the suggested source of inorganic carbon would be CO₂ waste of IGCC power plant. Hydrogen may be produced in situ via powered by solar panels electrolysis.

  1. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  2. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean

    Science.gov (United States)

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-01-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d−1 (∼10 nmol l−1 d−1). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (⩽20 m), contain a microbial population that uses a relatively high amount of carbon (0.3–10 nmol l−1 d−1), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04–0.68 nmol l−1 d−1. Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air–sea exchange scientists. PMID:23178665

  3. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Doug Strickland; Albert Tsang

    2002-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis

  4. Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix

    International Nuclear Information System (INIS)

    Matzen, Michael; Alhajji, Mahdi; Demirel, Yaşar

    2015-01-01

    This study is for the technoeconomic analysis of an integral facility consisting of wind energy-based electrolytic hydrogen production, bioethanol-based carbon dioxide capture and compression, and direct methanol synthesis. ASPEN Plus was used to simulate the facility producing 97.01 mt (metric tons) methanol/day using 138.37 mt CO_2/day and 18.56 mt H_2/day. A discounted cash flow diagram for the integral facility is used for the economic analysis at various hydrogen production costs and methanol selling prices. The feasibility analysis is based on a multi-criteria decision matrix consisting of economic and sustainability indicators comparing renewable and non-renewable methanol productions. The overall energy efficiency for the renewable methanol is around 58%. Fixation of carbon reduces the CO_2 equivalent emission by around −1.05 CO_2e/kg methanol. The electrolytic hydrogen production cost is the largest contributor to the economics of the integral facility. The feasibility analysis based on multi-criteria shows that renewable methanol production may be feasible. - Highlights: • We simulate renewable methanol production from wind-based hydrogen and CO_2_. • Methanol production can fix 1.05 kg CO_2/kg methanol with an energy efficiency of 58%. • Economic and sustainability metrics are estimated for the integral facility. • We introduce a decision matrix with both economic and sustainability indicators. • Renewable methanol may be feasible versus conventional fossil fuel-based methanol.

  5. Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed.

    Science.gov (United States)

    Patel, Sanjay K S; Singh, Raushan K; Kumar, Ashok; Jeong, Jae-Hoon; Jeong, Seong Hun; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2017-10-01

    Biohythane may be used as an alternative feed for methanol production instead of costly pure methane. In this study, methanol production potential of Methylocella tundrae immobilized through covalent immobilization, adsorption, and encapsulation was evaluated. Cells covalently immobilized on groundnut shells and chitosan showed a relative methanol production potential of 83.9 and 91.6%, respectively, compared to that of free cells. The maximum methanol production by free cells and cells covalently immobilized on groundnut shells and chitosan was 6.73, 6.20, and 7.23mM, respectively, using simulated biohythane as a feed. Under repeated batch conditions of eight cycles, cells covalently immobilized on chitosan and groundnut shells, and cells encapsulated in sodium-alginate resulted in significantly higher cumulative methanol production of 37.76, 31.80, and 25.58mM, respectively, than free cells (18.57mM). This is the first report on immobilization of methanotrophs on groundnut shells and its application in methanol production using biohythane as a feed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Conocophillips

    2007-09-30

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine

  7. Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane.

    Science.gov (United States)

    Mardina, Primata; Li, Jinglin; Patel, Sanjay K S; Kim, In-Won; Lee, Jung-Kul; Selvaraj, Chandrabose

    2016-07-28

    Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.

  8. Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas.

    Science.gov (United States)

    Yoo, Yeon-Sun; Han, Ji-Sun; Ahn, Chang-Min; Kim, Chang-Gyun

    2015-01-01

    Methane in a simulated biogas converting to methanol under aerobic condition was comparatively assessed by inhibiting the activity of methanol dehydrogenase (MDH) of Methylosinus sporium using phosphate, NaCl, NH4Cl or EDTA in their varying concentrations. The highest amount of methane was indistinguishably diverted at the typical conditions regardless of the types of inhibitors: 35°C and pH 7 under a 0.4% (v/v) of biogas, specifically for methanol was obtained for the addition of 40 mM phosphate, 100 mM NaCl, 40 mM NH4Cl or 50 µM EDTA. In other words, 0.71, 0.60, 0.66 and 0.66 mmol methanol was correspondingly generated by the oxidation of 1.3, 0.67, 0.74 and 1.3 mmol methane. It gave a methanol conversion rate of 54.7%, 89.9%, 89.6% and 47.8%, respectively. Among them, the maximum rate of methanol production was observed at 6.25 µmol/mg h for 100 mM NaCl. Regardless of types or concentrations of inhibitors differently used, methanol production could be nonetheless identically maximized when the MDH activity was limitedly hampered by up to 35%.

  9. General concept of a gas engine for a hybrid vehicle, operating on methanol dissociation products

    International Nuclear Information System (INIS)

    Tartakovsky, L.; Aleinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Schindler, Y.; Zvirin, Y.

    1998-01-01

    The paper presents a general concept of a hybrid propulsion system, based on an SI internal combustion engine fueled by methanol dissociation products (MDP). The proposed hybrid propulsion scheme is a series hybrid, which allows the engine to be operated in an on-off mode at constant optimal regime. The engine is fed by gaseous products of methanol dissociation (mainly hydrogen and carbon monoxide) emerging from an on-board catalytic reformer. The general scheme and base operation features of the propulsion system are described. The benefits that may be achieved by combining the well-known idea of on-board methanol dissociation with the hybrid vehicle concept are discussed. The proposed scheme is compared with those of systems operating on gasoline, liquid methanol, hydrogen and also with the multi-regime (not hybrid) engine fed by MDP

  10. Screening of anti-dengue activity in methanolic extracts of medicinal plants

    Directory of Open Access Journals (Sweden)

    Tang Leon IC

    2012-01-01

    Full Text Available Abstract Background Dengue fever regardless of its serotypes has been the most prevalent arthropod-borne viral diseases among the world population. The development of a dengue vaccine is complicated by the antibody-dependent enhancement effect. Thus, the development of a plant-based antiviral preparation promises a more potential alternative in combating dengue disease. Methods Present studies investigated the antiviral effects of standardised methanolic extracts of Andrographis paniculata, Citrus limon, Cymbopogon citratus, Momordica charantia, Ocimum sanctum and Pelargonium citrosum on dengue virus serotype 1 (DENV-1. Results O. sanctum contained 88.6% of total flavonoids content, an amount that was the highest among all the six plants tested while the least was detected in M. charantia. In this study, the maximum non-toxic dose (MNTD of the six medicinal plants was determined by testing the methanolic extracts against Vero E6 cells in vitro. Studies also determined that the MNTD of methanolic extract was in the decreasing order of M. charantia >C. limon >P. citrosum, O. sanctum >A. paniculata >C. citratus. Antiviral assay based on cytopathic effects (CPE denoted by degree of inhibition upon treating DENV1-infected Vero E6 cells with MNTD of six medicinal plants showed that A. paniculata has the most antiviral inhibitory effects followed by M. charantia. These results were further verified with an in vitro inhibition assay using MTT, in which 113.0% and 98.0% of cell viability were recorded as opposed to 44.6% in DENV-1 infected cells. Although methanolic extracts of O. sanctum and C. citratus showed slight inhibition effect based on CPE, a significant inhibition was not reflected in MTT assay. Methanolic extracts of C. limon and P. citrosum did not prevent cytopathic effects or cell death from DENV-1. Conclusions The methanol extracts of A. paniculata and M. charantia possess the ability of inhibiting the activity of DENV-1 in in vitro assays

  11. Advanced system analysis for indirect methanol fuel cell power plants for transportation applications

    International Nuclear Information System (INIS)

    Vanderborgh, N.E.; McFarland, R.D.; Huff, J.R.

    1990-01-01

    The indirect methanol cell fuel concept being actively pursued by the United States Department of Energy and General Motors Corporation is based on electrochemical engine (e.c.e.) an electrical generator capable for usually efficient and clean power production from methanol fuel for the transportation sector. This on-board generator works in consort with batteries to provide electric power to drive propulsion motors for a range of electric vehicles. Success in this technology could do much to improve impacted environmental areas and to convert part of the transportation fleet to natural gas- and coal-derived methanol as the fuel source. These developments parallel work in Europe and Japan where various fuel cell powered vehicles, often fueled with tanked or hydride hydrogen are under active development. This paper describes status of each of these components, and describe a model that predicts the steady state performance of the e.c.e

  12. Comparison between two methods of methanol production from carbon dioxide

    International Nuclear Information System (INIS)

    Anicic, B.; Trop, P.; Goricanec, D.

    2014-01-01

    Over recent years there has been a significant increase in the amount of technology contributing to lower emissions of carbon dioxide. The aim of this paper is to provide a comparison between two technologies for methanol production, both of which use carbon dioxide and hydrogen as initial raw materials. The first methanol production technology includes direct synthesis of methanol from CO 2 , and the second has two steps. During the first step CO 2 is converted into CO via RWGS (reverse water gas shift) reaction, and methanol is produced during the second step. A comparison between these two methods was achieved in terms of economical and energy-efficiency bases. The price of electricity had the greatest impact from the economical point of view as hydrogen is produced via the electrolysis of water. Furthermore, both the cost of CO 2 capture and the amounts of carbon taxes were taken into consideration. Energy-efficiency comparison is based on cold gas efficiency, while economic feasibility is compared using net present value. Even though the mentioned processes are similar, it was shown that direct methanol synthesis has higher energy and economic efficiency. - Highlights: • We compared two methods for methanol production. • Process schemes for both, direct synthesis and two-step synthesis, are described. • Direct synthesis has higher economical and energy efficiency

  13. Co-gasification of black liquor and pyrolysis oil: Evaluation of blend ratios and methanol production capacities

    International Nuclear Information System (INIS)

    Andersson, Jim; Furusjö, Erik; Wetterlund, Elisabeth; Lundgren, Joakim; Landälv, Ingvar

    2016-01-01

    Highlights: • Biomethanol from co-gasified black liquor and pyrolysis oil at different capacities. • Enables higher biofuel production for given available amount of black liquor. • Opportunity for cost efficient black liquor gasification also in small pulp mills. • The methanol can be cost competitive to 2nd generation ethanol and fossil fuels. • Fewer pulp mills would need to be converted to meet given biofuel demand. - Abstract: The main aim of this study is to investigate integrated methanol production via co-gasification of black liquor (BL) and pyrolysis oil (PO), at Swedish pulp mills. The objectives are to evaluate techno-economically different blends ratios for different pulp mill capacities. Furthermore, the future methanol production potential in Sweden and overall system consequences of large-scale implementation of PO/BL co-gasification are also assessed. It is concluded that gasification of pure BL and PO/BL blends up to 50% results in significantly lower production costs than what can be achieved by gasification of unblended PO. Co-gasification with 20–50% oil addition would be the most advantageous solution based on IRR for integrated biofuel plants in small pulp mills (200 kADt/y), whilst pure black liquor gasification (BLG) will be the most advantageous alternative for larger pulp mills. For pulp mill sizes between 300 and 600 kADt/y, it is also concluded that a feasible methanol production can be achieved at a methanol market price below 100 €/MW h, for production capacities ranging between 0.9 and 1.6 TW h/y for pure BLG, and between 1.2 and 6.5 TW h/y for PO/BL co-gasification. This study also shows that by introducing PO/BL co-gasification, fewer pulp mills would need to be converted to biofuel plants than with pure BLG, to meet a certain biofuel demand for a region. Due to the technical as well as organizational complexity of the integration this may prove beneficial, and could also potentially lower the total investment

  14. In vitro antioxidant and antiproliferative activities of methanolic plant part extracts of Theobroma cacao.

    Science.gov (United States)

    Baharum, Zainal; Akim, Abdah Md; Taufiq-Yap, Yun Hin; Hamid, Roslida Abdul; Kasran, Rosmin

    2014-11-10

    The aims of this study were to determine the antioxidant and antiproliferative activity of the following Theobroma cacao plant part methanolic extracts: leaf, bark, husk, fermented and unfermented shell, pith, root, and cherelle. Antioxidant activity was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH), thiobarbituric acid-reactive substances (TBARS), and Folin-Ciocalteu assays; the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) assay was used to determine antiproliferative activity. The root extract had the highest antioxidant activity; its median effective dose (EC50) was 358.3±7.0 µg/mL and total phenolic content was 22.0±1.1 g GAE/100 g extract as compared to the other methanolic plant part extracts. Only the cherelle extract demonstrated 10.4%±1.1% inhibition activity in the lipid peroxidation assay. The MTT assay revealed that the leaf extract had the highest antiproliferative activity against MCF-7 cells [median inhibitory concentration (IC50)=41.4±3.3 µg/mL]. Given the overall high IC50 for the normal liver cell line WRL-68, this study indicates that T. cacao methanolic extracts have a cytotoxic effect in cancer cells, but not in normal cells. Planned future investigations will involve the purification, identification, determination of the mechanisms of action, and molecular assay of T. cacao plant extracts.

  15. In Vitro Antioxidant and Antiproliferative Activities of Methanolic Plant Part Extracts of Theobroma cacao

    Directory of Open Access Journals (Sweden)

    Zainal Baharum

    2014-11-01

    Full Text Available The aims of this study were to determine the antioxidant and antiproliferative activity of the following Theobroma cacao plant part methanolic extracts: leaf, bark, husk, fermented and unfermented shell, pith, root, and cherelle. Antioxidant activity was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH, thiobarbituric acid-reactive substances (TBARS, and Folin-Ciocalteu assays; the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT assay was used to determine antiproliferative activity. The root extract had the highest antioxidant activity; its median effective dose (EC50 was 358.3 ± 7.0 µg/mL and total phenolic content was 22.0 ± 1.1 g GAE/100 g extract as compared to the other methanolic plant part extracts. Only the cherelle extract demonstrated 10.4% ± 1.1% inhibition activity in the lipid peroxidation assay. The MTT assay revealed that the leaf extract had the highest antiproliferative activity against MCF-7 cells [median inhibitory concentration (IC50 = 41.4 ± 3.3 µg/mL]. Given the overall high IC50 for the normal liver cell line WRL-68, this study indicates that T. cacao methanolic extracts have a cytotoxic effect in cancer cells, but not in normal cells. Planned future investigations will involve the purification, identification, determination of the mechanisms of action, and molecular assay of T. cacao plant extracts.

  16. Antifungal activity of methanolic extracts of some indigenous plants against common soil-borne fungi

    International Nuclear Information System (INIS)

    Tuba, T.; Abid, M.; Shaukat, S. S.; Shaikh, A.

    2016-01-01

    Present study was conducted to evaluate the fungicidal property of methanolic extracts of some indigenous plants of Karachi such as Hibiscus rosa-sinensis (leaves), The spesia populnea (leaves, stem and fruit), Withania somnifera (leaves and stem), Solanum surattense (shoot) and Melia azedarach (fruit) against common soil-borne phytopathogens viz., Macrophomina phaseolina, Rhizoctonia solani and Fusarium oxysporum by using food poison technique. Among the eight methanolic extracts of tested parts of plants, seven showed antifungal activity, of which T. populnea leaves and S. surattense shoots inhibited growth of all three test pathogens. Leaves of H. rosa-sinensis did not exhibit antifungal activity. T. populnea (leaves and stem), W. somnifera (stem) and M. azedarach (fruit) suppressed growth of Rhizoctonia solani by 100 percent. T. populnea leaves and M. azedarach fruit inhibited growth of M. phaseolina by 100 percent and 82 percent, respectively T. populnea leaves inhibited 99 percent mycelial growth of F. oxysporum. It is concluded that the methanolic extracts of the tested indigenous plants contain natural fungicidal compounds, which can be used for the control of common soil-borne pathogens. (author)

  17. Esterification kinetics of free fatty acids with supercritical methanol for biodiesel production

    International Nuclear Information System (INIS)

    Alenezi, R.; Leeke, G.A.; Winterbottom, J.M.; Santos, R.C.D.; Khan, A.R.

    2010-01-01

    Non-catalytic esterification of Free Fatty Acids (FFA) with supercritical methanol was studied under reaction conditions of (250-320 deg. C) at 10 MPa. A detailed experimental programme was implemented to investigate the influence of temperature, stirring rate and the molar ratio of methanol to FFA in the feed in a batch-type reaction vessel. The esterification products of FFA with supercritical methanol are Fatty Acids Methyl Esters (FAME; biodiesel) and water. The yield of FAME was found to increase with an increase in temperature, and with an increase in the molar ratio of methanol to FFA. At >850 rpm the yield of FAME was not affected by stirring rate. The rate constants and energy of activation have been numerically evaluated by solving an ordinary differential equation that describes the reaction kinetics. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  18. Production of FAME by palm oil transesterification via supercritical methanol technology

    International Nuclear Information System (INIS)

    Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2009-01-01

    The present study employed non-catalytic supercritical methanol technology to produce biodiesel from palm oil. The research was carried out in a batch-type tube reactor and heated beyond supercritical temperature and pressure of methanol, which are at 239 o C and 8.1 MPa respectively. The effects of temperature, reaction time and molar ratio of methanol to palm oil on the yield of fatty acid methyl esters (FAME) or biodiesel were investigated. The results obtained showed that non-catalytic supercritical methanol technology only required a mere 20 min reaction time to produce more than 70% yield of FAME. Compared to conventional catalytic methods, which required at least 1 h reaction time to obtain similar yield, supercritical methanol technology has been shown to be superior in terms of time and energy consumption. Apart from the shorter reaction time, it was found that separation and purification of the products were simpler since no catalyst is involved in the process. Hence, formation of side products such as soap in catalytic reactions does not occur in the supercritical methanol method.

  19. [Effects of different methanol feeding strategy on hirudin production in high-density fermentation by recombinant Pichia pastoris].

    Science.gov (United States)

    Zhou, Xiang-Shan; Fan, Wei-Min; Zhang, Yuan-Xing

    2002-05-01

    Four different methanol feeding modes were evaluated in the hirudin production in high-density fermentation by Pichia pastoris. It was difficult to avoid methanol excessive in the broth with the feeding strategy only based on DO level. On the other hand, the fluctuation in methanol concentration was observed with methanol feeding strategy by off-line gas chromatography. However, the stable methanol concentration was perfectly achieved by the on-line monitoring with methanol sensor. The supply of energy was improved by feeding glycerol at a limited rate as well as methanol in the induction phase. Therefore, the high cell dry weight (162 g/L) and high hirudin activity (2.4 x 10(4) ATU/mL or 1.7 g/L) was obtained in the fed-batch fermentation of recombinant Pichia pastoris by methanol-glycerol mixed feeding.

  20. In vitro screening of methanol plant extracts for their antibacterial activity

    International Nuclear Information System (INIS)

    Hussain, T.; Arshad, M.; Khan, S.; Sattar, H.

    2011-01-01

    The purpose of this study was to observe the antibacterial activity of aqueous methanolic extracts of 10 plants against 2-gram negative bacteria (Pasteurella multocida, Escherichia coli) and 3-gram positive bacteria (Bacillus cereus, Staphylococcus aureus, Corynebacterium bovis) by using disc diffusion method. The minimum inhibitory concentration (MIC) was determined by agar well diffusion method and agar dilution method. All the bacteria were susceptible to different plant extracts. Lawsonia inermis, Embellia ribes and Santalum album showed antibacterial activity against all the tested bacteria. The extract of Santalum album showed maximum antibacterial activity of the 10 plant extracts used. Bacillus cereus and Pasteurella multocida were the most sensitive bacteria against most of the plant extracts. It is clear from the results of the present studies that the plant extracts have great potential as antimicrobial compounds against bacteria. However, there is a need of further research to isolate the active ingredients for further pharmacological evaluation. (author)

  1. Hydrogen production with a solar steam–methanol reformer and colloid nanocatalyst

    KAUST Repository

    Lee, Ming-Tsang

    2010-01-01

    In the present study a small steam-methanol reformer with a colloid nanocatalyst is utilized to produce hydrogen. Radiation from a focused continuous green light laser (514 nm wavelength) is used to provide the energy for steam-methanol reforming. Nanocatalyst particles, fabricated by using pulsed laser ablation technology, result in a highly active catalyst with high surface to volume ratio. A small novel reformer fabricated with a borosilicate capillary is employed to increase the local temperature of the reformer and thereby increase hydrogen production. The hydrogen production output efficiency is determined and a value of 5% is achieved. Experiments using concentrated solar simulator light as the radiation source are also carried out. The results show that hydrogen production by solar steam-methanol colloid nanocatalyst reforming is both feasible and promising. © 2009 Professor T. Nejat Veziroglu.

  2. Cost competitive “soft sensor” for determining product recovery in industrial methanol

    DEFF Research Database (Denmark)

    S.B.A. Udugama, Isuru; Mansouri, Seyed Soheil; Huusom, Jakob Kjøbsted

    2017-01-01

    The measurement of ratio of product recovery in industrial methanol distillation is of high economic importance and represent a key performance index (KPI) of the distillation unit. In current operations, the product recovery of many industrial distillation units are not actively monitored, instead...

  3. Dry alcohol production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for dry alcohol production plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects a production plant with a capacity of 40 m3/y was manufactured, at "Zorka Pharma", Šabac in 1995-1996. The product meets all quality demands, as well as environmental regulations. The dry alcohol production process is fully automatized. There is no waste in the process, neither gaseous, nor liquid. The chosen process provides safe operation according to temperature regime and resistance in the pipes, air purification columns and filters. Working at increased pressure is suitable for evaporation and condensation at increased temperatures. The production process can be controlled manually, which is necessary during start-up, and repairs.

  4. Biodiesel production via injection of superheated methanol technology at atmospheric pressure

    International Nuclear Information System (INIS)

    Ang, Gaik Tin; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2014-01-01

    Highlights: • Non-catalytic superheated methanol for biodiesel production is developed. • Crude Jatropha curcas oil with high FFA can be directly used as oil feedstock. • High content of biodiesel can be produced. • Separation of FAME and glycerol from the sample product is easy. - Abstract: In this high demand of renewable energy market, biodiesel was extensively produced via various catalytic and non-catalytic technologies. Conventional catalytic transesterification for biodiesel production has been shown to have limitation in terms of sensitivity to high water and free fatty acid, complicated separation and purification of biodiesel. In this study, an alternative and innovative approach was carried out via non-catalytic superheated methanol technology to produce biodiesel. Similar to supercritical reaction, the solvent need to be heated beyond the critical temperature but the reactor pressure remained at 0.1 MPa (atmospheric pressure). Transesterification reaction with superheated methanol was carried out at different reaction temperature within the limit of 270–300 °C and at different methanol flow rate ranging from 1 ml/min to 3 ml/min for 4 h. Results obtained showed that the highest biodiesel yield at 71.54% w/w was achieved at reaction temperature 290 °C and methanol flow rate at 2 ml/min with 88.81% w/w FAME content, implying the huge potential of superheated technology in producing FAME

  5. Experimental and simulation analysis of hydrogen production by partial oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Sikander, U. [National Univ. of Science and Technology, Islamabad (Pakistan)

    2014-10-15

    Partial oxidation of methanol is the only self-sustaining process for onboard production of hydrogen. For this a fixed bed catalytic reactor is designed, based on heterogeneous catalytic reaction. To develop an optimized process, simulation is carried out using ASPEN HYSYS v 7.1. Reaction kinetics is developed on the basis of Langmuir Hinshel wood model. 45:55:5 of CuO: ZnO: Al/sub 2/O/sub 3/ is used as a catalyst. Simulation results are studied in detail to understand the phenomenon of partial oxidation of methanol inside the reactor. An experimental rig is developed for hydrogen production through partial oxidation of methanol. Results obtained from process simulation and experimental work; are compared with each other. (author)

  6. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.

    Science.gov (United States)

    Leßmeier, Lennart; Pfeifenschneider, Johannes; Carnicer, Marc; Heux, Stephanie; Portais, Jean-Charles; Wendisch, Volker F

    2015-12-01

    Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.

  7. Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel.

    Science.gov (United States)

    Lotti, Marina; Pleiss, Jürgen; Valero, Francisco; Ferrer, Pau

    2015-01-01

    The biotechnological production of biodiesel is based on transesterification/esterification reactions between a source of fatty acids and a short-chain alcohol, usually methanol, catalysed by enzymes belonging to the class known as lipases. Several lipases used in industrial processes, although stable in the presence of other organic solvents, are inactivated by methanol at or below the concentration optimal for biodiesel production, making it necessary to use stepwise methanol feeding or pre-treatment of the enzyme. In this review article we focus on what is currently know about methanol inactivation of lipases, a phenomenon which is not common to all lipase enzymes, with the goal of improving the biocatalytic process. We suggest that different mechanisms can lead to inactivation of different lipases, in particular substrate inhibition and protein unfolding. Attempts to improve the performances of methanol sensitive lipases by mutagenesis as well as process engineering approaches are also summarized. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Increase of Internal CO2 of Cotton Plants by Methanol Application to Increase Yield

    International Nuclear Information System (INIS)

    Badron Zakaria; Darmawan; Nurlina Kasim; Joseph Saepuddin

    2004-01-01

    A field experiment has been conducted to increase internal CO 2 and Rubisco activity detected by 14 C and to determinate which factors influence this activities. Plant material used was cotton plants which internal CO 2 concentrations and Rubisco activity was observed at 35, 50, 65, 80 days after planting (DAP). Treatments applied were methanol with concentrations of 0%, 10%,20% and 30% at available water (AW) at 25-50% AW, 50-75% AW, 75-100% AW. Results obtained showed that application of methanol at concentration of 20% at 75-100% AW, increase internal CO 2 from 266.60 ppm to 295.10 ppm (11 % increase) and this will also increase Rubisco activity from 3.81 to 14.28 (μmol. CO 2 menit -1 (μmol. Rubisco -1 ). This increase is expected to push photosynthesis rate and result in increase cotton yield. The use of 14 C was satisfactorily detected the amount of carbon. (author)

  9. SYSTEM AND PROCESS FOR PRODUCTION OF METHANOL FROM COMBINED WIND TURBINE AND FUEL CELL POWER

    Science.gov (United States)

    The paper examines an integrated use of ultra-clean wind turbines and high temperature fuel cells to produce methanol, especially for transportation purposes. The principal utility and application of the process is the production of transportation fuel from domestic resources to ...

  10. Temperature oscillations in methanol partial oxidation reactor for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsu; Byeon, Jeonguk; Seo, Il Gyu; Lee, Hyun Chan; Kim, Dong Hyun; Lee, Jietae [Kyungpook National University, Daegu (Korea, Republic of)

    2013-04-15

    Methanol partial oxidation (POX) is a well-known reforming reaction for the production of hydrogen from methanol. Since POX is relatively fast and highly exothermic, this reforming method will be efficient for the fast start-up and load-following operation. However, POX generates hot spots around catalyst and even oscillations in the reactor temperature. These should be relieved for longer operations of the reactor without catalyst degradations. For this, temperature oscillations in a POX reactor are investigated experimentally. Various patterns of temperature oscillations according to feed flow rates of reactants and reactor temperatures are obtained. The bifurcation phenomena from regular oscillations to chaotic oscillations are found as the methanol flow rate increases. These experimental results can be used for theoretical analyses of oscillations and for designing safe reforming reactors.

  11. Temperature oscillations in methanol partial oxidation reactor for the production of hydrogen

    International Nuclear Information System (INIS)

    Kim, Jinsu; Byeon, Jeonguk; Seo, Il Gyu; Lee, Hyun Chan; Kim, Dong Hyun; Lee, Jietae

    2013-01-01

    Methanol partial oxidation (POX) is a well-known reforming reaction for the production of hydrogen from methanol. Since POX is relatively fast and highly exothermic, this reforming method will be efficient for the fast start-up and load-following operation. However, POX generates hot spots around catalyst and even oscillations in the reactor temperature. These should be relieved for longer operations of the reactor without catalyst degradations. For this, temperature oscillations in a POX reactor are investigated experimentally. Various patterns of temperature oscillations according to feed flow rates of reactants and reactor temperatures are obtained. The bifurcation phenomena from regular oscillations to chaotic oscillations are found as the methanol flow rate increases. These experimental results can be used for theoretical analyses of oscillations and for designing safe reforming reactors

  12. Solar Hybrid Hydrogen Production in Sunbelt and Shipping to Japan as a Liquid fuel of Methanol

    International Nuclear Information System (INIS)

    Tamaura, Y.; Hasegawa, N.; Kaneko, H.; Utamura, M.; Katayama, Y.; Onozaki, M.; Hasuike, H.

    2006-01-01

    Solar hybrid methanol (SH-methanol) production (6000 t/day) from natural gas and coal using H 2 and O 2 gases, which are produced by electrolysis with solar thermal power (Tokyo Tech Beam-down concentration solar power generation with molten salt heat-storage system) at Sunbelt in Australia was studied from the economical view point. This system is the combined system of O 2 -burning coal gasification (C+1/2O 2 =CO), natural gas reforming by O 2 -partial oxidation (CH 4 + 1/2O 2 = CO + 2H 2 ), and water decomposition by electrolysis with solar thermal power (H 2 O = H 2 + 1/2O 2 ). In this production system, the SH-methanol is produced with zero CO 2 emission, shipped to Japan by oil tanker, and can be used as solar hybrid hydrogen in Japan for fuel cell. The solar hybrid methanol production cost of 24 yen/kg (58 US dollars bbl crude oil equivalent, April, 2006) is obtained with the solar power cost of the Tokyo Tech Beam-down solar concentration solar power generation with molten salt heat-storage. This cost is lower than the crude oil (67 US dollars bbl crude oil equivalent, April, 2006) and LPG (72 US dollars/ bbl crude oil equivalent, January, 2006). (authors)

  13. Endogenous Methanol Regulates Mammalian Gene Activity

    Science.gov (United States)

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  14. Endogenous methanol regulates mammalian gene activity.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.

  15. Comparative energetic assessment of methanol production from CO_2: Chemical versus electrochemical process

    International Nuclear Information System (INIS)

    Al-Kalbani, Haitham; Xuan, Jin; García, Susana; Wang, Huizhi

    2016-01-01

    Highlights: • We model two emission-to-fuel processes which convert CO_2 to fuels. • We optimize the heat exchanger networks for the two processes. • We compare the two processes in terms of energy requirement and climate impact. • The process based on CO_2 electrolysis is more energy efficient. • Both of the processes can reduce CO_2 emissions if renewable energies are used. - Abstract: Emerging emission-to-liquid (eTL) technologies that produce liquid fuels from CO_2 are a possible solution for both the global issues of greenhouse gas emissions and fossil fuel depletion. Among those technologies, CO_2 hydrogenation and high-temperature CO_2 electrolysis are two promising options suitable for large-scale applications. In this study, two CO_2-to-methanol conversion processes, i.e., production of methanol by CO_2 hydrogenation and production of methanol based on high-temperature CO_2 electrolysis, are simulated using Aspen HYSYS. With Aspen Energy Analyzer, heat exchanger networks are optimized and minimal energy requirements are determined for the two different processes. The two processes are compared in terms of energy requirement and climate impact. It is found that the methanol production based on CO_2 electrolysis has an energy efficiency of 41%, almost double that of the CO_2 hydrogenation process provided that the required hydrogen is sourced from water electrolysis. The hydrogenation process produces more CO_2 when fossil fuel energy sources are used, but can result in more negative CO_2 emissions with renewable energies. The study reveals that both of the eTL processes can outperform the conventional fossil-fuel-based methanol production process in climate impacts as long as the renewable energy sources are implemented.

  16. Antibacterial and Antibiofilm Activity of Methanolic Plant Extracts against Nosocomial Microorganisms

    Directory of Open Access Journals (Sweden)

    Eduardo Sánchez

    2016-01-01

    Full Text Available Biofilm is a complex microbial community highly resistant to antimicrobials. The formation of biofilms in biotic and abiotic surfaces is associated with high rates of morbidity and mortality in hospitalized patients. New alternatives for controlling infections have been proposed focusing on the therapeutic properties of medicinal plants and their antimicrobial effects. In the present study the antimicrobial and antibiofilm activities of 8 methanolic plant extracts were evaluated against clinical isolated microorganisms. Preliminary screening by diffusion well assay showed the antimicrobial activity of Prosopis laevigata, Opuntia ficus-indica, and Gutierrezia microcephala. The minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined ranging from 0.7 to >15 mg/mL. The specific biofilm formation index (SBF was evaluated before and after the addition of plant extracts (MBC × 0.75. Opuntia ficus-indica caused the major reduction on SBF in dose-dependent manner. Cytotoxic activity of plant extracts was determined using brine shrimp lethality test (Artemia salina L.. Lethal Dose concentration (LD50 values of the plant extracts was calculated. LD50 values for P. laevigata and G. microcephala were 141.6 and 323.3 µg/mL, respectively, while O. ficus-indica showed a slight lethality with 939.2 µg/mL. Phytochemical analyses reveal the presence of flavonoids, tannins, and coumarines.

  17. Traditional Preparations and Methanol Extracts of Medicinal Plants from Papua New Guinea Exhibit Similar Cytochrome P450 Inhibition

    Directory of Open Access Journals (Sweden)

    Erica C. Larson

    2016-01-01

    Full Text Available The hypothesis underlying this current work is that fresh juice expressed from Papua New Guinea (PNG medicinal plants (succus will inhibit human Cytochrome P450s (CYPs. The CYP inhibitory activity identified in fresh material was compared with inhibition in methanol extracts of dried material. Succus is the most common method of traditional medicine (TM preparation for consumption in PNG. There is increasing concern that TMs might antagonize or complicate drug therapy. We have previously shown that methanol extracts of commonly consumed PNG medicinal plants are able to induce and/or inhibit human CYPs in vitro. In this current work plant succus was prepared from fresh plant leaves. Inhibition of three major CYPs was determined using human liver microsomes and enzyme-selective model substrates. Of 15 species tested, succus from 6/15 was found to inhibit CYP1A2, 7/15 inhibited CYP3A4, and 4/15 inhibited CYP2D6. Chi-squared tests determined differences in inhibitory activity between succus and methanol preparations. Over 80% agreement was found. Thus, fresh juice from PNG medicinal plants does exhibit the potential to complicate drug therapy in at risk populations. Further, the general reproducibility of these findings suggests that methanol extraction of dried material is a reasonable surrogate preparation method for fresh plant samples.

  18. Production of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2.

    Science.gov (United States)

    Yezza, A; Fournier, D; Halasz, A; Hawari, J

    2006-11-01

    A new bacterial strain, isolated from groundwater contaminated with explosives, was characterized as a pink-pigmented facultative methylotroph, affiliated to the genus Methylobacterium. The bacterial isolate designated as strain GW2 was found capable of producing the homopolymer poly-3-hydroxybutyrate (PHB) from various carbon sources such as methanol, ethanol, and succinate. Methanol acted as the best substrate for the production of PHB reaching 40 % w/w dry biomass. PHB accumulation was observed to be a growth-associated process, so that there was no need for two-step fermentation. Optimal growth occurred at 0.5 % (v/v) methanol concentration, and growth was strongly inhibited at alpha concentration above 2 % (v/v). Methylobacterium sp. strain GW2 was also able to accumulate the copolyester poly-3-hydroxybutyrate-poly-3-hydroxyvalerate (PHB/HV) when valeric acid was supplied as an auxiliary carbon source to methanol. After 66 h, a copolymer content of 30 % (w/w) was achieved with a PHB to PHV ratio of 1:2. Biopolymers produced by strain GW2 had an average molecular weight ranging from 229,350 to 233,050 Da for homopolymer PHB and from 362,430 to 411,300 Da for the copolymer PHB/HV.

  19. Biodiesel production by transesterification of duck tallow with methanol on alkali catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyong-Hwan [Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757 (Korea); Kim, Jin [Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757 (Korea)]|[Department of Advanced Chemicals Graduate School, Chonnam National University, Gwangju 500-757 (Korea); Lee, Ki-Young [Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757 (Korea)]|[Department of Applied Chemical Engineering and The Research Institute for Catalysis, Chonnam National University, Gwangju 500-757 (Korea)

    2009-01-15

    Duck tallow was employed as a feedstock for the production of biodiesel by transesterification with methanol. The content of fatty acid methyl ester (FAME) was evaluated on various alkali catalysts during transesterification. The composition and chemical properties of the FAME were investigated in the raw duck tallow and the biodiesel products. The major constituent in the biodiesel product was oleic acid. The FAME content was 97% on KOH catalyst in the reaction. It was acceptable for the limit of European biodiesel qualities for BD100. Acid value, density, and kinematic viscosity of the biodiesel products also came up to the biodiesel qualities. (author)

  20. Wet in situ transesterification of spent coffee grounds with supercritical methanol for the production of biodiesel.

    Science.gov (United States)

    Son, Jeesung; Kim, Bora; Park, Jeongseok; Yang, Jeongwoo; Lee, Jae W

    2018-07-01

    This work introduces biodiesel production from wet spent coffee grounds (SCGs) with supercritical methanol without any pre-drying process. Supercritical methanol and subcritical water effectively produced biodiesel via in situ transesterification by inducing more porous SCG and enhancing the efficiency of lipid extraction and conversion. It was also found that space loading was one of the critical factors for biodiesel production. An optimal biodiesel yield of 10.17 wt% of dry SCG mass (86.33 w/w% of esterifiable lipids in SCG) was obtained at reaction conditions of 270 °C, 90 bars, methanol to wet SCG ratio 5:1, space loading 58.4 ml/g and reaction time 20 min. Direct use of wet SCG waste as feedstock for supercritical biodiesel production eliminates the conventional dying process and the need of catalyst and also reduces environmental problems caused by landfill accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. World scale fuel methanol facility siting

    International Nuclear Information System (INIS)

    Stapor, M.C.; Hederman, W.F.

    1990-01-01

    Since the Administration announced a clean alternative fuels initiative, industry and government agencies' analyses of the economics of methanol as an alternative motor vehicle fuel have accelerated. In the short run, methanol appears attractive because excess production capacity currently has depressed methanol prices and marginal costs of production are lower than other fuels (current excess capacity). In the long run, however, full costs are the more relevant. To lower average production costs, U.S. policy interest has focused on production from a world-scale, 10,000 tons per day (tpd) methanol plant facility on a foreign site. This paper reviews several important site and financial considerations in a framework to evaluate large scale plant development. These considerations include: risks associated with a large process plant; supply economics of foreign sites; and investment climates and financial incentives for foreign investment at foreign sites

  2. Short Review: Cu Catalyst for Autothermal Reforming Methanol for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Ho-Shing Wu

    2012-06-01

    Full Text Available Hydrogen is a promising alternative energy sources, hydrogen can be used in fuel cell applications to pro-ducing electrical energy and water as byproduct. Therefore, fuel cell is a simple application and environ-mentally friendly oriented technology. Recent years various methods have been conducted to produce hy-drogen. Those methods are derived from various sources such as methanol, ethanol, gasoline, hydrocarbons. This article presents a brief review a parameter process of that affects in autothermal reforming methanol use Cu-based catalysts for production of hydrogen. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 3rd January 2012; Revised: 23rd February 2012; Accepted: 28th February 2012[How to Cite: H.S. Wu, and D. Lesmana. (2012. Short Review: Cu Catalyst for Autothermal Reforming Methanol for Hydrogen Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 27-42. doi:10.9767/bcrec.7.1.1284.27-42][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1284.27-42 ] | View in 

  3. Analysis of transesterification comparing processes with methanol and ethanol for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Zorzeto, Thais Queiroz; Park, Kil Jin [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@feagri.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    The increasing demand for energy on the industrialized world stimulates researches in a renewable fuel. Biodiesel appears like an alternative and utilizes a vegetable oil or animal fat as raw material. The most common method for conversion of the raw material in fuel that can be utilized in Diesel engines is called transesterification. Brazil has a big agricultural potential to produce grains and oils. One of them is the peanut oil that is predominantly cultivated in the southeast of Brazil. There is a prevision that the peanut production reaches 232 thousand tons this year. In this work was evaluated the methanol transesterification and ethanol transesterification of peanut oil using a basic catalyst. The comparison between reactions with the two alcohols showed that methyl esters yield was greater than ethyl esters, with maximum yield of 88.04% for methanol and 84.64% for ethanol. Besides the higher yield, reactions with methanol are easily conducted than with ethanol, the biodiesel purification treatment of final product is quickly and the separation between esters and glycerol is instantaneous. (author)

  4. Hydrogen production by steam reforming methanol for polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Amphlett, J.C.; Creber, K.A.M.; Davis, J.M.; Mann, R.F.; Peppley, B.A.; Stokes, D.M.

    1993-01-01

    Catalytic steam reforming of methanol has been studied as a means of generating hydrogen for a polymer electrolyte membrane fuel cell. A semi-empirical model of the kinetics of the catalytic steam reforming of methanol over Cu O/Zn O/Al 2 O 3 catalyst has been developed. This model is able to predict the performance of the reformer with respect to the various parameters important in developing an integrated reformer-polymer fuel cell system. A set of sample calculations of reformer temperature and CO production are given. The impact of the performance of the reformer catalyst on the design of the overall fuel cell power system is discussed. The selectivity of the catalyst to minimize CO content in the fuel gas is shown to be more critical than was previously believed. 4 figs., 4 tabs., 11 refs

  5. In-situ Transesterification of Jatropha curcas L. Seeds for Biodiesel Production using Supercritical Methanol

    Directory of Open Access Journals (Sweden)

    Ishak M.A.M.

    2017-01-01

    Full Text Available In-situ supercritical methanol transesterification for production of biodiesel from Jatropha curcas L. (JCL seeds was successfully being carried out via batch-wise reactor system, under varying temperatures of 180 - 300 °C, pressures of 6 - 18 MPa, reaction time of 5 - 35 min and seeds-to-methanol ratio of 1:15 - 1:45 (w/v. In this study, the extracted oil obtained showed the presence of FAME referring as biodiesel, indicating that transesterification reaction had occurred during the extraction process. The results showed that the biodiesel yield was obtained at optimum conditions of 280 °C, 12 MPa, 30 min and 1:40 (w/v were 97.9%.

  6. A Systematic Approach for Conceptual and Sustainable Process Design: Production of Methylamines From Methanol and Ammonia

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Ismail, Muhammad Imran Bin; Almoor, Karim

    2012-01-01

    and environmentally acceptable plant for producing mono-methylamines, di-methylamines and tri-methylamines from methanol and ammonia. The systematic method divides the process design work into 12 sequential tasks that covers all stages of conceptual design, starting from the consideration of qualitative aspects...... of the process flow sheet and preliminary calculations to the detailed process simulations, equipment sizing, costing, an economic evaluation, and sustainability of the designed process. At the end of task-9, the base case design is obtained, which is then further refined and improved with respect to heat...

  7. Techno-economic analysis of biodiesel production from Jatropha curcas via a supercritical methanol process

    International Nuclear Information System (INIS)

    Yusuf, N.N.A.N.; Kamarudin, S.K.

    2013-01-01

    Highlights: • This paper presents the techno-economic of a production of biodiesel from JCO. • The results obtained 99.96% of biodiesel with 96.49% of pure glycerol. • This proved that biodiesel from JCO is the least expensive compare to other resources. - Abstract: This paper presents the conceptual design and economic evaluation of a production of methyl esters (biodiesel) from Jatropha curcas oil (JCO) via a supercritical methanol process with glycerol as a by-product. The process consists of four major units: transesterification (PFR), methanol recovery (FT) and (DC1), recovery of glycerol (DEC), and biodiesel purification (DC2). The material and heat balance are also presented here. A biodiesel production of 40,000 tonnes-yr −1 is taken as case study. Biodiesel obtained from supercritical transesterification with Jatropha curcas oil as feedstock resulting in high purity methyl esters (99.96%) with almost pure glycerol (96.49%) obtained as by-product. The biodiesel can be sold at USD 0.78 kg −1 , while the manufacturing and capital investment costs are in the range of USD 25.39 million-year −1 and USD 9.41 million year −1 , respectively. This study proved that biodiesel from JCO is the least expensive with purities comparable to those found in other studies

  8. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  9. Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance

    Energy Technology Data Exchange (ETDEWEB)

    Amigun, Bamikole, E-mail: bamigun@csir.co.z [Sustainable Energy Futures, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), Pretoria (South Africa); Process Engineering Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602 (South Africa); Gorgens, Johann; Knoetze, Hansie [Process Engineering Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602 (South Africa)

    2010-01-15

    Methanol production from biomass is a promising carbon neutral fuel, well suited for use in fuel cell vehicles (FCVs), as transportation fuel and as chemical building block. The concept used in this study incorporates an innovative Absorption Enhanced Reforming (AER) gasification process, which enables an efficient conversion of biomass into a hydrogen-rich gas (syngas) and then, uses the Mitsubishi methanol converter (superconverter) for methanol synthesis. Technical and economic prospects for production of methanol have been evaluated. The methanol plants described have a biomass input between 10 and 2000 MW{sub th}. The economy of the methanol production plants is very dependent on the production capacity and large-scale facilities are required to benefit from economies of scale. However, large-scale plants are likely to have higher transportation costs per unit biomass transported as a result of longer transportation distances. Analyses show that lower unit investment costs accompanying increased production scale outweighs the cost for transporting larger quantities of biomass. The unit cost of methanol production mostly depends on the capital investments. The total unit cost of methanol is found to decrease from about 10.66 R/l for a 10 MW{sub th} to about 6.44 R/l for a 60 MW{sub th} and 3.95 R/l for a 400 MW{sub th} methanol plant. The unit costs stabilise (a near flat profile was observed) for plant sizes between 400 and 2000 MW{sub th}, but the unit cost do however continue to decrease to about 2.89 R/l for a 2000 MW{sub th} plant. Long term cost reduction mainly resides in technological learning and large-scale production. Therefore, technology development towards large-scale technology that takes into account sustainable biomass production could be a better choice due to economic reasons.

  10. Biomethanol production from gasification of non-woody plant in South Africa. Optimum scale and economic performance

    Energy Technology Data Exchange (ETDEWEB)

    Amigun, Bamikole [Sustainable Energy Futures, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), Pretoria (South Africa); Process Engineering Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602 (South Africa); Gorgens, Johann; Knoetze, Hansie [Process Engineering Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602 (South Africa)

    2010-01-15

    Methanol production from biomass is a promising carbon neutral fuel, well suited for use in fuel cell vehicles (FCVs), as transportation fuel and as chemical building block. The concept used in this study incorporates an innovative Absorption Enhanced Reforming (AER) gasification process, which enables an efficient conversion of biomass into a hydrogen-rich gas (syngas) and then, uses the Mitsubishi methanol converter (superconverter) for methanol synthesis. Technical and economic prospects for production of methanol have been evaluated. The methanol plants described have a biomass input between 10 and 2000 MW{sub th}. The economy of the methanol production plants is very dependent on the production capacity and large-scale facilities are required to benefit from economies of scale. However, large-scale plants are likely to have higher transportation costs per unit biomass transported as a result of longer transportation distances. Analyses show that lower unit investment costs accompanying increased production scale outweighs the cost for transporting larger quantities of biomass. The unit cost of methanol production mostly depends on the capital investments. The total unit cost of methanol is found to decrease from about 10.66 R/l for a 10 MW{sub th} to about 6.44 R/l for a 60 MW{sub th} and 3.95 R/l for a 400 MW{sub th} methanol plant. The unit costs stabilise (a near flat profile was observed) for plant sizes between 400 and 2000 MW{sub th}, but the unit cost do however continue to decrease to about 2.89 R/l for a 2000 MW{sub th} plant. Long term cost reduction mainly resides in technological learning and large-scale production. Therefore, technology development towards large-scale technology that takes into account sustainable biomass production could be a better choice due to economic reasons. (author)

  11. Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance

    International Nuclear Information System (INIS)

    Amigun, Bamikole; Gorgens, Johann; Knoetze, Hansie

    2010-01-01

    Methanol production from biomass is a promising carbon neutral fuel, well suited for use in fuel cell vehicles (FCVs), as transportation fuel and as chemical building block. The concept used in this study incorporates an innovative Absorption Enhanced Reforming (AER) gasification process, which enables an efficient conversion of biomass into a hydrogen-rich gas (syngas) and then, uses the Mitsubishi methanol converter (superconverter) for methanol synthesis. Technical and economic prospects for production of methanol have been evaluated. The methanol plants described have a biomass input between 10 and 2000 MW th . The economy of the methanol production plants is very dependent on the production capacity and large-scale facilities are required to benefit from economies of scale. However, large-scale plants are likely to have higher transportation costs per unit biomass transported as a result of longer transportation distances. Analyses show that lower unit investment costs accompanying increased production scale outweighs the cost for transporting larger quantities of biomass. The unit cost of methanol production mostly depends on the capital investments. The total unit cost of methanol is found to decrease from about 10.66 R/l for a 10 MW th to about 6.44 R/l for a 60 MW th and 3.95 R/l for a 400 MW th methanol plant. The unit costs stabilise (a near flat profile was observed) for plant sizes between 400 and 2000 MW th , but the unit cost do however continue to decrease to about 2.89 R/l for a 2000 MW th plant. Long term cost reduction mainly resides in technological learning and large-scale production. Therefore, technology development towards large-scale technology that takes into account sustainable biomass production could be a better choice due to economic reasons.

