WorldWideScience

Sample records for methane-emitting acidic peat

  1. Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

    NARCIS (Netherlands)

    van Winden, J.F.; Reichart, G.J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and

  2. Temperature-induced increase in methane release from peat bogs: A mesocosm experiment

    NARCIS (Netherlands)

    Winden, J.F. van; Reichart, G.-J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and

  3. Seasonal methane dynamics in three temperate grasslands on peat

    DEFF Research Database (Denmark)

    Schäfer, Carolyn; Elsgaard, Lars; Hoffmann, Carl Christian

    2012-01-01

    Background and Aims Drained peatlands are considered to be insignificant CH4 sources, but the effect of drainage on CH4 dynamics has not been extensively studied. We investigated seasonal dynamics of CH4 in two fen peat soils and one bog peat soil under permanent grassland in Denmark. Methods Soil......, even though soil CH4 concentrations of up to 155 and 1000 μmol CH4 dm−3 were measured in one of the fen peats and in the bog peat, respectively. Significant CH4 concentrations were observed above the water table. Methane production assays confirmed the presence of viable methanogens in the upper parts...... of the bog peat soil. The aerenchymous plant Juncus effusus L. liberated CH4 from the peat at rates of up to 3.3 mg CH4 m−2 h−1. No CH4 dynamics were observed in the second fen peat which, in contrast to the other two sites, had high sulfate concentrations. Conclusions Peat type and the distribution...

  4. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.

    Science.gov (United States)

    Reumer, Max; Harnisz, Monika; Lee, Hyo Jung; Reim, Andreas; Grunert, Oliver; Putkinen, Anuliina; Fritze, Hannu; Bodelier, Paul L E; Ho, Adrian

    2018-02-01

    Ombrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing their carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the physicochemical properties of peat and the effects on methane turnover. However, the response of the underlying microbial communities catalyzing methane production and oxidation have so far received little attention. We hypothesize that with the return of Sphagnum spp. postharvest, methane turnover potential and the corresponding microbial communities will converge in a natural and restored peatland. To address our hypothesis, we determined the potential methane production and oxidation rates in natural (as a reference), actively mined, abandoned, and restored peatlands over two consecutive years. In all sites, the methanogenic and methanotrophic population sizes were enumerated using quantitative PCR (qPCR) assays targeting the mcrA and pmoA genes, respectively. Shifts in the community composition were determined using Illumina MiSeq sequencing of the mcrA gene and a pmoA -based terminal restriction fragment length polymorphism (t-RFLP) analysis, complemented by cloning and sequence analysis of the mmoX gene. Peat mining adversely affected methane turnover potential, but the rates recovered in the restored site. The recovery in potential activity was reflected in the methanogenic and methanotrophic abundances. However, the microbial community composition was altered, being more pronounced for the methanotrophs. Overall, we observed a lag between the recovery of the methanogenic/methanotrophic activity and the return of the corresponding microbial communities, suggesting that a longer duration (>15 years) is needed to reverse mining-induced effects on the methane-cycling microbial communities. IMPORTANCE Ombrotrophic peatlands are a crucial carbon sink, but this environment

  5. Impact of peat mining, and restoration on methane turnover potentials and methane-cycling microorganisms in a northern bog

    NARCIS (Netherlands)

    Reumer, Max; Harnisz, M.; Lee, H.J.; Reim, A.; Grunert, O.; Putkinen, A.; Fritze, H.; Bodelier, P.L.E.; Ho, A.

    2018-01-01

    Ombrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing its carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the peat

  6. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods

    Science.gov (United States)

    Wright, William; Comas, Xavier

    2016-04-01

    The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.

  7. Methane and CO2 fluxes from peat soil, palm stems and field drains in two oil palm plantations in Sarawak, Borneo, on different tropical peat soil types.

    Science.gov (United States)

    Manning, Frances; Lip Khoon, Kho; Hill, Tim; Arn Teh, Yit

    2017-04-01

    distance from the palm. The relationship between Rtot and root biomass, which also decreased significantly with increasing distance from the palm, allowed for the partitioning of Rtot into peat oxidation and Ra. Here rates of peat oxidation were estimated to be 0.11 g C m-2 hr-1 following partitioning, and 0.16 g C m-2 hr-1 without partitioning. Methane fluxes varied between 0 and 1.95 g C m-2 hr-1. The largest methane fluxes were emitted from collection drains. Methane oxidation was occasionally observed in field drains, when the water table dropped below the depth of the drain. Soil methane fluxes were lower than those from collection drains. The highest methane fluxes were observed next to palms (0.02 mg C m-2 hr-1) and the lowest under frond piles (0.08 mg C m-2 hr-1). Methane emissions were measured from the palm stems. Preliminary data gives a range between 0.005 and 0.27 µg C m-2 hr-1. These results show wide ranges in both CO2 and CH4 emissions from different sources within the plantations, with the collection drains being the largest source of C fluxes.

  8. Climatic drivers for multidecadal shifts in solute transport and methane production zones within a large peat basin

    Science.gov (United States)

    Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno

    2016-01-01

    Northern peatlands are an important source for greenhouse gases, but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43 year time series of the pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multidecadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 to 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Δ14C with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.

  9. Acetate repression of methane oxidation by supplemental Methylocella silvestris in a peat soil microcosm.

    Science.gov (United States)

    Rahman, M Tanvir; Crombie, Andrew; Moussard, Hélène; Chen, Yin; Murrell, J Colin

    2011-06-01

    Methylocella spp. are facultative methanotrophs that grow on methane and multicarbon substrates, such as acetate. Acetate represses transcription of methane monooxygenase of Methylocella silvestris in laboratory culture. DNA stable-isotope probing (DNA-SIP) using (13)C-methane and (12)C-acetate, carried out with Methylocella-spiked peat soil, showed that acetate also repressed methane oxidation by Methylocella in environmental samples.

  10. Climatic Drivers for Multi-Decadal Shifts in Solute Transport and Methane Production Zones within a Large Peat Basin

    Science.gov (United States)

    Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno

    2016-01-01

    Northern peatlands are an important source for greenhouse gases but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43-year time series of pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multi-decadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 through 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Delta C-14 with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.

  11. Investigating observational constraints on the contemporary methane budget

    NARCIS (Netherlands)

    Monteil, G.A.

    2014-01-01

    Methane (CH4) is an important greenhouse gas, naturally produced by bio-degradation of organic material (mainly in wetlands), by continuous and eruptive releases from mud volcanoes, and by combustion of organic material in forest and peat fires. Large quantities of methane are also emitted by human

  12. Acetate Repression of Methane Oxidation by Supplemental Methylocella silvestris in a Peat Soil Microcosm ▿ †

    Science.gov (United States)

    Rahman, M. Tanvir; Crombie, Andrew; Moussard, Hélène; Chen, Yin; Murrell, J. Colin

    2011-01-01

    Methylocella spp. are facultative methanotrophs that grow on methane and multicarbon substrates, such as acetate. Acetate represses transcription of methane monooxygenase of Methylocella silvestris in laboratory culture. DNA stable-isotope probing (DNA-SIP) using 13C-methane and 12C-acetate, carried out with Methylocella-spiked peat soil, showed that acetate also repressed methane oxidation by Methylocella in environmental samples. PMID:21515721

  13. Acetate Repression of Methane Oxidation by Supplemental Methylocella silvestris in a Peat Soil Microcosm ▿ †

    OpenAIRE

    Rahman, M. Tanvir; Crombie, Andrew; Moussard, Hélène; Chen, Yin; Murrell, J. Colin

    2011-01-01

    Methylocella spp. are facultative methanotrophs that grow on methane and multicarbon substrates, such as acetate. Acetate represses transcription of methane monooxygenase of Methylocella silvestris in laboratory culture. DNA stable-isotope probing (DNA-SIP) using 13C-methane and 12C-acetate, carried out with Methylocella-spiked peat soil, showed that acetate also repressed methane oxidation by Methylocella in environmental samples.

  14. Peat is regarded as slowly renewable biomass fuel

    International Nuclear Information System (INIS)

    Myllylae, I.

    2000-01-01

    The Finnish Ministry of Trade and Industry commissioned an investigation on the role of peat in Finnish greenhouse gas balance in 1999. An international scientist group, consisting of Dr. Patrick Crill from USA, Dr. Ken Hargreaves from United Kingdom and docent Atte Korhola from Finland conducted the investigation. The scientist group made the proposition that peat should be classified as a slowly renewable biomass fuel, which is significant from the peat industry's point of view. An interesting detail of the investigation was the calculations, which showed that ditching of peatlands, have decreased the methane emissions from peatlands. Virgin peatlands bind carbon dioxide from the air, but simultaneously they emit methane, which is more harmful than CO 2 emissions. The carbon sink effect of Finnish peatlands is based on the CO 2 binding of virgin and ditched peatlands in Finland. The CO 2 emissions of peat production and combustion are smaller than the CO 2 binding. Virgin peatlands form a relative large source of methane. The investigation shows that when reviewing the effects of all the greenhouse gases on climate, the virgin peatlands may accelerate the greenhouse effect due to the methane emissions. The final conclusion is that ditching of virgin peatlands has reduced the radiation enforcement in Finland in some extent. When a virgin peatland is ditched the methane emissions from it are reduced significantly, and simultaneously more CO 2 is bound into vegetation. According to the investigation the net emissions of greenhouse gases in Finland exceed 10 million tonnes calculated as CO 2 . Of this the share of virgin peatlands is 8.4 million tonnes, which is of the same magnitude as the emissions from peat combustion. The life cycle analysis has shown that peat production should be directed to swampy fields removed from agricultural production. In most of the cases the combination of reforestation and repaludification into a functional peatland ecosystem could

  15. Nitrosation and Nitration of Fulvic Acid, Peat and Coal with Nitric Acid.

    Directory of Open Access Journals (Sweden)

    Kevin A Thorn

    Full Text Available Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples.

  16. The integrated nitrous oxide and methane grassland project

    Energy Technology Data Exchange (ETDEWEB)

    Leffelaar, P.A.; Langeveld, C.A.; Hofman, J.E.; Segers, R.; Van den Pol-van Dasselaar, A.; Goudriaan, J.; Rabbinge, R.; Oenema, O. [Department of Theoretical Production Ecology, Wageningen Agricultural University, Wageningen (Netherlands)

    2000-07-01

    The integrated nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) grassland project aims to estimate and explain emissions of these greenhouse gases from two ecosystems, namely drained agricultural peat soil under grass at the experimental farm Zegveld and undrained peat in the nature preserve Nieuwkoopse Plassen, both Netherlands. Peat soils were chosen because of their expected considerable contribution to the greenhouse gas budget considering the prevailing wet and partial anaerobic conditions. The emission dynamics of these ecosystems are considered representatives of large peat areas because the underlying processes are rather general and driven by variables like organic matter characteristics, water and nutrient conditions and type of vegetation. The research approach comprises measurements and modelling at different integration levels relating to the microbiology of the production and consumption of N{sub 2}O and CH{sub 4} (laboratory studies), their movement through peat soil (rhizolab and field studies), and the resulting fluxes (field studies). Typical emissions from drained soil were 15-40 kg ha{sup -1} y{sup -1} N{sub 2}O and virtually zero for CH{sub 4}. The undrained soil in the nature preserve emitted 100-280 kg ha{sup -1} y{sup -1} CH{sub 4}, and probably little N{sub 2}O. The process knowledge, collected and partly integrated in the models, helps to explain these data. For example, the low methane emission from drained peat can more coherently be understood and extrapolated because: (1) upper soil layers are aerobic, thus limiting methane production and stimulating methane oxidation, (2) absence of aerenchymatous roots of wetland plants that connect deeper anaerobic soil layers where methane is produced to the atmosphere and supply labile carbon, (3) a low methane production potential in deep layers due to the low decomposability of organic matter, and (4) long anaerobic periods needed in the topsoil to develop a methane production potential. This

  17. Vyrmethane. Progress report stage 5. In situ production of methane gas from peat

    Energy Technology Data Exchange (ETDEWEB)

    Martinell, R

    1982-12-01

    The Vyrmethane process means that bog water containing methane gas is circulated in a closed system and degassed. By this procedure the microbiological activity in the bog stimulates and new methane is produced and dissolved in the water, which circulates to a degassing station. From the degassing station the methane gas can be used for different purposes and the degassed water is infiltrated back in the peat bog. The degradation process is described by McCarty (Stanford 1964). According to this description all COD (Chemical Oxygen Demand) is supposed to be converted to methane. The Vyrmethane method does not reach this ideal result. Consequently the produced gas also includes carbon dioxide. The running cost for the process is mainly depending on the water circulation e.g. the demand of energy for the pumps. Consequently the result is propotional to the methane, which can be degassed from the circulated water. The results reached, so far, indicate that one added unit of mechanical energy is giving five units of heat energy in the form of methane gas. Better results are in prospect. This report, which is a following up of the pilot plants started up after 1978, is discussing the technical and economical conditions for the process. Consequently it is suggested that a number of full-scale prototype plants are built, studied further and that preparations are made for a demonstration stage including about 200 plants with geographical spreading out.

  18. Radionuclides in peat bogs and energy peat

    International Nuclear Information System (INIS)

    Helariutta, K.; Rantavaara, A.; Lehtovaara, J.

    2000-06-01

    The study was aimed at improving the general view on radionuclides contents in energy peat produced in Finland. The annual harvest of fuel peat in 1994 was studied extensively. Also thirteen peat bogs used for peat production and one bog in natural condition were analysed for vertical distributions of several radionuclides. These distributions demonstrate the future change in radioactivity of energy peat. Both natural nuclides emitting gamma radiation ( 238 U, 235 U, 232 Th, 226 Ra, 40 K) and radiocaesium ( 137 Cs, 134 Cs) origin in fallout from a nuclear power plant accident (1986) and in atmospheric nuclear weapon tests were analysed. The beta and alpha active natural nuclides of lead and polonium ( 210 Pb, 210 Po) were determined on a set of peat samples. These nuclides potentially contribute to radiation exposure through inhalation when partially released to atmosphere during combustion of peat. The activity concentrations of natural radionuclides often increased towards the deepest peat bog layers whereas the radioactive caesium deposited from atmosphere was missing in the deep layers. In undisturbed surface layers of a natural bog and peat production bogs the contents of 210 Pb and 210 Po exceeded those of the deeper peat layers. The nuclides of the uranium series in the samples were generally not in radioactive equilibrium, as different environmental processes change their activity ratios in peat. Radiation exposure from handling and utilisation of peat ash was estimated with activity indices derived from the data for energy peat harvested in 1994. Intervention doses were exceeded in a minor selection of samples due to 137 Cs, whereas natural radionuclides contributed very little to the doses. (orig.)

  19. Eddy Covariance Measurements of Methane Flux at a Tropical Peat Forest in Sarawak, Malaysian Borneo

    Science.gov (United States)

    Tang, Angela C. I.; Stoy, Paul C.; Hirata, Ryuichi; Musin, Kevin K.; Aeries, Edward B.; Wenceslaus, Joseph; Melling, Lulie

    2018-05-01

    Tropical biogenic sources are a likely cause of the recent increase in global atmospheric methane concentration. To improve our understanding of tropical methane sources, we used the eddy covariance technique to measure CH4 flux (FCH4) between a tropical peat forest ecosystem and the atmosphere in Malaysian Borneo over a 2-month period during the wet season. Mean daily FCH4 during the measurement period, on the order of 0.024 g C-CH4·m-2·day-1, was similar to eddy covariance FCH4 measurements from tropical rice agroecosystems and boreal fen ecosystems. A linear modeling analysis demonstrated that air temperature (Tair) was critical for modeling FCH4 before the water table breached the surface and that water table alone explained some 20% of observed FCH4 variability once standing water emerged. Future research should measure FCH4 on an annual basis from multiple tropical ecosystems to better constrain tropical biogenic methane sources.

  20. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique

    International Nuclear Information System (INIS)

    Rinne, Janne.; Pihlatie, Mari; Haapanala, Sami; Vesala, Timo; Riutta, Terhi; Tuittila, Eeva-Stiina; Aurela, Mika; Tuovinen, Juha-Pekka

    2007-01-01

    The northern wetlands are one of the major sources of methane into the atmosphere. We measured annual methane emission from a boreal minerotrophic fen, Siikaneva, by the eddy covariance method. The average wintertime emissions were below 1 mg/m 2 /h, and the summertime emissions about 3.5 mg/m 2 /h. The water table depth did have any clear effect on methane emissions. During most of the year the emission depended on the temperature of peat below the water table. However, during the high and late summer the emission was independent on peat temperature as well. No diurnal cycle of methane flux was found. The total annual emission from the Siikaneva site was 12.6 g/m 2 . The emissions of the snow free period contributed 91% to the annual emission. The emission pulse during the snow melting period was clearly detectable but of minor importance adding only less than 3% to the annual emission. Over 20% of the carbon assimilated during the year as carbon dioxide was emitted as methane. Thus methane emission is an important component of the carbon balance of the Siikaneva fen. This indicates need of taking methane into account when studying carbon balances of northern fen ecosystems

  1. Fodder shrubs and fatty acids: strategies to reduce enteric methane production in cattle.

    Directory of Open Access Journals (Sweden)

    Juan Leonardo Cardona-Iglesias

    2016-12-01

    Full Text Available The aim of this study was to analyze the use of fodder shrubs and polyunsaturated fatty acids as a nutritional strategy to mitigate enteric methane production in cattle. Special emphasis was made on the use of Tithonia diversifolia (Hemsl. A. Gray (Mexican sun ower, as a species with antimethanogenic potential. Bibliographic information for this review was obtained between July and September 2015 by using key words. Methane is a powerful greenhouse gas (GHG, the increase of its atmospheric concentration is caused mainly by emissions from agriculture and industry, but it is also estimated that a proportion of methane is emitted by ruminants as a product of enteric and anaerobic fermentation of diet. This causes an environmental and productive problem in livestock production systems worldwide. Although there is controversy about the real contribution of methane by ruminants and its impact on environmental issues, the amount of emissions should try to be reduced.This document emphasizes the search for nutritional strategies such as supplementation with forage shrubs and sources of polyunsaturated fatty acids, which have shown potential to maintain animal production ef ciency and decrease enteric methane synthesis.

  2. Layered storage of biogenic methane-enriched gas bubbles in peat: A lumped capacitance model controlled by soil structure

    Science.gov (United States)

    Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.

    2017-12-01

    Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may

  3. Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs.

    Science.gov (United States)

    Dedysh, S N; Liesack, W; Khmelenina, V N; Suzina, N E; Trotsenko, Y A; Semrau, J D; Bares, A M; Panikov, N S; Tiedje, J M

    2000-05-01

    A new genus, Methylocella, and a new species, Methylocella palustris, are proposed for three strains of methane-oxidizing bacteria isolated from acidic Sphagnum peat bogs. These bacteria are aerobic, Gram-negative, colourless, non-motile, straight and curved rods that utilize the serine pathway for carbon assimilation, multiply by normal cell division and contain intracellular poly-beta-hydroxybutyrate granules (one at each pole). These strains use methane and methanol as sole sources of carbon and energy and are moderately acidophilic organisms with growth between pH 4.5 and pH 7.0, the optimum being at pH 5.0-5.5. The temperature range for growth is 10-28 degrees C with the optimum at 15-20 degrees C. The intracytoplasmic membrane system is different from those of type I and II methanotrophs. Cells contain an extensive periplasmic space and a vesicular membrane system connected to the cytoplasmic membrane. The strains grew only on media with a low salt content (0.2-0.5 g l(-1)). All three strains were found to possess soluble methane monooxygenase and are able to fix atmospheric nitrogen via an oxygen-sensitive nitrogenase. No products were observed in a PCR with particulate methane monooxygenase-targeted primers; hybridization with a pmoA probe was also negative. The major phospholipid fatty acids are 18:1 acids. The G+C content of the DNA is 61.2 mol%. The three strains share identical 16S rRNA gene sequences and represent a novel lineage of methane-oxidizing bacteria within the alpha-subclass of the class Proteobacteria and are only moderately related to type II methanotrophs of the Methylocystis-Methylosinus group. The three strains are most closely related to the acidophilic heterotrophic bacterium Beijerinckia indica subsp. indica (96.5% 16S rDNA sequence similarity). Collectively, these strains comprise a new species and genus Methylocella palustris gen. nov., sp. nov.; strain KT (= ATCC 700799T) is the type strain.

  4. Ecosystem and physiological controls over methane production in northern wetlands

    Science.gov (United States)

    Valentine, David W.; Holland, Elisabeth A.; Schimel, David S.

    1994-01-01

    Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C: N and lignin: N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH4 production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin: N and C: N ratios (delta CH4/delta EtOH = 0.9-2.3 mg/g) and weakly in the acidic bogs with wide C: N and lignin: N ratios (delta CH4/delta EtOH = -0.04-0.02 mg/g). Observed Q(sub 10) values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry.

  5. Peatlands in Finland accumulate carbon more than the peat production and utilization liberates it

    International Nuclear Information System (INIS)

    Maentymaa, E.

    1997-01-01

    The peatlands in Finland bind more carbon dioxide then it is liberated into the air in peat combustion and production. Because the carbon accumulation into peatlands is higher than that of liberation, the peat deposits increase all the time in spite of peat economy. The emissions of methane, which is tens of times worse greenhouse gas then CO 2 , have decreased by 40 % due to forest drainage. Very small amounts of methane is released into the atmosphere from peat production sites. This is proven by the national SILMU research programme investigating the atmospheric changes

  6. Impact on the greenhouse effect of peat mining and combustion

    International Nuclear Information System (INIS)

    Rodhe, H.; Svensson, Bo

    1995-01-01

    Combustion of peat leads to emission of carbon dioxide (CO 2 ) in the atmosphere. In addition, mining of the peat alters the environment such that the natural fluxes of CO 2 and other greenhouse gases are modified. Of particular interest is a reduction in the emission of methane (CH 4 ) in the drained parts of the mires. We estimate the total impact on the greenhouse effect of these processes. The results indicate that the decreased emission of methane from the drained mires compensates for about 15% of the CO 2 emission during the combustion of the peat. It follows that, in a time perspective of less than several hundred years, peat is comparable to a fossil fuel, as far as the contribution to the greenhouse effect is concerned. 39 refs, 1 fig, 4 tabs

  7. Peat classified as slowly renewable biomass fuel

    International Nuclear Information System (INIS)

    2001-01-01

    The expert group, appointed by the Finnish Ministry of Trade and Industry, consisting of Dr. Patrick Crill from USA, Dr. Ken Hargreaves from UK and college lecturer Atte Korhola from Finland, studied the role of peat in Finnish greenhouse gas emissions. The group did not produce new research information, the report of the group based on the present research data available in Finland on greenhouse gas balances of Finnish mires and peat utilization, how much greenhouse gases, e.g. methane, CO 2 and N 2 O are liberated and bound by the mires. All the virgin peatlands in Finland (4.0 million ha), forest drained peatlands (5.7 million ha), peatlands used as fields in agriculture (0.25 million ha), peat harvesting and storage, as well as the actual peat production areas (0.063 million ha) are reviewed. The main factor intensifying the greenhouse effect, so called radiate forcing, is estimated to be the methane emissions from virgin peatlands, 11 million CO 2 equivalent tons per year. The next largest sources of emissions are estimated to be the CO 2 emissions of peat (8 million t/a), CO 2 emissions from peatlands in agricultural use (3.2 - 7.8 million t/a), the N 2 O emissions (over 2 million t/a) and methane emissions (less than 2 million t/a) of forest ditched peatlands. Other emission sources such as actual peat production and transportation are minimal. Largest carbon sinks are clearly forest-drained peatlands (9.4 - 14.9 million t/a) and virgin peatlands (more than 3 million t/a). Main conclusions of the experts group is that peat is formed continuously via photosynthesis of mosses, sedges and under-shrub vegetation and via forest litter formation. The report discovers that the basics of the formation of peat biomass is similar to that of other plant-based biomasses, such as wood, but the time required by stratification is different. Forests in Southern Finland become ready for harvesting in about 100 years, but the formation of commercially viable peat layers takes

  8. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    Directory of Open Access Journals (Sweden)

    T. Jayarathne

    2018-02-01

    Full Text Available Fine particulate matter (PM2.5 was collected in situ from peat smoke during the 2015 El Niño peat fire episode in Central Kalimantan, Indonesia. Twenty-one PM samples were collected from 18 peat fire plumes that were primarily smoldering with modified combustion efficiency (MCE values of 0.725–0.833. PM emissions were determined and chemically characterized for elemental carbon (EC, organic carbon (OC, water-soluble OC, water-soluble ions, metals, and organic species. Fuel-based PM2.5 mass emission factors (EFs ranged from 6.0 to 29.6 g kg−1 with an average of 17.3 ± 6.0 g kg−1. EC was detected only in 15 plumes and comprised  ∼ 1 % of PM mass. Together, OC (72 %, EC (1 %, water-soluble ions (1 %, and metal oxides (0.1 % comprised 74 ± 11 % of gravimetrically measured PM mass. Assuming that the remaining mass is due to elements that form organic matter (OM; i.e., elements O, H, N an OM-to-OC conversion factor of 1.26 was estimated by linear regression. Overall, chemical speciation revealed the following characteristics of peat-burning emissions: high OC mass fractions (72 %, primarily water-insoluble OC (84 ± 11 %C, low EC mass fractions (1 %, vanillic to syringic acid ratios of 1.9, and relatively high n-alkane contributions to OC (6.2 %C with a carbon preference index of 1.2–1.6. Comparison to laboratory studies of peat combustion revealed similarities in the relative composition of PM but greater differences in the absolute EF values. The EFs developed herein, combined with estimates of the mass of peat burned, are used to estimate that 3.2–11 Tg of PM2.5 was emitted to atmosphere during the 2015 El Niño peatland fire event in Indonesia. Combined with gas-phase measurements of CO2, CO, CH4, and volatile organic carbon from Stockwell et al. (2016, it is determined that OC and EC accounted for 2.1 and 0.04 % of total carbon emissions, respectively. These in situ EFs can be used to

  9. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    Science.gov (United States)

    Jayarathne, Thilina; Stockwell, Chelsea E.; Gilbert, Ashley A.; Daugherty, Kaitlyn; Cochrane, Mark A.; Ryan, Kevin C.; Putra, Erianto I.; Saharjo, Bambang H.; Nurhayati, Ati D.; Albar, Israr; Yokelson, Robert J.; Stone, Elizabeth A.

    2018-02-01

    Fine particulate matter (PM2.5) was collected in situ from peat smoke during the 2015 El Niño peat fire episode in Central Kalimantan, Indonesia. Twenty-one PM samples were collected from 18 peat fire plumes that were primarily smoldering with modified combustion efficiency (MCE) values of 0.725-0.833. PM emissions were determined and chemically characterized for elemental carbon (EC), organic carbon (OC), water-soluble OC, water-soluble ions, metals, and organic species. Fuel-based PM2.5 mass emission factors (EFs) ranged from 6.0 to 29.6 g kg-1 with an average of 17.3 ± 6.0 g kg-1. EC was detected only in 15 plumes and comprised ∼ 1 % of PM mass. Together, OC (72 %), EC (1 %), water-soluble ions (1 %), and metal oxides (0.1 %) comprised 74 ± 11 % of gravimetrically measured PM mass. Assuming that the remaining mass is due to elements that form organic matter (OM; i.e., elements O, H, N) an OM-to-OC conversion factor of 1.26 was estimated by linear regression. Overall, chemical speciation revealed the following characteristics of peat-burning emissions: high OC mass fractions (72 %), primarily water-insoluble OC (84 ± 11 %C), low EC mass fractions (1 %), vanillic to syringic acid ratios of 1.9, and relatively high n-alkane contributions to OC (6.2 %C) with a carbon preference index of 1.2-1.6. Comparison to laboratory studies of peat combustion revealed similarities in the relative composition of PM but greater differences in the absolute EF values. The EFs developed herein, combined with estimates of the mass of peat burned, are used to estimate that 3.2-11 Tg of PM2.5 was emitted to atmosphere during the 2015 El Niño peatland fire event in Indonesia. Combined with gas-phase measurements of CO2, CO, CH4, and volatile organic carbon from Stockwell et al. (2016), it is determined that OC and EC accounted for 2.1 and 0.04 % of total carbon emissions, respectively. These in situ EFs can be used to improve the

  10. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O. [Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen (Netherlands)

    1995-12-31

    The aim of the project on the title subject is to provide insight into the major controlling factors that contribute to the net exchange rates of methane (CH4) between grassland and atmosphere, and to provide quantitative net CH4 emission rates. Net CH4 emissions have been monitored with vented closed flux chambers on both intensively managed grasslands and grasslands in a nature preserve on peat soil in the Netherlands. Net CH4 emissions from intensively managed grasslands (Zegveld, Netherlands) were low in the period January-December 1994, in general in the range of -0.2 to 0.2 mg CH4 m{sup -2} d{sup -1}. Only in the relatively warm summer of 1994, consumption of atmospheric CH4 of about 0.4 mg m{sup -2} d{sup -1} was measured. Effects of ground water level in the range of 30-60 cm below surface were very small. There were also no clear effects of nitrogen fertilization and grazing versus mowing on CH4 emission from the soil. Net CH4 emissions from three extensively managed grasslands in a nature preserve (Nieuwkoopse Plassen area in the Netherlands) ranged from 0-215 mg CH4 m{sup -2} d{sup -1} in the period January 1994-June 1995. Differences between the three sites were quite large, as were the spatial variations at each of the sites. The results presented here indicate that a shift of intensively managed peat grasslands into more natural ecosystems will significantly increase the contribution of Dutch peat soils to the total CH4 emission. refs.

  11. Radionuclides in peat bogs and energy peat; Turvesoiden ja polttoturpeen radionuklidit

    Energy Technology Data Exchange (ETDEWEB)

    Helariutta, K.; Rantavaara, A. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Lehtovaara, J. [Vapo Oy, Jyvaeskylae (Finland)

    2000-06-01

    The study was aimed at improving the general view on radionuclides contents in energy peat produced in Finland. The annual harvest of fuel peat in 1994 was studied extensively. Also thirteen peat bogs used for peat production and one bog in natural condition were analysed for vertical distributions of several radionuclides. These distributions demonstrate the future change in radioactivity of energy peat. Both natural nuclides emitting gamma radiation ({sup 238}U, {sup 235}U, {sup 232}Th, {sup 226}Ra, {sup 40}K) and radiocaesium ({sup 137}Cs, {sup 134}Cs) origin in fallout from a nuclear power plant accident (1986) and in atmospheric nuclear weapon tests were analysed. The beta and alpha active natural nuclides of lead and polonium ({sup 210}Pb, {sup 210}Po) were determined on a set of peat samples. These nuclides potentially contribute to radiation exposure through inhalation when partially released to atmosphere during combustion of peat. The activity concentrations of natural radionuclides often increased towards the deepest peat bog layers whereas the radioactive caesium deposited from atmosphere was missing in the deep layers. In undisturbed surface layers of a natural bog and peat production bogs the contents of {sup 210}Pb and {sup 210}Po exceeded those of the deeper peat layers. The nuclides of the uranium series in the samples were generally not in radioactive equilibrium, as different environmental processes change their activity ratios in peat. Radiation exposure from handling and utilisation of peat ash was estimated with activity indices derived from the data for energy peat harvested in 1994. Intervention doses were exceeded in a minor selection of samples due to {sup 137}Cs, whereas natural radionuclides contributed very little to the doses. (orig.)

  12. Methane stable isotope distribution at a Carex dominated fen in North Central Alberta

    Science.gov (United States)

    Popp, Trevor J.; Chanton, Jeffrey P.; Whiting, Gary J.; Grant, Nick

    1999-12-01

    The methane stable isotope distribution was characterized at a Carex dominated fen in boreal Alberta, Canada, over three growing seasons to examine methane production, oxidation, and transport to the atmosphere; processes which are strongly tied to emergent vegetation and the influence of the rhizosphere (upper 20 cm of peat in this system]. At times when standing floodwater was present, δ13C values of emitted methane averaged -63.6 ± 2.3, -66.3 ± 1.6, and -65.4 ± 1.3‰ for the 1994, 1995, and 1996 seasons, respectively. These emissions were significantly 13C depleted relative to the belowground methane dissolved in rhizospheric pore waters, indicating that gas transport in Carex is dominated by passive diffusion. The rhizosphere was 13CH4 enriched relative to depths below the rhizosphere, consistent with the occurrence of root associated methane oxidation, preferential mobilization of 13CH4, and a relatively greater role of acetate fermentation type methane production. Dual isotope tracers, δ13C and δD, help qualify the role of each of these processes and aid in describing the distribution of production pathways, CO2 reduction, and acetate fermentation. Inverse trends in δ13C-CH4 and δD-CH4 depth profiles are consistent with an interpretation suggesting an evolution toward methane production by CO2 reduction with increasing depth. A shift in production mechanisms appears to be the dominate process affecting the stable isotope distribution below 10 cm in the peat column, while oxidation and transport isotope effects are dominant above 10 cm. To test several hypotheses regarding the effects of transport, oxidation, and production on methane isotope distributions, we also present measurements from sites fertilized and sites devegetated (continually clipped) over the 3 year period. Removal of vegetation quickly halted rhizospheric methane oxidation and gas transport while gradually increasing the relative role of CO2 reduction in net methane production as

  13. Vista-LA: Mapping methane-emitting infrastructure in the Los Angeles megacity

    Science.gov (United States)

    Carranza, Valerie; Rafiq, Talha; Frausto-Vicencio, Isis; Hopkins, Francesca M.; Verhulst, Kristal R.; Rao, Preeti; Duren, Riley M.; Miller, Charles E.

    2018-03-01

    Methane (CH4) is a potent greenhouse gas (GHG) and a critical target of climate mitigation efforts. However, actionable emission reduction efforts are complicated by large uncertainties in the methane budget on relevant scales. Here, we present Vista, a Geographic Information System (GIS)-based approach to map potential methane emissions sources in the South Coast Air Basin (SoCAB) that encompasses Los Angeles, an area with a dense, complex mixture of methane sources. The goal of this work is to provide a database that, together with atmospheric observations, improves methane emissions estimates in urban areas with complex infrastructure. We aggregated methane source location information into three sectors (energy, agriculture, and waste) following the frameworks used by the State of California GHG Inventory and the Intergovernmental Panel on Climate Change (IPCC) Guidelines for GHG Reporting. Geospatial modeling was applied to publicly available datasets to precisely geolocate facilities and infrastructure comprising major anthropogenic methane source sectors. The final database, Vista-Los Angeles (Vista-LA), is presented as maps of infrastructure known or expected to emit CH4. Vista-LA contains over 33 000 features concentrated on Vista-LA is used as a planning and analysis tool for atmospheric measurement surveys of methane sources, particularly for airborne remote sensing, and methane hotspot detection using regional observations. This study represents a first step towards developing an accurate, spatially resolved methane flux estimate for point sources in SoCAB, with the potential to address discrepancies between bottom-up and top-down methane emissions accounting in this region. The Vista-LA datasets and associated metadata are available from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics (ORNL DAAC; https://doi.org/10.3334/ORNLDAAC/1525).

  14. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Van Dasselaar, A. [Dept. of Soil Science and Plant Nutrition, Wageningen Agricultural Univ. (Netherlands); Oenema, O. [NMI, Wageningen (Netherlands)

    1995-11-01

    Net methane (CH{sub 4}) emissions from managed grassland on peat soils in the Netherlands have been monitored with vented closed flux chambers in the period January - June 1994. Net CH{sub 4} emissions from two intensively managed grasslands were low, in general less than 0.1 mg CH{sub 4} m{sup -2} d{sup -l}. On these sites, the effect of management was negligibly small. CH{sub 4} emission from three extensively managed grasslands in a nature preserve ranged from 0 to 185 mg CH{sub 4} m{sup -2} d{sup -l}. The results presented here indicate that CH{sub 4} emissions are 2-3 orders of magnitude higher on extensively managed grasslands than on intensively managed grasslands. 2 figs., 6 refs.

  15. Quantum-cascade laser photoacoustic detection of methane emitted from natural gas powered engines

    Science.gov (United States)

    Rocha, M. V.; Sthel, M. S.; Silva, M. G.; Paiva, L. B.; Pinheiro, F. W.; Miklòs, A.; Vargas, H.

    2012-03-01

    In this work we present a laser photoacoustic arrangement for the detection of the important greenhouse gas methane. A quantum-cascade laser and a differential photoacoustic cell were employed. A detection limit of 45 ppbv in nitrogen was achieved as well as a great selectivity. The same methodology was also tested in the detection of methane issued from natural gas powered vehicles (VNG) in Brazil, which demonstrates the excellent potential of this arrangement for greenhouse gas detection emitted from real sources.

  16. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Tables S3 and S4 list emission factors in g/kg of speciated volatile and particulate organic compounds emitted from peat burning. Peat samples...

  17. Peat 2003. Production, use, environmental impact

    International Nuclear Information System (INIS)

    2004-01-01

    This report discusses the use of peat for energy production and other purposes, laws and other regulations affecting peat production and use, environmental impact, market situation and international statistics regarding peat production. In Sweden, the extraction and use of peat for energy production is regulated by several laws. Harvesting concessions must be approved by the county council. All combustion plants must be reported, or verified by regional or central authorities, depending on the size of the plant. Most important in this process is to verify the maximum emission levels permitted for sulphur, nitrogen oxides, particles, etc. Since 1991, a law on municipal energy planning requires descriptions of environmental consequences. Thus, environmental considerations must govern energy planning. Energy taxation in Sweden was changed in 1993. At present, the sulphur tax on fuel peat amounts to SEK 30 per kg of sulphur. Nitrogen oxides are also subject to a tax of SEK 40 per emitted kg. For peat, energy and environmental taxes total SEK 0.02 per kWh, excluding VAT. Peat harvesting for the production of energy aroused interest in the early 1980s as a consequence of the increased energy prices. In 2003, about 2,628,000 cubic metres of fuel peat were harvested in Sweden. The fuel peat is used mainly for production of hot water in district heating plants. In 2003, the total use of fuel peat amounted to 4,0 TWh. In addition to fuel peat, about 1,825,000 cubic metres of peat litter (mainly for horticultural use) was produced. In 2003, imports amounted to 382,3000 metric tons or 1.3 million cubic metres of peat. Exports amounted to 103,000 metric tons, consisting primarily of peat for horticultural use. The peat market in Sweden is divided into the energy market and the cultivation market. Political decisions regarding combustion taxes have a great impact on the competitive advantages of different fuels. The major competitors to peat are coal, oil, and renewable energy

  18. Study of stability of humic acids from soil and peat irradiated by gamma rays

    International Nuclear Information System (INIS)

    Silva, Wilson Tadeu Lopes da

    1995-01-01

    Humic acids samples (one deriving from a sedimentary soil and other from a peat), in aqueous media, were irradiated with gamma rays, in doses of 10, 50 and 100 kGy, in order to understand their chemical behavior after the irradiation. The material, before and after irradiation, was analyzed by Elemental Analysis, Functional Groups (carboxylic acids and phenols), UV/Vis Spectroscopy (E 4 /E 6 ratio), IR spectroscopy, CO 2 content and Gel permeation Chromatography (GPC) ). The Elemental Analysis showed the humic acid derived from a peat had a most percentage quantity of Carbon and Hydrogen than the material from a sedimentary soil. From the UV/Vis Spectroscopy, it was observed a decrease of E 4 /E 6 ratio with an increase of the applied dose. The data from GPC are in agreement with this. The results showed that the molecular weight of the material increased by exposing it to a larger radiolitical dose. The peat material was less affected by the gamma radiation than the soil material. The carboxylic groups were responsible by radiochemical behavior of the material. (author)

  19. Greenhouse gas balances of Frisian peat pastures. Long term effects of land use options.

    NARCIS (Netherlands)

    Keijzer, Elisabeth

    2010-01-01

    SUMMARY Peat pastures in the Dutch province of Friesland emit high amounts of greenhouse gases (CO2, N2O, and CH4). These high emissions are the results of deep drainage of the peat for agricultural purposes and consequently oxidation of the peat. Other

  20. Effect of soil properties and hydrology on Archaeal community composition in three temperate grasslands on peat

    DEFF Research Database (Denmark)

    Görres, Carolyn-Monika; Conrad, Ralf; Petersen, Søren O

    2013-01-01

    Grasslands established on drained peat soils are regarded as negligible methane (CH4) sources; however, they can still exhibit considerable soil CH4 dynamics. We investigated archaeal community composition in two different fen peat soils and one bog peat soil under permanent grassland in Denmark........ Overall, there seemed to be a significant coupling between peat type and archaeal community composition, with local hydrology modifying the strength of this coupling....

  1. Peat 2002. Resources, use, environmental impact

    International Nuclear Information System (INIS)

    2003-01-01

    This report discusses the use of peat for energy production and other purposes, laws and other regulations affecting peat production and use, environmental impact, market situation and international statistics regarding peat production. In Sweden, the extraction and use of peat for energy production is regulated by several laws. A company planning peat extraction must first apply for an examination concession. Then a harvesting concession must be approved by the county council. All combustion plants must be reported, or verified by regional or central authorities, depending on the size of the plant. Most important in this process is to verify the maximum emission levels permitted for sulphur, nitrogen oxides, particles, etc. At present, the sulphur tax on fuel peat amounts to SEK 30 per kg of sulphur (1 USD approx. 7.8 SEK). Nitrogen oxides are also subject to a tax of SEK 40 per emitted kg. For peat, energy and environmental taxes total SEK 0.02 per kWh, excluding VAT. Peat harvesting for the production of energy aroused interest in the early 1980s as a consequence of the energy crises. In 2002, about 2,885,000 cubic metres of fuel peat were harvested in Sweden. The fuel peat is used mainly for production of hot water in heating plants. In 2001, the total use of fuel peat amounted to 4.1 TWh. In addition to fuel peat, about 1,800,000 cubic metres of peat litter (mainly for horticultural use) was produced. In 2001, imports amounted to 329,311 metric tons or 1.1 million cubic metres of peat. Exports amounted to 91,000 metric tons, consisting primarily of peat for horticultural use. Fuel peat is used at district heating power plants. Political decisions regarding combustion taxes have a great impact on the competitive advantages of different fuels. The major competitors to peat are coal, oil, and renewable energy sources. Some companies are privately owned, while others are owned by municipalities, which also manage district heating plants and thereby integrate

  2. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993.

    Science.gov (United States)

    Belova, Svetlana E; Kulichevskaya, Irina S; Bodelier, Paul L E; Dedysh, Svetlana N

    2013-03-01

    A novel species is proposed for two facultatively methanotrophic representatives of the genus Methylocystis, strains H2s(T) and S284, which were isolated from an acidic (pH 4.3) Sphagnum peat-bog lake (Teufelssee, Germany) and an acidic (pH 3.8) peat bog (European North Russia), respectively. Cells of strains H2s(T) and S284 are aerobic, Gram-negative, non-motile, curved coccoids or short rods that contain an intracytoplasmic membrane system typical of type-II methanotrophs. They possess both a soluble and a particulate methane monooxygenase (MMO); the latter is represented by two isozymes, pMMO1 and pMMO2. The preferred growth substrates are methane and methanol. In the absence of C1 substrates, however, these methanotrophs are capable of slow growth on acetate. Atmospheric nitrogen is fixed by means of an aerotolerant nitrogenase. Strains H2s(T) and S284 grow between pH 4.2 and 7.6 (optimum pH 6.0-6.5) and at 8-37 °C (optimum 25-30 °C). The major fatty acids are C18 : 1ω8c, C18 : 1ω7c and C16 : 1ω7c; the major quinone is Q-8. The DNA G+C content is 62.0-62.3 mol%. Strains H2s(T) and S284 share identical 16S rRNA gene sequences, which displayed 96.6-97.3 % similarity to sequences of other taxonomically characterized members of the genus Methylocystis. Therefore, strains H2s(T) and S284 are classified as members of a novel species, for which the name Methylocystis bryophila sp. nov. is proposed; strain H2s(T) ( = DSM 21852(T)  = VKM B-2545(T)) is the type strain.

  3. Peat 2000. Resources, use, environmental impact

    International Nuclear Information System (INIS)

    2001-01-01

    This report discusses peat as a natural resource. It describes the peat land area, the peat harvest area, the use of peat for energy production and other purposes, laws and other regulations affecting peat production and use, environmental impact, market situation, trade, research and development, and the government grant to the peat industry. In Sweden, the extraction and use of peat for energy production is regulated by several laws. A company planning peat extraction must first apply for an examination concession. Then a harvesting concession must be approved by the county council. All combustion plants must be reported, or verified by regional or central authorities, depending on the size of the plant. Most important in this process is to verify the maximum emission levels permitted for sulphur, nitrogen oxides, particles, etc. Since 1991, a law on municipal energy planning requires descriptions of environmental consequences. Thus, environmental considerations must govern energy planning. Energy taxation in Sweden was changed in 1993. At present, the sulphur tax on fuel peat amounts to SEK 30 per kg of sulphur. Nitrogen oxides are also subject to a tax of SEK 40 per emitted kg. For peat, energy and environmental taxes total SEK 0.02 per kWh, excluding VAT. More than six millions hectares have been defined as peat land (with a peat layer of more than 30 cm) in Sweden, which means that about 15 per cent of the total land area consists of peat lands. Thinner peat layers (wet mineral soils) cover an additional 10 per cent of the land area. At the end of 1999 concessions for fuel peat harvesting had been granted for 45,000 hectares or 0.8 per cent of the total peat land area. Peat harvesting for the production of energy aroused interest in the early 1980s as a consequence of the energy crises. In 2000, about 1,372,000 cubic metres of fuel peat were harvested in Sweden. The fuel peat is used mainly for production of hot water in heating plants. In 2000, the total use

  4. Microtopography and methane flux in boreal peatlands, northern Ontario, Canada

    International Nuclear Information System (INIS)

    Bubier, J.; Costello, A.; Moore, T.R.; Roulet, N.T.; Savage, K.

    1993-01-01

    Peatlands act as a major sink of carbon dioxide and a source of methane. Fluxes of methane were measured by a static chamber technique at hummock, hollow, and lawn microtopographic locations in 12 peatland sites near Cochrane, northern Ontario, from May to October 1991. Average fluxes (mg/m 2 /d) were 2.3 at hummocks, 44.4 at hollows, and 15.6 at lawns. Methane flux was negatively correlated with average water table position based on the 36 locations, with hummocks having a smaller flux than hollows or lawns, where the water table depth was <25 cm. Peat samples from a bog hummock and hollow failed to produce methane during anaerobic incubations in the laboratory; samples from a poor fen hollow produced <1.4 μg/g/d. The production decreased with depth but was greater than the rates observed during incubation of samples from an adjacent hummock. Rates of methane consumption during aerobic incubations ranged from 1 to 55 μg/g/d and were greatest in the surface layers and decreased with depth. Differences in methane emissions between hummocks and hollows appear to be controlled primarily by greater methane production rates in hollows compared with hummocks. Of secondary importance are the capacity of the peat profiles to consume methane during its transport to the peat surface and warmer temperatures at the water table beneath hollows compared with hummocks. 29 refs., 4 figs., 2 tabs

  5. Interaction of Peat Soil and Sulphidic Material Substratum: Role of Peat Layer and Groundwater Level Fluctuations on Phosphorus Concentration

    Directory of Open Access Journals (Sweden)

    Benito Heru Purwanto

    2014-09-01

    Full Text Available Phosphorus (P often becomes limiting factor for plants growth. Phosphorus geochemistry in peatland soil is associated with the presence of peat layer and groundwater level fluctuations. The research was conducted to study the role of peat layer and groundwater level fluctuations on P concentration in peatland. The research was conducted on deep, moderate and shallow peat with sulphidic material as substratum, peaty acid sulphate soil, and potential acid sulphate soil. While P concentration was observed in wet season, in transition from wet to dry season, and in dry season. Soil samples were collected by using peat borer according to interlayer and soil horizon. The results showed that peat layer might act as the main source of P in peatland with sulphidic material substratum. The upper peat layer on sulphidic material caused by groundwater level fluctuations had no directly effect on P concentration in the peat layers. Increased of P concentration in the lowest sulphidic layer might relate to redox reaction of iron in the sulphidic layer and precipitation process. Phosphorus concentration in peatland with sulphidic material as substratum was not influenced by peat thickness. However, depletion or disappearance of peat layer decreased P concentration in soil solution. Disappearance of peat layer means loss of a natural source of P for peatland with sulphidic material as substratum, therefore peat layer must be kept in order to maintain of peatlands.

  6. [Methanotrophic bacteria of acid sphagnum bogs].

    Science.gov (United States)

    Dedysh, S N

    2002-01-01

    Acid sphagnum bogs cover a considerable part of the territory of Russia and are an important natural source of biogenic methane, which is formed in their anaerobic layers. A considerable portion of this methane is consumed in the aerobic part of the bog profile by acidophilic methanotrophic bacteria, which comprise the methane filter of sphagnum bogs and decrease CH4 emission to the atmosphere. For a long time, these bacteria escaped isolation, which became possible only after the elucidation of the optimal conditions of their functioning in situ: pH 4.5 to 5.5; temperature, from 15 to 20 degrees C; and low salt concentration in the solution. Reproduction of these conditions and rejection of earlier used media with a high content of biogenic elements allowed methanotrophic bacteria of two new genera and species--Methylocella palustris and Methylocapsa acidophila--to be isolated from the peat of sphagnum bogs of the northern part of European Russia and West Siberia. These bacteria are well adapted to the conditions in cold, acid, oligotrophic sphagnum bogs. They grow in a pH range of 4.2-7.5 with an optimum at 5.0-5.5, prefer moderate temperatures (15-25 degrees C) and media with a low content of mineral salts (200-500 mg/l), and are capable of active nitrogen fixation. Design of fluorescently labeled 16S rRNA-targeted oligonucleotide probes for the detection of Methylocella palustris and Methylocapsa acidophila and their application to the analysis of sphagnum peat samples showed that these bacteria represent dominant populations of methanotrophs with a density of 10(5)-10(6) cells/g peat. In addition to Methylocella and Methylocapsa populations, one more abundant population of methanotrophs was revealed (10(6) cells/g peat), which were phylogenetically close to the genus Methylocystis.

  7. Chemical properties of peat used in balneology

    Science.gov (United States)

    Szajdak, L.; Hładoń, T.

    2009-04-01

    The physiological activity of peats is observed in human peat-bath therapy and in the promotion of growth in some plants. Balneological peat as an ecologically clean and natural substance is perceived as being more 'human friendly' than synthetic compounds. Poland has a long tradition of using balneological peat for therapeutic purposes. Balneological peat reveals a physical effect by altering temperature and biochemical effects through biologically active substances. It is mainly used for the treatment of rheumatic diseases that are quite common in Poland. Peat represents natural product. Physico-chemical properties of peat in particular surface-active, sorption and ion exchanges, defining their biological function, depend mainly on the chemical composition and molecular structure of humic substances representing the major constituent of organic soil (peat). The carbon of organic matter of peats is composed of 10 to 20% carbohydrates, primarily of microbial origin; 20% nitrogen-containing constituents, such as amino acids and amino sugars; 10 to 20% aliphatic fatty acids, alkanes, etc.; with the rest of carbon being aromatic. For balneology peat should be highly decomposed (preferably H8), natural and clean. The content of humic acids should exceed 20% of dry weight, ash content will be less than 15 15% of dry weight, sulphur content less than 0.3% of dry weight and the amount of water more than 85%. It will not contain harmful bacteria and heavy metals. Humic substances (HS) of peat are known to be macromolecular polydisperse biphyllic systems including both hydrophobic domains (saturated hydrocarbon chains, aromatic structural units) and hydrophilic functional groups, i. e having amphiphilic character. Amphiphilic properties of FA are responsible for their solubility, viscosity, conformation, surfactant-like character and a variety of physicochemical properties of considerable biologically practical significance. The chemical composition of peats depends

  8. Peat 1999. Resources, use, environmental impact

    International Nuclear Information System (INIS)

    2000-01-01

    This report discusses peat as a natural resource. It describes the peat land area, the peat harvest area, the use of peat for energy production and other purposes, laws and other regulations affecting peat production and use, environmental impact, market situation, trade, research and development, and the government grant to the peat industry. In Sweden, the extraction and use of peat for energy production is regulated by several laws. A company planning peat extraction must first apply for an examination concession. Then a harvesting concession must be approved by the county council. All combustion plants must be reported, or verified by regional or central authorities, depending on the size of the plant. Most important in this process is to verify the maximum emission levels permitted for sulphur, nitrogen oxides, particles, etc. Since 1991, a law on municipal energy planning requires descriptions of environmental consequences. Thus, environmental considerations must govern energy planning. Energy taxation in Sweden was changed in 1993. At present, the sulphur tax on fuel peat amounts to SEK 30 per kg of sulphur. Nitrogen oxides are also subject to a tax of SEK 40 per emitted kg. For peat, energy and environmental taxes total SEK 0.02 per kWh, excluding VAT. More than six millions hectares have been defined as peat land (with a peat layer of more than 30 cm) in Sweden, which means that about 15 per cent of the total land area consists of peat lands. Thinner peat layers (wet mineral soils) cover an additional 10 per cent of the land area. At the end of 1999 concessions for fuel peat harvesting had been granted for 45 900 hectares or 0.8 per cent of the total peat land area. Peat harvesting for the production of energy aroused interest in the early 1980s as a consequence of the energy crises. In 1999, about 2 650 000 cubic metres of fuel peat were harvested in Sweden. The fuel peat is used mainly for production of hot water in heating plants. In 1999, the total use

  9. Emissions of volatile organic compounds and particulate matter from small-scale peat fires

    Science.gov (United States)

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared...

  10. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    Directory of Open Access Journals (Sweden)

    C. E. Stockwell

    2016-09-01

    Full Text Available Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional–global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm, and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs; grams of a compound per kilogram biomass burned for up to  ∼  90 gases, including CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc. The modified combustion efficiency (MCE of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n  =  35, indicating essentially pure smoldering combustion, and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g kg−1 were carbon dioxide (1564 ± 77, carbon monoxide (291 ± 49, methane (9.51 ± 4.74, hydrogen cyanide (5.75 ± 1.60, acetic acid (3.89 ± 1.65, ammonia (2.86 ± 1.00, methanol (2.14 ± 1.22, ethane (1.52 ± 0.66, dihydrogen (1.22 ± 1.01, propylene (1.07 ± 0.53, propane (0.989 ± 0.644, ethylene (0.961 ± 0.528, benzene (0.954 ± 0.394, formaldehyde (0.867 ± 0.479, hydroxyacetone (0.860 ± 0.433, furan (0.772 ± 0.035, acetaldehyde

  11. Resonantly diode pumped Er:YAG laser systems emitting at 1645 nm for methane detection

    International Nuclear Information System (INIS)

    Fritsche, H; Lux, O; Wang, X; Zhao, Z; Eichler, H J

    2013-01-01

    We report on the development of compact and frequency-stable Er:YAG laser systems emitting in the eye-safe spectral region. Resonant cw diode pumping provides 4.5 W output power in cw operation and 2.2 mJ in Q-switched operation with pulse duration of about 140 ns. The application of intra-cavity etalons allows for wavelength tuning from 1645.22 to 1646.33 nm while the frequency stability accounts for less than 50 MHz. The potential of the erbium laser sources in terms of methane detection was evaluated under laboratory conditions by absorption measurements employing a multi-pass absorption cell. The experimental investigations were accompanied by theoretical studies on the influence of pressure broadening on the absorption behavior of methane. (letter)

  12. [The processes of methane formation and oxidation in the soils of the Russian arctic tundra].

    Science.gov (United States)

    Berestovskaia, Iu Iu; Rusanov, I I; Vasil'eva, L V; Pimenov, N V

    2005-01-01

    Methane emission from the following types of tundra soils was studied: coarse humic gleyey loamy cryo soil, peaty gley soil, and peaty gleyey midloamy cryo soil of the arctic tundra. All the soils studied were found to be potential sources of atmospheric methane. The highest values of methane emission were recorded in August at a soil temperature of 8-10 degrees C. Flooded parcels were the sources of atmospheric methane throughout the observation period. The rates of methane production and oxidation in tundra soils of various types at 5 and 15 degrees C were studied by the radioisotope method. Methane oxidation was found to occur in bog water, in the green part of peat moss, and in all the soil horizons studied. Methane formation was recorded in the horizons of peat, in clay with plant roots, and in peaty moss dust of the bogey parcels. At both temperatures, the methane oxidation rate exceeded the rate of methane formation in all the horizons of the mossy-lichen tundra and of the bumpy sinkhole complex. Methanogenesis prevailed only in a sedge-peat moss bog at 15 degrees C. Enrichment bacterial cultures oxidizing methane at 5 and 15 degrees C were obtained. Different types of methanotrophic bacteria were shown to be responsible for methane oxidation under these conditions. A representative of type I methylotrophs oxidized methane at 5 degrees C, and Methylocella tundrae, a psychroactive representative of an acidophilic methanotrophic genus Methylocella, at 15 degrees C.

  13. Evaluation of methane emissions from Taiwanese paddies

    International Nuclear Information System (INIS)

    Liu, C.-W.; Wu, C.-Y.

    2004-01-01

    The main greenhouse gases are carbon dioxide, methane and nitrous oxide. Methane is the most important because the warming effect of methane is 21 times greater than that of carbon dioxide. Methane emitted from rice paddy fields is a major source of atmospheric methane. In this work, a methane emission model (MEM), which integrates climate change, plant growth and degradation of soil organic matter, was applied to estimate the emission of methane from rice paddy fields in Taiwan. The estimated results indicate that much methane is emitted during the effective tillering and booting stages in the first crop season and during the transplanting stage in the second crop season in a year. Sensitivity analysis reveals that the temperature is the most important parameter that governs the methane emission rate. The order of the strengths of the effects of the other parameters is soil pH, soil water depth (SWD) and soil organic matter content. The masses of methane emitted from rice paddy fields of Taiwan in the first and second crop seasons are 28,507 and 350,231 tons, respectively. The amount of methane emitted during the second crop season is 12.5 times higher than that emitted in the first crop season. With a 12% reduction in planted area during the second crop season, methane emission could be reduced by 21%. In addition, removal of rice straw left from the first crop season and increasing the depth of flooding to 25 cm are also strategies that could help reduce annual emission by up to 18%

  14. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2009-04-01

    Full Text Available Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids at two different levels (2 and 5 mM added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, organic matter digestibility (OMD, and short chain fatty acids (SCFA. The results showed that addition of cinnamic, caffeic, p-coumaric and ferulic acids at 5 mM significantly (P p-coumaric > ferulic > cinnamic. The addition of simple phenols did not significantly decrease OMD. Addition of simple phenols tends to decrease total SCFA production. It was concluded that methane decrease by addition of phenolic acids was relatively small, and the effect of phenolic acids on methane decrease depended on the source and concentration applied.

  15. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.

    Science.gov (United States)

    Pankratov, Timofey A; Ivanova, Anastasia O; Dedysh, Svetlana N; Liesack, Werner

    2011-07-01

    Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH. © 2011 Society for

  16. Field Measurements of Trace Gases and Aerosols Emitted by Undersampled Combustion Sources Including Wood and Dung Cooking Fires, Garbage and Crop Residue Burning, and Indonesian Peat Fires

    Science.gov (United States)

    Stockwell, C.; Jayarathne, T. S.; Goetz, D.; Simpson, I. J.; Selimovic, V.; Bhave, P.; Blake, D. R.; Cochrane, M. A.; Ryan, K. C.; Putra, E. I.; Saharjo, B.; Stone, E. A.; DeCarlo, P. F.; Yokelson, R. J.

    2017-12-01

    Field measurements were conducted in Nepal and in the Indonesian province of Central Kalimantan to improve characterization of trace gases and aerosols emitted by undersampled combustion sources. The sources targeted included cooking with a variety of stoves, garbage burning, crop residue burning, and authentic peat fires. Trace gas and aerosol emissions were studied using a land-based Fourier transform infrared spectrometer, whole air sampling, photoacoustic extinctiometers (405 and 870nm), and filter samples that were analyzed off-line. These measurements were used to calculate fuel-based emission factors (EFs) for up to 90 gases, PM2.5, and PM2.5 constituents. The aerosol optical data measured included EFs for the scattering and absorption coefficients, the single scattering albedo (at 870 and 405 nm), as well as the absorption Ångström exponent. The emissions varied significantly by source, although light absorption by both brown and black carbon (BrC and BC, respectively) was important for all non-peat sources. For authentic peat combustion, the emissions of BC were negligible and absorption was dominated by organic aerosol. The field results from peat burning were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat and compare well to the limited data available from other field studies. The EFs can be used with estimates of fuel consumption to improve regional emissions inventories and assessments of the climate and health impacts of these undersampled sources.

  17. Deposition and effects on some aquatic organisms of particulate matter emitted from some peat fuelled power plants in Finland. Deposition och effekter paa naagra vattenlevande organismer av emitterat stoft fraan naagra torveldade kraftverk i Finland

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, C; Fischer, S; Hellstroem, T; Notini, M; Steen, B; Waltersson, E; Landner, L

    1982-01-01

    At three different peat fuelled plants in Finland, environmental studies have been carried out with the aim of obtaining part of the background data necessary for the formulation of environmental guidelines in relation to the future use of peat for energy and heat production in Sweden. The present project was comprised of (a) field studies of the composition pattern of polyaromatic hydrocarbons (PAH) and of heavy metals in the surroundings of some existing peat fuelled power plants, and (b) laboratory tests with a few aquatic organisms to check the possible biological effects induced by emitted particles. The results of these studies indicate that the deposition of (PAH) in the surroundings of three power plants (measured by snow sampling and by analysis of kale grown in the area) did not exceed the background level, whereas the deposition of heavy metals emitted from one power plant resulted in increased concentrations of Fe, Mn, Pb, Zn and possibly of Hg, compared to the assumed background level. Biological tests with particles originating from two different peat fuelled power plants showed that only weak, but obvious, effects could be detected at concentrations corresponding to realistic deposition levels. These effects are supposed to be due to the metal content of the particles rather than to the PAH content. When evaluating the lab results, it should be considered that a certain fixation of metals dissolved in the snow melting water may take place in the soil surface. Therefore, the biological effect studies, carried out so far, do not indicate that peat combustion at the investigated power plants, using efficient flue gas cleaning systems, cause any considerable biological effects in the surroundings of the plants. However, it is evident that the present set of data does not allow a general evaluation of the over-all environmental impact of peat combustion.

  18. Coalbed Methane Outreach Program

    Science.gov (United States)

    Coalbed Methane Outreach Program, voluntary program seeking to reduce methane emissions from coal mining activities. CMOP promotes profitable recovery/use of coal mine methane (CMM), addressing barriers to using CMM instead of emitting it to atmosphere.

  19. Influence of Biodegradation on the Organic Compounds Composition of Peat.

    Science.gov (United States)

    Serebrennikova, Olga; Svarovskaya, Lidiya; Duchko, Maria; Strelnikova, Evgeniya; Russkikh, Irina

    2016-06-01

    Largest wetland systems are situated on the territory of the Tomsk region. They are characterized by the high content of organic matter (OM), which undergoes transformation as a result of physical, chemical and biological processes. The composition of peat OM is determined by the nature of initial peat-forming plants, their transformation products and bacteria. An experiment in stimulated microbial impact was carried out for estimating the influence of biodegradation on the composition of peat lipids. The composition of the functional groups in the bacterial biomass, initial peat and peat after biodegradation was determined by IR-spectroscopy using the spectrometer NICOLET 5700. The IR spectra of peat and bacteria organic matter are characterized by the presence of absorption bands in ranges: 3400-3200 cm-1, which refers to the stretching vibrations of OH-group of carboxylic acids and various types of hydrogen bonds; 1738-1671 cm-1 - characteristic stretching vibrations of the C = O group of carboxylic acids and ketones; 1262 cm-1 - stretching vibrations of C-O of carboxylic acids. Group and individual composition of organic compounds in studied samples was determined by gas chromatography-mass-spectrometry.

  20. Greenhouse effects of the peat production and use as compared to coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.; Wihersaari, M.

    1993-01-01

    This report examines the greenhouse effects of greenhouse gas emissions (carbon dioxide, methane and nitrous oxide) arising from certain production and utilization chains of peat and compares them with the corresponding effects associated with the production and utilization chains of coal, oil, natural gas and wood. In order to estimate the greenhouse effects of the peat production and utilization chains, the initial state of the peat bog together with the instantaneous and cumulative greenhouse effects associated with the production and burning of peat as well as subsequent use of the production area were taken into account. The initial state of the peat bog was taken to be either a bog in its natural sale, a forest-drained bog or a cultivated peatland. As regards alternatives for subsequent use of the peat production area, afforestation, paludification and lake formation were all examined

  1. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    Science.gov (United States)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  2. Methane Exchange in a Coastal Fen in the First Year after Flooding - A Systems Shift

    Science.gov (United States)

    Hahn, Juliane; Köhler, Stefan; Glatzel, Stephan; Jurasinski, Gerald

    2015-01-01

    Background Peatland restoration can have several objectives, for example re-establishing the natural habitat, supporting unique biodiversity attributes or re-initiating key biogeochemical processes, which can ultimately lead to a reduction in greenhouse gas (GHG) emissions. Every restoration measure, however, is itself a disturbance to the ecosystem. Methods Here, we examine an ecosystem shift in a coastal fen at the southern Baltic Sea which was rewetted by flooding. The analyses are based on one year of bi-weekly closed chamber measurements of methane fluxes gathered at spots located in different vegetation stands. During measurement campaigns, we recorded data on water levels, peat temperatures, and chemical properties of peat water. In addition we analyzed the first 20 cm of peat before and after flooding for dry bulk density (DBD), content of organic matter and total amounts of carbon (C), nitrogen (N), sulfur (S), and other nutrients. Results Rewetting turned the site from a summer dry fen into a shallow lake with water levels up to 0.60 m. We observed a substantial die-back of vegetation, especially in stands of sedges (Carex acutiformis Ehrh). Concentrations of total organic carbon and nitrogen in the peat water, as well as dry bulk density and concentrations of C, N and S in the peat increased. In the first year after rewetting, the average annual exchange of methane amounted to 0.26 ± 0.06 kg m-2. This is equivalent to a 190-times increase in methane compared to pre-flooding conditions. Highest methane fluxes occurred in sedge stands which suffered from the heaviest die-back. None of the recorded environmental variables showed consistent relationships with the amounts of methane exchanged. Conclusions Our results suggest that rewetting projects should be monitored not only with regard to vegetation development but also with respect to biogeochemical conditions. Further, high methane emissions that likely occur directly after rewetting by flooding should

  3. Isotope composition of bulk carbon in replicated Sphagnum peat cores from three central European high-elevation wetlands

    International Nuclear Information System (INIS)

    Novak, Martin; Zemanova, Leona; Jackova, Iva; Buzek, Frantisek; Adamova, Marie

    2009-01-01

    Several processes may contribute to systematic downcore trends in δ 13 C of bulk Sphagnum peat. Whereas changes in water availability during C assimilation may change δ 13 C values in both a negative and positive direction, other processes would always cause a uni-directional shift in δ 13 C. Selective preservation of isotopically light lignin C may lead to more negative δ 13 C values with an increasing depth and age of peat. Anthropogenic change toward lower δ 13 C of atmospheric CO 2 due to massive coal burning since the beginning of the Industrial Revolution would result in lower δ 13 C of the youngest past layers, and in higher δ 13 C of older peat layers. Emissions of low-δ 13 C methane from wetlands should result in a progressive enrichment of the residual peat substrate in the heavier isotope 13 C. Consequently, deeper peat would have higher δ 13 C. In a specific peat profile, the downcore trend in δ 13 C will be the result of an interplay between all these isotope-sensitive processes. Most Central European wetlands studied previously show a 13 C enrichment (i.e., higher δ 13 C values) with an increasing depth and age. Here we focus on sites which showed lower δ 13 C with an increasing depth and age when a single peat core was taken. Replication did not confirm this negative downcore δ 13 C shift. A positive downcore δ 13 C shift is more widespread than previously believed. We suggest that decreasing δ 13 C of atmospheric CO 2 and emissions of low-δ 13 C methane belong to the main controls of the downcore δ 13 C trends in young peat substrate. (author)

  4. Physical and chemical characteristics of fibrous peat

    Science.gov (United States)

    Sutejo, Yulindasari; Saggaff, Anis; Rahayu, Wiwik; Hanafiah

    2017-11-01

    Banyuasin is one of the regency in South Sumatera which has an area of 200.000 Ha of peat land. Peat soil are characterized by high compressibility parameters and low initial shear strength. Block sampling method was used to obtain undisturbed sample. The results of this paper describe the characteristics of peat soil from physical and chemical testing. The physical and chemical characteristics of peat include water content (ω), specific gravity (Gs), Acidity (pH), unit weight (γ), and ignition loss tests. SEM and EDS test was done to determine the differences in fiber content and to analyze chemical elements of the specimen. The average results ω, Gs, and pH are 263.538 %, 1.847, and 3.353. Peat is classified in H4 (by Von Post). The results of organic content (OC), ash content (AC), and fiber content (FC) are found 78.693 %, 21.310 %, and 73.703 %. From the results of physical and chemical tests, the peat in Banyuasin is classified as fibrous peat. All the results of the characteristics and classification of fibrous peat compared with published data were close.

  5. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  6. Controls on the methane released through ebullition affected by permafrost degradation

    Science.gov (United States)

    S.J. Klapstein; M.R. Turetsky; A.D. McGuire; J.W. Harden; C.I. Czimczik; X. Xu; J.P. Chanton; J.M. Waddington

    2014-01-01

    Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine...

  7. How does whole ecosystem warming of a peatland affect methane production and consumption?

    Science.gov (United States)

    Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.

    2017-12-01

    Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout

  8. Small spatial variability in methane emission measured from a wet patterned boreal bog

    Directory of Open Access Journals (Sweden)

    A. Korrensalo

    2018-03-01

    Full Text Available We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012–2014 using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAITOT and leaf area of aerenchymatous plant species (LAIAER. Methane emissions ranged from −309 to 1254 mg m−2 d−1. Although methane fluxes increased with increasing peat temperature, LAITOT and LAIAER, they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAIAER and LAITOT in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.

  9. Small spatial variability in methane emission measured from a wet patterned boreal bog

    Science.gov (United States)

    Korrensalo, Aino; Männistö, Elisa; Alekseychik, Pavel; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; Tuittila, Eeva-Stiina

    2018-03-01

    We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012-2014) using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAITOT) and leaf area of aerenchymatous plant species (LAIAER). Methane emissions ranged from -309 to 1254 mg m-2 d-1. Although methane fluxes increased with increasing peat temperature, LAITOT and LAIAER, they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAIAER and LAITOT in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.

  10. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  11. Distilling peat and other carbonaceous matters

    Energy Technology Data Exchange (ETDEWEB)

    Stones, W B

    1850-03-07

    Improvements in treating peat and other carbonaceous and ligneous matters, so as to obtain products therefrom are disclosed. These improvements consist, first, of a machine for compressing and partially drying peat. The unpressed peat is put into boxes and these into frames which are passed through between the bowls of a machine resembling a pair of squeezers. Secondly, consists in distilling, at a temperature of, say 700/sup 0/F, the compressed peat, with or without the addition of tar or fatty matter in retorts, and condensing the vapors in a series of vessels, arranged after the manner of Wolfe's bottles. The resulting charcoal may be extinguished by passing carbonic acid through it while in an air-tight box or chamber, and it may then be compressed into bricks, and used for locomotives and other purposes.

  12. Peat

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article looks at the U.S. peat market as of July 2013. Peat is produced from deposits of plant organic materials in wetlands and includes varieties such as reed-sedge, sphagnum moss, and humus. Use for peat include horticultural soil additives, filtration, and adsorbents. Other topics include effects of environmental protection regulations on peat extraction, competition from products such as coir, composted organic waste, and wood products, and peatland carbon sinks.

  13. Radioactive fallout nuclides in a peat-bog ecosystem

    International Nuclear Information System (INIS)

    Pausch, G.; Hofmann, W.; Steger, F.; Tuerk, R.

    1996-01-01

    The Province of Salzburg belongs to the regions with the highest contamination from the Chernobyl-fallout outside the former USSR. The peat-bog investigated in this study is situated in Koppl, east of Salzburg. A peat-bog is a special example of an ecosystem, which is generally not disturbed by human activities because it is under strict nature-conservation and whose soil structure is not affected by animal activities from moles and earthworms. Peat-bogs are characterized by acidic soils which are high in organic material and low in clay mineral content. A number of previous studies have demonstrated that especially in peat-bogs and especially in the Koppl-peat-bog very high amounts of radioactive fallout nuclides from the Chernobyl accident and from the bomb-testings could be found

  14. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: Potential sources of the sorption nonlinearity

    Science.gov (United States)

    Chiou, C.T.; Kile, D.E.; Rutherford, D.W.; Sheng, G.; Boyd, S.A.

    2000-01-01

    The sorption isotherms of ethylene dibromide (EDB), diuron (DUN), and 3,5-dichlorophenol (DCP) from water on the humic acid and humin fractions of a peat soil and on the humic-acid of a muck soil have been measured. The data were compared with those of the solutes with the whole peat from which the humic-acid (HA) and humin (HM) fractions were derived and on which the sorption of the solutes exhibited varying extents of nonlinear capacities at low relative concentrations (C(e)/S(w)). The HA fraction as prepared by the density-fractionated method is relatively pure and presumably free of high- surface-area carbonaceous material (HSACM) that is considered to be responsible for the observed nonlinear sorption for nonpolar solutes (e.g., EDB) on the peat; conversely, the base-insoluble HM fraction as prepared is presumed to be enriched with HSACM, as manifested by the greatly higher BET- (N2) surface area than that of the whole peat. The sorption of EDB on HA exhibits no visible nonlinear effect, whereas the sorption on HM shows an enhanced nonlinearity over that on the whole peat. The sorption of polar DUN and DCP on HA and HM display nonlinear effects comparable with those on the whole peat; the effects are much more significant than those with nonpolar EDB. These results conform to the hypothesis that adsorption onto a small amount of strongly adsorbing HSACM is largely responsible for the nonlinear sorption of nonpolar solutes on soils and that additional specific interactions with the active groups of soil organic matter are responsible for the generally higher nonlinear sorption of the polar solutes.

  15. Radiocarbon dating of Sphagnum cellulose from Mohos peat bog, East Carpathians

    Science.gov (United States)

    Hubay, Katalin; Braun, Mihály; Harangi, Sándor; Palcsu, László; Túri, Marianna; Rinyu, László; Molnár, Mihály

    2015-04-01

    This work focuses on building a high-resolution age-depth model for quantitative paleoclimate study from the Mohos peat bog, East Carpathians. Peats are important archives for Quaternary science, because they preserve environmental changes. To study the chronology of peat profiles the key is in the precise coring and reliable dating. However, many studies dealing with coring and radiocarbon dating of peat deposits they often shown problems with the proper methods and material. With our novel coring technique we reached undisturbed and uncompressed peat cores from the Mohos bog. A 10 meter deep peat profile was drilled in 2012 using a modified technique of a piston corer. The core presents a continuous peat profile from the last 11.500 cal. yr BP. The chronology was based on AMS radiocarbon analyses of the separated Sphagnum samples from different depths of the profile. The peat samples were wet sieved (40-280 μm) to avoid contamination by rootlets. Dry Sphagnum samples for AMS dating were prepared using the classical acid-base-acid (ABA) method completed with an oxidative bleaching step to get clean cellulose. Sphagnum cellulose samples were converted to CO2 and later graphite and measured by EnvironMICADAS accelerator mass spectrometry (AMS) in Hertelendi Laboratory (Debrecen, Hungary). Fine peat accumulation rate changes (sections with lowest accumulation values) were observed along the profile. Based on the chronology in further studies we want to focus special intervals to investigate environmental changes in the Holocene. Key words: peat, radiocarbon, cellulose

  16. Singulisphaera rosea sp. nov., a planctomycete from acidic Sphagnum peat, and emended description of the genus Singulisphaera

    NARCIS (Netherlands)

    Kulichevskaya, I.S.; Detkova, E.N.; Bodelier, P.L.E.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Dedysh, S.N.

    2012-01-01

    A novel species, Singulisphaera rosea sp. nov., is proposed for aerobic, pink-pigmented, budding bacterium isolated from an acidic Sphagnum peat bog of northwestern Russia. This bacterium, designated strain S26T, has non-motile, spherical cells that occur singly, in pairs or in short chains and

  17. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    Science.gov (United States)

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. Copyright © 2015. Published by Elsevier Ltd.

  18. Research on estimation of methane generated in paddy field and release mechanism of the gas into the atmosphere. Suiden ni okeru methane hasseiryo no hyoka to sono hoshutsu kiko ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Minami, K; Nouchi, I; Yagi, K [National Institute of Agro-Environmental Science, Tsukuba (Japan)

    1991-11-25

    Research and estimation have been carried out on a mechanism to generate methane in paddy fields, which relates closely to global warming. For methane flux measurement, the chamber method was used. The result revealed that with paddy fields mixed with organic substances, methane generation was abundant in the order of raw rice straw mixed area > rice straw compost mixed area > chemical fertilizer mixed area. At the Ryugasaki test area, the raw rice straw and fertilizer mixed areas have generated methane annually at 27.0 gm[sup [minus]2] and 8.2 gm[sup [minus]2], respectively. With regard to soil types, the order was peat soil > gley soil > Kuroboku soil > light-colored Kuroboku soil, where the peat soil generated about 40 times as much of methane as the light-colored Kuroboku soil. As regards the influence from drainage adjustment, normally water-filled field, wet field, and dry field generated methane at 9.25, 4.79, and 0.34 gm[sup [minus]1] y[sup [minus]1], respectively. Amount of methane generated annually from paddy fields over the whole world was estimated at 22 to 73[times]10[sup 12] g. It was determined from the above facts that methane generation may be reduced if organic substance mixing and water in paddy fields are controlled properly. 8 refs., 5 figs., 1 tab.

  19. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts

    Science.gov (United States)

    Shan, Junjun; Li, Mengwei; Allard, Lawrence F.; Lee, Sungsik; Flytzani-Stephanopoulos, Maria

    2017-11-01

    An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid, which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. We find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolite-supported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. We anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol, acetic acid and other useful

  20. Anaerobic digestion of glucose with separated acid production and methane formation

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R J; Zoetemeyer, R J; Van Deursen, A; Van Andel, J G

    1979-01-01

    In a two-phase anaerobic-digestion system, with separate reactors for the acidification and methane fermentation phases, the glucose of a 1% glucose solution was almost completely converted into biomass and gases. The acid reactor was operated at 30/sup 0/C and a pH of 6.0, with a retention time of 10 h. The main products of the acid-forming phase were hydrogen, carbon dioxide, butyrate and acetate. On a molar base, these products represented over 96% of all products formed. On average, 12% of the COD content of the influent was evolved as hydrogen. The effluent of the first reactor was pumped to the methane reactor after passing through a storage vessel. The methane reactor was operated at 30/sup 0/C, pH 7.8 and a retention time of 100 h. Approximately 98% of the organic substances fed to this reactor were converted to methane, carbon dioxide and biomass. About 11% of the glucose fed to the digesting system was converted to bacterial mass.

  1. Technical Note: Methionine, a precursor of methane in living plants

    Science.gov (United States)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  2. Peat Research Seminar

    International Nuclear Information System (INIS)

    1993-01-01

    The VTT Seminar on Peat Research was held in Espoo, Finland, on April 14-15, 1993. The programme consisted of technical session on Peat in Energy Production, Peat Research Programs, Peat Production and Harvesting Technology

  3. Bringing back the rare - biogeochemical constraints of peat moss establishment in restored cut-over bogs

    Science.gov (United States)

    Raabe, Peter; Blodau, Christian; Hölzel, Norbert; Kleinebecker, Till; Knorr, Klaus-Holger

    2016-04-01

    In rewetted cut-over bogs in north-western Germany and elsewhere almost no spontaneous recolonization of hummock peat mosses, such as Sphagnum magellanicum, S. papillosum or S. rubellum can be observed. However, to reach goals of climate protection every restoration of formerly mined peatlands should aim to enable the re-establishment of these rare but functionally important plant species. Besides aspects of biodiversity, peatlands dominated by mosses can be expected to emit less methane compared to sites dominated by graminoids. To assess the hydrological and biogeochemical factors constraining the successful establishment of hummock Sphagnum mosses we conducted a field experiment by actively transferring hummock species into six existing restoration sites in the Vechtaer Moor, a large peatland complex with active peat harvesting and parallel restoration efforts. The mosses were transferred as intact sods in triplicate at the beginning of June 2016. Six weeks (mid-July) and 18 weeks later (beginning of October) pore water was sampled in two depths (5 and 20 cm) directly beneath the inoculated Sphagnum sods as well as in untreated control plots and analysed for phosphate, ferrous iron, ammonia, nitrate and total organic carbon (TOC). On the same occasions and additionally in December, the vitality of mosses was estimated. Furthermore, the increment of moss height between July and December was measured by using cranked wires and peat cores were taken for lab analyses of nutrients and major element inventories at the depths of pore water sampling. Preliminary results indicate that vitality of mosses during the period of summer water level draw down was strongly negatively related to plant available phosphate in deeper layers of the residual peat. Furthermore, increment of moss height was strongly negatively related to TOC in the upper pore waters sampled in October. Concentration of ferrous iron in deeper pore waters was in general significantly higher beneath

  4. Studies on sphagnum peat. III. A quantitative study on the carbohydrate constituents of sphagnum mosses and sphagnum peat

    Energy Technology Data Exchange (ETDEWEB)

    Theander, O

    1954-01-01

    A qualitative and a quantitative investigation of the carbohydrates in two sphagnum mosses and five samples of sphagnum peat of different age and degree of huminosity has been performed. The two mosses investigated showed no significant differences. Samples of very different age but with the same degree of physical huminosity were very similar, indicating that the chief changes occur at the top of the bog and/or are determined by the conditions at the start of the humification. The total amount of carbohydrates was about 90% of the organic material in the mosses and about 65% and 35% in peats with a degree of huminosity of 3-4 and 6-7 respectively. Of the constituent sugars, fructose which occurred in the mosses, was completely absent in the peat. Another sugar, which occurs in nature as a furanoside, arabinose, disappeared almost completely during the humification. The uronic acids and galactose decreased faster, while ylose and glucose decreased at about the same rate as the total carbohydrates. Mannose and probably also rhamnose are the most stable components and accumulate during the humification. The polysaccharides in mosses and peat seem to constitute a very complex mixture. The presence of a fructan in the living moss, of a polyuronide (pectin) and a large amount of more complex polysaccharides built up of galactose, xylose, rhamnose and uronic acids is indicated. The glucose, the most important constituent, probably occurs chiefly as cellulose, the presence of which has been demonstrated by other workers. Finally the behaviour of mannose during the humification indicates the presence of a stable mannan. There is no evidence of polysaccharides formed by microorganisms in the peat.

  5. OSPW contamination transport through peat soils : laboratory and greenhouse study

    Energy Technology Data Exchange (ETDEWEB)

    Rezanezhad, F.; Price, J.S. [Waterloo Univ., ON (Canada). Dept. of Geography; Rochefort, L.; Pouliot, R. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytology; Andersen, R. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytology; Macaulay Land Use Research Inst., Aberdeen (United Kingdom); Daly, C. [Suncor Energy, Fort McMurray, AB (Canada)

    2010-07-01

    Large portions of northern Canada are covered by peatlands, and the majority of post-mined landscapes have increased salinity, heavy metals and naphthenic acids (NA). This PowerPoint presentation discussed laboratory and greenhouse studies conducted to determine oil sands process water (OSPW) contamination transport through peat soils. Peat is a highly complex porous media. The presence of sodium and NA has a toxic effect on aquatic life. Greenhouse studies were conducted to determine the changes caused by OSPW in the microbial community of a peat matrix over 2 growing seasons. The study showed that peat has an exceptional ability to absorb the contaminants in OSPW water. NA and sodium transport through peat was significantly delayed by sorption, and by diffusion into immobile water contained in the peat matrix. The vegetation in the study was healthy and tolerant to the contaminants in the OSPW. tabs., figs.

  6. Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats.

    Science.gov (United States)

    Blodau, Christian; Siems, Melanie; Beer, Julia

    2011-12-01

    A mechanistic understanding of carbon (C) sequestration and methane (CH(4)) production is of great interest due to the importance of these processes for the global C budget. Here we demonstrate experimentally, by means of column experiments, that burial of water saturated, anoxic bog peat leads to inactivation of anaerobic respiration and methanogenesis. This effect can be related to the slowness of diffusive transport of solutes and evolving energetic constraints on anaerobic respiration. Burial lowered decomposition constants in homogenized peat sand mixtures from about 10(-5) to 10(-7) yr(-1), which is considerably slower than previously assumed, and methanogenesis slowed down in a similar manner. The latter effect could be related to acetoclastic methanogenesis approaching a minimum energy quantum of -25 kJ mol(-1) (CH(4)). Given the robustness of hydraulic properties that locate the oxic-anoxic boundary near the peatland surface and constrain solute transport deeper into the peat, this effect has likely been critical for building the peatland C store and will continue supporting long-term C sequestration in northern peatlands even under moderately changing climatic conditions.

  7. Biohydrogen and methane production via a two-step process using an acid pretreated native microalgae consortium.

    Science.gov (United States)

    Carrillo-Reyes, Julian; Buitrón, Germán

    2016-12-01

    A native microalgae consortium treated under thermal-acidic hydrolysis was used to produce hydrogen and methane in a two-step sequential process. Different acid concentrations were tested, generating hydrogen and methane yields of up to 45mLH 2 gVS -1 and 432mLCH 4 gVS -1 , respectively. The hydrogen production step solubilized the particulate COD (chemical oxygen demand) up to 30%, creating considerable amounts of volatile fatty acids (up to 10gCODL -1 ). It was observed that lower acid concentration presented higher hydrogen and methane production potential. The results revealed that thermal acid hydrolysis of a native microalgae consortium is a simple but effective strategy for producing hydrogen and methane in the sequential process. In addition to COD removal (50-70%), this method resulted in an energy recovery of up to 15.9kJ per g of volatile solids of microalgae biomass, one of the highest reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The contribution to the greenhouse effect from the use of peat and coal for energy

    International Nuclear Information System (INIS)

    Zetterberg, L.; Klemedtsson, L.

    1996-06-01

    Emissions and uptake of greenhouse gases have been estimated for the production and combustion of peat in four Swedish regions. Net emissions have been defined as the sum of emissions and uptake from mining, loading, transportation, combustion and forestation of the peat land minus emissions from the virgin peat land. Cropping of the forested peat land is not considered. Net CO 2 -emissions from the production and combustion of peat is estimated to be 87 g/MJ in the regions Bergslagen and Smaaland, 99 g/MJ in Haerjedalen and 95 g/MJ in Vaesterbotten kustland. Net N 2 -emissions are estimated to be 66 mg/MJ for all regions. Due to the natural methane emissions from a virgin peat bog, the production and combustion of peat reduces net CH 4 -emissions by 0.9 g CH 4 /MJ peat. A hypothetical case has been studied where all the drained peat areas are forested (instead of about half of the area as it is today). According to this scenario the net CO 2 -emissions are reduced from 87 to 57 g CO 2 /MJ peat for Bergslagen. As a comparison, CO 2 -emissions from the combustion of coal are ca 92 g CO 2 /MJ. Based on the emissions inventory the contribution to the greenhouse effect has been calculated in terms of the contribution to atmospheric radiative forcing. In conclusion, the contribution to the greenhouse effect from the use of peat for energy from Southern Sweden (Smaaland and Bergslagen) is ca 20% lower than the contribution from coal, counted as an average over 100 years after the mining starts. Corresponding figures for Northern Sweden (Haerjedalen and Vaesterbotten kustland) is ca 15% lower than coal. 21 refs, 12 figs, 7 tabs

  9. Anaerobic digestion of gucose with separated acid production and methane formation

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A; Zoetemeyer, R J; van Deursen, A; van Andel, J G

    1979-01-01

    In a two-phase anaerobic-digestion system, with separate reactors for the acidification phase and the methane fermentation phase, the Universiteit van Amsterdam found the glucose of a 1% glucose solution (sucrose/starch-containing wastewater from agricultural industries) to be almost completely converted into biomass and gases. The acid reactor was operated at 86/sup 0/F (30/sup 0/C) and pH 6.0, with a retention time of 10 hr. The main products of the acid-forming phase were hydrogen, carbon dioxide, butyrate, and acetate. On a molar base, these products represented over 96% of all products formed. On the average, 12% of the chemical-oxygen-demand content of the influent was evolved as hydrogen. The effluent of the first reactor went to the methane reactor after passing through a storage vessel. The methane reactor operated at 86/sup 0/F (30/sup 0/C), pH 7.8, and a retention time of 100 hr. Approximately 98% of the organic substances fed to this reactor was converted to methane, carbon dioxide, and biomass. About 11% of the glucose fed to the digesting system was converted to bacterial mass.

  10. High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA

    Science.gov (United States)

    Lau, Evan; Nolan, Edward J.; Dillard, Zachary W.; Dague, Ryan D.; Semple, Amanda L.; Wentzell, Wendi L.

    2015-01-01

    Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface peat; and (iii) submerged Sphagnum moss from Cranesville Swamp Preserve, West Virginia, using multiplex sequencing of bacterial 16S rRNA (V3 region) gene amplicons. From ~1 million reads, >50,000 unique OTUs (Operational Taxonomic Units), 29 and 34 unique sequences were detected in the Methylococcaceae and Methylocystaceae, respectively, and 24 potential methanotrophs in the Beijerinckiaceae were also identified. Methylacidiphilum-like methanotrophs were not detected. Proteobacterial methanotrophic bacteria constitute Sphagnum moss) or co-occurred in both Sphagnum moss and peat. This study provides insights into the structure of methanotrophic communities in relationship to habitat type, and suggests that peat and Sphagnum moss can influence methanotroph community structure and biogeography. PMID:27682082

  11. Methane reacts with heteropolyacids chemisorbed on silica to produce acetic acid under soft conditions

    KAUST Repository

    Sun, Miao

    2013-01-16

    Selective functionalization of methane at moderate temperature is of crucial economic, environmental, and scientific importance. Here, we report that methane reacts with heteropolyacids (HPAs) chemisorbed on silica to produce acetic acid under soft conditions. Specially, when chemisorbed on silica, H 4SiW12O40, H3PW12O 40, H4SiMo12O40, and H 3PMo12O40 activate the primary C-H bond of methane at room temperature and atmospheric pressure. With these systems, acetic acid is produced directly from methane, in a single step, in the absence of Pd and without adding CO. Extensive surface characterization by solid-state NMR spectroscopy, IR spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy suggests that C-H activation of methane is triggered by the protons in the HPA-silica interface with concerted reduction of the Keggin cage, leading to water formation and hydration of the interface. This is the simplest and mildest way reported to date to functionalize methane. © 2012 American Chemical Society.

  12. Methane reacts with heteropolyacids chemisorbed on silica to produce acetic acid under soft conditions

    KAUST Repository

    Sun, Miao; Abou-Hamad, Edy; Rossini, Aaron J.; Zhang, Jizhe; Lesage, Anne; Zhu, Haibo; Pelletier, Jeremie; Emsley, Lyndon; Caps, Valerie; Basset, Jean-Marie

    2013-01-01

    Selective functionalization of methane at moderate temperature is of crucial economic, environmental, and scientific importance. Here, we report that methane reacts with heteropolyacids (HPAs) chemisorbed on silica to produce acetic acid under soft

  13. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions.

    Science.gov (United States)

    He, Shaomei; Malfatti, Stephanie A; McFarland, Jack W; Anderson, Frank E; Pati, Amrita; Huntemann, Marcel; Tremblay, Julien; Glavina del Rio, Tijana; Waldrop, Mark P; Windham-Myers, Lisamarie; Tringe, Susannah G

    2015-05-19

    Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhouse gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities

  14. Peat in environmental management

    International Nuclear Information System (INIS)

    Rinttilae, R.

    1998-01-01

    Peat is the largest natural resource of Finland. The DS-reserves of peat are more than seven times larger than those of wood. Peat is known as a domestic source of energy. Peat is, however, more than an energy source. The most significant problem of water protection in Finland is the eutrophication of the water courses. The reduction of concentrated loads and large emissions sources has up to now been the target for the water protection. The control of diffuse loads has been more difficult. The environmental use of peat can reduce the loads on watercourses, and especially the diffuse emissions. The natural and unique properties of peat can be utilized in several targets: agriculture, pisciculture, fur farming, in small and medium sized industry, and in processing of waste waters of both municipalities and rural areas, as well as in different environmental hazards. The present use of environmental peat is just a small fragment of the annual growth of peat reserves in Finland. The amount of protected mires is about ten times larger than the amount of peatlands taken into peat production. The use of environmental peat makes it possible to reduce the diffuse loads significantly in the future. This, however, requires willingness of cooperation and development by the entrepreneurs, authorities, and peat producers. The present use of agricultural peat binds about three times more phosphor and nearly one and a half fold nitrogen fertilizers compare to the emissions caused by peat production. It has to be noticed that the utilization of peat in reduction of environmental loads does not cause any secondary waste problem. The final product formed can usually be composted and used e.g. in soil remediation or in construction of green areas. The tightening environmental regulations and international agreements increase the utilization of peat. As the demand of peat increased the quality requirements for peat will be increased. Certain grain size and the restoration of the

  15. Recycling of phenolic compounds in Borneo's tropical peat swamp forests.

    Science.gov (United States)

    Yule, Catherine M; Lim, Yau Yan; Lim, Tse Yuen

    2018-02-07

    Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings. The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves. Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

  16. Time-series analysis for the episodic production and transport of methane from the Glacial Lake Agassiz peatlands, northern Minnesota. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, D.I.

    1998-01-01

    The large peat basins of North America are an important reservoir in the global carbon cycle and a significant source of atmospheric methane. The authors investigated carbon cycling in the Glacial Lake Agassiz peatlands (GLAP) of Minnesota. Initially in 1990, they identified a dramatic change in the concentration of methane in the pore-waters of the raised bogs in the GLAP during an extreme drought. This methane dissipated when the drought broke in 1991 and the occurrence of deep methane is related to changes in the direction of groundwater flow in the peat column. The production of methane and its diffusive loss to the atmosphere was modeled and was about 10 times less than that measured directly in chambers at the land surface. It is clear from the reversals in hydraulic heat, changes in pore-water chemical composition over time, and paleostratigraphic markers, that regional ground water flow systems that are controlled by climate change are unexpectedly a major control over methanogenesis and carbon cycling in GLAP. Seismic profiles made showed that buried bedrock ridges particularly deflect regional groundwater flow upwards towards the land surface and towards raised bog landforms. In addition, high-resolution GPS measurements from data stations funded by this DOE project have shown this year that the peakland land surface elevation changes daily on a scale of cms, and seasonally on a scale of 10s of cm. This most recent observation is exciting because it may reflect episodic degassing of free phase methane from the peat column to the atmosphere, a source for methane previously unaccounted for by methane researchers.

  17. Cryptic Methane Emissions from Upland Forest Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Megonigal, Patrick [Smithsonian Institution, Washington, DC (United States); Pitz, Scott [Johns Hopkins Univ., Baltimore, MD (United States); Smithsonian Institution, Washington, DC (United States)

    2016-04-19

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) develop the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.

  18. New Approach in Modelling Indonesian Peat Fire Emission

    Science.gov (United States)

    Putra, E. I.; Cochrane, M. A.; Saharjo, B.; Yokelson, R. J.; Stockwell, C.; Vetrita, Y.; Zhang, X.; Hagen, S. C.; Nurhayati, A. D.; Graham, L.

    2017-12-01

    Peat fires are a serious problem for Indonesia, producing devastating environmental effects and making the country the 3rd largest emitter of CO2. Extensive fires ravaged vast areas of peatlands in Sumatra, Kalimantan and Papua during the pronounced El-Nino of 2015, causing international concern when the resultant haze blanketed Indonesia and neighboring countries, severely impacting the health of millions of people. Our recent unprecedented in-situ studies of aerosol and gas emissions from 35 peat fires of varying depths near Palangka Raya, Central Kalimantan have documented the range and variability of emissions from these major fires. We strongly suggest revisions to previously recommended IPPC's emission factors (EFs) from peat fires, notably: CO2 (-8%), CH4 (-55%), NH3 (-86%), and CO (+39%). Our findings clearly showed that Indonesian carbon equivalent measurements (100 years) might have been 19% less than what current IPCC emission factors indicate. The results also demonstrate the toxic air quality in the area with HCN, which is almost only emitted by biomass burning, accounting for 0.28% and the carcinogenic compound formaldehyde 0.04% of emissions. However, considerable variation in emissions may exist between peat fires of different Indonesian peat formations, illustrating the need for additional regional field emissions measurements for parameterizing peatland emissions models for all of Indonesia's major peatland areas. Through the continuous mutual research collaboration between the Indonesian and USA scientists, we will implement our standardized field-based analyses of fuels, hydrology, peat burning characteristics and fire emissions to characterize the three major Indonesian peatland formations across four study provinces (Central Kalimantan, Riau, Jambi and West Papua). We will provide spatial and temporal drivers of the modeled emissions and validate them at a national level using biomass burning emissions estimations derived from Visible

  19. International trade with peat and peat products - a challenge to international standardization

    Energy Technology Data Exchange (ETDEWEB)

    Schmilewski, G; Guenther, J [Institut fuer Torf- und Humusforschung GmbH (ITH), Bad Zwischenahn (Germany, F.R.)

    1990-01-01

    On a worldwide scale raised bog peat is the most important basic material for the production of growing media. Peat has greatly contributed to the realization of modern, standardized and even computer-controlled growing techniques in commercial horticulture. No other material can truly compete with the outstanding physical, chemical and biological properties of peat. All present and future substitutes will have to stand comparison with peat. Nonetheless, many other organic, mineral and synthetic materials are use in horticulture mainly to adjust the physical properties of growing media to new growing methods. As a direct or indirect consequence thereof, the spared raw material peat is a fact which is considered progressive in industrial countries strongly characterized by nature conservational ideas also. Some peat consuming countries do not have any indigenous peat resources and meet their demands with imports. Other countries, such as the Fed. Rep. of Germany, the Scandinavian countries and the USSR export considerable amounts of peat and peat products. International transactions have not only increased for big industries, but also for the peat industry. For the grower and for the producer of growing media alike, the knowledge of growing media properties are of fundamental importance. Various standard methods for the analysis of peat and growing media have been developed by national organizations and are being used just as manifold. In some cases national standards have derived from these.

  20. Examination of soil contaminated by coal-liquids by size exclusion chromatography in 1-methyl-2-pyrrolidinone solution to evaluate interference from humic and fulvic acids and extracts from peat.

    Science.gov (United States)

    Morgan, T J; Herod, A A; Brain, S A; Chambers, F M; Kandiyoti, R

    2005-11-18

    Soil from a redundant coke oven site has been examined by extraction of soluble materials using 1-methyl-2-pyrrolidinone (NMP) followed by size exclusion chromatography (SEC) of the extracted material. The extracted material was found to closely resemble a high temperature coal tar pitch. Standard humic and fulvic acids were also examined since these materials are very soluble in NMP and would be extracted with pitch if present in the soil. Humic substances derived from peat samples and NMP-extracts of peats were also examined. The results show that the humic and fulvic substances were not extracted directly by NMP from peats. They were extracted using caustic soda solution and were different from the peat extracts in NMP. These results indicate that humic and fulvic acids were soluble in NMP in the protonated polyelectrolyte form but not in the original native polyelectrolyte form. The extraction of soil using NMP followed by SEC appears to be a promising method for identifying contamination by coal-based industries.

  1. Methane ebullition fluxes from northern peatlands: initial observations from four sites of contrasting vegetation type in Caribou Bog, ME

    Science.gov (United States)

    Slater, L. D.; Comas, X.; Mumford, K. G.; Reeve, A. S.; Varner, R. K.; Chen, X.; Wright, W.; Wright, J.; Molnar, I. L.; Krol, M.

    2017-12-01

    The contribution of peatlands to the atmospheric CH4 burden remains unclear in large part due to incomplete understanding of the ebullition pathway. Oxidation of dissolved methane reduces the release of methane by diffusion, but the transit time of bubbles released via ebullition is too short for extensive oxidation to occur, i.e. ebullition releases increase the greenhouse gas potential of peatlands. We are working to couple innovative strategies for ebullition monitoring with a physical model describing gas transport in terms of the mechanical properties of the peat. This integration of measurement and modeling will permit a fundamental step forward towards a more quantitative understanding of CH4 ebullition from peatlands. Sampling and sensor installation have been performed in Caribou Bog, a multi-unit peatland located in Maine (USA) where an extensive database accounting for a decade of research is already available from previous work examining methane dynamics. Multi-depth gas trap and moisture probe arrays have been installed at four sites selected based on contrasting vegetation type and peat basin depth determined from extensive ground penetrating radar surveys. Hydraulic head measurements have also been acquired on multi-level piezometers designed to capture transient signals associated with gas transport. Cores and initial field observations acquired in summer 2017 confirm that the physical properties of the peat vary markedly between the sites and influence gas storage and release. An existing ebullition model describing gas bubble expansion is being coupled with an invasion percolation approach to describe the transport of CH4 between multiple peat layers by both diffusion in the pore water and ebullition between layers. Although the proposed model does not explicitly incorporate the geomechanical properties of peat, model predictions for maximum gas contents are being compared with key measurable geomechanical properties (including measured capillary

  2. Using Mass Spectroscopy to Examine Wetland Carbon Flow from Plants to Methane

    Science.gov (United States)

    Waldo, N.; Tfaily, M. M.; Moran, J.; Hu, D.; Cliff, J. B.; Gough, H. L.; Chistoserdova, L.; Beck, D.; Neumann, R. B.