  12. Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production

    Directory of Open Access Journals (Sweden)

    Mauro Francesco Sgroi

    2016-11-01

    Full Text Available Fuel cells are very promising technologies for efficient electrical energy generation. The development of enhanced system components and new engineering solutions is fundamental for the large-scale deployment of these devices. Besides automotive and stationary applications, fuel cells can be widely used as auxiliary power units (APUs. The concept of a direct methanol fuel cell (DMFC is based on the direct feed of a methanol solution to the fuel cell anode, thus simplifying safety, delivery, and fuel distribution issues typical of conventional hydrogen-fed polymer electrolyte fuel cells (PEMFCs. In order to evaluate the feasibility of concrete application of DMFC devices, a cost analysis study was carried out in the present work. A 200 W-prototype developed in the framework of a European Project (DURAMET was selected as the model system. The DMFC stack had a modular structure allowing for a detailed evaluation of cost characteristics related to the specific components. A scale-down approach, focusing on the model device and projected to a mass production, was used. The data used in this analysis were obtained both from research laboratories and industry suppliers specialising in the manufacturing/production of specific stack components. This study demonstrates that mass production can give a concrete perspective for the large-scale diffusion of DMFCs as APUs. The results show that the cost derived for the DMFC stack is relatively close to that of competing technologies and that the introduction of innovative approaches can result in further cost savings.

  13. Cytotoxicity of the methanol extracts of Elephantopus mollis, Kalanchoe crenata and 4 other Cameroonian medicinal plants towards human carcinoma cells.

    Science.gov (United States)

    Kuete, Victor; Fokou, Fabrice W; Karaosmanoğlu, Oğuzhan; Beng, Veronique P; Sivas, Hülya

    2017-05-25

    Cancer still constitutes one of the major health concerns globally, causing serious threats on patients, their families, and the healthcare system. In this study, the cytotoxicity of the methanol extract of Elephantopus mollis whole plant (EMW), Enantia chlorantha bark (ECB), Kalanchoe crenata leaves (KCL), Lophira alata bark (LAB), Millettia macrophylla leaves (MML) and Phragmanthera capitata leaves (PCL) towards five human solid cancer cell lines and normal CRL2120 fibroblasts, was evaluated. Extracts were subjected to qualitative chemical screening of their secondary metabolite contents using standard methods. The cytotoxicity of samples was evaluated using neutral red uptake (NR) assay meanwhile caspase activation was detected by caspase-Glo assay. Flow cytometry was used to analyze the cell cycle distribution and the mitochondrial membrane potential (MMP) whilst spectrophotometry was used to measure the levels of reactive oxygen species (ROS). Phytochemical analysis revealed the presence of polyphenols, triterpenes and sterols in all extracts. The IC 50 values of the best samples ranged from 3.29 μg/mL (towards DLD-1 colorectal adenocarcinoma cells) to 24.38 μg/mL (against small lung cancer A549 cells) for EMW, from 2.33 μg/mL (mesothelioma SPC212 cells) to 28.96 μg/mL (HepG2 hepatocarcinoma) for KCL, and from 0.04 μg/mL (towards SPC212 cells) to 0.55 μg/mL (towards A549 cells) for doxorubicin. EMW induced apoptosis in MCF-7 cells mediated by MMP loss and increased ROS production whilst KCL induced apoptosis via ROS production. This study provides evidences of the cytotoxicity of the tested plant extract and highlights the good activity of Elephantopus mollis and Kalanchoe crenata. They deserve more exploration to develop novel cytotoxic drugs.

  14. Methanol May Function as a Cross-Kingdom Signal

    Science.gov (United States)

    Dorokhov, Yuri L.; Komarova, Tatiana V.; Petrunia, Igor V.; Kosorukov, Vyacheslav S.; Zinovkin, Roman A.; Shindyapina, Anastasia V.; Frolova, Olga Y.; Gleba, Yuri Y.

    2012-01-01

    Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in

  15. Resins production: batch plant automation

    International Nuclear Information System (INIS)

    Banti, M.; Mauri, G.

    1996-01-01

    Companies that look for automation in their plants without external resources, have at their disposal flexible, custom and easy to use DCS, open towards PLC. In this article it is explained why Hoechts has followed this way of new plants for resins production automation

  16. Use of controlled thermonuclear reactor fusion power for the production of synthetic methanol fuel from air and water

    International Nuclear Information System (INIS)

    Steinberg, M.; Vi Duong Dang.

    1975-04-01

    Methanol synthesis from carbon dioxide, water and nuclear fusion energy is extensively investigated. The entire system is analyzed from the point of view of process design and economic evaluation of various processes. The main potential advantage of a fusion reactor (CTR) for this purpose is that it provides a large source of low cost environmentally acceptable electric power based on an abundant fuel source. Carbon dioxide is obtained by extraction from the atomsphere or from sea water. Hydrogen is obtained by electrolysis of water. Methanol is synthesized by the catalytic reaction of carbon dioxide and hydrogen. The water electrolysis and methanol synthesis units are considered to be technically and commercially available. The benefit of using air or sea water as a source of carbon dioxide is to provide an essentially unlimited renewable and environmentally acceptabe source of hydrocarbon fuel. Extraction of carbon dioxide from the atmosphere also allows a high degree of freedom in plant siting. (U.S.)

  17. FY 1982 report on the results of the verification test on the methanol conversion for oil-fired power plant. Survey of the potential supply amount of overseas resource (Survey of the potential supply amount of methanol); 1982 nendo sekiyu karyoku hatsudensho metanoru tenkan tou jissho shiken. Kaigai shigen kyokyu kano ryo chosa (Metanoru kyokyu kano ryo chosa) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-07-01

    For the study of the potential supply amount of methanol as power generation use fuel, survey was conducted as case study on the following: Victorian brown coal of Australia, conversion of Arun natural gas to methanol at site in Indonesia, political/social/technical restrictions, supply scale, economical efficiency, etc. at the time of the supply to Japan. For the calculation of economical efficiency, it was assumed that the scale of methanol production was 5,000 t/d, that the plant operated years were 20 and that the price of acquisition of raw material was US$4-10/t in Victorian brown coal and US$1-4/t in Arun natural gas. As a result of the study, in the case of natural gas base methanol, the CIF Japan is lower than CIF prices of LNG and crude oil in case the price of acquisition of raw material is US$1/t, but is higher than those in case the price is US$2/t. In the case of brown coal base methanol, it was found that the CIF Japan could not be lower than CIF prices of LNG and crude oil even in case the price of acquisition of raw material is US$4/t, which is the lowest. (NEDO)

  18. Modular Engineering of Production Plants

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1998-01-01

    Based on a case-study on design of pharmaceutical production plants, this paper suggests that modularity may support business efficiency for companies with one-of-a-kind production and without in-house manufacturing. Modularity may support efficient management of design knowledge and may facilitate...

  19. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H.

    2008-08-15

    This PhD thesis deals with the catalytic hydrogen production for mobile application, for example for the use in fuel cells for electric cars. Electric powered buses with fuel cells as driving system are well known, but the secure hydrogen storage in adequate amounts for long distance drive is still a topic of discussion. Methanol is an excellent hydrogen carrier. First of all it has a high H:C ratio and therefore a high energy density. Secondly the operating temperature of steam reforming of methanol is comparatively low (250 C) and there is no risk of coking since methanol has no C-C bond. Thirdly methanol is a liquid, which means that the present gasoline infrastructure can be used. For the further development of catalysts and for the construction of a reformer it is very important to characterize the catalysts very well. For the dimensioning and the control of an on-board production of hydrogen it is essential to draw accurately on the thermodynamic, chemical and kinetic data of the reaction. At the first part of this work the mesoporous Cu/ZrO{sub 2}/CeO{sub 2}-catalysts with various copper contents were characterized and their long-term stability and selectivity were investigated, and the kinetic data were determined. Carbon monoxide is generated by reforming of carbon containing material. This process is undesired since CO poisons the Pt electrode of the fuel cell. The separation of hydrogen by metal membranes is technically feasible and a high purity of hydrogen can be obtained. However, due to their high density this procedure is not favourable because of its energy loss. In this study a concept is presented, which enables an autothermal mode by application of ceramic membrane and simultaneously could help to deal with the CO problem. The search for an absolutely selective catalyst is uncertain. The production of CO can be neither chemically nor thermodynamically excluded, if carbon is present in the hydrogen carrier. Since enrichment or separation are

  20. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H

    2008-08-15

    This PhD thesis deals with the catalytic hydrogen production for mobile application, for example for the use in fuel cells for electric cars. Electric powered buses with fuel cells as driving system are well known, but the secure hydrogen storage in adequate amounts for long distance drive is still a topic of discussion. Methanol is an excellent hydrogen carrier. First of all it has a high H:C ratio and therefore a high energy density. Secondly the operating temperature of steam reforming of methanol is comparatively low (250 C) and there is no risk of coking since methanol has no C-C bond. Thirdly methanol is a liquid, which means that the present gasoline infrastructure can be used. For the further development of catalysts and for the construction of a reformer it is very important to characterize the catalysts very well. For the dimensioning and the control of an on-board production of hydrogen it is essential to draw accurately on the thermodynamic, chemical and kinetic data of the reaction. At the first part of this work the mesoporous Cu/ZrO{sub 2}/CeO{sub 2}-catalysts with various copper contents were characterized and their long-term stability and selectivity were investigated, and the kinetic data were determined. Carbon monoxide is generated by reforming of carbon containing material. This process is undesired since CO poisons the Pt electrode of the fuel cell. The separation of hydrogen by metal membranes is technically feasible and a high purity of hydrogen can be obtained. However, due to their high density this procedure is not favourable because of its energy loss. In this study a concept is presented, which enables an autothermal mode by application of ceramic membrane and simultaneously could help to deal with the CO problem. The search for an absolutely selective catalyst is uncertain. The production of CO can be neither chemically nor thermodynamically excluded, if carbon is present in the hydrogen carrier. Since enrichment or separation are

  1. Effects of temperature and glycerol and methanol-feeding profiles on the production of recombinant galactose oxidase in Pichia pastoris

    Science.gov (United States)

    Anasontzis, George E; Salazar Penã, Margarita; Spadiut, Oliver; Brumer, Harry; Olsson, Lisbeth

    2014-01-01

    Optimization of protein production from methanol-induced Pichia pastoris cultures is necessary to ensure high productivity rates and high yields of recombinant proteins. We investigated the effects of temperature and different linear or exponential methanol-feeding rates on the production of recombinant Fusarium graminearum galactose oxidase (EC 1.1.3.9) in a P. pastoris Mut+ strain, under regulation of the AOX1 promoter. We found that low exponential methanol feeding led to 1.5-fold higher volumetric productivity compared to high exponential feeding rates. The duration of glycerol feeding did not affect the subsequent product yield, but longer glycerol feeding led to higher initial biomass concentration, which would reduce the oxygen demand and generate less heat during induction. A linear and a low exponential feeding profile led to productivities in the same range, but the latter was characterized by intense fluctuations in the titers of galactose oxidase and total protein. An exponential feeding profile that has been adapted to the apparent biomass concentration results in more stable cultures, but the concentration of recombinant protein is in the same range as when constant methanol feeding is employed. © 2014 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:728–735, 2014 PMID:24493559

  2. Black Liquor Gasification with Motor Fuel Production - BLGMF II - A techno-economic feasibility study on catalytic Fischer-Tropsch synthesis for synthetic diesel production in comparison with methanol and DME as transport fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ekbom, Tomas; Berglin, Niklas; Loegdberg, Sara [Nykomb Synergetics AB, Stockholm (Sweden)

    2005-06-15

    The present project presents additional results to the former BLGMF project, which investigate Black Liquor Gasification with Motor Fuels (BLGMF) production. The objectives were to investigate, based on the KAM 2 program Ecocyclic Pulp Mill (2,000 ADt/day of pulp) the feasibility of synthetic fuels production. Specifically the route to Fischer-Tropsch diesel fuels is investigated as comparison to earlier work on methanol/DME. As modern kraft pulp mills have a surplus of energy, they could become key suppliers of renewable fuels. It is thus of great interest to convert the spent cooking product 'black liquor' to an energy carrier of high value. The resulting biomass-to-fuel energy efficiency when only biomass is used as an external energy source was 43% for FTD or 65% for FT products compared with 66% for methanol and 67% for DME. The FTD calculation is considerably more complicated and based on assumptions, therefore the uncertainty is higher. Would the diesel be taken out with a T95% of 320 deg C the FTD efficiency would be 45%. FT synthesis also opens up a possibility to produce e.g. lube oils from waxes produced. The total net FT-products output equals 4115 barrels/day. The FTD production cost is calculated as the energy share of the total production cost and assumes an offset of naphtha covering its own costs, where it is essential that it finds a market. Assuming same petrol (methanol) and diesel (DME, FTD) costs for the consumer the payback time were 2.6, 2.9 and 3.4 years with an IRR of 40%, 45% and 30%, respectively. In conclusion, there are necessary resources and potential for large-scale methanol (or DME, FTD) production and substantial economic incentive for making plant investments and achieving competitive product revenues.

  3. Methanol from coal without CO2 production via the modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Engler, D.; Labar, M.P.

    1992-01-01

    Displacement options for petroleum fuels include natural gas (compressed or liquified), synthetic gasoline, biomass fuels, electric vehicles, hydrogen, and methanol. This paper reports that although no alternative meets all the desired characteristics of economics, environmental impact, supply logistics, and vehicle technology, methanol has often been cited as a good compromise and is perhaps the best coal derived fuel. The main criticism leveled at methanol is whether it can be produced economically in sufficient quantities to significantly displace petroleum-derived fuels. Although methanol can be manufactured from biomass, natural gas or coal feedstocks, only coal offers the potential for a substantial long term indigenous U.S. feedstock

  4. Technoeconomic study of supercritical biodiesel production plant

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Errazu, A.F.

    2008-01-01

    Over the last years, biodiesel has gained more market due to its benefits and because it appears as the natural substitute for diesel. However, the highest cost of this process is associated with the raw material employed, making it a less competitive and more expensive fuel. Therefore, research is being done in order to use low price raw material, such as acid oils, frying oils or soapstocks. In this work, a biodiesel production plant was developed using supercritical methanol and acid oils as raw materials. This technology was compared with some other alternatives previously described with the aim of making a comparative study, not only on the technical aspects but also on the economic results. A process simulator was employed to produce the conceptual design and simulate each technology. Using these models, it was possible to analyze different scenarios and to evaluate productivity, raw material consumption, economic competitiveness and environmental impacts of each process. Although the supercritical alternative appears as a good technical possibility to produce biodiesel, today, it is not an economic alternative due to its high operating costs

  5. Methanol from biomass by partial oxidation

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The advantages of methanol should grow when petroleum again becomes scarce and expensive. An active program should be continued to develop technology and resolve outstanding questions. Some of the elements of this program included in this paper are: Make design studies and more accurate cost estimates for the largest plant. The increased size of this plant over the small plant studied by S and W should result in improved methanol yield and better energy efficiency. Continue development of the SERI biomass gasifier for a better understanding of design and operating parameters, for design of larger units, for higher operating pressures, and for gasification of Hawaiian woods and agricultural wastes. An earlier gasifier test bed in Hawaii is very desirable. Develop a plan to build successfully larger methanol plants in Hawaii to provide the basis for a large plant. Develop a plan for large-scale production of biomass in the islands. Elements of the plan might include technical (types of trees, maximizing wood per acre, and harvesting processes), economic (price to be paid for the biomass), social, cultural, and political factors. Develop a plan to convert liquid fuel users to methanol and begin implementing the plan as the initial small plants supply methanol. Develop an overall plant to integrate the various parts of the program covered above

  6. Selection of Sustainable Processes using Sustainability Footprint Method: A Case Study of Methanol Production from Carbon Dioxide

    Science.gov (United States)

    Chemical products can be obtained by process pathways involving varying amounts and types of resources, utilities, and byproduct formation. When such competing process options such as six processes for making methanol as are considered in this study, it is necessary to identify t...

  7. Economic analysis of coal-based polygeneration system for methanol and power production

    International Nuclear Information System (INIS)

    Lin, Hu; Jin, Hongguang; Gao, Lin; Han, Wei

    Polygeneration system for chemical and power co-production has been regarded as one of promising technologies to use fossil fuel more efficiently and cleanly. In this paper the thermodynamic and economic performances of three types of coal-based polygeneration system were investigated and the influence of energy saving of oxygenation systems on system economic performance was revealed. The primary cost saving ratio (PCS) is presented as a criterion, which represents the cost saving of polygeneration system compared with the single-product systems with the same products outputs, to evaluate economic advantages of polygeneration system. As a result, the system, adopting un-reacted syngas partly recycled to the methanol synthesis reactor and without the shift process, can get the optimal PCS of 11.8%, which results from the trade-off between the installed capital cost saving and the energy saving effects on the cost saving, and represents the optimal coupling relationship among chemical conversion, energy utilization and economic performance. And both of fuel price and the level of equipment capital cost affect on PCS faintly. This paper provides an evaluation method for polygeneration systems based on both technical and economic viewpoints. (author)

  8. Hydrogenation of silyl formates: sustainable production of silanol and methanol from hydrosilane and carbon dioxide.

    Science.gov (United States)

    Koo, Jangwoo; Kim, Seung Hyo; Hong, Soon Hyeok

    2018-05-10

    A new process for simultaneously obtaining two chemical building blocks, methanol and silanol, was realized starting from silyl formates which can be derived from silane and carbon dioxide. Understanding the reaction mechanism enabled us to improve the reaction efficiency by the addition of a small amount of methanol.

  9. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  10. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay...... plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops...

  11. Alert Systems for production Plants

    DEFF Research Database (Denmark)

    Nielsen, Thomas Dyhre; Jensen, Finn Verner

    2005-01-01

    We present a new methodology for detecting faults and abnormal behavior in production plants. The methodology stems from a joint project with a Danish energy consortium. During the course of the project we encountered several problems that we believe are common for projects of this type. Most...

  12. Use of natural gas, methanol, and ethanol fuel emulsions as environmentally friendly energy carriers for mobile heat power plants

    Science.gov (United States)

    Likhanov, V. A.; Lopatin, O. P.

    2017-12-01

    The need for using environmentally friendly energy carriers for mobile heat power plants (HPPs) is grounded. Ecologically friendly sources of energy, such as natural gas as well as renewable methyl and ethyl alcohols, are investigated. In order to develop, determine, and optimize the composition of environmentally friendly energy carriers for an HPP, the latter has been tested when working on diesel fuel (DF), compressed natural gas (CNG), and methanol and ethanol fuel emulsions (MFE, EFE). It has been experimentally established that, for the application of environmentally friendly energy carriers for a 4Ch 11.0/12.5 diesel engine of a mobile fuel and power plant, it is necessary to maintain the following ratio of components when working on CNG: 80% gas and 20% DF primer portion. When working on an alcohol mixture, emulsions of the following composition were used: 25% alcohol (methanol or ethanol), 0.5% detergent-dispersant additive succinimide C-5A, 7% water, and 67.5% DF. When this diesel passed from oil DF to environmentally friendly energy sources, it allowed for the reduction of the content of exhaust gases (EG) (1) when working on CNG with recirculation of exhaust gases (EGR) (recirculation was used to eliminate the increased amount of nitric oxides by using CNG): carbon black by 5.8 times, carbon dioxide by 45.9%, and carbon monoxide by 23.8%; (2) when working on MFE: carbon black by 6.4 times, nitrogen oxides by 29.6%, carbon dioxide by 10.1%, and carbon oxide by 47.6%; (3) when working on EFE: carbon black by 4.8 times; nitrogen oxides by 40.3%, carbon dioxide by 26.6%, and carbon monoxide by 28.6%. The prospects of use of environmentally friendly energy carriers in diesels of mobile HPPs, such as natural gas, ethanol, and methanol, has been determined.

  13. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Alcinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Shindler, Y.; Tatrtakovsky, L.; Zvirin, Y.

    1998-01-01

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  14. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology.

    Science.gov (United States)

    Śliwińska, Anna; Burchart-Korol, Dorota; Smoliński, Adam

    2017-01-01

    This paper presents a life cycle assessment (LCA) of greenhouse gas emissions generated through methanol and electricity co-production system based on coal gasification technology. The analysis focuses on polygeneration technologies from which two products are produced, and thus, issues related to an allocation procedure for LCA are addressed in this paper. In the LCA, two methods were used: a 'system expansion' method based on two approaches, the 'avoided burdens approach' and 'direct system enlargement' methods and an 'allocation' method involving proportional partitioning based on physical relationships in a technological process. Cause-effect relationships in the analysed production process were identified, allowing for the identification of allocation factors. The 'system expansion' method involved expanding the analysis to include five additional variants of electricity production technologies in Poland (alternative technologies). This method revealed environmental consequences of implementation for the analysed technologies. It was found that the LCA of polygeneration technologies based on the 'system expansion' method generated a more complete source of information on environmental consequences than the 'allocation' method. The analysis shows that alternative technologies chosen for generating LCA results are crucial. Life cycle assessment was performed for the analysed, reference and variant alternative technologies. Comparative analysis was performed between the analysed technologies of methanol and electricity co-production from coal gasification as well as a reference technology of methanol production from the natural gas reforming process. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carla Cristina C.M.; Aranda, Donato A.G. [GREENTEC - Laboratory of Green Technologies, Escola de Quimica, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Tecnologia, Bloco E, sala 211, CEP 21941-909, Rio de Janeiro, RJ (Brazil); Ribeiro, Nielson F.P.; Souza, Mariana M.V.M. [LabTecH - Laboratory of Hydrogen Technologies, Escola de Quimica/UFRJ, Centro de Tecnologia, Bloco E, sala 206, CEP 21941-909, Rio de Janeiro, RJ (Brazil)

    2010-02-15

    Esters of fatty acids, derived from vegetable oils or animal fats, and known as biodiesel, are a promising alternative diesel fuel regarding the limited resources of fossil fuels and the environmental concerns. In this work, methanolysis of soybean oil was investigated using Mg-Al hydrotalcites as heterogeneous catalyst, evaluating the effect of Mg/Al ratio on the basicity and catalytic activity for biodiesel production. The catalysts were prepared with Al/(Mg + Al) molar ratios of 0.20, 0.25 and 0.33, and characterized by X-ray diffraction (XRD), textural analysis (BET method) and temperature-programmed desorption of CO{sub 2} (CO{sub 2}-TPD). When the reaction was carried out at 230 C with a methanol:soybean oil molar ratio of 13:1, a reaction time of 1 h and a catalyst loading of 5 wt.%, the oil conversion was 90% for the sample with Al/(Mg + Al) ratio of 0.33. This sample was the only one to show basic sites of medium strength. We also investigated the reuse of this catalyst, the effect of calcination temperature and made a comparison between refined and acidic oil. (author)

  16. Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition.

    Science.gov (United States)

    Mohamadzadeh Shirazi, Hamed; Karimi-Sabet, Javad; Ghotbi, Cyrus

    2017-09-01

    Microalgae as a candidate for production of biodiesel, possesses a hard cell wall that prevents intracellular lipids leaving out from the cells. Direct or in situ supercritical transesterification has the potential for destruction of microalgae hard cell wall and conversion of extracted lipids to biodiesel that consequently reduces the total energy consumption. Response surface methodology combined with central composite design was applied to investigate process parameters including: Temperature, Time, Methanol-to-dry algae, Hexane-to-dry algae, and Moisture content. Thirty-two experiments were designed and performed in a batch reactor, and biodiesel efficiency between 0.44% and 99.32% was obtained. According to fatty acid methyl ester yields, a quadratic experimental model was adjusted and the significance of parameters was evaluated using analysis of variance (ANOVA). Effects of single and interaction parameters were also interpreted. In addition, the effect of supercritical process on the ultrastructure of microalgae cell wall using scanning electron spectrometry (SEM) was surveyed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Non-Faradaic electrochemical promotion of catalytic methane reforming for methanol production

    Science.gov (United States)

    Fan, Qinbai

    2016-11-22

    A method of converting methane to methanol at low temperatures utilizes a reactor including an anode, a cathode, a membrane separator between the anode and cathode, a metal oxide catalyst at the anode and a hydrogen recovery catalyst at the cathode. The method can convert methane to methanol at as rate exceeding the theoretical Faradaic rate due to the contribution of an electrochemical reaction occurring in tandem with a Faradaic reaction.

  18. FY 1991 report on the results of the demonstration test on the methanol conversion at oil-fired power plant. Feasibility study of a new system for the stabilized supply of fuel use methanol; 1991 nendo sekiyu karyoku hatsudensho metanoru tenkan tou jissho shiken. Nenryo you metanoru kyokyu antei ka no tameno shin system no kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    As a part of the project on the demonstration test on the methanol conversion at oil-fired power plant, feasibility study was made of a new system for methanol production by using abundant hydraulic power energy overseas and by combining water electrolysis and coal gasification technology, and the FY 1991 results were summarized. As a result of the survey, the following were selected as water electrolysis facilities: high efficiency/high current density/simplification system and solid polyelectrolyte electrolysis system with a high purity of hydrogen gas. As the coal gasifier, the oxygen blown furnace was selected which has a high carbon utilization factor, is able to gasify coal at high pressure, has no unnecessary N{sub 2}, and is being used in the integrated coal gasification combined cycle power system. As methanol synthesis facilities, the MGC/MHI method super converter was selected. Assuming the output of hydroelectric power generation to be 4,000MW, conceptual design of the optimum system was made. The methanol cost was estimated under the conditions written below: cost of hydroelectric power generation at site: 2-5 yen/kWh, coal unit price at site: 5,000-6,000 yen/t, transportation distance: 5,000-10,000 km. (NEDO)

  19. Methanol production from Eucalyptus wood chips. Working Document 2. Vegetative propagation of Eucalypts

    Energy Technology Data Exchange (ETDEWEB)

    Fishkind, H.H.

    1982-04-01

    The feasibility of large-scale plantation establishment by various methods was examined, and the following conclusions were reached: seedling plantations are limited in potential yield due to genetic variation among the planting stock and often inadequate supplies of appropriate seed; vegetative propagation by rooted cuttings can provide good genetic uniformity of select hybrid planting stock; however, large-scale production requires establishment and maintenance of extensive cutting orchards. The collection of shoots and preparation of cuttings, although successfully implemented in the Congo and Brazil, would not be economically feasible in Florida for large-scale plantations; tissue culture propagation of select hybrid eucalypts offers the only opportunity to produce the very large number of trees required to establish the energy plantation. The cost of tissue culture propagation, although higher than seedling production, is more than off-set by the increased productivity of vegetative plantations established from select hybrid Eucalyptus.

  20. Methanol-dependent production of dihydroxyacetone and glycerol by mutants of the methylotrophic yeast Hansenula polymorpha blocked in dihydroxyacetone kinase and glycerol kinase

    NARCIS (Netherlands)

    Koning, W. de; Weusthuis, R.A.; Harder, W.; Dijkhuizen, L.

    Various factors controlling dihydroxyacetone (DHA) and glycerol production from methanol by resting cell suspensions of a mutant of Hansenula polymorpha, blocked in DHA kinase and glycerol kinase, were investigated. The presence of methanol (250 mM) and an additional substrate (0.5%, w/v) to

  1. Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol.

    Science.gov (United States)

    Liu, Yiqi; Tu, Xiaohu; Xu, Qin; Bai, Chenxiao; Kong, Chuixing; Liu, Qi; Yu, Jiahui; Peng, Qiangqiang; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2018-01-01

    As a promising one-carbon renewable substrate for industrial biotechnology, methanol has attracted much attention. However, engineering of microorganisms for industrial production of pharmaceuticals using a methanol substrate is still in infancy. In this study, the methylotrophic yeast Pichia pastoris was used to produce anti-hypercholesterolemia pharmaceuticals, lovastatin and its precursor monacolin J, from methanol. The biosynthetic pathways for monacolin J and lovastatin were first assembled and optimized in single strains using single copies of the relevant biosynthetic genes, and yields of 60.0mg/L monacolin J and 14.4mg/L lovastatin were obtained using methanol following pH controlled monoculture. To overcome limitations imposed by accumulation of intermediates and metabolic stress in monoculture, approaches using pathway splitting and co-culture were developed. Two pathway splitting strategies for monacolin J, and four for lovastatin were tested at different metabolic nodes. Biosynthesis of monacolin J and lovastatin was improved by 55% and 71%, respectively, when the upstream and downstream modules were separately accommodated in two different fluorescent strains, split at the metabolic node of dihydromonacolin L. However, pathway distribution at monacolin J blocked lovastatin biosynthesis in all designs, mainly due to its limited ability of crossing cellular membranes. Bioreactor fermentations were tested for the optimal co-culture strategies, and yields of 593.9mg/L monacolin J and 250.8mg/L lovastatin were achieved. This study provides an alternative method for production of monacolin J and lovastatin and reveals the potential of a methylotrophic yeast to produce complicated pharmaceuticals from methanol. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. A COMPARATIVE STUDY OF EXTRACT OF SUCCULENT LEAVES OF LIVING PLANT WITH METHANOLIC AND AQUEOUS EXTRACT OF BERLERIA LUPULINA LINDL. AGAINST PATHOGENIC MICROBES BY DISC DIFFUSION AND SPECTROPHOTOMETRY

    Directory of Open Access Journals (Sweden)

    Shibabrata Pattanayak

    2014-12-01

    Full Text Available Berleria lupulina Lindl. was evaluated for its reported antimicrobial activity in a novel way. The extract of succulent leaves collected from living plant was studied along with conventional methanolic and watery extracts made from the dry leaves of the plant. The extracts were tested on three pathogenic bacteria and the antimicrobial activity was tested both by conventional single disc diffusion method and a novel Spectrophotometric method. In disc diffusion study, it was found that the methanolic extract (100 mg/ml. and 200 mg/ ml. diluted in 70% of methanol and extract of succulent leaves can induce 12 mm, 13 mm and 14 mm diameter zone of inhibition comparable with 24 mm of Ceftriaxone against Escherichia coli. The zone of inhibition against Staphylococcus aureus were 13 mm, 14 mm, 15 mm and 25 mm and against Salmonella enteritides were 12 mm, 14 mm, 15 mm and 28 mm correspondingly. The watery extract made from the dry plant and the methanolic extract diluted in water failed to induce any inhibition in growth of the organisms. In spectrophotometric study, the methanolic extract showed antimicrobial efficacy in the concentration of 10 mg/ml. or above against Salmonella enteritides and Staphylococcus aureus. But against Escherichia coli, effective control was found in 20 mg/ml concentration. The fresh extract of the plant showed antimicrobial efficacy in the concentration of 16.5%. The anti microbial efficacy above that concentration cannot be detected in the available spectrophotometrical method for presence of color material in that fresh extract.

  3. Continuous production of biofuel from refined and used palm olein oil with supercritical methanol at a low molar ratio

    International Nuclear Information System (INIS)

    Sakdasri, Winatta; Sawangkeaw, Ruengwit; Ngamprasertsith, Somkiat

    2015-01-01

    Highlights: • Continuous production of biofuel in SCM at low molar ratio was studied. • The actual density of mixture was applied to calculate residence times. • The maximum FAME of 80–90% was observed for refined and used palm oils. • The glycerol–methanol reaction showed a positive effect in fuel yield. - Abstract: The high energy consumption and high environmental impact in the supercritical methanol (SCM) process primarily originates from the preheating of reactants and the recovery of excess alcohols. This work demonstrated the synthesis of biofuel using a lowered methanol to oil molar ratio of 12:1, instead of the 40:1–42:1 ratios that are commonly employed in conventional SCM. The apparent density of the reacting mixture was measured and applied to accurately calculate residence times in a continuous reactor. The effects of residence time were considered from 10 to 25 min. The results revealed that excessive residence times reduced the ester content, especially for unsaturated esters, in the resulting biofuel. A residence time of 20 min was recommended to simultaneously achieve a maximum ester content of 90% and a triglyceride conversion of up to 99%. Used palm olein oil with high free fatty acid (4.56 wt.%) can be employed as a feedstock and give a maximum ester content of 80%. In addition, the side reaction between glycerol and methanol at 400 °C and 15 MPa showed a positive effect in increasing fuel yield by 2%–7%

  4. The Methanol Economy Project

    Energy Technology Data Exchange (ETDEWEB)

    Olah, George [Univ. of Southern California, Los Angeles, CA (United States); Prakash, G. K. [Univ. of Southern California, Los Angeles, CA (United States)

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  5. Uranium hexafluoride production plant decommissioning

    International Nuclear Information System (INIS)

    Santos, Ivan

    2008-01-01

    The Institute of Energetic and Nuclear Research - IPEN is a research and development institution, located in a densely populated area, in the city of Sao Paulo. The nuclear fuel cycle was developed from the Yellow Cake to the enrichment and reconversion at IPEN. After this phase, all the technology was transferred to private enterprises and to the Brazilian Navy (CTM/SP). Some plants of the fuel cycle were at semi-industrial level, with a production over 20 kg/h. As a research institute, IPEN accomplished its function of the fuel cycle, developing and transferring technology. With the necessity of space for the implementation of new projects, the uranium hexafluoride (UF 6 ) production plant was chosen, since it had been idle for many years and presented potential leaking risks, which could cause environmental aggression and serious accidents. This plant decommission required accurate planning, as this work had not been carried out in Brazil before, for this type of facility, and there were major risks involving gaseous hydrogen fluoride aqueous solution of hydrofluoric acid (HF) both highly corrosive. Evaluations were performed and special equipment was developed, aiming to prevent leaking and avoid accidents. During the decommissioning work, the CNEN safety standards were obeyed for the whole operation. The environmental impact was calculated, showing to be not relevant.The radiation doses, after the work, were within the limits for the public and the area was released for new projects. (author)

  6. Radiolysis of kaempferol in water/methanol mixtures. Evaluation of antioxidant activity of kaempferol and products formed.

    Science.gov (United States)

    Marfak, Abdelghafour; Trouillas, Patrick; Allais, Daovy-Paulette; Champavier, Yves; Calliste, Claude-Alain; Duroux, Jean-Luc

    2003-02-26

    Oxidative reaction between hydroxymethyl radical ((*)CH(2)OH) and kaempferol, in methanol and methanol/water mixtures, was studied by gamma-radiolysis using a (60)Co source. Radiolysis was performed with concentrations and doses ranging from 5 x 10(-)(5) M to 5 x 10(-)(3) M and from 0.5 kGy to 14 kGy, respectively. Kaempferol degradation was followed by HPLC. Results showed that (*)CH(2)OH reacts with kaempferol at the 3-OH group and produces two depsides (K1 and K2) and other products including K3. K1, K2, and K3 were identified by NMR, LC-MS, and HRMS. The kaempferol degradation pathway leading to the K1, K2, and K3 formation is proposed. It was observed that the more water concentration in the irradiation medium increases, the more K2 concentration increases. Comprehension of food preservation is not clear because many phenomena occurring during irradiation are not established. Radiolysis of kaempferol in water/methanol mixtures helps to elucidate the phenomenon and it is possible that during the treatment of nutriments by gamma-irradiation, a series of products such as depside K2 could be formed. Antioxidant properties of kaempferol radiolysis products were evaluated according to their capacity to decrease the EPR DPPH (1,1-diphenyl-2-picrylhydrazil) signal and to inhibit superoxide radicals formed by the enzyme reaction "xanthine + xanthine oxidase".

  7. Production of Biodiesel from Roasted Chicken Fat and Methanol: Free Catalyst

    OpenAIRE

    Jorge Ramírez-Ortiz; Merced Martínez Rosales; Horacio Flores Zúñiga

    2014-01-01

    Transesterification reactions free of catalyst between roasted chicken fat with methanol were carried out in a batch reactor in order to produce biodiesel to temperatures from 120°C to 140°C. Parameters related to the transesterification reactions, including temperature, time and the molar ratio of chicken fat to methanol also investigated. The maximum yield of the reaction was of 98% under conditions of 140°C, 4 h of reaction time and a molar ratio of chicken fat to meth...

  8. The methanol industry's missed opportunities

    International Nuclear Information System (INIS)

    Stokes, C.A.

    1995-01-01

    Throughout its history the methanol industry has been backward in research and development and in industry cooperation on public image and regulatory matters. It has been extremely reticent as to the virtue of its product for new uses, especially for motor fuel. While this is perhaps understandable looking back, it is inexcusable looking forward. The industry needs to cooperate on a worldwide basis in research and market development, on the one hand, and in image-building and political influence, on the other, staying, of course, within the US and European and other regional antitrust regulations. Unless the industry develops the motor fuel market, and especially the exciting new approach through fuel cell operated EVs, to siphon off incremental capacity and keep plants running at 90% or more of capacity, it will continue to live in a price roller-coaster climate. A few low-cost producers will do reasonably well and the rest will just get along or drop out here and there along the way, as in the past. Having come so far from such a humble beginning, it is a shame not to realize the full potential that is clearly there: a potential to nearly double sales dollars without new plants and to produce from a plentiful resource, at least for the next half-century, all the methanol that can be imagined to be needed. Beyond that the industry can turn to renewable energy--the sun--via biomass growth, to make their product. In so doing, it can perhaps apply methanol as a plant growth stimulant, in effect making the product fully self-sustainable. The world needs to know what methanol can do to provide--economically and reliably--the things upon which a better life rests

  9. Transformations of lead 1,3-propylenediaminetetraacetate to its MOF products for the selective adsorption of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jun-Wei; Li, Xing; Zheng, Jian-Mei; Dong, Xin, E-mail: dxin@xmu.edu.cn; Zhou, Zhao-Hui, E-mail: zhzhou@xmu.edu.cn

    2016-05-15

    Water soluble coordination polymer of potassium lead 1,3-propylenediaminetetraacetate {K_4[Pb_2(1,3-pdta)_2]·6H_2O}{sub n} (1) and its insoluble products {[Pb(1,3-H_2pdta)(H_2O)]·2H_2O}{sub n} (2), {[Pb_2(1,3-pdta)(H_2O)_4]·4H_2O}{sub n} (3) and [Pb{sub 2}(1,3-pdta)(H{sub 2}O){sub 2}]{sub n} (4) were obtained from the direct reactions of lead nitrate with 1,3-propylenediaminetetraacetic acid in different conditions (1,3-H{sub 4}pdta=1,3-propylenediaminetetraacetic acid). The former 1 could be converted to the insoluble products of {[Pb_2(1,3-pdta)(H_2O)_4]·4H_2O}{sub n} (3) and [Pb{sub 2}(1,3-pdta)(H{sub 2}O){sub 2}]{sub n} (4) in weak acidic solution. The complexes have been full characterized by EA, FT-IR, solution and solid state {sup 13}C NMR spectra, thermogravimetric and structural analyses. Interestingly, 3 contains a unique (H{sub 2}O){sub 26} cluster and a 5.2 Å pore after eliminating the guest water molecules, which exhibits reversible adsorption for methanol. This is confirmed by PXRD and solid state {sup 13}C NMR analyses. Nano-confined methanol in microporous structure has been observed based on the large downfield shift of {sup 13}C NMR signal (Δδ 9.72 ppm), attributing to the methyl group in methanol. - Graphical abstract: Water soluble coordination polymer K{sub 4n}[Pb{sub 2}(1,3-pdta){sub 2}]{sub n}·6nH{sub 2}O (1) is converted to its insoluble product [Pb{sub 2}(1,3-pdta)(H{sub 2}O){sub 4}]{sub n}·4nH{sub 2}O (3), which contains a unique (H{sub 2}O){sub 26} cluster and exhibits reversible adsorption for methanol. - Highlights: • Water-soluble coordination polymer was constructed by lead propylenediaminetetraacetate. • Its MOF product has a unique (H{sub 2}O){sub 26} cluster. • The product exhibits reversible adsorption for methanol.

  10. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  11. Polyphenolic Profile and Targeted Bioactivity of Methanolic Extracts from Mediterranean Ethnomedicinal Plants on Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Antonino Pollio

    2016-03-01

    Full Text Available The methanol extracts of the aerial part of four ethnomedicinal plants of Mediterranean region, two non-seed vascular plants, Equisetum hyemale L. and Phyllitis scolopendrium (L. Newman, and two Spermatophyta, Juniperus communis L. (J. communis and Cotinus coggygria Scop. (C. coggygria, were screened against four human cells lines (A549, MCF7, TK6 and U937. Only the extracts of J. communis and C. coggygria showed marked cytotoxic effects, affecting both cell morphology and growth. A dose-dependent effect of these two extracts was also observed on the cell cycle distribution. Incubation of all the cell lines in a medium containing J. communis extract determined a remarkable accumulation of cells in the G2/M phase, whereas the C. coggygria extract induced a significant increase in the percentage of G1 cells. The novelty of our findings stands on the observation that the two extracts, consistently, elicited coherent effects on the cell cycle in four cell lines, independently from their phenotype, as two of them have epithelial origin and grow adherent and two are lymphoblastoid and grow in suspension. Even the expression profiles of several proteins regulating cell cycle progression and cell death were affected by both extracts. LC-MS investigation of methanol extract of C. coggygria led to the identification of twelve flavonoids (compounds 1–11, 19 and eight polyphenols derivatives (12–18, 20, while in J. communis extract, eight flavonoids (21–28, a α-ionone glycoside (29 and a lignin (30 were found. Although many of these compounds have interesting individual biological activities, their natural blends seem to exert specific effects on the proliferation of cell lines either growing adherent or in suspension, suggesting potential use in fighting cancer.

  12. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.

    Science.gov (United States)

    Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-05-09

    Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    KAUST Repository

    Álvarez, Andrea

    2017-06-28

    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions.

  14. [Features of dyslipidemia development and insulin resistance in female workers engaged in methanol and formaldehyde production].

    Science.gov (United States)

    Taranenko, L A

    2013-01-01

    The article covers data on analyzing occupational risk of carbohydrate and lipid metabolism in female workers exosed to methanol and formaldehyde. Findings are that increased contents of the studied chemicals in the air of workplace cause more probable dyslipidemia, insuline resistence in peri-menopausal female workers, these disorders have reliable correlation with occupation.

  15. Photocatalytic methanol assisted production of hydrogen with simultaneous degradation of methyl orange

    NARCIS (Netherlands)

    Sobral Romao, J.I.; Salata, Rafal; Park, Sun-Young; Mul, Guido

    2016-01-01

    Platinized TiO2 prepared by photodeposition was evaluated for activity in the simultaneous conversion of methyl orange (MO), and methanol assisted formation of hydrogen. Low concentrations of MO were found ineffective for generation of hydrogen in measurable quantities upon illumination of Pt/TiO2

  16. Methanol from biomass and hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    For Hawaii in the near term, the only liquid fuels indigenous sources will be those that can be made from biomass, and of these, methanol is the most promising. In addition, hydrogen produced by electrolysis can be used to markedly increase the yield of biomass methanol. This paper calculates cost of producing methanol by an integrated system including a geothermal electricity facility plus a plant producing methanol by gasifying biomass and adding hydrogen produced by electrolysis. Other studies cover methanol from biomass without added hydrogen and methanol from biomass by steam and carbon dioxide reforming. Methanol is made in a two-step process: the first is the gasification of biomass by partial oxidation with pure oxygen to produce carbon oxides and hydrogen, and the second is the reaction of gases to form methanol. Geothermal steam is used to generate the electricity used for the electrolysis to produce the added hydrogen

  17. Evaluation of the use of UCG gas to produce 4000 BPD and 12,000 BPD of methanol with conversion to M-gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, Donald

    1981-01-01

    This study involves an examination of the technical and economic feasibility of using raw gas from an underground coal gasification facility as feedstock for methanol synthesis, and producing M-gasoline from the methanol. It differs from previous studies in considering facilities smaller than those previously studied. Addressed also is the economic and technical feasibility of using equipment from existing ammonia plants for the production of methanol. Ammonia and methanol plants are very similar in type of equipment used and plant layout. Consequently, it is possible to convert an existing ammonia plant into a methanol facility. Existing ammonia and methanol plants which contain equipment that might be utilized with UCG all use natural gas for feedstock. The processing steps in these plants can be divided into unit operations which are described. The product price analysis shows that significant economies of scale exist for the larger of the two facility sizes considered in this study. The economies of scale are evident for both the methanol/M-gasoline and methanol-only facilities. Compared to current market prices, the calculated product prices for the 4000 BPD and 12,000 BPD methanol-only facilities are within the range of competitiveness with the prices of conventionally produced methanol. The product prices calculated for the 12,000 BPD methanol/4910 BPD M-gasoline facility are, under the most optimistic assumptions, 50% higher than the current market price for unleaded gasoline.

  18. FY 1984 report on the results of the verification test on the methanol conversion for oil-fired power plant. Survey of the potential quantity supplied of overseas resource (Survey of the usability of methanol); 1984 nendo sekiyu karyoku hatsudensho metanoru tenkan tou jissho shiken kaigai shigen kyokyu kano ryo chosa (Metanoru riyo kanosei chosa) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    The paper studied a scenario of the demand for power generation use methanol in Japan by grasping the situation of the utilization of methanol as fuel in the world, studying a scenario of power supply and the positioning of methanol power generation in Japan, doing a trial calculation of the breakeven price of power generation use methanol, etc. As to the usability of power generation use methanol as fuel, in the use for the reformed gas turbine and fuel cell, there is a possibility of making up for the disadvantage in fuel price by future technical development. For the fuel conversion at existing coal-fired power plants and the application of methanol to combined cycle and newly-installed boiler, it is necessary to have a substantial drop in methanol price. Taking an advantage that methanol can be transported in small size and easily be stored, methanol can possibly be used as fuel for dispersed power sources. The potential demand for petroleum substituting methanol is estimated at approximately 25 million t/y, assuming it to be 1/2 of the petroleum consumption amount. The present methanol market in the world is not so large for quantity use as fuel, and for the introduction, therefore, it is necessary to secure flexibility in supply. (NEDO)

  19. Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes

    Science.gov (United States)

    2012-01-01

    Background Pichia pastoris is an established eukaryotic host for the production of recombinant proteins. Most often, protein production is under the control of the strong methanol-inducible aox1 promoter. However, detailed information about the physiological alterations in P. pastoris accompanying the shift from growth on glycerol to methanol-induced protein production under industrial relevant conditions is missing. Here, we provide an analysis of the physiological response of P. pastoris GS115 to methanol-induced high-level production of the Hepatitis B virus surface antigen (HBsAg). High product titers and the retention of the protein in the endoplasmic reticulum (ER) are supposedly of major impact on the host physiology. For a more detailed understanding of the cellular response to methanol-induced HBsAg production, the time-dependent changes in the yeast proteome and ultrastructural cell morphology were analyzed during the production process. Results The shift from growth on glycerol to growth and HBsAg production on methanol was accompanied by a drastic change in the yeast proteome. In particular, enzymes from the methanol dissimilation pathway started to dominate the proteome while enzymes from the methanol assimilation pathway, e.g. the transketolase DAS1, increased only moderately. The majority of methanol was metabolized via the energy generating dissimilatory pathway leading to a corresponding increase in mitochondrial size and numbers. The methanol-metabolism related generation of reactive oxygen species induced a pronounced oxidative stress response (e.g. strong increase of the peroxiredoxin PMP20). Moreover, the accumulation of HBsAg in the ER resulted in the induction of the unfolded protein response (e.g. strong increase of the ER-resident disulfide isomerase, PDI) and the ER associated degradation (ERAD) pathway (e.g. increase of two cytosolic chaperones and members of the AAA ATPase superfamily) indicating that potential degradation of HBsAg could

  20. Waste-to-methanol: Process and economics assessment.

    Science.gov (United States)

    Iaquaniello, Gaetano; Centi, Gabriele; Salladini, Annarita; Palo, Emma; Perathoner, Siglinda; Spadaccini, Luca

    2017-11-01

    The waste-to-methanol (WtM) process and related economics are assessed to evidence that WtM is a valuable solution both from economic, strategic and environmental perspectives. Bio-methanol from Refuse-derived-fuels (RdF) has an estimated cost of production of about 110€/t for a new WtM 300t/d plant. With respect to waste-to-energy (WtE) approach, this solution allows various advantages. In considering the average market cost of methanol and the premium as biofuel, the WtM approach results in a ROI (Return of Investment) of about 29%, e.g. a payback time of about 4years. In a hybrid scheme of integration with an existing methanol plant from natural gas, the cost of production becomes a profit even without considering the cap for bio-methanol production. The WtM process allows to produce methanol with about 40% and 30-35% reduction in greenhouse gas emissions with respect to methanol production from fossil fuels and bio-resources, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Structure elucidation and toxicity analyses of the radiolytic products of aflatoxin B{sub 1} in methanol-water solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Institute of Agro-food Science and Technology of Chinese Academy of Agricultural Sciences, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Graduate School of Chinese Academy of Agricultural Sciences, 12th Zhongguancun South Road, Hai Dian District, Beijing 100081 (China); Xie, Fang [Institute of Agro-food Science and Technology of Chinese Academy of Agricultural Sciences, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Xue, Xiaofeng [Bee Research Institute of Chinese Academy of Agricultural Sciences, 1st Xiangshan North Ditch, Hai Dian District, Beijing 100093 (China); Wang, Zhidong; Fan, Bei [Institute of Agro-food Science and Technology of Chinese Academy of Agricultural Sciences, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Ha, Yiming, E-mail: wxfay2011@hotmail.com [Institute of Agro-food Science and Technology of Chinese Academy of Agricultural Sciences, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China)

    2011-09-15

    Highlights: {yields} Radiolytic products of aflatoxin B{sub 1} were produced under gamma irradiation. {yields} Seven key radiolytic products were structure-elucidated. {yields} Free-radical species in radiolytic solution resulted in the formation of products. {yields} Based on the structure-activity relationship analysis, the toxicity of radiolytic products was significantly reduced compared with that of AFB{sub 1}. {yields} The addition reaction on furan ring double bond was the reason for the reduced toxicity. - Abstract: The identification of the radiolytic products of mycotoxins is a key issue in the feasibility study of gamma ray radiation detoxification. Methanol-water solution (60:40, v/v) spiked with aflatoxin B{sub 1} (AFB{sub 1}; 20 mg L{sup -1}) was irradiated with Co{sup 60} gamma ray to generate radiolytic products. Liquid chromatography-quadruple time-of-flight mass spectrometry was applied to identify the radiolytic products of AFB{sub 1}. Accurate mass and proposed molecular formulas with a high-matching property of more than 20 radiolytic products were obtained. Seven key radiolytic products were proposed based on the molecular formulas and tandem mass spectrometry spectra. The analyses of toxicity and formation pathways were proposed based on the structure of the radiolytic products. The addition reaction caused by the free-radical species in the methanol-water solution resulted in the formation of most radiolytic products. Based on the structure-activity relationship analysis, the toxicity of radiolytic products was significantly reduced compared with that of AFB{sub 1} because of the addition reaction that occurred on the double bond in the terminal furan ring. For this reason, gamma irradiation is deemed an effective tool for the detoxification of AFB{sub 1}.