    2017-12-01

    In the anoxic soil of wetlands, microbes produce methane (CH4), a greenhouse gas. Prior studies have documented an increase in CH4 emissions as plant productivity increases, likely due to plants releasing more labile organic carbon from roots. But in the field, it is difficult to separate changes in plant productivity and root carbon exudation from other seasonal changes that can affect methane emissions, e.g. temperature. Clarifying the role that root exudation plays in fueling methane production is important because increasing atmospheric temperatures and CO2 levels are projected to increase plant productivity and exudation. To advance understanding of climate-methane feedbacks, this study tracked the flow of carbon from plants into the wetland rhizosphere as plant productivity increased in controlled laboratory conditions. We grew Carex aquatilis, a wetland sedge, in peat-filled rootboxes. Both early and late during the plant growth cycle, we exposed plants to headspace 13CO2, which the plants fixed. Some of this labeled carbon was exuded by the roots and used by rhizosphere microbes. We tracked the isotope ratio of emitted CH4 to establish the time required for plant-released carbon to fuel methanogenesis, and to determine the relative contribution of plant-derived carbon to total CH4 emission. We destructively harvested root and rhizosphere samples from various locations that we characterized by isotope ratio mass spectrometry (MS) to determine isotopic enrichment and therefore relative abundance of root exudates. We analyzed additional aliquots of rhizosphere soil by Fourier transform ion cyclotron resonance MS to track chemical changes in soil carbon as root exudates were converted into methane. To advance mechanistic understanding of the synergistic and competitive microbial interactions that affect methane dynamics in the wetland rhizosphere, we used fluorescence in-situ hybridization to visualize microbial community composition and spatial associations

  3. Regional Haze Evolved from Peat Fires - an Overview

    Science.gov (United States)

    Hu, Yuqi; Rein, Guillermo

    2016-04-01

    This work provides an overview of haze episodes, their cause, emissions and health effects found in the scientific literature. Peatlands, the terrestrial ecosystems resulting from the accumulation of partially decayed vegetation, become susceptible to smouldering fires because of natural droughts or anthropogenic-induced drainages. Once ignited, smouldering peat fires persistently consume large amounts of soil carbon in a flameless form. It is estimated that the average annual carbon gas emissions (mainly CO2 and CO) from peat fires are equivalent to 15% of manmade emissions, representing influential perturbation of global carbon circle. In addition to carbon emissions, smouldering peat fires emit substantial quantities of heterogeneous smoke, which is responsible for haze phenomena, has not yet been fully studied. Peat-fire-derived smoke is characterized by high concentration of particulate matter (PM), ranging from nano-scale ultrafine fraction (PM1, particle diameter condition, and then low buoyant smoke plume could accumulate and migrate long distances, leading to regional haze. Apart from air quality deterioration, haze leads to severe reduction in visibility, which strongly affects local transportation, construction, tourism and agriculture-based industries. For example, an unprecedented peatland mega-fire burst on the Indonesian islands Kalimantan and Sumatra during the 1997 El-Niño event, resulting in transboundary smoke-haze disaster. Severe haze events continue to appear in Southeast Asia every few years due to periodical peat fires in this region. In addition, smouldering peat fires have been frequently reported in tropical, temperate and boreal regions (Botswana in 2000, North America in 2004, Scotland in 2006 and Central Russia in 2010 et al.), peat-fire-induced haze has become a regional seasonal phenomenon. Exposure to smoky haze results in deleterious physiologic responses, predominantly to the respiratory and cardiovascular systems. In 1997, an

  4. Heterotrophic respiration in drained tropical peat temperatures influenced by shading gradient

    Science.gov (United States)

    Jauhiainen, Jyrki; Kerojoki, Otto; Silvennoinen, Hanna; Limin, Suwido; Vasander, Harri

    2015-04-01

    Lowland peatlands in Southeast Asia constitute a highly concentrated carbon (C) pool of global significance. These peatlands have formed over periods of several millennia by forest vegetation tolerant to flooding and poor substrates. Uncontrollable drainage and reoccurring wild fires in lack of management after removal of forest cover has impaired the C-storing functions in large reclaimed areas. Intergovernmental Panel on Climate Change (IPCC) reporting sees drained tropical organic soils as one of the largest greenhouse gas emissions releasing terrestrial systems. Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. We studied heterotrophic carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in tropical peat in conditions, where; (i) peat temperatures were modified by artificial shading (no shade, 28%, 51% and 90% from the full sun exposure), (ii) root respiration was minimized, (iii) nutrient availability for peat decomposer community was changed (NPK fertilization of 0 and 313 kg ha-1). The experiment was repeated at two over 20 years ago drained fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Enhanced shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference was between the unshaded and 90% shaded peat surface, where the average temperatures within the topmost 50-cm peat profile differed 3 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO2 emission average on the unfertilised plots and a 66% lower emission average on the fertilised plots. Correlation

  5. Development of peat-oil (POM) and peat-alcohol (PAM) slurries as alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D F

    1983-11-01

    The preparation and evaluation of peat/No. 2 fuel oil mixtures (POM) and peat/methanol mixtures (PAM) is described. POM and PAM prepared using North Carolina peat and having varied peat loadings, peat moisture contents and peat particle sizes have been studied by measuring slurry sedimentation ratios and drain times from sedimentation tubes. The peat moisture content was particularly crucial in forming stable slurries. The effect of a variety of additives at 0.5-1.0 wt% on sedimentation ratios, drain times and viscosities was studied. Calorimetric studies of several PAM and POM slurries as well as preliminary combustion tests of POM slurries in a salamander burner are also reported.

  6. Interactions between Nitrogen Fixation and Methane Cycling in Northern Minnesota Peat Bogs

    Science.gov (United States)

    Warren, M. J.; Gaby, J. C.; Lin, X.; Morton, P. L.; Kostka, J. E.; Glass, J. B.

    2014-12-01

    Peatlands cover only 3% of the Earth's surface, yet store a third of soil carbon. Increasing global temperatures have the potential to change peatlands from a net sink to a net source of atmospheric carbon. N is a limiting nutrient in oligotrophic Sphagnum-dominated peatlands and biological N2 fixation likely supplies a significant but unknown fraction of N inputs. Moreover, environmental controls on diazotrophic community composition in N-limited peatlands are poorly constrained. Thus, improved understanding of feedbacks between the CH4 and N cycles is critical for predicting future changes to CH4 flux from peat bogs. We coupled measurements of N2 fixation activity measured by the acetylene (C2H2) reduction assay (ARA) with molecular analyses of expression and diversity of nifH genes encoding the molybdenum (Mo)-containing nitrogenase from two peat bogs in the Marcell Experimental Forest, Minnesota, USA. The top 10 cm of peat was sampled from the high CH4 flux S1 bog and the low CH4 flux Zim bog in April and June 2014. Despite similar N concentrations in the top 10 cm of both bogs (0.5-1.0 μM NO2-+NO3- and 2-3 μM NH4+), the S1 bog displayed variable ARA activity (1-100 nmol C2H4 h-1 g-1) whereas the Zim bog had consistently low ARA activity (Methylocella was the dominant diazotroph in the S1 bog based on high throughput next generation sequencing of nifH cDNA amplicons. Given previous reports of C2H2 inhibition of methanotrophy, we measured CH4 consumption in the presence or absence of 1% C2H2. Preliminary results suggest minimal effect of C2H2 on CH4 oxidation. Future measurements of 15N2 incorporation coupled to molecular analysis will elucidate whether methanotroph diazotrophy was suppressed by C2H2 in ARA incubations.

  7. Origins of mineral matter in peat marsh and peat bog deposits, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Buendia, A.M. [Unidad Tecnica del Marmol, AIDICO, Cami de Castella, 4, 03660 Novelda, Alicante (Spain); Whateley, M.K.G. [Rio Tinto Technical Services, Castlemead, Lower Castlemead, BS99 7YR Bristol (United Kingdom); Bastida, J.; Urquiola, M.M. [Dpto. Geologia, Univ. Valencia, Dr. Moliner 50. 46100 Burjasot, Valencia (Spain)

    2007-07-02

    The mineralogy of three back-barrier peat marshes (Torreblanca, Benicasim and Moncofar marshes) from Eastern Spain and one peat bog (Orihuela del Tremedal bog) from central east Spain have been investigated, using X-ray diffraction (XRD) and scanning electronic microscope (SEM) techniques. A combination of XRD methods was used to quantify the mineralogy of dried bulk peat samples. The water source in the peat marshes is both continental and marine. Water is highly mineralised. Water flow is both low and slow (accumulative system). The water source in the peat bog is continental, draining from the hill. The higher concentration of ions in the water of the back-barrier peat marshes leads to a higher concentration of authigenic minerals in the peat marshes compared to the peat bog. Three main mineral origins have been recognized, namely: detrital, syngenetic-epigenetic and biogenic. The more important contribution comes from the detrital system. Biogenic and bio-influenced minerals are the main non-detrital minerals in the peatlands. This paper discusses the biogenic origin of halite (and other minor halides and sulphates, such as, sylvite, carnalite, epsomite, glauberite, mirabilite and anhydrite?) from halophytic plants, as well as amorphous silica (opal-A) from sponge spicules and phytoliths of several plants. Pyrite in the peat bog has both syngenetic and epigenetic origins from plant decomposition and sulphur release. In the peat marsh the pyrite has a syngenetic origin from sulphate reduction (S{sub sulphate} {yields} S{sub pyritic}), and an epigenetic origin in the older peat, from plant decomposition (S{sub organic} {yields} S{sub pyritic}). (author)

  8. New record in peat utilization

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Increment of peat utilization that started in 1990 continued also in 1991, due to which new record was achieved. Peat delivery increased 11.2 % from 16.1 million m 3 in 1990 to 17.9 million m 3 in 1991. The portion of energy peat was 16.4 million m 3 , and the portion of peat for other purposes 1.5 million m 3 . The energy content of fuel peat was 15.8 TWh, of which 13.8 TWh was milled peat and 2.0 TWh sod peat. The main portion of energy peat was used in communal back-pressure power plants for production of electricity and district heat. The second largest utilizer was industry. The rests 0.3 TWh (2 %) was delivered to private small scale utilization and export. About 88 000 MWh of sod peat was exported to Sweden. The portion of horticultural peat of the peat delivered for other purposes than energy production was 662 000 m 3 , of which only 260 000 m 3 was used in Finland and 408 000 m 3 was exported. Agriculture is the main user of peat outside the energy production. Weakly humified peat was used as litter and as absorber for slurrified manure about 286 000 m 3 . The value of the deliveries of peat industry exeeded 800 million FIM, of which the portion of milled peat was about 650 million FIM, the portion of sod peat about 95 million FIM, and the portion of domestic deliveries of horticultural peat 30 million FIM. The export of peat was 36 million FIM. Peat production in 1991 was 10.605 million m 3 , which is nearly a half of the production of 1990. The decrease was caused by both poor weather of may-june 1991 and the large peat supplies from the year 1990. About 60 % of the production target of 1991 was achieved. The production of sod peat increased by over 50 % from 736 000 m 3 in 1990 to 1 147 000 m 3 in 1991

  9. Establishment and assessment of an integrated citric acid-methane production process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Bao, Jia-Wei; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the problem of extraction wastewater in citric acid industrial production, an improved integrated citric acid-methane production process was established in this study. Extraction wastewater was treated by anaerobic digestion and then the anaerobic digestion effluent (ADE) was stripped by air to remove ammonia. Followed by solid-liquid separation to remove metal ion precipitation, the supernatant was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. 130U/g glucoamylase was added to medium after inoculation and the recycling process performed for 10 batches. Fermentation time decreased by 20% in recycling and the average citric acid production (2nd-10th) was 145.9±3.4g/L, only 2.5% lower than that with tap water (149.6g/L). The average methane production was 292.3±25.1mL/g CODremoved and stable in operation. Excessive Na(+) concentration in ADE was confirmed to be the major challenge for the proposed process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Drip irrigation emitter clogging in Dutch greenhouses as affected by methane and organic acids

    NARCIS (Netherlands)

    Kreij, de C.; Burg, van der A.M.M.; Runia, W.T.

    2003-01-01

    It is believed that the serious clogging of drip irrigation emitters in the Dutch greenhouse industry is caused by methane-oxidising bacteria and/or organic acids used as anti-clogging agents. In this study greenhouses with moderate to severe emitter clogging have been examined. High methane

  11. Methodology for methane emission inventory from Snam transmission system

    International Nuclear Information System (INIS)

    Premoli, M.; Riva, A.

    1997-01-01

    Methane, the main component of natural gas, is recognised as one of the most important contributors of the greenhouse effect, responsible for about 22% of the total. Several industries of natural gas, among which Snam, have undertaken intensive programs focused on the quantification of the total amounts of methane emitted in their operating activities. Snam elaborated a scientifically reliable methodology, for evaluating the annual methane emissions from its transmission system, based on a statistic approach using specific 'activity factors', that are the emitting equipment population and the frequency of emitting events, and emission factors. Part of the latter are based on GRI-EPA emission factors calculated for natural gas systems in the U.S. and adjusted to Snam system, and the other were measured during a field campaign on a random sample of previously identified large emission sources in Snam compressor and metering and regulating stations. The study showed that the methane release to the air from Snam natural gas transmission system was only the 0.1% of the total amount of methane in the natural gas imported and produced in Italy in 1993. (au)

  12. Greenhouse gas efflux from an impacted Malaysian tropical peat swamp (Invited)

    Science.gov (United States)

    Waldron, S.; Vihermaa, L. E.; Evers, S.; Garnett, M.; Newton, J.; Padfield, R.

    2013-12-01

    Tropical peatlands constitute ~11% of global peatland area and ~12% of the global peat C pool. Malaysia alone contains 10% of tropical peats. Due to rising global demands for food and biofuels, SE-Asia peat swamp forest ecosystems are threatened by increasing amounts of drainage, fire and conversion to plantation. These processes can change the GHG emissions and thus net ecosystem C balance. However, in comparison to temperate and boreal peatlands, there is a lack of data on terrestrial-aquatic-atmospheric carbon transfer from tropical peatlands, both those that are little disturbed and those facing anthropogenic pressures. Lateral transport of soil-respired carbon, and fluvial respiration or UV-oxidation of terrestrial DOC primes atmospheric carbon dioxide efflux. We now know that DOC lost from disturbed tropical peat swamp forests can be centuries to millennia old and originates deep within the peat column - this carbon may fuel efflux of old carbon dioxide and so anthropogenic land-use change renders the older, slower carbon cycles shorter and faster. Currently we have no knowledge of how significant ';older-slower' terrestrial-aquatic-atmospheric cycles are in disturbed tropical peatlands. Further, in some areas for commercial reasons, or by conservation bodies trying to minimise peat habitat loss, logged peats have been left to regenerate. Consequently, unpicking the legacy of multiple land uses on magnitude, age and source of GHG emissions is challenging but required to support land management decisions and projections of response to a changing climate. Here, we present the results of our first field campaign in July 2013 to the Raja Musa and Sungai Karang Peat Swamp Forest Reserves in North Selangor, Malaysia. This is one of Malaysia's largest oceanic peat swamps, and has been selectively logged and drained for 80 years, but is now subject to a 30 year logging ban to aid forest regeneration and build up wood stocks. From sites subject to different land use

  13. Rain increases methane production and methane oxidation in a boreal thermokarst bog

    Science.gov (United States)

    Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.

    2017-12-01

    Bottom-up biogeochemical models of wetland methane emissions simulate the response of methane production, oxidation and transport to wetland conditions and environmental forcings. One reason for mismatches between bottom-up and top-down estimates of emissions is incomplete knowledge of factors and processes that control microbial rates and methane transport. To advance mechanistic understanding of wetland methane emissions, we conducted a multi-year field investigation and plant manipulation experiment in a thermokarst bog located near Fairbanks, Alaska. The edge of the bog is experiencing active permafrost thaw, while the center of the bog thawed 50 to 100 years ago. Our study, which captured both an average year and two of the wettest years on record, revealed how rain interacts with vascular vegetation and recently thawed permafrost to affect methane emissions. In the floating bog, rain water warmed and oxygenated the subsurface, but did not alter soil saturation. The warmer peat temperatures increased both microbial methane production and plant productivity at the edge of the bog near the actively thawing margin, but minimally altered microbial and plant activity in the center of the bog. These responses indicate processes at the edge of the bog were temperature limited while those in the center were not. The compounding effect of increased microbial activity and plant productivity at the edge of the bog doubled methane emissions from treatments with vascular vegetation during rainy years. In contrast, methane emissions from vegetated treatments in the center of the bog did not change with rain. The oxygenating influence of rain facilitated greater methane oxidation in treatments without vascular vegetation, which offset warming-induced increases in methane production at the edge of the bog and decreased methane emissions in the center of the bog. These results elucidate the complex and spatially variable response of methane production and oxidation in

  14. Review of pre-treated peat applied in treating domestic wastewaters and oily waters

    International Nuclear Information System (INIS)

    Jiang, X.; Coles, C.A.; Asapo, E.S.

    2008-01-01

    This paper discussed recent research related to the use of peat in removing contaminants from domestic wastewater, oil-contaminated water, and soil. The review also discussed methods of pretreating peat before its application to polluted area. Pretreatment processes are needed to remove components in peat that interfere with treatment mechanisms. Polymers are added to peat in order to encourage the aggregation of the peat particles into larger colloidal particles that are easy to dewater. Phosphoric acid treatments are also applied to increase the swelling capacity of peat. Hydrogen peroxide is used to break down oil-contaminated peat in order to facilitate its subsequent decomposition. Experiments have demonstrated that peat is an effective adsorbent for many different types of oil. Studies have demonstrated that the removal rate for standard mineral and crude oils from wastewater using peat was 83 and 70 per cent. Applications of commercial peat to the surface of oily contaminated waters resulted in oil removal efficiencies of 99.998 per cent. It was concluded that peat is an effective, low-cost material for removing contaminants from domestic waste water and oil-contaminated water. The peat can also be used as a secondary energy source after the sorption process. While peat is an abundant resource in Canada, the resource is found mainly in wetlands. Effective harvesting strategies should be used to ensure the environmental sustainability of peat filtration systems. 38 refs., 1 tab

  15. Large emissions from floodplain trees close the Amazon methane budget

    Science.gov (United States)

    Pangala, Sunitha R.; Enrich-Prast, Alex; Basso, Luana S.; Peixoto, Roberta Bittencourt; Bastviken, David; Hornibrook, Edward R. C.; Gatti, Luciana V.; Marotta, Humberto; Calazans, Luana Silva Braucks; Sakuragui, Cassia Mônica; Bastos, Wanderley Rodrigues; Malm, Olaf; Gloor, Emanuel; Miller, John Bharat; Gauci, Vincent

    2017-12-01

    Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010-2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources.

  16. Large emissions from floodplain trees close the Amazon methane budget.

    Science.gov (United States)

    Pangala, Sunitha R; Enrich-Prast, Alex; Basso, Luana S; Peixoto, Roberta Bittencourt; Bastviken, David; Hornibrook, Edward R C; Gatti, Luciana V; Marotta, Humberto; Calazans, Luana Silva Braucks; Sakuragui, Cassia Mônica; Bastos, Wanderley Rodrigues; Malm, Olaf; Gloor, Emanuel; Miller, John Bharat; Gauci, Vincent

    2017-12-14

    Wetlands are the largest global source of atmospheric methane (CH 4 ), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH 4 in the tropics, consistently underestimate the atmospheric burden of CH 4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH 4 emissions. Here we report CH 4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH 4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ 13 C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH 4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a 'top-down' regional estimate of CH 4 emissions of 42.7 ± 5.6 teragrams of CH 4 a year for the Amazon basin, based on regular vertical lower-troposphere CH 4 profiles covering the period 2010-2013. We find close agreement between our 'top-down' and combined 'bottom-up' estimates, indicating that large CH 4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH 4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH 4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH 4 source when trees are combined with other emission sources.

  17. The development of peat-oil (POM) and peat-alcohol (PAM) slurries as alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D F; Evans, G O; Harrell, P A; Whitehurst, B M

    1983-11-01

    The preparation and evaluation of peat/No. 2 fuel oil mixtures (POM) and peat/methanol mixtures (PAM) is described. POM and PAM prepared using North Carolina peat and having varied peat loadings, peat moisture contents, and peat particle sizes have been studied by measuring slurry sedimentation ratios and drain times from sedimentation tubes. The peat moisture content was particularly crucial in forming stable slurries. The effect of a variety of additives at 0.5-1.0 wt.% on sedimentation ratios, drain times, and viscosities was studied. Calorimetric studies of several PAM and POM slurries as well as preliminary combustion tests of POM slurries in a salamander burner are also reported.

  18. The Climate Impact of Energy Peat Utilisation in Sweden - the Effect of former Land-Use and After-treatment

    International Nuclear Information System (INIS)

    Nilsson, Kristina; Nilsson, Mats

    2004-12-01

    The potential climate impact from the use of peat for energy production in Sweden was evaluated in terms of contribution to atmospheric radiative forcing. The calculations consider emissions from combustion and from the peatlands before, during and after harvesting. Four main groups of peatlands in use for peat harvesting were identified: 1. pristine peatlands; 2. drained peatlands used for agriculture; 3. drained peatlands used for forestry (low productive); 4. peatlands previously (historically) used for peat harvesting. The radiative forcing of different scenarios using the mentioned peatland types for energy peat production was calculated, using literature and empirical data related to peat harvesting, at these four types of mires. In the calculations the original land-use was set as reference scenario. The radiative forcing caused by using agricultural peatlands for energy peat production was much lower than for the corresponding use of pristine peatlands and old peat harvesting areas. The calculated value for the radiative forcing of current (20-year period of harvesting and combustion) peat utilisation for energy in a 100-year perspective ranges between 80-90% of the corresponding radiative forcing from using coal and 165-180% from using natural gas. The scenarios for different peatland types and the currently used peatlands show that there is a potential to reduce the radiative forcing caused by energy peat production and utilisation in Sweden by selecting peat harvesting area and after-treatment method. It was concluded that both the greenhouse gas balance of the peatland before harvesting and the after-treatment methods strongly impact the radiative forcing from energy peat utilisation. The radiative forcing from continuous utilisation of energy peat was also calculated a few scenarios. The results show a slower development than the shorter harvesting/combustion scenarios. Since new peat continuously is burnt it will take longer time before the benefit of

  19. The Climate Impact of Energy Peat Utilisation in Sweden - the Effect of former Land-Use and After-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Kristina [Swedish Environmental Research Institute, Stockholm (Sweden); Nilsson, Mats [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Ecology

    2004-12-01

    The potential climate impact from the use of peat for energy production in Sweden was evaluated in terms of contribution to atmospheric radiative forcing. The calculations consider emissions from combustion and from the peatlands before, during and after harvesting. Four main groups of peatlands in use for peat harvesting were identified: 1. pristine peatlands; 2. drained peatlands used for agriculture; 3. drained peatlands used for forestry (low productive); 4. peatlands previously (historically) used for peat harvesting. The radiative forcing of different scenarios using the mentioned peatland types for energy peat production was calculated, using literature and empirical data related to peat harvesting, at these four types of mires. In the calculations the original land-use was set as reference scenario. The radiative forcing caused by using agricultural peatlands for energy peat production was much lower than for the corresponding use of pristine peatlands and old peat harvesting areas. The calculated value for the radiative forcing of current (20-year period of harvesting and combustion) peat utilisation for energy in a 100-year perspective ranges between 80-90% of the corresponding radiative forcing from using coal and 165-180% from using natural gas. The scenarios for different peatland types and the currently used peatlands show that there is a potential to reduce the radiative forcing caused by energy peat production and utilisation in Sweden by selecting peat harvesting area and after-treatment method. It was concluded that both the greenhouse gas balance of the peatland before harvesting and the after-treatment methods strongly impact the radiative forcing from energy peat utilisation. The radiative forcing from continuous utilisation of energy peat was also calculated a few scenarios. The results show a slower development than the shorter harvesting/combustion scenarios. Since new peat continuously is burnt it will take longer time before the benefit of

  20. Biosorption of mercury from aqueous solutions using highly characterised peats

    Directory of Open Access Journals (Sweden)

    A.M. Rizzuti

    2015-02-01

    Full Text Available This research investigated the biosorption of mercury from aqueous solutions by six highly characterised peats. Samples of the peats were tested both in unaltered condition and after being treated with hydrochloric acid (HCl to free up any occupied exchange sites. Other variables tested were sample dose, contact time, mixing temperature, and the concentration and pH of the mercury solution. Desorption studies were also performed, and tests were done to determine whether the peats could be re-used for mercury biosorption. The results indicate that all six peat types biosorb mercury from aqueous solutions extremely well (92−100 % removal and that their mercury removal capacities are not significantly affected by manipulation of the various factors tested. The factor that had the greatest impact on the mercury removal capacities of the peats was the pH of the mercury solution. The optimal mercury solution pH for mercury removal was in the range 5−7 for four of the peats and in the range 2−3 for the other two. The desorption results indicate that it may be possible to recover up to 41 % of the removed mercury. All of the peat types tested can be repeatedly re-used for additional mercury biosorption cycles. Hence, their disposal should not become a hazardous waste problem.

  1. The influence of peat water to the colony number of aerob bacteria in mouth

    Directory of Open Access Journals (Sweden)

    Peni Purwandari

    2016-08-01

    Full Text Available Peatlands in Borneo is the second which the pH is 32% below normal that is 2-5, the pH of the acid contained in the peat water can trigger the acid environment of the oral cavity resulting in increased aerobic bacteria of the oral cavity. Most small communities of South Kalimantan who lives inland which is unreachable with clean water still use peat water for daily necessities. The purpose of this study was to determine the effect of peat water to the number of aerobic bacteria colonies of the oral cavity. This study used the quasi-experimental research design with pre-posttest control group design. The study sample consisted of 20 students of Faculty of Dentistry, Lambung Mangkurat University. The research used peat water after mouth rinsing with 10 ml of water and then the number of aerobic bacteria colonies which were present in bacterial growth media was counted. The result of this study showed that the result of paired t-test showed no significant differences between the groups before and after rinsing with  peat water (p = 0.001 (p <0.005. Based on the research we conclude that the peat water may cause an increasing in the number of colonies of aerobic bacteria of the oral cavity.

  2. Life-cycle of fuel peat

    International Nuclear Information System (INIS)

    Leijting, J.; Silvo, K.

    1998-01-01

    The share of peat in the primary energy supply in Finland in 1996 was about 6.5 % and the area used for peat production was about 535 km 2 , corresponding to about 0.5 % of the original peatland area of Finland. Fuel peat production is hence a significant form of using natural resources. About 1.4 % of the total peatland area has been reserved for peat production. Approximately 95 % of the peat excavated in Finland is used as fuel peat, and 5 % as horticultural peat. As raw material and fuel peat can be considered to be slowly renewable material. The environmental impacts of fuel peat production, transportation and peat combustion were evaluated in this research by methods used in life-cycle assessment. Preparation and production phases of peat production areas, fuel peat transportation to power plants, combustion of peat in power plants, and disposal of the ashes formed the basis for the investigation. Data collected in 1994-1996 was used as the basic material in the research. Special attention was paid to the estimation of greenhouse gas balance when using a virgin bog and the forest drained peatland areas as starting points. Post-production use of peatlands were not inspected in the life-cycle assessment. The work was carried out in 1997 in cooperation with Vapo Oy. The regional environmental centers, VTT and Helsinki and Joensuu Universities assisted significantly in acquisition of the material and planning of the work 3 refs

  3. PDF -- new peat technology

    Energy Technology Data Exchange (ETDEWEB)

    Myreen, P B

    1982-12-01

    The impact of a large-scale utilization of peat must be assessed in each region separately. As it is completely impractical to transport wet peat over long distances, a PDF plant must be built in the peatland region. Such regions often need economic stimulation. The PDF process can be run independent of season and weather, and thus offers permanent jobs. Dredging the peat layer all at once in a wet state is an operation concentrated on a very small land area. If this area can be drained, it can soon afterwards be forested or used for agricultural purposes. Even if the area from which the peat is removed is left as a wetland, when cleverly done, the ecological effects may be favourable. Peat is a significant energy source in many countries now looking for domestic alternatives to expensive imported fuels. The main constraint on large-scale utilization of peat is its ability to retain moisture. The wet-carbonization process, utilized in a PDF plant and yielding a high-quality peat-derived fuel, is believed to be a technically feasible and economically attractive industrial method of dewatering native peat.

  4. Effect of Formic Acid on In Vitro Ruminal Fermentation and Methane Emission

    Directory of Open Access Journals (Sweden)

    Kanber Kara

    2015-10-01

    Full Text Available In this study, it was aimed to investigate the effects of formic acid on the in vitro methane production and in vitro ruminal fermentation of alfalfa hay. Effect of 0.0 (control group: YF0, 0.1, 0.2, 0.3, 0.4 and 0.5 ml/L (experimental groups: YF1, YF2, YF3, YF4, and YF5 respectively formic acid (Amasil85-liquid addition to rumen fluid on ruminal fermentation parameters of alfalfa hay were determined by using in vitro gas production techniques. Methane production of in vitro incubation increased (to about 20% with addition of linearly increased formic acid. Linearly increased levels of formic acid addition to rumen fluid has significantly changed the production of in vitro total gas production, metabolic energy (ME and organic matter digestibility (OMD at linear, quadratic and cubic. The addition of 0.1 ml/L and 0.2 ml/L formic acid to rumen fluid significantly decreased in vitro total gas production, ME and OMD however addition of 0.3 ml/L and 0.4 ml/L formic acid was not changed in vitro gas production, ME and OMD levels and 0.5 ml/L formic acid was significantly increased all these parameters. Ruminal pH was not changed by addition of formic acid. Formic acid is a safe feed additive because of its properties antibacterial and flavorings and also is used as a fermentation promoter in silage. In this study it has been observed that all doses of formic acid increased in vitro enteric methane production and low doses decreased in vitro total gas production, ME and OMD and high doses have increased all these parameters. High doses have a positive effect on ME and OMD; however formic acid should be used at limited levels in diets due to the negative effect of increasing greenhouse gases. The effect of formic acid addition to the feed raw matter and rations of all livestock would be beneficial to investigate in terms of digestive system parameters and global warming, further in vitro and in vivo studies.

  5. Fluxes of methane and nitrogen oxides in various boreal mire ecosystems. Effects of land-use activities and environmental changes

    Energy Technology Data Exchange (ETDEWEB)

    Martikainen, P J; Nykaenen, H; Regina, K [National Public Health Inst., Kuopio (Finland). Lab. of Environmental Microbiology; Alm, J; Silvola, J [Joensuu Univ. (Finland). Dept. of Biology

    1997-12-31

    Atmospheric impact of peatlands is a sum of their gas fluxes. In contrast to carbon dioxide, peatlands are net sources for methane (CH{sub 4}). Methane is an end product in the anaerobic decomposition processes and it has greater capacity to absorb infrared radiation than carbon dioxide. Most of the data on the CH{sub 4} release from northern peatlands is from North America. The total amount of methane released from wetlands is calculated to be 110 Tg yr{sup -1} of which 34 percent (38 Tg yr{sup -1}) is estimated to be emitted from the northern peatlands. Peat with high content of nitrogen is a potential source for gaseous nitrogen oxides, i.e. nitrous oxide (N{sub 2}O) and nitric oxide (NO). However, the importance of peatlands in producing these trace gases is poorly known. Nitrous oxide and nitric oxide are important components in the atmospheric chemistry and N{sub 2}O also is an effective greenhouse gas. Land-use activities and environmental changes can affect the atmospheric impacts of peatlands by modifying their biogeochemistry. This article presents a short summary of the studies whose objectives were: (1) to measure fluxes of CH{sub 4} and N{sub 2}O on wide range of natural mires in Finland, (2) to study the short- and long-term changes in fluxes of CH{sub 4}, N{sub 2}O and NO on boreal peatlands after lowering their water table. Peatlands used for agriculture, forestry and peat mining were included in the studies. The results from mires drained for forestry may reflect the possible changes in the trace gas fluxes if water table will drop in the northern peatlands as a result of drier climate, (3) to study the effects of nitrogen load on the fluxes of CH{sub 4}, N{sub 2}O and NO, (4) to identify the microbiological processes important for the fluxes of N{sub 2}O, NO and CH{sub 4}, and to study the environmental factors regulating these microbial processes

  6. Fluxes of methane and nitrogen oxides in various boreal mire ecosystems. Effects of land-use activities and environmental changes

    Energy Technology Data Exchange (ETDEWEB)

    Martikainen, P.J.; Nykaenen, H.; Regina, K. [National Public Health Inst., Kuopio (Finland). Lab. of Environmental Microbiology; Alm, J.; Silvola, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    Atmospheric impact of peatlands is a sum of their gas fluxes. In contrast to carbon dioxide, peatlands are net sources for methane (CH{sub 4}). Methane is an end product in the anaerobic decomposition processes and it has greater capacity to absorb infrared radiation than carbon dioxide. Most of the data on the CH{sub 4} release from northern peatlands is from North America. The total amount of methane released from wetlands is calculated to be 110 Tg yr{sup -1} of which 34 percent (38 Tg yr{sup -1}) is estimated to be emitted from the northern peatlands. Peat with high content of nitrogen is a potential source for gaseous nitrogen oxides, i.e. nitrous oxide (N{sub 2}O) and nitric oxide (NO). However, the importance of peatlands in producing these trace gases is poorly known. Nitrous oxide and nitric oxide are important components in the atmospheric chemistry and N{sub 2}O also is an effective greenhouse gas. Land-use activities and environmental changes can affect the atmospheric impacts of peatlands by modifying their biogeochemistry. This article presents a short summary of the studies whose objectives were: (1) to measure fluxes of CH{sub 4} and N{sub 2}O on wide range of natural mires in Finland, (2) to study the short- and long-term changes in fluxes of CH{sub 4}, N{sub 2}O and NO on boreal peatlands after lowering their water table. Peatlands used for agriculture, forestry and peat mining were included in the studies. The results from mires drained for forestry may reflect the possible changes in the trace gas fluxes if water table will drop in the northern peatlands as a result of drier climate, (3) to study the effects of nitrogen load on the fluxes of CH{sub 4}, N{sub 2}O and NO, (4) to identify the microbiological processes important for the fluxes of N{sub 2}O, NO and CH{sub 4}, and to study the environmental factors regulating these microbial processes

  7. Fluxes of methane and nitrogen oxides in various boreal mire ecosystems. Effects of land-use activities and environmental changes

    International Nuclear Information System (INIS)

    Martikainen, P.J.; Nykaenen, H.; Regina, K.; Alm, J.; Silvola, J.

    1996-01-01

    Atmospheric impact of peatlands is a sum of their gas fluxes. In contrast to carbon dioxide, peatlands are net sources for methane (CH 4 ). Methane is an end product in the anaerobic decomposition processes and it has greater capacity to absorb infrared radiation than carbon dioxide. Most of the data on the CH 4 release from northern peatlands is from North America. The total amount of methane released from wetlands is calculated to be 110 Tg yr -1 of which 34 percent (38 Tg yr -1 ) is estimated to be emitted from the northern peatlands. Peat with high content of nitrogen is a potential source for gaseous nitrogen oxides, i.e. nitrous oxide (N 2 O) and nitric oxide (NO). However, the importance of peatlands in producing these trace gases is poorly known. Nitrous oxide and nitric oxide are important components in the atmospheric chemistry and N 2 O also is an effective greenhouse gas. Land-use activities and environmental changes can affect the atmospheric impacts of peatlands by modifying their biogeochemistry. This article presents a short summary of the studies whose objectives were: (1) to measure fluxes of CH 4 and N 2 O on wide range of natural mires in Finland, (2) to study the short- and long-term changes in fluxes of CH 4 , N 2 O and NO on boreal peatlands after lowering their water table. Peatlands used for agriculture, forestry and peat mining were included in the studies. The results from mires drained for forestry may reflect the possible changes in the trace gas fluxes if water table will drop in the northern peatlands as a result of drier climate, (3) to study the effects of nitrogen load on the fluxes of CH 4 , N 2 O and NO, (4) to identify the microbiological processes important for the fluxes of N 2 O, NO and CH 4 , and to study the environmental factors regulating these microbial processes

  8. Trading coalbed methane for carbon dioxide

    International Nuclear Information System (INIS)

    Greenberger, L.S.

    1991-01-01

    This article discusses a proposal for reducing methane emissions in coal mining activities and at the same time reducing the burden on utilities to cut carbon dioxide emissions. Emission credits would be issued to mines that recover the methane for use. These credits could then be bought by utilities and exchanged for the right to emit carbon dioxide

  9. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  10. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming.

    Science.gov (United States)

    Walter, K M; Zimov, S A; Chanton, J P; Verbyla, D; Chapin, F S

    2006-09-07

    Large uncertainties in the budget of atmospheric methane, an important greenhouse gas, limit the accuracy of climate change projections. Thaw lakes in North Siberia are known to emit methane, but the magnitude of these emissions remains uncertain because most methane is released through ebullition (bubbling), which is spatially and temporally variable. Here we report a new method of measuring ebullition and use it to quantify methane emissions from two thaw lakes in North Siberia. We show that ebullition accounts for 95 per cent of methane emissions from these lakes, and that methane flux from thaw lakes in our study region may be five times higher than previously estimated. Extrapolation of these fluxes indicates that thaw lakes in North Siberia emit 3.8 teragrams of methane per year, which increases present estimates of methane emissions from northern wetlands (< 6-40 teragrams per year; refs 1, 2, 4-6) by between 10 and 63 per cent. We find that thawing permafrost along lake margins accounts for most of the methane released from the lakes, and estimate that an expansion of thaw lakes between 1974 and 2000, which was concurrent with regional warming, increased methane emissions in our study region by 58 per cent. Furthermore, the Pleistocene age (35,260-42,900 years) of methane emitted from hotspots along thawing lake margins indicates that this positive feedback to climate warming has led to the release of old carbon stocks previously stored in permafrost.

  11. Australian methane fluxes

    International Nuclear Information System (INIS)

    Williams, D.J.

    1990-01-01

    Estimates are provided for the amount of methane emitted annually into the atmosphere in Australia for a variety of sources. The sources considered are coal mining, landfill, motor vehicles, natural gas suply system, rice paddies, bushfires, termites, wetland and animals. This assessment indicates that the major sources of methane are natural or agricultural in nature and therefore offer little scope for reduction. Nevertheless the remainder are not trival and reduction of these fluxes could play a significant part in any Australian action on the greenhouse problem. 19 refs., 7 tabs., 1 fig

  12. Breeding Ruminants that Emit Less Methane – The Role of International Collaboration

    NARCIS (Netherlands)

    Oddy, V.H.; Haas, de Y.; Basarab, J.; Cammack, K.; Hayes, B.J.; Hegarty, R.; Lassen, J.; McEwan, J.; Miller, S.; Pinares-Patino, C.

    2014-01-01

    Ruminants contribute to global greenhouse gas (GHG) emissions, principally as enteric methane (CH4) emissions. Direct selection for reduced CH4 emissions through combined selection for both low residual feed intake and methane yield could potentially provide a long term reduction in enteric methane

  13. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    Science.gov (United States)

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  14. Singulisphaera rosea sp. nov., a planctomycete from acidic Sphagnum peat, and emended description of the genus Singulisphaera.

    Science.gov (United States)

    Kulichevskaya, Irina S; Detkova, Ekaterina N; Bodelier, Paul L E; Rijpstra, W Irene C; Damsté, Jaap S Sinninghe; Dedysh, Svetlana N

    2012-01-01

    An aerobic, pink-pigmented, budding bacterium, designated strain S26(T), was isolated from an acidic Sphagnum peat bog of north-western Russia. Cells were non-motile and spherical, occurring singly, in pairs or in short chains, and were able to attach to surfaces by means of a holdfast material. Strain S26(T) was a moderately acidophilic, mesophilic organism capable of growth at pH 3.2-7.1 (optimum at pH 4.8-5.0) and at 4-33 °C (optimum at 20-26 °C). Most sugars, several organic acids and polyalcohols were the preferred growth substrates. The major fatty acids were C(16:0), C(18:1)ω9c and C(18:2)ω6c,12c. The major neutral lipids were n-C(31:9) hydrocarbon and squalene; the polar lipids were phosphatidylglycerol, phosphatidylcholine and components with an unknown structure. The DNA G+C content of strain S26(T) was 62.2 mol%. 16S rRNA gene sequence analysis showed that strain S26(T) is a member of the order Planctomycetales. Among taxonomically characterized representatives of this order, highest levels of 16S rRNA gene sequence similarity (95.1-95.2%) were observed with strains of the non-filamentous, peat-inhabiting planctomycete Singulisphaera acidiphila. Strain S26(T) could be differentiated from Singulisphaera acidiphila based on pigmentation, significant differences in substrate utilization patterns, greater tolerance of acidic conditions and the presence of C(16:1)ω9c. Based on the data presented, strain S26(T) is considered to represent a novel species of the genus Singulisphaera, for which the name Singulisphaera rosea sp. nov. is proposed; the type strain is S26(T) (=DSM 23044(T)=VKM B-2599(T)).

  15. Comparison of radiative forcing impacts of the use of wood, peat, and fossil fuels

    International Nuclear Information System (INIS)

    Savolainen, I.; Hillebrand, K.; Nousiainen, I.; Sinisalo, J.

    1994-01-01

    The present study investigates the greenhouse impacts and the relevant time factors of the use of peat and wood for energy production and compares them with those of fossil fuels. Emissions and sinks of the whole energy production chain and subsequent use of the wood or peat production site are taken into account. The radiative forcing caused by energy production is used as a measure for the greenhouse impact. Economical considerations are not included. Radiative forcing is calculated for carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions. The real emissions of energy production are calculated by subtracting the emissions of non-use from the emissions of energy production. All the emissions are given as a function of time, i.e. their evolution over time is taken into account. At this point the estimates for some emission developments are quite crude and should be considered exemplary. The studied energy production chains can be divided roughly into three groups, if the greenhouse impact caused by continuous energy production of hundred years is considered. In this case forest residues, planted stands and unused merchantable wood cause the least radiative forcing per unit of primary energy generated. Natural gas and peat from cultivated peatland form the middle group. According to the calculations coal and conventional peat cause the greatest greenhouse impact

  16. Growing peat

    NARCIS (Netherlands)

    Harpenslager, S.F.

    2015-01-01

    Peat formation is a slow process and the formation of thick peat layers in large parts of e.g. Russia, Canada and Indonesia has generally taken thousands of years. Due to degradation of peatlands throughout the world, as a result of changed land use and pollution, many ecosystem services provided by

  17. A method for processing peat or brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Belkevich, P.I.; Lishtvan, I.I.; Prokhorov, G.M.; Tolstikov, G.A.

    1983-01-01

    A method is patented for extraction of peat and brown coal using dimethylformamide or dimethylsulfoxide in order to increase the output of bitumen and to produce dyes and acids from it and to utilize the debituminized fuel. The extraction is conducted at a solvent to raw material ratio of 1 to 5 at a temperature of 95 to 160 degrees for 0.5 to 3 hours. The extract is processed by hydroxides or carbonates of alkaline metals at a ratio of extract to the bitumen of 0.1 to 0.5 at 95 to 160 degrees for 0.5 to 2 hours with isolation of the salts of carbonic acids and recrystallization of them from the hydroxide with the acquisition of the target product of humic acids. The solvent is distilled from the extraction residue and after drying the sediment, a dye D is produced, while the debituminized fuel is processed by hydroxides of alkaline metals in a 0.1 to 1 to 1 ratio at 100 to 150 degrees for 0.5 to 2 hours with the acquisition of thinner for cement solutions. Example. A suspension of 180 grams of peat with a particle size of 0.25 to 10 millimeters with indicators (in percent) of the degree of breakdown of 40, moisture level of 20, ash content of 3.1 and bitumen content of 4.2, is mixed with 810 grams of dimethylformamide (an extraction agent to peat ratio of 4.5) and is heated at 95 degrees for three hours. Eight hundred and seventy grams of the extract (the bitumen output is 33 percent) are acquired, along with 120 grams of debituminized peat. Thirty grams of NaOH (an alkaline to bitumen ratio of 0.5) is gradually added to the bitumen extract at 90 to 100 degrees. The reaction mixture is heated to 160 degrees and is cured at this temperature for 2 hours and subsequently cooled to 20 degrees, filtered off and the salts of the carbonic acids are washed out by a fresh portion of dimethylsulfoxide with the production of 21.3 grams of salts with a melting point of 122 to 175 degrees.

  18. Effects of ensiling treatments on lactic acid production and supplementary methane formation of maize and amaranth--an advanced green biorefining approach.

    Science.gov (United States)

    Haag, Nicola Leonard; Nägele, Hans-Joachim; Fritz, Thomas; Oechsner, Hans

    2015-02-01

    A green biorefinery enables the material and energetic use of biomass via lactic acid and methane production. Different ensiling techniques were applied to maize and amaranth with the aim to increase the amount of lactic acid in the silage. In addition the methane formation potential of the ensiled samples and the remaining solid residues after separating the organic juice were assessed. Treating maize with homofermentative lactic acid bacteria in combination with carbonated lime increased the amount of lactic acid about 91.9%. For amaranth no additional lactic acid production was obtained by treating the raw material. Specific methane yields for the solid residues of amaranth were significantly lower in comparison to the corresponding silages. The most promising treatment resulted in a production of 127.9±4.1 g kg(-1) DM lactic acid and a specific methane yield for the solid residue of 349.5±6.6 lN kg(-1) ODM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The sustainable use of peat

    International Nuclear Information System (INIS)

    Kallas, Rein

    1997-01-01

    The article gives information about the critical and usable reserves of peat, its annual consumption and production allowance, as well as the output in 1996. It is seen from the Table that no increase in peat production is possible in the counties of Paernu and Rapla, as well as in western Estonia unless the exhausted peat fields have been reclaimed, so, after the limit has been released. However, conditions for peat production in southern Estonia are favourable. The low peat production capacity, 1 million t, while the production quota is 2.78 million t, is indicative of the depression of Estonian peat industry. (author)

  20. Study of removing a peat-layer from surface active agents; Deitanso ni yoru kaimen kasseizai no jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Umemiya, H; Kitamura, K [Yamagata University, Yamagata (Japan)

    1996-10-27

    An experiment was performed on a system for recycling water resources by using a peat-layer. A laboratory device was also made in order to examine the effects of a peat-layer on surface active agents. In the experiment, a water examination was carried out in which a mixture of water and kitchen detergent at the rate of 15,000 to 1 was filtered through a peat-layer of 2-3cm thick, as was a mixture of water, kitchen detergent and oil at the rate of 15,000 to 1 to 2. In the water examination, various measurements were done such as the measurement of COD by potassium permanganate acid process, measurement of pH by a pH meter with glass electrodes and measurement of coefficient of permeability by a variable water level permeability test. As a result of the experiment, it was revealed that a peat-layer had ability to remove surface active agents, that injection water tended to increase acidity in a peat-layer and that a peat-layer had ability to remove foaming of surface active agents. The COD of domestic waste water decreased from 12mg/l to 0.16mg/l in the system for recycling water resources using a peat-layer. 3 refs., 10 figs., 1 tab.

  1. The history of the peat manufacturing industry in The Netherlands: Peat moss litter and active carbon

    Directory of Open Access Journals (Sweden)

    M.A.W. Gerding

    2015-11-01

    Full Text Available This article describes the development of three major forms of peat processing by the manufacturing industry in The Netherlands since the last quarter of the 19th century. At a time when peat as a fuel was gradually being replaced by coal, the first form was the peat moss litter industry. Peat moss litter was made from white peat that was ground and sieved in factories which were located mainly in bog areas in the south-east of the province of Drenthe. It served as excellent bedding for horses and cattle. The second form of industrial peat processing was the manufacture, from 1921 onwards, of active carbon made from black peat. The Purit (Norit factory, now part of the Cabot Corporation, is still the only active carbon factory using peat as a raw material. The third form of peat processing was the production of garden peat and potting soil. This is still a widespread activity in peat areas all over the world. The peat moss litter industry thrived from the 1880s until shortly after the First World War. The arrival of the horse-drawn tram in all of the major cities of Europe created a great demand for animal bedding to be used in the vast stables of the tramway companies. Peat moss litter was cleaner, healthier and easier to handle than straw. There was similar demand from the armies, which used millions of horses during the First World War. Owing to the development of motorised vehicles, the peat market collapsed after the war and this plunged the industry into a prolonged crisis which was not overcome until peat was found to be a suitable growing medium for horticulture in the 1950s. Living and working conditions in peatlands were harsh, earnings irregular and labourers’ rights limited. The peat manufacturing industry was the first to introduce collective labour agreements, medical benefits and pension plans. Nonetheless massive unemployment, poverty and the necessity to migrate to other parts of the country were clear signs that the era of

  2. Quantification of methane emissions from danish landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Mønster, Jacob; Kjeldsen, Peter

    2013-01-01

    Whole-landfill methane emission was quantified using a tracer technique that combines controlled tracer gas release from the landfill with time-resolved concentration measurements downwind of the landfill using a mobile high-resolution analytical instrument. Methane emissions from 13 Danish...... landfills varied between 2.6 and 60.8 kg CH4 h–1. The highest methane emission was measured at the largest (in terms of disposed waste amounts) of the 13 landfills, whereas the lowest methane emissions (2.6-6.1 kgCH4 h–1) were measured at the older and smaller landfills. At two of the sites, which had gas...... collection, emission measurements showed that the gas collection systems only collected between 30-50% of the methane produced (assuming that the produced methane equalled the sum of the emitted methane and the collected methane). Significant methane emissions were observed from disposed shredder waste...

  3. Fluxes of greenhouse gases CH{sub 4}, CO{sub 2} and N{sub 2}O on some peat mining areas in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, H; Martikainen, P J [National Public Health Inst., Kuopio (Finland). Dept. of Biology; Silvola, J; Alm, J [Joensuu Univ. (Finland). Dept. of Biology

    1997-12-31

    The increase in concentration of greenhouse gases (CO{sub 2}, CH{sub 4} and N{sub 2}O) in atmosphere is associated with burning of fossil fuels and also changes in biogeochemistry due to land use activities. Virgin peatlands are globally important stores of carbon and sources of CH4. Peatland drainage changes the processes in carbon and nitrogen cycles responsible for the fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O. Preparing of peatlands for peat mining greatly change their biogeochemical processes. Effective drainage decreases water table and allows air to penetrate deep into peat profile. Aerobic conditions inhibit activities of anaerobic microbes, including the methanogens, whereas aerobic processes like methane oxidation are stimulated. Destruction of vegetation cover stops the carbon input to peat. In Finland the actual peat mining area is 0.05 x 106 hectares and further 0.03 x 106 hectares have been prepared or are under preparation for peat mining. The current total peatland area in the world used for mining is 0.94 x 106 ha and the area already mined is 1.15 x 106 ha. In this presentation fluxes of greenhouse gases (CH{sub 4}, CO{sub 2} and N{sub 2}O) on some mires under peat mining are reported and compared with those on natural mires and with the emissions from peat combustion. (15 refs.)

  4. Fluxes of greenhouse gases CH{sub 4}, CO{sub 2} and N{sub 2}O on some peat mining areas in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, H.; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Biology; Silvola, J.; Alm, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The increase in concentration of greenhouse gases (CO{sub 2}, CH{sub 4} and N{sub 2}O) in atmosphere is associated with burning of fossil fuels and also changes in biogeochemistry due to land use activities. Virgin peatlands are globally important stores of carbon and sources of CH4. Peatland drainage changes the processes in carbon and nitrogen cycles responsible for the fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O. Preparing of peatlands for peat mining greatly change their biogeochemical processes. Effective drainage decreases water table and allows air to penetrate deep into peat profile. Aerobic conditions inhibit activities of anaerobic microbes, including the methanogens, whereas aerobic processes like methane oxidation are stimulated. Destruction of vegetation cover stops the carbon input to peat. In Finland the actual peat mining area is 0.05 x 106 hectares and further 0.03 x 106 hectares have been prepared or are under preparation for peat mining. The current total peatland area in the world used for mining is 0.94 x 106 ha and the area already mined is 1.15 x 106 ha. In this presentation fluxes of greenhouse gases (CH{sub 4}, CO{sub 2} and N{sub 2}O) on some mires under peat mining are reported and compared with those on natural mires and with the emissions from peat combustion. (15 refs.)

  5. Validation of landfill methane measurements from an unmanned aerial system

    DEFF Research Database (Denmark)

    Allen, Grant; Williams, Paul; Ricketts, hugo

    Landfill gas is made up of roughly equal amounts of methane and carbon dioxide. Modern UK landfills capture and use much of the methane gas as a fuel. But some methane escapes and is emitted to the atmosphere. Methane is an important greenhouse gas and controls on methane emissions are a part...... of international and national strategies to limit climate change. Better estimates of methane emissions from landfills and other similar sources would allow the UK to improve the quantification and control of greenhouse gas emissions. This project tested the accuracy of methane measurement using an unmanned aerial...