  2. Synthesis of methyl esters from relevant palm products in near-critical methanol with modified-zirconia catalysts.

    Science.gov (United States)

    Laosiripojana, N; Kiatkittipong, W; Sutthisripok, W; Assabumrungrat, S

    2010-11-01

    The transesterification and esterification of palm products i.e. crude palm oil (CPO), refined palm oil (RPO) and palm fatty acid distillate (PFAD) under near-critical methanol in the presence of synthesized SO(4)-ZrO(2), WO(3)-ZrO(2) and TiO(2)-ZrO(2) (with various sulfur- and tungsten loadings, Ti/Zr ratios, and calcination temperatures) were studied. Among them, the reaction of RPO with 20%WO(3)-ZrO(2) (calcined at 800 degrees C) enhanced the highest fatty acid methyl ester (FAME) yield with greatest stability after several reaction cycles; furthermore, it required shorter time, lower temperature and less amount of methanol compared to the reactions without catalyst. These benefits were related to the high acid-site density and tetragonal phase formation of synthesized WO(3)-ZrO(2). For further improvement, the addition of toluene as co-solvent considerably reduced the requirement of methanol to maximize FAME yield, while the addition of molecular sieve along with catalyst significantly increased FAME yield from PFAD and CPO due to the inhibition of hydrolysis reaction. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. H2 as source of renewable energy: production through catalytic methods by means of the reforming of methanol

    International Nuclear Information System (INIS)

    Perez H, R.; Lopez, P.; Gutierrez M, A.; Gutierrez W, C.; Mondragon G, G.; Mendoza A, D.; Angeles Ch, C.; Arenas A, J.

    2010-01-01

    The fuel cells transform the chemical energy stored in the connection H-H of the H 2 molecule in electric energy and water vapor when is combines with the oxygen. Even when the hydrogen has a high potential as energy source, its handling is difficult (storage and transport). This has motivated the search of hydrogen production methods in situ starting from liquid fuels like the methanol or ethanol through the reaction of reforming. The methanol is a fuel of easy availability for fuel cells with electronic applications and of transport. Although the methanol energy density is approximately half of the gasoline and diesel, it is more reagent and can be used directly in fuel cells or can also be reformed to low temperatures for the hydrogen obtaining to be used in fuel cells of proton exchange. In this article the results obtained of the systems, Cu-Ni/ZrO 2 and Ag-Au(1-D)-CeO 2 are presented and can be competitive to generate H 2 and being used in the fuel cells to generate energy. (Author)

  4. Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol.

    Science.gov (United States)

    Dang, Tan Hiep; Chen, Bing-Hung; Lee, Duu-Jong

    2013-10-01

    Biodiesel production from transesterification of vegetable oils in excess methanol was performed by using as-prepared catalyst from low-cost kaolin clay. This effective heterogeneous catalyst was successfully prepared from natural kaolin firstly by dehydroxylation at 800°C for 10h and, subsequently, by NaOH-activation hydrothermally at 90°C for 24h and calcined again at 500°C for 6h. The as-obtained catalytic material was characterized with instruments, including FT-IR, XRD, SEM, and porosimeter (BET/BJH analysis). The as-prepared catalyst was advantageous not only for its easy preparation, but also for its cost-efficiency and superior catalysis in transesterification of vegetable oils in excess methanol to produce fatty acid methyl esters (FAMEs). Conversion efficiencies of soybean and palm oils to biodiesel over the as-prepared catalysts reached 97.0±3.0% and 95.4±3.7%, respectively, under optimal conditions. Activation energies of transesterification reactions of soybean and palm oils in excess methanol using these catalysts are 14.09 kJ/mol and 48.87 kJ/mol, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Hot new gamble on methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, J.

    1981-10-01

    Methanol from coal, wood, or natural gas is being considered as an extender or an alternative source of gasoline. Firms such as Nova and Celanese are gambling millions on the proposition that methanol is a crucial steppingstone to the fuels and chemicals of the future. With a new process developed by Mobil Oil, methanol from coal could be converted into gasoline. By the 1990s Imperial Oil Ltd. expects there will be at least one methanol plant using Alberta coal. These and other plans by the Alberta and British Columbia governments and by Canadian industry to produce methanol are reported.

  6. Kinetic studies of sea mango (Cerbera odollam) oil for biodiesel production via injection of superheated methanol vapour technology

    International Nuclear Information System (INIS)

    Ang, Gaik Tin; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2015-01-01

    Highlights: • Sea mango oil with high FFA was directly used to produce biodiesel. • Non-catalytic superheated methanol transesterification system is developed. • High content of FAME can be obtained. • Kinetic modelling based on reaction mechanism is proposed and verified. • Kinetic study for reversible transesterification and esterification reactions. - Abstract: In this study, sea mango (Cerbera odollam) oil which is rich in free fatty acid was utilised as the feedstock in one-step superheated methanol vapour (SMV) transesterification reaction without going through pre-treatment step. SMV transesterification reaction was initiated by injecting superheated methanol vapour into sea mango oil phase. Effect of methanol flow rate at the range of 1–4 mL/min as well as effect of reaction temperatures at the range of 260–290 °C was studied based on FAME production rates at constant initial oil volume of 100 mL. Kinetic modelling of semi-batch system, incorporating second-order of three-stepwise reversible transesterification of triglycerides (TG) and second order of reversible esterification of free fatty acid (FFA) were verified simultaneously using ordinary differential equation (ODE45) solver. It shows that transesterification reaction of TG and esterification of FFA would occur simultaneously. The high activation energy of 50 kJ/mol and low reaction rate constant of 1.62 × 10"−"4 dm"3/mol min verified that the reaction of TG to become diglycerides (DG) as the rate limiting step in this semi-batch SMV system.

  7. Optimization of a flexible multi-generation system based on wood chip gasification and methanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Clausen, Lasse Røngaard; Algren, Loui

    2017-01-01

    of ± 25% in investment costs and methanol price, and considering two different electricity price scenarios.In addition, a change in the interest rate from 5% to 20% was found to reduce the lower bound of the NPVto 181.3 M€ for reference operating conditions. The results suggest that the applied interest...... rate andoperating conditions, in particular the methanol price, would have a much higher impact on the economicperformance of the designs than corresponding uncertainties in investment costs. In addition,the study outcomes emphasize the importance of including systematic uncertainty analysis...... with an existing combined heat and power (CHP) unit and industrial energy utility supply in the Danish city of Horsens. The objective was to optimize economic performance and minimize total CO2 emission of the FMG while it was required to meet the local district heating demand plus the thermal utility demand...

  8. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R.L. [Colorado School of Mines, Golden, CO (United States)

    1995-12-31

    The United States has vast natural gas reserves which could contribute significantly to our energy security if economical technologies for conversion to liquid fuels and chemicals were developed. Many of these reserves are small scale or in remote locations and of little value unless they can be transported to consumers. Transportation is economically performed via pipeline, but this route is usually unavailable in remote locations. Another option is to convert the methane in the gas to liquid hydrocarbons, such as methanol, which can easily and economically be transported by truck. Therefore, the conversion of methane to liquid hydrocarbons has the potential to decrease our dependence upon oil imports by opening new markets for natural gas and increasing its use in the transportation and chemical sectors of the economy. In this project, we are attempting to develop, and explore new catalysts capable of direct oxidation of methane to methanol. The specific objectives of this work are discussed.

  9. The effect of economic variables over a biodiesel production plant

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, J.M., E-mail: jmarchetti@plapiqui.edu.ar [Planta Piloto de Ingenieria Quimica (UNS-CONICET), Camino La Carrindanga km 7, 8000 Bahia Blanca (Argentina)

    2011-09-15

    Highlights: {yields} Influence of the mayor economic parameters for biodiesel production. {yields} Variations of profitability of a biodiesel plant due to changes in the market scenarios. {yields} Comparison of economic indicators of a biodiesel production facility when market variables are modified. - Abstract: Biodiesel appears as one of the possible alternative renewable fuels to substitute diesel fuel derived from petroleum. Several researches have been done on the technical aspects of biodiesel production in an attempt to develop a better and cleaner alternative to the conventional process. Economic studies have been carried out to have a better understanding of the high costs and benefits of different technologies in the biodiesel industry. In this work it is studied the effect of the most important economic variables of a biodiesel production process over the general economy of a conventional plant which employs sodium methoxide as catalyst. It has been analyzed the effect of the oil price, the amount of free fatty acid, the biodiesel price, the cost of the glycerin, the effect due to the modification on the methanol price, the washing water price, and several others. Small variations on some of the major market variables would produce significant effects over the global economy of the plant, making it non profitable in some cases.

  10. The effect of economic variables over a biodiesel production plant

    International Nuclear Information System (INIS)

    Marchetti, J.M.

    2011-01-01

    Highlights: → Influence of the mayor economic parameters for biodiesel production. → Variations of profitability of a biodiesel plant due to changes in the market scenarios. → Comparison of economic indicators of a biodiesel production facility when market variables are modified. - Abstract: Biodiesel appears as one of the possible alternative renewable fuels to substitute diesel fuel derived from petroleum. Several researches have been done on the technical aspects of biodiesel production in an attempt to develop a better and cleaner alternative to the conventional process. Economic studies have been carried out to have a better understanding of the high costs and benefits of different technologies in the biodiesel industry. In this work it is studied the effect of the most important economic variables of a biodiesel production process over the general economy of a conventional plant which employs sodium methoxide as catalyst. It has been analyzed the effect of the oil price, the amount of free fatty acid, the biodiesel price, the cost of the glycerin, the effect due to the modification on the methanol price, the washing water price, and several others. Small variations on some of the major market variables would produce significant effects over the global economy of the plant, making it non profitable in some cases.

  11. Productivity growth patterns in US dairy products manufacturing plants

    NARCIS (Netherlands)

    Geylani, P.C.; Stefanou, S.E.

    2011-01-01

    We analyse the productivity growth patterns in the US dairy products industry using the Census Bureau's plant-level data set. We decompose Total Factor Productivity (TFP) growth into the scale and technical change components and analyse variability of plants' productivity by constructing transition

  12. Antibacterial and Antibiotic-Modifying Activity of Methanol Extracts from Six Cameroonian Food Plants against Multidrug-Resistant Enteric Bacteria

    Directory of Open Access Journals (Sweden)

    Joachim K. Dzotam

    2017-01-01

    Full Text Available The present work was designed to investigate the antibacterial activities of methanol extracts from six Cameroonian edible plants and their synergistic effects with some commonly used antibiotics against multidrug-resistant (MDR Gram-negative bacteria expressing active efflux pumps. The extracts were subjected to qualitative phytochemical screening and the microdilution broth method was used for antibacterial assays. The results of phytochemical tests indicate that all tested crude extracts contained polyphenols, flavonoids, triterpenes, and steroids. Extracts displayed selective antibacterial activities with the minimal inhibitory concentration (MIC values ranging from 32 to 1024 μg/mL. The lowest MIC value (32 μg/mL was recorded with Coula edulis extract against E. coli AG102 and K. pneumoniae K2 and with Mangifera indica bark extract against P. aeruginosa PA01 and Citrus sinensis extract against E. coli W3110 which also displayed the best MBC (256 μg/mL value against E. coli ATCC8739. In combination with antibiotics, extracts from M. indica leaves showed synergistic effects with 75% (6/8 of the tested antibiotics against more than 80% of the tested bacteria. The findings of the present work indicate that the tested plants may be used alone or in combination in the treatment of bacterial infections including the multidrug-resistant bacteria.

  13. Efficacy of Aqueous and Methanol Extracts of Some Medicinal Plants for Potential Antibacterial Activity

    OpenAIRE

    PAREKH, Jigna; JADEJA, Darshana; CHANDA, Sumitra

    2014-01-01

    Twelve medicinal plants were screened, namely Abrus precatorius L., Caesalpinia pulcherrima Swartz., Cardiospermum halicacabum L., Casuarina equisetifolia L., Cynodon dactylon (L.) Pers., Delonix regia L., Euphorbia hirta L., Euphorbia tirucalli L., Ficus benghalensis L., Gmelina asiatica L., Santalum album L., and Tecomella undulata (Sm.) Seem, for potential antibacterial activity against 5 medically important bacterial strains, namely Bacillus subtilis ATCC6633, Staphylococcus epidermidis A...

  14. Enhanced porcine circovirus Cap protein production by Pichia pastoris with a fuzzy logic DO control based methanol/sorbitol co-feeding induction strategy.

    Science.gov (United States)

    Ding, Jian; Zhang, Chunling; Gao, Minjie; Hou, Guoli; Liang, Kexue; Li, Chunhua; Ni, Jianping; Li, Zhen; Shi, Zhongping

    2014-05-10

    Porcine circovirus Cap protein production by P. pastoris with strong AOX promoter suffered with the problems with traditional pure methanol induction: (1) inefficient methanol metabolism; (2) extensive oxygen supply load; (3) difficulty in stable DO control; (4) low protein titer. In this study, based on the difference of DO change patterns in response to methanol and sorbitol additions, a novel fuzzy control system was proposed to automatically regulate the co-feeding rates of methanol and sorbitol for efficient Cap protein induction. With aid of the proposed control system when setting DO control level at 10%, overall fermentation performance was significantly improved: (1) DO could be stably controlled under mild aeration condition; (2) methanol consumption rate could be restricted at moderate level and the major enzymes involved with methanol metabolism were largely activated; (3) Cap protein concentration reached a highest level of 198mg/L, which was about 64% increase over the best one using the pure methanol induction strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Integrated methanol synthesis

    International Nuclear Information System (INIS)

    Jaeger, W.

    1982-01-01

    This invention concerns a plant for methanol manufacture from gasified coal, particularly using nuclear power. In order to reduce the cost of the hydrogen circuits, the methanol synthesis is integrated in the coal gasification plant. The coal used is gasified with hydration by means of hydrogen and the crude gas emerging, after cooling and separating the carbon dioxide and hydrogen sulphide, is mixed with the synthetic gas leaving the methane cracking furnace. This mixture is taken to the methanol synthesis and more than 90% is converted into methanol in one pass. The gas mixture remaning after condensation and separation of methanol is decomposed into three fractions in low temperature gas decomposition with a high proportion of unconverted carbon monoxide. The flow of methane is taken to the cracking furnace with steam, the flow of hydrogen is taken to the hydrating coal gasifier, and the flow of carbon monoxide is taken to the methanol synthesis. The heat required for cracking the methane can either be provided by a nuclear reactor or by the coke left after hydrating gasification. (orig./RB) [de

  16. Production analysis of methanol and hydrogen of a modificated blast furnace gas using nuclear energy of the high temperature reactor

    International Nuclear Information System (INIS)

    Peschel, W.

    1985-12-01

    Modern blast furnaces are operated with a coke ration of 500 kg/t pig iron. The increase of the coke ratio to 1000 kg/t pig iron raises the content of carbon monoxide and hydrogen in the blast furnace gas. On the basis of a blast furnace gas modificated in such a way, the production of methanol and hydrogen is investigated under the coupling of current and process heat from the high temperature reactor. Moreover the different variants are discussed, for which respectively a material and energetic balance as well as an estimation of the production costs is performed. Regarding the subsequent treatment of the blast furnace gas it turns out favourably in principle to operate the blast furnace with a nitrogen-free wind consisting only of oxygen and steam. The production costs show a strong dependence on the raw material costs, whose influence is shown in a nomograph. (orig.) [de

  17. Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale

    International Nuclear Information System (INIS)

    Micic, Radoslav D.; Tomić, Milan D.; Kiss, Ferenc E.; Martinovic, Ferenc L.; Simikić, Mirko Ð.; Molnar, Tibor T.

    2016-01-01

    Highlights: • Single-step supercritical transesterification compared to the two-step process. • Two-step process: oil hydrolysis and subsequent supercritical methyl esterification. • Experiments were conducted in a laboratory-scale batch reactor. • Higher biodiesel yields in two-step process at milder reaction conditions. • Two-step process has potential to be cost-competitive with the single-step process. - Abstract: Single-step supercritical transesterification and two-step biodiesel production process consisting of oil hydrolysis and subsequent supercritical methyl esterification were studied and compared. For this purpose, comparative experiments were conducted in a laboratory-scale batch reactor and optimal reaction conditions (temperature, pressure, molar ratio and time) were determined. Results indicate that in comparison to a single-step transesterification, methyl esterification (second step of the two-step process) produces higher biodiesel yields (95 wt% vs. 91 wt%) at lower temperatures (270 °C vs. 350 °C), pressures (8 MPa vs. 12 MPa) and methanol to oil molar ratios (1:20 vs. 1:42). This can be explained by the fact that the reaction system consisting of free fatty acid (FFA) and methanol achieves supercritical condition at milder reaction conditions. Furthermore, the dissolved FFA increases the acidity of supercritical methanol and acts as an acid catalyst that increases the reaction rate. There is a direct correlation between FFA content of the product obtained in hydrolysis and biodiesel yields in methyl esterification. Therefore, the reaction parameters of hydrolysis were optimized to yield the highest FFA content at 12 MPa, 250 °C and 1:20 oil to water molar ratio. Results of direct material and energy costs comparison suggest that the process based on the two-step reaction has the potential to be cost-competitive with the process based on single-step supercritical transesterification. Higher biodiesel yields, similar or lower energy

  18. Batch extractive distillation for high purity methanol

    International Nuclear Information System (INIS)

    Zhang Weijiang; Ma Sisi

    2006-01-01

    In this paper, the application in chemical industry and microelectronic industry, market status and the present situation of production of high purity methanol at home and abroad were introduced firstly. Purification of industrial methanol for high purity methanol is feasible in china. Batch extractive distillation is the best separation technique for purification of industrial methanol. Dimethyl sulfoxide was better as an extractant. (authors)

  19. Processes for manufacture of products from plants

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed herein is a process for inhibiting browning of plant material comprising adding a chelating agent to a disrupted plant material and adjusting the pH to a value of 2.0 to 4.5. Processes for manufacture of soluble and insoluble products from a plant material are also disclosed. Soluble...

  20. New constraints on terrestrial and oceanic sources of atmospheric methanol

    Directory of Open Access Journals (Sweden)

    D. B. Millet

    2008-12-01

    Full Text Available We use a global 3-D chemical transport model (GEOS-Chem to interpret new aircraft, surface, and oceanic observations of methanol in terms of the constraints that they place on the atmospheric methanol budget. Recent measurements of methanol concentrations in the ocean mixed layer (OML imply that in situ biological production must be the main methanol source in the OML, dominating over uptake from the atmosphere. It follows that oceanic emission and uptake must be viewed as independent terms in the atmospheric methanol budget. We deduce that the marine biosphere is a large primary source (85 Tg a−1 of methanol to the atmosphere and is also a large sink (101 Tg a−1, comparable in magnitude to atmospheric oxidation by OH (88 Tg a−1. The resulting atmospheric lifetime of methanol in the model is 4.7 days. Aircraft measurements in the North American boundary layer imply that terrestrial plants are a much weaker source than presently thought, likely reflecting an overestimate of broadleaf tree emissions, and this is also generally consistent with surface measurements. We deduce a terrestrial plant source of 80 Tg a−1, comparable in magnitude to the ocean source. The aircraft measurements show a strong correlation with CO (R2=0.51−0.61 over North America during summer. We reproduce this correlation and slope in the model with the reduced plant source, which also confirms that the anthropogenic source of methanol must be small. Our reduced plant source also provides a better simulation of methanol observations over tropical South America.

  1. Development of an Efficient Methanol Production Process for Direct CO2 Hydrogenation over a Cu/ZnO/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Fereshteh Samimi

    2017-11-01

    Full Text Available Carbon capture and utilization as a raw material for methanol production are options for addressing energy problems and global warming. However, the commercial methanol synthesis catalyst offers a poor efficiency in CO2 feedstock because of a low conversion of CO2 and its deactivation resulting from high water production during the process. To overcome these barriers, an efficient process consisting of three stage heat exchanger reactors was proposed for CO2 hydrogenation. The catalyst volume in the conventional methanol reactor (CR is divided into three sections to load reactors. The product stream of each reactor is conveyed to a flash drum to remove methanol and water from the unreacted gases (H2, CO and CO2. Then, the gaseous stream enters the top of the next reactor as the inlet feed. This novel configuration increases CO2 conversion almost twice compared to one stage reactor. Also to reduce water production, a water permselective membrane was assisted in each reactor to remove water from the reaction side. The proposed process was compared with one stage reactor and CR from coal and natural gas. Methanol is produced 288, 305, 586 and 569 ton/day in CR, one-stage, three-stage and three-stage membrane reactors (MR, respectively. Although methanol production rate in three-stage MR is a bit lower than three stage reactors, the produced water, as the cause of catalyst poisoning, is notably reduced in this configuration. Results show that the proposed process is a strongly feasible way to produce methanol that can competitive with a traditional synthesis process.

  2. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol.

    Science.gov (United States)

    Celik, Eda; Calik, Pinar; Oliver, Stephen G

    2009-09-01

    Batch-wise sorbitol addition as a co-substrate at the induction phase of methanol fed-batch fermentation by Pichia pastoris (Mut(+)) was proposed as a beneficial recombinant protein production strategy and the metabolic responses to methanol feeding rate in the presence of sorbitol was systematically investigated. Adding sorbitol batch-wise to the medium provided the following advantages over growth on methanol alone: (a) eliminating the long lag-phase for the cells and reaching 'high cell density production' at t = 24 h of the process (C(X) = 70 g CDW/l); (b) achieving 1.8-fold higher recombinant human erythropoietin (rHuEPO) (at t = 18 h); (c) reducing specific protease production 1.2-fold; (d) eliminating the lactic acid build-up period; (e) lowering the oxygen uptake rate two-fold; and (f) obtaining 1.4-fold higher overall yield coefficients. The maximum specific alcohol oxidase activity was not affected in the presence of sorbitol, and it was observed that sorbitol and methanol were utilized simultaneously. Thus, in the presence of sorbitol, 130 mg/l rHuEPO was produced at t = 24 h, compared to 80 mg/l rHuEPO (t = 24 h) on methanol alone. This work demonstrates not only the ease and efficiency of incorporating sorbitol to fermentations by Mut(+) strains of P. pastoris for the production of any bio-product, but also provides new insights into the metabolism of the methylotrophic yeast P. pastoris.

  3. Planning product quality: An example - ornamental plants

    Directory of Open Access Journals (Sweden)

    Kovačević Miodrag

    2003-01-01

    Full Text Available The industry of ornamental plants is a subject of quality planning. The quality plan is a document setting out the specific quality practices in ornamental plants production. That plan introduce organizational structure procedures, processes and resources needed to implement quality in life cycle of product chain. For engineers it represents a new tool.

  4. Medicinal plants: production and biochemical characterization

    International Nuclear Information System (INIS)

    Chunzhao Liu; Zobayed, S.M.A; Murch, S.J.; Saxena, P.K.

    2002-01-01

    Recent advances in the area of biotechnology offer some possibility for the development of new technologies for the conservation, characterization and mass production of medicinal plant species, (i.e. in vitro cell culture techniques for the mass production of sterile, consistent, standardized medicinal plant materials). This paper discussed the following subjects - plant tissue culture, de novo shoot organogenesis, de novo root organogenesis, somatic embryogenesis, large scale propagation in bioreactors and discovery of unique biomolecules

  5. Supported Ionic Liquid Phase (SILP) Catalysis for the Production of Acetic acid by Methanol Carbonylation

    DEFF Research Database (Denmark)

    Hanning, Christopher William

    at the beginning with the construction of a suitable test reactor, then followed by the synthesis and testing of all the catalysts reported. A variety of nitrogen based ionic liquids were initially tested, giving good results and stability in the system. Later a number of phosphonium based salts were tested (these......The work presented here is focused on the development of a new reaction process. It applies Supported Ionic Liquid Phase (SILP) catalysis to a specific reaction. By reacting methanol and carbon monoxide over a rhodium catalyst, acetic acid can be formed. This reaction is important on a large scale...... were no longer classified as ionic liquids due to melting points above 100◦C). The phosphonium salts showed even better activity in the system compared to the ionic liquids. Overall the work has shown that this process for the manufacture of acetic acid is viable industrially. This is backed up...

  6. Improving Performance and Operational Stability of Porcine Interferon-α Production by Pichia pastoris with Combinational Induction Strategy of Low Temperature and Methanol/Sorbitol Co-feeding.

    Science.gov (United States)

    Gao, Min-Jie; Zhan, Xiao-Bei; Gao, Peng; Zhang, Xu; Dong, Shi-Juan; Li, Zhen; Shi, Zhong-Ping; Lin, Chi-Chung

    2015-05-01

    Various induction strategies were investigated for effective porcine interferon-α (pIFN-α) production by Pichia pastoris in a 10 L fermenter. We found that pIFN-α concentration could be significantly improved with the strategies of low-temperature induction or methanol/sorbitol co-feeding. On this basis, a combinational strategy of induction at lower temperature (20 °C) with methanol/sorbitol co-feeding has been proposed for improvement of pIFN-α production. The results reveal that maximal pIFN-α concentration and antiviral activity reach the highest level of 2.7 g/L and 1.8 × 10(7) IU/mg with the proposed induction strategy, about 1.3-2.1 folds higher than those obtained with other sub-optimal induction strategies. Metabolic analysis and online multi-variable measurement results indicate that energy metabolic enrichment is responsible for the performance enhancement of pIFN-α production, as a large amount of ATP could be simultaneously produced from both formaldehyde oxidation pathway in methanol metabolism and tricarboxylic acid (TCA) cycle in sorbitol metabolism. In addition, the proposed combinational induction strategy enables P. pastoris to be resistant to high methanol concentration (42 g/L), which conceivably occur associating with the error-prone methanol over-feeding. As a result, the proposed combinational induction strategy simultaneously increased the targeted protein concentration and operational stability leading to significant improvement of pIFN-α production.

  7. A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic Methanol oxidation reaction on oxygen reduction reaction catalysts

    Science.gov (United States)

    Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten

    2018-06-01

    The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.

  8. High-yield production of biodiesel by non-catalytic supercritical methanol transesterification of crude castor oil (Ricinus communis)

    International Nuclear Information System (INIS)

    Román-Figueroa, Celián; Olivares-Carrillo, Pilar; Paneque, Manuel; Palacios-Nereo, Francisco Javier; Quesada-Medina, Joaquín

    2016-01-01

    The synthesis of biodiesel from crude castor oil in a catalyst-free process using supercritical methanol in a batch reactor was investigated, studying the evolution of intermediate products as well as the conversion of triglycerides and the yield of FAMEs (fatty acid methyl esters) (biodiesel). Experiments were carried out in a temperature range of 250–350 °C (10–43 MPa) at reaction times of 15–90 min for a methanol-to-oil molar ratio of 43:1. Maintaining thermal stability of biodiesel is one of the most important concerns in high-yield supercritical biodiesel production. Hence, thermal decomposition degree of FAMEs was also investigated in different reaction conditions. The maximum yield of FAMEs (96.5%) was obtained at 300 °C (21 MPa) and 90 min. Under these conditions, the conversion of triglycerides was complete, the yield of intermediate products was low (3.29 and 1.41% for monoglycerides and diglycerides, respectively), and thermal decomposition of FAMEs did not occur. The maximum degree of thermal decomposition (80.9%) was produced at 350 °C (43 MPa) and 90 min. Methyl ricinoleate, whose fatty acid chain was the most abundant (88.09 mol%) in castor oil, was very unstable above 300 °C and 60 min, leading to low yields of FAMEs under these conditions. - Highlights: • Supercritical synthesis of biodiesel from crude castor oil was investigated. • Supercritical methanolysis of crude castor oil reached a high yield of FAMEs. • Ricinoleic acid methyl ester was very unstable above 300 °C and 60 min reaction.

  9. Spectral filtering for plant production

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.

    1994-12-31

    Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.

  10. Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2012-01-01

    Black liquor gasification (BLG) for bio-fuel or electricity production at the modern pulp mills is a field in continuous evolution and the efforts are considerably driven by the climate change, fuel security, and renewable energy. This paper evaluates and compares two BLG systems for methanol production: (i) oxygen blown pressurized thermal BLG; and (ii) dry BLG with direct causticization, which have been regarded as the most potential technology candidates for the future deployment. A key objective is to assess integration possibilities of BLG technologies with the reference Kraft pulp mill producing 1000 air dried tonnes (ADt) pulp/day replacing conventional recovery cycle. The study was performed to compare the systems’ performance in terms of potential methanol production, energy efficiency, and potential CO 2 reductions. The results indicate larger potential of black liquor conversion to methanol from the pressurized BLG system (about 77 million tonnes/year of methanol) than the dry BLG system (about 30 million tonnes/year of methanol) utilizing identical amount of black liquor available worldwide (220 million tDS/year). The potential CO 2 emissions reduction from the transport sector is substantially higher in pressurized BLG system (117 million tonnes/year CO 2 reductions) as compared to dry BLG system (45 million tonnes/year CO 2 reductions). However, the dry BLG system with direct causticization shows better results when considering consequences of additional biomass import. In addition, comparison of methanol production via BLG with other bio-refinery products, e.g. hydrogen, dimethyl ether (DME) and bio-methane, has also been discussed.

  11. Preparation of Cu-Fe-Al-O nanosheets and their catalytic application in methanol steam reforming for hydrogen production

    Science.gov (United States)

    Wang, Leilei; Zhang, Fan; Miao, Dinghao; Zhang, Lei; Ren, Tiezhen; Hui, Xidong; He, Zhanbing

    2017-03-01

    Candidates of precious metal catalysts, prepared in a facile and environmental way and showing high catalytic performances at low temperatures, are always highly desired by industry. In this work, large-scale Cu-Fe-Al-O nanosheets were synthesized by facile dealloying of Al-Cu-Fe alloys in NaOH solution. The composition, microscopic morphology, and crystal structure were respectively investigated using wavelength-dispersive x-ray spectroscopy with an electron probe microanalyzer, scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. Furthermore, we found that the 2D Cu-Fe-Al-O nanosheets gave excellent catalytic performances in hydrogen production by methanol steam reforming at relatively low temperatures, e.g. 513 K.

  12. Automated plant, production management system

    Science.gov (United States)

    Aksenova, V. I.; Belov, V. I.

    1984-12-01

    The development of a complex of tasks for the operational management of production (OUP) within the framework of an automated system for production management (ASUP) shows that it is impossible to have effective computations without reliable initial information. The influence of many factors involving the production and economic activity of the entire enterprise upon the plan and course of production are considered. It is suggested that an adequate model should be available which covers all levels of the hierarchical system: workplace, section (bridgade), shop, enterprise, and the model should be incorporated into the technological sequence of performance and there should be provisions for an adequate man machine system.

  13. Ultrasound assisted production of fatty acid methyl esters from transesterification of triglycerides with methanol in the presence of KOH catalyst: optimization, mechanism and kinetics.

    Science.gov (United States)

    Thanh, Le Tu; Okitsu, Kenji; Maeda, Yasuaki; Bandow, Hiroshi

    2014-03-01

    Ultrasound assisted transesterification of triglycerides (TG) with methanol in the presence of KOH catalyst was investigated, where the changes in the reactants and products (diglycerides (DG), monoglycerides (MG), fatty acid methyl esters (FAME) and glycerin (GL)) concentrations were discussed to understand the reaction mechanism and kinetics under ultrasound irradiation. The optimum reaction condition for the FAME production was the concentration of KOH 1.0 wt.%, molar ratio of TG to methanol of 1:6, and irradiation time of 25 min. The rate constants during the TG transesterification with methanol into GL and FAME were estimated by a curve fitting method with simulated curves to the obtained experimental results. The rate constants of [Formula: see text] were estimated to be 0.21, 0.008, 0.23, 0.005, 0.14 and 0.001 L mol(-1)min(-1), respectively. The rate determining step for the TG transesterification with methanol into GL and FAME was the reaction of MG with methanol into GL and FAME. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. AVLIS Production Plant Project Management Plan

    International Nuclear Information System (INIS)

    1984-01-01

    The AVLIS Production Plant is designated as a Major System Acquisition (in accordance with DOE Order 4240.IC) to deploy Atomic Vapor Laser Isotope Separation (AVLIS) technology at the Oak Ridge, Tennessee site, in support of the US Uranium Enrichment Program. The AVLIS Production Plant Project will deploy AVLIS technology by performing the design, construction, and startup of a production plant that will meet capacity production requirements of the Uranium Enrichment Program. The AVLIS Production Plant Project Management Plan has been developed to outline plans, baselines, and control systems to be employed in managing the AVLIS Production Plant Project and to define the roles and responsibilities of project participants. Participants will develop and maintain detailed procedures for implementing the management and control systems in agreement with this plan. This baseline document defines the system that measures work performed and costs incurred. This plan was developed by the AVLIS Production Plant Project staff of Martin Marietta Energy Systems, Inc. and Lawrence Livermore National Laboratory in accordance with applicable DOE directives, orders and notices. 38 figures, 19 tables

  15. Natural products – learning chemistry from plants

    NARCIS (Netherlands)

    Staniek, A.; Bouwmeester, H.J.; Fraser, P.D.; Kayser, O.; Martens, S.; Tissier, A.; Krol, van der A.R.; Wessjohann, L.; Warzecha, H.

    2014-01-01

    Plant natural products (PNPs) are unique in that they represent a vast array of different structural features, ranging from relatively simple molecules to very complex ones. Given the fact that many plant secondary metabolites exhibit profound biological activity, they are frequently used as

  16. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  17. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Fungal Production and Manipulation of Plant Hormones.

    Science.gov (United States)

    Fonseca, Sandra; Radhakrishnan, Dhanya; Prasad, Kalika; Chini, Andrea

    2018-01-01

    Living organisms are part of a highly interconnected web of interactions, characterised by species nurturing, competing, parasitizing and preying on one another. Plants have evolved cooperative as well as defensive strategies to interact with neighbour organisms. Among these, the plant-fungus associations are very diverse, ranging from pathogenic to mutualistic. Our current knowledge of plant-fungus interactions suggests a sophisticated coevolution to ensure dynamic plant responses to evolving fungal mutualistic/pathogenic strategies. The plant-fungus communication relies on a rich chemical language. To manipulate the plant defence mechanisms, fungi produce and secrete several classes of biomolecules, whose modeof- action is largely unknown. Upon perception of the fungi, plants produce phytohormones and a battery of secondary metabolites that serve as defence mechanism against invaders or to promote mutualistic associations. These mutualistic chemical signals can be co-opted by pathogenic fungi for their own benefit. Among the plant molecules regulating plant-fungus interaction, phytohormones play a critical role since they modulate various aspects of plant development, defences and stress responses. Intriguingly, fungi can also produce phytohormones, although the actual role of fungalproduced phytohormones in plant-fungus interactions is poorly understood. Here, we discuss the recent advances in fungal production of phytohormone, their putative role as endogenous fungal signals and how fungi manipulate plant hormone balance to their benefits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna

    2015-01-01

    , and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results...... to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol...

  20. Hydrogen production with a solar steam–methanol reformer and colloid nanocatalyst

    KAUST Repository

    Lee, Ming-Tsang; Werhahn, Michael; Hwang, David J.; Hotz, Nico; Greif, Ralph; Poulikakos, Dimos; Grigoropoulos, Costas P.

    2010-01-01

    of the reformer and thereby increase hydrogen production. The hydrogen production output efficiency is determined and a value of 5% is achieved. Experiments using concentrated solar simulator light as the radiation source are also carried out. The results show

  1. Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO{sub 2} nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Alenzi, Naser; Ehlig-Economides, Christine [Harold Vance Department of Petroleum Engineering, Texas A and M University, College Station, TX 77843 (United States); Liao, Wei-Ssu; Cremer, Paul S. [Department of Chemistry, Texas A and M University, College Station, TX 77843 (United States); Sanchez-Torres, Viviana; Cheng, Zhengdong [Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Wood, Thomas K. [Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Department of Biology, Texas A and M University, College Station, TX 77843-3258 (United States); Zachry Department of Civil and Environmental Engineering, Texas A and M University, College Station, TX 77843 3136 (United States)

    2010-11-15

    Though less frequently studied for solar-hydrogen production, films are more convenient to use than powders and can be easily recycled. Anatase TiO{sub 2} films decorated with Ag nanoparticles are synthesized by a rapid, simple, and inexpensive method. They are used to cleave water to produce H{sub 2} under UV light in the presence of methanol as a hole scavenger. A simple and sensitive method is established here to monitor the time course of hydrogen production for ultralow amounts of TiO{sub 2}. The average hydrogen production rate of Ag/TiO{sub 2} anatase films is 147.9 {+-} 35.5 {mu}mol/h/g. Without silver, it decreases dramatically to 4.65 {+-} 0.39 {mu}mol/h/g for anatase TiO{sub 2} films and to 0.46 {+-} 0.66 {mu}mol/h/g for amorphous TiO{sub 2} films fabricated at room temperature. Our method can be used as a high through-put screening process in search of high efficiency heterogeneous photocatalysts for solar-hydrogen production from water-splitting. (author)

  2. The fate of methanol in anaerobic bioreactors

    NARCIS (Netherlands)

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical

  3. Methanol as an energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, P.; Grube, T.; Hoehlein, B. (eds.)

    2006-07-01

    For the future, a strongly growing energy demand is expected in the transport sector worldwide. Economically efficient oil production will run through a maximum in the next decade. Higher fuel prices and an environmentally desirable reduction of emissions will increase the pressure for reducing fuel consumption and emissions in road traffic. These criteria show the urgent necessity of structural changes in the fuel market. Due to its advantages concerning industrial-scale production, storage and global availability, methanol has the short- to medium-term potential for gaining increased significance as a substitution product in the energy market. Methanol can be produced both from fossil energy sources and from biomass or waste materials through the process steps of synthesis gas generation with subsequent methanol synthesis. Methanol has the potential to be used in an environmentally friendly manner in gasoline/methanol mixtures for flexible fuel vehicles with internal combustion engines and in diesel engines with pure methanol. Furthermore, it can be used in fuel cell vehicles with on-board hydrogen production in direct methanol fuel cell drives, and in stationary systems for electricity and heat generation as well as for hydrogen production. Finally, in portable applications it serves as an energy carrier for electric power generation. In this book, the processes for the production and use of methanol are presented and evaluated, markets and future options are discussed and issues of safety and environmental impacts are addressed by a team of well-known authors. (orig.)

  4. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders.

    Directory of Open Access Journals (Sweden)

    Maya Mathew

    Full Text Available Inhibition of Acetylcholinesterase (AChE is still considered as the main therapeutic strategy against Alzheimer's disease (AD. Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman's microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease.

  5. In Vitro Screening for Anti-Cholinesterase and Antioxidant Activity of Methanolic Extracts of Ayurvedic Medicinal Plants Used for Cognitive Disorders

    Science.gov (United States)

    Mathew, Maya; Subramanian, Sarada

    2014-01-01

    Inhibition of Acetylcholinesterase (AChE) is still considered as the main therapeutic strategy against Alzheimer’s disease (AD). Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman’s microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease. PMID:24466247

  6. 7 CFR 302.2 - Movement of plants and plant products.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of plants and plant products. 302.2 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DISTRICT OF COLUMBIA; MOVEMENT OF PLANTS AND PLANT PRODUCTS § 302.2 Movement of plants and plant products. Inspection or documentation of the plant health status of...

  7. Radioisotopic Study of Methanol Transformation over H- and Fe-Beta Zeolites; Influence of Si/Al Ratio on Distribution of Products

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Murzin, D.Yu.

    2006-01-01

    Complete text of publication follows. The acid-basic properties of Beta zeolite can be modified by dealumination and/or ionexchange. The wide-pore H-Beta zeolite has strong Bronsted acid sites and other chemical environment which govern adsorption and conversion of methanol to dimethyl ether and hydrocarbons during catalysis [1-2]. Partly Fe-ion-exchanged Beta i.e. Fe-H-Beta zeolite keeps this behavior to a certain extent; however, the presence of Fe ions can modify the reaction pathway. In the present work, the methanol conversion was studied over H- and Fe-Beta zeolites at two different Si/Al ratios. 11 C-methanol was used to follow-up adsorption as well as desorption of methanol and its derivates. Therefore, a radioactivity detector was integrated to the gas chromatograph for exact identification of the labelled methanol and its derivates. H-Beta and Fe-Beta zeolites were applied at two different Si/Al ratios i.e. H-Beta(25) and H-Beta(300) and Fe-H-Beta(25) and Fe- H-Beta (300), respectively. A glass tube fixed-bed reactor was used as a closed static reactor. The 11 C-radioisotope (T 1/2 =20.4 min) was produced in 11 C-labelled carbon dioxide form by cyclotron. The 11 C-methanol tracer was produced by radiochemical process [3]. The mixture of 11 C-methanol and non-radioactive methanol was then introduced into zeolite by He gas flow. The volatile products of catalytic conversion of 11 C-methanol were analyzed by radio-gas chromatography (gas chromatograph with flame ionization detector (FID) coupled on-line with a radioactivity detector). The methanol conversion rate and product selectivities to dimethyl ether, hydrocarbons (methane, C 2 -C 6 olefins and paraffins), formaldehyde and carbon-oxides were measured and calculated over H- and Fe-Beta zeolites at two different Si/Al ratios at 250 and 350 deg C. Over H-Beta(25) C 2 -C 6 hydrocarbons (mostly as alkanes) with high conversion rate and some dimethyl ether were detected due to presence of strong Bronsted

  8. Probabilistic production simulation including CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.V.; Palsson, H.; Ravn, H.F.

    1997-04-01

    A probabilistic production simulation method is presented for an energy system containing combined heat and power plants. The method permits incorporation of stochastic failures (forced outages) of the plants and is well suited for analysis of the dimensioning of the system, that is, for finding the appropriate types and capacities of production plants in relation to expansion planning. The method is in the tradition of similar approaches for the analysis of power systems, based on the load duration curve. The present method extends on this by considering a two-dimensional load duration curve where the two dimensions represent heat and power. The method permits the analysis of a combined heat and power system which includes all the basic relevant types of plants, viz., condensing plants, back pressure plants, extraction plants and heat plants. The focus of the method is on the situation where the heat side has priority. This implies that on the power side there may be imbalances between demand and production. The method permits quantification of the expected power overflow, the expected unserviced power demand, and the expected unserviced heat demand. It is shown that a discretization method as well as double Fourier series may be applied in algorithms based on the method. (au) 1 tab., 28 ills., 21 refs.

  9. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3

    NARCIS (Netherlands)

    Navarro, R.M.; Melián-Cabrera, I.; Boutonnet, M.; Birgersson, H.; Agrell, J.; Fierro, J.L.G.

    2003-01-01

    Production of H2 from methanol by steam reforming, partial oxidation, or a combination thereof was studied over Cu/ZnO-based catalysts. The catalysts were characterized by a variety of techniques, including N2O chemisorption, X-ray photoelectron spectroscopy, X-ray diffraction, and

  10. Side chain alkylation of toluene with methanol over basic zeolites - novel production route towards styrene?

    NARCIS (Netherlands)

    Rep, M.; Rep, M.

    2002-01-01

    Styrene is an important monomer for the production of different types of (co-) polymers that are used in, e.g., toys, medical devices, food packaging, paper coatings etc. Styrene is produced with several different industrial processes. In 1998, the production of styrene monomer was approximately 21

  11. The methanol seed extract of Garcinia kola attenuated angiotensin II- and lipopolyssacharide-inducedvascular smooth muscle cell proliferation and nitric oxide production

    Directory of Open Access Journals (Sweden)

    Adeolu A. Adedapo

    2016-10-01

    Full Text Available All over the world, cardiovascular diseases are a risk factor for poor health and early death with predisposing factors to include age, gender, tobacco use, physical inactivity, excessive alcohol consumption, unhealthy diet, obesity, family history of cardiovascular disease, hypertension, diabetes mellitus, hyperlipidemia, psychosocial factors, poverty and low educational status, and air pollution. It is envisaged that herbal products that can stem this trend would be of great benefit. Garcinia kola (GK, also known as bitter kola is one of such plants. Generally used as a social snack and offered to guests in some cultural settings, bitter kola has been indicated in the treatment of laryngitis, general inflammation, bronchitis, viral infections and diabetes. In this study, the effects of methanol seed extract of Garcinia kola on the proliferation of Vascular Smooth Muscle Cells (VSMCs in cell culture by Angiotensin II (Ang II and LPS-induced NO production were carried out. Confluent VSMCs were exposed to GK (25, 50 and 100 μg/ml before or after treatment with lipopolyssacharide (100μg/ml, and Angiotensin II (10-8-10-6M. Cellular proliferation was determined by MTT assay and NO production by Griess assay. Treatment with Angiotensin II (10-8, 10-6 or LPS significantly enhanced proliferation of VSM cells while LPS significantly increased nitric oxide (NO production. Treatment with GK (25, 50 & 100 μg/ml attenuated VSM cell proliferation. The results indicate that GK has potential to inhibit mitogen activated vascular cell growth and possibly inhibit inflammatory responses to LPS. Thus GK may be useful in condition that is characterized by cellular proliferation and inflammatory responses.

  12. Methanol production from eucalyptus wood chips. Attachment III. Florida's eucalyptus energy farm and methanol refinery: the background environment

    Energy Technology Data Exchange (ETDEWEB)

    Fishkind, H.H.

    1982-04-01

    A wide array of general background information is presented on the Central Florida area in which the eucalyptus energy plantation and methanol refinery will be located. Five counties in Central Florida may be affected by the project, DeSoto, Hardee, Hillsborough, Manatee, and Polk. The human resources of the area are reviewed. Included are overviews of population demographic and economic trends. Land use patterns and the transportation are system described, and the region's archeological and recreational resources are evaluated. The region's air quality is emphasized. The overall climate is described along with noise and air shed properties. An analysis of the region's water resources is included. Ground water is discussed first followed by an analysis of surface water. Then the overall quality and water supply/demand balance for the area is evaluated. An overview of the region's biota is presented. Included here are discussions of the general ecosystems in Central Florida, and an analysis of areas with important biological significance. Finally, land resources are examined.

  13. Antifungal activity of aqueous and methanolic extracts of some seaweeds against common soil-borne plant pathogenic fungi

    International Nuclear Information System (INIS)

    Khan, S.A.; Abid, M.; Hussain, F.