  6. Fluvial organic carbon losses from oil palm plantations on tropical peat, Sarawak, Southeast Asia

    Science.gov (United States)

    Cook, Sarah; Page, Susan; Evans, Chris; Whelan, Mick; Gauci, Vincent; Lip Khoon, Kho

    2017-04-01

    Tropical peatlands are valuable stores of carbon. However, tropical peat swamp forests (TPSFs) in Southeast Asia have increasingly been converted to other land-uses. For example, more than 25% of TPSFs are now under oil palm plantations. This conversion - requiring felling and burning of trees and drainage of the peat - can enhance carbon mineralization, dissolved organic carbon (DOC) losses and can contribute significantly to global anthropogenic greenhouse gas emissions, changing these natural carbon sinks into carbon sources. At present, relatively few scientifically sound studies provide dependable estimates of gaseous and fluvial carbon losses from oil palm plantations or from drained tropical peat in general. Here we present an annual (54 week) estimate of the export of dissolved and particulate organic carbon in water draining two oil palm estates and nearby stands of TPSF in Sarawak, Malaysia, subjected to varying degrees of past anthropogenic disturbance. Spectrophotometric techniques including SUVA254 (Specific Ultra-Violet Absorption) were used to gain insight into the aromaticity and subsequent bioavailability of the exported DOC. Water draining plantation and deforested land had a higher proportion of labile carbon compared to water draining forested areas. Preliminary data suggest a total fluvial DOC flux from plantations of ca. 190 g C m-2 year-1; nearly three times estimates from intact TPSFs (63 g C m-2 year-1). DOC accounted for between 86 % - 94 % of the total organic carbon lost (most of which was bioavailable). Wit et al. (2015) estimates that an average of 53 % of peat-derived DOC is decomposed and emitted as CO2, on a monthly basis. Based on these estimates our data suggests an additional 101 g CO2 m-2 may be emitted indirectly from fluvial organic carbon in degraded TPSFs per year. Overall, these findings emphasize the importance of including fluvial organic carbon fluxes when quantifying the impact of anthropogenic disturbance on the

  7. Organic Matter Transformation in the Peat Column at Marcell Experimental Forest: Humification and Vertical Stratification

    Energy Technology Data Exchange (ETDEWEB)

    Tfaily, Malak [Florida State University, Tallahassee; Cooper, Bill [Florida State University, Tallahassee; Kostka, [Georgia Institute of Technology, Atlanta; Chanton, Patrick R [ORNL; Schadt, Christopher Warren [ORNL; Hanson, Paul J [ORNL; Iversen, Colleen M [ORNL; Chanton, Jeff P [ORNL

    2014-01-01

    A large-scale ecosystem manipulation (Spruce and Peatland Responses under Climatic and Environmental Change, SPRUCE) is being constructed in the Marcell Experimental Forest, Minnesota, USA, to determine the effects of climatic forcing on ecosystem processes in northern peatlands. Prior to the initiation of the manipulation, we characterized the solid-phase peat to a depth of 2 meters using a variety of techniques, including peat C:N ratios, 13C and 15N isotopic composition, Fourier Transform Infrared (FT IR), and 13C Nuclear Magnetic Resonance spectroscopy (13C NMR). FT IR determined peat humification-levels increased rapidly between and 75 cm, indicating a highly reactive zone. We observed a rapid drop in the abundance of O-alkyl-C, carboxyl-C, and other oxygenated functionalities within this zone and a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75-cm, minimal change was observed except that aromatic functionalities accumulated with depth. Incubation studies revealed the highest methane production rates and greatest CH4:CO2 ratios within this and 75 cm zone. Hydrology and surface vegetation played a role in belowground carbon cycling. Radiocarbon signatures of microbial respiration products in deeper porewaters resembled the signatures of dissolved organic carbon rather than solid phase peat, indicating that more recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as an excellent proxy for soil decomposition rate, and in addition should be a sensitive indicator of the response of the solid phase peat to the climatic manipulation.

  8. Modelling Holocene carbon accumulation and methane emissions of boreal wetlands – an Earth system model approach

    Directory of Open Access Journals (Sweden)

    R. J. Schuldt

    2013-03-01

    Full Text Available Since the Last Glacial Maximum, boreal wetlands have accumulated substantial amounts of peat, estimated at 180–621 Pg of carbon. Wetlands have significantly affected the atmospheric greenhouse gas composition in the past and will play a significant role in future changes of atmospheric CO2 and CH4 concentrations. In order to investigate those changes with an Earth system model, biogeochemical processes in boreal wetlands need to be accounted for. Thus, a model of peat accumulation and decay was developed and included in the land surface model JSBACH of the Max Planck Institute Earth System Model (MPI-ESM. Here we present the evaluation of model results from 6000 yr BP to the pre-industrial period. Over this period of time, 240 Pg of peat carbon accumulated in the model in the areas north of 40° N. Simulated peat accumulation rates agree well with those reported for boreal wetlands. The model simulates CH4 emissions of 49.3 Tg CH4 yr−1 for 6000 yr BP and 51.5 Tg CH4 yr−1 for pre-industrial times. This is within the range of estimates in the literature, which range from 32 to 112 Tg CH4 yr−1 for boreal wetlands. The modelled methane emission for the West Siberian Lowlands and Hudson Bay Lowlands agree well with observations. The rising trend of methane emissions over the last 6000 yr is in agreement with measurements of Antarctic and Greenland ice cores.

  9. Predicting Calcite (CaCO3) Requirements of Sphagnum Peat Moss from pH Titration Curves

    Science.gov (United States)

    Liming materials are required to neutralize acidity in peat moss to make it a suitable substrate for growing container crops. A series of time-consuming incubations of peat:lime mixtures are typically used to determine the liming rate to achieve a desired pH. Our objective was to evaluate the util...

  10. Fourth technical contractors' conference on peat

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This conference reported the status of the US Department of Energy Peat Program. The papers presented dealt with peat dewatering, international peat programs, environmental and socio-economic factors, peat gasification, peat harvesting, and the state peat surveys for 14 states. Separate abstracts were prepared for the individual papers. (CKK)

  11. Study of stability of humic acids from soil and peat irradiated by gamma rays; Estudo da estabilidade de acidos humicos extraidos de solo e turfa, frente a radiacao ionizante gama

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wilson Tadeu Lopes da

    1995-07-01

    Humic acids samples (one deriving from a sedimentary soil and other from a peat), in aqueous media, were irradiated with gamma rays, in doses of 10, 50 and 100 kGy, in order to understand their chemical behavior after the irradiation. The material, before and after irradiation, was analyzed by Elemental Analysis, Functional Groups (carboxylic acids and phenols), UV/Vis Spectroscopy (E{sub 4}/E{sub 6} ratio), IR spectroscopy, CO{sub 2} content and Gel permeation Chromatography (GPC) ). The Elemental Analysis showed the humic acid derived from a peat had a most percentage quantity of Carbon and Hydrogen than the material from a sedimentary soil. From the UV/Vis Spectroscopy, it was observed a decrease of E{sub 4}/E{sub 6} ratio with an increase of the applied dose. The data from GPC are in agreement with this. The results showed that the molecular weight of the material increased by exposing it to a larger radiolitical dose. The peat material was less affected by the gamma radiation than the soil material. The carboxylic groups were responsible by radiochemical behavior of the material. (author)

  12. The history of the peat manufacturing industry in The Netherlands : peat moss litter and active carbon

    NARCIS (Netherlands)

    Karel, Erwin; Gerding, Michiel; De Vries, Gerben

    This article describes the development of three major forms of peat processing by the manufacturing industry in The Netherlands since the last quarter of the 19th century. At a time when peat as a fuel was gradually being replaced by coal, the first form was the peat moss litter industry. Peat moss

  13. Cupriferous peat: embryonic copper ore

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, D C

    1961-07-01

    A Canadian peat was found to contain up to 10% (dry weight) Cu, and a mechanism for Cu accumulation in peat was discussed. Wet chemical techniques and x-ray diffraction were utilized to identify Cu compounds. Copper was organically bound in peat as a chelate complex and did not occur as an oxide, sulfide, or as elemental Cu. Because of the low S content of peat the Cu was assumed to be bound to nitrogen or oxygen-containing components. Copper, having a greater affinity for N, tended to form the more stable Cu-N chelate. The element was concentrated as circulating cupriferous ground waters filtered through the peat.

  14. Physical prerequisites for the development of technological systems for draining a peat bed. [Peat; USSR

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, Ye T

    1981-01-01

    It is noted that at the present time, the basic peat reserve is made up primarily of the upper type of peat deposits, which are exceedingly complex for industrial development. In this regard, the development and introduction of new progressive methods for studying peat deposits, which provide for the acquisition of broad and reliable information about the composition and properties of the peat have great practical meaning. Cited in brief form are the conclusions and recommendations produced as a result of comprehensive systematic studies of the composition and properties of peat beds located in different regions of the country which were fulfilled in the KPI since 1970.

  15. A Novel Phytase Derived from an Acidic Peat-Soil Microbiome Showing High Stability under Acidic Plus Pepsin Conditions.

    Science.gov (United States)

    Tan, Hao; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Peng, Weihong; Gan, Bingcheng

    2016-01-01

    Four novel phytases of the histidine acid phosphatase family were identified in two publicly available metagenomic datasets of an acidic peat-soil microbiome in northeastern Bavaria, Germany. These enzymes have low similarity to all the reported phytases. They were overexpressed in Escherichia coli and purified. Catalytic efficacy in simulated gastric fluid was measured and compared among the four candidates. The phytase named rPhyPt4 was selected for its high activity. It is the first phytase identified from unculturable Acidobacteria. The phytase showed a longer half-life than all the gastric-stable phytases that have been reported to date, suggesting a strong resistance to low pH and pepsin. A wide pH profile was observed between pH 1.5 and 5.0. At the optimum pH (2.5) the activity was 2,790 μmol/min/mg at the physiological temperature of 37°C and 3,989 μmol/min/mg at the optimum temperature of 60°C. Due to the competent activity level as well as the high gastric stability, the phytase could be a potential candidate for practical use in livestock and poultry feeding. © 2016 S. Karger AG, Basel.

  16. Non-destructive methods for peat layer assessment in oligotrophic peat bogs: a case study from Poiana Ştampei, Romania

    Directory of Open Access Journals (Sweden)

    Iuliana F. Gheorghe

    2011-01-01

    Full Text Available Practices currently employed in the investigation and characterisation of peat deposits are destructive and may irremediable perturb peat bog development even in cases when exploitation is not carried out. We investigated the correlation between vegetation characteristics in the active area of Poiana Ştampei peat bog, Romania, and the underlying peat layer depth, aiming at establishing a non-destructive method of peat layer depth estimation. The presence of the Sphagneto-Eriophoretum vaginati association, dominated by Sphagnum fimbriatum, Eriophorum vaginatum, Andromeda polifolia, Vaccinium oxycoccos, V. myrtillus, V. vitis-idaea, Polytrichum commune, Picea excelsa, Pinus sylvestris and Betula verrucosa was found to predict the existence of the peat layer but not its depth. Out of the seven identified vegetation types, one type was associated with a very thin or no peat layer, one type was characterised by the presence of a thick (over 100 cm peat layer and five types indicated the presence of variable average depths of the peat layer. pH values correlated with peat layer depth only within the vegetation type associated with thick peat layers.

  17. The role of peat in finnish greenhouse gas balances

    International Nuclear Information System (INIS)

    Crill, P.; Hargreaves, K.; Korhola, A.

    2000-06-01

    Over the past, total annual greenhouse gas (GHG) emissions from Finland, not considering land use change, forestry or peatlands, have remained between 70 000 and 80 000 Gg of CO 2 equivalents. A large portion of which (84% in 1998) is from energy and energy related sources. Signatory members to the 1997 Kyoto protocol of the United Nation's Framework Convention on Climate Change convention, which includes Finland, are compelled to assess their emissions at the national level. This study was undertaken to examine the issues of the role of Finnish peatlands in the national greenhouse gas inventory specifically within the context of the utilization of peatlands for energy production. Our analysis is essentially a literature review and assessment of what has been measured from Finnish peatlands. We are particularly fortunate that there have been a series of recent Ph.D. theses published at the Universities of Helsinki and Joensuu and graduate work at the University of Kuopio on carbon dynamics and greenhouse gas exchange in Finnish peatlands that have both expanded our database and our understanding of peatland processes. Chapter 1 provides a background of the role of peatlands in carbon cycling within the context of changing climate and land use. In Finland about 56 x 103 ha of peatland area were being harvested in 1997, 94% for energy. Even though this is a relatively small area, the implications, on a national scale, for GHG fluxes and carbon balance can be significant The magnitude of GHG fluxes and a qualitative assessment of extant data quality and quantity under different Finnish land use forms and activities is considered in chapter 2. CO 2 fluxes derived from long term C accumulation rates indicate that 3 010 Gg CON and 9 400 Gg CO 2 are sequestered annually from the atmosphere into undrained and peatlands drained for forestry, respectively. Peatlands drained for agriculture emit CO 2 at a rate of 3 200-7 800 Gg annually. Peat harvesting activities and

  18. Methane emissions from the natural gas industry

    International Nuclear Information System (INIS)

    Harrison, M.R.; Cowgill, R.M.; Campbell, L.M.; Lott, R.A.

    1993-01-01

    The U.S. EPA and the United Nation's Intergovernmental Panel on Climate Change (IPCC) have suggested that global warming could be reduced if more energy was generated using natural gas rather than fuels such as coal. An increased use of natural gas instead of coal would decrease global warming since methane emits less carbon dioxide (CO 2 ) than any fossil fuel. However, methane is a more potent as a greenhouse gas than CO 2 , and leakage from the gas system could reduce or eliminate the inherent advantage of natural gas. For this reason, methane emissions must be quantified before a national policy on preferred fuels is developed. Therefore, GRI and EPA have developed this confunded program to quantify methane emissions from the U.S. gas industry. This paper presents, for general industry review, the approach and methodology that the project is using to determine the emissions. The study will measure or calculate all gas industry methane emissions - from production at the wellhead, through the system, to the customer's meter. When these data are combined with data from other studies, a definitive comparison of the relative environmental impact of using methane versus other fuels will be possible. The study will also provide data that can be used by the industry to identify cost-effective mitigation techniques to reduce losses. The methane emissions project is being conducted in three phases: the first two phases have identified and ranked all known potential methane-emitting sources and established methods for measuring, calculating, and extrapolating emissions from those sources. The third phase, which is currently in progress, will gather sufficient data to achieve the accuracy goal. This paper briefly summarizes the methodology being used for the completion of the third phase

  19. Abiotic reaction of iodate with sphagnum peat and other natural organic matter

    International Nuclear Information System (INIS)

    Steinberg, S.M.; Kimble, G.; Schmett, G.T.; Emerson, D.W.; Turner, M.F.; Rudin, M.

    2008-01-01

    Previous studies have shown that iodine (including 129 I) can be strongly retained in organic-rich surface soils and sediment and that a large fraction of soluble iodine may be associated with dissolved humic material. Iodate (IO 3 - ) reacts with natural organic matter (NOM) producing either hypoiodous acid (HIO) or I 2 as an intermediate. This intermediate is subsequently incorporated into the organic matter. Based on reactions of model compounds, we infer that iodine reacts with peat by aromatic substitution of hydrogen on phenolic constituents of the peat. Alternatively, the intermediate, HIO or I 2 , may be reduced to iodide (I - ). The pH (and temperature) dependence of the IO 3 - reaction (reduction) has been explored with sphagnum peat, alkali lignin, and several model compounds. The incorporation of iodine into NOM has been verified by pyrolysis gas chromatography/mass spectrometry (GC/MS). Model compound studies indicate that reduction of IO 3 - to HIO may result from reaction with hydroquinone (or semiquinone) moieties of the peat. (author)

  20. Influence of the Chernobyl accident on radioactivity of fuel peat and peat ash in Finland

    International Nuclear Information System (INIS)

    Mustonen, R.; Salonen, S.; Itkonen, A.

    1988-04-01

    The accident at the Chernobyl nuclear power plant in April 1986 caused very uneven deposition of radionuclides in Finland. The deposited radionuclides were measured in relative high concentrations in fuel peat and especially in peat ash. The radionuclide concentrations were measured at six peat-fired power plants in different parts of Finland throughout the heating season 1986-87. Also evaporation of different radionuclides in peat combustion and their condensation on fly ash particles were studied at four power plants. The 137 Cs-concentrations in compiled peat samples varied between 30 and 3600 Bq kg -1 dry weight and in ash samples between 600 and 68000 Bq kg -1 . Differences in radionuclide concentrations between the power plants were great and also the radionuclide composition in fuel peat varied regionally. The 137 Cs-concentrations of the fly ash after the ash precipitators varied between 12000 and 120000 Bq kg -1 and fly ash emissions varied from 17 to 1100 mg m -3 , depending on the power plant and the load of the boiler. High radioactivity concentrations in precipitator ash caused some restrictions to the utilization of peat ash for various purposes

  1. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog.

    Science.gov (United States)

    Dedysh, Svetlana N; Khmelenina, Valentina N; Suzina, Natalia E; Trotsenko, Yuri A; Semrau, Jeremy D; Liesack, Werner; Tiedje, James M

    2002-01-01

    A novel genus and species, Methylocapsa acidiphila gen. nov., sp. nov., are proposed for a methane-oxidizing bacterium isolated from an acidic Sphagnum peat bog. This bacterium, designated strain B2T, represents aerobic, gram-negative, colourless, non-motile, curved coccoids that form conglomerates covered by an extracellular polysaccharide matrix. The cells use methane and methanol as sole sources of carbon and energy and utilize the serine pathway for carbon assimilation. Strain B2T is a moderately acidophilic organism with growth between pH 4.2 and 7.2 and at temperatures from 10 to 30 degrees C. The cells possess a well-developed system of intracytoplasmic membranes (ICM) packed in parallel on only one side of the cell membrane. This type of ICM structure represents a novel arrangement, which was termed type III. The resting cells are Azotobacter-type cysts. Strain B2T is capable of atmospheric nitrogen fixation; it possesses particulate methane monooxygenase and does not express soluble methane monooxygenase. The major phospholipid fatty acid is 18:1omega7c and the major phospholipids are phosphatidylglycerols. The G+C content of the DNA is 63.1 mol%. This bacterium belongs to the alpha-subclass of the Proteobacteria and is most closely related to the acidophilic methanotroph Methylocella palustris KT (97.3% 16S rDNA sequence similarity). However, the DNA-DNA hybridization value between strain B2T and Methylocella palustris K(T) is only 7%. Thus, strain B2T is proposed to comprise a novel genus and species, Methylocapsa acidiphila gen. nov., sp. nov. Strain B2T (= DSM 13967T = NCIMB 13765T) is the type strain.

  2. Precipitation-induced runoff and leaching from milled peat mining mires by peat types : a comparative method for estimating the loading of water bodies during peat pruduction

    OpenAIRE

    Svahnbäck, Lasse

    2007-01-01

    Precipitation-induced runoff and leaching from milled peat mining mires by peat types: a comparative method for estimating the loading of water bodies during peat production. This research project in environmental geology has arisen out of an observed need to be able to predict more accurately the loading of watercourses with detrimental organic substances and nutrients from already existing and planned peat production areas, since the authorities capacity for insisting on such predicti...

  3. Methane cycling in peat bogs: Environmental relevance of methano-Trophs revealed by microbial lipid chemistry

    NARCIS (Netherlands)

    van Winden, J.F.

    2011-01-01

    Global warming is continuing without delay and this is caused by the accumulation of greenhouse gases in the atmosphere. Methane is a strong greenhouse gas, 25 times stronger compared to CO2. The increase in methane concentrations in the atmosphere is largely the result of human influences, but

  4. Climate mitigation scenarios of drained peat soils

    Science.gov (United States)

    Kasimir Klemedtsson, Åsa; Coria, Jessica; He, Hongxing; Liu, Xiangping; Nordén, Anna

    2014-05-01

    The national inventory reports (NIR) submitted to the UNFCCC show Sweden - which as many other countries has wetlands where parts have been drained for agriculture and forestry purposes, - to annually emit 12 million tonnes carbon dioxide equivalents, which is more GHG'es than industrial energy use release in Sweden. Similar conditions can be found in other northern countries, having cool and wet conditions, naturally promoting peat accumulation, and where land use management over the last centuries have promoted draining activities. These drained peatland, though covering only 2% of the land area, have emissions corresponding to 20% of the total reported NIR emissions. This substantial emission contribution, however, is hidden within the Land Use Land Use Change and Forestry sector (LULUCF) where the forest Carbon uptake is even larger, which causes the peat soil emissions become invisible. The only drained soil emission accounted in the Swedish Kyoto reporting is the N2O emission from agricultural drained organic soils of the size 0.5 million tonnes CO2e yr-1. This lack of visibility has made incentives for land use change and management neither implemented nor suggested, however with large potential. Rewetting has the potential to decrease soil mineralization, why CO2 and N2O emissions are mitigated. However if the soil becomes very wet CH4 emission will increase together with hampered plant growth. By ecological modeling, using the CoupModel the climate change mitigation potential have been estimated for four different land use scenarios; 1, Drained peat soil with Spruce (business as usual scenario), 2, raised ground water level to 20 cm depth and Willow plantation, 3, raised ground water level to 10 cm depth and Reed Canary Grass, and 4, rewetting to an average water level in the soil surface with recolonizing wetland plants and mosses. We calculate the volume of biomass production per year, peat decomposition, N2O emission together with nitrate and DOC

  5. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Elvert, M.; Boetius, A.; Knittel, K.

    2003-01-01

    Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon......-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content...

  6. Third technical contractors' conference on peat

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The conference dealt with the estimation of US peat reserves, methods for the gasification of peat, including biogasification, techniques for dewatering peat, and the harvesting of peat. Separate abstracts were prepared for the individual papers. (CKK)

  7. Aerial photography in peat production technology

    International Nuclear Information System (INIS)

    Tervo, M.

    1998-01-01

    In this project, possibilities of using aerial photography in peat technology were studied experimentally, the frequency of self-heating in peat stockpiles was surveyed and the effect of compacting on the inner temperature in a self-heated milled peat stockpile was studied. Air photographs can be used in several sub-fields of the peat production. On the basis of these photos it is possible to draw conclusions from the environmental impacts of peat production, from conditions in the peat field, and from qualitative and moisture differences of surface peat. In addition, aerial photography can be utilised in updating bog maps. On the basis of aerial thermal photography in autumns 1987 - 1993, 29 % of milled peat stockpiles, and 4 % of sod peat stockpiles were found to be self-heated. The susceptibility to self-heating varied at different peatlands. The effect of compacting with a bulldozer was studied at three self-heated test stock-piles, two of which were compacted. The inner temperatures in the test stockpiles decreased significantly over the three-month monitoring period. The falls in the inner temperature of all three stockpiles were identical. Compacting did not have any significant effect on the temperature fall or on the rate of fall. The number of test stockpiles (3) is insufficient to give any statistical reliability. (orig.)

  8. Predicting the release of metals from ombrotrophic peat due to drought-induced acidification

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E.; Smith, E.J.; Lawlor, A.J.; Hughes, S.; Stevens, P.A

    2003-05-01

    Metals stored in peats can be remobilised by sulphuric acid, generated by the drought-induced oxidation of reduced sulphur. - Ombrotrophic peats in northern England and Scotland, close to industrial areas, have substantial contents of potentially toxic metals (Al, Ni, Cu, Zn, Cd and Pb) and of pollutant sulphur, all derived from atmospheric deposition. The peat sulphur, ordinarily in reduced form, may be converted to sulphuric acid under drought conditions, due to the entry of oxygen into the peats. The consequent lowering of soil solution pH is predicted to cause the release of metals held on ligand sites of the peat organic matter. The purpose of the present study was to explore, by simulation modelling, the extent of the metal response. Chemical variables (elemental composition, pH, metal contents) were measured for samples of ombrotrophic peats from three locations. Water extracts of the peats, and samples of local surface water, were also analysed, for pH, dissolved organic carbon (DOC) and metals. Metal release from peats due to acidification was demonstrated experimentally, and could be accounted for reasonably well using a speciation code (WHAM/Model VI). These data, together with information on metal and S deposition, and meteorology, were used to construct a simple description of peat hydrochemistry, based on WHAM/Model VI, that takes into account ion-binding by humic substances (assumed to be the 'active' constituents of the peat with respect to ion-binding). The model was used to simulate steady state situations that approximated the observed soil pH, metal pools and dissolved metal concentrations. Then, drought conditions were imposed, to generate increased concentrations of H{sub 2}SO{sub 4}, in line with those observed during the drought of 1995. The model calculations suggest that the pH will decrease from the initial steady state value of 4.3 to 3.3-3.6 during rewetting periods following droughts, depending upon assumptions about the

  9. Does Miscanthus cultivation on organic soils compensate for carbon loss from peat oxidation? A dual label study

    Science.gov (United States)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2016-04-01

    Agricultural use of organic soils requires drainage and thereby changes conditions in these soils from anoxic to oxic. As a consequence, organic carbon that had been accumulated over millennia is rapidly mineralized, so that these soils are converted from a CO2 sink to a source. The peat mineralization rate depends mainly on drainage depth, but also on crop type. Various studies show that Miscanthus, a C4 bioenergy plant, shows potential for carbon sequestration in mineral soils because of its high productivity, its dense root system, absence of tillage and high preharvest litterfall. If Miscanthus cropping would have a similar effect in organic soils, peat consumption and thus CO2 emissions might be reduced. For our study we compared two adjacent fields, on which organic soil is cultivated with Miscanthus (since 20 years) and perennial grass (since 6 years). Both sites are located in the Bernese Seeland, the largest former peatland area of Switzerland. To determine wether Miscanthus-derived carbon accumulated in the organic soil, we compared the stable carbon isotopic signatures of the experimental soil with those of an organic soil without any C4-plant cultivation history. To analyze the effect of C4-C accumulation on peat degradability we compared the CO2 emissions by incubating 90 soil samples of the two fields for more than one year. Additionally, we analysed the isotopic CO2 composition (13C, 14C) during the first 25 days of incubation after trapping the emitted CO2 in NaOH and precipitating it as BaCO3. The ∂13C values of the soil imply, that the highest share of C4-C of around 30% is situated at a depth of 10-20 cm. Corn that used to be cultivated on the grassland field before 2009 still accounts for 8% of SOC. O/C and H/C ratios of the peat samples indicate a stronger microbial imprint of organic matter under Miscanthus cultivation. The amount of CO2 emitted was not affected by the cultivation type. On average 57% of the CO2 was C4 derived in the

  10. Development of small-scale peat production; Pienturvetuotannon kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Kallio, E. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The aim of the project is to develop production conditions, methods and technology of small-scale peat production to such a level that the productivity is improved and competitivity maintained. The aim in 1996 was to survey the present status of small-scale peat production, and research and development needs and to prepare a development plan for small-scale peat production for a continued project in 1997 and for the longer term. A questionnaire was sent to producers by mail, and its results were completed by phone interviews. Response was obtained from 164 producers, i.e. from about 75 - 85 % of small-scale peat producers. The quantity of energy peat produced by these amounted to 3.3 TWh and that of other peat to 265 000 m{sup 3}. The total production of energy peat (large- scale producers Vapo Oy and Turveruukki Oy included) amounted to 25.0 TWh in 1996 in Finland, of which 91 % (22.8 TWh) was milled peat and 9 % (2.2 TWh) of sod peat. The total production of peat other than energy peat amounted to 1.4 million m{sup 3}. The proportion of small-scale peat production was 13 % of energy peat, 11 % of milled peat and 38 % of sod peat. The proportion of small-scale producers was 18 % of other peat production. The results deviate clearly from those obtained in a study of small-scale production in the 1980s. The amount of small-scale production is clearly larger than generally assessed. Small-scale production focuses more on milled peat than on sod peat. The work will be continued in 1997. Based on development needs appeared in the questionnaire, the aim is to reduce environmental impacts and runoff effluents from small- scale production, to increase the efficiency of peat deliveries and to reduce peat production costs by improving the service value of machines by increasing co-operative use. (orig.)

  11. Breeding Ruminants that Emit Less Methane – The Role of International Collaboration

    DEFF Research Database (Denmark)

    Oddy, V H; de Haas, Y; Basarab, J

    production of 40-45%. If a methane-related trait were to be implemented by a livestock industry it will most likely be via genomic breeding values, which demand large numbers of measured animals in the reference population. Given the size of the reference population required for methane traits...

  12. Halogens in pore water of peat bogs – the role of peat decomposition and dissolved organic matter

    Directory of Open Access Journals (Sweden)

    H. Biester

    2006-01-01

    Full Text Available Halogens are strongly enriched in peat and peatlands and such they are one of their largest active terrestrial reservoir. The enrichment of halogens in peat is mainly attributed to the formation of organohalogens and climatically controlled humification processes. However, little is known about release of halogens from the peat substrate and the distribution of halogens in the peat pore water. In this study we have investigated the distribution of chlorine, bromine and iodine in pore water of three pristine peat bogs located in the Magellanic Moorlands, southern Chile. Peat pore waters were collected using a sipping technique, which allows in situ sampling down to a depth greater than 6m. Halogens and halogen species in pore water were determined by ion-chromatography (IC (chlorine and IC-ICP-MS (bromine and iodine. Results show that halogen concentrations in pore water are 15–30 times higher than in rainwater. Mean concentrations of chlorine, bromine and iodine in pore water were 7–15 mg l−1, 56–123 μg l−1, and 10–20 μg l−1, which correspond to mean proportions of 10–15%, 1–2.3% and 0.5–2.2% of total concentrations in peat, respectively. Organobromine and organoiodine were the predominant species in pore waters, whereas chlorine in pore water was mostly chloride. Advection and diffusion of halogens were found to be generally low and halogen concentrations appear to reflect release from the peat substrate. Release of bromine and iodine from peat depend on the degree of peat degradation, whereas this relationship is weak for chlorine. Relatively higher release of bromine and iodine was observed in less degraded peat sections, where the release of dissolved organic carbon (DOC was also the most intensive. It has been concluded that the release of halogenated dissolved organic matter (DOM is the predominant mechanism of iodine and bromine release from peat.

  13. Peat Soil Stabilization using Lime and Cement

    Directory of Open Access Journals (Sweden)

    Mohd Zambri Nadhirah

    2018-01-01

    Full Text Available This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  14. Peat Soil Stabilization using Lime and Cement

    Science.gov (United States)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  15. Peat soil composition as indicator of plants growth environment

    Science.gov (United States)

    Noormets, M.; Tonutare, T.; Kauer, K.; Szajdak, L.; Kolli, R.

    2009-04-01

    Exhausted milled peat areas have been left behind as a result of decades-lasting intensive peat production in Estonia and Europe. According to different data there in Estonia is 10 000 - 15 000 ha of exhausted milled peat areas that should be vegetated. Restoration using Sphagnum species is most advantageous, as it creates ecological conditions closest to the natural succession towards a natural bog area. It is also thought that the large scale translocation of vegetation from intact bogs, as used in some Canadian restoration trials, is not applicable in most of European sites due to limited availability of suitable donor areas. Another possibility to reduce the CO2 emission in these areas is their use for cultivation of species that requires minimum agrotechnical measures exploitation. It is found by experiments that it is possible to establish on Vaccinium species for revegetation of exhausted milled peat areas. Several physiological activity of the plant is regulated by the number of phytohormones. These substances in low quantities move within the plant from a site of production to a site of action. Phytohormone, indole-3-acetic acid (IAA) is formed in soils from tryptophane by enzymatic conversion. This compound seems to play an important function in nature as result to its influence in regulation of plant growth and development. A principal feature of IAA is its ability to affect growth, development and health of plants. This compound activates root morphology and metabolic changes in the host plant. The physiological impact of this substance is involved in cell elongation, apical dominance, root initiation, parthenocarpy, abscission, callus formation and the respiration. The investigation areas are located in the county of Tartu (58˚ 22' N, 26˚ 43' E), in the southern part of Estonia. The soil of the experimental fields belongs according to the WRB soil classification, to the soils subgroups of Fibri-Dystric Histosols. The investigation areas were

  16. Radiocarbon dating of lowbog peat

    International Nuclear Information System (INIS)

    Trettin, R.; Hiller, A.; Mundel, G.

    1982-01-01

    Owing to complex formation conditions, the age determination of lowbog peat is generally considered difficult. Within the framework of peat profile investigations of the Havellaendisches Luch, factors that may exercise an influence on the radiocarbon concentration and disturb an ordered age sequence are discussed. With regard to lowbog peat, the interpretation of the sample material to be measured is of particular importance. (author)

  17. Peat and the greenhouse effect - Comparison of peat with coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.

    1993-01-01

    The earth's climate is effected both by natural factors and human activities. So called greenhouse gas emissions increase the increment of the temperature of the air nearby the earth's surface, due to which the social changes can be large. The increment of greenhouse gas concentration in the atmosphere is due to increasing energy consumption. About 50 % of the climatic changes are caused by increase of the CO 2 concentration in the atmosphere. Other gases, formed in the energy production, intensifying the greenhouse effect are methane and nitrous oxide. The effect of greenhouse gases is based on their ability to absorb infrared radiation coming from the earth. This presentation discusses some of the greenhouse effect caused by some peat production and utilization chains in comparison with corresponding effects of coal, oil, natural gas and wood. The instantaneous greenhouse effects and the cumulative effects of the emissions of the gases (CO 2 , CH 4 and N 2 O) during a time period has been reviewed. The greenhouse effect has been calculated as CO 2 - equivalents. (5 figs.)

  18. Peat or no peat: Why do the Rajang and Mahakam Deltas differ?

    Energy Technology Data Exchange (ETDEWEB)

    Gastaldo, Robert A. [Department of Geology, Colby College, 5807 Mayflower Hill Drive, Waterville, ME 04901 (United States)

    2010-08-01

    Coastal and deltaic Holocene peat accumulations around the equatorial island of Borneo, Southeast Asia, have served as models for economic coal-bearing sequences in the stratigraphic record. Although climatic conditions, vegetational communities, and sedimentary regimes are comparable, peat accumulations are not found on both the western and eastern sides of the island. The Rajang River delta and coastal plain, Sarawak, East Malaysia, are covered in areally extensive, thick peat deposits that have attained at least a thickness of > 13 m in ombrogenous peat domes (Marudi, Baram River). Peat-swamp biomass began to accumulate over Pleistocene podzols when sea level stabilized {proportional_to} 7.5 ka and delta progradation was initiated. The Mahakam River delta and coastal plain, East Kalimantan, Indonesia, also began progradation at this time, but there is no evidence in any part of the coastal region for peat accumulation. Rather, poorly developed organic-rich gleysols occur throughout the delta plain. Both the Rajang River and Mahakam River deltas are tidally influenced, fine-grained systems, with a sediment provenance in the Central Massif. Sediment transported through the Rajang River delta differs in that as much as 60% of the clay minerals deposited in the system are mixed layer (I/S) and expandable (K/E) clays that act to restrict pore water flow in the tidal and overbank deposits that comprise the delta plain. These result in the development of an aquiclude above which paludal conditions develop, promoting accumulation of organic matter. In contrast, there is a low proportion of mixed layer and expandable clays transported in the Mahakam River system. This precludes the development of a stilted water table within the delta, allowing for organic matter recycling without peat accumulation. The presence of a high proportion of expandable clay minerals on the western side of Borneo is a reflection of the weathering and eroding source rocks on this side of the

  19. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification

    Science.gov (United States)

    Tfaily, Malak M.; Cooper, William T.; Kostka, Joel E.; Chanton, Patrick R.; Schadt, Christopher W.; Hanson, Paul J.; Iversen, Colleen M.; Chanton, Jeffrey P.

    2014-04-01

    We characterized peat decomposition at the Marcell Experimental Forest (MEF), Minnesota, USA, to a depth of 2 m to ascertain the underlying chemical changes using Fourier transform infrared (FT IR) and 13C nuclear magnetic resonance (NMR) spectroscopy) and related these changes to decomposition proxies C:N ratio, δ13C and δ15N, bulk density, and water content. FT IR determined that peat humification increased rapidly between 30 and 75 cm, indicating a highly reactive intermediate-depth zone consistent with changes in C:N ratio, δ13C and δ15N, bulk density, and water content. Peat decomposition at the MEF, especially in the intermediate-depth zone, is mainly characterized by preferential utilization of O-alkyl-C, carboxyl-C, and other oxygenated functionalities with a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75 cm, less change was observed but aromatic functionalities and lignin accumulated with depth. Significant correlations with humification indices, identified by FT IR spectroscopy, were found for C:N ratios. Incubation studies at 22°C revealed the highest methane production rates, greatest CH4:CO2 production ratios, and significant O-alkyl-C utilization within this 30 and 75 cm zone. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as excellent proxies for soil decomposition rate and should be a sensitive indicator of the response of the solid phase peat to increased temperatures caused by climate change and the field study manipulations that are planned to occur at this site. Radiocarbon signatures of microbial respiration products in deeper pore waters at the MEF resembled the signatures of more modern dissolved organic carbon rather than solid phase peat, indicating that recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. These results indicate that carbon cycling at depth at the MEF is not isolated from surface processes.

  20. New approaches to estimation of peat deposits for production of biologically active compounds

    Science.gov (United States)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  1. Second technical contractors' conference on peat

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This conference reported the status of the US Department of Energy Peat Program. The program includes peat resource surveys of eleven states, peat gasification process and equipment studies, dewatering studies, and environmental and socioeconomic factors in the development of peat technology. Separate abstracts were prepared for selected papers. (CKK)

  2. Towards developing IPCC methane ‘emission factors’ for peatlands (organic soils

    Directory of Open Access Journals (Sweden)

    J. Couwenberg

    2012-03-01

    Full Text Available (1 Huge reductions of carbon dioxide (CO2 and nitrous oxide (N2O effluxes can be attained by rewetting drained peatlands, but this will increase methane (CH4 effluxes.(2 The scientific data base for methane effluxes from peatlands is much larger than that for CO2 or N2O. Once anoxic conditions are provided, the availability of fresh plant material is the major factor in methane production. Old (recalcitrant peat plays only a subordinate role in gas efflux.(3 The annual mean water level is a surprisingly good indicator for methane effluxes, but at high water levels the cover of aerenchymous shunts (gas conductive plant tissue becomes a better proxy. Ideally, both water level and cover of aerenchymous shunts should be assessed to arrive at robust estimates of methane effluxes.(4 The available data provide sufficient guidance for arriving at moderately accurate (Tier 1 estimates consistent with IPCC methodologies. For more accurate estimation (higher tier approaches, vegetation provides a promising basis for development of more detailed efflux factors. Vegetation is a good proxy for mean water levels and can provide - with extra attention to aerenchymous shunts - a robust proxy for accurate and spatially explicit estimates of methane effluxes over large areas.

  3. Precipitation-induced runoff and leaching from milled peat mining mires by peat types: A comparative method for estimating the loading of water bodies during peat production

    Energy Technology Data Exchange (ETDEWEB)

    Svahnbaeck, L.

    2007-07-01

    Finland has some 10 million hectares of peatland, accounting for almost a third of its total area. Macroclimatic conditions have varied in the course of the Holocene growth and development of this peatland, and with them the habitats of the peat-forming plants. Temperatures and moisture conditions have played a significant role in determining the dominant species of mire plants growing there at any particular time, the resulting mire types and the accumulation and deposition of plant remains to form the peat. While in a natural state the mires of Finland have functioned as carbon dioxide sinks throughout the post-glacial period, but the ditching of peatland for forestry and agriculture, amounting to some 5,7 million hectares in Finland, has affected their water balance, especially over the last hundred years, and has thereby altered the quantity and species composition of the mire vegetation. The invasion of trees and woody plants to replace the typical mire plants following ditching for forestry purposes has stimulated the decomposition of the already accumulated peat and promoted the humification of the microbiologically active root system layer. The above climatic, environmental and mire development factors, together with ditching, have contributed, and continue to contribute, to the existence of peat horizons that differ in their physical and chemical properties, leading to differences in material transport between peatlands in a natural state and mires that have been ditched or prepared for forestry and peat production. Watercourse loading from the ditching of mires or their use for peat production can have detrimental effects on river and lake environments and their recreational use, especially where oxygen-consuming organic solids and soluble organic substances and nutrients are concerned. It has not previously been possible, however, to estimate in advance the watercourse loading likely to arise from ditching and peat production on the basis of the

  4. Global peat resources

    Energy Technology Data Exchange (ETDEWEB)

    Lappalainen, E. [ed.] [Geological Survey of Finland (Finland)

    1996-12-31

    The book provides a detailed review of the world`s peat and peatland resources and their role in the biosphere. It was compiled by 68 peat experts. Reports present the valuable mire ecosystem, its characteristics, and the use of peatlands. Maps and photographs illustrate the distribution of mines and their special characteristics, including raised bogs, aapa mires, blanket bogs, mangrove swamps, swamp forests etc. The book contains a total of 57 chapters, the bulk of then giving surveys of peat resources and use in individual countries. They are grouped under the headings: peatlands in biosphere; general review; Europe; Asia; Africa; North America; Central and South America; Australia (and New Zealand); and use of peatlands. One chapter has been abstracted separately for the IEA Coal Research CD-ROM. 7 apps.

  5. Environmental effects of fuel peat use in Finland. An LCA-based Decision Analysis Impact Assessment

    International Nuclear Information System (INIS)

    Leijting, J.

    1998-02-01

    Finland is a country where the main domestic energy sources are restricted to hydroelectric power, wood and peat from which hydropower is practically utilized fully. The use of peat as energy source has increased drastically since the oil crisis in the beginning of the seventies and the peat exploitation industry is nowadays a significant supplier of labour in Finland. Peat is, in contrast to fossil energy sources, exploited and used as an energy source within the country's borderline. Therefore, all direct extractions and emissions takes place in Finland.The influence of the processes, which occur during the life cycle of fuel peat, on the environment as a whole is yet somewhat unclear. The aim of the study is to map and assess the overall environmental impacts of production and use of fuel peat in Finland and to bring these impacts in relation with total environmental impacts in Finland caused by anthropogenic emissions. The results should be comparable with the impacts of other product life cycles (for instance other fuels). Furthermore, the detection of data gaps which are present is an important element of the study. Research questions are (1) What are the contributions of the different stressors which are emitted during the life cycle of fuel peat in Finland to global and regional environmental impacts? The environmental impacts involved are global impacts like the greenhouse effect as well as regional environmental impacts, e.g.acidification, eutrophication, toxic effects, ozone formation and effects on biodiversity; and (2) What are the contributions expressed per functional unit? Emissions released during the life cycle of fuel peat were inventorized. The emissions were characterized into the various impact categories and a valuation of the various impacts was performed, based on the Decision Analyses Impact Assessment (DAIA). In DAIA, country specific values were applied for estimating the potential of the stressors to cause adverse environmental effects

  6. Reducing methane emissions from ruminant animals

    Energy Technology Data Exchange (ETDEWEB)

    Mathison, G.W.; Okine, E.K.; McAllister, T.A.; Dong, Y.; Galbraith, J.; Dmytruk, O.I.N. [University of Alberta, Edmonton, AB (Canada). Dept. of Agriculture, Food and Nutrition Science

    1998-09-01

    In 1992 it was estimated that 30 x 10{sup 12}g more methane was emitted into the atmosphere than was removed, with animals being considered the largest single anthropogenic source. Ruminants produce 97% of the methane generated in enteric fermentation by animals. Estimates for methane emissions from animal wastes vary between 6 and 31% of that produced directly by the animal, with the most likely value being between 5 and 10% globally. Methane inhibitors can reduce methane emissions to zero in the short term but due to microbial adaptation the effects of these compounds are quickly neutralized and feed intake is often depressed. Methane emissions per unit of feed consumed from sheep and cattle fed hay diets appear to be quite similar but differences between other ruminants have been measured. The most practical way of influencing methane emissions per unit product is to increase productivity level since the proportion of feed energy required to just maintain the animal will be reduced, methane production falls with increased intake level, and the animal may go to market sooner. The most promising avenues for future research for reducing methanogenesis are the development of new products for reducing protozoal numbers in the rumen and the use of bacterocins or other compounds which specifically target methanogenic bacteria.

  7. HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands

    Science.gov (United States)

    Raivonen, Maarit; Smolander, Sampo; Backman, Leif; Susiluoto, Jouni; Aalto, Tuula; Markkanen, Tiina; Mäkelä, Jarmo; Rinne, Janne; Peltola, Olli; Aurela, Mika; Lohila, Annalea; Tomasic, Marin; Li, Xuefei; Larmola, Tuula; Juutinen, Sari; Tuittila, Eeva-Stiina; Heimann, Martin; Sevanto, Sanna; Kleinen, Thomas; Brovkin, Victor; Vesala, Timo

    2017-12-01

    Wetlands are one of the most significant natural sources of methane (CH4) to the atmosphere. They emit CH4 because decomposition of soil organic matter in waterlogged anoxic conditions produces CH4, in addition to carbon dioxide (CO2). Production of CH4 and how much of it escapes to the atmosphere depend on a multitude of environmental drivers. Models simulating the processes leading to CH4 emissions are thus needed for upscaling observations to estimate present CH4 emissions and for producing scenarios of future atmospheric CH4 concentrations. Aiming at a CH4 model that can be added to models describing peatland carbon cycling, we composed a model called HIMMELI that describes CH4 build-up in and emissions from peatland soils. It is not a full peatland carbon cycle model but it requires the rate of anoxic soil respiration as input. Driven by soil temperature, leaf area index (LAI) of aerenchymatous peatland vegetation, and water table depth (WTD), it simulates the concentrations and transport of CH4, CO2, and oxygen (O2) in a layered one-dimensional peat column. Here, we present the HIMMELI model structure and results of tests on the model sensitivity to the input data and to the description of the peat column (peat depth and layer thickness), and demonstrate that HIMMELI outputs realistic fluxes by comparing modeled and measured fluxes at two peatland sites. As HIMMELI describes only the CH4-related processes, not the full carbon cycle, our analysis revealed mechanisms and dependencies that may remain hidden when testing CH4 models connected to complete peatland carbon models, which is usually the case. Our results indicated that (1) the model is flexible and robust and thus suitable for different environments; (2) the simulated CH4 emissions largely depend on the prescribed rate of anoxic respiration; (3) the sensitivity of the total CH4 emission to other input variables is mainly mediated via the concentrations of dissolved gases, in particular, the O2

  8. HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands

    Directory of Open Access Journals (Sweden)

    M. Raivonen

    2017-12-01

    Full Text Available Wetlands are one of the most significant natural sources of methane (CH4 to the atmosphere. They emit CH4 because decomposition of soil organic matter in waterlogged anoxic conditions produces CH4, in addition to carbon dioxide (CO2. Production of CH4 and how much of it escapes to the atmosphere depend on a multitude of environmental drivers. Models simulating the processes leading to CH4 emissions are thus needed for upscaling observations to estimate present CH4 emissions and for producing scenarios of future atmospheric CH4 concentrations. Aiming at a CH4 model that can be added to models describing peatland carbon cycling, we composed a model called HIMMELI that describes CH4 build-up in and emissions from peatland soils. It is not a full peatland carbon cycle model but it requires the rate of anoxic soil respiration as input. Driven by soil temperature, leaf area index (LAI of aerenchymatous peatland vegetation, and water table depth (WTD, it simulates the concentrations and transport of CH4, CO2, and oxygen (O2 in a layered one-dimensional peat column. Here, we present the HIMMELI model structure and results of tests on the model sensitivity to the input data and to the description of the peat column (peat depth and layer thickness, and demonstrate that HIMMELI outputs realistic fluxes by comparing modeled and measured fluxes at two peatland sites. As HIMMELI describes only the CH4-related processes, not the full carbon cycle, our analysis revealed mechanisms and dependencies that may remain hidden when testing CH4 models connected to complete peatland carbon models, which is usually the case. Our results indicated that (1 the model is flexible and robust and thus suitable for different environments; (2 the simulated CH4 emissions largely depend on the prescribed rate of anoxic respiration; (3 the sensitivity of the total CH4 emission to other input variables is mainly mediated via the concentrations of dissolved gases, in particular

  9. Peat resources in Cuba

    International Nuclear Information System (INIS)

    Casanova Casanova, E.

    1996-01-01

    During the last few years the drastic cut in oil supply provoked a critical situation in Cuba. The shortage of domestic oil production and the absence of alternative energy sources, such as wide rivers and coal deposits, drove us to decide that the most promising option was to develop our huge peat deposits. However, there are problems concerning skills and finance. This report reviews the potential for peat development to date in the Cuban territory. The figures and characteristics are partly taken from the surveys done by the Russian and Cuban specialists during the 60's. There is some new data compiled from the work done more recently in some of the Cuban peat deposits. The conditions for draining and harvesting are very challenging and difficult if the peat deposits are to be developed without doing any unnecessary damage to the fragile environment of Cuban wetlands. However, if the required financing and skills are available, the work can be carried out and significant risks avoided

  10. Diminishing peat oxidation of agricultural peat soils by infiltration via submerged drains

    NARCIS (Netherlands)

    Akker, van den J.J.H.; Hendriks, R.F.A.

    2017-01-01

    Oxidation of peat soils used in dairy farming in the western peat area of The Netherlands causes subsidence rates up to 13 mm.y and emissions of CO2 to about 27 t.ha.y. In 2003 experiments started with subsurface irrigation by submerged drains to raise groundwater levels to reduce oxidation and so

  11. Polyphenols as enzyme inhibitors in different degraded peat soils: Implication for microbial metabolism in rewetted peatlands

    Science.gov (United States)

    Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik

    2015-04-01

    Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or

  12. Fishery impacts of peat production

    International Nuclear Information System (INIS)

    Laine, A.; Heikkinen, K.

    1991-01-01

    The total area of Finland's peat mining areas is approx. 60 000 ha. Increase in runoff from peat mining areas and changes in the quality of the runoff water, such as rises in solid matter, humus and nutrient content, result in a higher load on the lakes and rivers downstream peat mining areas. Loading from peat mining areas has been found to increase the bacterioplankton densities and change the species composition of phytoplankton in watercourses. Periphytic biomass has increased but zooplankton biomass and diversity have decreased. Corresponding changes and decreases in the number of species have also been observed in the bottom fauna of flowing waters. The loading caused by peat mining affects the fish stocks either directly or via changes in reproduct conditions and the availability of food organisms. Direct effects can be revealed as withdrawal of fish, their weakened condition and increased susceptibility to diseases, tainting or, in the worst case, even fish kills. Both organic and inorganic solid matter loading which deposits on the bottom have the most pronounced effects on fish reproduction and bottom fauna used as their food. Soiling of nets and changes in the condition of the fishing areas have a detrimental effect on fisheries. The changes that take place in the fish stocks are affected by the nature of the water system, the size of the peat mining areas and their location within the catchment area, as well as the quantity and timing of load coming from the peat mining areas. These can be influenced through technical water protection measures

  13. Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste.

    Science.gov (United States)

    Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco; Pontoni, Ludovico

    2014-10-01

    This work investigates the role of the moisture content on anaerobic digestion of food waste, as representative of rapidly biodegradable substrates, analysing the role of volatile fatty acid production on process kinetics. A range of total solids from 4.5% to 19.2% is considered in order to compare methane yields and kinetics of reactors operated under wet to dry conditions. The experimental results show a reduction of the specific final methane yield of 4.3% and 40.8% in semi-dry and dry conditions compared with wet conditions. A decreasing trend of the specific initial methane production rate is observed when increasing the total solids concentration. Because of lack of water, volatile fatty acids accumulation occurs during the first step of the process at semi-dry and dry conditions, which is considered to be responsible for the reduction of process kinetic rates. The total volatile fatty acids concentration and speciation are proposed as indicators of process development at different total solids content. © The Author(s) 2014.

  14. Environmental organizations say no to peat

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    A group of environmental protection oriented organizations published in June 10th 1999 in Helsinki a target program for energy solutions in Finland. According to the scenarios, published in 'The Recurrent Energy Policy' (Uusiutuva energiapolitiikka) publication, it would be possible to reduce the CO 2 emissions in Finland by 40 % by the year 2030 by increasing the use of renewable energy sources, and by intensifying the use of energy. The use of peat as energy source is denied in the scenarios. According to the energy scenarios of the environmental organizations the construction of new peat condensing power plants would be denied by political decision and no such plant would be allowed to be constructed after the year 2001. The generation of condensing power by peat would be finished in 2010 as the plants become out of operation. The use of peat as a fuel in back-pressure power generation and in heating plant would diminish gradually, and it would finish totally in 2025-2030. This means that the life-cycle of fuel peat in Finland would remain to 60 years. The adequacy of industrially usable peat reserves has been estimated to be 350 - 500 years. The publication defines the power or heat generated by e.g. wood, energy-willow, biogas and peat as bioenergy, but on the other hand in the program the peat is considered to be fossil fuel, and in the table presenting the carbon dioxide emissions, the emissions of peat have been presented, as characteristic in these connections, as maximum values. The scenario study suggests the heavy increase of the use of wood, natural gas, wind power, solar energy and ground heating. The energy conservation has also high priority, as well as the increasing of the industrial back-pressure power generation based on wood fuels. According to the environmental organizations the power production based on nuclear power, coal, peat and oil, as well as the import of electric power, should be stopped in Finland. New hydroelectric power would not

  15. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment

    International Nuclear Information System (INIS)

    Jauhiainen, Jyrki; Kerojoki, Otto; Vasander, Harri; Silvennoinen, Hanna; Limin, Suwido

    2014-01-01

    Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. Peat temperature dynamics and heterotrophic carbon dioxide (CO 2 ), nitrous oxide (N 2 O) and methane (CH 4 ) fluxes were monitored under four shading conditions, i.e. unshaded, 28%, 51% and 90% shading at experiment sites established on reclaimed fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Groundwater tables on the sites were at about 50 cm depth, the sites were maintained vegetation free and root ingrowth to gas flux monitoring locations was prevented. Half of the four shading areas received NPK-fertilization 50 kg ha −1 for each of N, P and K during the experiment and the other half was unfertilized. Increases in shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference in the topmost 50 cm peat profile was between the unshaded and 90% shaded surface, where the average temperatures at 5 cm depth differed up to 3.7 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO 2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO 2 emission average on the unfertilized plots and a 66% lower emission average on the fertilized plots. Correlation between peat temperature and CO 2 flux suggested an approximately 8% (unfertilized) and 25% (fertilized) emissions change for each 1 °C temperature change at 5 cm depth on the agricultural land. CO 2 flux responses to the treatments remained low on degraded peatland. Fertilized conditions negatively correlated with N 2 O efflux with increases in temperature, suggesting a 12–36% lower efflux for each 1 °C increase in peat temperature

  16. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    Science.gov (United States)

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Direct Activation Of Methane

    KAUST Repository

    Basset, Jean-Marie; Sun, Miao; Caps, Valerie; Pelletier, Jeremie; Abou-Hamad, Edy

    2013-01-01

    Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20.degree. C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin

  18. Water and peat chemistry comparisons of natural and peat-harvested peatlands across Canada and their relevance to peatland restoration

    International Nuclear Information System (INIS)

    Windmulder, H.L.; Rochefort, L.; Vitt, D.H.