    2017-01-01

    Total 32 species of different seaweeds belonging to Chlorophyta, Phaeophyta and Rhodophyta were collected from the coast of Karachi, Pakistan to investigate their antifungal activity. Most of the seaweeds inhibited growth of Fusarium oxypsorum, Macrophomina phaseolina and Rhizoctonia solani. The highest antifungal activities were observed in Sargasssum tenerrimum in both aqueous and methanolic extracts as compared to other seaweeds. (author)

  14. Methanol synthesis beyond chemical equilibrium

    NARCIS (Netherlands)

    van Bennekom, J. G.; Venderbosch, R. H.; Winkelman, J. G. M.; Wilbers, E.; Assink, D.; Lemmens, K. P. J.; Heeres, H. J.

    2013-01-01

    In commercial methanol production from syngas, the conversion is thermodynamically limited to 0.3-0.7 leading to large recycles of non-converted syngas. This problem can be overcome to a significant extent by in situ condensation of methanol during its synthesis which is possible nowadays due to the

  15. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis

    International Nuclear Information System (INIS)

    Uusitalo, Ville; Väisänen, Sanni; Inkeri, Eero; Soukka, Risto

    2017-01-01

    Highlights: • Greenhouse gas emission reductions using power-to-x processes are studied using life cycle assessment. • Surplus electricity use led to greenhouse gas emission reductions in all studied cases. • Highest reductions can be achieved by using hydrogen to replace fossil based hydrogen. • High reductions are also achieved when fossil transportation fuels are replaced. - Abstract: Using a life cycle perspective, potentials for greenhouse gas emission reductions using various power-to-x processes via electrolysis have been compared. Because of increasing renewable electricity production, occasionally surplus renewable electricity is produced, which leads to situations where the price of electricity approach zero. This surplus electricity can be used in hydrogen, methane and methanol production via electrolysis and other additional processes. Life cycle assessments have been utilized to compare these options in terms of greenhouse gas emission reductions. All of the power-to-x options studied lead to greenhouse gas emission reductions as compared to conventional production processes based on fossil fuels. The highest greenhouse gas emission reductions can be gained when hydrogen from steam reforming is replaced by hydrogen from the power-to-x process. High greenhouse gas emission reductions can also be achieved when power-to-x products are utilized as an energy source for transportation, replacing fossil transportation fuels. A third option with high greenhouse gas emission reduction potential is methane production, storing and electricity conversion in gas engines during peak consumption hours. It is concluded that the power-to-x processes provide a good potential solution for reducing greenhouse gas emissions in various sectors.

  16. A Comparative Study of Basic, Amphoteric, and Acidic Catalysts in the Oxidative Coupling of Methanol and Ethanol for Acrolein Production.

    Science.gov (United States)

    Lilić, Aleksandra; Wei, Tiantian; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-09-11

    The impact of acid/base properties (determined by adsorption microcalorimetry) of various catalysts on the cross-aldolization of acetaldehyde and formaldehyde leading to acrolein was methodically studied in oxidizing conditions starting from a mixture of methanol and ethanol. The aldol condensation and further dehydration to acrolein were carried out on catalysts presenting various acid/base properties (MgO, Mg-Al oxides, Mg/SiO 2 , NbP, and heteropolyanions on silica, HPA/SiO 2 ). Thermodynamic calculations revealed that cross-aldolization is always favored compared with self-aldolization of acetaldehyde, which leads to crotonaldehyde formation. The presence of strong basic sites is shown to be necessary, but a too high amount drastically increases CO x production. On strong acid sites, production of acrolein and carbon oxides (CO x ) does not increase with temperature. The optimal catalyst for this process should be amphoteric with a balanced acid/base cooperation of medium strength sites and a small amount (150 kJ mol -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. FY 1984 report on the results of the verification test on the methanol conversion for oil-fired power plant. Survey of the potential quantity supplied of overseas resource (Survey of the potential quantity supplied of methanol); 1984 nendo sekiyu karyoku hatsudensho metanoru tenkan tou jissho shiken kaigai shigen kyokyu kano ryo chosa (Metanoru kyokyu kano ryo chosa) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    Based on the results of the survey of the potential quantity supplied of overseas resource which was made from FY 1981 to FY 1983, the paper predicted the world methanol supply plan, changes in the oil situation, economical efficiency of methanol and the competitive power with petroleum products, etc., and studied the time of potential supply, areas of potential supply and supply potential of power generation use methanol during the period toward 2000. In case the comparatively low crude oil price is predicted due to the energy supply/demand (Scenario A), the supply potential of power generation use methanol in four projects on methanol production taken up as trial calculation example is considered very low. Even in case the comparatively high crude oil price is predicted (Scenario C), it is in 1989 that the methanol market price becomes equivalent in heat quantity to the crude oil price. It is difficult to expect the potential before 1989. In case of the intermediate case between Scenario A and Scenario C (Scenario B), it is in 1993 that the methanol price becomes equivalent in heat quantity to the crude oil price. It is difficult to expect the potential before 1993. (NEDO)

  18. Plant Products for Innovative Biomaterials in Dentistry

    Directory of Open Access Journals (Sweden)

    Elena M. Varoni

    2012-07-01

    Full Text Available Dental biomaterials and natural products represent two of the main growing research fields, revealing plant-derived compounds may play a role not only as nutraceuticals in affecting oral health, but also in improving physico-chemical properties of biomaterials used in dentistry. Therefore, our aim was to collect all available data concerning the utilization of plant polysaccharides, proteins and extracts rich in bioactive phytochemicals in enhancing performance of dental biomaterials. Although compelling evidences are suggestive of a great potential of plant products in promoting material-tissue/cell interface, to date, only few authors have investigated their use in development of innovative dental biomaterials. A small number of studies have reported plant extract-based titanium implant coatings and periodontal regenerative materials. To the best of our knowledge, this review is the first to deal with this topic, highlighting a general lack of research findings in an interesting field which still needs to be investigated.

  19. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  20. Environmental information volume: Liquid Phase Methanol (LPMEOH trademark) project

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature

  1. Self regulation in the methanol industry

    International Nuclear Information System (INIS)

    Hymas, R.; Wilkes, P.

    1995-01-01

    The methanol industry is not known for a high degree of self-regulation, as one can see from a glance at historic price volatility, and historic demand/supply curves. Industry enthusiasts spend considerable effort attempting to improve their understanding of the industry by analyzing the abundance of data produced within the industry about these topics, usually without resulting in any definitive correlations. Rational planning within the industry is hindered by these factors as well as the large number of new production facilities continuously being announced. Against this background however demand has significantly increased, supply has kept up with demand, methanol plants structured on a rational basis have continued to be built, and in spite of wildly fluctuating product prices all established members of the industry apparently flourish. Historic trends, new entrants, and industry achievements are discussed

  2. Chromatographic studies of gamma radiolysis products of phenols in methanolic solution

    International Nuclear Information System (INIS)

    Cordeiro, P.J.M.

    1989-10-01

    The radiolytic effects on phenolic compounds (catechol, resorcinol, hydroquinone and pyrogallol), under different doses of gamma irradiation, were studied. The results shown that the radiolytic effects are independent of the irradiation doses with almost all compounds formed from the solvent radiolysis. Analysis of the resulting products were carried out by High Performance Liquid Chromatography and Capillary Gas Chromatography. The quantification of these compounds was made by mass spectrometry. (author)

  3. Methanol production from Eucalyptus wood chips. Working document I. The Florida Eucalyptus energy farm: silvicultural methods and considerations

    Energy Technology Data Exchange (ETDEWEB)

    Fishkind, H.H.

    1982-04-01

    The silvicultural matrix within which the nation's first large scale wood energy plantation will develop is described in detail. The relevant literature reviewed is identified and distilled. The plantation history, site preparation, planting, species selection, maintenance and management, harvesting, and the Eucalyptus biomass production estimates are presented.

  4. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil

    Directory of Open Access Journals (Sweden)

    Takahashi Ryo

    2011-10-01

    Full Text Available Abstract Background The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel. Results The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w. Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield. Conclusions The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design

  5. Pinellas Plant facts. [Products, processes, laboratory facilities

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

  6. Internal transport control in pot plant production

    NARCIS (Netherlands)

    Annevelink, E.

    1999-01-01

    Drawing up internal transport schedules in pot plant production is a very complex task. Scheduling internal transport at the operational level and providing control on a day-to-day or even hour-to-hour basis in particular requires a new approach. A hierarchical planning approach based on

  7. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site.

    Science.gov (United States)

    Abanda-Nkpwatt, Daniel; Müsch, Martina; Tschiersch, Jochen; Boettner, Mewes; Schwab, Wilfried

    2006-01-01

    Four Methylobacterium extorquens strains were isolated from strawberry (Fragaria x ananassa cv. Elsanta) leaves, and one strain, called ME4, was tested for its ability to promote the growth of various plant seedlings. Seedling weight and shoot length of Nicotiana tabacum, Lycopersicon esculentum, Sinapis alba, and Fragaria vesca increased significantly in the presence of the pink-pigmented facultative methylotroph (PPFM), but the germination behaviour of seeds from six other plants was not affected. The cell-free supernatant of the bacterial culture stimulated germination, suggesting the production of a growth-promoting agent by the methylotroph. Methanol emitted from N. tabacum seedlings, as determined by proton-transfer-reaction mass spectrometry (PTR-MS), ranged from 0.4 to 0.7 ppbv (parts per billion by volume), while significantly lower levels (0.005 to 0.01 ppbv) of the volatile alcohol were measured when the seedlings were co-cultivated with M. extorquens ME4, demonstrating the consumption of the gaseous methanol by the bacteria. Additionally, by using cells of the methylotrophic yeast Pichia pastoris transformed with the pPICHS/GFP vector harbouring a methanol-sensitive promoter in combination with the green fluorescence protein (GFP) reporter gene, stomata were identified as the main source of the methanol emission on tobacco cotyledons. Methylobacterium extorquens strains can nourish themselves using the methanol released by the stomata and release an agent promoting the growth of the seedlings of some crop plants.

  8. Optimization of non-catalytic transesterification of tobacco (Nicotiana tabacum) seed oil using supercritical methanol to biodiesel production

    International Nuclear Information System (INIS)

    García-Martínez, Nuria; Andreo-Martínez, Pedro; Quesada-Medina, Joaquín; Pérez de los Ríos, Antonia Pérez; Chica, Antonio; Beneito-Ruiz, Rubén; Carratalá-Abril, Juan

    2017-01-01

    Highlights: • Biodiesel from tobacco oil was produced by non-catalytic supercritical methanolysis. • Maximum experimental yield of FAMEs (92.8%) was reached at 300 °C and 90 min. • Optimal conditions by RSM (303.4 °C and 90 min) predicted a maximum FAME yield of 91.1%. • Thermal decomposition of biodiesel was observed above 325 °C and 60 min of reaction. • Glycerol generated at 300 °C and 90 min was degraded and incorporated to the biodiesel. - Abstract: The biodiesel production from non-edible oils has high potential as renewable and ecological fuel. Few researches have been conducted to date on the production of biodiesel from tobacco (Nicotiana tabacum) seed oil. The aim of this study was to optimize the biodiesel production from this crude oil by non-catalytic supercritical methanolysis using response surface methodology (RSM). Triglyceride conversion, total and individual FAME yield, monoglyceride and diglyceride yield, and thermal decomposition degree of biodiesel were determined in the temperature and reaction time ranges of 250–350 °C (12–43 MPa) and 15–90 min, respectively, at a fixed methanol-to-oil molar ratio of 43:1. According to the RSM, the optimal conditions were 303.4 °C and 90 min, reaching a predicted maximum FAME yield of 91.1 ± 3.2 mol%. This maximum was very close to that obtained experimentally (92.8 ± 2.1 mol%) at 300 °C and 90 min. Decomposition of biodiesel became evident at 325 °C and 60 min of reaction due to the thermal instability of unsaturated methyl esters (methyl linoleate and oleate). The biodiesel obtained in the best experimental reaction conditions (300 °C and 90 min), where no thermal decomposition of FAMEs was observed, contained most of the byproduct glycerol generated, which was degraded and incorporated to the product. This biodiesel basically failed to meet the content of FAMEs as required by the standard EN 14214, the content of monoglycerides and total glycerol, and the acid value, being a

  9. Design of a Small Scale Pilot Biodiesel Production Plant and Determination of the Fuel Properties of Biodiesel Produced With This Plant

    Directory of Open Access Journals (Sweden)

    Tanzer Eryılmaz

    2014-09-01

    Full Text Available A small scale pilot biodiesel production plant that has a volume of 65 liters/day has been designed, constructed and tested. The plant was performed using oil mixture (50% wild mustard seed oil + 50% refined canola oil and methanol with sodium hydroxide (NaOH catalyst. The fuel properties of biodiesel indicated as density at 15oC (889.64 kg/m3, kinematic viscosity at 40oC (6.975 mm2/s, flash point (170oC, copper strip corrosion (1a, water content (499.87 mg/kg, and calorific value (39.555 MJ/kg, respectively.

  10. Thermal stability of biodiesel in supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hiroaki Imahara; Eiji Minami; Shusaku Hari; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science

    2008-01-15

    Non-catalytic biodiesel production technologies from oils/fats in plants and animals have been developed in our laboratory employing supercritical methanol. Due to conditions in high temperature and high pressure of the supercritical fluid, thermal stability of fatty acid methyl esters and actual biodiesel prepared from various plant oils was studied in supercritical methanol over a range of its condition between 270{sup o}C/17 MPa and 380{sup o}C/56 MPa. In addition, the effect of thermal degradation on cold flow properties was studied. As a result, it was found that all fatty acid methyl esters including poly-unsaturated ones were stable at 270{sup o}C/17 MPa, but at 350{sup o}C/43 MPa, they were partly decomposed to reduce the yield with isomerization from cis-type to trans-type. These behaviors were also observed for actual biodiesel prepared from linseed oil, safflower oil, which are high in poly-unsaturated fatty acids. Cold flow properties of actual biodiesel, however, remained almost unchanged after supercritical methanol exposure at 270{sup o}C/17 MPa and 350{sup o}C/43 MPa. For the latter condition, however, poly-unsaturated fatty acids were sacrificed to be decomposed and reduced in yield. From these results, it was clarified that reaction temperature in supercritical methanol process should be lower than 300{sup o}C, preferably 270{sup o}C with a supercritical pressure higher than 8.09 MPa, in terms of thermal stabilization for high-quality biodiesel production. 9 refs., 3 figs., 4 tabs.

  11. Water management and productivity in planted forests

    Directory of Open Access Journals (Sweden)

    J. E. Nettles

    2014-09-01

    Full Text Available As climate variability endangers water security in many parts of the world, maximizing the carbon balance of plantation forestry is of global importance. High plant water use efficiency is generally associated with lower plant productivity, so an explicit balance in resources is necessary to optimize water yield and tree growth. This balance requires predicting plant water use under different soil, climate, and planting conditions, as well as a mechanism to account for trade-offs in ecosystem services. Several strategies for reducing the water use of forests have been published but there is little research tying these to operational forestry. Using data from silvicultural and biofuel feedstock research in pine plantation ownership in the southeastern USA, proposed water management tools were evaluated against known treatment responses to estimate water yield, forest productivity, and economic outcomes. Ecosystem impacts were considered qualitatively and related to water use metrics. This work is an attempt to measure and compare important variables to make sound decisions about plantations and water use.

  12. Pilot plant study for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J S [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)

    1996-02-01

    Most of domestic alcohol fermentation factory adopt batch process of which productivity is lower than continuous fermentation process. They have made great effort to increase productivity by means of partial unit process automatization and process improvement with their accumulated experience but there is technical limitation in productivity of batch fermentation process. To produce and supply fuel alcohol, economic aspects must be considered first of all. Therefore, development of continuous fermentation process, of which productivity is high, is prerequisite to produce and use fuel alcohol but only a few foreign company possess continuous fermentation technic and use it in practical industrial scale fermentation. We constructed pilot plant (5 Stage CSTR 1 kl 99.5 v/v% ethanol/Day scale) to study some aspects stated below and our ultimate aims are production of industrial scale fuel alcohol and construction of the plant by ourselves. Some study concerned with energy saving separation and contamination control technic were entrusted to KAIST, A-ju university and KIST respectively. (author) 67 refs., 100 figs., 58 tabs.

  13. Methanex cuts its methanol costs with Fletcher purchase

    International Nuclear Information System (INIS)

    Plishner, E.S.

    1993-01-01

    Methanex (Vancouver, BC) will 'significantly reduce' its unit cost of methanol production with the acquisition of all of Fletcher Challenge's (Auckland, NZ) methanol assets. These include the 800,000-m.t./year Cape Horn plant in Chile, one of the world's largest single train facilities. That plant is 'by far' the lowest-cost supplier of delivered methanol to the U.S., says analyst Sam Kanes of Scotia McLeod (Toronto), with gas costs below $1/1,000 cu.ft. Also included in the deal are two New Zealand plants: Petralgas, with capacity for 520,000 m.t./year, and Synfuel. Synfuel has the capacity to produce the equivalent of 1.8 million m.t./year of chemical-grade methanol, or 70,000 m.t./year of gasoline, or a combination. Currently rated at 450,000 m.t./year of methanol, that could double in 1994 with the addition of distillation capacity. After the transaction, Methanex will have a total of 2.4 million m.t./year of methanol capacity, plus marketing agreements for 1.0 million m.t./year. The company has plans to add 1.2 million m.t. of production (in Trinidad and the U.S.) and 0.6 million m.t. of further marketing arrangements over the next year and a half, bringing the total to over 5.0 million m.t./year. Methanex could have 'about twice as much capacity as the Saudis,' according to one consultant

  14. The influence of reactive side products on the electrooxidation of methanol--a combined in situ infrared spectroscopy and online mass spectrometry study.

    Science.gov (United States)

    Reichert, R; Schnaidt, J; Jusys, Z; Behm, R J

    2014-07-21

    Aiming at a better understanding of the impact of reaction intermediates and reactive side products on electrocatalytic reactions under conditions characteristic for technical applications, i.e., at high reactant conversions, we have investigated the electrooxidation of methanol on a Pt film electrode in mixtures containing defined concentrations of the reaction intermediates formaldehyde or formic acid. Employing simultaneous in situ infrared spectroscopy and online mass spectrometry in parallel to voltammetric measurements, we examined the effects of the latter molecules on the adlayer build-up and composition and on the formation of volatile reaction products CO2 and methylformate, as well as on the overall reaction rate. To assess the individual contributions of each component, we used isotope labeling techniques, where one of the two C1 components in the mixtures of methanol with either formaldehyde or formic acid was (13)C-labeled. The data reveal pronounced effects of the additional components formaldehyde and formic acid on the reaction, although their concentration was much lower (10%) than that of the main reactant methanol. Most important, the overall Faradaic current responses and the amounts of CO2 formed upon oxidation of the mixtures are always lower than the sums of the contributions from the individual components, indicative of a non-additive behavior of both Faradaic current and CO2 formation in the mixtures. Mechanistic reasons and consequences for reactions in a technical reactor, with high reactant conversion, are discussed.

  15. Methanol from biomass: A technoeconomic analysis

    International Nuclear Information System (INIS)

    Stevens, D.J.

    1991-01-01

    Biomass-derived methanol offers significant potential as an alternative transportation fuel. Methanol is cleaner burning and has a lower flame temperature than gasoline. These characteristics can result in lower carbon monoxide and nitrogen oxide emissions when methanol is used as a fuel. Methanol produced from biomass offers potential advantages over that from other sources. When produced from biomass which is subsequently regrown, methanol does not contribute net emissions of carbon dioxide, a greenhouse gas, to the atmosphere. The introduction of alternative fuels will likely be driven by a number of political and economic decisions. The ability of biomass to compete with other resources will be determined in part by the economics of the production systems. In this paper, recent technoeconomic analyses of biomass-methanol systems are presented. The results are compared with methanol production from coal and natural gas

  16. Design of a lunar oxygen production plant

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  17. The fate of methanol in anaerobic bioreactors

    OpenAIRE

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical oxygen demand (COD) removal, whereas with the formation of volatile fatty acids (VFA) little COD removal is achieved. Moreover, the accumulation of VFA can lead to reactor instability due to pH drops...

  18. Antibody Production in Plants and Green Algae.

    Science.gov (United States)

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  19. Plant Products Research Journal - Vol 14 (2010)

    African Journals Online (AJOL)

    Effects of Methanolic and Hexane-Derived Dwarf Mistletoe (Arceuthobium) Extracts on the Viability of Salmon Cells in Culture: Do These Extracts Induce Necrosis and/or Apoptosis? EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. KJ Koziura, CM Ross Friedman, RG Smith, 1-5.

  20. The Characterization and Hydrogen Production from Water Decomposition with Methanol in a Semi-Batch Type Reactor Using In, P-TiO2s

    Directory of Open Access Journals (Sweden)

    Joonwoo Kim

    2011-01-01

    Full Text Available The photocatalytic production of hydrogen from water using solar energy is potentially a clean and renewable source for hydrogen fuel. This study examines the production of hydrogen over In, P-TiO2s photocatalysts. 1 mol% In-TiO2 and P-TiO2 were produced using the solvothermal method and were treated at 500 and 800∘C to obtain anatase and rutile structure, respectively. The photocatalysts were characterized by X-ray diffraction, photoluminescence spectra, X-ray spectroscopy, UV-visible spectroscopy, and scanning electron microscopy. The production of H2 from methanol photodecomposition was greater over the rutile structure than over the anatase structure of TiO2. Moreover, the amount of hydrogen was enhanced over In-TiO2 and P-TiO2 compared to that over pure TiO2; the production increased by about 30%. The structural effect and the addition of In, P have significant influence on the H2 production from methanol/water decomposition.

  1. Methanol and carbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier-Lafaye, J.; Perron, R.

    1987-01-01

    The overall focus of the book is on homogeneous catalysed processes which were seen to offer the most promising routes to C/sub 2/ oxygenates. The first three chapters review the industrial synthesis and applications of carbon monoxide such as in the manufacture of gasoline (e.g. Fischer-Tropsch, Mobil processes), organic chemicals (e.g. ethanol, acetic acid, etc.), industrial importance of C/sub 2/ oxygenates, and use of methanol as a future feedstock are discussed. The next six chapters are each concerned with the production of a particular C/sub 2/ oxygenate and a detailed analysis of the methods and catalysts used. The hydrocarbonylation of methanol occupies a large chapter (136 references) with a comparative examination of the catalysts available, and their modification to increase selectivity to either acetylaldehyde or ethanol. Following chapters examine the synthesis of ethyl acetate, acetic acid, acetic anhydride, vinyl acetate, ethylene glycol and oxalic acid.

  2. Role of Osmotic Adjustment in Plant Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Gebre, G.M.

    2001-01-11

    Successful implementation of short rotation woody crops requires that the selected species and clones be productive, drought tolerant, and pest resistant. Since water is one of the major limiting factors in poplar (Populus sp.) growth, there is little debate for the need of drought tolerant clones, except on the wettest of sites (e.g., lower Columbia River delta). Whether drought tolerance is compatible with productivity remains a debatable issue. Among the many mechanisms of drought tolerance, dehydration postponement involves the maintenance of high leaf water potential due to, for example, an adequate root system. This trait is compatible with productivity, but requires available soil moisture. When the plant leaf water potential and soil water content decline, the plant must be able to survive drought through dehydration tolerance mechanisms, such as low osmotic potential or osmotic adjustment. Osmotic adjustment and low osmotic potential are considered compatible with growth and yield because they aid in the maintenance of leaf turgor. However, it has been shown that turgor alone does not regulate cell expansion or stomatal conductance and, therefore, the role of osmotic adjustment is debated. Despite this finding, osmotic adjustment has been correlated with grain yield in agronomic crop species, and gene markers responsible for osmotic adjustment are being investigated to improve drought tolerance in productive progenies. Although osmotic adjustment and low osmotic potentials have been investigated in several forest tree species, few studies have investigated the relationship between osmotic adjustment and growth. Most of these studies have been limited to greenhouse or container-grown plants. Osmotic adjustment and rapid growth have been specifically associated in Populus and black spruce (Picea mariuna (Mill.) B.S.P.) progenies. We tested whether these relationships held under field conditions using several poplar clones. In a study of two hybrid poplar

  3. The plant for co-production of synfuel and electricity with reduced CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kler, A.M.; Tyurina, E.A.; Mednikov, A.S. [Russian Academy of Sciences, Irkutsk (Russian Federation). Energy Systems Inst.

    2013-07-01

    Consideration is given to the prospective technologies for combined production of synthetic fuel (SF) and electricity. The mathematical models of plant for co-production of synfuel and electricity (PCSE) intended for combined production of electricity and synthesis of methanol and dimethyl ether or membrane-based hydrogen production from coal were developed. They were used in the optimization studies on the installations. As a result of the studies, the design characteristics for the plant elements, the relationships between the SF and electricity productions, etc. were determined. These data were used to identify the ranges of SF price for various prices of fuel, electricity and equipment, and estimate the profitability of SF production. Special attention is paid to modeling of CO{sub 2} removal system as part of PCSE and studies on PCSE optimization. The account is taken of additional capital investments and power consumption in the systems.

  4. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    Science.gov (United States)

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  5. TBP production plant effluent treatment process

    International Nuclear Information System (INIS)

    Sriniwas, C.; Sugilal, G.; Wattal, P.K.

    2004-06-01

    TBP production facility at Heavy Water Plant, Talcher generates about 2000 litres of effluent per 200 kg batch. The effluent is basically an aqueous solution containing dissolved and dispersed organics such as dibutyl phosphate, butanol etc. The effluent has high salinity, chemical oxygen demand (30-80 g/L) and pungent odour. It requires treatment before discharge. A chemical precipitation process using ferric chloride was developed for quantitative separation of organics from the aqueous part of the effluent. This process facilitates the discharge of the aqueous effluent. Results of the laboratory and bench scale experiments on actual effluent samples are presented in this report. (author)

  6. Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst

    NARCIS (Netherlands)

    Basile, A.; Parmaliana, A.; Tosti, S.; Iulianelli, A.; Gallucci, F.; Espro, C.; Spooren, J.

    2008-01-01

    The methanol steam reforming (MSR) reaction was studied by using both a dense Pd-Ag membrane reactor (MR) and a fixed bed reactor (FBR). Both the FBR and the MR were packed with a new catalyst based on CuOAl2O3ZnOMgO, having an upper temperature limit of around 350 °C. A constant sweep gas flow rate

  7. Reactor plant construction productivity, why so different

    International Nuclear Information System (INIS)

    Palmeter, S.B.

    1976-01-01

    The manual labor component (manhours per kw) required to construct a nuclear power plant has increased radically since the advent of the fixed price turnkey projects of the late 1960's and early 1970's. Utilities and their architect-engineers have been, for the past several years, evaluating and diagnosing possible reasons for the increase and, in particular, the wide variation in labor manhours per kw among plants built in the same time frame. Since construction labor can amount to as much as 35--40% of direct capital cost, ways and means must be found to arrest this manhour escalation. One important way is by improving productivity. Some of the manhour increase is beyond an owner's control, e.g. NRC regulatory and other federal and state requirements adding to the scope of work. Several areas where there is potential for productivity improvement are identified as follows: (1) Revise contract strategy and bid work on a fixed price basis. This can be done by utilizing bid packages where the scope of work is clearly identified and based on well defined plans and specifications. (2) Upgrade the quality of construction management and remove first line supervision from union control. Use periodic work sampling to pinpoint causes and cure for poor productivity. (3) Reduce design complexity and improve constructibility by means of innovative design and material utilization--models help. (4) Improve labor productivity by restoring management rights in collective bargaining agreements. If this is not possible, go open shop or owner build with your own work force

  8. Triboluminescence and associated decomposition of solid methanol

    International Nuclear Information System (INIS)

    Trout, G.J.; Moore, D.E.; Hawke, J.G.

    1975-01-01

    The decomposition is initiated by the cooling of solid methanol through the β → α transiRon at 157.8K, producing the gases hydrogen, carbon monoxide, and methane. The passage through this lambda transition causes the breakup of large crystals of β-methanol into crystallites of α-methanol and is accompanied by light emission as well as decomposition. This triboluminescence is accompanied by, and apparently produced by, electrical discharges through methanol vapor in the vicinity of the solid. The potential differences needed to produce the electrical breakdown of the methanol vapor apparently arise from the disruption of the long hydrogen bonded chains of methanol molecules present in crystalline methanol. Charge separation following crystal deformation is a characteristic of substances which exhibit gas discharge triboluminescence; solid methanol has been found to emit such luminescence when mechanically deformed in the absence of the β → α transition The decomposition products are not produced directly by the breaking up of the solid methanol but from the vapor phase methanol by the electrical discharges. That gas phase decomposition does occur was confirmed by observing that the vapors of C 2 H 5 OH, CH 3 OD, and CD 3 OD decompose on being admitted to a vessel containing methanol undergoing the β → α phase transition. (U.S.)

  9. Historical plant cost and annual production expenses for selected electric plants, 1982

    International Nuclear Information System (INIS)

    1984-01-01

    This publication is a composite of the two prior publications, Hydroelectric Plant Construction Cost and Annual Production Expenses and Thermal-Electric Plant Construction Cost and Annual Production Expenses. Beginning in 1979, Thermal-Electric Plant Construction Cost and Annual Production Expenses contained information on both steam-electric and gas-turbine electric plant construction cost and annual production expenses. The summarized historical plant cost described under Historical Plant Cost in this report is the net cumulative-to-date actual outlays or expenditures for land, structures, and equipment to the utility. Historical plant cost is the initial investment in plant (cumulative to the date of initial commercial operation) plus the costs of all additions to the plant, less the value of retirements. Thus, historical plant cost includes expenditures made over several years, as modifications are made to the plant. Power Production Expenses is the reporting year's plant operation and maintenance expenses, including fuel expenses. These expenses do not include annual fixed charges on plant cost (capital costs) such as interest on debt, depreciation or amortization expenses, and taxes. Consequently, total production expenses and the derived unit costs are not the total cost of producing electric power at the various plants. This publication contains data on installed generating capacity, net generation, net capability, historical plant cost, production expenses, fuel consumption, physical and operating plant characteristics, and other relevant statistical information for selected plants

  10. Plants as natural antioxidants for meat products

    Science.gov (United States)

    Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S.; Ivić, M.

    2017-09-01

    The meat industry is demanding antioxidants from natural sources to replace synthetic antioxidants because of the negative health consequences or beliefs regarding some synthetic ones. Plants materials provide good alternatives. Spices and herbs, generally used for their flavouring characteristics, can be added to meat products in various forms: whole, ground, or as isolates from their extracts. These natural antioxidants contain some active compounds, which exert antioxidative potential in meat products. This antioxidant activity is most often due to phenolic acids, phenolic diterpenes, flavonoids and volatile oils. Each of these compounds often has strong H-donating activity, thus making them extremely effective antioxidants; some compounds can chelate metals and donate H to oxygen radicals, thus slowing oxidation via two mechanisms. Numerous studies have demonstrated the efficacy of natural antioxidants when used in meat products. Based on this literature review, it can be concluded that natural antioxidants are added to fresh and processed meat and meat products to delay, retard, or prevent lipid oxidation, retard development of off-flavours (rancidity), improve colour stability, improve microbiological quality and extend shelf-life, without any damage to the sensory or nutritional properties.

  11. Desind an operation of pilot plant production of biodisel fron frying oils

    Directory of Open Access Journals (Sweden)

    Nelly Morales Pedraza

    2008-06-01

    Full Text Available The objective of this article is present the pilot plant used in the research titled: Production of biodiesel from used edible oils to industrial level for the production of methyl or ethyl esters from vegetable oils used in the food industry that be used as a fuel in diesel engines type, in order to generate alternative use for these oils are reused, and additionally, generate new options in biofuels that can replace methyl ester, since these need of methanol, a product that usually is a derived petrochemical and highly toxic. In this small-scale plant for the production of ethyl esters (biodiesel can be evaluated spent oils of different kinds and diverse origin, or study oils from food industries, which are usually a blend of palm oil and soybean oil, and other times palm oils hydrogenated or mixtures of oil spent with palm oil refning RBD (refned, bleached and deodorized. The results are the basis for the design and construction of a pilot plant to produce biodiesel by lot of 6 liter by hour approximately, which is evaluated under simulated conditions of loading and operation. It was designed and implemented a batch reactor with heating and stirring mechanics, drivers with temperature, condensation and total alcohol refux, maintaining a molar relationship of 6:1 (alcohol/oil, which is considered the best relation for a esterification with basic catalysis several scientifc publications. The temperature of the reaction is set at 60 °C and atmospheric pressure. The productivity of the reaction

  12. Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Laundre, J.A.; Shaver, G.R.

    2003-01-01

    We present a linked model of plant productivity, plant phenology, snowmelt and soil thaw in order to estimate interannual variability of arctic plant phenology and its effects on plant productivity. The model is tested using 8 years of soil temperature data, and three years of bud break data of

  13. Antibacterial activities of the methanol extracts of Albizia adianthifolia, Alchornea laxiflora, Laportea ovalifolia and three other Cameroonian plants against multi-drug resistant Gram-negative bacteria.

    Science.gov (United States)

    Tchinda, Cedric F; Voukeng, Igor K; Beng, Veronique P; Kuete, Victor

    2017-05-01

    In the last 10 years, resistance in Gram-negative bacteria has been increasing. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of six Cameroonian medicinal plants Albizia adianthifolia , Alchornea laxiflora , Boerhavia diffusa , Combretum hispidum , Laportea ovalifolia and Scoparia dulcis against a panel of 15 multidrug resistant Gram-negative bacterial strains. The broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the reference qualitative phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols and triterpenes, other classes of chemicals being selectively distributed. The best antibacterial activities were recorded with bark and root extracts of A. adianthifolia as well as with L. ovalifolia extract, with MIC values ranging from 64 to 1024 μg/mL on 93.3% of the fifteen tested bacteria. The lowest MIC value of 64 μg/mL was recorded with A. laxiflora bark extract against Enterobacter aerogenes EA289. Finally, the results of this study provide evidence of the antibacterial activity of the tested plants and suggest their possible use in the control of multidrug resistant phenotypes.

  14. Soil and groundwater remediation guidelines for methanol

    International Nuclear Information System (INIS)

    2010-12-01

    Methanol is used by oil and gas operators to inhibit hydrate formation in the recovery of heavy oils, in natural gas production and transport, as well as in various other production applications. Emissions from methanol primary occur from miscellaneous solvent usage, methanol production, end-product manufacturing, and storage and handling losses. This document provided soil and groundwater remediation guidelines for methanol releases into the environment. The guidelines were consistent with the Alberta Environment tier 1 soil and groundwater framework. The chemical and physical properties of methanol were reviewed. The environmental fate and behavior of methanol releases was discussed, and the behaviour and effects of methanol in terrestrial and aquatic biota were evaluated. The toxicity of methanol and its effects in humans and mammalian species were reviewed. Soil quality and ground water quality guidelines were presented. Surface water and soil guideline calculation methods were provided, and ecological exposure and ground water pathways were discussed. Management limits for methanol concentrations were also provided. 162 refs., 18 tabs., 4 figs.

  15. Hyphenated chromatographic techniques for the rapid screening and identification of antioxidants in methanolic extracts of pharmaceutically used plants .

    NARCIS (Netherlands)

    Exarchou, V.; Fiamegos, Y.C.; Beek, van T.A.; Nanos, C.G.; Vervoort, J.J.M.

    2006-01-01

    Phytochemical analysis is an important scientific research area, which normally relies on a number of rather laborious and time-consuming techniques for compound identification. Isolation of the ingredients of plant extracts in adequate quantities for spectral and biological analysis was the basis

  16. A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield

    International Nuclear Information System (INIS)

    Wang, Hsueh-Sheng; Huang, Kuo-Yang; Huang, Yuh-Jeen; Su, Yu-Chuan; Tseng, Fan-Gang

    2015-01-01

    Highlights: • A low-operating temperature of the POM-mode micro methanol reformer is obtained. • The effect of channel design on the performance is studied. • The effect of solid content and binder’ ratio on the performance is studied. • The centrifugal process is benefit for the modification of performance. • 98% of methanol conversion rate of the micro reformer can be obtained at 180 °C. - Abstract: A partial oxidation methanol micro reformer (POM-μReformer) with finger-shaped channels for low operating temperature and high conversing efficiency is proposed in this study. The micro reformer employs POM reaction for low temperature operation (less than 200 °C), exothermic reaction, and quick start-up, as well as air feeding capability; and the finger type reaction chambers for increasing catalyst loading as well as reaction area for performance enhancement. In this study, centrifugal technique was introduced to assist on the catalyst loading with high amount and uniform distribution. The solid content (S), binder’s ratio (B), and channel design (the ratio between channel’s length and width, R) were investigated in detail to optimize the design parameters. Scanning electron microscopy (SEM), gas chromatography (GC), and inductively coupled plasma-mass spectrometer (ICP-MS) were employed to analyze the performance of the POM-μReformer. The result depicted that the catalyst content and reactive area could be much improved at the optimized condition, and the conversion rate and hydrogen selectivity approached 97.9% and 97.4%, respectively, at a very low operating temperature of 180 °C with scarce or no binder in catalyst. The POM-μReformer can supply hydrogen to fuel cells by generating 2.23 J/min for 80% H 2 utilization and 60% fuel cell efficiency at 2 ml/min of supplied reactant gas, including methanol, oxygen and argon at a mixing ratio of 12.2%, 6.1% and 81.7%, respectively

  17. Assessment of productivity at four generating plants

    International Nuclear Information System (INIS)

    Saarlas, M.; Nelson, M.

    1976-01-01

    The 1975 FEA study of power plant reliability was undertaken as a first step in improving the productivity of large (larger than 400 MW) generating units by attempting to trace outages to their root causes so that meaningful corrective action can be taken at the root of the problem. Trident Engineering Associates studied the operation, maintenance, management, and manning of two fossil-fueled and two nuclear-fueled units, one each of above average and one below average reliability (high availability and low forced outage rate). It was expected that the differences between a highly reliable unit and a less reliable unit would lead to recommendations which would be useful for improving productivity of units throughout the country. The findings are of two basic types: (1) general concepts covering problem areas, fundamental reasons and immediate symptoms behind the problems, methods used to eliminate or alleviate the problems, and proposed solutions; (2) details which provide statistics that establish the relative lost productivity by fundamental causes. Eight root causes (fundamental reasons for failures or outages) were established into which most failures and outages could be assigned. Twenty nine cause factors (causes of failure) were established which assisted in assigning the failures and outages to a root cause

  18. Biological treatment of nitrate bearing wastewater from a uranium production plant

    International Nuclear Information System (INIS)

    Benear, A.K.; Kneip, R.W.

    1988-01-01

    The Feed Materials Production Center (FMPC) produces uranium metal products used for DOE defense programs resulting in the generation of nitrate-bearing wastewaters. To treat these wastewaters, a two-column fluidized bed biodenitrification facility (BDN) was constructed at the FMPC. The operation of the BDN resulted in substantial compliance with the design criteria limits for nitrate from July through November, 1987. Since the BDN surge lagoon (BSL) proved inadequate for providing nitrate concentration equalization, the BDN feed nitrate concentration fluctuated widely throughout this period of operation. BDN effluent caused a doubling of the hydraulic loading and a tripling of the organic loading on the FMPC sewage treatment plant (STP). Better control of the methanol feed to the BDN, coupled with reduced throughput and improved preaeration, caused a significant improvement in the operation of the STP. The overloading of the STP prompted a decision to add a stand-alone effluent treatment system to the BDN

  19. Production Planning and Planting Pattern Scheduling Information System for Horticulture

    Science.gov (United States)

    Vitadiar, Tanhella Zein; Farikhin; Surarso, Bayu

    2018-02-01

    This paper present the production of planning and planting pattern scheduling faced by horticulture farmer using two methods. Fuzzy time series method use to predict demand on based on sales amount, while linear programming is used to assist horticulture farmers in making production planning decisions and determining the schedule of cropping patterns in accordance with demand predictions of the fuzzy time series method, variable use in this paper is size of areas, production advantage, amount of seeds and age of the plants. This research result production planning and planting patterns scheduling information system with the output is recommendations planting schedule, harvest schedule and the number of seeds will be plant.

  20. FY 1992 report on the results of the demonstration test on the methanol conversion at oil-fired power plant. Demonstration test on a methanol reformation type power generation total system; 1992 nendo sekiyu karyoku hatsudensho metanoru tenkan tou jissho shiken. Metanoru kaishitsu gata hatsuden total system jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    For the promotion of introduction of methanol to oil-fired power plant, based on the results of the element study, operational study was conducted of a 1,000kW class total system plant for which each of the elements was combined, and the FY 1992 results were summarized. In the operational study, data on various kinds of operational study were sampled of each of the simple cycle/regeneration cycle of liquid methanol and simple cycle/regeneration cycle of gas methanol. As to the reformed gas/water injection/regeneration cycle, all functions as a total system plant worked normally, and it was confirmed that the reformed gas/water injection/regeneration cycle operation could be made possible. Besides, the following were conducted: confirmation test on the performance of the developmental catalyst used in the operational study by bench-scale test device, trial operation for adjustment of gas turbine and combustion study such as the performance test in each cycle, manufacture/study of catalyst for the total system, study for longevity of catalyst for the total system, etc. (NEDO)

  1. Deciphering Periodic Methanol Masers

    Science.gov (United States)

    Stecklum, Bringfried; Caratti o Garatti, Alessio; Henning, Thomas; Hodapp, Klaus; Hopp, Ulrich; Kraus, Alex; Linz, Hendrik; Sanna, Alberto; Sobolev, Andrej; Wolf, Verena

    2018-05-01

    Impressive progress has been made in recent years on massive star formation, yet the involved high optical depths even at submm/mm wavelengths make it difficult to reveal its details. Recently, accretion bursts of massive YSOs have been identified to cause flares of Class II methanol masers (methanol masers for short) due to enhanced mid-IR pumping. This opens a new window to protostellar accretion variability, and implies that periodic methanol masers hint at cyclic accretion. Pinning down the cause of the periodicity requires joint IR and radio monitoring. We derived the first IR light curve of a periodic maser host from NEOWISE data. The source, G107.298+5.639, is an intermediate-mass YSO hosting methanol and water masers which flare every 34.5 days. Our recent joint K-band and radio observations yielded first but marginal evidence for a phase lag between the rise of IR and maser emission, respectively, and revealed that both NEOWISE and K-band light curves are strongly affected by the light echo from the ambient dust. Both the superior resolution of IRAC over NEOWISE and the longer wavelengths compared to our ground-based imaging are required to inhibit the distractive contamination by the light echo. Thus, we ask for IRAC monitoring of G107 to cover one flare cycle, in tandem with 100-m Effelsberg and 2-m Wendelstein radio and NIR observations to obtain the first high-quality synoptic measurements of this kind of sources. The IR-maser phase lag, the intrinsic shape of the IR light curves and their possible color variation during the cycle allow us to constrain models for the periodic maser excitation. Since methanol masers are signposts of intermediate-mass and massive YSOs, deciphering their variability offers a clue to the dynamics of the accretion-mediated growth of massive stars and their feedback onto the immediate natal environment. The Spitzer light curve of such a maser-hosting YSO would be a legacy science product of the mission.

  2. Biotechnological applications for rosmarinic acid production in plant ...

    African Journals Online (AJOL)

    Biotechnological applications for rosmarinic acid production in plant. ... rosmarinic acid in medicinal plants, herbs and spices has beneficial and health promoting ... of rosmarinic acid starts with the amino acids phenylalanine and tyrosine.

  3. Californium production at the transuranium processing plant

    International Nuclear Information System (INIS)

    King, L.J.

    1976-01-01

    The Transuranium Processing Plant (TRU) at ORNL, which is the production, storage, and distribution center for the ERDA heavy element research program, is described. About 0.5 percent of 252 Cf is currently being produced. TRU is a hot-cell, chemical processing facility of advanced design. New concepts have been incorporated into the facility for absolute containment, remote operation, remote equipment installation, and remote maintenance. The facilities include a battery of nine heavily shielded process cells served by master-slave manipulators and eight laboratories, four on each of two floors. Processing includes chemical dissolution of the targets followed by a series of solvent extraction, ion exchange, and precipitation steps to separate and purify the transuranium elements. The transcurium elements Bk, Cf, Es, and Fm are distributed to users. Remote techniques are used to fabricate the Am and Cm into target rods for reirradiation in the HFIR. Californium-252 that is in excess of the needs of the heavy element research program and the Cf sales program is stored at TRU and processed repeatedly to recover the daughter product 248 Cm, which is a highly desirable research material

  4. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  6. Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance

    International Nuclear Information System (INIS)

    Yi, Qun; Gong, Min-Hui; Huang, Yi; Feng, Jie; Hao, Yan-Hong; Zhang, Ji-Long; Li, Wen-Ying

    2016-01-01

    A novel process designed for producing methanol from coke oven gas (COG) integrated with CO 2 recycle is proposed. In the new system, oxygen replacing air is blown to combustor for assisting combustion of COG and unreacted syngas from methanol synthesis process. The combustion process provides to the heat required in the coking process. The rest COG reacts with the recycled CO 2 separated from the exhaust gas to produce syngas for methanol synthesis. The unreacted syngas from methanol synthesis process with low grade energy level is recycled to the combustor. In the whole methanol production process, there is no additional process with respect to supplementary carbon, and the carbon resource only comes from the internal CO 2 recycle in the plant. With the aid of techno-economic analysis, the new system presents the energy or exergy saving by 5–10%, the CO 2 emission reduction by about 70% and the internal rate of return increase by 5–8%, respectively, in comparison with the traditional COG to methanol process. - Highlights: • A process for producing methanol from COG integrated with CO 2 recycle is first proposed. • CO 2 from the exhaust gas is recycled to supply carbon for producing syngas. • New integrated plant simplifies the production process with 5–8% IRR increase. • New system presents about 5–10% energy saving, about 70% CO 2 emission reduction.

  7. Developments in the European methanol market

    International Nuclear Information System (INIS)

    Speed, J.

    1995-01-01

    In the late eighties/early nineties the World Methanol Market was basically divided into three regional markets--America, Asia Pacific and Europe. These markets were interrelated but each had its own specific characteristics and traditional suppliers. Now the situation has changed; in the mid nineties there is a Global Methanol Market with global players and effective global pricing and the European market is governed by events world-wide. Europe is however a specific market with specific characteristics which are different from those of other markets although it is also part of the Global Market. Hence before the author focuses on Europe he looks at the World Market. The paper discusses world methanol production and consumption by region, world methanol consumption by end use, world methanol supply demand balance, the west European market, western European methanol production, methanol imports to W. Europe, the Former Soviet Union supplies, W. European methanol consumption by end use, MTBE in Europe, duties on methanol imports into W. Europe, investment in Europe, the effect of the 1994/95 price spike, and key issues for the future of the industry

  8. Process for obtaining methanol. Verfahren zur Gewinnung von Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Link, H; Watson, A

    1983-12-08

    Synthetic gas is generated and converted to methanol in a reactor. After the separation of the crude methanol, there is a multi-stage methanol distillation. Condensate occurring during distillation is at least partly fed back before the methanol synthesis.

  9. Developmental and Reproductive Toxicology of Methanol

    Science.gov (United States)

    Methanol is a high production volume chemical used as a feedstock for chemical syntheses and as a solvent and fuel additive. Methanol is acutely toxic to humans, causing acidosis, blindness in death at high dosages, but its developmental and reproductive toxicity in humans is poo...

  10. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  11. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  12. Methanol Fuel Cell

    Science.gov (United States)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  13. Crushed stone production plant for NPP building

    International Nuclear Information System (INIS)

    Obolenskij, V.Ya.