    1996-01-01

    Water and peat chemistry comparisons of four post-harvested and neighbouring, undisturbed peatlands across Canada show that harvesting alters chemical conditions. Commercial harvesting removes the surface peat and exposes layers farther down the peat deposit. The newly exposed peat layers that were formed in earlier developmental stages of the peatland can be more minerotrophic and/or more variable in chemical composition than undisturbed bog peat. All the harvested sites were originally bogs. Only one site, which had minimal peat removed, presently has chemical conditions somewhat similar to the original surface, with low elemental levels typical of bogs. Two sites are now chemically similar to poor fens and one site is similar to a moderate-rich fen. Levels of sodium, potassium, calcium, magnesium, sulphate and chloride in three of the harvested sites are higher than normal values found in natural, unharvested bogs, and result from the exposure of fen peat. Higher levels of ammonium-nitrogen and nitrate-nitrogen in the peat and water of all the harvested sites are present, with higher ammonium associated with wetter sites and higher nitrate levels associated with drier sites

  19. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  20. Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.C.; Callaway, T.R.; Schultz, C.L.; Edrington, T.S.; Harvey, R.B.; Nisbet, D.J. [United States Department of Agriculture, Agricultural Research Service, Food and Feed Safety Research Unit, College Station, TX (United States); Carstens, G.E.; Miller, R.K. [Texas A and M University, College Station, TX (United States). Department of Animal Science

    2006-12-15

    Strategies are sought to reduce economic and environmental costs associated with ruminant methane emissions. The effect of oral nitroethane or 2-nitropropanol administration on ruminal methane-producing activity and volatile fatty acid production was evaluated in mature ewes. Daily administration of 24 and 72 mg nitroethane/kg body weight reduced (P < 0.05) methane-producing activity by as much as 45% and 69% respectively, when compared to control animals given no nitroethane. A daily odes of 120 mg 2-nitropropanol/kg body weight was needed to reduce (P < 0.05) methane-producing activity by 37% from that of untreated control animals. Reductions in methane-producing activity may have been diminished by the last day (day 5) of treatment, presumably due to ruminal adaptation. Oral administration of nitroethane or 2-nitropropanol had little or no effect on accumulations or molar proportions of volatile fatty acids in ruminal contents collected from the sheep. These results demonstrate that nitroethane was superior to 2-nitropropanol as a methane inhibitor and that both nitrocompounds reduced ruminal methanogenesis in vivo without redirecting the flow of reductant generated during fermentation to propionate and butyrate. (author)

  1. Classifying and mapping wetlands and peat resources using digital cartography

    Science.gov (United States)

    Cameron, Cornelia C.; Emery, David A.

    1992-01-01

    Digital cartography allows the portrayal of spatial associations among diverse data types and is ideally suited for land use and resource analysis. We have developed methodology that uses digital cartography for the classification of wetlands and their associated peat resources and applied it to a 1:24 000 scale map area in New Hampshire. Classifying and mapping wetlands involves integrating the spatial distribution of wetlands types with depth variations in associated peat quality and character. A hierarchically structured classification that integrates the spatial distribution of variations in (1) vegetation, (2) soil type, (3) hydrology, (4) geologic aspects, and (5) peat characteristics has been developed and can be used to build digital cartographic files for resource and land use analysis. The first three parameters are the bases used by the National Wetlands Inventory to classify wetlands and deepwater habitats of the United States. The fourth parameter, geological aspects, includes slope, relief, depth of wetland (from surface to underlying rock or substrate), wetland stratigraphy, and the type and structure of solid and unconsolidated rock surrounding and underlying the wetland. The fifth parameter, peat characteristics, includes the subsurface variation in ash, acidity, moisture, heating value (Btu), sulfur content, and other chemical properties as shown in specimens obtained from core holes. These parameters can be shown as a series of map data overlays with tables that can be integrated for resource or land use analysis.

  2. Methane Emissions from Landfill: Isotopic Evidence for Low Percentage of Oxidation from Gas Wells, Active and Closed Cells

    Science.gov (United States)

    Lowry, David; Fisher, Rebecca; Zazzeri, Giulia; al-Shalaan, Aalia; France, James; Lanoisellé, Mathias; Nisbet, Euan

    2017-04-01

    Large landfill sites remain a significant source of methane emissions in developed and developing countries, with a global estimated flux of 29 Tg / yr in the EDGAR 2008 database. This is significantly lower than 20 years ago due to the introduction of gas extraction systems, but active cells still emit significant amounts of methane before the gas is ready for extraction. Historically the methane was either passively oxidized through topsoil layers or flared. Oxidation is still the primary method of methane removal in many countries, and covered, remediated cells across the world continue to emit small quantities of methane. The isotopic signatures of methane from landfill gas wells, and that emitted from active and closed cells have been characterized for more than 20 UK landfills since 2011, with more recent work in Kuwait and Hong Kong. Since 2013 the emission plumes have been identified by a mobile measurement system (Zazzeri et al., 2015). Emissions in all 3 countries have a characteristic δ13C signature of -58 ± 3 ‰ dominated by emissions from the active cells, despite the hot, dry conditions of Kuwait and the hot, humid conditions of Hong Kong. Gas well samples define a similar range. Surface emissions from closed cells and closed landfills are mostly in the range -56 to -52 ‰Ṫhese are much more depleted values than those observed in the 1990s (up to -35 ) when soil oxidation was the dominant mechanism of methane removal. Calculations using isotopic signatures of the amount of methane oxidised in these closed areas before emission to atmosphere range from 5 to 15%, but average less than 10%, and are too small to calculate from the high-emitting active cells. Compared to other major methane sources, landfills have the most consistent isotopic signature globally, and are distinct from the more 13C-enriched natural gas, combustion and biomass burning sources. Zazzeri, G. et al. (2015) Plume mapping and isotopic characterization of anthropogenic methane

  3. Changes in vegetation, peat properties and peat accumulation in Swedish peatlands as revealed by archive data.

    Science.gov (United States)

    Schoning, Kristian; Sohlenius, Gustav

    2016-04-01

    In this investigation we have studied patterns in peat accumulation and changes in mire status since the early 1900s for two areas in Sweden. In the early 1900s the Geological Survey of Sweden collected a vast amount of peat and peatland data, including information on vegetation and land-use. We have used this archive data to evaluate changes in mire vegetation, mire wetness and surface peat properties, rates of peat accumulation, succession in young wetlands and the effects of cultivation on peatlands. In total 156 mires in an uplift area of eastern middle Sweden were included in the data-set, including both pristine mires and peatlands used for agricultural purposes. In this area new peatlands have continuously been formed during the past 7 000 years making it possible to evaluate changes in peat accumulation over time. The other study area is situated in the south Swedish Uplands where we have revisited some larger bogs. The results from our investigation show that many of the peatlands have underwent major changes since the early 1900s. In most of the small peatlands we have found important changes in vegetation where mire vegetation has been replaced by nutrient demanding and/or dry species flora while the tree stand on large mires in south Sweden have increased. In some mires humification has increased in the uppermost peat-layers and the mire surface have become drier compared to the early 1900s. In eastern middle Sweden there are indications that the peat accumulation is lower 0,5 mm/year in older peatlands compared with younger ones 1,2 mm/year, although the mire vegetation in the older peatlands is dominated by sphagnum. The peat depth of the cultivated mires in this area shows a mean decrease of 40 cm since the early 1900s.

  4. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    Science.gov (United States)

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  5. Peat - The sustainable energy resource in Finland

    International Nuclear Information System (INIS)

    1994-01-01

    In Finland the level of energy consumption for heating, transportation and industry is higher than in many other European countries. This is due to the northern position of the country and also to the fact that Finland is sparsely inhabited. Peat is one of the Finnish domestic energy resources. This brochure provides a compact package of background information on fuel peat. All the data presented concerning the production and use of peat, employment, investments in the peat industry, emission levels resulting from the production and use of peat, new combustion technologies and peatland resources, have been collected from documents and other sources that are accessible to the general public

  6. Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass.

    Science.gov (United States)

    Budisulistiorini, Sri Hapsari; Riva, Matthieu; Williams, Michael; Chen, Jing; Itoh, Masayuki; Surratt, Jason D; Kuwata, Mikinori

    2017-04-18

    Light-absorbing brown carbon (BrC) constituents of organic aerosol (OA) have been shown to significantly absorb ultraviolet (UV) and visible light and thus impact radiative forcing. However, molecular identification of the BrC constituents is still limited. In this study, we characterize BrC constituents at the molecular level in (i) aerosols emitted by combustion of peat, fern/leaf, and charcoal from Indonesia and (ii) ambient aerosols collected in Singapore during the 2015 haze episode. Aerosols were analyzed using ultra performance liquid chromatography instrument interfaced to a diode array detector and electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in the negative ion mode. In the laboratory-generated aerosols, we identified 41 compounds that can potentially absorb near-UV and visible wavelengths, such as oxygenated-conjugated compounds, nitroaromatics, and S-containing compounds. The sum of BrC constituents in peat, fern/leaf, and charcoal burning aerosols are 16%, 35%, and 28% of the OA mass, respectively, giving an average contribution of 24%. On average, the BrC constituents account for 0.4% of the ambient OA mass; however, large uncertainties in mass closure remain because of the lack of authentic standards. This study highlights the potential of light-absorbing BrC OA constituents from peat, fern/leaf, and charcoal burning and their importance in the atmosphere.

  7. Microbial liquefaction of peat for the production of synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekaran, M.

    1988-01-01

    Objectives of this study were: to evaluate the potential of using various microorganisms to hydrolyse and liquify peat; to determine the optimal conditions for peat hydrolysis and liquefaction; to study the co-metabolizable substances; to separate the compounds present in liquified peat by alumina and silica acid chromatography and capillary gas chromatography; and to identify the compounds in liquified peat by capillary GC-Mass spectrometry. Organisms used in the study include: Coprinus comatus, Coriolus hirsutus, Ganoderma lucidum, Lentinus edodes, Lenzites trabea, Phanerochaete chrysosporium, Pleurotus ostreatus, P. sapidus, Polyporus adjustus, Neurospora sitophila, Rhizophus arrhizus, Bacillus subtilis, Acinetobacter sp. and Alcaligenes sp. The fungi were maintained and cultivated in potato dextrose agar at 30 C. The bacteria were maintained in nutrient agar at 30 C. We have also initiated work on coal solubilization in addition to the studies on peat liquefaction. A relatively new substratum or semi-solid base for culture media called Pluronic F-127, or Polyol (BASF, New Jersey). Objectives of this study were: (1) to study the growth patterns of Candida ML 13 on pluronic as substratum; (2) to determine the rate of microbial coal solubilization on pluronic F-127 amended in different growth media; (3) to separate the mycelial mat of Candida ML 13 from unsolubilized coal particles and solubilized coal products from pluronic F-127; (4) to determine the effects of pH on microbial coal solubilization in pluronic F-127 media; (5) the effect of concentration of pluronic F-127 in media on coal solubilization; and, (6) to study the role of extracellular factors secreted by Candida ML 13 on coal solubilization in pluronic F-127 media. Results are discussed. 4 refs.

  8. Potential Phosphorus Mobilisation in Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    Re-establishment of wetlands on peat soils containing phosphorus bound to iron(III)-oxides can lead to an undesirable phosphorus loss to the aquatic environment due to the reductive dissolution of iron(III)-oxides. Thus it is important to be able to assess the potential phosphorus mobilisation from...... peat soils before a re-establishment takes place. The potential phosphorus mobilisation from a peat soil depends not only on the geochemical characteristics but also on the redox conditions, the hydrological regime in the area as well as the hydro-physical properties of the soil. The hypothesis...... for this study is (i) the release of phosphorus in peat is controlled by the geochemistry; (ii) the mobilisation of phosphorus is controlled by both geochemistry and hydro-physics of the soil. For this study, 10 Danish riparian lowland areas with peat soil were selected based on their geochemical characteristics...

  9. Methane emissions from different coastal wetlands in New England, US

    Science.gov (United States)

    Wang, F.; Tang, J.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    According to the IPCC, methane have 25 times warming effect than CO2, and natural wetlands contribute 20-39 % to the global emission of methane. Although most of these methane was from inland wetlands, there was still large uncertain in the methane emissions in coastal wetlands. In the past three years, we have investigated methane emissions in coastal wetlands in MA, USA. Contrary to previous assumptions, we have observed relative larger methane flux in some salt marshes than freshwater wetlands. We further detect the methane source, and found that plant activities played an important role in methane flux, for example, the growth of S. aterniflora, the dominate plants in salt marsh, could enhance methane emission, while in an fresh water wetland that was dominated by cattail, plant activity oxided methane and reduced total flux. Phragmite, an invasive plant at brackish marsh, have the highest methane flux among all coastal wetland investigated. This study indicated that coastal wetland could still emit relatively high amount of methane even under high water salinity condiations, and plant activity played an important role in methane flux, and this role was highly species-specific.

  10. Ebullition, Plant-Mediated Transport, and Subsurface Horizontal Water Flow Dominate Methane Transport in an Arctic Sphagnum Bog

    Science.gov (United States)

    Wehr, R. A.; McCalley, C. K.; Logan, T. A.; Chanton, J.; Crill, P. M.; Rich, V. I.; Saleska, S. R.

    2017-12-01

    Emission of the greenhouse gas methane from wetlands is of prime concern in the prediction of climate change - especially emission associated with thawing permafrost, which may drive a positive feedback loop of emission and warming. In addition to the biochemistry of methane production and consumption, wetland methane emission depends critically on the transport mechanisms by which methane moves through and out of the ecosystem. We therefore developed a model of methane biochemistry and transport for a sphagnum bog representing an intermediate permafrost thaw stage in Stordalen Mire, Sweden. In order to simultaneously reproduce measured profiles of both the concentrations and isotopic compositions of both methane and carbon dioxide in the peat pore water (Fig. 1) - as well as the surface methane emission - it was necessary for the model to include ebullition, plant-mediated transport via aerenchyma, and subsurface horizontal water flow. Diffusion of gas through the pore water was relatively unimportant. As a result, 90% of the produced methane escaped the wetland rather than being consumed by methanotrophic organisms in the near-surface pore water. Our model provides a comprehensive picture of methane emission from this bog site by quantifying the vertical profiles of: acetoclastic methanogenesis, hydrogenotrophic methanogenesis, methane oxidation, aerobic respiration, ebullition, plant-mediated transport, subsurface horizontal water flow, and diffusion.

  11. Measurement of natural activity in peat ashes

    International Nuclear Information System (INIS)

    Suomela, J.

    1985-01-01

    High proportions of radioactive materials in peat ashes may involve radiation hazards during handling and deposition of these waste materials. Measurements have been performed to determine the content of radioactive materials in ashes from peat burning. The activities in fly ash and ''solid'' ash in seven peat-fired power plants in Sweden are presented. The methods of analysing and measuring peat ashes for activity from different radionuclides are described. The activity levels in ash samples are given

  12. Horticultural peat markets of the world. Finnish export possibilities increasing

    International Nuclear Information System (INIS)

    Knuutinen, O.

    2000-01-01

    The statistics of 1997, collected by Turveruukki Oy, show that the horticultural peat production in Europe and Northern America is about 32.6 million m 3 /a. About 20.2 million m 3 of horticultural peat was produced in 1997 in Western Europe and about 9.5 million m 3 in Northern America. The share of Eastern Europe was 2.9 million m 3 . Production of fuel peat and horticultural peat in Europe are nearly equal, but most of the countries produce only horticultural peat. Finland, Russia, Ireland, Belorussia and Sweden are countries where the share of fuel peat is high. The largest producers of horticultural peat are Germany, Canada and Estonia. The share of these countries is about 60% of the production in Europe and Northern America. Germany and Canada do not produce fuel peat at all, and in Estonia the main portion of peat production area is aimed at horticultural production. About 1.6 million m 3 of horticultural peat was produced in Finland in 1997, corresponding to about 8% of the horticultural peat production in Europe. The share of horticultural peat has been low also in Ireland and Sweden. The main portion of the horticultural peat production in Finland is produced side by side with the fuel peat production. Horticultural peat is exported mainly as processed and sacked peat. The horticultural peat production in Western Europe is about 20 million m 3 /s. The Netherlands is a were large consumer of horticultural peat, but it has no horticultural peat production of its own. Other possible countries for export are Spain and France in Europe, and Japan

  13. Excavating and loading equipment for peat mining

    Science.gov (United States)

    Mikhailov, A. V.; Zhigulskaya, A. I.; Yakonovskaya, T. B.

    2017-10-01

    Recently, the issues of sustainable development of Russian regions, related to ensuring energy security, are more urgent than ever. To achieve sustainable development, an integrated approach to the use of local natural resources is needed. Practically in all north regions of the Russian Federation, peat as a local natural resource is widespread, which has a practical application in the area of housing services. The paper presents the evaluation of technologies for open-pit peat mining, as well as analysis of technological equipment for peat production. Special attention is paid to a question of peat materials excavating and loading. The problem of equipment selection in a peat surface mine is complex. Many features, restrictions and criteria need to be considered. Use of low and ultra-low ground pressure excavators and low ground pressure front-end loaders with full-range tires to provide the necessary floatation in the peat bog environment is offered.

  14. Low methane flux from a constructed boreal wetland

    Science.gov (United States)

    Clark, M. G.; Humphreys, E.; Carey, S. K.

    2016-12-01

    The Sandhill Fen Watershed project in northern Alberta, Canada, is a pilot study in reconstructing a mixed upland and lowland boreal plain ecosystem. The physical construction of the 50 ha area was completed in 2012 and revegetation programs, through planting and seeding, began that same year and continued into 2013. Since then, the vegetation has developed a substantial cover over the reclaimed soil and peat substrates used to cap the engineered topography constructed from mine tailings. To monitor the dynamics of carbon cycling processes in this novel ecosystem, near weekly gas chamber measurements of methane fluxes were carried out over 3 growing seasons. Soil moisture, temperature and ion flux measurements, using Plant Root Simulator probes, were also collected alongside the gas flux plots. In the 3rd season, a transect was established in the lowlands along a moisture gradient to collect continuous reduction-oxidation potential measurements along with these other variables. Overall, methane effluxes remained low relative to what is expected for rewetted organic substrates. However, there is a trend over time towards increasing methane gas emissions that coincides with increasing fluxes of reduced metal ions and decreasing fluxes of sulphate in the fully saturated substrates. The suppressed levels of methane fluxes are possibly due to naturally occurring high levels of sulphate in the donor materials used to cap the ecosystem construction.

  15. Methane Flux to the Atmosphere from the Deepwater Horizon Oil Leak

    Science.gov (United States)

    Yvon-Lewis, S. A.; Hu, L.; Kessler, J. D.; Garcia Tigreros, F.; Chan, E. W.; Du, M.

    2010-12-01

    The unfortunate blowout at the BP Deepwater Horizon (DWH) oil rig on April 20, which killed 11 people, was releasing oil and methane at an average rate of 58,000 barrels per day into the deep ocean, until it was recently capped resulting in a total of 4.9 million barrels released (National Incident Command Report, 2010). The methane component of the emission was estimated at 40-60%. As part of a NSF funded RAPID award, the sea-to-air flux of methane from the blowout at the Deepwater Horizon was measured on board the R/V Cape Hatteras from June 11-20 with substantial spatial and temporal resolution over the course of seven days in June 2010. Air and water concentrations were analyzed continuously from a flowing air line and a continuously flowing seawater equilibrator using cavity ring-down spectrometers (CRDS) and a gas chromatograph with a flame ionization detector (GC-FID). The results indicate a low flux of methane to the atmosphere (0.024 μmol m^{-2} d^{-1}) with atmospheric and seawater equilibrium mixing ratios averaging 1.86 ppm and 2.85 ppm, respectively within the survey area. Most of the methane emitted from the wellhead was not emitted to the atmosphere. It dissolved into the water column at depth.

  16. Modulation of hexavalent chromium toxicity on Οriganum vulgare in an acidic soil amended with peat, lime, and zeolite.

    Science.gov (United States)

    Antoniadis, Vasileios; Zanni, Anna A; Levizou, Efi; Shaheen, Sabry M; Dimirkou, Anthoula; Bolan, Nanthi; Rinklebe, Jörg

    2018-03-01

    Dynamics of chromate (Cr(VI)) in contaminated soils may be modulated by decreasing its phytoavailability via the addition of organic matter-rich amendments, which might accelerate Cr(VI) reduction to inert chromite (Cr(III)) or high-cation exchange capacity amendments. We studied Cr(VI) phytoavailability of oregano in a Cr(VI)-spiked acidic soil non-treated (S) and treated with peat (SP), lime (SL), and zeolite (SZ). The addition of Cr(VI) increased the concentrations of Cr(VI) and Cr(III) in soils and plants, especially in the lime-amended soil. The plant biomass decreased in the lime-amended soil compared to the un-spiked soil (control) due to decreased plant phosphorus concentrations and high Cr(VI) concentrations in root at that treatment. Oregano in the peat-amended soil exhibited significantly less toxic effects, due to the role of organic matter in reducing toxic Cr(VI) to Cr(III) and boosted plant vigour in this treatment. In the lime-amended soil, the parameters of soil Cr(VI), soil Cr(III), and root Cr(III) increased significantly compared to the non-amended soil, indicating that Cr(VI) reduction to Cr(III) was accelerated at high pH. Added zeolite failed to decreased Cr(VI) level to soil and plant. Oregano achieved a total uptake of Cr(III) and Cr(VI) of 0.275 mg in plant kg -1 soil in a pot in the non-amended soil. We conclude that peat as soil amendment might be considered as a suitable option for decreasing Cr(VI) toxicity in soil and plant, and that oregano as tolerant plant species has a certain potential to be used as a Cr accumulator. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The frost peat production; Routapalaturpeen tuotantoketjun tekniikka, talous ja ympaeristoevaikutukset

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T. [Vapo Oy, Jyvaeskylae (Finland); Leiviskae, V. [Oulu Univ. (Finland). Thule Inst.

    1997-12-01

    The frost peat production means the cutting of frozen peat in the winter time. The aim of this study is to test the possibilities to prolong the peat production season and to produce peat pieces for the horticultural peat industry. In the frost peat production method the frozen peat field is sawed throughout the length and breadth of by a circle saw. The sawed peat pieces are loosened from the field by a so-called `splitter`. The circle saw is equipped with the five circle saw blades (diameter 90 cm). The distance of the blades is adjustable. The splitter is equipped with a horizontal position blade (width 35 cm). The dimensions of the peat pieces are changeable, but from the point of drying the upper limit of the side of the peat cube can be 15-20 cm. The frost peat production method is technically suitable for production of slightly decomposed (H1-5) energy and horticultural peat. The energy peat pieces are allowed to dry up 70-75 % moisture content on the cutting field and then the pieces can be ridged by the screening ridger. If necessary, the ridges can be turned over. In the frost peat production, the conventional sod peat winning machines can be used in the following stages of the working tasks: harrowing, ridging, loading, turning of ridges and stockpiling. The measured output of the circle saw was about 45-50 m{sup 3}/h of energy peat and 58-63 m{sup 3}/h of horticultural peat. The output of the splitter was 120-150 m{sup 3}/h. Theoretically, the output of circle saw and the splitter can easily be doubled. Thereafter the production costs will be about 19 FIM/MWh of energy peat and 18,6 FIM/m{sup 3} of horticultural peat

  18. Safety indicators for the peat industry

    Energy Technology Data Exchange (ETDEWEB)

    Berezhnoy, S A; Sedov, Yu I; Yenoshevskiy, B A

    1981-01-01

    Members of the inter-institutional department of 'Labor Protection' of the KPI, in cooperation with members of the peat industry, have developed safety indicators for the peat industry in accordance with the requirements of GOST 12.4.026-76 SSBT, and established the range and order for their use. The safety indicators for the peat industry are divided into four groups (prohibiting, warning, regulating, and indicating), depending on the function.

  19. Methane transport and emissions from soil as affected by water table and vascular plants.

    Science.gov (United States)

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  20. Effects of carbon dioxide on pyrolysis of peat

    International Nuclear Information System (INIS)

    Lee, Jechan; Yang, Xiao; Song, Hocheol; Ok, Yong Sik; Kwon, Eilhann E.

    2017-01-01

    This study focuses on the mechanistic understanding of effects of CO 2 on pyrolysis of peat. To do this, three pyrolytic products (i.e., syngas: H 2 and CO, pyrolytic oil (tar), and biochar) were characterized. Thermal cracking of volatile organic carbons (VOCs) generated from pyrolysis of peat was enhanced in the presence of CO 2 . Besides the enhanced thermal cracking of VOCs, unknown reaction between CO 2 and VOCs was also identified. Accordingly, CO 2 played a role in enhancing syngas production and in reducing tar formation in pyrolysis of peat. This study also reveals that peat-biochar produced in CO 2 exhibited a larger surface area than that produced in N 2 . The results shown in this paper would be used for various applications such as energy recovery from peat using a potent greenhouse gas (for example, CO 2 ). - Highlights: • More CO can be produced from pyrolysis of peat in CO 2 than in N 2 . • Less amount of tar produced from pyrolysis of peat in CO 2 than in N 2 . • Surface area of peat-biochar made in CO 2 is larger than that made in N 2 . • CO 2 can modify the quantity/quality of pyrolytic products from peat.

  1. Peat - a slowly renewable biofuel

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The international investigation group of the Finnish Ministry of Trade and Industry suggest that peat should be classified as a slowly renewable energy source. Regeneration of peat can take up to thousands of years. Hence peat differs from wood energy, classified as renewable energy, and on the other hand from fossil fuels, such as coal. The report of the investigation group includes all the present research information on greenhouse gas balances of Finnish peatlands, i.e. how much greenhouse gases are liberated from Finnish mires, and on the other hand how much greenhouse gases they absorb. The net emissions of greenhouse gases of Finnish mires are over 10 million tons per year, and those of combustion of peat, mainly CO 2 , are over 8 million tons. The total greenhouse gas emissions of peat combustion and Finnish mire are estimated to be 19 (+- 9) % per year. This corresponds to about 25% of the total greenhouse gas emissions in Finland. The objective of the report was also to study the effects of the utilization of cutaway peat production areas (reforestation, returning the areas back to mires, agricultural utilization) on the greenhouse gas emission balances. The precise investigation of the effects of the greenhouse gas balances and the utilization of cutaway areas require further investigation and measurements at Finnish mires. The group consisted of Patrick Crill (USA), Ken Hargraves (GB) and Atte Korhola (FIN). The report of the group will be published in the Studies and Reports Serie of the Finnish Ministry of Trade and Industry both in English and in Finnish

  2. Peat in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Ambak, K. [MARDI - Integrated Peat Research Station, Johor (Malaysia); Ah Chye, L. [MARDI Jalan Kebun, Selangor (Malaysia). Vegetable Research Centre

    1996-12-31

    Malaysian peatlands occur mostly in the water-saturated basins of the coastal lowlands. They are approximately 25 000 km{sup 2} in extent, of which about 10 000 km{sup 2} are in Peninsular Malaysia and another 15 000 km{sup 2} are distributed in Sarawak and Sabah. In Peninsular Malaysia, peatland classification is based mainly on peat depth and loss on ignition. In Sarawak, a more comprehensive approach is adopted, based on peat depth and the type of underlying mineral materials. As for Sabah, the classification follows FAD/UNESCO guidelines. Malaysian peatland is utilised mainly for agriculture. At present, about 32 % of the peatland area in Peninsular Malaysia is used for this purpose. In Sarawak, a much smaller percentage is used for agriculture. The main crops grown are oil-palm, rubber, coconut, padi and pineapple. Based on {sup 14}C datings, it has been estimated that peat in this region began to form between 4 000 and 5 000 years ago. The overall rate of accumulation of the peat since its initial formation has been about 2.81 mm ye` whereas the average rate during the early stages of formation ( 12-10 m) was 4.76 mm ye. In the intermediate stage (10-5 m), the average annual accumulation rate decreased to 3.14 mm, and to 2.22 mm in the final phase (5 m to the surface). (orig.) (17 refs.)

  3. Effect of Different Peat Size and Pre-Consolidation Pressure of Reconstituted Peat on Effective Undrained Shear Strength Properties

    Science.gov (United States)

    Azhar, ATS; Norhaliza, W.; Ismail, B.; Ezree, AM; Nizam, ZM

    2017-08-01

    Shear strength of the soil is one of the most important parameters in engineering design, especially during the pre- or post-construction periods, since it is mainly used to measure and evaluate the foundation or slope stability of soil. Peat normally known as a soil that has a very low value of shear strength, and in order to determine and understand the shear strength of the peat, it is a difficult task in geotechnical engineering due to several factors such as types of fabrics, the origin of the soil, water content, organic matter and the degree of humification. The aim of this study is to determine the effective undrained shear strength properties of reconstituted peat of different sizes. All the reconstituted peat samples were formed with the size that passed the opening sieve of 0.425 mm (effective undrained shear strength properties for reconstituted peat effective shear strength properties for the reconstituted peat effective undrained shear strength properties result obtained from the tests show that the reconstituted peat pore pressure, Δu, show both of peat

  4. Life cycle assessment of peat utilisation in Finland

    International Nuclear Information System (INIS)

    Maelkki, H.

    1997-01-01

    Environmental issues related to the production of peat and its use in energy generation have been the subject of public debate and research over the past few years in Finland. Peat is both an indigenous and a locally utilised fuel. Finland has no fossil fuel resources, and the transportation distances of imported fuels into Finland are normally long. In Finland the large peat resources can be utilised locally and peat-burning power plants are situated near the peatlands. Peat production and energy conversion methods are being continuously developed to make use of the environmentally and technically best available technology. In Finland peat formation exceeds peat utilisation and an increase in peat utilisation is therefore sustainable. The life cycle assessment concept gives an opportunity to evaluate and improve the environmental quality of peat utilisation options. The study focuses on an inventory analysis, but some of the most common methods of impact assessment with valuation are also included. The study also includes a comparison of fossil fuels and a discussion part. All the calculated results are based on net emissions. The background emissions of natural peatland are subtracted from the emissions of the utilisation phases. Milled peat and sod peat are reported in this study. Horticultural peat is studied simultaneously, but it will be reported later. The Sod Wave, Haku and Tehoturve methods are studied for the production of peat. The power plants of the study are Kempele heating plant and Rauhalahti cogeneration plant. The functional unit is 1 MWh produced total energy. The temporal boundaries vary from 112 to 128 years, depending on the peat production methods used. The restoration time is 100 years in all options. The emissions of greenhouse gases are based on the reports of The Finnish Research Programme on Climate Change. The water emissions are based on control monitoring reports from 1994 and 1995. The water emissions of the restoration phase are

  5. Using of peat sorbents in bivalent metals sorption from municipal solid waste landfills leachate

    Energy Technology Data Exchange (ETDEWEB)

    Teirumnieka, E.; Teirumnieks, E. [Rezeknes Augskola, Rezekne (Latvia). Faculty of Engineering; Klavins, M. [Latvia Univ., Riga (Latvia). Faculty of Geography and Earth Sciences

    2009-07-01

    Landfill leachate in acidic regions can pollute surface and ground waters with heavy metals and other pollutants. This study investigated the use of peat as an effective media for removing dissolved metal pollutants. As an adsorbent, peat can effectively remove metals from aqueous solutions. The experiment used 10 grams of peat mixed with heat metal solutions in a reaction vessel at temperatures of 20 degrees C. The solution was analyzed using an inductively coupled plasma optical emission spectrometer. A pH meter was used to measure pH values. The study showed that the maximum adsorption capacity for cobalt (Co) was approximately 75 mg per gram. Adsorption quantity was estimated at 68 per cent, with an initial pH of 5.6. The maximum adsorption capacity for nickel (Ni) was approximately 77 mg per gram, and copper (Cu) was 58 mg per gram with initial pH values of 6.8. Results varied with variations in peat composition and structure. Adsorption affinities correlated with electronegativity and softness. Adsorption capacity of peat for each metal decreased due to the competitive effect of binary and ternary solute systems. Approximately 85 per cent of Ni ions were adsorbed in 30 minutes. It was concluded that the sorption efficiency of the peat decreased with increasing initial concentrations of the metals. The pH levels were influenced by the ion exchange effect in the sorption mechanism. 12 refs., 3 tabs., 7 figs.

  6. Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide.

    Science.gov (United States)

    Voigt, Carolina; Lamprecht, Richard E; Marushchak, Maija E; Lind, Saara E; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J; Biasi, Christina

    2017-08-01

    Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO 2 -eq m -2 to a source of 105 to 144 g CO 2 -eq m -2 . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO 2 , we provide here the first in situ evidence of increasing N 2 O emissions from tundra soils with warming. Warming promoted N 2 O release not only from bare peat, previously identified as a strong N 2 O source, but also from the abundant, vegetated peat surfaces that do not emit N 2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO 2, and CH 4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic. © 2016 John Wiley & Sons Ltd.

  7. Peat origin and land use effects on microbial activity, respiration dynamics and exo-enzyme activities in drained peat soils in the Netherlands

    NARCIS (Netherlands)

    Brouns, Karlijn; Keuskamp, Joost; Potkamp, Gerrit; Verhoeven, J.T.A.; Hefting, Mariet M.

    2016-01-01

    This study assessed the risk of decomposition-driven soil subsidence in drained peat soils in the Netherlands, contrasting in peat origin and current land use. In a full factorial design, fen peat and bog peat were sampled from sites in use for nature conservation and for dairy farming, which

  8. Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada

    Science.gov (United States)

    Atherton, Emmaline; Risk, David; Fougère, Chelsea; Lavoie, Martin; Marshall, Alex; Werring, John; Williams, James P.; Minions, Christina

    2017-10-01

    North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3-6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-road plumes to oil- and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background) less than 500 m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s-1 at our average detection distance (319 m). Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47 % of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate > 0.59 g s-1) contribute more than 111 800 t of methane annually to the atmosphere. This value exceeds reported bottom

  9. Heavy metals, especially lead, deposition recorded in an ombrotrophic peat bog near Manchester, United Kingdom

    Science.gov (United States)

    Le Roux, G.; Weiss, D.; Cheburkin, A.; Rausch, N.; Grattant, J.; Krachler, M.; Shotyk, W.

    2003-05-01

    A peat monolith representing up to 4,000 years of peat accumulation near Manchester, England, was collected. Major and trace elements were analysed with XRF and for Cd and Pb in the deeper samples with GF-AAS following acid digestion. Pb isotopic composition was measured with TIMS and ICP-MS. The results show a pollution since the Roman Period due to local lead sources and an increase in lead pollution in the last century due to leaded gasoline as fingerprinted by Pb isotopic signatures.

  10. Effect of mixing geopolymer and peat on bearing capacity in Ogan Komering Ilir (OKI) by California bearing ratio (CBR) test

    Science.gov (United States)

    Raharja, Danang S.; Hadiwardoyo, Sigit P.; Rahayu, Wiwik; Zain, Nasuhi

    2017-06-01

    Geopolymer is binder material that consists of solid material and the activator solution. Geopolymer material has successfully replaced cement in the manufacture of concrete with aluminosilicate bonding system. Geopolymer concrete has properties similar to cement concrete with high compressive strength, low shrinkage value, relatively low creep value, as well as acid-resistant. Based on these, the addition of polymers in peat soils is expected to improve the bearing capacity of peat soils. A study on the influence of geopolymer addition in peat soils was done by comparing before and after the peat soil was mixed with geopolymer using CBR (California Bearing Ratio) test in unsoaked and soaked conditions. 10% mixture content of the peat dry was used, weighted with a variety of curing time 4 hours, 5 days, and 10 days. There were two methods of mixing: first, peat was mixed with fly ash geopolymer activators and mixed solution (waterglass, NaOH, water), and second, peat was mixed with fly ash and mixed geopolymer (waterglass, NaOH, water, fly ash). Changes were observed in specific gravity, dry density, acidity (pH), and the microscopic structure with Scanning Electron Microscope (SEM). Curing time did not significantly affect the CBR value. It even shows a tendency to decline with longer curing time. The first type mixture obtained CBR value of: 5.4% for 4 hours curing, 4.6% for 5 days curing and 3.6% for 10 days curing. The second type mixture obtained CBR value of: 6.1% for 4 hours curing, 5.2% for 5 days curing and 5.2% for 10 days curing. Furthermore, the specific gravity value, dry density, pH near neutral and swelling percentage increased. From both variants, the second type mixture shows better results than the first type mixture. The results of SEM (Scanning Electron Microscopy) show the structure of the peat which became denser with the fly ash particles filling the peat microporous. Also, the reaction of fly ash with geopolymer is indicated by the solid

  11. Burning peat in Ireland: An electricity market dispatch perspective

    International Nuclear Information System (INIS)

    Tuohy, Aidan; Bazilian, Morgan; Doherty, Ronan; Gallachoir, Brian O; O'Malley, Mark

    2009-01-01

    This paper examines peat power production in Ireland under the three pillars of energy policy-security, competitiveness and environment. Peat contributes to energy security-as an indigenous fuel, it reduces dependency on imports. During a period of low capacity margins, the operation of the peat plants is useful from a system security perspective. Peat generation is being financially supported by consumers through an electricity levy. The fuel also has high carbon intensity. It is not politically viable to consider peat on equal economic criteria to other plant types because of history and location. This paper reviews electricity generation through combustion of peat in Ireland, and quantifies the costs of supporting peat utilising economic dispatch tools, finding the subsidy is not insignificant from a cost or carbon perspective. It shows that while peat is beneficial for one pillar of energy policy (security), the current usage of peat is not optimal from a competitiveness or environmental perspective. By switching from the current 'must-run' mode of operation for peat to the 'dispatched' mode used for the other generation, significant societal savings (in the range Euro 21 m per annum) can be achieved, as well as reducing system emissions by approximately 5% per year.

  12. Groundwater and quaternary geological studies of potential peat production areas - useful tool for sustainable peat production

    Energy Technology Data Exchange (ETDEWEB)

    Valpola, S.E.; Paalijaervi, M. (Geological Survey of Finland, Kokkola (Finland)), Email: samu.valpola@gtk.fi, Email: miikka.paalijarvi@gtk.fi

    2009-07-01

    Potential peat production areas in Finland are often situated in vicinity of eskers or other quaternary (glaciofluvial) formations. Frequently these formations are also important groundwater resources and it is essential for sustainable peat production to assure that these resources will not be endangered. The Geological Survey of Finland (GTK) has concluded several quaternary geological studies on potential peat production areas, which are connected to locally important groundwater areas. These studies have been made using mainly ground penetrating radar (GPR) and light drilling equipment. The main objective of these studies has been to establish the local groundwater flow directions and the quality and extent of quaternary deposits. The increasing need of peat production areas has created an evident demand of cost-effective and fast research methods which can be used for providing reliable information for planning of new production areas. (orig.)

  13. Waste water from dewatering of peat

    International Nuclear Information System (INIS)

    Ringqvist, L.; Bergner, K.; Olsson, Tommy; Bystroem, P.

    1991-01-01

    The influence of waste water from mechanical dewatering of peat was tested on two species of stream invertebrates. We compared the effects of waste water from peat without any chemical treatment, and waste water from peat where one of the following treatments of the peat had preceded dewatering; a: acidification combined with addition of the cationic polymer Zetag 78 FS40, b: addition of aluminium in combination with the anionic polymer Magnafloc E10, c: polymerisation of the peat by acidification and addition of ferrous chloride and hydrogen peroxide. Waste water from Al/Magnafloc and from the polymerisation treatments had a higher content of suspended matter and a higher oxygen demand than those of other treatments. Total metal content of the water from all treatments was higher than in water from non-treated peat. Survival and growth of nymphs of the mayfly Heptagenia fuscogrisa and the stonefly Nemoura cinerea were compared in waste water from the different treatments. In all tests, the waste water was diluted to 5% (volume) with unchlorinated tapwater and pH was between 7.0-8.0 in all treatments during the experiment. The nymphs were fed with birch leaves that had been incubated in natural stream water for one month. Under these conditions, we did not find any significant effect of waste water on either survival or growth of these two species

  14. Distribution of 35 Elements in Peat Cores from Ombrotrophic Bogs Studied by Epithermal Neutron Activation Analysis

    CERN Document Server

    Frontasyeva, M V

    2004-01-01

    In ombrotrophic bogs the surface peat layer is supplied with chemical substances only from the atmosphere. Peat cores from these bogs therefore can be used to study temporal trends in atmospheric deposition of pollutants. In this work epithermal neutron activation analysis was applied for the first time to study the distribution of 35 elements in peat profiles from ombrotrophic bogs. The selected examples were from Finnmark county in northern Norway: one pristine site far from any local pollution source, and another strongly affected by long-term operation of Russian copper-nickel smelters located close to the border. The elements are classified with respect to their behavior in the uppermost 40 cm of the peat, and similarities and differences between the two profiles are discussed. As compared with other more commonly used analytical techniques based on acid decomposition of the sample ENAA has the advantage of providing the total concentrations of the elements.

  15. Effects of woody peat and superphosphate on compost maturity and gaseous emissions during pig manure composting.

    Science.gov (United States)

    Zhang, Difang; Luo, Wenhai; Yuan, Jing; Li, Guoxue; Luo, Yuan

    2017-10-01

    This study investigated the effect of calcium superphosphate on compost maturity and gaseous emissions during pig manure composting with woody peat as the bulking agent. Two treatments were conducted with or without the addition of calcium superphosphate (10% dry weight of the composting mass), which were denoted as the control and superphosphate-amended treatment, respectively. Results show that the composting temperature of both treatments was higher than 50°C for more than 5days, which is typically required for pathogen destruction during manure composting. Compared to the control treatment, the superphosphate-amended treatment increased the emission of nitrogen oxide, but reduced the emission of methane, ammonia and hydrogen sulfide by approximately 35.5%, 37.9% and 65.5%, respectively. As a result, the total greenhouse gas (GHG) emission during manure composting was reduced by nearly 34.7% with the addition of calcium superphosphate. The addition of calcium superphosphate increased the content of humic acid (indicated by E 4 /E 6 ratio). Nevertheless, the superphosphate-amended treatment postponed the biological degradation of organic matter and produced the mature compost with a higher electrical conductivity in comparison with the control treatment. Copyright © 2017. Published by Elsevier Ltd.

  16. Peat filtration, field ditches and sedimentation basins for the purification of runoff water from peat mining areas

    International Nuclear Information System (INIS)

    Ihme, R.; Heikkinen, K.; Lakso, E.

    1991-01-01

    The aim of this research is to develop new methods and to improve those already in use to reduce the loading of watercourses from peat excavation areas. Factors examined were the use of peat filtration for the purification of the runoff water, load retention by the means of field ditches and improvement of the practicability and dredging of the settling ponds. Field research was carried out in peat production areas in the province of Oulu in 1987-1989

  17. Sediment trapping by dams creates methane emission hot spots

    DEFF Research Database (Denmark)

    Maeck, A.; Delsontro, T.; McGinnis, Daniel F.

    2013-01-01

    Inland waters transport and transform substantial amounts of carbon and account for similar to 18% of global methane emissions. Large reservoirs with higher areal methane release rates than natural waters contribute significantly to freshwater emissions. However, there are millions of small dams...... worldwide that receive and trap high loads of organic carbon and can therefore potentially emit significant amounts of methane to the atmosphere. We evaluated the effect of damming on methane emissions in a central European impounded river. Direct comparison of riverine and reservoir reaches, where...... sedimentation in the latter is increased due to trapping by dams, revealed that the reservoir reaches are the major source of methane emissions (similar to 0.23 mmol CH4 m(-2) d(-1) vs similar to 19.7 mmol CH4 m(-2) d(-1), respectively) and that areal emission rates far exceed previous estimates for temperate...

  18. Ebullitive methane emissions from oxygenated wetland streams

    Science.gov (United States)

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  19. Northern peatland carbon biogeochemistry. The influence of vascular plants and edaphic factors on carbon dioxide and methane exchange

    International Nuclear Information System (INIS)

    Oequist, M.

    2001-01-01

    The findings reported in this thesis and in the accompanying papers are based on both laboratory and field investigations of carbon transformation dynamics on the process scale and at the resolution of individual peatland plant communities. The data from one of the studies also is extrapolated in an attempt to identify environmental controls on regional scales in order to predict the response of northern peatlands to climate warming. The laboratory experiments focus on how climate variations, inducing fluctuations in groundwater level and also soil freeze-thaw cycles, influences organic matter mineralisation to carbon dioxide and methane. The field studies investigate year-to-year variations and interdecadal differences in carbon gas exchange at a subarctic peatland, and also how the physiological activities of vascular plants control methane emission rates. The main conclusions presented include: Soil freeze-thaw events may be very important for the annual carbon balance in northern peatlands, because they have the potential to increase mineralisation rates and alter biogeochemical degradation pathways. Vascular plants exert a strong influence on methane flux dynamics during the growing season, both by mediating methane transport and through substrate-based interactions with the soil microbial community. However, there are important species-related factors that govern the nature and extent of this influence. Caution has to be taken when extrapolating field data to estimate regional carbon exchange because the relevance of the specific environmental parameters that control this exchange varies depending on resolution. On broad spatial and temporal scales the best predictor of peatland methane emissions is mean soil temperature, but also microbial substrate availability (expressed as the organic acid concentration in peat water) is of importance. This temperature sensitivity represents a strong potential feedback mechanism on climate change

  20. Warming Increases the Proportion of Primary Production Emitted as Methane from Freshwater Mesocosms

    OpenAIRE

    2010-01-01

    Abstract Methane and carbon dioxide are the dominant gaseous end products of the remineralisation of organic carbon and also the two largest contributors to the anthropogenic greenhouse effect. We investigated whether warming altered the balance of methane efflux relative to primary production and ecosystem respiration in a freshwater mesocosm experiment. Whole ecosystem CH4 efflux was strongly related to temperature with an apparent activation energy of 0.85eV. Furthermore, CH4 ef...

  1. Occurrence and origin of carbohydrates in peat samples from a red mangrove environment as reflected by abundances of neutral monosaccharides

    Science.gov (United States)

    Moers, M. E. C.; Baas, M.; De Leeuw, J. W.; Boon, J. J.; Schenck, P. A.

    1990-09-01

    Acid hydrolysates of fractionated red mangrove peat samples and handpicked roots and rootlets of Rhizophora mangle (red mangrove) from Jewfish Key in the Florida Everglades were analysed for neutral monosaccharides. In the peat samples two major sources of carbohydrates could be determined: (1) vascular plant carbohydrates derived from Rhizophora mangle and (2) microbially derived carbohydrates. Significant correlations exist between the relative contributions of most neutral monosaccharides and the total carbohydrate concentration. The fine-grained peat fractions yielded low total neutral monosaccharides whose distributions indicate contributions of microbial carbohydrates. The coarse-grained peat samples yielded high total neutral monosaccharides with distributions indicating major contributions of vascular plant carbohydrates. It is estimated that a substantial part of the sugars analysed in the finegrained samples originates from microorganisms ([cyano] bacteria, algae).The absence of a trend in total neutral monosaccharide concentrations with depth suggests that microbial degradation is limited to the upper levels of the peat and that the microbial sugars determined at lower peat levels are derived from nonviable or dormant microorganisms. Results from factor analysis may suggest differences in microbial populations in the various peat samples.

  2. Effect of light Sphagnum peat on odour formation in the early stages of biowaste composting.

    Science.gov (United States)

    Kurola, Jukka M; Arnold, Mona; Kontro, Merja H; Talves, Matti; Romantschuk, Martin

    2010-05-01

    In the present study, we investigated the effects of two bulking materials, Sphagnum peat and pine wood chips, on the early stages of biowaste composting in two pilot-scale processes. Emphasis was placed on studying the formation conditions of malodorous compost gases in the initial phases of the processes. The results showed that gas emission leaving an open windrow and a closed drum composting system contained elevated concentrations of fermentative microbial metabolites when acid Sphagnum peat (pH 3.2) was used as a bulking material. Moreover, the gas emission of the peat amended drum composter contained a high concentration of odour (up to 450,000oum(-3) of air). The highest odour values in the outlet gas of peat amended composts coincided with the elevated concentrations of volatile organic compounds such as acetoin and buthanedion. We conclude that the acidifying qualities of composting substrates or bulking material may intensify odour emission from biowaste composts and prolong the early stages of the composting process. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Geochemistry of peat over kimberlites in the Attawapiskat area, James Bay Lowlands, northern Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Keiko H. [Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, Ontario, K1N 6N5 (Canada)], E-mail: khattori@uOttawa.ca; Hamilton, Stewart [Ontario Geological Survey, Sudbury, Ontario, P3E 6B5 (Canada)

    2008-12-15

    The James Bay Lowlands, which is the SE part of the Hudson Bay Lowlands, Canada, and within the Paleozoic limestone terrane, is covered mostly by peatlands. Peat samples were examined in the Attawapiskat area, a region of discontinuous permafrost, where more than 19 kimberlite pipes have been found beneath a cover of peat (2-4 m thick) and Quaternary sediments (up to 20 m thick) of Tyrell Sea clay beds and glacial tills. Pore water at a depth of 40 cm in the peat has a consistently low pH, <4, and high Eh, {approx}290 mV, in the areas over limestones far from kimberlites. On the other hand, peat pore water close to kimberlites has a high pH, up to 6.7, and low Eh, down to 49 mV; the values of pH and Eh are inversely correlated. The high pH and low Eh close to kimberlites suggest active serpentinization of olivine in the underlying kimberlites. The bulk compositions of peat indicate precipitation of secondary CaCO{sub 3} and Fe-O-OH. The secondary carbonate contains high concentrations of kimberlite pathfinder elements, such as Ni, rare earth elements (REE) and Y. The ratios of metal concentrations extracted by ammonium acetate solution at pH 5 (AA5) to those in a total digestion confirm that a majority of the divalent cations are hosted by the secondary carbonate, whereas tri-, tetra- and penta-valent cations are not. As these charged cations are not leached in Enzyme Leach, they are most likely adsorbed on Fe-O-OH. The compositions of peat show spatial variation with the distribution of kimberlites, suggesting that they are influenced by the underlying rocks even through there are thick layers of tills and sediments between the bedrocks and peat. However, elevated concentrations of pathfinder elements of kimberlites in bulk peat samples and AA5 leach are not necessarily directly above kimberlites. The diffused metal anomalies around kimberlites are attributed to the dissolution-precipitation of secondary phases (carbonates and Fe-O-OH) in acidic and reduced waters

  4. Mitigating climate change through the understanding of Nitrous Oxide (N2O) consumption processes in peat lands

    Science.gov (United States)

    Akrami, N.; Barker, X. Z.; Horwath, W. R.

    2017-12-01

    Nitrous Oxide (N2O) with global warming potential of 298 over a 100-year horizon is one of the most potent green house gases. In the United States, agriculture share to N2O emissions is over 70%. Peat lands, however, are being considered as both sources and sinks of greenhouse gases. N2O emissions are a product of both production and consumption processes. However, there is still a lack of understanding of N2O consumption processes in soils. In this work, the potential of re-wetted peat lands planted to rice in Sacramento-San Joaquin Delta, California, to act as a potential sink for N2O is being evaluated. Four peat land soils with 1%, 5%, 11% and 23% of organic carbon have been anaerobically incubated with different water contents (15%, 30%, 50%, 75% and 100% of their water holding capacity). 15N-N2O gas has been injected to the headspace of experiment jars and the production and consumption rate of 15N-N2O, 15N-N2 and production rate of Carbon Dioxide (CO2) and Methane (CH4) along with dissolved Nitrate (NO3-), Nitrite (NO2-), Ammonium (NH4+), Iron (II) and Iron (III) concentration has been quantified. Our results show promising N2O consumption rates under high carbon content and relatively high water content treatments. This research introduces organic carbon and water content as two major criteria in N2O consumption processes in peat lands that make it a potential hotspot for climate changes mitigation through adopting effective management practices to decrease greenhouse gas emissions.

  5. Canadian peat harvesting and the environment

    International Nuclear Information System (INIS)

    Keys, D.

    1992-01-01

    In 1990, ca 749,000 tonnes of peat were sold by Canadian producers, a small volume in comparison to the estimated 50 million tonnes or more that accumulate naturally each year in Canada. Most of the harvested peat was used for horticultural purposes. The relationship between peatlands and the peat industry is examined, and issues related to the environment and sustainable resource use are discussed. Case studies are used to examine several specific situations where peatland development proposals have undergone environmental assessments. The present status of peatland conservation in Canada is reviewed. To date, developed peatlands are primarily situated in the boreal wetland regions and consist mainly of the bog wetland class. Environmental issues related to peatland development include the need for conservation of flora, fauna, and other ecological values or functions. The potential for release of carbon gases due to Canadian peat harvesting is considered to be insignificant in relation to other uses of carbon sources such as the combustion of fossil fuel, and is unlikely to influence global warming at the present or projected levels of peatland development in Canada. The influence and mitigation of the effects of drainage of peatlands for peat production on water quality and flow regime are being addressed on a site-specific basis through existing regulatory procedures and research. Reclamation and restoration options are being incorporated during design and operational development of new peat harvesting areas. 39 refs., 15 figs., 3 tabs

  6. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  7. Study of the production of compacted peat; Tiivistetyn turpeen tuotantotutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The so-called Compeat method developed at VTT Energy is applied by field experiments to peat production. The aim of the two-year project (1996 - 1997) is to achieve an increase of 20 % in hectare yield with this new production method of compacted peat in pilot scale in field conditions without any increase in production costs. The aim of the 1996 study was to construct a prototype mining machine for compacted peat and to produce compacted peat from Carex and Sphagnum peat fields in test runs. The operation of the mining machine was studied and drying of compacted peat with that of milled peat were compared at peat production sites of Vapo Oy and Turveruukki Oy. The results of the drying studies were along the same lines with previous laboratory drying tests. The dry matter yield of Compeat was more than twice that of milled peat in the Carex peat field and 1.1-1.5-fold in the Sphagnum field. Compeat moistened significantly less in the rain than normally milled peat. Compeat was ridged with a scraper-ridger. The mining machine produced sufficiently compacted and well-drying peat, but its power demand was too high. The aim is to reduce the power consumption of the mining machine significantly to make it possible to use a wheel- tractor for pulling and to reduce the production costs of the method lower than those of the milled peat method. The drying results of Compeat were so promising that the development of the field machine will be continued. (orig.)

  8. Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle

    NARCIS (Netherlands)

    Lingen, van H.J.; Crompton, L.A.; Hendriks, W.H.; Reynolds, C.K.; Dijkstra, J.

    2014-01-01

    Various studies have indicated a relationship between enteric methane (CH4) production and milk fatty acid (FA) profiles of dairy cattle. However, the number of studies investigating such a relationship is limited and the direct relationships reported are mainly obtained by variation in CH4

  9. Extreme nitrogen deposition can change methane oxidation rate in moist acidic tundra soil in Arctic regions

    Science.gov (United States)

    Lee, J.; Kim, J.; Kang, H.

    2017-12-01

    Recently, extreme nitrogen(N) deposition events are observed in Arctic regions where over 90% of the annual N deposition occurred in just a few days. Since Arctic ecosystems are typically N-limited, input of extremely high amount of N could substantially affect ecosystem processes. CH4 is a potent greenhouse gas that has 25 times greater global warming potential than CO2 over a 100-year time frame. Ammonium is known as an inhibitor of methane oxidation and nitrate also shows inhibitory effect on it in temperate ecosystems. However, effects of N addition on Arctic ecosystems are still elusive. We conducted a lab-scale incubation experiment with moist acidic tundra (MAT) soil from Council, Alaska to investigate the effect of extreme N deposition events on methane oxidation. Zero point five % methane was added to the head space to determine the potential methane oxidation rate of MAT soil. Three treatments (NH4NO3-AN, (NH4)2SO4-AS, KNO3-PN) were used to compare effects of ammonium, nitrate and salts. All treatments were added in 3 levels: 10μg N gd.w-1(10), 50μg N gd.w-1(50) and 100μg N gd.w-1(100). AN10 and AN50 increased methane oxidation rate 1.7, 6% respectively. However, AN100 shows -8.5% of inhibitory effect. In AS added samples, all 3 concentrations (AN10, AN50, AN100) stimulated methane oxidation rate with 4.7, 8.9, 4%, respectively. On the contrary, PN50 (-9%) and PN100 (-59.5%) exhibited a significant inhibitory effect. We also analyzed the microbial gene abundance and community structures of methane oxidizing bacteria using a DNA-based fingerprinting method (T-RFLP) Our study results suggest that NH4+ can stimulate methane oxidation in Arctic MAT soil, while NO3- can inhibit methane oxidation significantly.

  10. Working group report: methane emissions from coal mining

    International Nuclear Information System (INIS)

    Kruger, D.

    1993-01-01

    The process of coalification inherently generates methane and other byproducts. The amount of methane released during coal mining is a function of coal rank and depth, gas content, and mining methods, as well as other factors such as moisture. In most underground mines, methane is removed by drawing large quantities of air through the mine releasing the air into the atmosphere. In surface mines, exposed coal faces and surfaces, as well as areas of coal rubble created by blasting operations are believed to be the major sources of methane. A portion of the methane emitted from coal mining comes from post-mining activities such as coal processing, transportation, and utilisation. Some methane is also released from coal waste piles and abandoned mines. This paper highlights difficulties with previous methane emission studies namely: absence of data on which to base estimates; use of national data to develop global estimates; failure to include all possible emission sources; overreliance on statistical estimation methodologies. It recommends a 'tiered' approach for the estimation of emissions from underground mines, surface mines and post-mining activities. For each source, two or more approaches (or 'tiers') are presented, with the first tier requiring basic and readily available data and higher tiers requiring additional data. 29 refs., 3 tabs

  11. Excavation and drying of compressed peat; Tiivistetyn turpeen nosto ja kuivaus

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Frilander, P.; Hillebrand, K.; Nurmi, H.

    1996-12-31

    The target of this three year (1993 - 1995) project was to improve the peat product-ion efficiency by developing an energy economical excavation method for compressed peat, by which it is possible to obtain best possible degree of compression and load from the DS-production point of view. It is possible to improve the degree of utilization of solar radiation in drying from 30 % to 40 %. The main research areas were drying of the compressed peat and peat compression. The third sub-task for 1995 was demonstration of the main parts of the method in laboratory scale. Experimental compressed peat (Compeat) drying models were made for peats Carex-peat H7, Carex-peat H5 and Carex-Sphagnum-peat H7. Compeat dried without turning in best circumstances in 34 % shorter time than milled layer made of the same peat turned twice, the initial moisture content being 4 kgH2OkgDS-1. In the tests carried out in 1995 with Carex-peat the compression had not corresponding effect on intensifying of the drying of peat. Compression of Carex-Sphagnum peat H7 increased the drying speed by about 10 % compared with the drying time of uncompressed milled layer. In the sprinkling test about 30-50 % of the sprinkled water was sucked into the compressed peat layer, while about 70 % of the rain is sucked into the corresponding uncompressed milled layer. Use of vibration decreased the energy consumption of the steel-surfaced nozzles about 20 % in the maximum, but the effect depend on the rotation speed of the macerator and the vibration power. In the new Compeat method (production method for compressed peat), developed in the research, the peat is loosened from the field surface by milling 3-5 cm thick layer of peat of moisture content 75-80 %

  12. Perennial grasses as the ecological link for preserving the fertility of the peat soils polluted by radionuclides

    International Nuclear Information System (INIS)

    Podolyak, A.G.; Saraseko, E.G.; Arastovich, T.V.; Suzko, O.V.; Tagaj, S.A.; Lasko, T.V.; Goloveshkin, V.V.

    2011-01-01

    The problem of degradation of peat soils polluted with 137Cs and 90Sr and cultivation of the crop production on them is considered. Distribution of grasslands and pastures on polluted peat soils by the regions of the Republic of Belarus is presented. Characteristics of the peat soils are shown. Coefficients of migration of radionuclides in perennial grasses' hay depending on mobile potassium availability (for 137Cs) and soil reaction pHkci (for 90sr) are evaluated. Inadequacy of the hay, harvested on polluted territories, to the main quality characteristics is presented and analyzed. Crop mixtures recommended for grasslands and pastures reseeding on polluted territories are suggested. The list of cultivars suitable for the conditions of over wetting is offered. It is recommended to use shallow peat soils as grasslands. Permanent cereal grasses restore organic matter of these soils and provide economic efficiency of agricultural use. According the results of the research the transfer factors of 137Cs and 90Sr to plants are relatively low. This fact is explained by the time that has passed since the accident on Chernobyl nuclear power plant and by the variations of mobile potassium and exchangeable acidity in peat soils

  13. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake.

    Science.gov (United States)

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2014-07-01

    Changes in the budget of dissolved methane measured in a small temperate lake over 1 year indicate that anoxic conditions in the hypolimnion and the autumn overturn period represent key factors for the overall annual methane emissions from lakes. During periods of stable stratification, large amounts of methane accumulate in anoxic deep waters. Approximately 46% of the stored methane was emitted during the autumn overturn, contributing ∼80% of the annual diffusive methane emissions to the atmosphere. After the overturn period, the entire water column was oxic, and only 1% of the original quantity of methane remained in the water column. Current estimates of global methane emissions assume that all of the stored methane is released, whereas several studies of individual lakes have suggested that a major fraction of the stored methane is oxidized during overturns. Our results provide evidence that not all of the stored methane is released to the atmosphere during the overturn period. However, the fraction of stored methane emitted to the atmosphere during overturn may be substantially larger and the fraction of stored methane oxidized may be smaller than in the previous studies suggesting high oxidation losses of methane. The development or change in the vertical extent and duration of the anoxic hypolimnion, which can represent the main source of annual methane emissions from small lakes, may be an important aspect to consider for impact assessments of climate warming on the methane emissions from lakes.

  14. Reduced ash related operational problems (slagging, bed agglomeration, corrosion and fouling) by co-combustion biomass with peat; Minskade askrelaterade driftsproblem (belaeggning, slaggning, hoegtemperatur-korrosion, baeddagglomerering) genom inblandning av torv i biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Marcus; Boman, Christoffer; Erhardsson, Thomas; Gilbe, Ram; Pommer, Linda; Bostroem, Dan; Nordin, Anders; Samuelsson, Robert; Burvall, Jan

    2006-12-15

    rich straw fuel the slagging tendencies were reduced. All the used peat fuels had relatively high silicon to calcium ratios. Previous research has shown that addition of reactive silicon to silicon-poor fuels significantly increase the slagging tendencies whereas high calcium to silicon ratios in a fuel is preferred if slagging will be avoided. The results from both the fluidized bed- and the burner experiments showed a considerable reduction of the emitted amounts of fine particles when adding peat to the loggings debris and willow fuel already at mixes corresponding to 15-20 weight-% of peat. For the straw fuel proportions higher than 40 weight-% of peat is needed to get a similar reduction. The amount of emitted potassium, chlorine and sulfur found in the fine fraction were significantly reduced in all co-combustion experiments. A reduction in the potassium and chlorine content of the deposits were also detected during peat addition. Previous results have shown that the above mentioned effects both influence deposit formation and chlorine-induced corrosion. The underlying mechanisms for the reduced emission of the potassium and chlorine containing fine particle fraction in the fluidized bed experiments is transfer and/or removing alkali in the gas phase to a less reactive particular form via sorption and/or reaction with reactive peat ash (containing silica, calcium etc.) during which larger particles (>1 {mu}m) are formed. In the case for the burner experiments the underlying reason were alkali sorption and/or reaction with the reactive peat fuel ash during the formation of the fuel particle residual ash.

  15. Coal-peat compositions for co-combustion in local boilers

    Directory of Open Access Journals (Sweden)

    А. В. Михайлов

    2016-08-01

    Full Text Available In article results of experiments on creation of coal and peat fuel compositions for burning in solid-fuel boilers are described. The main objective of research consisted in development of combination of coal dust and natural peat without binding additives. The role of peat consists that it increases efficiency of process of granulation, being natural binding. The method of granulation allows to utilize waste of the coal industry. Joint burning of two types of fuel – coal dust and peat reduces emission of sulfur dioxides. The cost of peat raw materials is lower, than artificial binding, applied to briquetting of coal dust. The composition of mix of coal dust and peat varied in the ratio 2:1, 1:1 and 1:2 in volume ratio at humidity of mix before extrusion of 65 %. In the course of preparatory operations of coal raw materials its crushing and sifting through sieve of 24 mesh (0,707 mm was carried out. Procedure of hashing of samples of coal and peat was carried out before receiving homogeneous mixture. After hashing mix was located in piston press for receiving granules. Coal dust and wet peat pass semifixed extrusion on piston press with formation of cylindrical granules with a diameter of 16 mm. After extrusion of granule are dried to operational humidity of 25 %. Coal and peat fuel granules showed sufficient mechanical strength for transportation and power feed in solid-fuel boilers. Burning of coal and peat fuel granules in vitro at temperature of 800 °C does not lead to ashes agglomeration. The conducted preliminary researches showed prospects of utilization of coal waste by granulation method in mix with natural peat.

  16. Soil Fungal Community Associated with Peat in Sarawak Identified Using 18S rDNA Marker

    International Nuclear Information System (INIS)

    Siti Ramlah Ahmad Ali; Sakinah Safari; Mohd Shawal Thakib; Shamsilawani Ahamed Bakeri; Nur Aziemah Ab Ghani

    2016-01-01

    Fungi are principal decomposing microorganisms in acidic environment of peat lands. A useful tool for molecular screening of soil fungal communities using the 18S ribosomal DNA primer has been proven capable of identifying a broad range of fungi species within Ascomycota, Basidiomycota, Zygomycota and Chytridiomycota. Currently, very little information is available on fungal communities in deep peat of Sarawak, Malaysia. In this study, we have isolated the fungi from soil samples taken in deep peat forests and oil palm cultivated areas. The fungal identity was undertaken using 18S ribosomal DNA primer which is EF4-F/ fung5-R. The microscopic structures were conducted to confirm the identity of the isolates. Based on this study, the fungal division most commonly found in deep peat is the Ascomycota. Aspergillus fumigatus was the most common species and more dominant in oil palm cultivated areas and logged-over forest than in primary forest. In the primary forest, the dominant species was the A. flavus, while Hypocrea atroviridis was commonly associated with oil palm cultivated areas and logged-over forest. Other species of fungi isolated in peat primary forests were Penicillium chrysogenum, Trichoderma sp., Phanerochaete sp., Mortierella chlamydospora, A. niger, A. alliaceus, etc. The in-depth difference in the fungal communities for the different sites will be further investigated using the next generation sequencing technology. (author)

  17. Are colorimetric assays appropriate for measuring phenol oxidase activity in peat soils?

    Science.gov (United States)

    Magdalena M. Wiedermann; Evan S. Kane; Timothy J. Veverica; Erik A. Lilleskov

    2017-01-01

    The activity of extracellular phenol oxidases is believed to play a critical role in decomposition processes in peatlands. The water logged, acidic conditions, and recalcitrant litter from the peatland vegetation, lead to exceptionally high phenolics in the peat. In order to quantify the activity of oxidative enzymes involved in the modification and break down of...

  18. Industrial peat utilization and its importance to the Irish economy

    International Nuclear Information System (INIS)

    Bradley, Thomas

    1995-01-01

    Over the centuries peat has been used as a valuable source of fuel for domestic heating and cooking. In contrast to earlier times when all peat extraction and harvesting was carried out by hand, peat production in Ireland to-day has become a highly mechanised, large scale commercial industry, making a significant contribution to the Irish economy. Bord na Mona, the state agency assigned the responsibility for peatland development in Ireland, has developed 88,000 hectares of Ireland's 1.2 million hectares of peatlands. Over 5.2 million tonnes of fuel peat are currently sold each year for electricity generation and for the manufacture of peat briquettes for heating installations. With the introduction of a new 120 MW peat fired power station, the overall sales for fuel peat will be increased by 1.0 million tonnes per annum. On the horticultural front, Bord na Mona produces and sells over 1.5 million cubic metres of horticultural peat products to the domestic and international markets. (author)

  19. Geochemical evidence for different peat sources in the Siak estuary and along the east coast of Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    R. Wöstmann

    2012-02-01

    Full Text Available The distribution pattern of selected biomarkers extracted from samples of outcropping peat from the Siak river, its estuary, the coast around Dumai and the island of Bengkalis have been investigated by gas chromatography (GC and combined gas chromatography/mass spectrometry (GC/MS, and compared with samples of eroded peat washed ashore (re-deposited on the coastline of Sumatra. Geochemical analyses of n-alkanes, n-alkanols, n-alkanoic acids, steroids and triterpenoids show that outcropping and re-deposited peats have different chemical compositions. The outcropping peats around Dumai, Bengkalis and in the Siak River estuary contain high concentrations of the pentacyclic triterpenoid taraxerol, a typical constituent of the mangrove species Rhizophora. A comparison with the lipid composition of leaves from the fringing mangrove species (Avicennia alba, Sonneratia alba and Rhizophora apiculata showed that only R. apiculata contains significant amounts of taraxerol. Taraxerol was completely absent from the leaves of A. alba and S. alba. This suggests that the peats outcropping around Dumai, Bengkalis and in the Siak estuary must be formed by a dominant input of mangroves of the Rhizophora family. The n-alkane distribution patterns of the outcropping peats near Dumai and the Siak estuary are similar to those of the surrounding mangrove vegetation with a maximum at C31 and a strong predominance of odd over even carbon numbers in all samples. Biomarker analysis of eroded peats washed ashore along the coastline around Dumai and the Siak estuary shows a different lipid composition with high amounts of the triterpenoids friedelin, α-amyrin and β-amyrin. These compounds are typical biomarkers for tropical forest vegetation as found along the Siak River and for peats eroding at upstream river banks. The n-alkanol distribution patterns of re-deposited peats also indicate a different origin for their organic matter. Peats re-deposited in the Siak estuary

  20. Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.J. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Hughes, S. [Centre for Ecology and Hydrology (Bangor), Deiniol Road, Bangor, Gwynedd LL57 2UP (United Kingdom); Lawlor, A.J. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Lofts, S. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Simon, B.M. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Stevens, P.A. [Centre for Ecology and Hydrology (Bangor), Deiniol Road, Bangor, Gwynedd LL57 2UP (United Kingdom); Stidson, R.T. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Tipping, E. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom)]. E-mail: et@ceh.ac.uk; Vincent, C.D. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2005-07-15

    Four samples of ombrotrophic peat were collected from each of 10 upland locations in a transect from the southern Pennines to the Highland Boundary Fault, a total distance of ca. 400 km. Bulk compositions and other properties were determined. Total contents of Al and heavy metals (Ni, Cu, Zn, Cd, Pb) were determined following digestion with hydrofluoric acid, and concentrations of metals extractable with dilute nitric acid were also measured. Supernatants obtained from aqueous extractions of the peat samples were analysed for pH, major cations and anions, dissolved organic carbon and dissolved metals, and concentrations of free metal ions (Al{sup 3+}, Ni{sup 2+}, etc.) were estimated by applying a chemical speciation model. Both total and HNO{sub 3}-extractable metal concentrations varied along the transect, the highest values being found at locations close to industrial and former mining areas. The HNO{sub 3}-extractable soil metal contents of Ni, Cu and Cd were appreciably lower than lowest-observed-effect-concentrations (LOEC) for toxicity towards microorganisms in acid, organic rich soils. However, the contents of Zn at two locations, and of Pb at five locations exceeded LOECs, suggesting that they may be exerting toxic effects in the peats. Soil solution concentrations of free heavy metal ions (Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, Pb{sup 2+}) were substantially lower than LOECs for toxicity towards vascular plants, whereas concentrations of Al{sup 3+} were near to toxic levels at two locations. - P eat metal contents depend upon proximity to industrial and mining areas; the metals may be exerting toxic effects in some places.

  1. Working group report: methane emissions from fuel combustion and industrial processes

    International Nuclear Information System (INIS)

    Berdowski, J.J.M.; Beck, L.; Piccot, S.; Olivier, J.G.J.; Veldt, C.

    1993-01-01

    This paper lists the source categories which are currently recognised as minor sources of methane. These fall into five broad groups: stationary fuel combustion (residential combustion of fuels, solid waste incineration at home sites, on-site agricultural waste burning, industrial and utility combustion of coal, wood, oil and gas, commercial and industrial waste incineration); mobile fuel combustion; non-combustion industrial processes (primary metals production, chemical manufacturing processes, petroleum refining, commercial charcoal manufacturing waste treatments); minor energy production sources (storage and distribution of automotive fuels, geothermal energy production; peat mining operations, oil shale mining operations); and miscellaneous sources. The paper also presents a preliminary estimate of global methane emissions from these minor sources and the results of the working group's discussion on recommendations for the IPCC/OECD methodology and specific research needs. A list of control options for emissions from minor sources is provided. 2 tabs

  2. New materials for methane capture from dilute and medium-concentration sources

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J; Maiti, A; Lin, LC; Stolaroff, JK; Smit, B; Aines, RD

    2013-04-16

    Methane (CH4) is an important greenhouse gas, second only to CO2, and is emitted into the atmosphere at different concentrations from a variety of sources. However, unlike CO2, which has a quadrupole moment and can be captured both physically and chemically in a variety of solvents and porous solids, methane is completely non-polar and interacts very weakly with most materials. Thus, methane capture poses a challenge that can only be addressed through extensive material screening and ingenious molecular-level designs. Here we report systematic in silico studies on the methane capture effectiveness of two different materials systems, that is, liquid solvents (including ionic liquids) and nanoporous zeolites. Although none of the liquid solvents appears effective as methane sorbents, systematic screening of over 87,000 zeolite structures led to the discovery of a handful of candidates that have sufficient methane sorption capacity as well as appropriate CH4/CO2 and/or CH4/N-2 selectivity to be technologically promising.

  3. Thermodynamic characteristics of a low concentration methane catalytic combustion gas turbine

    International Nuclear Information System (INIS)

    Yin, Juan; Su, Shi; Yu, Xin Xiang; Weng, Yiwu

    2010-01-01

    Low concentration methane, emitted from coal mines, landfill, animal waste, etc. into the atmosphere, is not only a greenhouse gas, but also a waste energy source if not utilised. Methane is 23 times more potent than CO 2 in terms of trapping heat in the atmosphere over a timeframe of 100 years. This paper studies a novel lean burn catalytic combustion gas turbine, which can be powered with about 1% methane (volume) in air. When this technology is successfully developed, it can be used not only to mitigate the methane for greenhouse gas reduction, but also to utilise such methane as a clean energy source. This paper presents our study results on the thermodynamic characteristics of this new lean burn catalytic combustion gas turbine system by conducting thermal performance analysis of the turbine cycle. The thermodynamic data including thermal efficiencies and exergy loss of main components of the turbine system are presented under different pressure ratios, turbine inlet temperatures and methane concentrations.

  4. Environmental control of methane fluxes over a Danish peatland

    Science.gov (United States)

    Herbst, M.; Ringgaard, R.; Friborg, T.; Soegaard, H.

    2009-12-01

    Reducing the greenhouse gas (GHG) emissions from natural and anthropogenic environments has become a key issue over the last decades. In Denmark the management of the wetlands is playing a key role in these attempts. The wetland area of Skjern Meadows in the western part of Denmark is one of the best known examples of peatland restauration in northern Europe. The valley of the Skjern river was restored in 2002, after it had been drained for about 35 years. A micrometeorological instrument mast was erected in the centre of the 2200 ha large area in the summer of 2008, in order to facilitate continuous eddy covariance measurements of the exchange of carbon dioxide and methane between the peatland and the atmosphere. A sonic anemometer (R3, Gill) was used together with a closed-path CO2 analyzer (LI-7000, Li-Cor) and a closed-path CH4 analyzer (DLT-100, Los Gatos). A measurement height of 7 m above the surface ensures that the observed eddy fluxes represent an average signal from the entire peatland. The first year of data collection confirmed the expectation that the area functions as a moderate CO2 sink, whilst it releases methane into the atmosphere. During a 12-months period starting in September 2008, the wetland removed 119 g CO2-C per m2 from the atmosphere and emitted 6 g CH4-C per m2. If the amount of the emitted CH4 is converted into CO2 equivalents, it remained lower than the annual CO2 uptake (188 versus 437 g CO2). This means that the restored peatland functions as a weak greenhouse gas sink, despite its methane production. Whilst the annual CO2 uptake at Skjern Meadows was similar to that reported by Friborg et al. (2003) for a Siberian wetland, the CH4 emission was much lower. The average CO2 and CH4 flux rates were both lower than those estimated for a Dutch wetland by Hendriks et al. (2007). The CH4 emission showed no particular diurnal pattern, but daily rates varied considerably throughout the year. This variability can be correlated to variations

  5. Relationship between peat geochemistry and depositional environments, Cranberry Island, Maine

    Science.gov (United States)

    Raymond, R.; Cameron, C.C.; Cohen, A.D.

    1987-01-01

    The Heath, Great Cranberry Island, Maine, offers a unique locality for studying lateral and vertical relationships between radically different peat types within 1 km2. The majority of The Heath is a Sphagnum moss-dominated raised bog. Surrounding the raised bog is a swamp/marsh complex containing grass, sedge, Sphagnum moss, alder, tamarack, and skunk cabbage. Swamp/ marsh-deposited peat occurs both around the margins of The Heath and under Sphagnum-dominated peat, which was deposited within the raised bog. A third peat type, dominated by herbaceous aquatics, is present underlying the swamp/marsh-dominated peat but is not present as a dominant botanical community of The Heath. The three peat types have major differences in petrographic characteristics, ash contents, and associated minerals. Sulfur contents range from a low of 0.19 wt.% (dry) within the raised bog to a high of 4.44 wt% (dry) near the west end of The Heath, where swamp/marsh peat occurring directly behind a storm beach berm has been influenced by marine waters. The presence of major geochemical variations within a 1-km2 peat deposit suggests the need for in-depth characterization of potential peat resources prior to use. ?? 1987.

  6. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris.

    Science.gov (United States)

    Dedysh, S N; Derakshani, M; Liesack, W

    2001-10-01

    Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or the Methylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in a Sphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 10(6) cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 10(4) type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 10(6) type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus and Methylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion of Methylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (+/-0.2) x 10(6) cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population of Methylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.

  7. The Role of Peat Layers on Iron Dynamics in Peatlands

    Directory of Open Access Journals (Sweden)

    Arifin Fahmi

    2010-09-01

    Full Text Available The research aimed to study the effect of peat thickness and humification stage of the peat material on Fe solubility at the peatlands with sulfidic material as substratum. The research was conducted at three conditionals of ombrogen peatlands ie ; deep, moderate and shallow peat. Soil samples were collected by using peat borer according to interlayer (the border layer of peat and mineral layer and conditional of soil horizons. The sample point depth were (cm G.s2 : 25, G.s1 : 50, Int.s : 70, M.s1 : 90 and M.s2 : 100 for shallow peat, G.m2 : 47, G.m1 : 100, Int.m : 120 and M.m1 : 135 for moderate peat and G.d3 : 50, G.d2 : 150, G.d1 : 200, Int.d : 220 and M.d1 : 235 for deep peat respectively. The results showed that most of Fe on the tested soils was found in organic forms. The peat layers above the sulfidic material decreased the Fe2+ solubility at peatlands. Fe2+ concentration in peat layer decreased with its increasing distance from sulfidic material. There was any other processes beside complexation and chelation of Fe2+ by humic material and its processes was reduction of Fe3+ and this conditions was reflected in redox potential values (Eh.

  8. Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer "Candidatus Methylomirabilis oxyfera".

    Science.gov (United States)

    Kool, Dorien M; Zhu, Baoli; Rijpstra, W Irene C; Jetten, Mike S M; Ettwig, Katharina F; Sinninghe Damsté, Jaap S

    2012-12-01

    The recently described bacterium "Candidatus Methylomirabilis oxyfera" couples the oxidation of the important greenhouse gas methane to the reduction of nitrite. The ecological significance of "Ca. Methylomirabilis oxyfera" is still underexplored, as our ability to identify the presence of this bacterium is thus far limited to DNA-based techniques. Here, we investigated the lipid composition of "Ca. Methylomirabilis oxyfera" to identify new, gene-independent biomarkers for the environmental detection of this bacterium. Multiple "Ca. Methylomirabilis oxyfera" enrichment cultures were investigated. In all cultures, the lipid profile was dominated up to 46% by the fatty acid (FA) 10-methylhexadecanoic acid (10MeC(16:0)). Furthermore, a unique FA was identified that has not been reported elsewhere: the monounsaturated 10-methylhexadecenoic acid with a double bond at the Δ7 position (10MeC(16:1Δ7)), which comprised up to 10% of the total FA profile. We propose that the typical branched fatty acids 10MeC(16:0) and 10MeC(16:1Δ7) are key and characteristic components of the lipid profile of "Ca. Methylomirabilis oxyfera." The successful detection of these fatty acids in a peatland from which one of the enrichment cultures originated supports the potential of these unique lipids as biomarkers for the process of nitrite-dependent methane oxidation in the environment.

  9. Uranium/thorium dating of Late Pleistocene peat deposits in NW Europe, uranium/thorium isotope systematics and open-system behaviour of peat layers

    NARCIS (Netherlands)

    Heijnis, H.; Plicht, J. van der

    1992-01-01

    The possibility of dating peat by the uranium-series disequilibrium method is discussed. In principle, this method can be used to date peat to approximately 350 ka. The application of the U/Th disequilibrium method (UTD) on peat provides us with the probability of constructing a new chronology for

  10. The association of uranium with organic matter in peat and peat water in a wetland from the Carson Range, Nevada

    International Nuclear Information System (INIS)

    Orem, W.; Zielinski, R.; Otton, J.; Lerch, H.

    1992-01-01

    Uranium has a high affinity for organic matter and is frequently found in high concentrations in coal and peat beds. The nature of the U/organic matter association was investigated in peat from cores obtained from a small wetland (Upper Zephyr Fen) near Lake Tahoe, NV. The peat contains U concentrations of up to 0.5% dry weight, supplied by surface and ground water weathering the U-rich granodiorite rocks of the surrounding mountains. Uranium concentrations are highly correlated with both organic C and N contents, but show no apparent relationship to specific organic moieties such as carboxyl or phenolic functional groups. Sieve studies of the peat show the U is concentrated in the 2,000--250 um size fraction. This fraction also has the lowest atomic C/N ratio, suggesting a possible role of N-containing organic compounds in U complexation. In peat pore waters, dissolved U is primarily associated with high molecular weight dissolved organic matter, as shown by equilibrium models and experimental data

  11. The influence of sulfate and nitrate on the methane formation by methanogenic archaea in freshwater sediments

    OpenAIRE

    Scholten, J.C.M.

    1999-01-01

    In this thesis the effect of inorganic electron acceptors (sulfate and nitrate) on methane emission from freshwater sediments in the Netherlands was investigated. The chosen study area was a polder located between Leiden and Utrecht, and is representative for similar polders in The Netherlands (Chapter 3). The polder contains peat grasslands in which ditches are lying used for maintaining stable water levels. The ditches contain sediment which is a potential source of C...

  12. IR-spectroscopy as an analytical method for identification of horticultural peat

    International Nuclear Information System (INIS)

    Lehtovaara, J.; Herranen, M.; Nyroenen, T.; MacDonald, A.

    1988-01-01

    The process of selecting different peat types for horticultural purposes involves many physical and chemical determinations. Infrared spectroscopy could be used together with the usual methods for the evaluation of peat quality. Due to the fact that different peats contain different amounts of infrared absorbing functional groups, each peat produces a characteristic spectrum. From the spectrum, one may determine the botanical composition, degree of humification, ash content, cation exchange capacity, nitrogen content and carbon content, of the natural peat. The spectrum also shows whether the peat has been fertilized and limed and in some cases the presence of mineral soil or wetting agent mixed in the peat may be detected

  13. Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields

    Science.gov (United States)

    Conrad, R.

    2006-12-01

    Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce

  14. Changing of Sumatra backswamp peat properties by seawater and zeolite application

    Science.gov (United States)

    Sarifuddin; Nasution, Z.; Rauf, A.; Mulyanto, B.

    2018-02-01

    This research attempts to improve the properties of backswamp peatsoil originated from Asahan District, North Sumatra Indonesia by adding sea water and zeolite using factorial randomized block design with volume of sea water as first factor, consisting of without seawater, 500 ml, 1000 ml and 1500 ml and second factor are dosages of zeolite consisting of without zeolite, 100 g, 200 g each 10 kgs of wet peat soil. at green house in faculty of agriculture University of Sumatra Utara (USU) Medan, Indonesia. The result showed that the application of seawater decreased pH, C/N and Cation Exchange Capacity and increased of base saturation of peat soil. Adding of zeolite minerals can buffered the increasing of acidity and Electric Conductivity caused by sea water application. Interaction seawater + zeolite decreased of C/N and increased of percent of base saturation.

  15. Evaluation of methane emissions of some rice cultivars of Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Namaratne, S.Y.; Alwis, H.P.W. de [Institute of Fundamental Studies, Kandy (Sri Lanka)

    1996-12-31

    A field experiment on three local rice cultivars, namely BG 300, BG 304 and AT 303, showed no statistically significant difference (p<0.05) among them with-respect to the methane flux emitted. The methane flux profiles of all three varieties indicated a more or less constant emission during the vegetative and reproductive periods, a peak emission during late flowering/early ripening stage and a dramatic increase in the flux during the late ripening period. The seasonal methane flux of BG 300, BG 304 and AT 303 were 200 {+-} 48, 156 {+-} 52 and 129 {+-} 40 g m{sup {minus}2}, respectively for a 92 day cropping period.

  16. Methane emission by adult ostriches (Struthio camelus).

    Science.gov (United States)

    Frei, Samuel; Dittmann, Marie T; Reutlinger, Christoph; Ortmann, Sylvia; Hatt, Jean-Michel; Kreuzer, Michael; Clauss, Marcus

    2015-02-01

    Ostriches (Struthio camelus) are herbivorous birds with a digestive physiology that shares several similarities with that of herbivorous mammals. Previous reports, however, claimed a very low methane emission from ostriches, which would be clearly different from mammals. If this could be confirmed, ostrich meat would represent a very attractive alternative to ruminant-and generally mammalian-meat by representing a particularly low-emission agricultural form of production. We individually measured, by chamber respirometry, the amount of oxygen consumed as well as carbon dioxide and methane emitted from six adult ostriches (body mass 108.3±8.3 kg) during a 24-hour period when fed a pelleted lucerne diet. While oxygen consumption was in the range of values previously reported for ostriches, supporting the validity of our experimental setup, methane production was, at 17.5±3.2 L d(-1), much higher than previously reported for this species, and was of the magnitude expected for similar-sized, nonruminant mammalian herbivores. These results suggest that methane emission is similar between ostriches and nonruminant mammalian herbivores and that the environmental burden of these animals is comparable. The findings furthermore indicate that it appears justified to use currently available scaling equations for methane production of nonruminant mammals in paleo-reconstructions of methane production of herbivorous dinosaurs. Copyright © 2014. Published by Elsevier Inc.

  17. Peat compaction in deltas : implications for Holocene delta evolution

    NARCIS (Netherlands)

    van Asselen, S.

    2010-01-01

    Many deltas contain substantial amounts of peat, which is the most compressible soil type. Therefore, peat compaction potentially leads to high amounts of subsidence in deltas. The main objective of this research was to quantify subsidence due to peat compaction in Holocene fluvial-deltaic settings

  18. Preparation of peat samples for inorganic geochemistry used as palaeoenvironmental proxies

    Directory of Open Access Journals (Sweden)

    G. Le Roux

    2010-07-01

    Full Text Available This article provides a brief review of protocols used in peat inorganic geochemistry. We emphasise the key issues that could lead to inter-comparison problems. For each section (drying, grinding, non-destructive analyses, acid digestions and destructive analyses, recommendations are provided to guide the reader through an idealised protocol, which is the only workable approach for studies incorporating long-term comparisons.

  19. Adsorção/dessorção do explosivo tetril em turfa e em argissolo vermelho amarelo Adsorption/desorption of the explosive tetryl in peat and yellow-red argissol

    Directory of Open Access Journals (Sweden)

    Sandra Zago Falone

    2004-12-01

    Full Text Available This paper presents the study of adsorption/desorption of the explosive tetryl (2,4,6-trinitrophenylmethyl-nitramine in different matrices, such as in natura soil, roasted soil, humic acid of soil, in natura peat, roasted peat and humic acid of peat. The aim of the study is to evaluate the interaction capacity of those matrices with the explosive. The analytic technique used was HPLC (high performance liquid chromatography, with UV-detection at 230 nm. The Freundlich isotherms were utilized for the mathematical treatment of the data. The results indicated that in natura soil and in natura peat (with organic substances are excellent matrices for the retention of tetryl, adsorbing it and keeping it immovable, preventing it from contaminating the groundwater. The largest adsorption of the explosive ocurred in in natura soil, while the smallest desorption was observed in in natura peat. After the calcination of the matrices, the smallest adsorption was observed, indicating that the retention occurs in the organic substance.

  20. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2.

    Science.gov (United States)

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-05

    A sensitive fluorescent detection platform for Hg 2+ was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800nm and a wide range of excitation (220-650nm) with the maxima at 413nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg 2+ over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg 2+ from the MSA, and the resultant strong coupling interaction between Hg 2+ and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg 2+ . This proposed strategy was also demonstrated the possibility to be used for Hg 2+ detection in water samples. Copyright © 2017. Published by Elsevier B.V.

  1. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2 +

    Science.gov (United States)

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-01

    A sensitive fluorescent detection platform for Hg2 + was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800 nm and a wide range of excitation (220-650 nm) with the maxima at 413 nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg2 + over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8 nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg2 + from the MSA, and the resultant strong coupling interaction between Hg2 + and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg2 +. This proposed strategy was also demonstrated the possibility to be used for Hg2 + detection in water samples.

  2. Methane flux to the atmosphere from the Deepwater Horizon oil disaster

    Science.gov (United States)

    Yvon-Lewis, Shari A.; Hu, Lei; Kessler, John

    2011-01-01

    The sea-to-air flux of methane from the blowout at the Deepwater Horizon was measured with substantial spatial and temporal resolution over the course of seven days in June 2010. Air and water concentrations were analyzed continuously from a flowing air line and a continuously flowing seawater equilibrator using cavity ring-down spectrometers (CRDS) and a gas chromatograph with a flame ionization detector (GC-FID). The results indicate a low flux of methane to the atmosphere (0.024 μmol m-2 d-1) with atmospheric and seawater equilibrium mixing ratios averaging 1.86 ppm and 2.85 ppm, respectively within the survey area. The oil leak, which was estimated to contain 30.2% methane by weight, was not a significant source of methane to the atmosphere during this study. Most of the methane emitted from the wellhead was dissolved in the deep ocean.

  3. Biochemical processes of oligotrophic peat deposits of Vasyugan Mire

    Science.gov (United States)

    Inisheva, L. I.; Sergeeva, M. A.

    2009-04-01

    The problem of peat and mire ecosystems functioning and their rational use is the main problem of biosphere study. This problem also refers to forecasting of biosphere changes results which are global and anthropogenic. According to many scientists' research the portion of mires in earth carbon balance is about 15% of world's stock. The aim of this study is to investigate biochemical processes in oligotrophic deposits in North-eastern part of Vasyugan Mire. The investigations were made on the territory of scientific-research ground (56˚ 03´ and 56˚ 57´ NL, 82˚ 22´ and 82˚ 42´ EL). It is situated between two rivers Bakchar and Iksa (in outskirts of the village Polynyanka, Bakchar region, Tomsk oblast). Evolution of investigated mire massif began with the domination of eutrophic phytocenosis - Filicinae, then sedge. Later transfer into oligotrophic phase was accompanied by formation of meter high-moor peat deposit. The age of three-meter peat deposit reaches four thousand years. Biochemical processes of carbon cycle cover the whole peat deposit, but the process activity and its direction in different layers are defined by genesis and duration of peat formation. So, the number of cellulose-fermenting aerobes in researched peat deposits ranges from 16.8 to 75.5 million CFU/g, and anaerobic bacteria from 9.6 to 48.6 million CFU/g. The high number of aerobes is characteristic for high water levels, organizing by raised bog peats. Their number decreases along the profile in 1.7 - 2 times. The number of microflora in peat deposit is defined by the position in the landscape profile (different geneses), by the depth, by hydrothermic conditions of years and individual months. But microflora activity shows along all depth of peat deposit. We found the same in the process of studying of micromycete complex structure. There was revealed either active component micromycete complex - mycelium, or inert one - spores in a meter layer of peat deposit. If mushrooms

  4. AMS measurements of global fallout U-236 and Pu in an ombrotrophic peat profile: evidence for their post depositional migration

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, Francesca; Hrnecek, Erich; Krachler, Michael [European Commission Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Shotyk, William [Department of Renewable Resources, University of Alberta, 839 General Services Building, Edmonton, AB (Canada); Steier, Peter; Winkler, Stephan; Golser, Robin [VERA Laboratory, Faculty of Physics, University of Vienna, Waehringer Strasse 17, A-1090 Vienna (Austria)

    2014-07-01

    U-236, Pu-239, Pu-240, Pu-241 and Pu-242 were analysed in an ombrotrophic peat core representing the last 80 years of atmospheric deposition. The determination of these isotopes at femtogram and attogram levels was possible by using ultra-clean laboratory procedures and accelerator mass spectrometry. Since the Pu isotopic composition characteristic for global fallout, as well as anthropogenic U-236, were identified in peat samples pre-dating the period of atmospheric atom bomb testing, migration of Pu and U within the peat profile is clearly indicated. The vertical profile of the U-236/U-238 isotopic ratio represents the first observation of the U-236 bomb peak in a terrestrial environment. Comparing the abundances of the global fallout derived U-236 and Pu-239 along the peat core, the post depositional migration of plutonium exceeds that of uranium. These results highlight, for the first time, the mobility of Pu and U in a peat bog with implications for their migration in other acidic, organic rich environments.

  5. Construction of Infrastructure on Peat: Case Studies and Lessons Learned

    Directory of Open Access Journals (Sweden)

    Hua Ling Jen

    2016-01-01

    Full Text Available Construction of infrastructures on peat land is a very challenging task due to its properties of low shear strength, high compressibility and high water content. This paper summarizes various solutions which could be adopted for the construction of infrastructure on peat, as reviewed by the experts and panels during IConCEES International Workshop 2015. Engineers could (a avoid peat, such as to transfer the load to the hard layers through end bearing piles or to replace the peat with the other soils, or (b construct on peat with special precautions, such as by reducing the weight of the construction materials and dewatering the peat to improve the engineering properties. This paper serves to generate new ideas and give insights of the problems commonly encountered by the industry. Some of the proposed solutions might never be tested on peat. This would rely on the researchers to take up the challenge to further investigate and address the technical issues outlined in this paper.

  6. Role of the energy use of peat in the Finnish energy system

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of this study was to combine the current knowledge of the production and use of energy peat and of the significance of peat in the Finnish energy system. The study deals with the development, current state and future prospects of the production and use of energy peat, as well as the factors that have influenced or are influencing them. The use of peat has established its position in the Finnish energy system. Peat has traditionally been well available and thus its security of supply has been considered good. It has also been regarded as a high-quality indigenous fuel. In recent years many investments have been made in power plants using indigeneous fuels and in co-use of peat and wood. In fact, the use of the peat and wood of indigeneous fuels is very closely inter-linked and their use support one another. Regionally speaking, peat consumption is highest in North Ostrobothnia and inland. The negative effects of peat use are considered to be the high carbon dioxide factor of peat combustion and in some cases the possible effects of production on the local environment. Emissions trading, which was started at the beginning of 2005, weakens the competitiveness of peat in relation to other fuels. When the value of an emission allowance rises enough, also the use of coal may become cheaper than that of peat in installations in which peat has earlier been the main fuel. As the role of peat decreases, the effects are also reflected in the production and use of peat, and in the use of wood fuels, if the supply conditions of peat, which is used as the support and mixed fuel for wood, weaken. The low production of the rainy summer of 2004, combined with the low peat storage levels, led to difficulties in peat deliveries during the winter 2004-2005, and without the milder winter and good water situation in the Nordic countries the supply of peat would not necessarily have been sufficient to cover all demand. If the current role of peat is to be maintained, the

  7. Assessing the Impact of Land Management on Organic Matter Composition in Peat Soils

    Science.gov (United States)

    Savage, A.; Holden, J.; Wainwright, J.

    2010-05-01

    Peatlands are seen as important stores of terrestrial carbon, accounting for up to one-third of global soil carbon stocks. In some cases peatlands are shown to be emitters of carbon, in other cases carbon sinks depending on the site conditions and nature of degradation. However, carbon budget calculations carried out to date have a number of uncertainties associated with them and the composition of the carbon is generally not considered when determining carbon budgets. Carbon cycling in peat is driven by four key factors (Laiho, 2006):, environmental conditions (e.g. temperature, water table level), substrate quality (e.g. how recalcitrant the peat is), nutrients (e.g. nitrogen required to synthesis the carbon stocks) and microbial community (e.g. are the microbes present able to utilise the available substrate). Land management is also recognised as an additional driver, but the impacts of many types of management are poorly understood. Among the four drivers listed by Laiho (2006) substrate quality is seen as the most significant. To date, little work has been carried out to characterise the quality of organic matter in peat soils; rather crude estimates have been made as to the quantity of carbon that is stored in peatlands, yet without understanding the composition of the peat, limitations are imposed on calculations of rates of carbon loss from peatlands. This work seeks to examine how variations in the chemical composition of organic matter in peat varies with land use. The method published by Wieder and Starr (1998) was followed to determine eight fractions: soluble fats and waxes, hot water soluble, hollocellulose, cellulose, soluble phenolics, acid insoluble carbohydrates, water soluble carbohydrates and lignin. Samples were taken from burnt, grazed, drained, afforested and undisturbed sites at the Moor House UNESCO Biosphere Reserve in Northern England. The method was used to identify if differences were present in the recalcitrance of the peat and linked

  8. Proceedings: 7th international peat congress. Vols. 1, 2, 3, and 4

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Proceedings from a conference on peat published in four volumes. These comprise six different sections: survey, classification, ecology and conservation of peatlands; winning, harvesting, storage, transportation and processing of peat and sapropel for industrial, agricultural and horticultural purposes; bog cultivation and peatland forestry - the use of peat, peat products, and sapropel in agriculture and horticulture; chemistry, physics, biochemistry and microbiology of peat and sapropel - production and utilization of physiologically active substances, growth stimulators, medical preparations and related material; terminology, notation, and standardization of peat products; and peat balneology and therapeutics.

  9. Impact of managed moorland burning on peat nutrient and base cation status

    Science.gov (United States)

    Palmer, Sheila; Gilpin, Martin; Wearing, Catherine; Johnston, Kerrylyn; Holden, Joseph; Brown, Lee

    2013-04-01

    Controlled 'patch' burning of moorland vegetation has been used for decades in the UK to stimulate growth of heather (Calluna vulgaris) for game bird habitat and livestock grazing. Typically small patches (300-900 m2) are burned in rotations of 8-25 years. However, our understanding of the short-to-medium term environmental impacts of the practice on these sensitive upland areas has so far been limited by a lack of scientific data. In particular the effect of burning on concentrations of base cations and acid-base status of these highly organic soils has implications both for ecosystem nutrient status and for buffering of acidic waters. As part of the EMBER project peat chemistry data were collected in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Soil solution chemistry was also monitored at two intensively studied sites (one regularly burned and one control). Fifty-centimetre soil cores, sectioned into 5-cm intervals, were collected from triplicate patches of four burn ages at each burned site, and from twelve locations at similar hillslope positions at each control site. At the two intensively monitored sites, soil solution chemistry was monitored at four depths in each patch. Across all sites, burned plots had significantly smaller cation exchange capacities, lower concentrations of exchangeable base cations and increased concentrations of exchangeable H+ and Al3+ in near-surface soil. C/N ratios were also lower in burned compared to unburned surface soils. There was no consistent trend between burn age and peat chemistry across all burned sites, possibly reflecting local controls on post-burn recovery rates or external influences on burn management decisions. At the intensively monitored site, plots burned less than two years

  10. Peat production. Review of research projects; Turvetuotanto. Tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, A. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The development target in the research area of peat production is to improve the competitiveness of peat by reducing production costs by 20 % (by FIM 5 - 6/MWh) from the level of the year 1992 and to reduce environmental impacts. The most important research objects by which the target in peat production technology will be achieved are drawing and preparation technology, drying technology, mechanical technology, method technology, integration of wood harvesting and peat production, and the application of the results of the OPTIMITURVE Research Programme in practice. (orig.)

  11. Effect of high-oleic-acid soybeans on production performance, milk fatty acid composition, and enteric methane emission in dairy cows.

    Science.gov (United States)

    Lopes, J C; Harper, M T; Giallongo, F; Oh, J; Smith, L; Ortega-Perez, A M; Harper, S A; Melgar, A; Kniffen, D M; Fabin, R A; Hristov, A N

    2017-02-01

    The objective of this study was to investigate the effect of 3 soybean sources differing in fatty acid profile and processing method on productivity, milk composition, digestibility, rumen fermentation, and enteric methane emission in lactating dairy cows. The soybean sources were conventional, high-linoleic-acid variety extruded soybean meal (ESBM; 8.7% ether extract with 15% oleic and 54% linoleic acids); extruded Plenish (DuPont Pioneer, Johnston, IA), high-oleic-acid variety soybean meal (EPSBM; 8.4% ether extract with 73% oleic and 8% linoleic acids); and whole, heated Plenish soybeans (WPSB; 20.2% ether extract). The study involved 15 Holstein cows in a replicated 3 × 3 Latin square design experiment with three 28-d periods. The inclusion rate of the soybean sources in the diet was (dry matter basis) 17.1, 17.1, and 7.4% for ESBM, EPSBM, and WPSB, respectively, which resulted in ether extract concentration of the diets of 3.99, 3.94, and 4.18%, respectively. Compared with ESBM, the Plenish diets tended to increase dry matter intake and decreased feed efficiency (but had no effect on energy-corrected milk feed efficiency). The Plenish diets increased milk fat concentration on average by 5.6% and tended to increase milk fat yield, compared with ESBM. The WPSB diet tended to increased milk true protein compared with the extruded soybean meal diets. Treatments had no effect on rumen fermentation and enteric methane or carbon dioxide emissions, except pH was higher for WPSB versus EPSBM. The Plenish diets decreased the prevalence of Ruminococcus and increased that of Eubacterium and Treponema in whole ruminal contents. Total-tract apparent digestibility of organic matter and crude protein were decreased by WPSB compared with ESBM and EPSBM. Compared with the other treatments, urinary N excretion was increased by EPSBM and fecal N excretion was greater for WPSB. Treatments had marked effects on milk fatty acid profile. Generally, the Plenish diets increased mono

  12. Radioactivity of peat mud used in therapy.

    Science.gov (United States)

    Karpińska, Maria; Mnich, Krystian; Kapała, Jacek; Bielawska, Agnieszka; Kulesza, Grzegorz; Mnich, Stanisław

    2016-02-01

    The aim of the study was to determine the contents of natural and artificial isotopes in peat mud and to estimate the radiation dose absorbed via skin in patients during standard peat mud treatment. The analysis included 37 samples collected from 8 spas in Poland. The measurements of isotope concentration activity were conducted with the use of gamma spectrometry methods. The skin dose in a standard peat mud bath therapy is approximately 300 nSv. The effective dose of such therapy is considered to be 22 nSv. The doses absorbed during peat mud therapy are 5 orders of magnitude lower than effective annual dose absorbed from the natural radiation background by a statistical Pole (3.5 mSv). Neither therapeutic nor harmful effect is probable in case of such a small dose of ionising radiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Peat soils stabilization using Effective Microorganisms (EM)

    Science.gov (United States)

    Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.