    1982-01-01

    The project of the granite-crushed stone quarry - the large modern plant producing building materials, is presented. The quarry is designated for providing NPP and other power objects building with high-strength crushed stone. The plant consists of: quarry; crushing-sorting plant with maintenance objects arranged on its ground; basis and service stores of explosive materials; tail facility and purifying systems; water supply purifying stations; water storage basin. The plant is reserved for 2335 thousand m 3 yearly utoput of crushed stone; the staff consists of 535 persons, the budgeted cost of building is 26.6 million rubles. Physicochemical characteristics of granosyenites of the ''Granitnoye'' deposit - the raw material resource base of the plant and technological scheme of the crushing-sorting plant are given. Planned measures on building organization and recultivation of disturbed grounds are presented

  14. Terrestrial plant methane production and emission

    DEFF Research Database (Denmark)

    Bruhn, Dan; Møller, Ian M.; Mikkelsen, Teis Nørgaard

    2012-01-01

    In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce...... aerobic CH4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  15. Process chain analysis for methanol production from biomass with the aid of mathematical models; Prozesskettenanalyse fuer die Methanolerzeugung aus Biomasse mit Hilfe von mathematischen Modellen

    Energy Technology Data Exchange (ETDEWEB)

    Saller, G.; Krumm, W. [Siegen Univ. (Gesamthochschule) (Germany)

    1996-12-31

    Using the example of primary energy consumption for methanol production from cellulose-rich biomass, it is shown that process chain analysis with mathematical modelling of the technical systems enables calculations of eco-inventories as a function of the relevant process parameters. Optimisation of process chains with regard to ecological indicators or cost necessitates mathematical modelling because of the many different parameters and parameter combinations involved. (orig) [Deutsch] Am Beispiel des Primaerenergieaufwands bei der Methanolgewinnung aus zellulosealtiger Biomasse wurde gezeigt, dass die Prozesskettenanalyse mit Abbildung der technischen Systeme in mathematischen Modellen die Berechnung von Oekoinventaren in Abhaengigkeit der relevanten Prozessparameter erlaubt. Die Optimierung von Prozessketten hinsichtlich oekologischer Indikatoren oder Kosten ist wegen der Vielzahl an unterschiedlichen Parametern und deren Kombinationsmoeglichkeiten nur mit Hilfe mathematischer Modelle moeglich. (orig)

  16. Process chain analysis for methanol production from biomass with the aid of mathematical models; Prozesskettenanalyse fuer die Methanolerzeugung aus Biomasse mit Hilfe von mathematischen Modellen

    Energy Technology Data Exchange (ETDEWEB)

    Saller, G; Krumm, W [Siegen Univ. (Gesamthochschule) (Germany)

    1997-12-31

    Using the example of primary energy consumption for methanol production from cellulose-rich biomass, it is shown that process chain analysis with mathematical modelling of the technical systems enables calculations of eco-inventories as a function of the relevant process parameters. Optimisation of process chains with regard to ecological indicators or cost necessitates mathematical modelling because of the many different parameters and parameter combinations involved. (orig) [Deutsch] Am Beispiel des Primaerenergieaufwands bei der Methanolgewinnung aus zellulosealtiger Biomasse wurde gezeigt, dass die Prozesskettenanalyse mit Abbildung der technischen Systeme in mathematischen Modellen die Berechnung von Oekoinventaren in Abhaengigkeit der relevanten Prozessparameter erlaubt. Die Optimierung von Prozessketten hinsichtlich oekologischer Indikatoren oder Kosten ist wegen der Vielzahl an unterschiedlichen Parametern und deren Kombinationsmoeglichkeiten nur mit Hilfe mathematischer Modelle moeglich. (orig)

  17. Investigations into low pressure methanol synthesis

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek

    The central topic of this work has been synthesis, characterization and optimization of novel Ni-Ga based catalysts for hydrogenation of CO2 to methanol. The overall goal was to search for materials that could be used as a low temperature (and low pressure) methanol synthesis catalyst....... This is required for small scale delocalized methanol production sites, where installation of energy demanding compression units should be avoided. The work was triggered by DFT calculations, which showed that certain bimetallic systems are active towards methanol synthesis from CO2 and H2 at ambient pressure...... containing 5:3 molar ratio of Ni:Ga, the intrinsic activity (methanol production rate per active surface area) is comparable to that of highly optimised Cu/ZnO/Al2O3. Formation of the catalyst was investigated with the aid of in-situ XRD and in-situ XAS techniques. The mechanism of alloying was proposed...

  18. Soil biota suppress positive plant diversity effects on productivity at high but not low soil fertility

    NARCIS (Netherlands)

    Luo, Shan; Deyn, De Gerlinde B.; Jiang, B.; Yu, Shixiao

    2017-01-01

    Plant community productivity commonly increases with increasing plant diversity, which is explained by complementarity among plant species in resource utilization (complementarity effect), or by selection of particularly productive plant species in diverse plant communities (selection effect).

  19. Transgenic plants as green factories for vaccine production | Vinod ...

    African Journals Online (AJOL)

    Edible vaccine technology represents an alternative to fermentation based vaccine production system. Transgenic plants are used for the production of plant derived specific vaccines with native immunogenic properties stimulating both humoral and mucosal immune responses. Keeping in view the practical need of new ...

  20. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  1. Methanol to propylene. From development to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Haag, S.; Rothaemel, M. [Air Liquide Forschung und Entwicklung GmbH, Frankfurt am Main (Germany); Pohl, S.; Gorny, M. [Lurgie GmbH, Frankfurt am Main (Germany). Air Liquide Global E and C Solutions

    2012-07-01

    In the late 1990s the development of the so-called MTP {sup registered} (methanol-to-propylene) process, a Lurgi Technology (by Air Liquide Global E and C Solutions) started. This constitutes a novel route to a valuable product that would not rely on crude oil as feedstock (as conventional propylene production does), but instead utilizes coal or natural gas and potentially biomass. These alternative feedstocks are first converted to synthesis gas, cleaned, and then converted to methanol. The development of the methanol-to-propylene conversion was achieved in a close collaboration between R and D and engineering. Two pilot plants at the R and D center in Frankfurt and a demonstration plant in Norway have been used to demonstrate the yields, catalyst lifetime and product quality and to support the engineering team in plant design and scale-up. Especially the last item is important as it was clear from the very beginning that the first commercial MTP {sup registered} plant would already be world-scale, actually one of the largest propylene producing plants in the world. This required a safe and diligent scale-up as the MTP {sup registered} reactors in the commercial plant receive about 7,000 times the feed of the demo unit and as much as 100,000 times the feed of the pilot plant. The catalyst used is a zeolite ZSM-5 that was developed by our long-term cooperation partner Sued-Chemie (now Clariant). At the end of 2010, the first commercial MTP {sup registered} plant in Ningdong in the Chinese province of Ningxia was started up as part of a coal-to-chemicals complex owned by the Shenhua Ningxia Coal Industry Group. In this complex the complete chain starting from coal through to the final polypropylene product is realized. The customer successful started the polymer-grade propylene production in April 2011 and then announced in May 2011 that he sold the first 1000 tons of polypropylene made with propylene coming from the MTP {sup registered} unit. Following this

  2. 9 CFR 355.21 - Products entering inspected plants.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION AND CERTIFICATION CERTIFIED PRODUCTS FOR DOGS, CATS, AND OTHER CARNIVORA; INSPECTION... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Products entering inspected plants. 355.21 Section 355.21 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF...

  3. Comparison between constant methanol feed and on-line ...

    African Journals Online (AJOL)

    Two methanol feeding methods, namely constant methanol feed and on-line monitoring feed control by methanol sensor were investigated to improve the production of recombinant human growth hormone (rhGH) in high cell density cultivation of Pichia pastoris KM71 in 2 L bioreactor. The yeast utilized glycerol as a carbon ...

  4. FY 1992 report on the results of the demonstration test on the methanol conversion at oil-fired power plant. Developmental study of a methanol engine system for power generation; 1992 nendo sekiyu karyoku hatsudensho metanoru tenkan tou jissho shiken. Hatsuden you metanoru enjin system no kaihatsu kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    For the purpose of establishing the methanol engine technology for promotion of methanol introduction to oil-fired power plant, an experimental study was made, and the FY 1992 results were summarized. In the study of technology development, the following were carried out: evaluation of durability of multi glow plug and development of high-durability glow plug, confirmation of potentiality of the laser ignition system by element evaluation test, evaluation/improvement of durability of the injection system and development of injection pump for the actual machine, trial manufacture of the 2-stage injection system and confirmation of characteristics, study of improvement in ignitability/combustion state by optimization of the temperature of glow plug, compression rate, etc., evaluation of durability of combustion chamber, etc. by the heat load measuring test and heat balance, etc. As a result of the engine test, the pump housing stayed favorable without damage in the use of about 20,000h, plunger assembly did in the use of about 4,500h, and valve assembly did in the use of about 20,000h. As to the manufacture of the actual machine, a prototype was designed/manufactured of a 500kW class direct injection 4 cycle supercharging 6 cylinder methanol engine. (NEDO)

  5. Robotized production systems observed in modern plants

    Science.gov (United States)

    Saverina, A. N.

    1985-09-01

    Robots, robotized lines and sectors are no longer innovations in shops at automotive plants. The widespread robotization of automobile assembly operations is described in general terms. Robot use for machining operation is also discussed.

  6. Plant Design for the Production of DUAGG

    International Nuclear Information System (INIS)

    Ferrada, J.J.

    2003-01-01

    The cost of producing DUAGG is an important consideration for any interested private firm in determining whether DUCRETE is economically viable as a material of construction in next-generation spent nuclear fuel casks. This study analyzed this project as if it was a stand-alone project. The capital cost includes engineering design, equipment costs and installation, start up, and management; the study is not intended to be a life-cycle cost analysis. The costs estimated by this study are shown in Table ES.1, and the conclusions of this study are listed in Table ES.2. The development of DUAGG and DUCRETE is a major thrust of the Depleted Uranium Uses Research and Development Project. An obvious use of depleted uranium is as a shielding material (e.g., DUCRETE). DUCRETE is made by replacing the conventional stone aggregate in concrete with DUAGG. One objective of this project is to bring the development of DUCRETE to a point at which a demonstrated basis exists for its commercial deployment. The estimation of the costs to manufacture DUAGG is an important part of this effort. Paul Lessing and William Quapp developed DUAGG and DUCRETE as part of an Idaho National Engineering and Environmental Laboratory (INEEL) program to find beneficial uses for depleted uranium (DU). Subsequently, this technology was licensed to Teton Technologies, Inc. The DUAGG process mixes DUO 2 with sintering materials and additives to form pressed briquettes. These briquettes are sintered at 1300 C, and the very dense sintered briquettes are then crushed and classified into gap-graded size fractions. The graded DUAGG is then ready to be used to make high-strength heavy DUCRETE. The DUCRETE shielding will be placed into an annular steel cask-shell mold, which has internal steel reinforcing bars. The objectives of this study are to (1) use previous DUAGG process developments to design a plant that will produce DUAGG at a baseline rate, (2) determine the size of the equipment required to meet the

  7. Amino acid production exceeds plant nitrogen demand in Siberian tundra

    Science.gov (United States)

    Wild, Birgit; Eloy Alves, Ricardo J.; Bárta, Jiři; Čapek, Petr; Gentsch, Norman; Guggenberger, Georg; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Prommer, Judith; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Richter, Andreas

    2018-03-01

    Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using 15N pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.

  8. The impact of new product introduction on plant productivity in the North American automotive industry

    NARCIS (Netherlands)

    Gopal, A.; Goyal, M.; Netessine, S.; Reindorp, M.J.

    2013-01-01

    Product launch—an event when a new product debuts for production in a plant—is an important phase in product development. But launches disrupt manufacturing operations, resulting in productivity losses. Using data from North American automotive plants from years 1999–2007, we estimate that a product

  9. Methanol emissions from maize: Ontogenetic dependence to varying light conditions and guttation as an additional factor constraining the flux

    Science.gov (United States)

    Mozaffar, A.; Schoon, N.; Digrado, A.; Bachy, A.; Delaplace, P.; du Jardin, P.; Fauconnier, M.-L.; Aubinet, M.; Heinesch, B.; Amelynck, C.

    2017-03-01

    Because of its high abundance and long lifetime compared to other volatile organic compounds in the atmosphere, methanol (CH3OH) plays an important role in atmospheric chemistry. Even though agricultural crops are believed to be a large source of methanol, emission inventories from those crop ecosystems are still scarce and little information is available concerning the driving mechanisms for methanol production and emission at different developmental stages of the plants/leaves. This study focuses on methanol emissions from Zea mays L. (maize), which is vastly cultivated throughout the world. Flux measurements have been performed on young plants, almost fully grown leaves and fully grown leaves, enclosed in dynamic flow-through enclosures in a temperature and light-controlled environmental chamber. Strong differences in the response of methanol emissions to variations in PPFD (Photosynthetic Photon Flux Density) were noticed between the young plants, almost fully grown and fully grown leaves. Moreover, young maize plants showed strong emission peaks following light/dark transitions, for which guttation can be put forward as a hypothetical pathway. Young plants' average daily methanol fluxes exceeded by a factor of 17 those of almost fully grown and fully grown leaves when expressed per leaf area. Absolute flux values were found to be smaller than those reported in the literature, but in fair agreement with recent ecosystem scale flux measurements above a maize field of the same variety as used in this study. The flux measurements in the current study were used to evaluate the dynamic biogenic volatile organic compound (BVOC) emission model of Niinemets and Reichstein. The modelled and measured fluxes from almost fully grown leaves were found to agree best when a temperature and light dependent methanol production function was applied. However, this production function turned out not to be suitable for modelling the observed emissions from the young plants

  10. Process assessment of small scale low temperature methanol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hendriyana [Chemical Engineering Department, Faculty of Engineering, Jenderal Achmad Yani Univerity (Indonesia); Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung (Indonesia); Susanto, Herri, E-mail: herri@che.itb.ac.id; Subagjo [Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung (Indonesia)

    2015-12-29

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy

  11. Process assessment of small scale low temperature methanol synthesis

    International Nuclear Information System (INIS)

    Hendriyana; Susanto, Herri; Subagjo

    2015-01-01

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H 2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H 2 for increasing H 2 /CO ratio. CO 2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic

  12. Biodiesel production from vegetable oil and waste animal fats in a pilot plant.

    Science.gov (United States)

    Alptekin, Ertan; Canakci, Mustafa; Sanli, Huseyin

    2014-11-01

    In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Application of Modern Technologies for Nuclear Power Plant Productivity Improvements

    International Nuclear Information System (INIS)

    Joseph, A. Naser

    2011-01-01

    The nuclear power industry in several countries is concerned about the ability to maintain current high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, new requirements and commitments, unnecessary workloads and stress levels, and human errors. Current plant operations are labor-intensive due to the vast number of operational and support activities required by the commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the desire by many plants to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New productivity improvement capabilities with measurable economic benefits are needed so that a successful business case can be made for their use. Improved and new instrumentation and control, human-system interface, information and communications technologies used properly can address concerns about cost-effectively maintaining current performance levels and enable shifts to even higher performance levels. This can be accomplished through the use of new technology implementations to improve productivity, reduce costs of systemic inefficiencies and avoid unexpected costs. Many of the same type of productivity improvements for operating plants will be applicable for new plants. As new plants are being built, it is important to include these productivity improvements or at least provide the ability to implement them easily later

  14. Hydrogen production at hydro-power plants

    Science.gov (United States)

    Tarnay, D. S.

    A tentative design for hydrogen-producing installations at hydropower facilities is discussed from technological, economic and applications viewpoints. The plants would use alternating current to electrolyze purified river water. The hydrogen would be stored in gas or liquid form and oxygen would be sold or vented to the atmosphere. The hydrogen could later be burned in a turbine generator for meeting peak loads, either in closed or open cycle systems. The concept would allow large hydroelectric plants to function in both base- and peak-load modes, thus increasing the hydraulic utilization of the plant and the capacity factor to a projected 0.90. Electrolyzer efficiencies ranging from 0.85-0.90 have been demonstrated. Excess hydrogen can be sold for other purposes or, eventually, as domestic and industrial fuel, at prices competitive with current industrial hydrogen.

  15. Gasification for fuel production in large and small scale polygeneration plants; Foergasning foer braensleproduktion i stor- och smaaskaliga energikombinat

    Energy Technology Data Exchange (ETDEWEB)

    Rodin, Jennie; Wennberg, Olle

    2010-09-15

    This report investigates the possibility of integrating biofuel production through gasification with an existing energy production system. Previous work within Vaermeforsk (report 904, 1012) has concluded that gasification for motor fuel production as a part of a polygeneration plant seems promising when looking at the energy efficiency. However, comparable data between different types of integration, energy plants and fuels was found to be needed in order to get a better understanding of how a gasifier would affect an energy system. The systems studied are the heat- and power production of a bigger city (Goeteborg) and a medium sized city (Eskilstuna), and a pulp mill (Soedra Cell Vaeroe). The latter already runs a commercial gasifier for burner gas production, where the gas is used in the lime kiln. The different types of polygeneration plants have been studied by setting up and evaluating mass- and energy balances for each system. The fuel products that are looked upon in this project are DME, methane, methanol and burner gas. The burner gas is used on site. The case studies have been evaluated based on energy efficiency for fuel production, electricity and district heating. The efficiency is foremost calculated for the higher heating value. In the case of the boiler integrated gasifier in Eskilstuna, the efficiencies have been calculated on the marginal fuel. We have also let the district heating remain unchanged

  16. Antifungal evaluation and phytochemical screening of methanolic ...

    African Journals Online (AJOL)

    The objective of the study was to further examine the medicinal value of Boswellia dalzielii plant by evaluating the antifungal activity and carrying out phytochemical screening of methanolic extract, hexane, ethyl acetate, aqueous fractions and the sub-fractions of the stem bark of the plant. Standard methods were used for ...

  17. Evaluation of cytotoxic effect of methanolic extracts isolated from endemic plants of Chaharmahal va Bakhtiari province on PC-3, MCF-7, Hep G2, CHO and B16-F10 cell lines

    Directory of Open Access Journals (Sweden)

    Z. Tayarani-Najaran

    2017-11-01

    Full Text Available Background and objectives: To date, thousands of secondary metabolites have been isolated from plants and microorganisms and there is an unprecedented attention towards potential biomedical applications of natural compounds. In this study, cytotoxic properties of methanol extracts of Stachys obtusicrena, Aristolochia olivieri, Linum album, Dionysia sawyeri, Ajuga chamaecistus, Achillea kellalensis, Nepeta glomerulosa, Phlomis aucheria, Tanacetum dumosum, Dianthus orientalis, Scutellaria multicaulis, Cicer oxyodon and Picris oligocephalum which are widely grown in Iran, were investigated on PC-3 (prostat cancer, MCF-7 (breast cancer, Hep-G2 (liver cancer, CHO (ovarian cancer and B16-F10 (melanoma cell lines. Methods: The cancer cells were cultured in RPMI-1640 and incubated with different concentrations of the plant extracts. Cell viability was quantitated by Alamar blue® assay. The apoptotic cells were determined by PI coloring and Flow Cytometry (Sub-G1 peak. Results: The methanol extracts of D. sawyeri, S. obtusicrena, and C. oxyodon significantly decreased the viability of CHO cells. The Methanol extract of D. sawyer and L. album had cytotoxic effects on B16-F10 cells, whereas no toxicity was observed in MCF-7, Hep-G2 and PC-3 cell lines after incubation of the cancer cells with the plant extracts. The PI staining results showed that D. sawyeri, S. obtusicrena, and C. oxyodon in CHO cancer cells could induce apoptosis in a concentration-dependent manner. Conclusion: Screening plants to find the most cytotoxic extract showed D. sawyeri, S. obtusicrena, C. oxyodon and L. album had the potential for further analysis toward finding active phytochemicals with cytotoxic activity.

  18. Comparison of Authorization/Registration/Notification Processes among Biocidal Products, Cosmetics, Plant Protection Products and Human Medicinal Products

    OpenAIRE

    Söyleriz, Yüksel

    2015-01-01

    In this study, comparison of the authorization/registration/notification processes of biocidal products, cosmetics, plant protection products and medicinal products are made and in this respect, the situation in EU is assessed.

  19. On the sustainable productivity of planted forests

    Science.gov (United States)

    Robert F. Powers

    1999-01-01

    Planted forests have more than a millennium of history and represent the world's best hope for meeting global wood requirements in the twenty-first century. Advances in genetic improvement, nursery practices, stand establishment, and tending, harvesting, and manufacturing have boosted plantation yields to a higher level than at any point in history. Despite this,...

  20. FY 1992 report on the results of the demonstration test on the methanol conversion at oil-fired power plant. Feasibility study of a new system for the stabilized supply of fuel use methanol; 1992 nendo sekiyu karyoku hatsudensho metanoru tenkan tou jissho shiken. Nenryo you metanoru kyokyu antei ka no tameno shin system no kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    An investigational study was made of potentiality of a new system for methanol production by using abundant hydraulic power energy overseas and by combining water electrolysis and coal gasification technology, and the FY 1992 results were summarized. In this fiscal year, survey was made of the potential water power and coal in Malaysia, Canada and Brazil, and case study was also made. As a result of the study, the cost of methanol was 7.1 yen/10{sup 3}kcal in case of Malaysia, 8.6 yen/10{sup 3}kcal in case of Canada and 8.9 yen/10{sup 3}kcal in case of Brazil. It was found out that the cost was economically less advantageous as compared with the present methanol price of 3.0-5.5 yen/10{sup 3}kcal. In a comparison between the existing coal/oil/LNG thermal power generation and this system from viewpoints of the energy balance/CO2 emission amount, the energy balance of this system is worse than those of the above-mentioned power generation when adding the coal thrown, but the CO2 emission amount of the system was less than those of coal/oil thermal power generation. In conclusion, this system seems to be an effective means in the light of the promotion of development of the undeveloped hydraulic power, effective utilization of renewable energy and global environmental preservation. (NEDO)

  1. New CHP plant for a rubber products manufacturer

    International Nuclear Information System (INIS)

    Vila, R.; Martí, C.

    2016-01-01

    At the end of 2014 the company Industrias de Hule Galgo decided to undertake the installation project of an efficient CHP plant for its production plant, with the aim of bringing down energy costs and improving the company’s competitive position in the market. The new plant has already started its first operational phase. The project has comprised the installation of a single cycle with gas-powered gensets providing a total electrical capacity of 6.6 MW. This provides the necessary thermal oil for the production plant; covers 100% of the electrical power consumed by the industrial complex; and also generates cooling water, giving improved production capacity by supercooling the extrusion system. To execute these works, Industrias de Hule Galgo contracted the services of engineering company AESA to provide the engineering, procurement and construction of the CHP plant. (Author)

  2. New salty waffle products "Fish Krekis" with fish & plant semifinished products

    Directory of Open Access Journals (Sweden)

    Fedorova Dina

    2016-04-01

    Full Text Available The study examines the directions of expansion of the range of wafer snack products of high nutritional value by using fish & plant semifinished products. The study scientifically grounds the benefits of using the new fish & plant semifinished products in manufacturing waffle salty snack products. The data provided in the article prove that the use of the fish & plant semifinished products & herbal ingredients enable a range of the new wafer snack products «Fish krekis» with high content of proteins, organic calcium, fiber and vitamins, with improved consumer properties, as well as more efficient use of Ukrainian raw fish materials.

  3. Reconceptualizing cancer immunotherapy based on plant production systems

    OpenAIRE

    Hefferon, Kathleen

    2017-01-01

    Plants can be used as inexpensive and facile production platforms for vaccines and other biopharmaceuticals. More recently, plant-based biologics have expanded to include cancer immunotherapy agents. The following review describes the current state of the art for plant-derived strategies to prevent or reduce cancers. The review discusses avenues taken to prevent infection by oncogenic viruses, solid tumors and lymphomas. Strategies including cancer vaccines, monoclonal antibodies and virus na...

  4. Plant compounds insecticide activity against Coleoptera pests of stored products

    OpenAIRE

    MOREIRA, M.D.; PICANÇO, M.C.; BARBOSA, L.C. de A.; GUEDES, R.N.C.; CAMPOS, M.R. de; SILVA, G.A.; MARTINS, J.C.

    2008-01-01

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed...

  5. Plants for water recycling, oxygen regeneration and food production

    Science.gov (United States)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  6. Cowley Ridge wind plant experiences best production year ever

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The Cowley Ridge wind plant in southern Alberta in its fifth year of operation generated 63,380 MWh of electricity, exceeding its annual goal by about 15 per cent. December was one of the highest production months ever. During December the plant operated an an average of 62 per cent capacity throughout the month. The annual average is 35 per cent of capacity

  7. Optimization of Jatropha curcas pure plant oil production

    NARCIS (Netherlands)

    Subroto, Erna

    2015-01-01

    The use of pure plant oils as fuel, either directly or after conversion of the oil to bio-diesel, is considered to be one of the potential contributions to the transformation of the current fossil oil based economy to a sustainable bio-based one. The production of oil producing seeds using plants

  8. Plant latex lipase as biocatalysts for biodiesel production | Mazou ...

    African Journals Online (AJOL)

    Plant latex lipase as biocatalysts for biodiesel production. ... This paper provides an overview regarding the main aspects of latex, such as the reactions catalyzed, physiological functions, specificities, sources and their industrial applications. Keywords: Plant latex, lipase, Transesterification, purification, biodiesel ...

  9. Plant natural products research in tuberculosis drug discovery and ...

    African Journals Online (AJOL)

    Plant natural products research in tuberculosis drug discovery and development: A situation report ... African Journal of Biotechnology ... tuberculosis (XDR-TB), call for the development of new anti-tuberculosis drugs to combat this disease.

  10. Initial biochar effects on plant productivity derive from N fertilization

    NARCIS (Netherlands)

    Jeffery, Simon; Memelink, Ilse; Hodgson, Edward; Jones, Sian; van de Voorde, Tess F. J.; Bezemer, T. Martijn; Mommer, Liesje; van Groenigen, Jan Willem

    2017-01-01

    Biochar application to soil is widely claimed to increase plant productivity. However, the underlying mechanisms are still not conclusively described. Here, we aim to elucidate these mechanisms using stable isotope probing.

  11. The heavy water production plant at Arroyito, Argentina

    International Nuclear Information System (INIS)

    Ecabert, R.

    1984-01-01

    The author describes the construction of an industrial heavy water production plant (Planta Industrial de Agua Pesada, PIAP) in Argentina. The heavy water enrichment is based on a hydrogen/ammonia isotope exchange. (Auth.)

  12. What about improving the productivity of electric power plants

    International Nuclear Information System (INIS)

    Lawroski, H.; Knecht, P.D.; Prideaux, D.L.; Zahner, R.R.

    1976-01-01

    The FEA in April of 1974 established an Interagency Task Group on Power Plant Reliability, which was charged with the broad objective of improving the productivity of existing and planned large fossil-fueled and nuclear power plants. It took approximately 11 months for the task force to publish a report, ''Report on Improving the Productivity of Electrical Power Plants'' (FEA-263-G), a detailed analysis and comparison of successful and below-average-performance power plants. The Nuclear Service Corp. portion of this study examined four large central-station power plants: two fossil (coal) and two nuclear plants. Only plants with electrical generation capacities greater than 400 MWe were considered. The study included the following: staff technical skill, engineering support, QA program, plant/corporate coordination, operation philosophy, maintenance programs, federal/state regulations, network control, and equipment problems. Personnel were interviewed, and checklists providing input from some 21 or more plant and corporate personnel of each utility were utilized. Reports and other documentation were also reviewed. It was recognized early that productivity is closely allied to technical skills and positive motivation. For this reason, considerable attention was given to people in this study

  13. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants.

    Science.gov (United States)

    Pant, Bijaya

    2014-01-01

    Approximately 80% of the world inhabitants depend on the medicinal plants in the form of traditional formulations for their primary health care system well as in the treatment of a number of diseases since the ancient time. Many commercially used drugs have come from the information of indigenous knowledge of plants and their folk uses. Linking of the indigenous knowledge of medicinal plants to modern research activities provides a new reliable approach, for the discovery of novel drugs much more effectively than with random collection. Increase in population and increasing demand of plant products along with illegal trade are causing depletion of medicinal plants and many are threatened in natural habitat. Plant tissue culture technique has proved potential alternative for the production of desirable bioactive components from plants, to produce the enough amounts of plant material that is needed and for the conservation of threatened species. Different plant tissue culture systems have been extensively studied to improve and enhance the production of plant chemicals in various medicinal plants.

  14. Fiber optic lighting system for plant production

    Science.gov (United States)

    St. George, Dennis R.; Feddes, John J. R.

    1991-02-01

    Dennis St. George John Feddes (Dept. of Agricultural Engineering University of Alberta Edmonton AB Canada T6G 2Hl) A prototype light collection and transmission device was developed and evaluated for the potential of irradiating plants grown in an opague growth chamber. Results indicated that the device transmitted light with a photon flux of 130 1amol/s/m2 (4000-7000 nm) to the bottom of the growth chamber when direct solar radiation was 800 W/m2 (300-2500 nm) outside. The overall collection and transmission efficiency for photosynthetically active radiation is 19. 2. A growth trial with plants indicated that artificial lighting is required during cloudy periods. 1.

  15. Methanol-enhanced removal and metabolic conversion of formaldehyde by a black soybean from formaldehyde solutions.

    Science.gov (United States)

    Tan, Hao; Xiong, Yun; Li, Kun-Zhi; Chen, Li-Mei

    2017-02-01

    Methanol regulation of some biochemical and physiological characteristics in plants has been documented in several references. This study showed that the pretreatment of methanol with an appropriate concentration could stimulate the HCHO uptake by black soybean (BS) plants. The process of methanol-stimulated HCHO uptake by BS plants was optimized using the Central Composite Design and response surface methodology for the three variables, methanol concentration, HCHO concentration, and treatment time. Under optimized conditions, the best stimulation effect of methanol on HCHO uptake was obtained. 13 C-NMR analysis indicated that the H 13 CHO metabolism produced H 13 COOH, [2- 13 C]Gly, and [3- 13 C]Ser in BS plant roots. Methanol pretreatment enhanced the metabolic conversion of H 13 CHO in BS plant roots, which consequently increased HCHO uptake by BS plants. Therefore, methanol pretreatment might be used to increase HCHO uptake by plants in the phytoremediation of HCHO-polluted solutions.

  16. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity

    Directory of Open Access Journals (Sweden)

    Jonathon eMuller

    2014-10-01

    Full Text Available Buildings structures and surfaces are explicitly being used to grow plants, and these ‘urban plantings’ are typically designed for aesthetic value. Urban plantings also have the potential to contribute significant ‘ecological values’ by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban centre of Brisbane, Australia (subtropical climatic region over two, six week sampling periods characterised by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation, plant CO2 assimilation, soil CO2 efflux, and arthropod diversity.Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly - likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.

  17. Plant Products for Pharmacology: Application of Enzymes in Their Transformations

    Directory of Open Access Journals (Sweden)

    Marie Zarevúcka

    2008-12-01

    Full Text Available Different plant products have been subjected to detailed investigations due to their increasing importance for improving human health. Plants are sources of many groups of natural products, of which large number of new compounds has already displayed their high impact in human medicine. This review deals with the natural products which may be found dissolved in lipid phase (phytosterols, vitamins etc.. Often subsequent convenient transformation of natural products may further improve the pharmacological properties of new potential medicaments based on natural products. To respect basic principles of sustainable and green procedures, enzymes are often employed as efficient natural catalysts in such plant product transformations. Transformations of lipids and other natural products under the conditions of enzyme catalysis show increasing importance in environmentally safe and sustainable production of pharmacologically important compounds. In this review, attention is focused on lipases, efficient and convenient biocatalysts for the enantio- and regioselective formation / hydrolysis of ester bond in a wide variety of both natural and unnatural substrates, including plant products, eg. plant oils and other natural lipid phase compounds. The application of enzymes for preparation of acylglycerols and transformation of other natural products provides big advantage in comparison with employing of conventional chemical methods: Increased selectivity, higher product purity and quality, energy conservation, elimination of heavy metal catalysts, and sustainability of the employed processes, which are catalyzed by enzymes. Two general procedures are used in the transformation of lipid-like natural products: (a Hydrolysis/alcoholysis of triacylglycerols and (b esterification of glycerol. The reactions can be performed under conventional conditions or in supercritical fluids/ionic liquids. Enzyme-catalyzed reactions in supercritical fluids combine the

  18. Production of lysosomal enzymes in plant-based expression systems

    OpenAIRE

    1996-01-01

    The invention relates to the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which ...

  19. State regulation and power plant productivity: background and recommendations

    International Nuclear Information System (INIS)

    1980-09-01

    This report was prepared by representatives of several state regulatory agencies. It is a guide to some of the activities currently under way in state agencies to promote increased availability of electrical generating power plants. Standard measures of plant performance are defined and the nature of data bases that report such measures is discussed. It includes reviews of current state, federal, and industry programs to enhance power plant productivity and provides detailed outlines of programs in effect in California, Illinois, Michigan, New York, North Carolina, Ohio, and Texas. A number of actions are presented that could be adopted by state regulatory agencies, depending on local conditions. They include: develop a commission position or policy statement to encourage productivity improvements by utilities; coordinate state efforts with ongoing industry and government programs to improve the acquisition of power plant performance data and the maintenance of quality information systems; acquire the capability to perform independent analyses of power plant productivity; direct the establishment of productivity improvement programs, including explicit performance objectives for both existing and planned power plants, and a performance program; establish a program of incentives to motivate productivity improvement activities; and participate in ongoing efforts at all levels and initiate new actions to promote productivity improvements

  20. Methanol production from eucalyptus wood chips. Attachment VI. Florida's eucalyptus energy farm: the natural system interface

    Energy Technology Data Exchange (ETDEWEB)

    Fishkind, H.H.

    1982-05-01

    A review of pertinent literature covered the following: eucalypt background, the candidate species, biomass plantation considerations, effects of site production, leachate and allelopathy, and some exotic flora considerations. The comparative eucalypt field survey covers mined land stands, unmined south Florida stands, and Glade County eucalypt stands. The problem of eucalypt naturalization is discussed.

  1. Maintenance in nuclear production power plants

    International Nuclear Information System (INIS)

    Lozano, J. M.

    2010-01-01

    This article highlights the importance and quality of maintenance in the complete phases of development, in a sector which has been often questioned by the public opinion, and that is always subject to national and international standards. The aim of maintenance is to guarantee the production of electric power in a reliable, safe, economic and friendly environmentally way, assuring a long-term production. (Author)

  2. Reconceptualizing cancer immunotherapy based on plant production systems

    Science.gov (United States)

    Hefferon, Kathleen

    2017-01-01

    Plants can be used as inexpensive and facile production platforms for vaccines and other biopharmaceuticals. More recently, plant-based biologics have expanded to include cancer immunotherapy agents. The following review describes the current state of the art for plant-derived strategies to prevent or reduce cancers. The review discusses avenues taken to prevent infection by oncogenic viruses, solid tumors and lymphomas. Strategies including cancer vaccines, monoclonal antibodies and virus nanoparticles are described, and examples are provided. The review ends with a discussion of the implications of plant-based cancer immunotherapy for developing countries. PMID:28884013

  3. Methanol fuel update

    International Nuclear Information System (INIS)

    Colledge, R.; Spacek, J.

    1992-01-01

    An overview is presented of methanol fuel developments, with particular reference to infrastructure, supply and marketing. Methanol offers reduced emissions, easy handling, is cost effective, can be produced from natural gas, coal, wood, or municipal waste, is a high performance fuel, is safer than gasoline, and contributes to energy security. Methanol supply, environmental benefits, safety/health issues, economics, passenger car economics, status of passenger car technology, buses, methanol and the prosperity initiative, challenges to implementation, and the role of government and original equipment manufacturers are discussed. Governments must assist in the provision of methanol refuelling infrastructure, and in providing an encouraging regulatory atmosphere. Discriminatory and inequitable taxing methods must be addressed, and an air quality agenda must be defined to allow the alternative fuel industry to respond in a timely manner

  4. 甲醇装置ECS系统通信问题原因分析及对策%ANALYSIS OF CAUSES FOR COMMUNICATION PROBLEM OF ECS SYSTEM 1N METHANOL PLANT AND COUNTER-MEASURES

    Institute of Scientific and Technical Information of China (English)

    钟彦禄

    2012-01-01

    The problems encountered in the ECS rear system for the two methanol plants in the company are introduced and counter-measures for solving the communication interruption of ECS system are proposed, also some methods and suggestions in solving the communication problems are summed up.%介绍中海石油建滔化工有限公司2套甲醇装置ECS后台系统遇到的通讯问题,提出解决ECS系统通讯中断的对策,归纳了一些解决通讯问题方法和建议。

  5. Optimal planting systems for cut gladiolus and stock production

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmad

    2017-10-01

    Full Text Available A study was conducted to elucidate the effect of different planting systems, videlicet (viz. flat, ridge, and raised bed system on growth, yield and quality of gladiolus and stock. Corms of ‘Rose Supreme’ and ‘White Prosperity’ gladiolus and seedlings of ‘Cheerful White’, ‘Lucinda Dark Rose Double’ and ‘Lucinda Dark Rose Single’ stock were planted on different planting systems in individual experiments for each species. Gladiolus had similar good quality production irrespective of planting systems with numerical superiority of ridge planting, which produced longer stems with higher stem fresh weight, but delayed corm sprouting by ca. 1 d compared to raised bed or flat planting system. Among cultivars, ‘Rose Supreme’ produced higher number of florets per spike, taller stems with longer spikes, higher fresh weight of stems and higher number of cormels than ‘White Prosperity’. Stock plants grown on flat beds produced stems with greater stem length, leaf area and fresh weight of stems compared to ridge or raised bed planting systems. Plants grown on ridges produced the highest stem diameter, number of leaves per plant, total leaf chlorophyll contents, and number of flowers per spike. ‘Cheerful White’ and ‘Lucinda Dark Rose Double’ performed best by producing good quality stems in shorter period compared to ‘Lucinda Dark Rose Single’. In summary, gladiolus should be grown on ridges, while stock may be planted on flat beds for higher yields of better quality flowers.

  6. Electro-catalytic biodiesel production from canola oil in methanolic and ethanolic solutions with low cost stainless steel and hybrid ion-exchange resin grafted electrodes

    Science.gov (United States)

    Allioux, Francois-Marie; Holland, Brendan J.; Kong, Lingxue; Dumée, Ludovic F.

    2017-07-01

    Biodiesel is a growing alternative to petroleum fuels and is produced by the catalysed transesterification of fats in presence of an alcohol base. Transesterification processes using homogeneous catalysts are considered to be amongst the most efficient methods but rely on the feedstock quality and low water content in order to avoid undesirable saponification reactions. In this work, the electro-catalytic conversion of canola oil to biodiesel in a 1% aqueous methanolic and ethanolic reaction mixture was performed without the addition of external catalyst or co-solvent. An inexpensive stainless steel electrode and a hybrid stainless steel electrode coated with an ion-exchange resin catalyst were used as cathode materials while the anode was composed of a plain carbon paper. The cell voltages were varied from 10 to 40 V and the reaction temperature maintained at 20 or 40°C. The canola oil conversion rates were found to be superior at 40°C without saponification reactions for cell voltages below 30 V. The conversion rates were as high as 87% for the hybrid electrode and 81% for the plain stainless steel electrode. This work could inspire new process development for the conversion of high water content feedstock for the production of second-generation biodiesel.

  7. Electro-Catalytic Biodiesel Production from Canola Oil in Methanolic and Ethanolic Solutions with Low-Cost Stainless Steel and Hybrid Ion-Exchange Resin Grafted Electrodes

    Directory of Open Access Journals (Sweden)

    Francois-Marie Allioux

    2017-07-01

    Full Text Available Biodiesel is a growing alternative to petroleum fuels and is produced by the catalyzed transesterification of fats in presence of an alcohol base. Transesterification processes using homogeneous catalysts are considered to be among the most efficient methods but rely on the feedstock quality and low water content in order to avoid undesirable saponification reactions. In this work, the electro-catalytic conversion of canola oil to biodiesel in a 1% aqueous methanolic and ethanolic reaction mixture was performed without the addition of external catalyst or cosolvent. An inexpensive stainless steel (SS electrode and a hybrid SS electrode coated with an ion-exchange resin catalyst were used as cathode materials while the anode was composed of a plain carbon paper. The cell voltages were varied from 10 to 40 V and the reaction temperature maintained at 20 or 40°C. The canola oil conversion rates were found to be superior at 40°C without saponification reactions for cell voltages below 30 V. The conversion rates were as high as 87% for the hybrid electrode and 81% for the plain SS electrode. This work could inspire new process development for the conversion of high water content feedstock for the production of second-generation biodiesel.

  8. Comparative Study on The Photocatalytic Hydrogen Production from Methanol over Cu-, Pd-, Co- and Au-Loaded TiO2

    Directory of Open Access Journals (Sweden)

    Udani P.P.C.

    2015-09-01

    Full Text Available Photocatalytic hydrogen production from a methanol-water solution was investigated in a semi-continuous reactor over different metal-loaded TiO2 catalysts under UltraViolet (UV light irradiation. The catalysts were mainly prepared by the incipient wetness impregnation method by varying the metal weight ratio in the range of 1-10 wt%. The effects of metal loading and H2 pre-treatment on the photocatalytic activity were investigated. In addition, the activity of the catalysts was also compared with a reference Au-TiO2 catalyst from the World Gold Council (WGC. The photocatalysts were characterized by using X-Ray Diffraction (XRD and N2 physisorption before and after the activity measurements. The photocatalytic activity decreased in the order of Pd > Au > Cu > Co in the comparative study of Cu-TiO2, Co-TiO2, Au-TiO2 and Pd-TiO2. Optimum hydrogen evolution was achieved with 5 wt% Pd-TiO2 and 5 wt% Cu-TiO2.

  9. Plant Design Nuclear Fuel Element Production Capacity Optimization to Support Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Bambang Galung Susanto

    2007-01-01

    The optimization production capacity for designing nuclear fuel element fabrication plant in Indonesia to support the nuclear power plant has been done. From calculation and by assuming that nuclear power plant to be built in Indonesia as much as 12 NPP and having capacity each 1000 MW, the optimum capacity for nuclear fuel element fabrication plant is 710 ton UO 2 /year. The optimum capacity production selected, has considered some aspects such as fraction batch (cycle, n = 3), length of cycle (18 months), discharge burn-up value (Bd) 35,000 up 50,000 MWD/ton U, enriched uranium to be used in the NPP (3.22 % to 4.51 %), future market development for fuel element, and the trend of capacity production selected by advances country to built nuclear fuel element fabrication plant type of PWR. (author)

  10. Concepts in production ecology for analysis and design of animal and plant-animal production systems

    NARCIS (Netherlands)

    Ven, van de G.W.J.; Ridder, de N.; Keulen, van H.; Ittersum, van M.K.

    2003-01-01

    The use of a hierarchy in growth factors (defining, limiting and reducing growth factors), as developed for plant production has shown its usefulness in the analysis and design of plant production systems. This hierarchy presents a theoretical framework for the analysis of biophysical conditions in

  11. Capabilities for managing high-volume production of electric engineering equipment at the Electrochemical Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Podlednev, V.M.

    1996-04-01

    The Electromechanical Production Plant is essentially a research center with experimental facilities and power full testing base. Major products of the plant today include heat pipes and devices of their basis of different functions and power from high temperature ranges to cryogenics. This report describes work on porous titanium and carbon-graphite current collectors, electrocatalyst synthesis, and electrocatalyst applications.

  12. Pharmaceuticals and Personal-Care Products in Plants.

    Science.gov (United States)

    Bartrons, Mireia; Peñuelas, Josep

    2017-03-01

    Pharmaceuticals and personal-care products (PPCPs) derived from agricultural, urban, and industrial areas accumulate in plants at concentrations (ng to μg kg -1 ) that can be toxic to the plants. Importantly, the dietary intake of these PPCP-contaminated plants may also pose a risk to human health, but currently little is known about the fate of PPCPs in plants and their effect on or risk to the ecosystem. In this Opinion article we propose that in-depth research on the use of plants as a monitoring device for assessing the use and environmental presence of PPCPs is warranted. The toxicity of PPCPs to plants and their microbiota needs to be established, as well as any toxic effects on herbivores including humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Roots, plant production and nutrient use efficiency

    NARCIS (Netherlands)

    Willigen, de P.; Noordwijk, van M.

    1987-01-01

    The role of roots in obtaining high crop production levels as well as a high nutrient use efficiency is discussed. Mathematical models of diffusion and massflow of solutes towards roots are developed for a constant daily uptake requirement. Analytical solutions are given for simple and more

  14. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    2011-01-01

    Full Text Available One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.

  15. Biodiversity influences plant productivity through niche-efficiency.

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C; McGuire, A David; Reich, Peter B

    2015-05-05

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity-ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche-efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche-efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species' inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  16. Biodiversity influences plant productivity through niche–efficiency

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C.; McGuire, A. David; Reich, Peter B.

    2015-01-01

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity–ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche–efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche–efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species’ inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  17. Biodiversity influences plant productivity through niche–efficiency

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C.; McGuire, A. David; Reich, Peter B.

    2015-01-01

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity–ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche–efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche–efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species’ inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty. PMID:25901325

  18. Entropy production and plant transpiration in the Liz catchment

    Czech Academy of Sciences Publication Activity Database

    Šír, Miloslav; Tesař, Miroslav; Krejča, M.; Weger, J.

    2008-01-01

    Roč. 1, č. 1 (2008), s. 81-89 ISSN 1802-503X Grant - others:MŠMT(CZ) 2B06132 Institutional research plan: CEZ:AV0Z20600510 Keywords : plant transpiration * phytomass productivity * heat balance * entropy production Subject RIV: DA - Hydrology ; Limnology

  19. Heterologous production of peptides in plants: fusion proteins and beyond.

    Science.gov (United States)

    Viana, Juliane Flávia Cançado; Dias, Simoni Campos; Franco, Octávio Luiz; Lacorte, Cristiano

    2013-11-01

    Recombinant DNA technology has allowed the ectopic production of proteins and peptides of different organisms leading to biopharmaceutical production in large cultures of bacterial, yeasts and mammalian cells. Otherwise, the expression of recombinant proteins and peptides in plants is an attractive alternative presenting several advantages over the commonly used expression systems including reduced production costs, easy scale-up and reduced risks of pathogen contamination. Different types of proteins and peptides have been expressed in plants, including antibodies, antigens, and proteins and peptides of medical, veterinary and industrial applications. However, apart from providing a proof of concept, the use of plants as platforms for heterologous protein and peptide production still depends on key steps towards optimization including the enhancement of expression levels, manipulation of post-transcriptional modifications and improvements in purification methods. In this review, strategies to increase heterologous protein and peptide stability and accumulation are discussed, focusing on the expression of peptides through the use of gene fusions.

  20. Dietary methanol and autism.

    Science.gov (United States)

    Walton, Ralph G; Monte, Woodrow C

    2015-10-01

    The authors sought to establish whether maternal dietary methanol during pregnancy was a factor in the etiology of autism spectrum disorders. A seven item questionnaire was given to women who had given birth to at least one child after 1984. The subjects were solicited from a large primary care practice and several internet sites and separated into two groups - mothers who had given birth to a child with autism and those who had not. Average weekly methanol consumption was calculated based on questionnaire responses. 550 questionnaires were completed by women who gave birth to a non-autistic child. On average these women consumed 66.71mg. of methanol weekly. 161 questionnaires were completed by women who had given birth to an autistic child. The average estimated weekly methanol consumption for this group was 142.31mg. Based on the results of the Wilcoxon rank sum-test, we see a significant difference between the reported methanol consumption rates of the two groups. This study suggests that women who have given birth to an autistic child are likely to have had higher intake of dietary sources of methanol than women who have not. Further investigation of a possible link of dietary methanol to autism is clearly warranted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Biodegradable bags for the production of plant seedlings

    Directory of Open Access Journals (Sweden)

    Ana Paula Bilck

    2014-10-01

    Full Text Available The production of plant seedlings has traditionally used polyethylene bags, which are thrown out in the soil or burned after transplant because the large amount of organic material attached to the bags makes recycling difficult. Additionally, when a seedling is taken from the bag for transplant, there is the risk of root damage, which compromises the plant’s development. In this study, we developed biodegradable bags to be used in seedling production, and we verify their influence on the development of Brazilian ginseng (Pfaffia glomerata (Spreng Pedersen, when the plant is planted without being removed from the bag. Both black and white biodegradable bags remained intact throughout the seedling production period (60 days. After being transplanted into containers (240 days, they were completely biodegraded, and there was no significant difference between the dry mass of these plants and that of plants that were transplanted without the bags. The plants that were cultivated without being removed from the polyethylene bags had root development difficulties, and the wrapping showed no signs of degradation. The use of biodegradable films is an alternative for the production of bags for seedlings, as these can then be transplanted directly into the soil without removing the bag, reducing the risk of damage to the roots during the moment of transplant.

  2. Plant species richness regulates soil respiration through changes in productivity.

    Science.gov (United States)

    Dias, André Tavares Corrêa; van Ruijven, Jasper; Berendse, Frank

    2010-07-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of diversity on soil respiration. We hypothesized that plant diversity could affect soil respiration in two ways. On the one hand, more diverse plant communities have been shown to promote plant productivity, which could increase soil respiration. On the other hand, the nutrient concentration in the biomass produced has been shown to decrease with diversity, which could counteract the production-induced increase in soil respiration. Our results clearly show that soil respiration increased with species richness. Detailed analysis revealed that this effect was not due to differences in species composition. In general, soil respiration in mixtures was higher than would be expected from the monocultures. Path analysis revealed that species richness predominantly regulates soil respiration through changes in productivity. No evidence supporting the hypothesized negative effect of lower N concentration on soil respiration was found. We conclude that shifts in productivity are the main mechanism by which changes in plant diversity may affect soil respiration.