    2018-04-01

    Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.

  14. Reduced ash-related operational problems by co-combustion peat and agricultural fuels; Minskade askrelaterade driftsproblem genom inblandning av torv i aakerbraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Marcus; Bostroem, Dan; Skoglund, Nils; Grimm, Alejandro; Boman, Christoffer; Kofod-Hansen, Marie

    2010-06-15

    The objectives of the project were: To determine the admixing levels for different peat classes to various energy crops (straw, Salix and Reed canary grass) that are required to reach positive effects regarding slagging, deposit formation/(high temperature corrosion) and bed agglomeration; and, To demonstrate the possibilities to reduce the occurrence of ash related operational problems in combustion of energy crops upon admixing peat. Operational experiences and research of effects of co-firing peat and energy crops are scarce. Some previous tests in bench scale indicated though, on a strong reduction of the agglomeration tendency and lowering of the agglomeration temperature for straw and Salix at a peat admixing level corresponding to 15 - 20 weight% (on DS basis). A reduction in the amount of emitted fine particles was also observed in these experiments. However, care must be taken in the choice of peat. Some Carex dominated peats with high Si contents may cause problems with slagging. Another conclusion from the mentioned bench scale tests was that peats with relative high Ca/Si ratios should be selected to minimize the risk of slagging and bed agglomeration. Thermochemical modelling was performed to determine the effects of peat admixture, on slagging-, deposit formation- (corrosion)- and bed agglomeration tendencies during combustion of straw, willow and reed canary grass with high and low ash content. These results and previously conducted bench scale experiments were used as a basis for determining combinations of fuel and peat admixtures for the demonstration experiments. The calculations were performed with admixing levels of 0-, 5-, 15, 25-, and 40 weight% (on DS basis) of four peat samples to the investigated four crop fuels. The used peat samples were typical carex-containing Swedish peat with differences in e.g. silicon-, calcium- and sulfur contents. A number of the model calculations were qualitatively validated against previously conducted

  15. The effect of changing water table on methane fluxes at two Finnish mire sites

    International Nuclear Information System (INIS)

    Martikainen, P.J.; Nykaenen, H.; Crill, P.; Silvola, J.

    1992-01-01

    Methane fluxes were measured using static chamber technique on a minerotrophic fen and an ombrotrophic peat bog site located in the Lakkasuo mire complex in central Finland. Both sites consisted of a virgin area and an area drained in 1961 by ditching. The measurements in 1991 were made biweekly from spring thaw to winter freezing. During this period, the mean CH4 emission from the virgin minerotrophic site and virgin ombrotrophic site was 98 mg/m -2 d -1 and 40 mg/m -2 d -1 , respectively. The mean emission of CH 4 from the drained ombrotrophic site was 18 mg/m -2 d -1 . The drained minerotrophic site consumed methane during most of the measuring period, the average uptake was 0.13 mg/m2d. Draining had lowered the average water table by 4 cm at the ombrotrophic site and by 20 cm at minerotrophic site. The possible reasons for the different development of the water table and methane fluxes at ombrotrophic and minerotrophic sites after drainer are discussed

  16. Some peat deposits in Penobscot County, Maine

    Science.gov (United States)

    Cameron, Cornelia Clermont; Anderson, Walter A.

    1979-01-01

    Twenty of the peat deposits in Penobscot County, Maine contain an estimated 29,282,000 short tons air-dried peat. The peat is chiefly sphagnum moss and reed-sedge of high quality according to ASTM standards for agricultural and horticultural use. Analyses show that this same volume has high fuel value, low sulfur and high hydrogen contents compared with lignite and sub-bituminous coal, which may indicate that it also has potential for fuel use. On the basis of the metallic trace element content, one area within the region containing the 20 deposits has been delineated for further bedrock studies.

  17. Peat resource estimation in South Carolina. Final report, Year 2

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, M.; Andrejko, M.; Corvinus, D.; Tisdale, M.

    1982-01-01

    South Carolina has few indigenous energy resources. Most widely known and utilized are hydropower, wood, and solar. Peat is a material composed of partially decomposed organic matter that, after burial for long periods of time, may eventually become coal. Peat is utilized as an energy resource for the production of electricity and for home heating in Europe and the Soviet Union. There are peat deposits in South Carolina, but peat has never been used as an energy resource within the state. This report presents the results of the two years of a planned four-year study of the quantity and energy potential of peat in South Carolina. In this year's survey two activities were undertaken. The first was to visit highly probable peat deposits to confirm the presence of fuel-grade peat. The second was to survey and characterize in more detail the areas judged to be of highest potential as major resources. The factors carrying the greatest weight in our determination of priority areas were: (1) a description of peat deposits in the scientific literature or from discussions with state and federal soil scientists; (2) mention of organic soils on soil maps or in the literature; and (3) information from farmers and other local citizens.

  18. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  19. Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase.

    Science.gov (United States)

    Vorobev, Alexey V; Baani, Mohamed; Doronina, Nina V; Brady, Allyson L; Liesack, Werner; Dunfield, Peter F; Dedysh, Svetlana N

    2011-10-01

    Two strains of aerobic methanotrophic bacteria, AR4(T) and SOP9, were isolated from acidic (pH 3.8-4.0) Sphagnum peat bogs in Russia. Another phenotypically similar isolate, strain LAY, was obtained from an acidic (pH 4.0) forest soil in Germany. Cells of these strains were Gram-negative, non-pigmented, non-motile, thin rods that multiplied by irregular cell division and formed rosettes or amorphous cell conglomerates. Similar to Methylocella species, strains AR4(T), SOP9 and LAY possessed only a soluble form of methane monooxygenase (sMMO) and lacked intracytoplasmic membranes. Growth occurred only on methane and methanol; the latter was the preferred growth substrate. mRNA transcripts of sMMO were detectable in cells when either methane or both methane and methanol were available. Carbon was assimilated via the serine and ribulose-bisphosphate (RuBP) pathways; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strains AR4(T), SOP9 and LAY were moderately acidophilic, mesophilic organisms capable of growth between pH 3.5 and 7.2 (optimum pH 4.8-5.2) and at 4-33 °C (optimum 20-23 °C). The major cellular fatty acid was 18 : 1ω7c and the quinone was Q-10. The DNA G+C content was 55.6-57.5 mol%. The isolates belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and were most closely related to the sMMO-possessing methanotrophs of the genus Methylocella (96.4-97.0 % 16S rRNA gene sequence similarity), particulate MMO (pMMO)-possessing methanotrophs of the genus Methylocapsa (96.1-97.0 %), facultative methylotrophs of the genus Methylovirgula (96.1-96.3 %) and non-methanotrophic organotrophs of the genus Beijerinckia (96.5-97.0 %). Phenotypically, strains AR4(T), SOP9 and LAY were most similar to Methylocella species, but differed from members of this genus by cell morphology, greater tolerance of low pH, detectable activities of RuBP pathway enzymes and inability to grow on multicarbon compounds. Therefore, we propose a novel

  20. Peat swamp forest of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Niyomdham, C.; Urapeepatanapong, C.; Pitayakajornwute, P. [Pikoolthong Royal Development Study Center, Bangkok (Thailand). Royal Forest Department

    1996-12-31

    Peat swamp forest in Thailand occurs extensively along coastal flatlands in the central and southern parts of the country and some small patches of topogenous peatland are present locally on several mountain tops of the northern region. Many have been deteriorated by recent extensive development programs. However, one large area, about 347.04 km{sup 2}, of ombrogenous peatland is still left intact in the Pru Toh Dang area where conservation activities are being strictly enforced under one of the Royal Initiative Projects. Pru Toh Dang peat consists of 5 metres of fibrous organic soil overlying pyritic marine clay. Despite an inhospitable, submerged and unstable forest floor, the floristic composition of the peat swamp forest is extremely complicated, consisting of 124 families and 470 species of which 109 families and 437 species of flowering plants, and 15 families and 33 species of ferns recorded between 1983-1989 by a team from the Forest Herbarium of the Royal Forest Department of Thailand. (orig.) (4 refs.)

  1. Distributions of geohopanoids in peat: Implications for the use of hopanoid-based proxies in natural archives

    Science.gov (United States)

    Inglis, Gordon N.; Naafs, B. David A.; Zheng, Yanhong; McClymont, Erin L.; Evershed, Richard P.; Pancost, Richard D.; T-GRES Peat Database Collaborators

    2018-03-01

    Hopanoids are pentacyclic triterpenoids produced by a wide range of bacteria. Within modern settings, hopanoids mostly occur in the biological 17β,21β(H) configuration. However, in some modern peatlands, the C31 hopane is present as the 'thermally-mature' 17α,21β(H) stereoisomer. This has traditionally been ascribed to isomerisation at the C-17 position catalysed by the acidic environment. However, recent work has argued that temperature and/or hydrology also exert a control upon hopane isomerisation. Such findings complicate the application of geohopanoids as palaeoenvironmental proxies. However, due to the small number of peats that have been studied, as well as the lack of peatland diversity sampled, the environmental controls regulating geohopanoid isomerisation remain poorly constrained. Here, we undertake a global approach to investigate the occurrence, distribution and diagenesis of geohopanoids within peat, combining previously published and newly generated data (n = 395) from peatlands with a wide temperature (-1 to 27 °C) and pH (3-8) range. Our results indicate that peats are characterised by a wide range of geohopanoids. However, the C31 hopane and C32 hopanoic acid (and occasionally the C32 hopanol) typically dominate. C32 hopanoic acids occur as αβ- and ββ-stereoisomers, with the ββ-isomer typically dominating. In contrast, C31 hopanes occur predominantly as the αβ-stereoisomer. These two observations collectively suggest that isomerisation is not inherited from an original biological precursor (i.e. biohopanoids). Using geohopanoid ββ/(αβ + ββ) indices, we demonstrate that the abundance of αβ-hopanoids is strongly influenced by the acidic environment, and we observe a significant positive correlation between C31 hopane isomerisation and pH (n = 94, r2 = 0.64, p indicates that this isomerisation is rapid. This shows that geohopanoid ββ/(αβ + ββ) indices can be used to reconstruct pH within modern and ancient peat

  2. The use of plant-specific pyrolysis products as biomarkers in peat deposits

    Science.gov (United States)

    Schellekens, Judith; Bradley, Jonathan A.; Kuyper, Thomas W.; Fraga, Isabel; Pontevedra-Pombal, Xabier; Vidal-Torrado, Pablo; Abbott, Geoffrey D.; Buurman, Peter

    2015-09-01

    Peatlands are archives of environmental change that can be driven by climate and human activity. Proxies for peatland vegetation composition provide records of (local) environmental conditions that can be linked to both autogenic and allogenic factors. Analytical pyrolysis offers a molecular fingerprint of peat, and thereby a suite of environmental proxies. Here we investigate analytical pyrolysis as a method for biomarker analysis. Pyrolysates of 48 peatland plant species were compared, comprising seventeen lichens, three Sphagnum species, four non-Sphagnum mosses, eleven graminoids (Cyperaceae, Juncaceae, Poaceae), five Ericaceae and six species from other families. This resulted in twenty-one potential biomarkers, including new markers for lichens (3-methoxy-5-methylphenol) and graminoids (ferulic acid methyl ester). The potential of the identified biomarkers to reconstruct vegetation composition is discussed according to their depth records in cores from six peatlands from boreal, temperate and tropical biomes. The occurrence of markers for Sphagnum, graminoids and lichens in all six studied peat deposits indicates that they persist in peat of thousands of years old, in different vegetation types and under different conditions. In order to facilitate the quantification of biomarkers from pyrolysates, typically expressed as proportion (%) of the total quantified pyrolysis products, an internal standard (5-α-androstane) was introduced. Depth records of the Sphagnum marker 4-isopropenylphenol from the upper 3 m of a Sphagnum-dominated peat, from samples analysed with and without internal standard showed a strong positive correlation (r2 = 0.72, P use of analytical pyrolysis in biomarker research by avoiding quantification of a high number of products.

  3. Active Pore Volume in Danish Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    Phosphorus release within the soil matrix caused by the changed redox conditions due to re-establishment of a riparian wetland can be critical for the aquatic environment. However, phosphorous released in the soil will not always result in an immediate contribution to this loss to the aquatic...... environment. Lowland soils are primarily peat soils, and only a minor part of the total soil volume of peat soils is occupied by macropores (>30 µm). Since water primarily flows in these macropores, the majority of the soil matrix is bypassed (the immobile domain). Phosphorus released in the immobile domain...... is not actively transported out of the system, but is only transported via diffusion, which is a very slow process. Thus it is interesting to investigate the size of the active pore volume in peat soils. The hypothesis of this study is that the active pores volume of a peat soil can be expressed using bulk...

  4. The composition and character of DOM from an upland peat catchment - sources, roles and fate

    Science.gov (United States)

    Worrall, F.; Moody, C.; Clay, G.; Boothroyd, I.; Burt, T. P.

    2017-12-01

    The fluvial fluxes of dissolved organic carbon (DOC) from peatlands form an important part of that ecosystem's carbon cycle, contributing approximately 35% of the overall peatland carbon budget. The source, role and fate of this component of the carbon cycle was explored for a peat covered catchment in the north east of England with dissolved organic matter (DOM) being sampled from both a first-order peat-hosted stream and soil water at two depths within the peat profile. All DOM samples were analysed within the context of analysing the particulate organic matter (POM) from the catchment; the peat profile; and biomass. All samples were analysed using: elemental analysis (C, H, N, O, P and S); bomb calorimetry; thermogravimetric analysis (TGA); 13C solid state NMR; and S isotopes. Furthermore, the degradation of fresh DOC was examined over periods of 70 hours every month for 23 months. The analysis has shown that: DOM is highly oxidised compared to all other organic in the ecosystem and DOM did not exist until [C]/[O] lignin breakdown and not the processing of proteins or carbohydrates, i.e. it was not an intermediate of oxidation to CO2. DOM could only be sourced from high in the peat profile at most above 41 cm depth. Thermodynamic inhibition shows that only DOM from the surface layers could be reactive in the catotelmic layers of the peat. There was a significant role for the composition of the DOM in controlling degradation with degradation rates significantly increasing with the proportion of aldehyde and carboxylic acid functional groups but decreasing with the proportion of N-alkyl functional groups. The study meant that is was possible to consider the behaviour of DOM in terms of its thermodynamic properties (DH, DS & DG) for both formation and reaction.

  5. Peat development in Newfoundland: an historic overview. [Canada - Newfoundland

    Energy Technology Data Exchange (ETDEWEB)

    Rayment, A.F. (Newfoundland and Labrador Peat Association, St. John' s, NF (Canada))

    1994-02-01

    The aboriginal people and early white settlers doubtless had many uses for peat, although we have few specifics. A concerted effort was made in the 1930s to drain and develop certain peat bogs for growing forages, but interest in the agricultural use of peat waned during World War II and did not return until after Confederation in 1949. The Royal Commission Report on Agriculture (1956) recommended investigation of the feasibility of peat moss for agricultural purposes. From this point, research was conducted chiefly by the federal Experimental Farm near St. John's and by the provincial government, with some input from Memorial University. All peat moss developments must be preceded by drainage, which in turn should be preceded by a contour and depth survey. Mechanical aspects for drainage have evolved considerably. About 1,300 acres were drained by the Cuthbertson plow up to 1960 and another 2500 acres drained by the Healy ditcher between then and 1967; no subsequent reports have been obtained. Research has been conducted into fertilizer requirements for forages. Experiments on the grazing of sheep and/or cattle were also conducted and some problems were encountered, particularly with the grazing of sheep. Also studied was the potential of peat moss production for poultry litter, and the use of peat, kelp and fish offal to produce a high value compost. 28 refs.

  6. Peat-accumulating depositional systems of Sarawak, East Malaysia

    Science.gov (United States)

    Staub, James R.; Esterle, Joan S.

    1994-02-01

    Many coal deposits originate in deltaic, estuarine, and coastal plain settings and a knowledge of interrelationships between the tectonic and depositional elements active at the time of sediment deposition is necessary to formulate basin scale models. The prograding coastal depositional systems of Sarawak all contain domed peat-accumulating environments in which low-ash, low-sulfur peats are being deposited in areas of active clastic siliciclastic sedimentation. These depositional systems are as large as 11,400 km 2 and individual peat deposits within systems are in excess of 20 m thick and 1000 km 2 in area. The geographic positions and drainage basin areas of each depositional system are controlled by fault and fold systems. Although prograding into the same receiving basin, individual system geomorphology is variable and ranges from a wave-dominated microtidal delta, to a wave-dominated meso- to macro-tidal delta/coastal plain system, to a tide-dominated macrotidal estuarine embayment along a 450 km stretch of coastline. System variation is a function of sediment supply, shelf and embayment geometry, wave climate, and tidal range. These factors, which control depositional system geomorphology, also control the resulting long axis orientation of the thick, domed peat deposits. The surface vegetation and internal characteristics of most domed peat deposits, however, are similar. Internal characteristics consist of basal high-ash, high-sulfur, degraded peats overlain by low-ash, low-sulfur, well preserved peats in vertical profile. These systems demonstrate variable responses to late Pleistocene/Holocene sea-level rise and, in these instances, the variation is most attributable to local differences in siliciclastic sediment supply, which is a function of the drainage basin area.

  7. Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf

    Science.gov (United States)

    Sparrow, Katy J.; Kessler, John D.; Southon, John R.; Garcia-Tigreros, Fenix; Schreiner, Kathryn M.; Ruppel, Carolyn D.; Miller, John B.; Lehman, Scott J.; Xu, Xiaomei

    2018-01-01

    In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.

  8. Selected Trace Element Concentrations in Peat Used for Cosmetic Production – A Case Study from Southern Poland

    Directory of Open Access Journals (Sweden)

    Glina Bartłomiej

    2016-12-01

    Full Text Available The aim of the study was to assess the concentration of selected trace elements in organic soils used as a source to obtain a unique peat extract for cosmetics production. Peat material for laboratory analysis were collected from fen peatland located in the Prosna River Valley (Borek village. Studied peatland is managed by “Torf Corporation” company as a source of material to obtain peat extract for cosmetics production. In the collected soil samples (four soil profiles Zn, Cu and Pb concentrations were determined by using atomic absorption spectrometer SpectraAA 220 (Varian, after acid digestion. Obtained results showed that the highest concentrations of selected trace elements were recorded in the surface horizons of organic soils. This fact might be the results of Prosna river flooding or air deposition. Howevere, according to the new Polish regulations (Ordinance of the Minister for Environment 01.09.2016 - the way of conducting contamination assessment of the earth surface, the content of trace elements in the examined soils was greatly belowe the permissible limit for areas from group IV (mine lands. Thus, described soils are proper to obtain peat extract used as a component in cosmetic production.

  9. The municipal wastes methanation, it is correct and desirable; La methanisation des OM, c'est bien et souhaitable

    Energy Technology Data Exchange (ETDEWEB)

    Verchin, J.C. [Club Biogaz, 75 - Paris (France); Deschaseaux, Ch.

    2004-03-15

    The biogas coming from methanation is a renewable energy source and then can take part in the fight against greenhouse effect. Two solutions exist to to fight against greenhouse effect: the control of energy consumption and the use of energies that do not emit carbon dioxide in atmosphere. There are three utilizations of methanation for different kind of waste: the methanation of biological wastes, then the methanation is associated to a composting; the methanation of residual domestic waste the composts of this type can be refused because of their content in heavy metals; the anaerobic pre treatment. (N.C.)

  10. Biogeochemistry of carbon and related major and trace elements in peat bog soils of the middle taiga of Western Siberia (Russia).

    Science.gov (United States)

    Stepanova, V. A.; Mironycheva-Tokareva, N. P.; Pokrovsky, O. S.

    2012-04-01

    Global climate changes impact the status of wetland ecosystems shifting the balances of the carbon, macro-, and microelements cycles. This study aims to establish the features of accumulation and distribution of major- and trace elements in the organic layer of peat bog soils, belonging to different ecosystems of the oligotrophic bog complex located in the middle taiga of Western Siberia (Khanty-Mansiysk region, Russia). Key areas which are selected for this study include the following bog conjugate elementary ecosystems: higher ryam, lower ryam, ridge-hollow complex, and oligotrophic poor fen as characterized previously [1]. We have sampled various peat types along the entire length of the soil column (every 10 cm down to 3 m). Peat samples were analyzed for a wide range of macro- and microelements using an ICP-MS technique following full acid digestion in a microwave oven. These measurements allowed quantitative estimates of major- and trace elements in the peat deposits within the whole bog complex and individual elementary landscapes. Based on the data obtained, the lateral and radial geochemical structures of the bog landscapes were determined and clarified for the first time for middle taiga of the West Siberian plain. The similar regime of mineral nutrition during the complete bog landscape formation was detected for the peat deposits based on the measurements of some major- and trace elements (Ca, Fe, Mg, etc.). The vertical distribution of some major and some trace elements along the profile of peat column is rather uniform with relatively strong increase in the bottom organic layers. This strongly suggests the similarity of the processes of element accumulation in the peat and relatively weak post depositional redistribution of elements within the peat soil profile. Overall, obtained corroborate the existing view on chemical composition of peats being determined by botanical peat's components (which forms this peat deposit), atmospheric precipitation

  11. Organic matter loss from cultivated peat soils in Sweden

    Science.gov (United States)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  12. Corrigendum to "Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment" [Atmos. Res. 122 (2013) 571-578

    Science.gov (United States)

    Betha, Raghu; Pradani, Maharani; Lestari, Puji; Joshi, Umid Man; Reid, Jeffrey S.; Balasubramanian, Rajasekhar

    2018-06-01

    The authors regret that inadvertent errors occurred in the estimation of excess life time cancer risk (ELCR) in the above-referenced published paper due to an oversight. Specifically, the slope factor of nickel (Ni) we used in the ELCR calculation should have been 8.4 × 10-1 mg-1 kg day instead of 8.4 × 101 (mg-1 kg day). Further, to be consistent with other publications where we assumed the measured chromium (Cr) to exist entirely as hexavalent chromium (Cr(VI)), we revised the slope factor of Cr to the USEPA recommended value of 42 and recalculated the ELCR accordingly. These revised slope factors do not affect, or influence our overall qualitative conclusion made earlier in the published paper in that people in the immediate vicinity of peat fires are likely to experience severe health problems due to prolonged exposure to high concentrations of trace metals in the peat smoke. The revised ELCR estimates are given below in Table 3.

  13. Market study on the potential for peat as a fuel

    International Nuclear Information System (INIS)

    1991-01-01

    A report is given on the market potential for peat as a fuel in Scotland. It is concluded that there are two distinct market segments, domestic and industrial/commercial. There is no potential for peat as a fuel in the industrial/commercial segment but there is opportunity for increased peat usage in the domestic sector. The greatest potential for market development is conversion of existing solid fuel users to peat. Pro-active input is required to realise this market potential. The market is constrained by demand. (UK)

  14. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane.

    Science.gov (United States)

    Pohlman, John W; Greinert, Jens; Ruppel, Carolyn; Silyakova, Anna; Vielstädte, Lisa; Casso, Michael; Mienert, Jürgen; Bünz, Stefan

    2017-05-23

    Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 10 6 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO 2 uptake rates (-33,300 ± 7,900 μmol m -2 ⋅d -1 ) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea-air methane efflux (17.3 ± 4.8 μmol m -2 ⋅d -1 ). The negative radiative forcing expected from this CO 2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13 C in CO 2 ) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO 2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea-air methane flux always increase the global atmospheric greenhouse gas burden.

  15. Soil carbon dioxide emissions from a rubber plantation on tropical peat.

    Science.gov (United States)

    Wakhid, Nur; Hirano, Takashi; Okimoto, Yosuke; Nurzakiah, Siti; Nursyamsi, Dedi

    2017-03-01

    Land-use change in tropical peatland potentially results in a large amount of carbon dioxide (CO 2 ) emissions owing to drainage, which lowers groundwater level (GWL) and consequently enhances oxidative peat decomposition. However, field information on carbon balance is lacking for rubber plantations, which are expanding into Indonesia's peatlands. To assess soil CO 2 emissions from an eight-year-old rubber plantation established on peat after compaction, soil CO 2 efflux was measured monthly using a closed chamber system from December 2014 to December 2015, in which a strong El Niño event occurred, and consequently GWL lowered deeply. Total soil respiration (SR) and oxidative peat decomposition (PD) were separately quantified by trenching. In addition, peat surface elevation was measured to determine annual subsidence along with GWL. With GWL, SR showed a negative logarithmic relationship (p0.05). Peat surface elevation varied seasonally in almost parallel with GWL. After correcting for GWL difference, annual total subsidence was determined at 5.64±3.20 and 5.96±0.43cmyr -1 outside and inside the trenching, respectively. Annual subsidence only through peat oxidation that was calculated from the annual PD, peat bulk density and peat carbon content was 1.50cmyr -1 . As a result, oxidative peat decomposition accounted for 25% of total subsidence (5.96cmyr -1 ) on average on an annual basis. The contribution of peat oxidation was lower than those of previous studies probably because of compaction through land preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions

    Energy Technology Data Exchange (ETDEWEB)

    Angle, Jordan C.; Morin, Timothy H.; Solden, Lindsey M.; Narrowe, Adrienne B.; Smith, Garrett J.; Borton, Mikayla A.; Rey-Sanchez, Camilo; Daly, Rebecca A.; Mirfenderesgi, Golnazalsdat; Hoyt, David W.; Riley, William J.; Miller, Christopher S.; Bohrer, Gil; Wrighton, Kelly C.

    2017-11-16

    The current paradigm, widely incorporated in soil biogeochemical models, is that microbial methanogenesis can only occur in anoxic habitats1-4. In contrast, here porewater and greenhouse-gas flux measurements show clear evidence for methane production in well-oxygenated soils from a freshwater wetland. A comparison of oxic to anoxic soils revealed up to ten times greater methane production and nine times more methanogenesis activity in oxygenated soils. Metagenomic and metatranscriptomic sequencing recovered the first near complete genomes for a novel methanogen species, and showed acetoclastic production from this organism was the dominant methanogenesis pathway in oxygenated soils. This organism, Candidatus Methanosaeta oxydurans, is prevalent across methane emitting ecosystems, suggesting a global significance. Moreover, in this wetland, we estimated that a dominant fraction of methane fluxes could be attributed to methanogenesis in oxygenated soils. Together our findings challenge a widely-held assumption about methanogenesis, with significant ramifications for global methane estimates and Earth system modeling.

  17. The climate impact of future energy peat production

    Energy Technology Data Exchange (ETDEWEB)

    Hagberg, Linus; Holmgren, Kristina

    2008-09-15

    The aim of this study was to estimate total greenhouse gas emissions and climate impact of different peat utilisation scenarios, using a life cycle perspective. This and previous studies show that the climate impact from energy peat utilisation is more complex than just considering the emissions at the combustion stage. There are important emissions and uptake of greenhouse gases that occur on the peatland before, during and after peat harvest. The results show that the climate impact of future peat utilisation can be significantly reduced compared to current utilisation and will be lower than the climate impact resulting from only the combustion phase. This can be achieved by choosing already drained peatlands with high greenhouse gas emissions, using a more efficient production method and by securing a low-emission after-treatment of the cutaway (e.g. afforestation)

  18. Density functional theory analysis of the reaction pathway for methane oxidation to acetic acid catalyzed by Pd2+ in sulfuric acid.

    Science.gov (United States)

    Chempath, Shaji; Bell, Alexis T

    2006-04-12

    Density functional theory has been used to investigate the thermodynamics and activation barriers associated with the direct oxidation of methane to acetic acid catalyzed by Pd2+ cation in concentrated sulfuric acid. Pd2+ cations in such solutions are ligated by two bisulfate anions and by one or two molecules of sulfuric acid. Methane oxidation is initiated by the addition of CH4 across one of the Pd-O bonds of a bisulfate ligand to form Pd(HSO4)(CH3)(H2SO4)2. The latter species will react with CO to produce Pd(HSO4)(CH3CO)(H2SO4)2. The most likely path to the final products is found to be via oxidation of Pd(HSO4)(CH3)(H2SO4)2 and Pd(HSO4)(CH3CO)(H2SO4)2 to form Pd(eta2-HSO4)(HSO4)2(CH3)(H2SO4) and Pd(eta2-HSO4)(HSO4)2(CH3CO)(H2SO4), respectively. CH3HSO4 or CH3COHSO4 is then produced by reductive elimination from the latter two species, and CH(3)COOH is then formed by hydrolysis of CH3COHSO4. The loss of Pd2+ from solution to form Pd(0) or Pd-black is predicted to occur via reduction with CO. This process is offset, though, by reoxidation of palladium by either H2SO4 or O2.

  19. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils.We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days.Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  20. Methane Oxidation and Molecular Characterization of Methanotrophs from a Former Mercury Mine Impoundment

    Directory of Open Access Journals (Sweden)

    Shaun M. Baesman

    2015-06-01

    Full Text Available The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5 medium via methane oxidation.

  1. Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment

    Science.gov (United States)

    Baesman, Shaun; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.

    2015-01-01

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

  2. Methane transport and emissions from soil as affected by water table and vascular plants

    OpenAIRE

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-01-01

    Background: The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here...

  3. Direct Activation Of Methane

    KAUST Repository

    Basset, Jean-Marie

    2013-07-15

    Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20.degree. C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin structure: H.sub.4SiW.sub.12O.sub.40, H.sub.3PW.sub.12O.sub.40, H.sub.4SiMo.sub.12O.sub.40, or H.sub.3PMo.sub.12O.sub.40, can be when supported on silica.

  4. Effect of climate changes in the holocene on the distribution of humic substances in the profile of forest-tundra peat mounds

    Science.gov (United States)

    Vasilevich, R. S.; Beznosikov, V. A.

    2017-11-01

    The molecular composition of humic substances in permafrost peatlands of the forest-tundra zone in northeastern European Russia has been characterized for the first time on the basis of systematic studies. Changes in the molar x(H): x(C) ratio along the peat profiles have been revealed, which is due to the activation of cryogenic processes in the upper part of the seasonally thawing layer, the natural selection of condensed humic molecules, and the botanical composition and degree of degradation of peat, which reflect the climatic features of the area in the Holocene. Dry-peat soils of mounds are worse heated during the summer period because of the buffering effect of moss litter, which results in a lower degree of condensation of humic and fulvic acid molecules in the peat horizons down to the permafrost table. Transformation of quantitative and qualitative parameters of specific organic compounds occurs at the permafrost boundary of peatlands, which can serve as an indicator of recent climate changes in high latitudes.

  5. Phosphorus in virgin peat soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1956-01-01

    Full Text Available In the present paper the total and organic P content of virgin peat soils is studied on the basis of 217 peat samples mostly collected from Northern Finland and consisting of 32 Sp, 34 CSp, 62 SCp, 12 EuSCp, 36 BCp, and 41 Cp samples. The material was found to be satisfactorily typical for a study of Finnish peat soils as to the pH, ash and N contents. Only the BCp samples were, in some respect, of a poorer quality than in general. The total P content of the 217 samples ranged from 190 to 2350 ppm or from 30 to 2440 kg/ha. In the Sp and BCp groups the mean P content was equal, 580 ± 80 ppm and 560 ± 90 ppm resp., and significantly lower than the corresponding value in all the other groups which was 950 ±120 ppm in the Cp-group, 980 ± 290 in the EuSCp-group, 800 ± 60 in the SCp-group, and 800 ± 120 ppm in the CSp-group. A low but significant correlation was found to exist between the degree of land quality estimated on the basis of the surface vegetation and the P content of the surface samples: r = 0.361***. When the BCp samples were excluded an even closer correlation was detected: r = 0.481***. The correlation coefficient between the total P content and the degree of humification was r = 0.317***, that between the total P and the ash contents r = 0.289**, and that between the total P and N contents r = 0.206*. The organic P content of the 217 samples ranged from 130 to 1950 ppm with an average of 600 ± 40 ppm. The Sp and BCp groups showed significantly lower means, 430 ± 60 ppm and 440 ±7O ppm resp., than the other groups with averages of 630 ± 120 ppm in the CSp-group, 620 ± 50 ppm in the SCp-group, 770 ± 100 ppm in the Cp-group and 820 ± 280 in the EuSCp-group. The organic P content was very closely correlated with the total P content; the total correlation coefficient was r = 0.934***. The connection with the degree of humification was not distinct: the total correlation coefficient was r = 0.336***, but the partial correlation

  6. Utilization of new materials in peat machines; Uusien materiaalien kaeyttoe turvekoneissa

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, M.; Poeyhoenen, P. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The objective of this three year research (1993-1995) was to study the suitability of new materials for different applications in peat production industry, exploiting the plastic and brush technologies, and surface coatings. The peat production machines will be intensified, lightened, made more firesafe, and ergonomical by using new materials (plastics, composites, compound metals and surface coatings). The research targets and materials were surveyed in 1993, the possibilities to construct an unsparkling miller were investigated, and low-friction materials, on which the peat glides easily, were sought in the beginning of the research. The unsparkling miller was studied and developed further in 1994 using plastic blades, the application of brushing technology in sod peat technology, and a ridger, equipped with horizontal brushes, for sod peat were studied, and the possibilities to lighten the construction of the collector-wagon using light materials was investigated. The tasks for 1995 were to study the brushing technology for peat production, the properties of the bristle, and the applications of new materials for milling and sieving of peat using laboratory tests. This work continued partly in 1996

  7. Simulation Model of Automated Peat Briquetting Press Drive

    Directory of Open Access Journals (Sweden)

    A. A. Marozka

    2012-01-01

    Full Text Available The paper presents the developed fully functional simulation model of an automated peat briquetting press drive. The given model makes it possible to reduce financial and time costs while developing, designing and operating a double-stamp peat briquetting press drive.

  8. Weeds optimally grow in peat swamp after burning

    Directory of Open Access Journals (Sweden)

    P.D. Susanti

    2014-07-01

    Full Text Available After clearing land by burning the peat, then the weeds and undergrowth will flourish. Even sometimes, the weeds are eventually burned again. Weed is known as a destroyer plant that has to be controlled. Through proper treatment, the existing weeds in peatlands can be potentiallly exploited. The purpose of this study was to determine the calorific value of briquettes as one of peatland weeds utilization. The results showed that the calorific value ranged from 2,492 cal/g to 5,230 cal/g. The lowest calorific value was on ‘teki kecil’ grass (Scirpus grossus Lf, while the highest calorific value was observed for ‘bantalaki grass’ (Hymenachne amplexicaulis Nees. The high calorific value of the peat weeds are potential for biomass briquettes raw materials. The utilization and use of peat weed briquettes as a raw materials expected can reduce land degradation due to peat swamp burning

  9. The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes

    Science.gov (United States)

    Cameron, C.C.; Esterle, J.S.; Palmer, C.A.

    1989-01-01

    Peat has been studied in several geologic settings: (1) glaciated terrain in cold temperate Maine and Minnesota, U.S.A.; (2) an island in the Atlantic Ocean off the coast of Maine, where sea level is rising; (3) the warm temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often; and (4) the tropical coast of Sarawak, Malaysia, and the tropical delta of the Batang Hari River, Sumatra, Indonesia. Most of these deposits are domed (ombrotrophic or partly ombrotrophic) bogs in which peat accumulation continued above the surface of the surrounding soil. However, the bogs of the U.S. Atlantic and Gulf Coastal Plains are comparatively not as domed, and many have almost level surfaces. In some bogs, aquatic or semi-aquatic plant materials accumulated, replaced water in the depressions, and formed a surface on which marsh or swamp vegetation could subsequently live, die, and accumulate. In others, the plant materials accumulated initially on level silt or sand surfaces supporting marshes or swamps. As the peat dome formed, plants growing on it changed from luxuriant ones near the base of the dome, where nutrients were brought into the bog by surface and ground water, to stunted ones at the top of the dome, where the raised bogs are fed by nutrient-poor precipitation. The physical and chemical changes that take place in the sequence of environments from the pond stage of deposit development, through the grassy marsh stage, through the forested swamp stage, and finally through the heath dome stage can be measured in terms of acidity and ash, volatile matter, carbon, hydrogen, nitrogen, sulfur and oxygen contents, as well as in the kind and distribution of trace elements. The organic and inorganic contents of the deposits relate to geomorphology, and geomorphology relates to their settings. As models of coal formation, some domed peat deposits may help in solving problems of distribution and character of ancient coal beds. But clearly not all peat

  10. Response of tropical peat swamp forest tree species seedlings to macro nutrients

    Directory of Open Access Journals (Sweden)

    Tri Wira Yuwati

    2015-10-01

    Full Text Available Abstract Efforts of restoration of degraded tropical peat swamp forest were facing constraints due to the low available nutrient level of peat. The transplanted peat swamp forest species seedlings experienced low survival rate and poor growth performance. This study aimed to demonstrate the response of ten tropical peat swamp forest species seedlings whether climax and pioneer species to macro-nutrients addition in the nursery. The growth performance of climax and pioneer tropical peat swamp species seedlings was recorded following addition of macro nutrients of Nitrogen (N, Phosphorus(P, Potassium(K and Dolomitic limestone (CaMg. The result showed that Alstonia spatulata and Parartocarpus venenosus showed positive growth response following macro nutrients addition. This study concluded that tropical peat swamp pioneer species has lower necessity for macro-nutrients addition than tropical peat swamp climax species.

  11. Methane Ebullition During Simulated Lake Expansion and Permafrost Degradation

    Science.gov (United States)

    Mazéas, O.; von Fischer, J. C.; Whelan, M.; Rhew, R.

    2007-12-01

    Methane, a potent greenhouse gas, is emitted by Arctic tundra and lakes. Ebullition, or bubbling, of methane from Arctic lakes has been shown to be a major transport mechanism from the sediment to the atmosphere, and ebullition rates are greatest near the edges of the lakes where active erosion is occurring. In regions of continuous permafrost, Arctic lakes have been expanding in recent decades, attributed to permafrost melting and development of thermokarst. Lake expansion occurs when the margins erode into water, supplying large amounts of organic rich material to the sediment-water interface. This allows carbon that was previously stored in the soil (active layer and permafrost) to become bioavailable and subject to decomposition. An increase in Arctic methane emissions as a result of permafrost thawing and lake expansion would constitute a positive feedback to Arctic warming. In order to better understand these processes, an experiment was initiated in July 2007 at the Barrow Environmental Observatory, Barrow, AK. Different layers of locally collected tundra soil were placed into incubation chambers at the bottom of a shallow (about 1 m deep) lake. Each experimental chamber consists of a bucket fixed underneath an inverted funnel, with a sampling port on top to capture and collect the emitted gases. Gas samples are analyzed for methane and carbon dioxide concentrations, as well as relevant isotopic compositions. Gas sampling has occurred at frequent intervals during the late summer and will continue through the early winter. Three replicates of each layer (active layer, seasonally frozen active layer and permafrost) were incubated, as well as an empty control chamber. An additional chamber containing thawed permafrost and cellulose-rich sawdust was placed for comparison, as cellulose is a major component of plant tissue and the fermentation of the cellulose should yield substrates for methanogenesis. Total production of methane versus organic carbon content of

  12. Application of sphagnum peat, calcium carbonate and hydrated lime for immobilizing radioactive and hazardous contaminants in the subsurface

    International Nuclear Information System (INIS)

    Longmire, P.A.; Thomson, B.M.; Eller, P.G.; Barr, M.E.

    1991-01-01

    Batch experiments, mineralogical studies, and geochemical modeling were conducted to evaluate the effectiveness of sphagnum peat, calcium carbonate, and hydrated lime in removing dissolved concentrations of As, Mo, NO 3 , and U present in uranium-tailings pore water at Gunnison, Colorado. Amounts of As, Mo, and U removal by sphagnum peat, calcium carbonate, and hydrated lime at 5.0,2.5, and 2.5 wt.%, respectively, were typically above 97%. Nitrate removal ranged between 55 and 80%. Significant contaminant removal was achieved by sphagnum peat alone at pH 3.18. Results from base potentiometric titration and IR spectroscopy investigations suggest that U(VI) binds onto carboxylate and phenolate groups. Addition of 2.5 wt.% hydrated lime to the acidic tailings increased Mo concentrations by a factor of 2 under moderately alkaline conditions (pH 12). During neutralization of tailings-pore water, precipitation of ferric oxyhydroxides may provide additional removal of As, Mo, and U(VI) from solution through adsorption and coprecipitation processes. Sphagnum peat and other forms of solid organic matter effectively remove anthropogenic organic compounds from solution through hydrophobic sorption and partitioning processes

  13. Chemical composition of raw and deresinated peat waxes

    Energy Technology Data Exchange (ETDEWEB)

    Bel' kevich, P I; Ivanova, L A; Piskunova, T A; Tserlyukevich, Ya V; Yurkevich, E A

    1980-01-01

    Research was conducted using absorption chromatography and spectroscopy to study the changes in the chemical composition of raw peat wax taking place in the deresination process. Characteristics of the raw, deresinated waxes and resins removed are given. The fractions obtained showed that both raw and deresinated wax contain the same basic compound classes: hydrocarbons, alcohols, complex ether and acids; but their proportions in the waxes are different. After deresination most of the dark-colored polyfunctional compounds, a portion of the soluble unsaturated hydrocarbons and alcohols, and all the sterenes transfer into the resin. This causes the light color and specific physical properties of deresinated wax. (13 refs.) (In Russian)

  14. Impact of a commercial peat moss operation on water quality and biota in a small tributary of the Richibucto River, Kent County, New Brunswick, Canada.

    Science.gov (United States)

    Surette, C; Brun, G L; Mallet, V N

    2002-05-01

    The St-Charles Plain (Kent County, New Brunswick, Canada) commercial peat moss operation has been ongoing since 1983. To process the peat, a dry extraction method is used that requires extensive drainage of the peat bog. The water is directed toward sedimentation ponds, where it drains into a small brook, which feeds into a river affected by tidal salt water. Water discharge from the bog contains large amounts of peat particles that deposit in the surrounding watershed. As a result, the pH of the freshwater sites that receive the drainage water from the commercial operation, is fairly acidic (pH 3.9-4.7). Water samples from or near the peat moss operation have a higher concentration of total phosphorous and total organic carbon. The peat particles contain relatively high levels of total mercury, as reflected by analysis of peat sediments. However, the water samples contained low levels of dissolved mercury. Indigenous samples of biota-namely, sand shrimps (Crangon septemspinosa) and mummichogs (Fundulus heteroclitus)-did not contain mercury levels higher in the impacted sites than in the reference sites. Introduced blue mussels (Mytilus edulis) did not accumulate significant amounts of mercury during a 62-day exposure in the study area. Overall, the data suggest that although relatively large amounts of mercury-containing peat particles are discharged into the ecosystem, bioaccumulation of mercury in the biota does not occur.

  15. Controls on tree species stem transport and emission of methane from tropical peatlands

    Science.gov (United States)

    Van Haren, J. L. M.; Cadillo-Quiroz, H.

    2016-12-01

    Methane emissions from wetlands dominate the global budget and are most likely responsible for the annual variability in emissions. Methane is produced and consumed by microbial activity and then transported to the atmosphere. Plants have been shown to facilitate the transport of methane to significant amounts, but broad surveys across multiple sites have been lacking. We present data collected from multiple peatland and wetland sites south of Iquitos Peru and varzea sites from Santarem Brazil and compare our results to the limited literature of tree stem fluxes. The survey suggests that methane stem emissions might be conserved at the genera level, but not the family level. Large emitters exist in the Aracaceae, Euphorbiaceae, and Sapotaceae, however, other genera within the same families do not emit any methane. Certain genera are consistent pan-tropical methane emitters. The methane emission from the stems decreases generally with height, suggesting a diffusion constrained stem flux. Further constraints on the methane emissions from tree stems involve soil methane concentration and wood density, which is likely an indicator for stem conductivity. Diurnal cycles, flooding level and tree leaves appear to have less of an influence on the tree methane emissions though flooding can lead to a translocation of emissions up the stem to above the flooding level. Methane emissions and the plant transport pathways appear to be constrained at the genera level within wetlands.

  16. Regulations for the peat production water pollution control

    International Nuclear Information System (INIS)

    Savolainen, M.; Heikkinen, K.; Ihme, R.

    1996-01-01

    The regulations for peat production water pollution control include the latest information on anti-pollution constructions applicable to peat production including field ditches, sedimentation basins, overland flow areas, forest soil saturation, evaporation basins, chemicalization, detention of runoff and artificial flood plains. Information on subsurface drainage in peat mining is also given. The regulations deal with environmental viewpoints, planning of water protection and information on how to build, use and maintain anti-pollution constructions. Special attention is given to the soil conditions, because they play an important role in the building of different constructions. (orig.) (48 refs.)

  17. Investigation of metal ions sorption of brown peat moss powder

    Science.gov (United States)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  18. Climate impact from peat utilisation in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Uppenberg, S.; Zetterberg, L.; Aahman, M.

    2001-08-01

    The climate impact from the use of peat for energy production in Sweden has been evaluated in terms of contribution to atmospheric radiative forcing. This was done by attempting to answer the question 'What will be the climate impact if one would use 1 m{sup 2} of mire for peat extraction during 20 years?'. Two different methods of after-treatment were studied: afforestation and restoration of wetland. The climate impact from a peatland - wetland energy scenario and a peatland - forestry energy scenario was compared to the climate impact from coal, natural gas and forest residues. Sensitivity analyses were performed to evaluate which parameters that are important to take into consideration in order to minimize the climate impact from peat utilisation.

  19. Climate impact from peat utilisation in Sweden

    International Nuclear Information System (INIS)

    Uppenberg, S.; Zetterberg, L.; Aahman, M.

    2001-08-01

    The climate impact from the use of peat for energy production in Sweden has been evaluated in terms of contribution to atmospheric radiative forcing. This was done by attempting to answer the question 'What will be the climate impact if one would use 1 m 2 of mire for peat extraction during 20 years?'. Two different methods of after-treatment were studied: afforestation and restoration of wetland. The climate impact from a peatland - wetland energy scenario and a peatland - forestry energy scenario was compared to the climate impact from coal, natural gas and forest residues. Sensitivity analyses were performed to evaluate which parameters that are important to take into consideration in order to minimize the climate impact from peat utilisation

  20. The future role of peat. The Finnish Ministry of Trade and Industry's investigation on the role of peat in the greenhouse gas balance in Finland

    International Nuclear Information System (INIS)

    Knuutinen, O.

    2000-01-01

    Due to contradictory opinions on the role of peat as a renewable energy source and carbon sink as well as the fact that no comprehensive research are made in this area, the Finnish Ministry of Trade and Industry (KTM) assigned an impartial working group to investigate the role of peat in climatic change. The working group consists of Patrick Crill from USA, Ken Hargreaves from Great Britain, and Atte Korhola from Finland. The objective of the working group is to study the greenhouse gas balances of virgin peatland, ditched peatlands, and cultivated peatlands. The carbon cycles will be investigated, as well as the effects of utilisation of peat on greenhouse gas balance, and the possibilities of effecting the balance with active measures. The alternatives for utilisation peatlands after the peat has been harvested, and the effects of these alternatives on greenhouse gas balance will also be studied. The effects of the peatlands left in passive natural state, the regeneration of peatlands, forestation and other usage on greenhouse gas balance will be investigated, and the need for regulations and instructions for recycling have to be estimated. The greenhouse gas emissions and the carbon sinks have to be defined, the alternative means for definition of them have to be inspected. The mutual dependence of peat and wood fuels has also to be taken into consideration. The report will to include the effects of peat on watercourses, versatility of the nature, the effect of the peat production on the amount of peat production areas, and suggestions for possible need of further investigations

  1. Palaeoecology of Holocene peat deposits from Nordvestø, north-west Greenland

    DEFF Research Database (Denmark)

    Bennike, Ole; Goodsite, Michael Evan; Heinemeier, Jan

    2008-01-01

    Two extensive peat deposits on Nordvestø, between Greenland and Canada, were examined for macroscopic remains of plants and animals. One of the peat deposits accumulated during the period from c. 7,100 to 5,100 cal. years BP. This peat is guanogenic and completely dominated by the coprophilous...... bryophyte Aplodon wormskioldii, and also contains frequent remains of feathers. The peat formed close to a large former sea bird colony, probably a puffin (Fratercula arctica) colony. Puffins are now rare in the region, but the population may have been larger during the mid Holocene, when the sea was ice......-free for a longer period than at present. The other peat deposit is dated to c. 9,300-7,400 cal. years BP, it is minerogenic and the macrofossils reflect deposition in a shallow, richly vegetated pond. This peat formed during warmer summers than at present....

  2. Ground-penetrating radar study of the Rahivere peat bog, eastern Estonia

    Directory of Open Access Journals (Sweden)

    Jüri Plado

    2011-03-01

    Full Text Available The current case study presents results of the ground-penetrating radar (GPR profiling at one of the Saadjärve drumlin field interstitial troughs, the Rahivere bog, eastern Estonia. The study was conducted in order to identify the bog morphology, and the thickness and geometry of the peat body. The method was also used to describe the applicability of GPR in the evaluation of the peat deposit reserve as the Rahivere bog belongs among the officially registered peat reserves. Fourteen GPR profiles, ~ 100 m apart and oriented perpendicular to the long axis of the depression, covering the bog and its surrounding areas, were acquired. In order to verify the radar image interpretation as well as to evaluate the velocity of electromagnetic waves in peat, a common source configuration was utilized and thirteen boreholes were drilled on the GPR profiles. A mean value of 0.036 m ns–1 corresponding to relative dielectric permittivity of 69.7 was used for the time–depth conversion. Radar images reveal major reflection from the peat–soil interface up to a depth of about 4 m, whereas drillings showed a maximum thickness of 4.5 m of peat. Minor reflections appear from the upper peat and mineral soil. According to the borehole data, undecomposed peat is underlain by decomposed one, but identifying them by GPR is complicated. Mineral soil consists of glaciolimnic silty sand in the peripheral areas of the trough, overlain by limnic clay in the central part. The calculated peat volumes (1 200 000 m3 were found to exceed the earlier estimation (979 000 m3 that was based solely on drilling data. Ground-penetrating radar, as a method that allows mapping horizontal continuity of the sub-peat interface in a non-destructive way, was found to provide detailed information for evaluating peat depth and extent.

  3. High nitrogen availability reduces polyphenol content in Sphagnum peat.

    Science.gov (United States)

    Bragazza, Luca; Freeman, Chris

    2007-05-15

    Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.

  4. Ultraviolet electroluminescence from zinc oxide nanorods/deoxyribonucleic acid hybrid bio light-emitting diode

    Science.gov (United States)

    Gupta, Rohini Bhardwaj; Nagpal, Swati; Arora, Swati; Bhatnagar, Pramod Kumar; Mathur, Parmatma Chandra

    2011-01-01

    Ultraviolet (UV) light-emitting diode using salmon deoxyribonucleic acid (sDNA)-cetyltrimethylammonium complex as an electron blocking layer and zinc oxide (ZnO) nanorods as emissive material was fabricated. UV emission, which was blue shifted up to 335 nm with respect to the band edge emission of 390 nm, was observed. This blue shift was caused due to accumulation of electrons in the conduction band of ZnO because of a high potential barrier existing at the sDNA/ZnO interface.

  5. Study of settling of peat on channel banks

    Energy Technology Data Exchange (ETDEWEB)

    Amaryan, L S; Bazin, Ye T; Stepanichev, V G

    1983-01-01

    Results are presented of studies of settling of the peat formation of the upper type on banks of drying channels. A technique is presented for forecasting evaluation in the decrease in depth of the channels because of packing of the peat on the sides of the dryers.