  3. Innovative applications of technology for nuclear power plant productivity improvements

    International Nuclear Information System (INIS)

    Naser, J. A.

    2012-01-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  4. Plant growth promotion rhizobacteria in onion production.

    Science.gov (United States)

    Colo, Josip; Hajnal-Jafari, Timea I; Durić, Simonida; Stamenov, Dragana; Hamidović, Saud

    2014-01-01

    The aim of the research was to examine the effect of rhizospheric bacteria Azotobacter chroococcum, Pseudomonas fluorescens (strains 1 and 2) and Bacillus subtilis on the growth and yield of onion and on the microorganisms in the rhizosphere of onion. The ability of microorganisms to produce indole-acetic acid (IAA), siderophores and to solubilize tricalcium phosphate (TCP) was also assessed. The experiment was conducted in field conditions, in chernozem type of soil. Bacillus subtilis was the best producer of IAA, whereas Pseudomonas fluorescens strains were better at producing siderophores and solubilizing phosphates. The longest seedling was observed with the application of Azotobacter chroococcum. The height of the plants sixty days after sowing was greater in all the inoculated variants than in the control. The highest onion yield was observed in Bacillus subtilis and Azotobacter chroococcum variants. The total number of bacteria and the number of Azotobacter chroococcum were larger in all the inoculated variants then in the control. The number of fungi decreased in most of the inoculated variants, whereas the number of actinomycetes decreased or remained the same.

  5. Modelling energy consumption in a manufacturing plant using productivity KPIs

    Energy Technology Data Exchange (ETDEWEB)

    Gallachoir, Brian O.; Cahill, Caiman (Sustainable Energy Research Group, Dept. of Civil and Environmental Engineering, Univ. College Cork (Ireland))

    2009-07-01

    Energy efficiency initiatives in industrial plants are often focused on getting energy-consuming utilities and devices to operate more efficiently, or on conserving energy. While such device-oriented energy efficiency measures can achieve considerable savings, greater energy efficiency improvement may be achieved by improving the overall productivity and quality of manufacturing processes. The paper highlights the observed relationship between productivity and energy efficiency using aggregated data on unit consumption and production index data for Irish industry. Past studies have developed simple top-down models of final energy consumption in manufacturing plants using energy consumption and production output figures, but these models do not help identify opportunities for energy savings that could achieved through increased productivity. This paper proposes an improved and innovative method of modelling plant final energy demand that introduces standard productivity Key Performance Indicators (KPIs) into the model. The model demonstrates the relationship between energy consumption and productivity, and uses standard productivity metrics to identify the areas of manufacturing activity that offer the most potential for improved energy efficiency. The model provides a means of comparing the effect of device-oriented energy efficiency measures with the potential for improved energy efficiency through increased productivity.

  6. Production of biogas from plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Zuer, J.

    1980-12-01

    Different crop residues from agriculture and horticulture were investigated for feasibility of producing biogas. The anaerobic fermentation has been performed in batch system fermentation reactors (5 liters) at mesophilic conditions (35 degrees C). Content of volatile solids (VS/TS) in raw materials varied from 78.5 percent in silage from top of sugar beet to 97.3 percent in straw of rye. The highest content of lignin was found in stalks of Jerusalem artichoke (49.6 percent), stalks of horse bean (47.6 percent) and the lowest in leaves of cauliflower (9.5 percent), top of sugar beet and leaves of cabbage (11 percent) in both. Ratio of carbon to nitrogen was the highest in the straw of rye (60) and the lowest in silage from top of sugar beet (11) and in leaves of cauliflower (11). Rate of biogas production during the first 13 days of fermentation was about 27 liters per kg TS per day, achieved from top of sugar beet. Typical mean rate of biogas production, about 9 liters per kg TS per day, was performed during the first 40 days of retention time from straw of wheat and stalks of rape. Top of sugar beet and manure slurry have had the shortest effective retention time ca 20 days. Maximum total yield of biogas (427.0 liters per kg TS) was achieved from top of sugar beet. From manure slurry 257.5 liters biogas per kg TS was obtained. Methane content in biogas produced during the final 7 days of retention time was the highest from silage from top of artichoke (72.8 percent), stalks of horse bean (71.6 percent) and straw of wheat (71.0 percent). The lowest percentage of methane (59.0 percent) was found in biogas from top of sugar beet.

  7. Foreign Investment and International Plant Configuration: Whither the Product Cycle?

    OpenAIRE

    Belderbos,René; Sleuwaegen,Leo

    2000-01-01

    We analyze the determinants of the decision to invest abroad in particular configurations of overseas plants for 120 Japanese firms active in 36 well-defined electronic product markets. We find support for a structured internationalization decision model in which the decision to produce abroad and the choice for a specific international plant configuration are treated as nested strategic options. Drivers at the industry and firm level push firms to consider overseas investment, and locational...

  8. Performance optimization of the Växtkraft biogas production plant

    International Nuclear Information System (INIS)

    Thorin, Eva; Lindmark, Johan; Nordlander, Eva; Odlare, Monica; Dahlquist, Erik; Kastensson, Jan; Leksell, Niklas; Pettersson, Carl-Magnus

    2012-01-01

    Highlights: ► Pre-treatment of ley crop can increase the biogas plant performance. ► Membrane filtration can increase the capacity of the biogas plant. ► Mechanical pre-treatment of the ley crop shows the highest energy efficiency. ► Using a distributor to spread the residues as fertilizer show promising results. -- Abstract: All over the world there is a strong interest and also potential for biogas production from organic residues as well as from different crops. However, to be commercially competitive with other types of fuels, efficiency improvements of the biogas production process are needed. In this paper, results of improvements studies done on a full scale co-digestion plant are presented. In the plant organic wastes from households and restaurants are mixed and digested with crops from pasture land. The areas for improvement of the plant addressed in this paper are treatment of the feed material to enhance the digestion rate, limitation of the ballast of organics in the water stream recirculated in the process, and use of the biogas plant residues at farms. Results from previous studies on pre-treatment and membrane filtration of recirculated process water are combined for an estimation of the total improvement potential. Further, the possibility of using neural networks to predict biogas production using historical data from the full-scale biogas plant was investigated. Results from an investigation using the process residues as fertilizer are also presented. The results indicate a potential to increase the biogas yield from the process with up to over 30% with pre-treatment of the feed and including membrane filtration in the process. Neural networks have the potential to be used for prediction of biogas production. Further, it is shown that the residues from biogas production can be used as fertilizers but that the emission of N 2 O from the fertilized soil is dependent on the soil type and spreading technology.

  9. Regulatory aspects of methanol metabolism in yeasts

    International Nuclear Information System (INIS)

    Trotsenko, Y.A.; Bystrykh, L.V.; Ubiyvovk, V.M.

    1984-01-01

    Formaldehyde is the first and key intermediate in the metabolism of methylotrophic yeasts since it stands at a branch point of pathways for methanol oxidation and assimilation. Methanol and, formaldehyde are toxic compounds which severely affect the growth rate, yield coefficient, etc., of yeasts. Two questions arise when considering regulation of methanol metabolism in yeasts how a nontoxic level of formaldehyde is maintained in the cell and how the formaldehyde flow is distributed into oxidation and assimilation. To answer these questions we studied the role of GSH, which spontaneously binds formaldehyde, yielding S-hydroxymethylglutathione; in vivo rates of formaldehyde dissimilation and assimilation by using [ 14 C]methanol; profiles of enzymes responsible for production and utilization of formaldehyde; and levels of metabolites affecting dissimilation and assimilation of formaldehyde. All of the experiments were carried out with the methylotrophic yeast Candida boidinii KD1. 19 refs., 4 figs., 1 tab

  10. Antihyperglycaemic and hypolipidemic effect of methanol extracts of ...

    African Journals Online (AJOL)

    Purpose: To investigate the antihyperglycaemic and hypolipidemic potential of the methanol extracts of leaf, stem and root of Ageratum conyzoides in streptozotocin (STZ)-induced diabetic rats. Methods: The extract of each of the plant part was obtained by extraction in methanol. A total of 60 male Wistar albino rats (30 ...

  11. Immunomodulatory activity of methanol extract of Adansonia digitata L

    African Journals Online (AJOL)

    Purpose: To evaluate the immune-modulatory activities of various plant parts Adansonia digitata L. using delayed-type hypersensitivity rat model. Methods: Defatted leaf, root bark and fruit pulp of A. digitata were extracted with methanol. Immunomodulatory activity of the methanol extracts (250 and 500 mg/kg) were ...

  12. Evaluation of the antidiarrhoeal activity of 80% methanol extract and ...

    African Journals Online (AJOL)

    Lantana camara L. is one of the medicinal plants traditionally used for the treatment of diarrhoea in Ethiopia. The aim of this study was to evaluate antidiarrhoeal activity of the 80% methanol extract and solvent fractions using mice model of diarrhoea. The 80% methanol extract was prepared by maceration and the fractions ...

  13. In vitro antioxidant activity and phytochemical screening of methanol ...

    African Journals Online (AJOL)

    In this study, phytochemical screening and in vitro antioxidant activity of methanol extracts of D. edulis and F. capensis leaves were evaluated. Each plant leaves were extracted in methanol using standard procedures. The phytochemical screening of the resulting extracts showed the presence of cardiac glycosides, ...

  14. Control of Listeria monocytogenes in food production plants

    Directory of Open Access Journals (Sweden)

    Dimitrijević Mirjana

    2008-01-01

    Full Text Available L. monocytogenes has been established in different plants for the production of food, including dairy plants, abattoirs, plants for the processing of fish, as well as those for the production of ready-to-eat (RTE food and this fact is being considered as the primary mechanism of food contamination with this bacteria. There is also the factor of numerous and diverse contaminated production equipment, because it has certain parts that are inaccessible for the necessary cleaning and disinfection. The temperature, position, as well as the material of the work surface are also linked to the contamination of plants with this bacteria. Investigations carried out so far have helped toward the better understanding of the manner and time of contamination of food items in the course of the production process, but there are still unresolved problems, including most certainly the biggest one - the adherence of bacteria and the creation of a biofilm, when the bacteria is in that condition more resistant to so-called stress factors which are usually used in the food industry for the purpose of decontamination of the surfaces with which foods come into contact. The control of L. monocytogenes in food production plants is possible primarily by using an integrated programme, compatible with the systems Hazard Analysis Critical Control Point (HACCP and Good Hygiene Practice (GHP, necessary in the production of food that is safe for the consumer. Essentially, the control measures that can contribute to reducing the incidence of findings of L.monocytogenes in the finished product, as well as the reducing of the level of contamination with this bacteria are linked, on the one hand, with hygiene procedures in the production process, and, on the other, with the applied technological procedures.

  15. Gene Delivery into Plant Cells for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2015-01-01

    Full Text Available Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

  16. Combined production of fish and plants in recirculating water

    Energy Technology Data Exchange (ETDEWEB)

    Naegel, L.C.A.

    1977-01-01

    A pilot plant of ca 2000 l of recirculating fresh water for intensive fish production was constructed in a controlled-environment greenhouse. The feasibility was examined of using nutrients from fish wastewater, mainly oxidized nitrogenous compounds, for plant production, combined with an activated sludge system for water purification. The reduction of nitrates, formed during the extended aeration process by nitrifying bacteria, was not sufficient by higher plants and unicellular algae alone to reduce the nitrate concentration in our system significantly. An additional microbial denitrification step had to be included to effect maximal decrease in nitrogenous compounds. For fish culture in the pilot plant Tilapia mossambica and Cyprinus carpio were chosen as experimental fishes. Both fish species showed significant weight increases during the course of the experiment. Ice-lettuce and tomatoes were tested both in recirculating water and in batch culture. The unicellular algae Scenedesmus spp. were grown in a non-sterile batch culture. All plants grew well in the wastewater without additional nutrients. Determination of the physical and chemical parameters for optimum water purification, the most suitable ratio of denitrification by plants and by microorganisms, and the most favourable fish and plant species for combined culture in recirculating water are important and of current interest in view of the increasing demand for clean, fresh water, and the pressing need to find new ways of producing protein for human nutrition under prevailing conditions of an exponentially expanding world population.

  17. Fabrication of a Cu{sub 2}O/Au/TiO{sub 2} composite film for efficient photocatalytic hydrogen production from aqueous solution of methanol and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xi; Dong, Haitai; Hu, Zhe; Qi, Zhong; Li, Laisheng, E-mail: llsh@scnu.edu.cn

    2017-05-15

    Highlights: • A Cu{sub 2}O/Au/TiO{sub 2} film was synthesized successfully. • Hydrogen production of Cu{sub 2}O/Au/TiO{sub 2} film improved significantly. • The highest hydrogen production rate of the film was 125.3 mmol/h/m{sup 2}. • A Z-scheme charge transfer pathway was proposed. - Abstract: A novel Cu{sub 2}O/Au/TiO{sub 2} photocatalyst composite film was fabricated on a copper substrate for photocatalytic hydrogen production. The composite films, Cu{sub 2}O/Au/TiO{sub 2}, were stepwise synthesized by using electrochemical deposition, photodeposition, and coating methods. First, a Cu{sub 2}O film was synthesized using the electrochemical deposition method, after which Au was deposited onto the Cu{sub 2}O film through in-site photodeposition. Finally, TiO{sub 2} was coated on the surface of the Cu{sub 2}O/Au film. Its morphology and surface chemical composition was characterized by SEM, TEM, XRD and XPS. The optical characteristics (UV–Vis DRS, PL spectrum) of the films were also examined. The photocatalytic hydrogen production rate of the Cu{sub 2}O/Au/TiO{sub 2} composite film from a 20% vol. methanol solution increased to125.3 mmol/h/m{sup 2} under 300 W xenon lamp light irradiation. Compared to the TiO{sub 2} (13.5 mmol/h/m{sup 2}) film and Cu{sub 2}O/TiO{sub 2} film (83.2 mmol/h/m{sup 2}), the Cu{sub 2}O/Au/TiO{sub 2} film showed excellent photocatalytic performance for hydrogen generation. The Cu{sub 2}O/Au/TiO{sub 2} film has highly effective photocatalytic properties, which are attributed to the Z-scheme system and can not only enhance the absorption of solar light but also suppress the recombination of photogenerated electron-hole pairs. It is worth noting that by introducing Au into the interface of Cu{sub 2}O/TiO{sub 2}, the surface plasmon resonance (SPR)-induced local electric field formed at the Au site induces a Z-scheme charge transfer pathway inside the composite film (Cu{sub 2}O/Au/TiO{sub 2}), which promotes both the charge of the

  18. Root traits contributing to plant productivity under drought

    Directory of Open Access Journals (Sweden)

    Louise eComas

    2013-11-01

    Full Text Available Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length (SRL, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less ‘leaky’ and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g. functional differences between fine and coarse roots needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria and rice (Oryza show approaches to phenotyping of root traits and current understanding of root trait

  19. The Asian methanol market

    International Nuclear Information System (INIS)

    Nagase, Hideki

    1995-01-01

    For the purpose of this presentation, Asia has been broadly defined as a total of 15 countries, namely Japan, Korea, Taiwan, China, Hong Kong, the Philippines, Thailand, Malaysia, Singapore, Indonesia, Myanmar, India, Vietnam, Australia and New Zealand. In 1994 and the first half of 1995, the methanol industry and its derivative industries experienced hard time, because of extraordinarily high methanol prices. In spite of this circumstance, methanol demand in Asian countries has been growing steadily and remarkably, following Asian high economic growth. Most of this growth in demand has been and will continue to be met by outside supply. However, even with increased import of methanol from outside of Asia, as a result of this growth, Asian trade volume will be much larger in the coming years. Asian countries must turn their collective attention to making logistics and transportation for methanol and its derivatives more efficient in the Asian region to make better use of existing supply resources. The author reviews current economic growth as his main topic, and explains the forecast of the growth of methanol demand and supply in Asian countries in the near future

  20. Graphical analysis of French nuclear power plant production date

    Energy Technology Data Exchange (ETDEWEB)

    Jourdan, J.P. [Electricite de France (EDF), Projet Production EPR 1, 93 - Saint-Denis (France)

    2001-07-01

    The analysis of values of plant production uses here an original method of graphical analysis. This method clarifies various difficulties of analysing big experience feedback databases among which the language interpretation and distinctions between scarce events and multi-annual events. In general, the method shows the logical processes that production values obey (pure chance logic, administrative logic, and willpower) This method of graphical analysis provides a tool to observe and question in a concrete way so that each person involved can put the events in which he played a role into the general context of other plants. It is a deductible method to improve this big and complex system. (author)

  1. Electric plant cost and power production expenses 1990

    International Nuclear Information System (INIS)

    1992-06-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  2. Electric plant cost and power production expenses 1991

    International Nuclear Information System (INIS)

    1993-01-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels (CNEAF); Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  3. Cogeneration Power Plants: a Proposed Methodology for Unitary Production Cost

    International Nuclear Information System (INIS)

    Metalli, E.

    2009-01-01

    A new methodology to evaluate unitary energetic production costs in the cogeneration power plants is proposed. This methodology exploits the energy conversion factors fixed by Italian Regulatory Authority for Electricity and Gas. So it allows to settle such unitary costs univocally for a given plant, without assigning them a priori subjective values when there are two or more energy productions at the same time. Moreover the proposed methodology always ensures positive values for these costs, complying with the total generation cost balance equation. [it

  4. Graphical analysis of French nuclear power plant production date

    International Nuclear Information System (INIS)

    Jourdan, J.P.

    2001-01-01

    The analysis of values of plant production uses here an original method of graphical analysis. This method clarifies various difficulties of analysing big experience feedback databases among which the language interpretation and distinctions between scarce events and multi-annual events. In general, the method shows the logical processes that production values obey (pure chance logic, administrative logic, and willpower) This method of graphical analysis provides a tool to observe and question in a concrete way so that each person involved can put the events in which he played a role into the general context of other plants. It is a deductible method to improve this big and complex system. (author)

  5. [Effective productions of plant secondary metabolites having antitumor activity by plant cell and tissue cultures].

    Science.gov (United States)

    Taniguchi, Shoko

    2005-06-01

    Methods for the effective production of plant secondary metabolites with antitumor activity using plant cell and tissue cultures were developed. The factors in tannin productivity were investigated using culture strains producing different types of hydrolyzable tannins, i.e., gallotannins (mixture of galloylglucoses), ellagi-, and dehydroellagitannins. Production of ellagi- and dehydroellagitannins was affected by the concentrations and ratio of nitrogen sources in the medium. The formation of oligomeric ellagitannins in shoots of Oenothera tetraptera was correlated with the differentiation of tissues. Cultured cells of Eriobotrya japonica producing ursane- and oleanane-type triterpenes with antitumor activities were also established.

  6. Water use, productivity and interactions among desert plants

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. This project assumes that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to the interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process.

  7. Water use, productivity and interactions among desert plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. This project assumes that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to the interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process.

  8. STUDY OF PLANT-WIDE CONTROL IMPLEMENTATION IN PRODUCTION PROCESS OF GEOTHERMAL POWER PLANT

    Directory of Open Access Journals (Sweden)

    KATHERIN INDRIAWATI

    2017-02-01

    Full Text Available The design of plant-wide control system to optimize electricity production in geothermal power plant is proposed in this research. The objective is to overcome the deficiency due to changes in the characteristics of production well and fluctuation in electricity demand load. The proposed plant-wide control system has two main tasks; to maintain production process at optimum value and to increase efficiency. The pressure in separator and condenser is maintained at the respective set points under electrical load fluctuations in order to ensure optimum efficiency. The control system also reduce the usage of auxialiary electrical power and increase efficiency. The task was performed by controlling inlet cooling water temperatures to the condenser. It was concluded that the proposed control structure was able to increase efficiency and maintain production.

  9. Water use, productivity and interactions among desert plants

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Water plays a central role affecting all aspects of the dynamics in aridland ecosystems. Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. The ecological studies in this project revolve around one fundamental premise: that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process. In contrast, hydrogen is not fractionated during water uptake through the root. Soil water availability in shallow, deep, and/or groundwater layers vary spatially; therefore hydrogen isotope ratios of xylem sap provide a direct measure of the water source currently used by a plant. The longer-term record of carbon and hydrogen isotope ratios is recorded annually in xylem tissues (tree rings). The research in this project addresses variation in stable isotopic composition of aridland plants and its consequences for plant performance and community-level interactions.

  10. Ethylene production throughout growth and development of plants

    Science.gov (United States)

    Wheeler, Raymond M.; Peterson, Barbara V.; Stutte, Gary W.

    2004-01-01

    Ethylene production by 10 or 20 m2 stands of wheat, soybean, lettuce, potato, and tomato was monitored throughout growth and development in an atmospherically closed plant chamber. Chamber ethylene levels varied among species and rose during periods of canopy expansion and rapid growth for all species. Following this, ethylene levels either declined during seed fill and maturation for wheat and soybean, or remained relatively constant for potato and tomato (during flowering and early fruit development). Lettuce plants were harvested during rapid growth and peak ethylene production. Chamber ethylene levels increased rapidly during tomato ripening, reaching concentrations about 10 times that measured during vegetative growth. The highest ethylene production rates during vegetative growth ranged from 1.6 to 2.5 nmol m-2 d-1 during rapid growth of lettuce and wheat stands, or about 0.3 to 0.5 nmol g-1 fresh weight per hour. Estimates of stand ethylene production during tomato ripening showed that rates reached 43 nmol m-2 d-1 in one study and 93 nmol m-2 d-1 in a second study with higher lighting, or about 50x that of the rate during vegetative growth of tomato. In a related test with potato, the photoperiod was extended from 12 to 24 hours (continuous light) at 58 days after planting (to increase tuber yield), but this change in the environment caused a sharp increase in ethylene production from the basal rate of 0.4 to 6.2 nmol m-2 d-1. Following this, the photoperiod was changed back to 12 h at 61 days and ethylene levels decreased. The results suggest three separate categories of ethylene production were observed with whole stands of plants: 1) production during rapid vegetative growth, 2) production during climacteric fruit ripening, and 3) production from environmental stress.

  11. Early stages of methanol radiolysis from data of photoelectron spectroscopy and mass spectrometry

    International Nuclear Information System (INIS)

    Kalyazin, E.P.; Kovalev, G.V.

    1982-01-01

    Comparison of data on photoelectron spectroscopy and mass spectrometry permits to conclude that 4 types of molecular ions CH 3 O + H, H + CH 2 OH, H 3 C + OH and CH 3 O + H are initial products of methanol radiolysis. They start four parallel lines of methanol transformations. Mass spectrum of methanol can be evaluated according to the structural formula of methanol molecule. Composition of radiolysis products of gaseous methanol correlate satisfactorily with its mass spectrum. Reasons for the difference in compositions of radiolysis products of liquid and gaseous methanol are discussed

  12. 9 CFR 590.24 - Egg products plants requiring continuous inspection.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Egg products plants requiring..., DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Scope of Inspection § 590.24 Egg products plants requiring continuous inspection. No plant in...

  13. Viral vectors for production of recombinant proteins in plants.

    Science.gov (United States)

    Lico, Chiara; Chen, Qiang; Santi, Luca

    2008-08-01

    Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins. (c) 2008 Wiley-Liss, Inc.

  14. Biodegradable bags for the production of plant seedlings

    OpenAIRE

    Bilck,Ana Paula; Olivato,Juliana Bonametti; Yamashita,Fabio; Souza,José Roberto Pinto de

    2014-01-01

    The production of plant seedlings has traditionally used polyethylene bags, which are thrown out in the soil or burned after transplant because the large amount of organic material attached to the bags makes recycling difficult. Additionally, when a seedling is taken from the bag for transplant, there is the risk of root damage, which compromises the plant’s development. In this study, we developed biodegradable bags to be used in seedling production, and we verify their influence on the deve...

  15. Pharmacologically active plant metabolites as survival strategy products.

    Science.gov (United States)

    Attardo, C; Sartori, F

    2003-01-01

    The fact that plant organisms produce chemical substances that are able to positively or negatively interfere with the processes which regulate human life has been common knowledge since ancient times. One of the numerous possible examples in the infusion of Conium maculatum, better known as Hemlock, a plant belonging to the family umbelliferae, used by the ancient Egyptians to cure skin diseases. The current official pharmacopoeia includes various chemical substances produced by secondary plant metabolisms. For example, the immunosuppressive drugs used to prevent organ transplant rejection and the majority of antibiotics are metabolites produced by fungal organisms, pilocarpin, digitalis, strophantus, salicylic acid and curare are examples of plant organism metabolites. For this reason, there has been an increase in research into plants, based on information on their medicinal use in the areas where they grow. The study of plants in relation to local culture and traditions is known as "ethnobotany". Careful study of the behaviour of sick animals has also led to the discovery of medicinal plants. The study of this subject is known as "zoopharmacognosy". The aim of this article is to discuss the fact that "ad hoc" production of such chemical substances, defined as "secondary metabolites", is one of the modes in which plant organisms respond to unfavourable environmental stimuli, such as an attack by predatory phytophagous animals or an excessive number of plant individuals, even of the same species, in a terrain. In the latter case, the plant organisms produce toxic substances, called "allelopathic" which limit the growth of other individuals. "Secondary metabolites" are produced by metabolic systems that are shunts of the primary systems which, when required, may be activated from the beginning, or increased to the detriment of others. The study of the manner in which such substances are produced is the subject of a new branch of learning called "ecological

  16. Major factors influencing craft productivity in nuclear power plant construction

    International Nuclear Information System (INIS)

    Borcherding, J.D.; Sebastian, S.J.

    1980-01-01

    This paper reports on a research study whose objective was to determine the most influential factors adversely affecting craft productivity in nuclear power plant construction from the perspective of the tradesmen employed at the sites. Data were collected through the use of a questionnaire survey and group interview sessions, predominantly with workmen, at six nuclear power plant construction projects. Craftsmen were chosen as the major data base because of their awareness of how their time would actually be spent on the project. Topics considered include the factors influencing craft productivity, material availability, redoing work, crew interfacing, overcrowded work areas, instruction time, inspection delays, craft turnover, craft absenteeism, foreman changes, foreman incompetence, engineering design lead time, comprehensive scheduling of the design function, the responsibility of the utility, value engineering, plant standardization, the effective utilization of the planning and scheduling system, and the labor-management committee

  17. AVLIS Production Plant Preliminary Quality Assurance Plan and Assessment

    International Nuclear Information System (INIS)

    1984-01-01

    This preliminary Quality Assurance Plan and Assessment establishes the Quality Assurance requirements for the AVLIS Production Plant Project. The Quality Assurance Plan defines the management approach, organization, interfaces, and controls that will be used in order to provide adequate confidence that the AVLIS Production Plant design, procurement, construction, fabrication, installation, start-up, and operation are accomplished within established goals and objectives. The Quality Assurance Program defined in this document includes a system for assessing those elements of the project whose failure would have a significant impact on safety, environment, schedule, cost, or overall plant objectives. As elements of the project are assessed, classifications are provided to establish and assure that special actions are defined which will eliminate or reduce the probability of occurrence or control the consequences of failure. 8 figures, 18 tables

  18. Plant-based fertilizers for organic vegetable production

    DEFF Research Database (Denmark)

    Sørensen, Jørn Nygaard; Thorup-Kristensen, Kristian

    2011-01-01

    To ensure high yield and quality in organic vegetable production, crops often require additional fertilizer applied during the season. Due to the risk of contamination of edible plant products from slurry, plant-based fertilizers may be used as an alternative. The purpose of our work was to develop...... fertility, the term “mobile green manures” is used for green-manure crops that are harvested in one field and then moved as a whole and used as fertilizer in other fields. To further investigate mobile-green-manure crops for use as efficient fertilizers, pot and field experiments were conducted...... with cauliflower (Brassica oleracea botrytis) and kale (Brassica oleracea sabellica) supplied with organic matter consisting of a wide range of plant species with varying nutrient concentrations. Further, field experiments were conducted with leek (Allium porrum) and celery (Apium graveolens dulce) supplied...

  19. Callus production and regeneration of the medicinal plant Papaver ...

    African Journals Online (AJOL)

    Administrator

    2011-09-19

    Sep 19, 2011 ... and morphinan alkaloids production in two species of opium poppy. Biomed. Biotechnol. 1(2): 70-78. Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15: 473-497. Rao AQ, Hussain SS, Shahzad MS, Bokhari SYA, Raza MH, Rakha ...

  20. Production of heterologous storage polysaccharides in potato plants

    NARCIS (Netherlands)

    Huang, X.; Vincken, J.P.; Visser, R.G.F.; Trindade, L.M.

    2011-01-01

    Starch is the most important storage polysaccharide in higher plants. This polysaccharide is used in many industrial applications as it is abundant, renewable and biodegradable and it can be modified into a wide range of products used in food, animal feed, pharmaceuticals and industry. With the

  1. Initial biochar effects on plant productivity derive from N fertilization

    NARCIS (Netherlands)

    Jeffery, S.L.; Memelink, Ilse; Hodgson, Edward; Jones, S.; Voorde, van de T.F.J.; Bezemer, T.M.; Mommer, L.; Groenigen, van J.W.

    2017-01-01

    Background and aim
    Biochar application to soil is widely claimed to increase plant productivity. However, the underlying mechanisms are still not conclusively described. Here, we aim to elucidate these mechanisms using stable isotope probing.
    Methods
    We conducted two experiments with

  2. Improving planting pattern for intercropping in the whole production ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-04-26

    Apr 26, 2012 ... vegetable for the people or to enrich biodiversity of rubber plantations in the area of hundred-miles rubber ..... Influence of rubber canopy on intercrop productivity. Trans. Malaysian Soc. Plant Physiol. 2: 75-79. Lin Weifu, Zhou Zhongyu, Huang Shoufeng (1999). A review and prospect of intercropping in ...

  3. Grace announces coal-to-methanol project

    Energy Technology Data Exchange (ETDEWEB)

    Myers, R

    1980-02-15

    WR Grace and Co. are planning a feasibility study for a plant to produce 5000 tons/day of methanol and 6000 tons/day of carbon dioxide from captive coal reserves in Colorado. The study will be performed by Energy Transition Co. (ETCo). The producers would be used for pipeline transmission of pulverised coal, probably to California. At the destination the coal would go to a power station, the methanol to a gas turbine and the carbon dioxide to an oil producer for tertiary recovery.

  4. ONLINE SINGLE-COLUMN CAPILLARY GAS-CHROMATOGRAPHIC ANALYSIS OF ALL REACTANTS AND PRODUCTS IN THE SYNTHESIS OF FUEL METHANOL FROM HYDROGEN AND OXIDES OF CARBON

    NARCIS (Netherlands)

    MARSMAN, JH; BREMAN, BB; BEENACKERS, AACM

    The main problems with complete analysis of the components of fuel methanol, or in Fischer-Tropsch studies, are the several classes of compound present in the sample (permanent gases, water, alcohols, hydrocarbons), its wide range of components, its boiling point range, and the wide range of

  5. Hydrogen Production from Methanol Steam Reforming over TiO2 and CeO2 Pillared Clay Supported Au Catalysts

    Directory of Open Access Journals (Sweden)

    Rongbin Zhang

    2018-01-01

    Full Text Available Abstract: Methanol steam reforming is a promising process for the generation of hydrogen. In this study, Au catalysts supported on modified montmorillonite were prepared and their catalytic activity for methanol steam reforming was investigated at 250–500 °C. The physical and chemical properties of the as-prepared catalysts were characterized by Brunauer–Emmet–Teller method (BET, X-ray diffraction (XRD, transmission electron microscopic (TEM, scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, Inductively Coupled Plasma (ICP, and thermogravimetrc analysis (TGA. For the catalysts examined, Au-Ti-Ce/Na-ABen exhibits the best catalytic performance with methanol conversion of 72% and H2 selectivity of 99% at 350 °C. This could be attributed to Au, Ce, and Ti species which form a solid solution and move into the interlayer space of the bentonite leading to a high surface area, large average pore volume, large average pore diameter, and small Au particle size. We considered that the synergistic effect of the crosslinking agent, the Ce species, and the Au active sites were responsible for the high activity of Au-Ti-Ce/Na-ABen catalyst for methanol steam reforming.

  6. Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells

    NARCIS (Netherlands)

    Smet, de C.R.H.; Croon, de M.H.J.M.; Berger, R.J.; Marin, G.B.M.M.; Schouten, J.C.

    2001-01-01

    Adiabatic fixed-bed reactors for the catalytic partial oxidn. (CPO) of methane to synthesis gas were designed at conditions suitable for the prodn. of methanol and hydrogen-for-fuel-cells. A steady-state, one-dimensional heterogeneous reactor model was applied in the simulations. Intra-particle

  7. Biogas and mineral fertiliser production from plant residues of phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Thi Thu Ha

    2011-07-01

    The former uranium mining site in Ronneburg, Thuringia, Germany was known as a big source of uranium with more than 113,000 tons of uranium mined from 1946 to 1990. This area has been remediated since the nineties of the last century. However, nowadays the site in Ronneburg is still specially considered because of the heterogeneous contamination by many heavy metals and the vegetation can be affected. Three plant species including Indian mustard - Brassica juncea L., triticale - x. Triticosecale Wittmaek and sunflower - Helianthus annuus L. were seeded as accumulators of heavy metals and radionuclides in the phytoremediation process in 2009 and 2010 in Ronneburg. The subsequent utilization of the plant residues after phytoremediation is of special consideration. Batch fermentation of harvested plant materials under the mesophilic condition showed that all of the investigated plant materials had much higher biogas production than liquid cow manure except triticale root, of which biogas yield per volatile solid was not significantly higher than the one of sludge. The highest biogas yields (311 L{sub N}/kg FM and 807 L{sub N}/kg VS) were achieved from the spica of triticale after 42 days of retention of anaerobic digestion. Triticale shoot residues generated higher biogas and methane yields than the previously reported triticale materials that were harvested from the uncontaminated soil Triticale was considered as the highest potential species in biogas production, beside the best growth ability on the acidic soil at the test field site with highest biomass production. Biogas yield of Indian mustard shoot was also high but dramatically varied from 2009 to 2010. Digestates after anaerobic digestion of plant residues contained various macronutrients such as nitrogen, potassium, phosphorus and sulphur, and various micronutrients such as iron, manganes, zinc, etc. The accumulation levels of heavy metals in the investigated plant materials were not the hindrance factors

  8. In vitro antifungal activity of methanol extracts of some Indian ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... vitro antifungal activity against some yeasts including Candida albicans (1) ATCC2091, ... Key words: medicinal plants, antifungal activity, methanol extracts, yeast, mould, Saussurea lappa. ... Caesalpinia pulcherrima.

  9. The Phytochemical constituents and the effects of methanol extracts ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: The effects of the methanolic extracts of the leaves of Phyllanthus amarus on the ... use of the aerial part of this plant by traditional medicine practitioners to increase/improve libido and reproductive ... The crude drug was extracted.

  10. The Effects Foliar Application of Methanol at Different Growth Stages on Kernel Related Traits in Chickpea var. ILC 482

    Directory of Open Access Journals (Sweden)

    N. Naeimi,

    2013-12-01

    Full Text Available This research was conducted to evaluate the effects of foliar application of methanol on certain kernel related traits at different growth stages of pea var. ILC482 at the Research Station of Faculty of Agriculture in Islamic Azad University, Tabriz Branch in 2011. The study was conducted in split plot experiment based on Randomized Complete Block Design with three replications. Treatments were three levels methanol foliar application at different growth stages (vegetative, reproductive and foliar application at both two stages which considered as main factor, six levels of foliar application of methanol concentrations: (0 [control], 5, 10, 15, 20, 25, 30% as sub factor. Results showed that the interactions of methanol applications growth stages and its concentrations on grain number per plant, 100 kernel weight, grain yield, grain filing rate and harvest index were significantly different. Foliar application of methanol at reproductive stage decrease kernel related traits, but this application at both growth stages had positive effect on grain production and kernel related traits. This positive effect on number and 100 kernel weight were significant. The highest grain yield (2460 kg/ha was obtained by 20% concentration of methanol at both growth stages that increased grain yield above 13.5% compared to the control condition.

  11. Extraction and radiochromatographic division of the early photosynthetic products of C3 plants

    International Nuclear Information System (INIS)

    Manolov, P.; Rangelov, B.; Borichenko, N.

    1978-01-01

    A complete method for extraction, radiochromatographic separation and 14 C balance of the early photosynthetic products in C 3 plants (peach, apple, plum, grapevine and beans) was worked out on the basis of comparative tests of methods presented in literature and of results obtained by investigations carried out. It was established that in view of accomplishing high quality chromatogram an appropriate way to purify the extracts is to eliminate the lipids, pigments, soluble proteins and high molecular carbohydrates in a two-phase system of methanol (chlorophorm)-water (6:5, 5:5) and to block the cations by 0.1 M EDTA. Two-directional ascending chromatography was applied on FN 4 paper rinsed with 0,01 M EDTA and 2 M CH 3 COOH and solvents: for the first direction - 98% ethamol 1 M ammonium acetate pH 7,5: 0,1 M EDTA (75/30 l) by repeated ascending and for the second direction - butanol (propyonic acid) water (10/5/7) by threefold rinsing. Twenty-four 14 C compounds were separated and identified, namely: sucrose diphosphates, uridine diphosphate-glucose, glucose-6-phosphate, glucose-1-phosphate, fructose-6-phosphate, phosphoglyceric acid, phosphoglycolic acid, phosphoenolpyruvic acid, dihydroacetone phosphate, aspartate glutamate, glycine, serine, alanine, citrate, malate, glycerate, glycolate, sorbitol, fructose, glucose, sucrose, maltose and rafinose. For a full 14 C balance of the samples the radioactivity of starch, α-1,4-glucosyleglucans, lipids, pigments and residues was determined. (author)

  12. Construction labor productivity during nuclear power plant construction

    International Nuclear Information System (INIS)

    Murray, W.B.

    1980-01-01

    There is no single satisfactory way to measure productivity in the construction industry. The industry is too varied, too specialized and too dependent upon vast numbers of interrelations between trades, contractors, designers and owners. Hence, no universally reliable indices for measuring construction productivity has been developed. There are problems that are generic to all large union-built nuclear power plants. The actions of any one owner cannot rectify the shortcomings of the construction industry. The generic problems are being identified, and many national organizations are attempting to make the construction industry more productive by recommending various changes

  13. Methanex, Hoechst Celanese dissolve methanol partnership

    International Nuclear Information System (INIS)

    Morris, G.D.L.

    1993-01-01

    One of the many joint venture alliances recently announced in the petrochemical sector is ending in divorce. Hoechst Celanese Chemical (Dallas) and Methanex Corp. (Vancouver) are in the process of dissolving the partnership they had formed to restart Hoechst Celanese's methanol plant at Clear Lake, TX. Hoechst Celanese says it is actively seeking replacement partners and has several likely prospects, while Methanex is concentrating on its other ventures. Those include its just-completed acquisition of Fletcher Challenge's (Auckland, NZ) methanol business and a joint venture with American Cyanamid to convert an ammonia plant at Fortier, LA to methanol. Methanex will still be the world's largest producer of methanol. Officially, the negotiations between Methanex and Hoechst Celanese 'just broke down over the last month or so,' says Steve Yurich, operations manager for the Clear Lake plant. Market sources, however, say that Methanex found itself 'with too many irons in the fire' and pulled out before it ran into financial or perhaps even antitrust difficulties

  14. Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant

    International Nuclear Information System (INIS)

    Cinti, Giovanni; Frattini, Domenico; Jannelli, Elio; Desideri, Umberto; Bidini, Gianni

    2017-01-01

    Highlights: • An innovative NH 3 production plant was designed. • CO 2 emissions and energy consumption are studied in three different designs. • High temperature electrolysis allows to achieve high efficiency and heat recovery. • The coupling permits storage of electricity into a liquid carbon free chemical. - Abstract: Ammonia is one of the most produced chemicals worldwide and is currently synthesized using nitrogen separated from air and hydrogen from natural gas reforming with consequent high consumption of fossil fuel and high emission of CO 2 . A renewable path for ammonia production is desirable considering the potential development of ammonia as energy carrier. This study reports design and analysis of an innovative system for the production of green ammonia using electricity from renewable energy sources. This concept couples Solid Oxide Electrolysis (SOE), for the production of hydrogen, with an improved Haber Bosch Reactor (HBR), for ammonia synthesis. An air separator is also introduced to supply pure nitrogen. SOE operates with extremely high efficiency recovering high temperature heat from the Haber-Bosch reactor. Aspen was used to develop a model to study the performance of the plant. Both the SOE and the HBR operate at 650 °C. Ammonia production with zero emission of CO 2 can be obtained with a reduction of 40% of power input compared to equivalent plants.

  15. Phytotoxicity and Plant Productivity Analysis of Tar-Enriched Biochars

    Science.gov (United States)

    Keller, M. L.; Masiello, C. A.; Dugan, B.; Rudgers, J. A.; Capareda, S. C.

    2008-12-01

    Biochar is one of the three by-products obtained by the pyrolysis of organic material, the other two being syngas and bio-oil. The pyrolysis of biomass has generated a great amount of interest in recent years as all three by-products can be put toward beneficial uses. As part of a larger project designed to evaluate the hydrologic impact of biochar soil amendment, we generated a biochar through fast pyrolysis (less than 2 minutes) of sorghum stock at 600°C. In the initial biochar production run, the char bin was not purged with nitrogen. This inadvertent change in pyrolysis conditions produced a fast-pyrolysis biochar enriched with tars. We chose not to discard this batch, however, and instead used it to test the impact of tar-enriched biochars on plants. A suite of phytotoxicity tests were run to assess the effects of tar-rich biochar on plant germination and plant productivity. We designed the experiment to test for negative effects, using an organic carbon and nutrient-rich, greenhouse- optimized potting medium instead of soil. We used Black Seeded Simpson lettuce (Lactuca sativa) as the test organism. We found that even when tars are present within biochar, biochar amendment up to 10% by weight caused increased lettuce germination rates and increased biomass productivity. In this presentation, we will report the statistical significance of our germination and biomass data, as well as present preliminary data on how biochar amendment affects soil hydrologic properties.

  16. Novel fermentation processes for manufacturing plant natural products.

    Science.gov (United States)

    Zhou, Jingwen; Du, Guocheng; Chen, Jian

    2014-02-01

    Microbial production of plant natural products (PNPs), such as terpenoids, flavonoids from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. Rapid development of metabolic engineering and synthetic biology of microorganisms shows many advantages to replace the current extraction of these useful high price chemicals from plants. Although few of them were actually applied on a large scale for PNPs production, continuous research on these high-price chemicals and the rapid growing global market of them, show the promising future for the production of these PNPs by microorganisms with a more economic and environmental friendly way. Introduction of novel pathways and optimization of the native cellular processes by metabolic engineering of microorganisms for PNPs production are rapidly expanding its range of cell-factory applications. Here we review recent progress in metabolic engineering of microorganisms for the production of PNPs. Besides, factors restricting the yield improvement and application of lab-scale achievements to industrial applications have also been discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Comparative research of international exchange of plant products

    Directory of Open Access Journals (Sweden)

    Đorović Milutin T.

    2003-01-01

    Full Text Available The well known events which had taken place in our country over the period 1989-2001 provoked adverse effects on foreign trade exchange of the total economy, agriculture and commodities of plant origin. These effects and changes were analyzed using corresponding indices for the sub periods 1989-1992 and 1998-2001. The foreign trade exchange balance was substantially negative in both sub periods over the analyzed period showing an aggravating trend. Export covering import declined from 78.09% to only 47.71%. The positive balance of exchange of agricultural, especially commodities of plant origin in the first four years was turned into a negative balance of exchange in the second four years. Export covering import at the agricultural level declined from 164.79% to 78.58% and at the level of commodities of plant origin from 201,76% to 87.35%. There was a significant disturbance of commodity and regional structure exchange. The share of agriculture in the total export of the country was raised from 13.82% to 18.16%. The share of plant originating commodities in the total export of agriculture was raised from 71,96% to 86,34%. Basic agricultural products predominated in the export. In addition, in the domestic export the share of developed countries decreased which contributed to poor export results and increased the import dependence of the country. Considering the above said, the need arises to increase substantially agricultural production, i.e. commodities of plant origin. The structure and output of these productions should meet the needs of both domestic and foreign markets. International standards need to be applied in order to take hold of new foreign markets, exporting high technology processed products, using intensive and efficient promotive activities. Subsequently, greater investments and a planned production are needed, liberalization and especially the system of import control in foreign trade exchange of agricultural products, i

  18. Industrial plants for production of highly enriched nitrogen-15

    International Nuclear Information System (INIS)

    Krell, E.; Jonas, C.

    1977-01-01

    A discussion is presented of the present stage of development of large-scale enrichment of 15 N. The most important processes utilized to separate nitrogen isotopes, namely chemical exchange in the NO/NO 2 /HNO 3 system and low-temperature distillation of NO at -151 0 C, are compared, especially with respect to their economics and use of energy. As examples, chemical exchange plants in the GDR are discussed, and the research activities necessary to optimize the process, especially to solve aerodynamic, hydrodynamic, interface and processing problems, are reviewed. Good results were obtained by the choice of an optimum location and the design of a plant for pre-enrichment to 10 at.% 15 N and an automatically operating two-section cascade for the high enrichment of 15 N to more than 99 at.%. The chemical industry has taken over operation of the plant with the consequence that the raw materials are all available without additional transport. All by-products (nitrous gases and sulphuric acid) are returned for use elsewhere within the industry. The technology of the plant has been chosen so that the quantity of highly enriched product can be varied within a wide range. The final product is used to synthesize more than 250 different 15 N-labelled compounds which are also produced on an industrial scale. (author)

  19. Photocatalytic conversion of methane to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  20. Acute and subchronic toxicity studies of methanol extract of Polygonum minus leaves in Sprague Dawley rats.

    Science.gov (United States)

    Christapher, Parayil Varghese; Parasuraman, Subramani; Asmawi, Mohd Zaini; Murugaiyah, Vikneswaran

    2017-06-01

    Medicinal plant preparations may contain high levels of toxic chemical constituents to potentially cause serious harm to animals and/or humans. Thus, toxicity studies are important to assess the toxic effects of plant derived products. Polygonum minus is used traditionally for different ailments in Southeast Asia. This study was conducted to establish the acute and subchronic toxicity profile of the methanol extract of P. minus leaves. The acute toxicity study showed that the methanol extract of P. minus is safe even at the highest dose tested of 2000 mg/kg in female Sprague Dawley rats. There were no behavioural or physiological changes and gross pathological abnormalities observed. The subchronic toxicity study of methanol extract of P. minus at 250, 500, 1000 and 2000 mg/kg were conducted in both sexes of Sprague Dawley rats. There were no changes observed in the extract treated animal's body weight, food and water intake, motor coordination, behaviour and mental alertness. The values of haematological and biochemical parameters were not different between the treated and control animals. The relative organ weights of extract-treated animals did not differ with that of control animals. Based on the present findings, the methanol extract of P. minus leaves could be considered safe up to the dose of 2000 mg/kg. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Transient behavior of Cu/ZnO-based methanol synthesis catalysts

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Chorkendorff, Ib; Knudsen, Ida

    2009-01-01

    Time-resolved measurements of the methanol synthesis reaction over a Cu/ZnO-based catalyst reveal a transient methanol production that depends on the pretreatment gas. Specifically, the methanol production initially peaks after a pretreatment with an intermediate mixture of H2 and CO (20–80% H2...

  2. H{sub 2} as source of renewable energy: production through catalytic methods by means of the reforming of methanol; H{sub 2} como fuente de energia renovable: produccion por metodos cataliticos mediante el reformado de metanol

    Energy Technology Data Exchange (ETDEWEB)

    Perez H, R; Lopez, P; Gutierrez M, A; Gutierrez W, C; Mondragon G, G; Mendoza A, D [ININ, Departamento de Tecnologia de Materiales, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Angeles Ch, C [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico); Arenas A, J., E-mail: raul.perez@inin.gob.m [UNAM, Instituto de Fisica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-07-01

    The fuel cells transform the chemical energy stored in the connection H-H of the H{sub 2} molecule in electric energy and water vapor when is combines with the oxygen. Even when the hydrogen has a high potential as energy source, its handling is difficult (storage and transport). This has motivated the search of hydrogen production methods in situ starting from liquid fuels like the methanol or ethanol through the reaction of reforming. The methanol is a fuel of easy availability for fuel cells with electronic applications and of transport. Although the methanol energy density is approximately half of the gasoline and diesel, it is more reagent and can be used directly in fuel cells or can also be reformed to low temperatures for the hydrogen obtaining to be used in fuel cells of proton exchange. In this article the results obtained of the systems, Cu-Ni/ZrO{sub 2} and Ag-Au(1-D)-CeO{sub 2} are presented and can be competitive to generate H{sub 2} and being used in the fuel cells to generate energy. (Author)

  3. Photostability of 6-MAM and morphine exposed to controlled UV irradiation in water and methanol solution: HRMS for the characterization of transformation products and comparison with the dry state.

    Science.gov (United States)

    Miolo, Giorgia; Tucci, Marianna; Mazzoli, Alessandra; Ferrara, Santo Davide; Favretto, Donata

    2016-07-15

    The UVA and UVB light-induced behaviour of 6-monoacetylmorphine (6-MAM) and morphine, the main metabolites of heroin, was studied in methanol, aqueous solution and in the dry state. UVA and UVB irradiations were performed for different times (radiant energies of 20-300J/cm(2)). UV spectra of irradiated samples were compared with samples kept in the dark. To estimate the extent of photolysis, positive ion electrospray ionization experiments were performed on the irradiated samples by LC-HRMS. Tentative identification of photoproducts was performed on the basis of their elemental formula as calculated by HRMS results. Morphine and 6-MAM demonstrated to be quite stable under UVA light but very sensitive to UVB irradiation. In methanol solutions they undergo a similar pattern, both reaching 90% photodegradation after 100J/cm(2) of UVB, with a slightly faster kinetic for morphine at lower doses. In water, the yields of photodegradation are nearly one third lower than in methanol. In the solid state, the yield of photodegradation is lower than in solution. The structures of some UVB-induced degradation products are proposed. Photoaddition of the solvent and photooxidation seem the main pathways of phototransformation of these molecules. Moreover, both compounds revealed to generate singlet oxygen under UVB exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Implications of stratospheric ozone depletion upon plant production

    International Nuclear Information System (INIS)

    Teramura, A.H.

    1990-01-01

    An increase in the amount of UV-B radiation reaching the earth's surface is identified as the major factor of concern to result from stratospheric ozone depletion. UV radiation is believed to have wide ranging effects on plant physiology and biochemistry. In screening studies of > 300 species and cultivars, > 50% have shown sensitivity to UV radiation. The most sensitive plant families appear to be Leguminosae, Cucurbitaceae and Cruciferae. The need for a better understanding of the effects of UV radiation on crop plant physiology and particularly of the repair and protective mechanisms developed by some species is stressed. This paper was presented at a colloquium on Implications of global climate changes on horticultural cropping practices and production in developing countries held at the 86th Annual Meeting of the American Society for Horticultural Science at Tulsa, Oklahoma, on 2 Aug. 1989

  5. Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new algorithm is proposed for the sensor-less control of methanol concentration. • Two different strategies are used depending on the ambient temperatures. • Energy efficiency of the DMFC system has been improved by using the new algorithm. - Abstract: A new version of an algorithm is used to control the methanol concentration in the feed of DMFC systems without using methanol sensors under varying ambient temperatures. The methanol concentration is controlled indirectly by controlling the temperature of the DMFC stack, which correlates well with the methanol concentration. Depending on the ambient temperature relative to a preset reference temperature, two different strategies are used to control the stack temperature: either reducing the cooling rate of the methanol solution passing through an anode-side heat exchanger; or, lowering the pumping rate of the pure methanol to the depleted feed solution. The feasibility of the algorithm is evaluated using a DMFC system that consists of a 200 W stack and the balance of plant (BOP). The DMFC system includes a sensor-less methanol controller that is operated using a LabView system as the central processing unit. The algorithm is experimentally confirmed to precisely control the methanol concentration and the stack temperature at target values under an environment of varying ambient temperatures

  6. Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products

    Directory of Open Access Journals (Sweden)

    Mehrdad Khatami

    2018-03-01

    Full Text Available Among an array of hybrid nanoparticles, core-shell nanoparticles comprise of two or more materials, such as metals and biomolecules, wherein one of them forms the core at the center, while the other material/materials that were located around the central core develops a shell. Core-shell nanostructures are useful entities with high thermal and chemical stability, lower toxicity, greater solubility, and higher permeability to specific target cells. Plant or natural products-mediated synthesis of nanostructures refers to the use of plants or its extracts for the synthesis of nanostructures, an emerging field of sustainable nanotechnology. Various physiochemical and greener methods have been advanced for the synthesis of nanostructures, in contrast to conventional approaches that require the use of synthetic compounds for the assembly of nanostructures. Although several biological resources have been exploited for the synthesis of core-shell nanoparticles, but plant-based materials appear to be the ideal candidates for large-scale green synthesis of core-shell nanoparticles. This review summarizes the known strategies for the greener production of core-shell nanoparticles using plants extract or their derivatives and highlights their salient attributes, such as low costs, the lack of dependence on the use of any toxic materials, and the environmental friendliness for the sustainable assembly of stabile nanostructures.

  7. [Storage of plant protection products in farms: minimum safety requirements].

    Science.gov (United States)

    Dutto, Moreno; Alfonzo, Santo; Rubbiani, Maristella

    2012-01-01

    Failure to comply with requirements for proper storage and use of pesticides in farms can be extremely hazardous and the risk of accidents involving farm workers, other persons and even animals is high. There are still wide differences in the interpretation of the concept of "securing or making safe", by workers in this sector. One of the critical points detected, particularly in the fruit sector, is the establishment of an adequate storage site for plant protection products. The definition of "safe storage of pesticides" is still unclear despite the recent enactment of Legislative Decree 81/2008 regulating health and work safety in Italy. In addition, there are no national guidelines setting clear minimum criteria for storage of plant protection products in farms. The authors, on the basis of their professional experience and through analysis of recent legislation, establish certain minimum safety standards for storage of pesticides in farms.

  8. Genetic improvement of plants for enhanced bio-ethanol production.

    Science.gov (United States)

    Saha, Sanghamitra; Ramachandran, Srinivasan

    2013-04-01

    The present world energy situation urgently requires exploring and developing alternate, sustainable sources for fuel. Biofuels have proven to be an effective energy source but more needs to be produced to meet energy goals. Whereas first generation biofuels derived from mainly corn and sugarcane continue to be used and produced, the contentious debate between "feedstock versus foodstock" continues. The need for sources that can be grown under different environmental conditions has led to exploring newer sources. Lignocellulosic biomass is an attractive source for production of biofuel, but pretreatment costs to remove lignin are high and the process is time consuming. Genetically modified plants that have increased sugar or starch content, modified lignin content, or produce cellulose degrading enzymes are some options that are being explored and tested. This review focuses on current research on increasing production of biofuels by genetic engineering of plants to have desirable characteristics. Recent patents that have been filed in this area are also discussed.

  9. Experimental Validation of Methanol Crossover in a Three-dimensional, Two-Fluid Model of a Direct Methanol Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A fully coupled three-dimensional, steady-state, two-fluid, multi-component and non-isothermal DMFC model has been developed in the commercial CFD package CFX 13 (ANSYS inc.). It accounts for the presence of micro porous layers, non-equilibrium phase change, and methanol and water uptake...... in the ionomer phase of the catalytic layer, and detailed membrane transport of methanol and water. In order to verify the models ability to predict methanol crossover, simulation results are compared with experimental measurements under different current densities along with air and methanol stoichiometries....... Methanol crossover is indirectly measured based on the combined anode and cathode exhaust CO2 mole fraction and by accounting for the CO2 production at the anode as a function of current density. This approach is simple and assumes that all crossed over methanol is oxidized. Moreover, it takes CO2...

  10. Effect of sorbed methanol, current, and temperature on multicomponent transport in nafion-based direct methanol fuel cells.

    Science.gov (United States)

    Rivera, Harry; Lawton, Jamie S; Budil, David E; Smotkin, Eugene S

    2008-07-24

    The CO2 in the cathode exhaust of a liquid feed direct methanol fuel cell (DMFC) has two sources: methanol diffuses through the membrane electrode assembly (MEA) to the cathode where it is catalytically oxidized to CO2; additionally, a portion of the CO2 produced at the anode diffuses through the MEA to the cathode. The potential-dependent CO2 exhaust from the cathode was monitored by online electrochemical mass spectrometry (ECMS) with air and with H2 at the cathode. The precise determination of the crossover rates of methanol and CO2, enabled by the subtractive normalization of the methanol/air to the methanol/H2 ECMS data, shows that methanol decreases the membrane viscosity and thus increases the diffusion coefficients of sorbed membrane components. The crossover of CO2 initially increases linearly with the Faradaic oxidation of methanol, reaches a temperature-dependent maximum, and then decreases. The membrane viscosity progressively increases as methanol is electrochemically depleted from the anode/electrolyte interface. The crossover maximum occurs when the current dependence of the diffusion coefficients and membrane CO2 solubility dominate over the Faradaic production of CO2. The plasticizing effect of methanol is corroborated by measurements of the rotational diffusion of TEMPONE (2,2,6,6-tetramethyl-4-piperidone N-oxide) spin probe by electron spin resonance spectroscopy. A linear inverse relationship between the methanol crossover rate and current density confirms the absence of methanol electro-osmotic drag at concentrations relevant to operating DMFCs. The purely diffusive transport of methanol is explained in terms of current proton solvation and methanol-water incomplete mixing theories.

  11. Official control of plant protection products in Poland: detection of illegal products.

    Science.gov (United States)

    Miszczyk, Marek; Płonka, Marlena; Stobiecki, Tomasz; Kronenbach-Dylong, Dorota; Waleczek, Kazimierz; Weber, Roland

    2018-04-03

    Market presence of illegal and counterfeit pesticides is now a global problem. According to data published in 2012 by the European Crop Protection Association (ECPA), illegal products represent over 10% of the global market of plant protection products. Financial benefits are the main reason for the prevalence of this practice. Counterfeit and illegal pesticides may contain substances that may pose a threat to the environment, crops, animals, and humans, inconsistent with the label and registration dossier. In Poland, action against illegal and counterfeit plant protection products is undertaken by the Main Inspectorate of Plant Health and Seed Inspection (PIORiN), the police, the prosecution, and the pesticide producers. Results of chemical analyses carried out by the Institute of Plant Protection - National Research Institute Sośnicowice Branch, Pesticide Quality Testing Laboratory (PQTL IPP-NRI Sosnicowice Branch) indicate that a majority of illegal pesticides in Poland are detected in the group of herbicides. Products from parallel trade tend to have the most irregularities. This article describes the official quality control system of plant protection products in Poland and presents the analytical methods for testing pesticides suspected of adulteration and recent test results.

  12. Power plant project success through total productive generation

    Energy Technology Data Exchange (ETDEWEB)

    Kaivola, R.; Tamminen, L.

    1996-11-01

    The Total Productive Generation concept (TPG) defines the lines of action adopted by IVO Generation Services Ltd (IGS) for the operation and maintenance of power plants. The TPG concept is based on procedures tested in practice. The main idea of TPG is continuous development of quality, which is a joint effort of the entire staff. Its objective is to benefit IGS`s own staff and, in particular, the company`s customers. (orig.)

  13. Search for bioactive natural products from medicinal plants of Bangladesh.

    Science.gov (United States)

    Ahmed, Firoj; Sadhu, Samir Kumar; Ishibashi, Masami

    2010-10-01

    In our continuous search for bioactive natural products from natural resources, we explored medicinal plants of Bangladesh, targeting cancer-related tumor necrosis factor-related apoptosis-inducing ligand-signaling pathway, along with some other biological activities such as prostaglandin inhibitory activity, 1,1-diphenyl-2-picrylhydrazyl free-radical-scavenging activity, and cell growth inhibitory activity. Along with this, we describe a short field study on Sundarbans mangrove forests, Bangladesh, in the review.

  14. Research of beekeeping products using as radioprotectors for plants

    Directory of Open Access Journals (Sweden)

    I. О. Oginova

    2006-12-01

    Full Text Available Research conducted on a winter wheat, which was cultivated in a 30-km area in the year ofChernobylaccident, allowed to ascertain that complex use of sodium humate and beekeeping products is ineffective for diminishing the negative irradiation influence on the early growth processes of plants. Only the simultaneous use of humic preparations and anodic extraction of propolis has permanent positive effect.

  15. Production of biodiesel fuel by transesterification of different vegetable oils with methanol using Al₂O₃ modified MgZnO catalyst.

    Science.gov (United States)

    Olutoye, M A; Hameed, B H

    2013-03-01

    An active heterogeneous Al2O3 modified MgZnO (MgZnAlO) catalyst was prepared and the catalytic activity was investigated for the transesterification of different vegetable oils (refined palm oil, waste cooking palm oil, palm kernel oil and coconut oil) with methanol to produce biodiesel. The catalyst was characterized by using X-ray diffraction, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis to ascertain its versatility. Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Within the range of studied variability, the suitable transesterification conditions (methanol/oil ratio 16:1, catalyst loading 3.32 wt.%, reaction time 6h, temperature 182°C), the oil conversion of 98% could be achieved with reference to coconut oil in a single stage. The catalyst can be easily recovered and reused for five cycles without significant deactivation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Properties of various plants and animals feedstocks for biodiesel production.

    Science.gov (United States)

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Productivity is a poor predictor of plant species richness

    Science.gov (United States)

    Adler, Peter B.; Seabloom, Eric W.; Borer, Elizabeth T.; Hillebrand, Helmut; Hautier, Yann; Hector, Andy; Harpole, W. Stanley; O'Halloran, Lydia R.; Grace, James B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Calabrese, Laura B.; Chu, Cheng-Jin; Cleland, Elsa E.; Collins, Scott L.; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Fay, Philip A.; Firn, Jennifer; Frater, Paul; Gasarch, Eve I.; Gruner, Daneil S.; Hagenah, Nicole; Lambers, Janneke Hille Ris; Humphries, Hope; Jin, Virginia L.; Kay, Adam D.; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Lambrinos, John G.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Mortensen, Brent; Orrock, John L.; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Wang, Gang; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity an

  18. Ethylene production by plants in a closed environment

    Science.gov (United States)

    Wheeler, R. M.; Peterson, B. V.; Sager, J. C.; Knott, W. M.

    Ethylene production by 20-m^2 stands of wheat, soybean, lettuce and potato was monitored throughout growth and development in NASA's Controlled Ecological Life Support System (CELSS) Biomass Production Chamber. Chamber ethylene concentrations rose during periods of rapid growth for all four species, reaching 120 parts per billion (ppb) for wheat, 60 ppb for soybean, and 40 to 50 ppb for lettuce and potato. Following this, ethylene concentrations declined during seed fill and maturation (wheat and soybean), or remained relatively constant (potato). Lettuce plants were harvested during rapid growth and peak ethylene production. The highest ethylene production rates (unadjusted for chamber leakage) ranged from 0.04 to 0.06 ml m^-2 day^-1 during rapid growth of lettuce and wheat stands, or approximately 0.8 to 1.1 nl g^-1 fresh weight h^-1 Results suggest that ethylene production by plants is a normal event coupled to periods of rapid metabolic activity, and that ethylene removal or control measures should be considered for growing crops in a tightly closed CELSS.

  19. Enhancement of Plant Productivity in the Post-Genomics Era.

    Science.gov (United States)

    Thao, Nguyen Phuong; Tran, Lam-Son Phan

    2016-08-01

    Obtaining high plant yield is not always achievable in agricultural activity as it is determined by various factors, including cultivar quality, nutrient and water supplies, degree of infection by pathogens, natural calamities and soil conditions, which affect plant growth and development. More noticeably, sustainable plant productivity to provide sufficient food for the increasing human population has become a thorny issue to scientists in the era of unpredictable global climatic changes, appearance of more tremendous or multiple stresses, and land restriction for cultivation. Well-established agricultural management by agrotechnological means has shown no longer to be effective enough to confront with this challenge. Instead, in order to maximize the production, it is advisable to implement such practices in combination with biological applications. Nowadays, high technologies are widely adopted into agricultural production, biological diversity conservation and crop improvement. Wang et al. has nicely outlined the utilization of DNA-based technologies in this field. Among these are the applications of (i) DNA markers into cultivar identification, seed purity analysis, germplasm resource evaluation, heterosis prediction, genetic mapping, cloning and breeding; and (ii) gene expression data in supporting the description of crop phenology, the analytic comparison of crop growth under stress versus non-stress conditions, or the study of fertilizer effects. Besides, various purposes of using transgenic technologies in agriculture, such as generating cultivars with better product quality, better tolerance to biotic or abiotic stress, are also discussed in the review. One of the important highlights in this issue is the review of the benefits brought by high-throughput sequencing technology, which is also known as next-generation sequencing (NGS). It is not so difficult to recognize that its application has allowed us to carry out biological studies at much deeper level

  20. Productivity of sugarcane plants of ratooning with fertilizing treatment

    Directory of Open Access Journals (Sweden)

    MUHADIONO

    2010-01-01

    Full Text Available Latief AS, Syarief R, Pramudya B, Muhadiono. 2010. Productivity of sugarcane plants of ratooning with various fertilizing treatments. Nusantara Bioscience 2: 43-47. This research aims to determine the sugarcane plants of ratooning productivity with low external input of fertilization treatment towards farmers can increase profits. The method used is the Completely Randomized Block Design (CRBD with four treatments and three repetitions (4x3. Sugarcane varieties R 579 planted in each patch experiment 5x5 m2. Dosage of fertilizer: P0 = 3.6 kg/year plot experiment was 100% dosage usage of chemical fertilizers used by farmers. Further dosages were P1 (75% = 2.7 kg/plot, P2 (50% = 1.8 kg/plot and P3 (0.25% = 0.9 kg/plot, each supplemented with fertilizer 5 mL of liquid organic/patch a year. Sugarcane crops with a variety of treatment showed no significant difference. The highest productivity was achieved at dosages of P2 (50% chemical fertilizers plus organic fertilizer is 21.67 kg per square meter. Chemical fertilizers can be saved 7 quintals per hectare a year or Rp 997,500 per year. Additional costs of liquid organic fertilizer Rp. 100,000 per hectare year and labor Rp 100,000 per hectare, so the additional advantage of saving farmers fertilizer Rp. 797,500 per year.

  1. AVLIS Production Plant work breakdown structure and Dictionary

    International Nuclear Information System (INIS)

    1984-01-01

    The work breakdown structure has been prepared for the AVLIS Production Plant to define, organize, and identify the work efforts and is summarized in Fig. 1-1 for the top three project levels. The work breakdown structure itself is intended to be the primary organizational tool of the AVLIS Production Plant and is consistent with the overall AVLIS Program Work Breakdown Structure. It is designed to provide a framework for definition and accounting of all of the elements that are required for the eventual design, procurement, and construction of the AVLIS Production Plant. During the present phase of the AVLIS Project, the conceptual engineering phase, the work breakdown structure is intended to be the master structure and project organizer of documents, designs, and cost estimates. As the master project organizer, the key role of the work breakdown structure is to provide the mechanism for developing completeness in AVLIS cost estimates and design development of all hardware and systems. The work breakdown structure provides the framework for tracking, on a one-to-one basis, the component design criteria, systems requirements, design concepts, design drawings, performance projections, and conceptual cost estimates. It also serves as a vehicle for contract reporting. 12 figures, 2 tables

  2. BioMeeT. Planning of biomass based methanol energy combine - Trollhaettan region. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brandberg, Aake; Hjortsberg, Hans; Saevbark, Bengt [Ecotraffic R and D AB, Stockholm (Sweden); Ekbom, Tomas; Hjerpe, Carl-Johan; Landaelv, Ingvar [Nykomb Synergetics AB, Stockholm (Sweden)

    2000-04-01

    The conversion of biomass in an energy combine based on primary gasification yields a gas that can be used as fuels gas, for synthesis of motor fuels (methanol or other) or for electric power production. The study gives examples of alternative product mixes. The conclusions of the study are: (1) Potential of new, not yet utilised biomass is available, and new areas of applications, where oil is presently used, are needed to develop the potential. Motor fuel production (methanol, DME) is a presumption in the BioMeeT-study. (2) Yield figures in the energy combine are comparable to those of now used bio-systems for power and co-generation. (3) Which one of the cases in the BioMeeT-project is the most favourable cannot be decided on a plant-to-plant basis alone but the entire system for supply energy carriers in the region has to be considered, as the all plants within the system may change. This would require further investigations. Moreover, the results will be different in various regions in Sweden and Europe due to the markets for all energy carriers. (4) At today's conditions in the Trollhaettan region it must be stated that there is only room for dedicated bio-methanol/DME production (provided such a market will come) with moderate addition to the district heating system as in the BAL-project. (5) In the longer term the future supply of all energy carriers, including new electric power and new bio-fuels, has to be considered for new plants and at renewals. In such a case an energy combine as in the BioMeeT-project may be a central conversion plant with gas deliveries to satellites such as local co-generation, district heat and industries in a regional system within a 50 - 100 km radius. This should be included in regional planning for the future. (6) Estimated investment costs per kW feedstock input is higher for the energy combine compared to present technologies (mature technologies for power and heat) but have to be judged for all plants taken together in the

  3. BioMeeT. Planning of biomass based methanol energy combine - Trollhaettan region. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brandberg, Aake; Hjortsberg, Hans; Saevbark, Bengt [Ecotraffic R and D AB, Stockholm (Sweden); Ekbom, Tomas; Hjerpe, Carl-Johan; Landaelv, Ingvar [Nykomb Synergetics AB, Stockholm (Sweden)

    2000-04-01

    The conversion of biomass in an energy combine based on primary gasification yields a gas that can be used as fuels gas, for synthesis of motor fuels (methanol or other) or for electric power production. The study gives examples of alternative product mixes. The conclusions of the study are: (1) Potential of new, not yet utilised biomass is available, and new areas of applications, where oil is presently used, are needed to develop the potential. Motor fuel production (methanol, DME) is a presumption in the BioMeeT-study. (2) Yield figures in the energy combine are comparable to those of now used bio-systems for power and co-generation. (3) Which one of the cases in the BioMeeT-project is the most favourable cannot be decided on a plant-to-plant basis alone but the entire system for supply energy carriers in the region has to be considered, as the all plants within the system may change. This would require further investigations. Moreover, the results will be different in various regions in Sweden and Europe due to the markets for all energy carriers. (4) At today's conditions in the Trollhaettan region it must be stated that there is only room for dedicated bio-methanol/DME production (provided such a market will come) with moderate addition to the district heating system as in the BAL-project. (5) In the longer term the future supply of all energy carriers, including new electric power and new bio-fuels, has to be considered for new plants and at renewals. In such a case an energy combine as in the BioMeeT-project may be a central conversion plant with gas deliveries to satellites such as local co-generation, district heat and industries in a regional system within a 50 - 100 km radius. This should be included in regional planning for the future. (6) Estimated investment costs per kW feedstock input is higher for the energy combine compared to present technologies (mature technologies for power and heat) but have to be judged for all plants taken together in

  4. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment

    International Nuclear Information System (INIS)

    Pérez-Fortes, Mar; Schöneberger, Jan C.; Boulamanti, Aikaterini; Tzimas, Evangelos

    2016-01-01

    Highlights: • A carbon utilisation plant that synthesise methanol is simulated in CHEMCAD. • The total amount of CO 2 demand is 1.46 t/t methanol . • The CO 2 not-produced compared to a conventional plant is 0.54 t/t methanol . • Production costs results too high for a financially attractive project. • There is a net potential for CO 2 emissions reduction of 2.71 MtCO 2 /yr in Europe. - Abstract: The purpose of this paper is to assess via techno-economic and environmental metrics the production of methanol (MeOH) using H 2 and captured CO 2 as raw materials. It evaluates the potential of this type of carbon capture and utilisation (CCU) plant on (i) the net reduction of CO 2 emissions and (ii) the cost of production, in comparison with the conventional synthesis process of MeOH Europe. Process flow modelling is used to estimate the operational performance and the total purchased equipment cost; the flowsheet is implemented in CHEMCAD, and the obtained mass and energy flows are utilised as input to calculate the selected key performance indicators (KPIs). CO 2 -based metrics are used to assess the environmental impact. The evaluated MeOH plant produces 440 ktMeOH/yr, and its configuration is the result of a heat integration process. Its specific capital cost is lower than for conventional plants. However, raw materials prices, i.e. H 2 and captured CO 2 , do not allow such a project to be financially viable. In order to make the CCU plant financially attractive, the price of MeOH should increase in a factor of almost 2, or H 2 costs should decrease almost 2.5 times, or CO 2 should have a value of around 222 €/t, under the assumptions of this work. The MeOH CCU-plant studied can utilise about 21.5% of the CO 2 emissions of a pulverised coal (PC) power plant that produces 550 MW net of electricity. The net CO 2 emissions savings represent 8% of the emissions of the PC plant (mainly due to the avoidance of consuming fossil fuels as in the conventional Me

  5. Design and Fabrication of the First Commercial-Scale Liquid Phase Methanol (LPMEOH) Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    The Liquid Phase Methanol (LPMEOHT) process uses a slurry bubble column reactor to convert synthesis gas (syngas), primarily a mixture of carbon monoxide and hydrogen, to methanol. Because of its superior heat management the process can utilize directly the carbon monoxide (CO)-rich syngas characteristic of the gasification of coal, petroleum coke, residual oil, wastes, or other hydrocarbon feedstocks. The LPMEOHM Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P., a partnership between Air Products and Chemicals, Inc. and Eastman Chemical Company, to produce methanol from coal-derived syngas. Construction of the LPMEOH~ Process Demonstration Plant at Eastman's chemicals-from-coal complex in Kingsport was completed in January 1997. Following commissioning and shakedown activities, the fwst production of methanol from the facility occurred on April 2, 1997. Nameplate capacity of 260 short tons per day (TPD) was achieved on April 6, 1997, and production rates have exceeded 300 TPD of methanol at times. This report describes the design, fabrication, and installation of the Kingsport LPMEOEFM reactor, which is the first commercial-scale LPMEOEPM reaetor ever built. The vessel is 7.5 feet in diameter and 70 feet tall with design conditions of 1000 psig at 600 `F. These dimensions represent a significant scale-up from prior experience at the DOE-owned Alternative Fuels Development Unit in LaPorte, Texas, where 18-inch and 22-inch diameter reactors have been tested successfidly over thousands of hours. The biggest obstacles discovered during the scale- up, however, were encountered during fabrication of the vessel. The lessons learned during this process must be considered in tailoring the design for future sites, where the reactor dimensions may grow by yet another factor of two.

  6. Metabolic Engineering of Corynebacterium glutamicum for Methanol Metabolism

    Science.gov (United States)

    Witthoff, Sabrina; Schmitz, Katja; Niedenführ, Sebastian; Nöh, Katharina; Noack, Stephan

    2015-01-01

    Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the utilization of methanol as an auxiliary carbon source in a sugar-based medium. Initial oxidation of methanol to formaldehyde was achieved by heterologous expression of a methanol dehydrogenase from Bacillus methanolicus, whereas assimilation of formaldehyde was realized by implementing the two key enzymes of the ribulose monophosphate pathway of Bacillus subtilis: 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. The recombinant C. glutamicum strain showed an average methanol consumption rate of 1.7 ± 0.3 mM/h (mean ± standard deviation) in a glucose-methanol medium, and the culture grew to a higher cell density than in medium without methanol. In addition, [13C]methanol-labeling experiments revealed labeling fractions of 3 to 10% in the m + 1 mass isotopomers of various intracellular metabolites. In the background of a C. glutamicum Δald ΔadhE mutant being strongly impaired in its ability to oxidize formaldehyde to CO2, the m + 1 labeling of these intermediates was increased (8 to 25%), pointing toward higher formaldehyde assimilation capabilities of this strain. The engineered C. glutamicum strains represent a promising starting point for the development of sugar-based biotechnological production processes using methanol as an auxiliary substrate. PMID:25595770

  7. Install and operate type radiation processing plant for marine products

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, A.K. [BARC-BTIR Complex, Mumbai (India). Dept. of Atomic Energy. Board of Radiation and Isotope Technology

    2002-07-01

    Marine products can be carrier of several pathogens. Radiation processing is a very useful technique that is used to eliminate pathogens and also to extend shelf life of fresh fish. For marine products three processes are involved namely: radurization to pasteurize fresh chilled fish for extending shelf life; radicidation to sanitize frozen fishery products by elimination of pathogenic microorganisms and radiation disinfestations to eliminate insects from dehydrated fishery products. The paper brings out conceptual design of a compact radiation processing plant that can cater to all the three processes. The design is different from conveyor type of designs. The design is specially configured to maintain the temperature of frozen products and overdose ratio within limits specified. The throughput depends upon the source strength, type of product, the size of box and its configuration in which these could be arranged. The design has many features, which make it a very safe, convenient and economical method for processing of such items or for that matter all the food products, which are amenable for radiation processing. (author)

  8. Install and operate type radiation processing plant for marine products

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2002-01-01

    Marine products can be carrier of several pathogens. Radiation processing is a very useful technique that is used to eliminate pathogens and also to extend shelf life of fresh fish. For marine products three processes are involved namely: radurization to pasteurize fresh chilled fish for extending shelf life; radicidation to sanitize frozen fishery products by elimination of pathogenic microorganisms and radiation disinfestations to eliminate insects from dehydrated fishery products. The paper brings out conceptual design of a compact radiation processing plant that can cater to all the three processes. The design is different from conveyor type of designs. The design is specially configured to maintain the temperature of frozen products and overdose ratio within limits specified. The throughput depends upon the source strength, type of product, the size of box and its configuration in which these could be arranged. The design has many features, which make it a very safe, convenient and economical method for processing of such items or for that matter all the food products, which are amenable for radiation processing. (author)

  9. A novel back-up control structure to manage nonroutine steam upsets in industrial methanol distillation columns

    DEFF Research Database (Denmark)

    Udugama, Isuru A.; Zander, Cornina; Mansouri, Seyed Soheil

    2017-01-01

    Industrial methanol production plants have extensive heat integration to achieve energy efficient operations where steam generated from these heat integration operations are used to provide reboiler duty for methanol distillation columns that purify crude methanol produced into industrial AA grade...... supervisory layer to control the column during these non-routine process upsets. These control schemes were tested against realistic reboiler duty disturbances that can occur in an industrial process. The tests revealed that both the MPC and supervisory systems control structures are able to regulate...... the process, even during sudden drops in reboiler duty. However, the cost of implementation and the relative simplicity will likely favour the implementation of the supervisory control structure in an industrial environment....

  10. Aquatic plant Azolla as the universal feedstock for biofuel production.

    Science.gov (United States)

    Miranda, Ana F; Biswas, Bijoy; Ramkumar, Narasimhan; Singh, Rawel; Kumar, Jitendra; James, Anton; Roddick, Felicity; Lal, Banwari; Subudhi, Sanjukta; Bhaskar, Thallada; Mouradov, Aidyn

    2016-01-01

    The quest for sustainable production of renewable and cheap biofuels has triggered an intensive search for domestication of the next generation of bioenergy crops. Aquatic plants which can rapidly colonize wetlands are attracting attention because of their ability to grow in wastewaters and produce large amounts of biomass. Representatives of Azolla species are some of the fastest growing plants, producing substantial biomass when growing in contaminated water and natural ecosystems. Together with their evolutional symbiont, the cyanobacterium Anabaena azollae, Azolla biomass has a unique chemical composition accumulating in each leaf including three major types of bioenergy molecules: cellulose/hemicellulose, starch and lipids, resembling combinations of terrestrial bioenergy crops and microalgae. The growth of Azolla filiculoides in synthetic wastewater led up to 25, 69, 24 and 40 % reduction of NH 4 -N, NO 3 -N, PO 4 -P and selenium, respectively, after 5 days of treatment. This led to a 2.6-fold reduction in toxicity of the treated wastewater to shrimps, common inhabitants of wetlands. Two Azolla species, Azolla filiculoides and Azolla pinnata, were used as feedstock for the production of a range of functional hydrocarbons through hydrothermal liquefaction, bio-hydrogen and bio-ethanol. Given the high annual productivity of Azolla, hydrothermal liquefaction can lead to the theoretical production of 20.2 t/ha-year of bio-oil and 48 t/ha-year of bio-char. The ethanol production from Azolla filiculoides, 11.7 × 10 3  L/ha-year, is close to that from corn stover (13.3 × 10 3  L/ha-year), but higher than from miscanthus (2.3 × 10 3  L/ha-year) and woody plants, such as willow (0.3 × 10 3  L/ha-year) and poplar (1.3 × 10 3  L/ha-year). With a high C/N ratio, fermentation of Azolla biomass generates 2.2 mol/mol glucose/xylose of hydrogen, making this species a competitive feedstock for hydrogen production compared with other bioenergy crops

  11. Production costs: U.S. hydroelectric power plants, 4th Edition

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book provides 1991 operation and maintenance expenses for over 800 conventional and pumped-storage hydroelectric power plants. Report shows operator and plant name, plant year-in-service, installed capacity, 1991 net generation, O ampersand M expenses, total production costs and current plant capitalization. Fifty eight percent of the utility-owned hydroelectric plants in the US are covered by this report. Data diskette provides additional capital and production cost accounts and number of employees for each plant

  12. Invasive plants as feedstock for biochar and bioenergy production.

    Science.gov (United States)

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Algorithm of actions to identify and reduce risks in the production of milk and plant products

    Directory of Open Access Journals (Sweden)

    L. E. Glagoleva

    2016-01-01

    Full Text Available Foods with a new generation of functional and improved consumer properties, corresponds to the modern concepts of nutrition science and consumer needs. functional food production is a major global trend in food science and the subject of innovation. One of the important trends is the use of plant complexes and plant food systems. Using the plant complexes (PC and plant food systems (PFS provides a number of benefits: improved consumer properties of the product, do not need to change the process, it is possible to control directional rheological properties and consistency of the finished products, reduced the number of risk points in the production cycle. This paper describes the development of an algorithm of action to identify and mitigate risks in the production of milk and plant products. Also conducted a risk analysis, identified and assessed the risks in the process of production, installed capacity of available resources to reduce the level of risk. Established and submitted to the critical control points in production processes, as well as the critical limits for each critical control points, and the procedure for corrective action in case of violations of the past. During the study, measured changes in the quantitative and qualitative composition of microflora of semi-finished and Quantity of Mesophilic Aerobic and Facultative Anaerobic Microorganisms (QMAFAnM. To determine QMAFAnM samples were taken: 1 – cheesecakes (control, 2 – cheesecakes with RPS. Microbiological studies analyzed frozen-conjugated semi-finished products was determined within 90 days. It is clear from the data that the cottage cheese with semi-finished products have a lower RPM 11.7%. Analyzing the data, it is possible to conclude that the physico-chemical, organoleptic and microbiological indicators of products was developed to set standards on cheese semi-finished products. multilevel structure that characterizes the quality indicators has been developed and is

  14. Arco to enter European PGE production with new Rotterdam plant

    International Nuclear Information System (INIS)

    Young, I.

    1993-01-01

    Arco Chemical (Newtown Square, PA) will enter production of propylene glycol ethers (PGEs) in Europe by building a 70,000-m.t./year plant at its Rotterdam site. Arco's board has approved the project, with construction to begin this year and completion expected in mid-1995. 'This new plant supports the company's long-standing strategy to increase its downstream integration in value-added derivatives of propylene oxide,' says Jack Oppasser, president of Arco Chemical Europe (Maidenhead, U.K.). 'It allows the company to sustain its strong position in the growing European glycol ether market.' Arco's move represents a challenge to Dow Europe (Horgen, Switzerland), which dominates the European PGE market. Dow is Europe's biggest producer of PGEs, with its Dowanol brands commanding a share greater than 50% of the estimated 90,000-m.t./year methyl-based PGE market. This was recently boosted by completion of the expansion of its plant at Stade, Germany, from 60,000 m.t./year to 110,000 m.t./year. While Arco does not currently make PGEs in Europe, it is the second-largest supplier, with about 15,000 m.t.-20,000 m.t./year, via 'third-party manufacturing arrangements' with European producers, including BP Chemicals, and imports from its 90-million lbs/year plant at Bayport, TX. However, Arco refuses to comment on this because of 'antitrust aspects.'

  15. Plant compounds insecticide activity against Coleoptera pests of stored products

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal]. E-mail: marcio.dionizio@gmail.com; picanco@ufv.br; guedes@ufv.br; mateusc3@yahoo.com.br; agronomiasilva@yahoo.com.br

    2007-07-15

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD{sub 50} from 2.72 to 39.71 mg g{sup -1} a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  16. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Julián Mario Peña-Castro

    2017-01-01

    Full Text Available The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize or proposed species (large grass families. The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.

  17. Plant compounds insecticide activity against Coleoptera pests of stored products

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal; br, picanco@ufv; br, guedes@ufv; br, mateusc3@yahoo com; br, agronomiasilva@yahoo com

    2007-07-15

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD{sub 50} from 2.72 to 39.71 mg g{sup -1} a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  18. Plant compounds insecticide activity against Coleoptera pests of stored products

    International Nuclear Information System (INIS)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio; julioufv@yahoo.com.br

    2007-01-01

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD 50 from 2.72 to 39.71 mg g -1 a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  19. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Science.gov (United States)

    del Moral, Sandra; Núñez-López, Lizeth; Barrera-Figueroa, Blanca E.; Amaya-Delgado, Lorena

    2017-01-01

    The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize) or proposed species (large grass families). The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass. PMID:28951875

  20. Methanol commercial aviation fuel

    International Nuclear Information System (INIS)

    Price, R.O.

    1992-01-01

    Southern California's heavy reliance on petroleum-fueled transportation has resulted in significant air pollution problems within the south Coast Air Basin (Basin) which stem directly from this near total dependence on fossil fuels. To deal with this pressing issue, recently enacted state legislation has proposed mandatory introduction of clean alternative fuels into ground transportation fleets operating within this area. The commercial air transportation sector, however, also exerts a significant impact on regional air quality which may exceed emission gains achieved in the ground transportation sector. This paper addresses the potential, through the implementation of methanol as a commercial aviation fuel, to improve regional air quality within the Basin and the need to flight test and demonstrate methanol as an environmentally preferable fuel in aircraft turbine engines

  1. Nitrofurantoin methanol monosolvate

    Directory of Open Access Journals (Sweden)

    Venu R. Vangala

    2011-03-01

    Full Text Available The antibiotic nitrofurantoin {systematic name: (E-1-[(5-nitro-2-furylmethylideneamino]imidazolidine-2,4-dione} crystallizes as a methanol monosolvate, C8H6N4O5·CH4O. The nitrofurantoin molecule adopts a nearly planar conformation (r.m.s. deviation = 0.0344 Å. Hydrogen bonds involve the co-operative N—H...O—H...O heterosynthons between the cyclic imide of nitrofurantoin and methanol O—H groups. There are also C—H...O hydrogen bonds involving the nitrofurantoin molecules which support the key hydrogen-bonding synthon. The overall crystal packing is further assisted by weak C—H...O interactions, giving a herringbone pattern.

  2. Liquid Chromatography with Post-Column Reagent Addition of Ammonia in Methanol Coupled to Negative Ion Electrospray Ionization Tandem Mass Spectrometry for Determination of Phenoxyacid Herbicides and their Degradation Products in Surface Water

    Directory of Open Access Journals (Sweden)

    Michele L. Etter

    2010-02-01

    Full Text Available A new liquid chromatography (LC-negative ion electrospray ionization (ESI–tandem mass spectrometry (MS/MS method with post-column addition of ammonia in methanol has been developed for the analysis of acid herbicides: 2,4-dichlorophenoxy ace- tic acid, 4-chloro-o-tolyloxyacetic acid, 2-(2-methyl-4-chlorophenoxybutyric acid, mecoprop, dichlorprop, 4-(2,4-dichlorophenoxy butyric acid, 2,4,5-trichlorophenoxy propionic acid, dicamba and bromoxynil, along with their degradation products: 4-chloro-2- methylphenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol and 3,5-dibromo-4-hydroxybenzoic acid. The samples were extracted from the surface water matrix using solid-phase extraction (SPE with a polymeric sorbent and analyzed with LC ESI- with selected reaction monitoring (SRM using a three-point confirmation approach. Chromatography was performed on a Zorbax Eclipse XDB-C18 (50 × 4.6 mm i.d., 1.8 µm with a gradient elution using water-methanol with 2 mM ammonium acetate mobile phase at a flow rate of 0.15 mL/min. Ammonia in methanol (0.8 M was added post-column at a flow rate of 0.05 mL/min to enhance ionization of the deg- radation products in the MS source. One SRM transition was used for quantitative analysis while the second SRM along with the ratio of SRM1/SRM2 within the relative standard deviation determined by standards for each individual pesticide and retention time match were used for confirmation. The standard deviation of ratio of SRM1/SRM2 obtained from standards run on the day of analysis for different phenoxyacid herbicides ranged from 3.9 to 18.5%. Limits of detection (LOD were between 1 and 15 ng L-1 and method detection limits (MDL with strict criteria requiring

  3. PLANT PROTECTION PRODUCT RESIDUES IN AGRICULTURAL PRODUCTS OF SLOVENE ORIGIN FOUND IN 2008

    Directory of Open Access Journals (Sweden)

    Helena BAŠA ČESNIK

    2012-01-01

    Full Text Available In the year 2008, 166 apple, bean, carrot, cucumber, lettuce, pear, potato and spinach samples from Slovene producers were analysed for plant protection product residues. The samples were analysed for the presence of 158 different active compounds using three analytical methods. In two samples (1.2% exceeded maximum residue levels (MRLs were determined which is better than the results of the monitoring of pesticide residues in the products of plant origin in the 27 European Union, Member States (EU MS and 2 European Free Trade Association (EFTA States: Norway and Iceland in 2008 (2.2%. The most frequently found active substance in agricultural products was dithiocarbamates. Products which contained 4 or more active substances per sample were apples and pears.

  4. Genetical Studies On Haploid Production In Some Ornamental Plants

    International Nuclear Information System (INIS)

    MOSTAFA, M.A.M.

    2013-01-01

    Haploid are plants with a gametophytic chromosome number and doubled haploid are dihaploids that have undergone chromosome duplication. The production of haploid and doubled haploid (DHs) through gametic embryogenesis allows a single-step development of complete homozygous lines from heterozygous parents, shortening the time required to produce homozygous plants in comparison with the conventional breeding methods that employ several generations of selfing. The production of haploid and DHs provides a particularly attractive biotechnological tool, and the development of haploidy technology and protocols to produce homozygous plants has had a significant impact on agricultural systems. Nowadays, these bio technologies represent an integral part of the breeding programmes of many agronomically important crops. There are several available methods to obtain haploid and DHs, of which in vitro anther or isolated microspore culture are the most effective and widely used (Germana Maria 2011). Tissue culture techniques, particularly short-term culture procedures such as shoot-tip culture and regeneration from primary explants, have been proposed as methods for obtaining large numbers of plants identical to the plant used as an explant source( Evans et al., 1984). Nicotiana spp. are one of the most important commercial crops in the world ( Liu and Zhang, 2008). Nicotiana alata is member from family solanacea, it is ornamental plant and the diploid cells contains 18 chromosomes. Nitsch (1969) reported the first production of haploid plants through anther culture and regeneration of plants of Nicotiana alata, For these reasons they have been considered to suitable candidates for model species in somatic cell genetics research( Bourgin et al., 1979). Radiobiological studies on plant tissues in culture may provide information on the cell growth behavior, radiosensitivity and the induction of mutations. The radiosensitivity of plants and calli can be manifested mostly in three

  5. Operation of plant to produce Mo-99 from fission products

    International Nuclear Information System (INIS)

    Marques, R.O.; Cristini, P.R.; Marziale, D.P.; Furnari, E.S.; Fernandez, H.O.

    1987-01-01

    As it is well known, the production of Mo-99/Tc-99m generators has an outstanding place in radioisotope programs of the Argentine National Atomic Energy Commission. The basic raw material is Mo-99 from fission of U-235. In 1985 the production plant of this radionuclide began to operate, according to an adaptation of the method that was developed in Kernforschungszentrum Karlsruhe. The present work describes the target irradiation conditions in the reactor RA-3 (mini plates of U/Al alloy with 90% enriched uranium), the flow diagram and the operative conditions of the production process. The containment, filtration and removal conditions of the generated fission gases and the disposal of liquid and solid wastes are also analyzed. On the basis of the experience achieved in the development of more than twenty production processes, process efficiency is analyzed, taking into account the theoretical evaluation resulting from the application of the computer program 'Origin'(ORML) to the conditions of our case. The purity characteristics of the final product are reported (Zr-95 0,1 ppm; Nb-95 1 ppm; Ru-103 20 ppm; I-131 10 ppm) as well as the chemical characteristics that make it suitable to be used in the production of Mo-99/I c-99m generators. (Author)

  6. The Complexity of Bioactive Natural Products in Plants

    DEFF Research Database (Denmark)

    Frisch, Tina

    Plants produce a diverse range of bioactive natural products promoting their fitness. These specialized metabolites may serve as chemical defence against herbivores and pathogens and may inhibit the growth and development of competing species. Hydroxynitrile glucosides and glucosinolates are two...... classes of defence compounds, which have diverging properties, but also share common biosynthetic features. Hydroxynitrile glucosides are produced in species across the plant kingdom, whereas glucosinolates are found almost exclusively within the Brassicales, which generally does not contain...... hydroxynitrile glucosides. This division has raised questions regarding possible evolutionary relationships between the biosynthetic pathways. The very rare co-occurrence of hydroxynitrile glucosides and glucosinolates found in Alliaria petiolata (garlic mustard, løgkarse) and Carica papaya (papaya) makes...

  7. Methanol and ethanol from lignocellulosic Swedish wood fuels - Main report. Comparison of the costs of alcohols from biomass

    International Nuclear Information System (INIS)

    Elam, N.; Ekstroem, C.; Oestman, A.; Rensfelt, E.

    1994-06-01

    Swedish wood fuel has a considerable volume and, apart from the utilization today, its use in year 2010 is estimated to amount to 75 TWh/year. Wood fuel can be converted to the alcohols methanol or ethanol and, as such, can be utilized as fuels or components capable of replacing petrol or diesel. This comparison of costs in producing methanol or ethanol from 250 000 tonnes DM of wood fuel using technology available today, or similar levels of technology, shows that methanol can be produced for about 2 SEK/1 (about 450 SEK/MWh) and ethanol for about 4,85 SEK/1 (825 SEK/MWh). The world market price today is around 1 SEK/1 for methanol and 2.60-2.80 SEK/1 for ethanol. Investment and production costs for the two types of production plants do not differ to any particular extent. The investment cost in the methanol plant is about 20 per cent higher, whereas production and maintenance costs are more than 20 per cent higher for ethanol. The explanation of considerable difference in production costs is, instead, primarily the difference in alcohol yield and secondarily the difference in the total efficiency. The valuation of secondary products, particularly lignin fuel from the ethanol process, is also important. The alcohols can be used as propellant fuels in several different ways as admixture components or as pure fuels. It is concluded that there are quality differences between the alcohols that can influence the driving capacity, emissions and which also affect the value of the alcohols. Among the uncertainties that particularly require more penetrating studies are questions dealing with health aspects related to the higher emissions of formaldehyde when used as an engine fuel, total environmental and health influence of ethanol emission, and the contents of polluting substances in lignin fuel that affect its range of use and its value. 25 figs, 29 tabs

  8. Methanol and ethanol from lignocellulosic Swedish wood fuels. Appendices. Comparison of the costs of alcohols from biomass

    International Nuclear Information System (INIS)

    Elam, N.; Ekstroem, C.; Oestman, A.; Rensfelt, E.

    1994-01-01

    Swedish wood fuel has a considerable volume and, apart from the utilization today, its use in year 2010 is estimated to amount to 75 TWh/year. Wood fuel can be converted to the alcohols methanol or ethanol and, as such, can be utilized as fuels or components capable of replacing petrol or diesel. This comparison of costs in producing methanol or ethanol from 250 000 tonnes DM of wood fuel using technology available today, or similar levels of technology, shows that methanol can be produced for about 2 SEK/1 (about 450 SEK/MWh) and ethanol for about 4,85 SEK/1 (825 SEK/MWh). The world market price today is around 1 SEK/1 for methanol and 2.60-2.80 SEK/1 for ethanol. Investment and production costs for the two types of production plants do not differ to any particular extent. The investment cost in the methanol plant is about 20 per cent higher, whereas production and maintenance costs are more than 20 per cent higher for ethanol. The explanation of considerable difference in production costs is, instead, primarily the difference in alcohol yield and secondarily the difference in the total efficiency. The valuation of secondary products, particularly lignin fuel from the ethanol process, is also important. The alcohols can be used as propellant fuels in several different ways as admixture components or as pure fuels. It is concluded that there are quality differences between the alcohols that can influence the driving capacity, emissions and which also affect the value of the alcohols. Among the uncertainties that particularly require more penetrating studies are questions dealing with health aspects related to the higher emissions of formaldehyde when used as an engine fuel, total environmental and health influence of ethanol emission, and the contents of polluting substances in lignin fuel that affect its range of use and its value

  9. Growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes as affected from formaldehyde and methylformate.

    Science.gov (United States)

    Aggelis, G; Margariti, N; Kralli, C; Flouri, F

    2000-06-23

    Formaldehyde and methylformate affect the growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes. The presence of both intermediates in the feeding medium caused an increase in biomass yield and productivity and a decrease in the specific rate of methanol consumption. In the presence of formaldehyde, the activity of formaldehyde dehydrogenase and formate dehydrogenase was essentially increased, whereas the activity of methanol oxidase was decreased. On the contrary, the presence of methylformate caused an increase of the activity of methanol oxidase and a decrease of the activity of formaldehyde dehydrogenase and formate dehydrogenase. Interpretations concerning the yeast behavior in the presence of intermediate oxidation products were considered and discussed.

  10. Antioxidant Capacity Determination in Plants and Plant-Derived Products: A Review

    Science.gov (United States)

    Pop, Aneta; Cimpeanu, Carmen; Predoi, Gabriel

    2016-01-01

    The present paper aims at reviewing and commenting on the analytical methods applied to antioxidant and antioxidant capacity assessment in plant-derived products. Aspects related to oxidative stress, reactive oxidative species' influence on key biomolecules, and antioxidant benefits and modalities of action are discussed. Also, the oxidant-antioxidant balance is critically discussed. The conventional and nonconventional extraction procedures applied prior to analysis are also presented, as the extraction step is of pivotal importance for isolation and concentration of the compound(s) of interest before analysis. Then, the chromatographic, spectrometric, and electrochemical methods for antioxidant and antioxidant capacity determination in plant-derived products are detailed with respect to their principles, characteristics, and specific applications. Peculiarities related to the matrix characteristics and other factors influencing the method's performances are discussed. Health benefits of plants and derived products are described, as indicated in the original source. Finally, critical and conclusive aspects are given when it comes to the choice of a particular extraction procedure and detection method, which should consider the nature of the sample, prevalent antioxidant/antioxidant class, and the mechanism underlying each technique. Advantages and disadvantages are discussed for each method. PMID:28044094

  11. Ethylene glycol or methanol intoxication : Which antidote should be used, fomepizole or ethanol?

    NARCIS (Netherlands)

    Rietjens, S. J.; de Lange, D. W.; Meulenbelt, J.

    2014-01-01

    Ethylene glycol (EG) and methanol poisoning can cause life-threatening complications. Toxicity of EG and methanol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), which can lead to metabolic acidosis, renal failure (in EG poisoning), blindness (in methanol

  12. ORC power plant for electricity production from forest and agriculture biomass

    International Nuclear Information System (INIS)

    Borsukiewicz-Gozdur, A.; Wiśniewski, S.; Mocarski, S.; Bańkowski, M.

    2014-01-01

    Highlights: • Results for three variants of CHP plant fuelled by sawmill biomass are presented. • Octamethyltrisiloxane, MDM, methanol and H 2 O working fluids was conducted in CHP. • CHP with internal regeneration and “dry” working fluid has the highest electric power. • Power output, drying heat and drying temperature depend on CHP variant and ORC fluid. - Abstract: The paper presents the calculation results for three variants of CHP plant fuelled by sawmill biomass. The plant shall produce electricity and heat for a drying chamber. An analysis of the system efficiency for four different working fluids was conducted: octamethyltrisiloxane, methylcyclohexane, methanol and water. The highest electric power was obtained for the system with internal regeneration and methylcyclohexane applied as the “dry” working fluid, the highest temperature to supply the drying chamber was obtained for the system with external regeneration and octamethyltrisiloxane applied as the working fluid. The results of the analysis indicate that, by proper choice of the working fluid and of the regeneration variant (internal or external), it is possible to “adjust” the work of the system to the needs and expectations of the plant investor (user)

  13. COTTAGE CHEESE PRODUCTS WITH INGREDIENTS OF PLANT ORIGIN

    Directory of Open Access Journals (Sweden)

    L. V. Golubeva

    2015-01-01

    Full Text Available Proposed the use of feijoa as a filler for cheese products. Distinctive at-sign feijoa is a high content of watersoluble compounds in the fruits of iodine. According to their content feijoa can match with seafood, no plant does not accumulate a large number of iodine compounds (about 0.2 1 mg per 100 g of product. Feijoa is very useful for people living in iodine deficiency regions, as well as for preventers of thyroid diseases. The rind of the fruit is rich in antioxidants. The technology of GUT-goad product feijoa. Feature of the technology is that the finished cheese is made in the form of a mixture of filler pureed fruit pulp and sugar in a ratio of 1: 1, and the powder dry skin. Objects of research a filler in the form of syrup (pineapple guava pulp and sugar and the rind of the fruit in the form of crushed dry cottage cheese. Compatible with cream cheese filling sensory determined by the following indicators appearance, consistency, color, smell, taste. Syrup dosage ranged from 1 to 10%, dry filler from 0.5 to 3.5%. A mixture of fillers were added to the finished curd product in the ratio of syrup fairies feijoa and dry powder peel 8: 1.5. Technological process of cottage cheese product is different from the traditional operations of preparation of fillers and incorporation in the finished cheese. Determined the antioxidant activity syrup feijoa 1,963 mg / dm3 . It was found that the cheese product is rich in antioxidants, iodine, which helps to eliminate free radicals from the body and strengthen health care. Herbal additive allows to obtain a product with a new taste characteristics. The shelf life of cottage cheese products 5 days.

  14. Phased array UT (Ultrasonic Testing) used in electricity production plants

    International Nuclear Information System (INIS)

    Kodaira, Takeshi

    2012-01-01

    Phased Array-Ultrasonic testing techniques widely used for detection and quantitative determination of the lattice defects which have been formed from fatigues or stress corrosion cracking in the materials used in the electricity production plants are presented with particular focus on the accurate determination of the defects depth (sizing) and defects discrimination applicable to weld metals of austenite stainless steels and Ni base alloys. The principle of this non-destructive analysis is briefly explained, followed by point and matrix focus phased array methods developed by Mitsubishi Heavy Industries, Ltd are explained rather in detail with illustration and the evaluated results. (S. Ohno)

  15. Genetically engineered plants in the product development pipeline in India.

    Science.gov (United States)

    Warrier, Ranjini; Pande, Hem

    2016-01-02

    In order to proactively identify emerging issues that may impact the risk assessment and risk management functions of the Indian biosafety regulatory system, the Ministry of Environment, Forests and Climate Change sought to understand the nature and diversity of genetically engineered crops that may move to product commercialization within the next 10 y. This paper describes the findings from a questionnaire designed to solicit information about public and private sector research and development (R&D) activities in plant biotechnology. It is the first comprehensive overview of the R&D pipeline for GE crops in India.

  16. Buildup of 236U in the gaseous diffusion plant product

    International Nuclear Information System (INIS)

    Ford, J.S.

    1975-01-01

    A generalized projection of the average annual 236 U concentration that can be expected in future enriched uranium product from the US-ERDA gaseous diffusion plants when reprocessed fuels become available for cascade feeding is given. It is concluded that the buildup of 236 U is not an ever-increasing function, but approaches a limiting value. Projected concentrations result in only slight separative work losses and present no operational problem to ERDA in supplying light water reactor requirements. The use of recycle uranium from power reactor spent fuels will result in significant savings in natural uranium feed

  17. Performance evaluation of a proof-of-concept 70 W internal reforming methanol fuel cell system

    Science.gov (United States)

    Avgouropoulos, G.; Schlicker, S.; Schelhaas, K.-P.; Papavasiliou, J.; Papadimitriou, K. D.; Theodorakopoulou, E.; Gourdoupi, N.; Machocki, A.; Ioannides, T.; Kallitsis, J. K.; Kolb, G.; Neophytides, S.

    2016-03-01

    A proof-of-concept 70 W Internal Reforming Methanol Fuel Cell (IRMFC) stack including Balance-of-Plant (BoP) was designed, assembled and tested. Advent TPS® high-temperature, polymer electrolyte membrane electrode assemblies were employed for fuel cell operation at 200 °C. In order to avoid phosphoric acid poisoning of the reformer, the anode electrocatalyst of each cell was indirectly adjoined, via a separation plate, to a highly active CuMnAlOx catalyst coated onto copper foam, which served as methanol reforming layer. The reformer was in-situ converting the methanol/steam feed to the required hydrogen (internal reforming concept) at 200 °C, which was readily oxidized at the anode electrodes. The operation of the IRMFC was supported through a number of BoP components consisting of a start-up subsystem (air blower, evaporator and monolithic burner), a combined afterburner/evaporator device, methanol/water supply and data acquisition units (reactants/products analysis, temperature control, flow control, system load/output control). Depending on the composition of the liquid MeOH/H2O feed streams, current densities up to 0.18 A cm-2 and power output up to 70 W could be obtained with remarkable repeatability. Specific targets for improvement of the efficiency were identified.

  18. Simulation and sensitivity analysis for heavy linear paraffins production in LAB production Plant

    Directory of Open Access Journals (Sweden)

    Karimi Hajir

    2014-12-01

    Full Text Available Linear alkyl benzene (LAB is vastly utilized for the production of biodegradable detergents and emulsifiers. Predistillation unit is a part of LAB production plant in which that produced heavy linear paraffins (nC10-nC13. In this study, a mathematical model has been developed for heavy linear paraffins production in distillation columns, which has been solved using a commercial code. The models have been validated by the actual data. The effects of process parameters such as reflux rate, and reflux temperature using Gradient Search technique has been investigated. The sensitivity analysis shows that optimum reflux in columns are achieved.

  19. Micropropagation of tulip: production of virus-free stock plants.

    Science.gov (United States)

    Podwyszyńska, Małgorzata; Sochacki, Dariusz

    2010-01-01

    We describe here a new tulip micropropagation method based on the cyclic shoot multiplication in presence of the thidiazuron (TDZ), which enables the production of virus-free stock plants, speeds up breeding, and provides new genotypes for the market. In our novel protocol, cyclic shoot multiplication can be performed for 2-3 years by using TDZ instead of other cytokinins, as 6-benzylaminopurine (BAP) and N(6)-(-isopentyl)adenine (2iP). It makes possible to produce 500-2,000 microbulbs from one healthy plant. There are six main stages of tulip micropropagation. Stage 0 is the selection of true-to-type and virus-free plants, confirmed by ELISA. Fragments of flower stems isolated from bulbs are used as initial explants. Shoot multiplication is based on the regeneration of adventitious shoots, which are sub-cultured every 8 weeks. In the Stage 3, the specially prepared shoots are induced by low temperature treatment to form bulbs which finally develop on a sucrose-rich medium at 20 degrees C. Bulbs are then dried for 6 weeks and rooted in vivo. The number of multiplication subcultures should be limited to 5-10 cycles in order to lower the risk of mutation. Virus indexing should be repeated 3-4 times, at the initial stage and then during shoot multiplication. Genetic stability of micropropagated shoots can be confirmed using molecular markers.

  20. Retrofit of distillation columns in biodiesel production plants

    International Nuclear Information System (INIS)

    Nguyen, Nghi; Demirel, Yasar

    2010-01-01

    Column grand composite curves and the exergy loss profiles produced by the Column-Targeting Tool of the Aspen Plus simulator are used to assess the performance of the existing distillation columns, and reduce the costs of operation by appropriate retrofits in a biodiesel production plant. Effectiveness of the retrofits is assessed by means of thermodynamics and economic improvements. We have considered a biodiesel plant utilizing three distillation columns to purify biodiesel (fatty acid methyl ester) and byproduct glycerol as well as reduce the waste. The assessments of the base case simulation have indicated the need for modifications for the distillation columns. For column T202, the retrofits consisting of a feed preheating and reflux ratio modification have reduced the total exergy loss by 47%, while T301 and T302 columns exergy losses decreased by 61% and 52%, respectively. After the retrofits, the overall exergy loss for the three columns has decreased from 7491.86 kW to 3627.97 kW. The retrofits required a fixed capital cost of approximately $239,900 and saved approximately $1,900,000/year worth of electricity. The retrofits have reduced the consumption of energy considerably, and leaded to a more environmentally friendly operation for the biodiesel plant considered.

  1. Optimal Design of Safety Instrumented Systems for Pressure Control of Methanol Separation Columns in the Bisphenol a Manufacturing Process

    Directory of Open Access Journals (Sweden)

    In-Bok Lee

    2016-12-01

    Full Text Available A bisphenol A production plant possesses considerable potential risks in the top of the methanol separation column, as pressurized acetone, methanol, and water are processed at an elevated temperature, especially in the event of an abnormal pressure increase due to a sudden power outage. This study assesses the potential risks in the methanol separation column through hazard and operability assessments and evaluates the damages in the case of fire and explosion accident scenarios. The study chooses three leakage scenarios: a 5-mm puncture on the methanol separation column, a 50-mm diameter fracture of a discharge pipe and a catastrophic rupture, and, simulated using Phast (Ver. 6.531, the concentration distribution of scattered methanol, thermal radiation distribution of fires, and overpressure distribution of vapor cloud explosions. Implementation of a safety-instrumented system equipped with two-out-of-three voting as a safety measure can detect overpressure at the top of the column and shut down the main control valve and the emergency shutoff valve simultaneously. By applying a safety integrity level of three, the maximal release volume of the safety relief valve can be reduced and, therefore, the design capacity of the flare stack can also be reduced. Such integration will lead to improved safety at a reduced cost.

  2. Antibacterial activity of some selected plants traditionally used as ...

    African Journals Online (AJOL)

    Antibacterial activity of some selected plants traditionally used as medicine in Manipur. ... Hence these plants can be used to discover bioactive natural products that may serve as leads in the development of the new pharmaceuticals. Keywords: Antibacterial, human pathogens, methanolic extract, traditional medicine

  3. [Fermentation behaviors of recombinant Pichia pastoris under inhibited methanol concentration].

    Science.gov (United States)

    Zhou, Xiang-Shan; Fan, Wei-Min; Zhang, Yuan-Xing

    2003-09-01

    Chemostat culture was performed to characterize the growth, substrate consumption and the hirudin production, and to disclose their interrelations in the fermentation of recombinant Pichia pastoris. The Andrew substrate-inhibited growth model is more suitable than Monod model to simulate the growth of Pichia pastoris on methanol. Therefore, two stationary states can be obtained in the continuous culture at a certain dilution rate because of the substrate inhibition on cell growth. The stationary state could be obtained if only the dilution rate not more than 0.048 h(-1) in the continuous fermentation. The concentrations of cell, methanol and hirudin were constant after 50 h continuous culture with dilution rate at 0.04 h(-1). However, it could not be obtained when the dilution rate more than 0.048 h(-1) because the other stationary point at S > 0.048 h(-1) is unstable. Therefore, it was found that the cell concentration declined and the methanol concentration increased from 2.9 g/L to 18.1 g/L within 18h at dilution rate 0.06 h(-1). Thus, the fed-batch culture with a constant specific growth rate was carried out to disclose the fermentation behavior at high and constant methanol concentration in aid of a methanol sensor. The theoretical maximum specific growth rate, microm = 0.0464 h(-1), was found under critical methanol concentration, Scrit = 3.1 g/L. The growth of P. pastoris was typically methanol-limited at the methanol concentration S Scrit. The maximum specific Hir65 production rate qp was obtained at 0.2 mg/(g x h) when methanol concentration and mu were 0.5 g/L and 0.02 h(-1), respectively. The specific Hir65 production rate qp increased with the increase of mu and S at mu 0.02 h(-1). The specific methanol consumption rate increased with the increase of S when S 5 g/L. At last, the high Hir65 production rate 0.2 mg/(g x h) was obtained in the fermentation conducted under methanol-limited concentration and mu controlled at 0.5 g/L and 0.02 h(-1

  4. Comparing larvicidal Effect of Methanol Extract of the Aerial Parts of Henbane (Hyoscyamus niger L. and Oleander ( Nerium oleander L. plants on Anopheles spp Larvae (Diptera: Culicidae in Vitro

    Directory of Open Access Journals (Sweden)

    Mahmoodreza Behravan

    2017-03-01

    Full Text Available Background Malaria is an infectious disease by fever and chills, anemia and splenomegaly genus Plasmodium parasite is the agent it. One of the easiest and least expensive methods to prevent this disease is removing the vector that usually by been done insecticides and chemical pesticides, but nowadays due to the damaging effects of by toxic chemicals is currently trying to organic toxic and plant compounds used to combat the pests. So in this study used from the Hyoscyamus niger L. and Nerium oleander L. to destroy the larvae of this vectors and positive results were compared these two plants together. Methods In this experimental study, H. niger and N. oleander collected and dried to extraction by methanol usingthe Rotary Evaporator. Mosquito larvae collected from stagnant water pits and ponds around the Birjand, Iran and order to apply the relevant identity tests and isolation of Anopheles spp mosquito larvae. Survival measurement were used to estimate LC50 values using Probit analysis in Excel 2010 and SPSS (ver 20 software. Results Both Hyoscyamus niger and Nerium oleander had positive effects on destroying the Anopheles spp larvae and between obtained results, the most effective extract for destroying the mosquitoes Anopheles spp larvae, was the flower extract of henbane (LC50 = 0/26 ppm and the weakest one, was the leaves extract of oleander (LC50 = 4/85 ppm. Conclusions According to the results, the flower extract of henbane is recommended as a toxic, organic and natural compounds to fight Anopheles spp mosquito larvae, which it is stronger and more effective compared to the other parts of these two plants.

  5. The (p, ρ, T) of (methanol + benzene) and (methanol + ethylbenzene)

    International Nuclear Information System (INIS)

    Naziev, Yashar M.; Shahverdiyev, Astan N.; Hasanov, Vaqif H.

    2005-01-01

    The (p, ρ, T) of methanol, ethylbenzene and (methanol + benzene) and (methanol + ethylbenzene) at temperatures between (290 and 500) K and pressures in the range (0.1 to 60) MPa have been measured with a magnetic suspension densimeter with an uncertainty of ±0.1%. Our measurements with methanol deviate from the literature values by less than 0.2%. The (p, ρ, T) measurements were fitted with experimental uncertainties by an empirical equation. The temperature and mole fraction dependence of the coefficients of the equation of state are presented

  6. Formaldehyde, methanol and hydrocarbon emissions from methanol-fueled cars

    International Nuclear Information System (INIS)

    Williams, R.L.; Lipari, F.; Potter, R.A.

    1990-01-01

    Exhaust and evaporative emissions tests were conducted on several methanol- and gasoline-fueled vehicles. Separate samples for chromatographic analysis of formaldehyde, methanol, and individual hydrocarbons were collected in each of the three phases of the driving cycle and in each of the two portions of the evaporative emissions test. One vehicle, equipped with an experimental variable-fuel engine, was tested using methanol/gasoline fuel mixtures of 100, 85, 50, 15, and 0 percent methanol. Combustion-generated hydrocarbons were lowest using methanol fuel, and increased several-fold as the gasoline fraction was increased. Gasoline components in the exhaust increased from zero as the gasoline fraction of the fuel was increased. On the other hand, formaldehyde emissions were several times higher using methanol fuel than they were using gasoline. A dedicated methanol car and the variable-fuel car gave similar emissions patterns when they both were tested using methanol fuel. The organic-carbon composition of the exhaust was 85-90 percent methanol, 5-7 percent formaldehyde, and 3-9 percent hydrocarbons. Several cars that were tested using gasoline emitted similar distributions of hydrocarbons, even through the vehicles represented a broad range of current and developmental engine families and emissions control systems

  7. Plant-microbe interactions: Plant hormone production by phylloplane fungi. Research report

    Energy Technology Data Exchange (ETDEWEB)

    Tuomi, T.; Ilvesoksa, J.; Rosenqvist, H.

    1993-06-23

    The molds Botrytis cinerea, Cladosporium cladosporioides and the yeast Aureobasidium pullulans, isolated from the leaves of three short-rotation Salix clones, were found to produce indole-3-acetic acid (a growth promoter of plants). Abscisic acid (a growth inhibitor of plants) production was detected in B. cinerea. The contents of indole-3-acetic acid and abscisic acid in the leaves of the Salix clones and the amounts of fungal propagules in these leaves were also measured, in order to evaluate whether the amounts of plant growth regulators produced by the fungi would make a significant contribution to the hormonal quantities of the leaves. The content of abscisic acid, and to a lesser degree that of indole-3-acetic acid, showed a positive correlation with the frequency of infection by the hormone producing organisms. The amounts of hormone producing fungi on leaves that bore visible colonies were, however, not sufficiently high to support the argument that neither the fungal production of abscisic nor indole-3-acetic acid would to a significant degree contribute to the hormonal contents of the leaves of the Salix clones.

  8. FY 1983 report on the results of the verification test on the methanol conversion for oil-fired power plant. Survey of the potential supply amount of overseas resource - Survey of methanol usability (Conceptual design of methanol reformed gas turbine); 1983 nendo sekiyu karyoku hatsudensho metanoru tenkan tou jissho shiken kaigai shigen kyokyu kano ryo chosa (Metanoru riyo kanosei chosa) - Metanoru kaishitsu gata gastabin no gainen sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    For the purpose of using methanol as power generation use fuel, the paper carried out of the conceptual design of methanol reformed high efficiency gas turbine and the evaluation study of economical efficiency. The methanol reformed gas turbine is to recover the heat from turbine flue gas and to improve thermal efficiency by using the fact that the vapor reforming reaction or decomposition reaction of methanol advance endothermicly at low temperature between 250 and 350 degrees C. It was judged that the combination with the existing technology made the practical application possible and that it was appropriate to adopt the regenerative gas turbine/water-injection and reforming (RGGT/WI and R). As a result of the trial calculation of construction cost of RGGT/WI and R and calculation of power generation cost, RGGT/WI and R became more profitable than the simple open gas turbine at a capacity ratio of 10% or more, and became more profitable than the combined cycle at all capacity ratios. In the use of RGGT/WI and R, which uses methanol as fuel, SOx is not included in flue gas, and the NOx included is estimated at 35ppm or so. The amount satisfies the standard according to the boiler using fluid as fuel. (NEDO)

  9. In Plant Activation: An Inducible, Hyperexpression Platform for Recombinant Protein Production in Plants[W][OPEN

    Science.gov (United States)

    Dugdale, Benjamin; Mortimer, Cara L.; Kato, Maiko; James, Tess A.; Harding, Robert M.; Dale, James L.

    2013-01-01

    In this study, we describe a novel protein production platform that provides both activation and amplification of transgene expression in planta. The In Plant Activation (INPACT) system is based on the replication machinery of tobacco yellow dwarf mastrevirus (TYDV) and is essentially transient gene expression from a stably transformed plant, thus combining the advantages of both means of expression. The INPACT cassette is uniquely arranged such that the gene of interest is split and only reconstituted in the presence of the TYDV-encoded Rep/RepA proteins. Rep/RepA expression is placed under the control of the AlcA:AlcR gene switch, which is responsive to trace levels of ethanol. Transgenic tobacco (Nicotiana tabacum cv Samsun) plants containing an INPACT cassette encoding the β-glucuronidase (GUS) reporter had negligible background expression but accumulated very high GUS levels (up to 10% total soluble protein) throughout the plant, within 3 d of a 1% ethanol application. The GUS reporter was replaced with a gene encoding a lethal ribonuclease, barnase, demonstrating that the INPACT system provides exquisite control of transgene expression and can be adapted to potentially toxic or inhibitory compounds. The INPACT gene expression platform is scalable, not host-limited, and has been used to express both a therapeutic and an industrial protein. PMID:23839786

  10. Biochar amendment improves soil fertility and productivity of mulberry plant

    Directory of Open Access Journals (Sweden)

    Faruque Ahmed

    2017-07-01

    Full Text Available Biochar has the potential to improve soil fertility and crop productivity. A field experiment was carried out at the experimental field of Bangladesh Sericulture Research and Training Institute (BSRTI, Rajshahi, Bangladesh. The objective of this study was to examine the effect of biochar on soil properties, growth, yield and foliar disease incidence of mulberry plant. The study consisted of 6 treatments: control, basal dose of NPK, rice husk biochar, mineral enriched biochar, basal dose + rice husk biochar and basal dose + mineral enriched biochar. Growth parameters such as node/meter, total branch number/plant, total leaf yield/hectare/year were significantly increased in basal dose + mineral enriched biochar treated plot in second year compared with the other fertilizer treatments. In second year, the total leaf yield/hectare/year were also 142.1% and 115.9% higher in combined application of basal dose + mineral enriched biochar and basal dose + rice husk biochar, respectively, than the control treatment. The soil properties such as organic matter, phosphorus, sulphur and zinc percentage were significantly increased with both the (mineral enriched and rice husk biochar treated soil applied with or without recommended basal dose of NPK than the control and only the recommended basal dose of NPK, respectively. Further, the lowest incidences of tukra (6.4%, powdery mildew (10.4% and leaf spot (7.6% disease were observed in second year under mineral enriched biochar treated plot than the others. The findings revealed that utilization of biochar has positive effect on the improvement of soil fertility and productivity as well as disease suppression of mulberry plant.

  11. Theoretical aspects of methyl acetate and methanol activation on MgO(100) and (501) catalyst surfaces with application in FAME production

    Energy Technology Data Exchange (ETDEWEB)

    Man, Isabela-Costinela, E-mail: isabela.man@g.unibuc.ro [University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, 4-12 Regina Elisabeta Av., S3, 030018 Bucharest (Romania); Romanian Academy, ‘C.D. Nenitzescu’ Center of Organic Chemistry, 202B Spl. Independentei, 060023 Bucharest (Romania); Soriga, Stefan Gabriel [University Politehnica of Bucharest, Centre for Technology Transfer in the Process Industries, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest (Romania); Parvulescu, Vasile [University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, 4-12 Regina Elisabeta Av., S3, 030018 Bucharest (Romania)

    2017-01-15

    Highlights: • Energetics of C−O and C−H bond dissociation and formation of MeOAc on MgO(100) indicate that the bond formations are favorable. • Energetics of C−O and C−H bond dissociation and formation of MeOAc on MgO(501) indicate that the C−O bond dissociation and C−H bond formations are favorable. • The coadsorbed MeOH facilitate O−H bond dissociation of MeOH compared to isolated molecule. • Provide further understanding of reactivity of MgO surfaces with application in transesterification and interesterification reactions. - Abstract: Density functional theory (DFT) calculations were carried out to study the activation of methyl acetate and methanol on MgO(100) and MgO(501) surfaces and integrated in the context of transesterification, interesterification and glycerolysis reactions used in biodiesel industry. First results indicate the importance of including of dispersion forces in the calculations. On MgO(100) the reverse reactions steps of C−O and C−H dissociations and on MgO(501) the same reverse reaction step of C−H dissociations of methyl acetate are energetically favorable, while the dissociation of C−O bond into methoxide and acetate fragments on the edge of MgO(501) was found to be exothermic with a low activation energy. For methanol, the dissociation of O−H bond on MgO(100) surface in the presence of the second coadsorbed methanol molecule becomes more energetically favoured compared to the isolated molecule, due to the fact that the methoxide fragment is stabilized by intermolecular hydrogen bonding. This is reflected by the decrease of the activation energy of the forward reaction step and the increase of the activation energy of the backward reaction step, increasing the probability to have dissociated molecules among the undissociated ones. These results represent a step forward for better understanding from atomistic point of view the paths of these reactions on these surfaces for the corresponding catalytic

  12. Modeling and control for closed environment plant production systems

    Science.gov (United States)

    Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)

    2002-01-01

    A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.

  13. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  14. Food-Energy Interactive Tradeoff Analysis of Sustainable Urban Plant Factory Production Systems

    OpenAIRE

    Li-Chun Huang; Yu-Hui Chen; Ya-Hui Chen; Chi-Fang Wang; Ming-Che Hu

    2018-01-01

    This research aims to analyze the food–energy interactive nexus of sustainable urban plant factory systems. Plant factory systems grow agricultural products within artificially controlled growing environment and multi-layer vertical growing systems. The system controls the supply of light, temperature, humidity, nutrition, water, and carbon dioxide for growing plants. Plant factories are able to produce consistent and high-quality agricultural products within less production space for urban a...

  15. The role of various fuels on microwave-enhanced combustion synthesis of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming

    International Nuclear Information System (INIS)

    Ajamein, Hossein; Haghighi, Mohammad; Alaei, Shervin

    2017-01-01

    Graphical abstract: CuO/ZnO/Al 2 O 3 nanocatalysts were synthesized by the fast and simple microwave enhanced combustion method. Considering that the fuel type is one of the effective parameters on quality of the prepared nanocatalysts, different fuels such as sorbitol, propylene glycol, glycerol, diethylene glycol and ethylene glycol were used. XRD, FESEM, FTIR, EDX, and BET analyses were applied to determine the physicochemical properties of fabricated nanocatalysts. The catalytic experiments were performed in a fixed bed reactor in the temperature range of 160–300 °C. The characteristic and reactivity properties of fabricated nanocatalysts proved that ethylene glycol is the suitable fuel for preparation of CuO/ZnO/Al 2 O 3 nanocatalysts via microwave enhanced combustion method. - Highlights: • Microwave combustion synthesis of CuO/ZnO/Al 2 O 3 nanocatalysts by different fuels. • Enhancement of methanol conversion at low temperatures by selecting proper fuel. • Providing a large number of combustion pores by application of ethylene glycol as fuel. • Increase of CO selectivity in steam methanol reforming by Zn(0 0 2) crystallite facet. - Abstract: A series of CuO/ZnO/Al 2 O 3 nanocatalysts were synthesized by the microwave enhanced combustion method to evaluate the influence of fuel type. Sorbitol, propylene glycol, glycerol, diethylene glycol and ethylene glycol were used as fuel. XRD results revealed that application of ethylene glycol led to highly dispersed CuO and ZnO crystals. It was more highlighted about Cu(1 1 1) crystallite facet which known as the main active site of methanol steam reforming. Moreover, using ethylene glycol resulted homogeneous morphology and narrow particles size distribution (average surface particle size is about 265 nm). Due to the significant physicochemical properties, the catalytic experiments showed that the sample prepared by ethylene glycol achieved total conversion of methanol at 260 °C. Its carbon monoxide

  16. Boron availability to plants from coal combustion by-products

    International Nuclear Information System (INIS)

    Kukier, U.; Sumner, M.E.

    1996-01-01

    Agronomic use of coal combustion by-products is often associated with boron (B) excess in amended soils and subsequently in plants. A greenhouse study with corn (Zea mays L.) as test plant was conducted to determine safe application rates of five fly ashes and one flue gas desulfurization gypsum (FDG). All by-products increased soil and corn tissue B concentration, in some cases above toxicity levels which are 5 mg hot water soluble B (hwsB)kg -1 soil and 100 mg B kg -1 in corn tissue. Acceptable application rates varied from 4 to 100 Mg ha -1 for different by-products. Leaching and weathering of a high B fly ash under ponding conditions decreased its B content and that of corn grown in fly ash amended soil, while leaching of the same fly ash under laboratory conditions increased fly ash B availability to corn in comparison to the fresh fly ash. Hot water soluble B in fly ash or FDG amended soil correlated very well with corn tissue B. Hot water soluble B in fly ash amended soil could be predicted based on soil pH and B solubility in ash at different pH values but not so in the case of FDG. Another greenhouse study was conducted to compare the influence of FDG and Ca(OH 2 ) on B concentration in spinach (Spinacia oleracea L.) leaves grown in soil amended with the high B fly ash. The Ca(OH) 2 significantly decreased tissue B content, while FDG did not affect B uptake from fly ash amended soil. 41 refs., 6 figs., 5 tabs

  17. Liquid Chromatography with Post-Column Reagent Addition of Ammonia in Methanol Coupled to Negative Ion Electrospray Ionization Tandem Mass Spectrometry for Determination of Phenoxyacid Herbicides and their Degradation Products in Surface Water

    Directory of Open Access Journals (Sweden)

    Renata Raina

    2010-01-01

    Full Text Available A new liquid chromatography (LC-negative ion electrospray ionization (ESI − –tandem mass spectrometry (MS/MS method with post-column addition of ammonia in methanol has been developed for the analysis of acid herbicides: 2,4-dichlorophenoxy acetic acid, 4-chloro-o-tolyloxyacetic acid, 2-(2-methyl-4-chlorophenoxybutyric acid, mecoprop, dichlorprop, 4-(2,4-dichlorophenoxy butyric acid, 2,4,5-trichlorophenoxy propionic acid, dicamba and bromoxynil, along with their degradation products: 4-chloro-2-methylphenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol and 3,5-dibromo-4-hydroxybenzoic acid. The samples were extracted from the surface water matrix using solid-phase extraction (SPE with a polymeric sorbent and analyzed with LC ESI − with selected reaction monitoring (SRM using a three-point confirmation approach. Chromatography was performed on a Zorbax Eclipse XDB-C18 (50 × 4.6 mm i.d., 1.8 μm with a gradient elution using water-methanol with 2 mM ammonium acetate mobile phase at a flow rate of 0.15 mL/min. Ammonia in methanol (0.8 M was added post-column at a flow rate of 0.05 mL/min to enhance ionization of the degradation products in the MS source. One SRM transition was used for quantitative analysis while the second SRM along with the ratio of SRM1/SRM2 within the relative standard deviation determined by standards for each individual pesticide and retention time match were used for confirmation. The standard deviation of ratio of SRM1/SRM2 obtained from standards run on the day of analysis for different phenoxyacid herbicides ranged from 3.9 to 18.5%. Limits of detection (LOD were between 1 and 15 ng L −1 and method detection limits (MDL with strict criteria requiring <25% deviation of peak area from best-fit line for both SRM1 and SRM2 ranged from 5 to 10 ng L −1 for acid ingredients (except dicamba at 30 ng L −1 and from 2 to 30 ng L −1 for degradation products. The SPE-LC-ESI − MS/MS method permitted low nanogram

  18. Biotechnological production of pharmaceuticals and biopharmaceuticals in plant cell and organ cultures.

    Science.gov (United States)

    Hidalgo, Diego; Sanchez, Raul; Lalaleo, Liliana; Bonfill, Mercedes; Corchete, Purificacion; Palazon, Javier

    2018-03-09

    Plant biofactories are biotechnological platforms based on plant cell and organ cultures used for the production of pharmaceuticals and biopharmaceuticals, although to date only a few of these systems have successfully been implemented at an industrial level. Metabolic engineering is possibly the most straightforward strategy to boost pharmaceutical production in plant biofactories, but social opposition to the use of GMOs means empirical approaches are still being used. Plant secondary metabolism involves thousands of different enzymes, some of which catalyze specific reactions, giving one product from a particular substrate, whereas others can yield multiple products from the same substrate. This trait opens plant cell biofactories to new applications, in which the natural metabolic machinery of plants can be harnessed for the bioconversion of phytochemicals or even the production of new bioactive compounds. Synthetic biological pipelines involving the bioconversion of natural substrates into products with a high market value may be established by the heterologous expression of target metabolic genes in model plants. To summarize the state of the art of plant biofactories and their applications for the pipeline production of cosme-, pharma- and biopharmaceuticals. In order to demonstrate the great potential of plant biofactories for multiple applications in the biotechnological production of pharmaceuticals and biopharmaceuticals, this review broadly covers the following: plant biofactories based on cell and hairy root cultures; secondary metabolite production; biotransformation reactions; metabolic engineering tools applied in plant biofactories; and biopharmaceutical production. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Studies on saponin production in tropical medicinal plants Maesa argentea and Maesa lanceolata

    Science.gov (United States)

    Faizal, Ahmad; Geelen, Danny

    2015-09-01

    The continuous need for new compounds with important medicinal activities has lead to the identification and characterization of various plant-derived natural products. As a part of this program, we studied the saponin production from two tropical medicinal plants Maesa argentea and M. lanceolata and evaluated several treatments to enhance their saponin production. In this experiment, we present the analyses of saponin production from greenhouse grown plants by means of TLC and HPLC-MS. We observed that the content of saponin from these plants varied depending on organ and physiological age of the plants. In addition, the impact of elicitors on saponin accumulation on in vitro grown plants was analyzed using TLC. The production of saponin was very stable and not affected by treatment with methyl jasmonate, and salicylic acid. In conclusion, Maesa saponins are constitutively produced in plants and the level of these compounds in plants is mainly affected by the developmental or physiological stage.

  20. Radiolytic gas production from concrete containing Savannah River Plant waste

    International Nuclear Information System (INIS)

    Bibler, N.E.

    1978-01-01

    To determine the extent of gas production from radiolysis of concrete containing radioactive Savannah River Plant waste, samples of concrete and simulated waste were irradiated by 60 Co gamma rays and 244 Cm alpha particles. Gamma radiolysis simulated radiolysis by beta particles from fission products in the waste. Alpha radiolysis indicated the effect of alpha particles from transuranic isotopes in the waste. With gamma radiolysis, hydrogen was the only significant product; hydrogen reached a steady-state pressure that increased with increasing radiation intensity. Hydrogen was produced faster, and a higher steady-state pressure resulted when an organic set retarder was present. Oxygen that was sealed with the wastes was depleted. Gamma radiolysis also produced nitrous oxide gas when nitrate or nitrite was present in the concrete. With alpha radiolysis, hydrogen and oxygen were produced. Hydrogen did not reach a steady-state pressure at 137 Cs and 90 Sr), hydrogen will reach a steady-state pressure of 8 to 28 psi, and oxygen will be partially consumed. These predictions were confirmed by measurement of gas produced over a short time in a container of concrete and actual SRP waste. The tests with simulated waste also indicated that nitrous oxide may form, but because of the low nitrate or nitrite content of the waste, the maximum pressure of nitrous oxide after 300 years will be 238 Pu and 239 Pu will predominate; the hydrogen and oxygen pressures will increase to >200 psi

  1. Numerical modelling of methanol liquid pool fires

    Science.gov (United States)

    Prasad, Kuldeep; Li, Chiping; Kailasanath, K.; Ndubizu, Chuka; Ananth, Ramagopal; Tatem, P. A.

    1999-12-01

    The focus of this paper is on numerical modelling of methanol liquid pool fires. A mathematical model is first developed to describe the evaporation and burning of a two-dimensional or axisymmetric pool containing pure liquid methanol. Then, the complete set of unsteady, compressible Navier-Stokes equations for reactive flows are solved in the gas phase to describe the convection of the fuel gases away from the pool surface, diffusion of the gases into the surrounding air and the oxidation of the fuel into product species. Heat transfer into the liquid pool and the metal container through conduction, convection and radiation are modelled by solving a modified form of the energy equation. Clausius-Clapeyron relationships are invoked to model the evaporation rate of a two-dimensional pool of pure liquid methanol. The governing equations along with appropriate boundary and interface conditions are solved using the flux-corrected transport algorithm. Numerical results exhibit a flame structure that compares well with experimental observations. Temperature profiles and burning rates were found to compare favourably with experimental data from single- and three-compartment laboratory burners. The model predicts a puffing frequency of approximately 12 Hz for a 1 cm diameter methanol pool in the absence of any air co-flow. It is also observed that increasing the air co-flow velocity helps in stabilizing the diffusion flame, by pushing the vortical structures away from the flame region.

  2. Influence of ingredients of motor transport exhausts on the seed productivity of adornment flowering plants

    Directory of Open Access Journals (Sweden)

    О. P. Pryimak

    2009-03-01

    Full Text Available Basic descriptions of the seminal productivity for some ornamental flowering plants under influence of cars’ emissions are presented. Decreasing of the seminal productivity, germinating capacity of seeds and mass of thousand seeds was found. Recommendations on plants using for planting of the cities environment polluted by vehicles emissions are proposed.

  3. How Planting Density Affects Number and Yield of Potato Minitubers in a Commercial Glasshouse Production System

    NARCIS (Netherlands)

    Veeken, van der A.J.H.; Lommen, W.J.M.

    2009-01-01

    Commercial potato minituber production systems aim at high tuber numbers per plant. This study investigated by which mechanisms planting density (25.0, 62.5 and 145.8 plants/m2) of in vitro derived plantlets affected minituber yield and minituber number per plantlet. Lowering planting density

  4. Food-Energy Interactive Tradeoff Analysis of Sustainable Urban Plant Factory Production Systems

    Directory of Open Access Journals (Sweden)

    Li-Chun Huang

    2018-02-01

    Full Text Available This research aims to analyze the food–energy interactive nexus of sustainable urban plant factory systems. Plant factory systems grow agricultural products within artificially controlled growing environment and multi-layer vertical growing systems. The system controls the supply of light, temperature, humidity, nutrition, water, and carbon dioxide for growing plants. Plant factories are able to produce consistent and high-quality agricultural products within less production space for urban areas. The production systems use less labor, pesticide, water, and nutrition. However, food production of plant factories has many challenges including higher energy demand, energy costs, and installation costs of artificially controlled technologies. In the research, stochastic optimization model and linear complementarity models are formulated to conduct optimal and equilibrium food–energy analysis of plant factory production. A case study of plant factories in the Taiwanese market is presented.

  5. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    Science.gov (United States)

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  6. [Sugar Chain Construction of Functional Natural Products Using Plant Glucosyltransferases].

    Science.gov (United States)

    Mizukami, Hajime

    2015-01-01

    Plant secondary product glycosyltransferases belong to family 1 of the glycosyltransferase superfamily and mediate the transfer of a glycosyl residue from activated nucleotide sugars to lipophilic small molecules, thus affecting the solubility, stability and pharmacological activities of the sugar-accepting compounds. The biotechnological application of plant glycosyltransferases in glycoside synthesis has attracted attention because enzymatic glycosylation offers several advantages over chemical methods, including (1) avoiding the use of harsh conditions and toxic catalysts, (2) providing strict control of regio-and stereo-selectivity and (3) high efficiency. This review describes the in vivo and in vitro glycosylation of natural organic compounds using glycosyltransferases, focusing on our investigation of enzymatic synthesis of curcumin glycosides. Our current efforts toward functional characterization of some glycosyltransferases involved in the biosynthesis of iridoids and crocin, as well as in the sugar chain elongation of quercetin glucosides, are described. Finally, I describe the relationship of the structure of sugar chains and the intestinal absorption which was investigated using chemoenzymatically synthesized quercetin glycosides.

  7. PREVENTION AND CONTROL OF DIMETHYLAMINE VAPORS EMISSION: HERBICIDE PRODUCTION PLANT

    Directory of Open Access Journals (Sweden)

    Zorana Arsenijević

    2008-11-01

    Full Text Available The widely used herbicide, dimethylamine salt of 2,4-dichlorophenoxy acetic acid (2,4-D-DMA, is usually prepared by mixing a dimethylamine (DMA aqueous solution with a solid 2,4-dichlorophenoxy acetic acid (2,4-D. The vapors of the both, reactants and products, are potentially hazardous for the environment. The contribution of DMA vapors in overall pollution from this process is most significant, concerning vapor pressures data of these pollutants. Therefore, the control of the air pollution in the manufacture and handling of methylamines is very important. Within this paper, the optimal air pollution control system in preparation of 2,4-D-DMA was developed for the pesticides manufacturing industry. This study employed the simple pollution prevention concept to reduce the emission of DMA vapors at the source. The investigations were performed on the pilot plant scale. To reduce the emission of DMA vapors, the effluent gases from the herbicide preparation zone were passed through the packed bed scrubber (water - scrubbing medium, and the catalytic reactor in sequence. The end result is a substantially improved air quality in the working area, as well as in the urbanized areas located near the chemical plant.

  8. Dosimetry in radiation plant of food and medical products

    International Nuclear Information System (INIS)

    Umeda, Keiji

    1975-01-01

    The fundamental concept for sterilization is generally to bring the objects into the condition that less than one microorganism can grow in 10 6 products. Therefore required dose differs according to the selection of indexing microorganism. In the U.K., approximately 2.5 Mrad is adopted by employing methylmethacrylate (trade name Perspex) as the standard dosimeter. Japan has no legally controlled sterilization dose, but 2.5 Mrad in adopted in irradiation plants. In Japan, plants for the germination suppression of potatos and onions have been operated, the permitted dose being 15 krad. It is legal obligation to measure dose, and presently Fricke dosimeter is used, though it has some problems. As for rice and wheat sterilization, also Fricke dosimeter meets the requirements for the package forms of box or bag, but problems arise in bulk treatment at silo type equipments. Considering future expansion of application, the following developments may be necessary: dosimeters for 10--50 krad, dosimeters for 0.1 to 0.5 Mrad measurement being able to be handled similarly to Fricke or Perspex dosimeter, and measuring method for absorbed dose of electron beam. (Wakatsuki, Y.)

  9. Properties of bituminization product from Olkiluoto power plant

    International Nuclear Information System (INIS)

    Valkiainen, M.; Vuorinen, U.

    1985-09-01

    In Finland, disposal into repositories excavated into bedrock on the present power plant sites is considered to be the most feasible alternative for the low- and intermediate level wastes. The Nuclear Waste Commission of the Finnish power companies has sponsored mainly experimental research work on long-term properties of bituminized ion exchange resin performed in the Reactor Laboratory of the Technical Research Centre of Finland since 1981. This report presents results on follow-up measurements of the leach tests started in 1981 and results on new leach tests with cement equilibrated water. Swelling of the bituminization product caused by water uptake is considered important. Both unrestricted and restricted swelling measurements were performed and are reported here. In addition to leaching and swelling also radiolytic gas generation and pH-changes of the leachant are discussed

  10. Development of methanol evaporation plate to reduce methanol crossover in a direct methanol fuel cell

    Science.gov (United States)

    Zhang, Ruiming

    This research focuses on methanol crossover reduction in direct methanol fuel cells (DMFC) through separating the methanol vapor from its liquid phase and feeding the vapor passively at low temperature range. Membrane electrode assemblies (MEAs) were fabricated by using commercial available membrane with different thickness at different anode catalyst loading levels, and tested under the operating conditions below 100°C in cell temperature and cathode exit open to ambient pressure. Liquid methanol transport from the anode through the membrane into cathode ("methanol crossover") is identified as one of the major efficiency losses in a DMFC. It is known that the methanol crossover rate in the vapor phase is much lower than in liquid phase. Vapor feed can be achieved by heating the liquid methanol to elevated temperatures (>100°C), but other issues limit the performance of the cell when operating above 100°C. High temperature membranes and much more active cathode catalyst structures are required, and a complex temperature control system must be employed. However, methanol vapor feed can also occur at a lower temperature range (evaporation through a porous body. The methanol crossover with this vapor feed mode is lower compared with the direct liquid methanol feed. A new method of using a methanol evaporation plate (MEP) to separate the vapor from its liquid phase to reduce the liquid methanol crossover at low temperature range is developed. A MEP plays the roles of liquid/vapor methanol phase separation and evaporation in a DMFC. The goal of this study is to develop a MEP with the proper properties to achieve high methanol phase separation efficiency and fast methanol evaporation rate over a wide range of temperature, i.e., from room temperature up to near boiling temperature (100°C). MEP materials were selected and characterized. MEPs made from three different types were tested extensively with different MEA and porous back layer configurations. The benefits of

  11. Consequences of reduced production of electricity in nuclear power plants

    International Nuclear Information System (INIS)

    The Swedish Power Administration has assessed the possibilities of expanding electric power sources other than nuclear power plants for the years 1980 and 1985. Reports on costs in the form of loss of capital and increased operating costs involved in the dismantling of nuclear power plants are made in Supplement 1. The economics division of the Finance Department, starting with a long-range study model of the Swedish economy, has calculated the consequences of a cutback in electric power up to 1980 for Sweden's economy and employment in that year. The consequences of reduction of electricity supplies up to 1985 are summarized in Supplement 2 in this report. It is concluded that in order to be able to manage the problem of supplying electricity by 1985, it will be necessary to increase oil power above what was assumed in the energy policy program. There will have to be new oil-based power as well. According to the Power Administration, oil-power facilities can be expanded to varying degrees, depending upon when the decision is made. The Power Administration's calculations show that 125 TWh is possible in 1985 without nuclear power only if a decision for discontinuation is made in the fall of 1976. This is based on very optimistic assumptions about the time of execution of a program for oil-steam operation, and also on the assumption that extreme measures will be initiated to force expansion of both district-heating distribution and power + heat facilities. Oil consumption for production of electricity in such an electric power system would be about 9 million m 3 , which is about 5 times more than at present and about one-third of the present total consumption of petroleum products in Sweden

  12. Short Review: Mitigation of Current Environmental Concerns from Methanol Synthesis

    Directory of Open Access Journals (Sweden)

    Andrew Young

    2013-06-01

    Full Text Available Methanol has become a widely used and globally distributed product. Methanol is very important due to the current depletion of fossil fuels. Industrially, methanol produced from the catalytic reaction of synthetic gas composed of hydrogen, carbon monoxide, and carbon dioxide. Methanol production has