  6. Estonian horticultural peat marketing: sales promotion and price formation. 2. part

    International Nuclear Information System (INIS)

    Hammer, Hele

    1999-01-01

    When forming prices, Estonian peat companies' decisions should be based on marginal cost analysis. Unfortunately most Estonian companies sell peat to intermediaries and cannot influence its price. Estonian peat producers have to choose between either selling peat directly or selling through a central marketing organization. Both systems have their pros and cons. Direct selling gives more freedom to individual producers but is more risky. Central marketing makes cost saving possible and is more effective and stable, but may alienate producers from clients and markets. Whichever marketing system Estonian peat companies choose, the most important elements in their marketing strategy should be: careful market analysis, personal sales, attending trade shows, catalogues, quality service and offering transportation services. (author)

  7. TEHOPALA - Intensification of peat production; TEHOPALA - palaturvetuotannon tehostaminen

    Energy Technology Data Exchange (ETDEWEB)

    Nurminen, T.; Katainen, E. [Vapo Oy, Jyvaeskylae (Finland); Leinonen, A.; Aalto, J. [VTT Energy, Jyvaeskylae (Finland); Hoelttae, P. [Biomasters Oy, Oulu (Finland)

    1996-12-31

    The objective of the Tehopala project is to increase the hectare yield of sod peat by 50 % and to reduce the production costs by 30 % by developing the sod peat production methods and equipment. The main aim of the research is in machine development, the target of which is to develop a new efficient machine chain for ridge-drying method. A new more effective cutting disc, suitable for 600 mm nozzles for production wave-like sod, has been developed for PK-1S sod peat excavator. The RYT-MP excavator has been developed to operationally reliable stage, and a nozzle for production of wave-like sod has been constructed for it. Prototype machines have been developed for ridging and loading. The development work of these will be carried out further. Ridge-drying method and wave-like sod peat method have been proven to be more effective than the cylindrical sod technology and field-drying method

  8. Optimization of the integrated citric acid-methane fermentation process by air stripping and glucoamylase addition.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Wang, Ke; Tang, Lei; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-03-01

    To solve the problem of extraction wastewater in citric acid industry, an integrated citric acid-methane fermentation process was proposed. In the integrated process, extraction wastewater was treated by mesophilic anaerobic digestion and then reused to make mash for the next batch of citric acid fermentation. In this study, an Aspergillus niger mutant strain exhibiting resistance to high metal ions concentration was used to eliminate the inhibition of 200 mg/L Na(+) and 300 mg/L K(+) in anaerobic digestion effluent (ADE) and citric acid production increased by 25.0 %. Air stripping was used to remove ammonium, alkalinity, and part of metal ions in ADE before making mash. In consequence, citric acid production was significantly improved but still lower by 6.1 % than the control. Results indicated that metal ions in ADE synergistically inhibited the activity of glucoamylase, thus reducing citric acid production. When 130 U/g glucoamylase was added before fermentation, citric acid production was 141.5 g/L, which was even higher than the control (140.4 g/L). This process could completely eliminate extraction wastewater discharge and reduce water resource consumption.

  9. A new approach for peat inventory methods; Turvetutkimusten menetelmaekehitystarkastelu

    Energy Technology Data Exchange (ETDEWEB)

    Laatikainen, M.; Leino, J.; Lerssi, J.; Torppa, J.; Turunen, J. Email: jukka.turunen@gtk.fi

    2011-07-01

    Development of the new peatland inventory method started in 2009. There was a need to investigate whether new methods and tools could be developed cost-effectively so field inventory work would more completely cover the whole peatland area and the quality and liability of the final results would remain at a high level. The old inventory method in place at the Geological Survey of Finland (GTK) is based on the main transect and cross transect approach across a peatland area. The goal of this study was to find a practical grid-based method linked to the geographic information system suitable for field conditions. the triangle-grid method with even distance between the study points was found to be the most suitable approach. A new Ramac-ground penetrating radar was obtained by the GTK in 2009, and it was concluded in the study of new peatland inventory methods. This radar model is relatively light and very suitable, for example, to the forestry drained peatlands, which are often difficult to cross because of the intensive ditch network. the goal was to investigate the best working methods for the ground penetrating radar to optimize its use in the large-scale peatland inventory. Together with the new field inventory methods, a novel interpolation-based method (MITTI) for modelling peat depths was developed. MITTI makes it possible to take advantage of all the available peat-depth data including, at the moment, aerogeophysical and ground penetrating radar measurements, drilling data and the mire outline. The characteristic uncertainties of each data type are taken into account and, in addition to the depth model itself, an uncertainty map of the model is computed. Combined with the grid-based field inventory method, this multi-approach provides better tools to more accurately estimate the peat depths, peat amounts and peat type distributions. The development of the new peatland inventory method was divided into four separate sections: (1) Development of new field

  10. Relation of peat to oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Linker, S

    1924-01-01

    Samples of oil shale from the Green River formation and from Elko (Nev.), Brazil, Austria, and South Africa were examined, and several varieties of shale were found. Green River oil shale represents three of the more common types plus one less common type. These were: contorted shale with a velvety appearance, thin paper shale resembling the curled-up leaves of a book, massive black shale resembling a piece of rubber, and a less common type, which showed the bedding planes very clearly. The Elko (Nev.) shale was a light buff color; the shale from Brazil resembled a piece of petrified peat. When the shales were cut very thin, their colors ranged from yellow to reddish-brown. The composition, as seen under the microscope, was of well-preserved plant material such as spores, pollen grains, fragments of cell tissues, algae, fungi, bacteria, macerated organic residue, small pieces of resin, animal fossils, and translucent bodies. Oil shale was produced from organic material that accumulated in peat bogs, marshes, or swamps in fresh or salt waters. The organic matter was decomposed by bacterial action. Certain parts of the plants decayed more readily than others. Before lithification occurred, a chemical action took place that changed the softer tissues of the plant debris into a gel. This collodial matter penetrated and surrounded the more resistant fragments and preserved them from further decay. Certain bog waters contain a high percentage of humic acids in solution or collodial suspension and produce insoluble humates when neutralized. These humates are probably the so-called kerogen bodies.

  11. Experience of Milled Peat Burning at Thermal Electric Power Plant

    Directory of Open Access Journals (Sweden)

    G. I. Zhikhar

    2013-01-01

    Full Text Available The paper presents extensive knowledge and practical experience on burning of milled peat in the boilers of thermal electric power plants in Belarus and Russia. The accumulated experience can be used for solution of problems pertaining to substitution of some types of fuel imported to Belarus by milled peat which is extracted at many fuel effective peat enterprises of the Republic.

  12. How sustainable is the use of peat for commercial energy production?

    NARCIS (Netherlands)

    Schilstra, AJ

    The sustainability argument that more peat grows in Finland than is used does not hold. On designated peatlands, growth is about 85 times slower than peat use; growth elsewhere in Finland does not add to available resources. Claiming undisturbed peatlands as carbon sinks for sustainable peat use is

  13. How sustainable is the use of peat for commercial energy production?

    NARCIS (Netherlands)

    Schilstra, AJ

    2001-01-01

    The sustainability argument that more peat grows in Finland than is used does not hold. On designated peatlands, growth is about 85 times slower than peat use; growth elsewhere in Finland does not add to available resources. Claiming undisturbed peatlands as carbon sinks for sustainable peat use is

  14. Study of the sorption properties of the peat for removal of heavy metals

    International Nuclear Information System (INIS)

    Hayrapetyan, S.S.; Gevorgyan, S.A.; Hayrapetyan, L.S.; Bareghamyan, S.F.; Pirumyan, G.P.

    2016-01-01

    The processes of sorption of several heavy metals on peat samples taken from basin of lake Sevan (near Vardenis Gegharkunik region of Armenia) were investigated. The peat samples were taken from different locations from 1 m depth. The sorption processes have been done in the static mode. The peat samples were used without any modification, i.e. the sorption properties of natural raw peat were studied. The studies were conducted on the basis of synthetic solution containing ions of these following metals - Ni, Co, As, U, Ba. The sorption properties of peat were estimated by ICP-MS. Thus, peat can be a very effective sorption medium for removal of heavy metals from water. Most of them are absorbed in the first minutes of peat exposure to aqueous solution. For the sorption of barium, uranium, arsenic peat exhibits very high sorption efficiency. For comparison, their relative sorption values about 10 times more than those of cobalt, nickel and zinc.

  15. Comparison of Shear Strength Properties for Undisturbed and Reconstituted Parit Nipah Peat, Johor

    Science.gov (United States)

    Azhar, A. T. S.; Norhaliza, W.; Ismail, B.; Abdullah, M. E.; Zakaria, M. N.

    2016-11-01

    Shear strength of soil is required to determine the soil stability and design the foundations. Peat is known as a soil with complex natural formations which also contributes problems to the researchers, developers, engineers and contractors in constructions and infrastructures. Most researchers conducted experiment and investigation of shear strength on peat using shear box test and simple shear test, but only a few had discovered the behavior of peat using triaxial consolidated undrained test. The aim of this paper is to determine the undrained shear strength properties of reconstituted peat and undisturbed peat of Parit Nipah, Johor for comparison purposes. All the reconstituted peat samples were formed with the size that passed opening sieve 3.35 mm and preconsolidation pressure at 100 kPa. The result of undrained shear strength of reconstituted peat was 21kPa for cohesion with the angle of friction, 41° compare to the undisturbed peat with cohesion 10 kPa and angle of friction, 16°. The undrained shear strength properties result obtained shows that the reconstituted peat has higher strength than undisturbed peat. For relationship deviator stress-strain, σd max and excess pore pressure, Δu, it shows that both of undisturbed and reconstituted gradually increased when σ’ increased, but at the end of the test, the values are slightly dropped. The physical properties of undisturbed and reconstituted peat were also investigated to correlate with the undrained shear strength results.

  16. Why are there few gas bubbles in deep peat in British raised and blanket peat bogs?

    Directory of Open Access Journals (Sweden)

    R.S. Clymo

    2015-08-01

    Full Text Available (1 There is evidence of gas-filled voids - ‘bubbles’ - in deep (> 50–100 cm peat in North America. (2 I used corers, designed to collect samples of accurately known volume, to sample peat profiles down to maximum depth 700 cm at five varied bog sites in northern England and southern Scotland, and measured the proportion of space apparently occupied by bubbles. (3 Of 126 samples in peat below 50 cm depth, three had bubbles occupying 12–15 % of the volume (and one of these was at only 55 cm depth. The other 123 had apparent bubbles distributed in Gaussian fashion, positively and negatively, about zero proportion of total volume and with standard deviation less than 2 %, consistent with these ‘bubbles’ being measurement error. (4 In northern England and southern Scotland, compared with North America, less variable temperature and cooler summers may lead to concentrations of dissolved gas that are generally too low to allow bubbles to form. Even where bubbles do form in summer, they may re-dissolve at winter temperatures.

  17. Growing Tomato Plantlets on Various Mixtures of Peat and Sand or Peat and Perlite. Note 1

    Directory of Open Access Journals (Sweden)

    Antonia Patruno

    Full Text Available Given the considerable interest in use of substrates derived from various mixtures in the nursery sector and in light of the enormous variety of possibilities offered by this technique, in contrast with the still small number of researches dedicated to this theme, this study was set out to examine in-depth the growing of tomato plantlets on peat-based substrates. Two series of peat mixtures were produced, one with sand and the other with perlite, with a volume ratio of the other two components with respect to the peat of 1:0, 2.5:1, 1:1 and 1:2.5. Tomato seedlings were cultivated for 30 or 25 days in small perforated pots containing these mixtures. The irrigation was calculated by weighing each pot daily, measuring the water lost by evaporation-transpiration, then just past an established lower threshold value bringing the water back up to a defined upper threshold. Two water regimes were compared in the sand series and three in the perlite series.

  18. Optimizing outlays for transporting agricultural peat to the consumers

    Energy Technology Data Exchange (ETDEWEB)

    Dem' yanov, Ye S; Prisadkov, V I; Silant' yeza, G P

    1979-01-01

    An economic-mathematical model is described for supplying the consumers with agricultural peat and the corresponding computer program. Certain results are presented of calculating the optimal plans for transporting peat from the enterprises of the association Kalinintorf.

  19. Peat subsidence and its practical implications: a case study in Malaysia

    NARCIS (Netherlands)

    Wösten, J.H.M.; Ismail, A.B.; Wijk, van A.L.M.

    1997-01-01

    Due to pressure for land, substantial areas of peat swamps in South-East Asia have been and presently are being reclaimed for agriculture or for other land use. As soon as peat swamps are drained, the irreversible process of subsidence starts, which can only be stopped by waterlogging the peat

  20. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    Science.gov (United States)

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Np-237 in peat and lichen in Finland

    DEFF Research Database (Denmark)

    Salminen, S.; Paatero, J.; Roos, Per

    2009-01-01

    Activity concentrations of 237Np in peat and lichen samples in Finland were determined and contributions from nuclear weapons testing in 1950–1960s and the Chernobyl accident were estimated. 237Np was determined with ICP-MS using 235Np as a tracer. Activity concentrations of 237Np in peat samples...

  2. New Tropical Peatland Gas and Particulate Emissions Factors Indicate 2015 Indonesian Fires Released Far More Particulate Matter (but Less Methane than Current Inventories Imply

    Directory of Open Access Journals (Sweden)

    Martin J. Wooster

    2018-03-01

    Full Text Available Deforestation and draining of the peatlands in equatorial SE Asia has greatly increased their flammability, and in September–October 2015 a strong El Niño-related drought led to further drying and to widespread burning across parts of Indonesia, primarily on Kalimantan and Sumatra. These fires resulted in some of the worst sustained outdoor air pollution ever recorded, with atmospheric particulate matter (PM concentrations exceeding those considered “extremely hazardous to health” by up to an order of magnitude. Here we report unique in situ air quality data and tropical peatland fire emissions factors (EFs for key carbonaceous trace gases (CO2, CH4 and CO and PM2.5 and black carbon (BC particulates, based on measurements conducted on Kalimantan at the height of the 2015 fires, both at locations of “pure” sub-surface peat burning and spreading vegetation fires atop burning peat. PM2.5 are the most significant smoke constituent in terms of human health impacts, and we find in situ PM2.5 emissions factors for pure peat burning to be 17.8 to 22.3 g·kg−1, and for spreading vegetation fires atop burning peat 44 to 61 g·kg−1, both far higher than past laboratory burning of tropical peat has suggested. The latter are some of the highest PM2.5 emissions factors measured worldwide. Using our peatland CO2, CH4 and CO emissions factors (1779 ± 55 g·kg−1, 238 ± 36 g·kg−1, and 7.8 ± 2.3 g·kg−1 respectively alongside in situ measured peat carbon content (610 ± 47 g-C·kg−1 we provide a new 358 Tg (± 30% fuel consumption estimate for the 2015 Indonesian fires, which is less than that provided by the GFEDv4.1s and GFASv1.2 global fire emissions inventories by 23% and 34% respectively, and which due to our lower EFCH4 produces far less (~3× methane. However, our mean in situ derived EFPM2.5 for these extreme tropical peatland fires (28 ± 6 g·kg−1 is far higher than current emissions inventories assume, resulting in our total

  3. Trophic interactions among the heterotrophic components of plankton in man-made peat pools

    Directory of Open Access Journals (Sweden)

    Michał Niedźwiecki

    2017-03-01

    Full Text Available Man-made peat pools are permanent freshwater habitats developed due to non-commercial man-made peat extraction. Yet, they have not been widely surveyed in terms of ecosystem functioning, mainly regarding the complexity of heterotrophic components of the plankton. In this study we analysed distribution and trophic interrelations among heterotrophic plankton in man-made peat pools located in different types of peatbogs. We found that peat pools showed extreme differences in environmental conditions that occurred to be important drivers of distribution of microplankton and metazooplankton. Abundance of bacteria and protozoa showed significant differences, whereas metazooplankton was less differentiated in density among peat pools. In all peat pools stress-tolerant species of protozoa and metazoa were dominant. In each peat pool five trophic functional groups were distinguished. The abundance of lower functional trophic groups (bacteria, heterotrophic nanoflagellates (HNF and ciliates feeding on bacteria and HNF was weakly influenced by environmental drivers and was highly stable in all peat pool types. Higher functional trophic groups (naupli, omnivorous and carnivorous ciliates, cladocerans, adult copepods and copepodites were strongly influenced by environmental variables and exhibited lower stability. Our study contributes to comprehensive knowledge of the functioning of peat bogs, as our results have shown that peat pools are characterized by high stability of the lowest trophic levels, which can be crucial for energy transfer and carbon flux through food webs.

  4. Greenhouse impact assessment of peat-based Fischer-Tropsch diesel life-cycle

    International Nuclear Information System (INIS)

    Kirkinen, Johanna; Soimakallio, Sampo; Maekinen, Tuula; Savolainen, Ilkka

    2010-01-01

    New raw materials for transportation fuels need to be introduced, in order to fight against climate change and also to cope with increasing risks of availability and price of oil. Peat has been recognised suitable raw material option for diesel produced by gasification and Fischer-Tropsch (FT) synthesis. The energy content of Finnish peat reserves is remarkable. In this study, the greenhouse impact of peat-based FT diesel production and utilisation in Finland was assessed from the life-cycle point of view. In 100 year's time horizon the greenhouse impact of peat-based FT diesel is likely larger than the impact of fossil diesel. The impact can somewhat be lowered by producing peat from the agricultural peatland (strong greenhouse gas emissions from the decaying peatlayer are avoided) with new peat production technique, and utilising the produced biomass from the after-treatment area for diesel also. If diesel production is integrated with pulp and paper mill to achieve energy efficiency benefits and if the electricity demand can be covered by zero emission electricity, the greenhouse impact of peat-based FT diesel reduces to the level of fossil diesel when agricultural peatland is used, and is somewhat higher when forestry-drained peatland is used as raw material source.

  5. A New Appraisal of Northern Peatlands and Global Atmospheric Methane Over the Holocene

    Science.gov (United States)

    MacDonald, G. M.; Holmquist, J. R.; Kremenetski, K.; Loisel, J.

    2015-12-01

    Use of large databases of peat cores to examine linkages between northern peatlands and atmospheric CH4 over the Holocene has been prone to uncertainties regarding 1. comparability of radiocarbon techniques and material dated, 2. appropriate summed probability distributions, 3. spatial representativeness of the sites, particularly in capturing sites south of the subarctic, 4. potential impacts of local lateral peatland expansion versus continental-scale peatland initiation, particularly in the late Holocene, and 5. impacts of changes in the proportion of high methane-producing fens vs Sphagnum bogs. We present a comparison of radiocarbon measurements from conventional counts, atomic mass spectrometry and differing peat materials to demonstrate a general compatibility of the various types of dates. We compare and apply several summed probability distribution methods to minimize any statistical bias in our analysis. We then present our analysis of a new data set of 7571 peatland cores from 4420 sites that extend into the temperate zone. Of these, 3732 cores inform on lateral expansion and 329 dates constrain the timing of fen-bog transition. Based on these data in original and gridded form we show that widespread peat initiation commenced at 16 kcal yr BP and reached a maximum rate at 11-8 kcal yr BP. Most sites began as fens, and peak transition to bogs occurred between 5 and 3 kcal yr BP, with a 1000 year lag between Eurasia and North America. There is no global late Holocene increase in lateral expansion. Based on modeled northern peatland area and ratio of fen/bog sites, CH4 production from northern peatlands increased rapidly from 11 to 9 cal yr BP, followed by slower increase until reaching a maximum at 5 kcal yr BP at 25 Tg per yr. From 4 kcal yr BP to Present, bogs become a dominant feature in the northern peatland landscape and CH4 production decreased to reach modern-day levels at about 20 Tg per yr. Northern peatlands have been a key infleunce on global

  6. Comparative evaluation of the effect of rock phosphate and monoammonium phosphate on plant P: Nutrition in Sod-podzolic and peat soils

    International Nuclear Information System (INIS)

    Bogdevitch, I.; Tarasiuk, S.; Putyatin, Yu.; Seraya, T.

    2002-01-01

    The direct application of finely ground rock phosphate (RP) imported from Russia has been suggested as an alternative to the almost twice more expensive water-soluble monoammonium phosphate (MAP) on acid (moderately limed) Sod-podzolic and peat soils. A pot experiment was conducted in 1997-1998 for a comparative evaluation of P availability from RP and MAP using the 32 P isotope dilution technique. The lupine was grown on Sod-podzolic silty clay loam soil with pH 6.0 and a medium level of available P. Ryegrass plants were grown on peat soil with pH 4.9 and a low level of native soil P fertility. Application of RP and MAP at a rate of 40 mg P/kg soil supplied similar moderate mount of P to lupine plants. The Pdff values, i.e. the fractions of P in the plants derived from the applied RP and MAP, were 7.4 and 8.4%, respectively. The application of the same P fertilizers to the peat soil had different effects on P nutrition of ryegrass plants. The Pdff values were 14.9% for RP and 22.1% for MAP. It may be concluded that for most annual crops water-soluble P forms such as MAP should be preferred. Direct application of RP is recommended for plants with an adequate rhizosphere ability to utilize P, such as lupine on acid Sod-podzolic silty clay loam soils (pH 137 Cs on contaminated, moderately limed Sod-podzolic silty clay loam and peat soils. These soils are widely spread in the radioactive contaminated area of Belarus after the Chernobyl accident. Direct application of RP may be one of the effective countermeasures for the decrease of 137 Cs transfer from the contaminated acid soils to crop production. (author)

  7. Atmospheric Ozone and Methane in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Ivar S. A. Isaksen

    2014-07-01

    Full Text Available Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O, NOx compounds (NO, NO2, CO, hydrogen radicals (OH, HO2, volatile organic compounds (VOC and chlorine (Cl, ClO and bromine (Br, BrO. Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills.Methane is broken down by the hydroxyl radical (OH. OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO. Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material

  8. Aid policy for peat from the EU's standpoint

    International Nuclear Information System (INIS)

    Alanen, J.; Suvanto-Luomala, S.; Aeimae, K.

    2002-10-01

    The study analyses the restrictions that may be imposed by the European Union on our national taxation schemes supporting the energy use of peat. These restrictions would mainly relate to the EU and international climate policy, which may change the attitudes towards the energy use of peat. The taxation arrangements studied concern the refunds of the electricity tax granted to small peat-fired power plants and the tax on peat, which compared especially with coal, is light in heat production. The study aims to find out whether the arrangements included State aid prohibited by the European Community or whether they gave rise to prohibited tax discrimination of other Member States' energy products. It was concluded that the objectives of the Community, particularly the regional security of energy supply, promotion of combined electricity and heat production, and employment, favour the energy use of peat rather than oppose to it. As for the aid to small power plants, it can be considered that the grounds for obtaining an exemption from the EC State aid prohibition exist, because the benefits of the aid referred to are more important than the disadvantages brought by it for undistorted trade and competition. This situation cannot be expected to change in the near future, either, e.g. as a result of the climate policy. As regards heat production, peat taxation cannot be considered to include State aid or to lead to discrimination against exported fuels like coal. This is essentially based on the taxation sovereignty of Member States and the related right to enhance national goals by means of taxation. The current energy tax regulation by the Community or the Commission's Proposal for an Energy Tax Directive do not seem to pose any obstacles to continuing Finland's present energy taxation policy. (orig.)

  9. Methane Seepage on Mars: Where to Look and Why.

    Science.gov (United States)

    Oehler, Dorothy Z; Etiope, Giuseppe

    2017-12-01

    Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as "gas seepage." Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available. Key

  10. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid.

    Science.gov (United States)

    Poulsen, Morten; Jensen, Bent Borg; Engberg, Ricarda M

    2012-02-01

    Methane emission from livestock, ruminants in particular, contributes to the build up of greenhouse gases in the atmosphere. Therefore the focus on methane emission from ruminants has increased. The objective of this study was to investigate mechanisms for methanogenesis in a rumen fluid-based in vitro fermentation system as a consequence of carbohydrate source (pectin, wheat and corn starch and inulin) and pH (ranging from 5.5 to 7.0). Effects were evaluated with respect to methane and short chain fatty acid (SCFA) production, and changes in the microbial community in the ruminal fluid as assessed by terminal-restriction fragment length polymorphism (T-RFLP) analysis. Fermentation of pectin resulted in significantly lower methane production rates during the first 10 h of fermentation compared to the other substrates (P = 0.001), although total methane production was unaffected by carbohydrate source (P = 0.531). Total acetic acid production was highest for pectin and lowest for inulin (P Methane production rates were significantly lower for fermentations at pH 5.5 and 7.0 (P = 0.005), sustained as a trend after 48 h (P = 0.059), indicating that there was a general optimum for methanogenic activity in the pH range from 6.0 to 6.5. Decreasing pH from 7.0 to 5.5 significantly favored total butyric acid production (P composition. This study demonstrates that both carbohydrate source and pH affect methane and SCFA production patterns, and the microbial community composition in rumen fluid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R.M. [Radian Corporation, Austin, TX (United States)

    1995-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  12. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R M [Radian Corporation, Austin, TX (United States)

    1996-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  13. Opportunities to reduce methane emissions in the natural gas industry

    International Nuclear Information System (INIS)

    Cowgill, R.M.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH 4 ) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH 4 . Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  14. The effects of salinization on aerobic and anaerobic decomposition and mineralization in peat meadows : the roles of peat type and land use

    NARCIS (Netherlands)

    Brouns, Karlijn; Verhoeven, Jos T A; Hefting, Mariet M

    2014-01-01

    Peat soils comprise a large part of the western and northern Netherlands. Drainage for agriculture has caused increased soil aeration which has stimulated decomposition and, hence, soil subsidence, currently amounting to 1-2 cm/yr. River water is supplied to these peat areas in summer to prevent

  15. Three-dimensional distribution of organic matter in coastal-deltaic peat : Implications for subsidence and carbon dioxide emissions by human-induced peat oxidation

    NARCIS (Netherlands)

    Koster, K.; Stafleu, J.; Cohen, K. M.; Stouthamer, E.; Busschers, Freek S.; Middelkoop, H.

    2018-01-01

    Human-induced groundwater level lowering in the Holocene coastal-deltaic plain of the Netherlands causes oxidation of peat organic matter, resulting in land subsidence and carbon dioxide (CO2) emissions. Here, a three-dimensional (3D) analysis of the distribution of the remaining peat organic matter

  16. Peat Deposits at Bijoynagar Upazila, Brahmanbaria District, Bangladesh : A Potential Local Source of Energy

    Directory of Open Access Journals (Sweden)

    Md. Nazwanul Haque

    2013-12-01

    Full Text Available Bangladesh with about 160 million people in land of 147,570 square km which is one of the most densely populated countries in the world. With the increase of population and diversifying of economic activities, Bangladesh has become an energy hunger country. Presently, 80% peoples depend on non commercial energy sources living in the rural area. Peat exploration at Bijoynagar Upazila, Brahmanbaria district. Bangladesh has been carried out for reserve estimation and its economic aspect evaluation. Total peat exploration area is about 4000 hectare. In explored area, nine peat bearing locations are identified in which peat deposits are observed from 0.152 to 3.0 meters below the surface. Total reserves are about 32.61 million tons in wet condition and 13.044 million tons in dry conditions. The peat is grayish brown to grayish black, fibrous, less to medium compacted and water content is about 60-80 % in wet condition. Chemical analyses of the peat shows that fixed carbon content is 15-25 %, Sulfur is 0.1 to 0.8 % and calorific value of the peat is 3000-7000 BTU. The peat of the area is medium to good quality. The peat may be extracted by open peat mining because of its surface to near surface position. This peat can be conveniently used for small industrial and domestic purpose as briquette and compressed tablet form to meet the growing energy demand of the area. But most of the people of Bijoynagar area live on agriculture. So, peat extraction and related geo-environmental degradation may change living style of the people. Proper land use planning, environmental management and policy should be taken before peat extraction.

  17. Fuel peat utilization in Finland: resource use and emissions

    International Nuclear Information System (INIS)

    Leijting, J.

    1999-01-01

    The aim of the study was to inventorize the emissions and other stressors caused by fuel peat use in Finland. The life cycle approach was used to organise and compile the burdens associated with the fuel peat utilisation sector in the years 1994 and 1995. Fuel peat accounts for about 6.5 % of the total primary energy production in Finland. The study showed that most emissions out into the air occur during combustion of peat in energy plants. The emissions account for about 13 - 14 % of the CO 2 emissions released by fossil fuel utilisation in Finland, for 12 % of the SO 2 for 8 % of the N 2 O and approximately 4 % of the NOR emissions released by anthropogenic sources in Finland. Phosphorus releases into waters contributes for about 0.2 % while nitrogen releases account for 0.3 % in the total anthropogenic discharge in Finland. (orig.) 88 refs

  18. Guidelines for the environmental protection in peat mining; Turvetuotannon ympaeristoensuojeluohje

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    The objective of these guidelines is to accelerate environmental protection in peat mining and to reduce the harmful effects caused by its related activities. The guidelines promote achievement of environmental objectives set both in legislation and government programmes through uniform practices and interpretations. The guidelines are based on current valid legislation. The guidelines provide up-to-date information on best practices in peat mining, especially in water protection but also in reducing noise and dust. They are intended to ease the work of both peat producers and the licensing and controlling authorities. The guidelines are not legally binding and must be applied on case-by-case basis. The current guidelines replace the 'Guidelines for environmental protection in peat mining' given in 2008. (orig.)

  19. Foam concrete of increased strength with the thermomodified peat additives

    Science.gov (United States)

    Kudyakov, A. I.; Kopanitsa, N. O.; Sarkisov, Ju S.; Kasatkina, A. V.; Prischepa, I. A.

    2015-01-01

    The paper presents the results of research of foam concrete with thermomodified peat additives. The aim of the research was to study the effect of modifying additives on cement stone and foam concrete properties. Peat additives are prepared by heat treatment of peat at 600 °C. Two approaches of obtaining additives are examined: in condition of open air access (TMT-600) and in condition of limited air access (TMT-600-k). Compressive strength of a cement stone with modifiers found to be increased by 28.9 - 65.2%. Introducing peat modifiers into foam concrete mix leads to increase of compressive strength by 44-57% at 28- day age and heat conductivity of foam concrete decreases by 0.089 W/(m·°C).

  20. The role of peat in assuring the quality of growing media

    Directory of Open Access Journals (Sweden)

    G. Schmilewski

    2008-02-01

    Full Text Available Producers and users of growing media are exposed to high risk if significant quantities of potentially unsuitable ingredients are included in the product. Combined with economic reasoning, this dictates that the constituents of growing media should possess as many suitable characteristics as possible. Sphagnum peat has been the most important growing medium constituent for many decades because its properties are the best available. The use of other organic and mineral-organic materials is being forced ahead by research and development against a background of public favour for peat replacement, recycling and re-use of biodegradable waste. Considerably more resources have been invested in the testing of peat alternatives than in peat itself during recent years, and the utility of a large number of alternatives has been assessed. Most candidate materials are only slightly or not at all suitable for use in growing media. The exceptions are composts, wood fibre products, bark and composted bark, and coir. These have become established, to a greater or lesser degree, as reliable substrate constituents. Their manufacture, characteristics, advantages and disadvantages are reviewed. A continuing need for peat as a constituent of growing media, at least for dilution purposes, is foreseen. Thus, increased imports of peat and growing media to countries with intensive or expanding commercial horticulture and inadequate domestic peat reserves are to be expected in the future.

  1. Enhanced Efficiency of Polymer Light-Emitting Diodes by Dispersing Dehydrated Nanotube Titanic Acid in the Hole-buffer Layer

    Energy Technology Data Exchange (ETDEWEB)

    Qian, L., E-mail: qian_lei@126.com; Xu, Z.; Teng, F.; Duan, X.-X. [Beijing Jiaotong University, Institute of Optoelectronic Technology (China); Jin, Z.-S.; Du, Z.-L. [Henan University, Key Laboratory on special functional materials (China); Li, F.-S.; Zheng, M.-J. [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Peking University, Department of Physics (China); Wang, Y.-S. [Beijing Jiaotong University, Institute of Optoelectronic Technology (China)

    2007-06-15

    Efficiency of polymer light-emitting diodes (PLEDs) with poly(2-methoxy-5-(2-ethyl hexyloxy)-p-phenylene vinylene) (MEH-PPV) as an emitting layer was improved if a dehydrated nanotubed titanic acid (DNTA) doped hole-buffer layer polyethylene dioxythiophene (PEDOT) was used. Photoluminescence (PL) and Raman spectra indicated a stronger interaction between DNTA and sulfur atom in thiophene of PEDOT, which suppresses the chemical interaction between vinylene of MEH-PPV and thiophene of PEDOT. The interaction decreases the defect states in an interface region to result in enhancement in device efficiency, even though the hole transporting ability of PEDOT was decreased.

  2. Enhanced Efficiency of Polymer Light-Emitting Diodes by Dispersing Dehydrated Nanotube Titanic Acid in the Hole-buffer Layer

    Science.gov (United States)

    Qian, L.; Xu, Z.; Teng, F.; Duan, X.-X.; Jin, Z.-S.; Du, Z.-L.; Li, F.-S.; Zheng, M.-J.; Wang, Y.-S.

    2007-06-01

    Efficiency of polymer light-emitting diodes (PLEDs) with poly(2-methoxy-5-(2-ethyl hexyloxy)- p-phenylene vinylene) (MEH-PPV) as an emitting layer was improved if a dehydrated nanotubed titanic acid (DNTA) doped hole-buffer layer polyethylene dioxythiophene (PEDOT) was used. Photoluminescence (PL) and Raman spectra indicated a stronger interaction between DNTA and sulfur atom in thiophene of PEDOT, which suppresses the chemical interaction between vinylene of MEH-PPV and thiophene of PEDOT. The interaction decreases the defect states in an interface region to result in enhancement in device efficiency, even though the hole transporting ability of PEDOT was decreased.

  3. Emissions of ammonia, nitrous oxide and methane during composting of organic household waste

    International Nuclear Information System (INIS)

    Gunnarsdotter Beck-Friis, Barbro

    2001-01-01

    In Sweden, composting of source-separated organic household waste is increasing, both domestically at the small-scale, and in larger municipal plants. Composting means a microbial decomposition of organic material, which results in the production of environmentally undesirable gases, such as ammonia (NH 3 ), nitrous oxide (N 2 O) and methane (CH 4 ). The aim of this thesis was to study the emissions of NH 3 , N 2 O and CH 4 to the atmosphere during composting of source-separated organic household waste. The studies were conducted in an experimental reactor under constant and controlled conditions and in municipal compost heaps. Emissions of NH 3 , N 2 O and CH 4 occurred at different phases during composting. Ammonia started to volatilise during the shift from mesophilic to thermophilic conditions when short-chained fatty acids were decomposed. Nitrous oxide was only emitted during the first days of composting and later during the cooling phase when nitrate was formed. Methane was only produced during the thermophilic phase. Large municipal compost heaps are a significant source for the production and emission of the greenhouse gases N 2 O and CH 4 . To avoid unwanted gaseous emissions to the atmosphere during composting, gaseous exchange with the atmosphere should be controlled in future composting plants

  4. Methane Recovery from Animal Manures The Current Opportunities Casebook

    Energy Technology Data Exchange (ETDEWEB)

    Lusk, P.

    1998-09-22

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.

  5. RETENTION TIME EFFECT ON METAL REMOVAL BY PEAT COLUMNS

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E

    2007-02-28

    The potential use of a peat bed to treat the H-12 Outfall discharge to bring it to new compliance limits was previously investigated and reported utilizing a 7 hour retention time. The influence of retention time (contact time) of water with peat moss on the removal of copper from the water was investigated under laboratory conditions using vertical flow peat moss columns. Reduction of the necessary retention time has a large influence on the design sizing of any peat bed that would be constructed to treat the H-12 discharge on a full scale basis. Retention times of 5 hours, 3 hours and 1 hour were tested to determine the copper removal by the peat columns using vertical flow. Water samples were collected after 4, 8, 12, and 16 water volumes had passed through the columns and analyzed for a suite of metals, with quantitative emphasis on copper. Laboratory results indicated that copper removal was very high at each of the 3 retention times tested, ranging from 99.6 % removal at 5 and 3 hours to 98.8% removal at 1 hour. All these values are much lower that the new compliance limit for the outfall. The results also indicated that most divalent metals were removed to their normal reporting detection limit for the analytical methods used, including zinc. Lead levels in the H-12 discharge used in this study were below PQL in all samples analyzed. While each of the retention times studied removed copper very well, there were indications that 1 hour is probably too short for an operational, long-term facility. At that retention time, there was about 6% compaction of the peat in the column due to the water velocity, and this may affect long term hydraulic conductivity of the peat bed. At that retention time, copper concentration in the effluent was higher than the other times tested, although still very low. Because of the potential compacting and somewhat reduced removal efficiency at a 1 hour retention time, it would be prudent to design to at least a 3 hour retention

  6. Markers of Soil Organic Matter Transformation in Permafrost Peat Mounds of Northeastern Europe

    Science.gov (United States)

    Pastukhov, A. V.; Knoblauch, C.; Yakovleva, E. V.; Kaverin, D. A.

    2018-01-01

    For the paleoreconstruction of permafrost peat mounds and the identification of plant communities participating in the formation of peat, the contents of n-alkanes (C20-C33) have been determined, and relative changes in the stable isotope compositions of carbon and nitrogen and the C/N ratio have been analysed. Several indices ( CPI alkanes, P aq, P wax) have been calculated to assess the degree of decomposition of the peats studied and the contributions of different plant species to their formation. It has been found that shortand long-chain n-alkanes are concentrated in high-moor peat, while medium-chain alkanes are typical for transitional peat. Integrated analysis of the studied markers has shown that the botanical and material composition of peat, anaerobic conditions of bog formation, and permafrost play an important role in the preservation of organic carbon in permafrost peat mounds. Alternation of plant associations is the main reason for changes in n-alkane concentrations, C/N ratios, and δ13C values.

  7. A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis

    Science.gov (United States)

    Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.

    2018-04-01

    Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.

  8. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing.

    Science.gov (United States)

    Cébron, Aurélie; Bodrossy, Levente; Chen, Yin; Singer, Andrew C; Thompson, Ian P; Prosser, James I; Murrell, J Colin

    2007-10-01

    A considerable amount of methane produced during decomposition of landfill waste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with (13)C-labelled methane and under either nutrient-rich nitrate mineral salt medium or water. The identity of active methanotrophs was revealed by analysis of (13)C-labelled DNA fractions. The diversity of functional genes (pmoA and mmoX) and 16S rRNA genes was analyzed using clone libraries, microarrays and denaturing gradient gel electrophoresis. 16S rRNA gene analysis revealed that the cover soil was mainly dominated by Type II methanotrophs closely related to the genera Methylocella and Methylocapsa and to Methylocystis species. These results were supported by analysis of mmoX genes in (13)C-DNA. Analysis of pmoA gene diversity indicated that a significant proportion of active bacteria were also closely related to the Type I methanotrophs, Methylobacter and Methylomonas species. Environmental conditions in the slightly acidic peat soil from Roscommon landfill cover allow establishment of both Type I and Type II methanotrophs.

  9. Zavarzinella formosa gen. nov., sp. nov., a novel stalked, Gemmata-like planctomycete from a Siberian peat bog

    NARCIS (Netherlands)

    Kulichevskaya, I.S.; Baulina, O.I.; Bodelier, P.L.E.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Dedysh, S.N.

    2009-01-01

    An aerobic, pink-pigmented, budding and rosette-forming bacterium was isolated from an acidic Sphagnum peat bog and designated strain A10T. The 16S rRNA gene sequence analysis showed that strain A10T was a member of the order Planctomycetales and belonged to a phylogenetic lineage defined by the

  10. Mitigation options for methane emissions from rice fields in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R. [International Rice Research Institute, Laguna (Philippines)] [and others

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  11. Mineral capacity of peat soils organic matter and entry of Cs137 into perennial grasses

    International Nuclear Information System (INIS)

    Tsybulko, N.N.; Shapsheeva, T.P.; Arastovich, T.V.; Zajtsev, A.A.

    2010-01-01

    The results of the study of peat soils organic substance structure with various peat ash content are given. Contents of active organic substance and carbon of microbial biomass in peat and boggy soil with 20% peat ash content is 3.0-3.5 and 1.6-1.8 times higher correspondingly, than thus in peaty-gley soil with 70% peat ash content. At peat and boggy soil with low peat ash content Cs137 transition into hay is minimal. 14 times higher than at peaty-gley soil with 70% peat ash content. Application of fertilizers at peat and boggy soil reduces Cs137 transition factor 4.7-6.4 times if compared to peaty-gley soil (2.1-4.7 times). Close positive interconnection between Cs137 transition factors from soil into the plants and organic carbon soil contents, absolute contents of potentially mineralized carbon and mineralization degree

  12. Score Mining Rents in Terms of Investment Attractiveness of Peat Mining

    Science.gov (United States)

    Alexandrov, Gennady; Yablonev, Alexander

    2017-11-01

    In this article, as determinants in the system factors underlying the investment attractiveness of the peat industry is considered a rental factor, which predetermines the significant differences and peculiarities of the investment climate in the mining business and, in particular, in the sphere of peat mining. In contrast to modern studies treated the essence and role of rents in the economic mechanism, is proposed for a new approach to solving the problems of its formation. Our approach differs in that it, firstly, adequate rental relations, objectively in extractive industries, secondly, provides consensus in the interests of the owner of peat deposits and entrepreneurs, businesses in these deposits and, thus, thirdly, contributes to the creation of a favourable investment climate in the peat extraction industry. In practical terms, in accordance with the proposed approach, we have proposed specific allocation algorithm of mining rents from the profits of peat extraction enterprises.

  13. Are termite mounds biofilters for methane? - Challenges and new approaches to quantify methane oxidation in termite mounds

    Science.gov (United States)

    Nauer, Philipp A.; Hutley, Lindsay B.; Bristow, Mila; Arndt, Stefan K.

    2015-04-01

    Methane emissions from termites contribute around 3% to global methane in the atmosphere, although the total source estimate for termites is the most uncertain among all sources. In tropical regions, the relative source contribution of termites can be far higher due to the high biomass and relative importance of termites in plant decomposition. Past research focused on net emission measurements and their variability, but little is known about underlying processes governing these emissions. In particular, microbial oxidation of methane (MOX) within termite mounds has rarely been investigated. In well-studied ecosystems featuring an oxic matrix above an anoxic methane-producing habitat (e.g. landfills or sediments), the fraction of oxidized methane (fox) can reach up to 90% of gross production. However, conventional mass-balance approaches to apportion production and consumption processes can be challenging to apply in the complex-structured and almost inaccessible environment of a termite mound. In effect, all field-based data on termite-mound MOX is based on one study that measured isotopic shifts in produced and emitted methane. In this study a closed-system isotope fractionation model was applied and estimated fox ranged from 10% to almost 100%. However, it is shown here that by applying an open-system isotope-pool model, the measured isotopic shifts can also be explained by physical transport of methane alone. Different field-based methods to quantify MOX in termite mounds are proposed which do not rely on assumptions of physical gas transport. A simple approach is the use of specific inhibitors for MOX, e.g. difluoromethane (CH2F2), combined with chamber-based flux measurements before and after their application. Data is presented on the suitability of different inhibitors and first results of their application in the field. Alternatively, gas-tracer methods allow the quantification of methane oxidation and reaction kinetics without knowledge of physical gas

  14. Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system

    International Nuclear Information System (INIS)

    Meybodi, Mehdi Aghaei; Behnia, Masud

    2013-01-01

    Methane, a major contributor to global warming, is a greenhouse gas emitted from coal mines. Abundance of coal mines and consequently a considerable amount of methane emission requires drastic measures to mitigate harmful effects of coal mining on the environment. One of the commonly adopted methods is to use emitted methane to fuel power generation systems; however, instability of fuel sources hinders the development of systems using conventional prime movers. To address this, application of Stirling engines may be considered. Here, we develop a techno-economic methodology for conducting an optimisation-based feasibility study on the application of Stirling engines as the prime movers of coal mine CHP systems from an economic and an environmental point of view. To examine the impact of environmental policies on the economics of the system, the two commonly implemented ones (i.e. a carbon tax and emissions trading scheme) are considered. The methodology was applied to a local coal mine. The results indicate that incorporating the modelled system not only leads to a substantial reduction in greenhouse gas emissions, but also to improved economics. Further, due to the heavy economic burden, the carbon tax scheme creates great incentive for coal mine industry to address the methane emissions. -- Highlights: •We study the application of Stirling engines in coal mine CHP systems. •We develop a thermo-economic approach based on the net present worth analysis. •We examine the impact of a carbon tax and ETS on the economics of the system. •The modeled system leads to a substantial reduction in greenhouse gas emissions. •Carbon tax provides a greater incentive to address the methane emissions

  15. Mangroves act as a small methane source: an investigation on 5 pathways of methane emissions from mangroves

    Science.gov (United States)

    Chen, H.; Peng, C.; Guan, W.; Liao, B.; Hu, J.

    2017-12-01

    The methane (CH4) source strength of mangroves is not well understood, especially for integrating all CH4 pathways. This study measured CH4 fluxes by five pathways (sediments, pneumatophores, water surface, leaves, and stems) from four typical mangrove forests in Changning River of Hainan Island, China, including Kandelia candel , Sonneratia apetala, Laguncularia racemosa and Bruguiera gymnoihiza-Bruguiera sexangula. The CH4 fluxes (mean ± SE) from sediments were 4.82 ± 1.46 mg CH4 m-2 h-1 for those without pneumatophores and 1.36 ± 0.17 mg CH4 m-2 h-1 for those with pneumatophores. Among the three communities with pneumatophores, S. apetala community had significantly greater emission rate than the other two. Pneumatophores in S. apetala were found to significantly decrease CH4 emission from sediments (P duck farming. Leaves of mangroves except for K. candel were a weak CH4 sink while stems a weak source. As a whole the 72 ha of mangroves in the Changning river basin emitted about 8.10 Gg CH4 yr-1 with a weighted emission rate of about 1.29 mg CH4 m-2 h-1, therefore only a small methane source to the atmosphere compared to other reported ones. Keywords: Greenhouse Gases; Biogeochemistry; Tropical ecosystems; Methane budget

  16. Microbial Activity in Peat Soil Treated With Ordinary Portland Cement (OPC) and Coal Ashes

    Science.gov (United States)

    Rahman, J. A.; Mohamed, R. M. S. R.; Al-Gheethi, A. A.

    2018-04-01

    Peat soil is a cumulative of decayed plant fragment which developed as a result of microbial activity. The microbes degrade the organic matter in the peat soils by the production of hydrolysis enzyme. The least decomposed peat, known as fibric peat has big particles and retain lots of water. This made peat having high moisture content, up to 1500 %. The most decomposed peat known as sapric peat having fines particles and less void ratio. The present study aimed to understand the effects of solidification process on the bacterial growth and cellulase (CMCase) enzyme activity. Two types of mixing were designed for fibric, hemic and sapric peats; (i) Ordinary Portland cement (OPC) at an equal amount of dry peat, with 25 % of fly ash (FA) and total of coarse particle, a combination of bottom ash and fibre of 22 – 34 %, (ii) fibric peat was using water-to-binder ratio (w/b) = 1, 50% OPC, 25 % bottom ash (BA) and 25 % FA. For hemic and sapric peat, w/b=3 with 50 % OPC and 50 % BA were used. All samples were prepared triplicates, and were cured for 7, 14, 28 and 56 days in a closed container at room temperature. The results revealed that the first mix design giving a continuous strength development. However, the second mix design shows a decreased in strength pattern after day 28. The influence of the environment factors such as alkaline pH, reduction of the water content and peat temperature has no significant on the reduction amount of native microbes in the peat. The microbes survived in the solidified peat but the amount of microbes were found reduced for all types of mixing Fibric Mixed 1 (FM1), Hemic Mixed 1(HM1) and Sapric Mixed 1 (SM1) were having good strength increment for about 330 – 1427 % with enzymatic activity recorded even after D56. Nevertheless, with increase in the strength development through curing days, the enzymatic activities were reduced. For the time being, it can be concluded that the microbes have the ability to adapt with new environment

  17. Low-rank coal study: national needs for resource development. Volume 6. Peat

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The requirements and potential for development of US peat resources for energy use are reviewed. Factors analyzed include the occurrence and properties of major peat deposits; technologies for extraction, dewatering, preparation, combustion, and conversion of peat to solid, liquid, or gaseous fuels; environmental, regulatory, and market constraints; and research, development, and demonstration (RD and D) needs. Based on a review of existing research efforts, recommendations are made for a comprehensive national RD and D program to enhance the use of peat as an energy source.

  18. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  19. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania.

    Science.gov (United States)

    Kang, Mary; Kanno, Cynthia M; Reid, Matthew C; Zhang, Xin; Mauzerall, Denise L; Celia, Michael A; Chen, Yuheng; Onstott, Tullis C

    2014-12-23

    Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells ("controls") in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10(-6) kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10(-3) kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4-7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories.

  20. Estimate of the emissions of methane in a dairy farm and a proposal of mitigation

    International Nuclear Information System (INIS)

    Schmidt, R; Alvarez, E; Gely, M; Pagano, A; Crozza, D

    2005-01-01

    The methane represents one of the most potent greenhouse gas and recent inventories express that the systems of handling of the manure of the livestock have influence in the global emissions of methane (Martinez et. al, 2003).This residue, during the periods of storage to open sky, suffers a natural anaerobic decomposition and gases like ammonium, hydrogen, sulfhydric, methane and dioxide of carbon; are generated and emitted to the atmosphere (EPA, 1999, Misselbrook et. al, 2001; Martinez et. al, 2003).In a report presented by the EPA (EPA, 1999) it was estimated that the methane emission originated in United States (1997) for the handling of the manure of the livestock ascended to 3.0 T g., what represents 10% of the total content of the methane emissions in that country.It is also expected that these emissions caused by the cattle residual grow above 25% from the 2000 to the 2020.In Argentina, and in particular in the region that includes the territorial space of the present study, in the Party of Olavarria located in the center of the Buenos Aires Province, it is considered that there are 8265 heads of bovine livestock, distributed under different forms of exploitation, dairy farms, cattle-breeding ranch and feedlots.These figures show the clearly incipient advance of the bovine livestock in this area, showing that the values of generated methane can influence thoroughly in the contribution of the greenhouse gas.The objective of the present study resides in carrying out an estimate of the equivalent quantity of CO 2 that is emitted to the atmosphere and how much it could decrease if the methodology of anaerobic digestion is applied, for the conversion of the bovine manure in biogas

  1. Remediation of diesel-oil-contaminated soil using peat

    International Nuclear Information System (INIS)

    Ghaly, R.A.; Pyke, J.B.; Ghaly, A.E.; Ugursal, V.I.

    1999-01-01

    We investigated a remediation process for diesel-contaminated soil, in which water was used to remove the diesel from the soil and peat was used to absorb the diesel layer formed on the surface of the water. The percolation of water through the soil was uniform. The time required for water to percolate the soil and for the layers (soil, water, and diesel) to separate depended on the soil depth. Both the depth of soil and mixing affected the thickness of the diesel layer and thus diesel recovery from the contaminated soil. Higher diesel recovery was achieved with smaller soil depth and mixing. The initial moisture content and the lower heating value of the peat were 7.1% and 17.65 MJ/kg, respectively. The final moisture content and lower heating value of the diesel-contaminated peat obtained from the experiment with mixing were 8.65 - 10.80% and 32.57 - 35.81 MJ/kg, respectively. The energy content of the diesel-contaminated peat is much higher than that of coal, and the moisture content is within the range recommended for biomass gasification. (author)

  2. Application of peat filters for treating milkhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Fahie, C.R.; Gagnon, G.A. [Dalhousie Univ., Dept. of Civil Engineering, Halifax, Nova Scotia (Canada); Gordon, R.J. [Nova Scotia Agricultural College, Dept. of Engineering, Bible Hill, Nova Scotia (Canada)

    2002-06-15

    This study investigates the suitability of using peat as a filtering media for the treatment of agricultural wastewater. A full-scale experimental filter system was used to evaluate the ability of the filter system to treat milkhouse wastewater. The full-size modular peat filtration system was installed and monitored on a dairy farm located in Hilden, NS. The peat filter models used in the study were constructed from pre-cast concrete, which are approximately 3.2 m long by 1.8 m wide and 1.0 m high and filled are packed with sphagnum peat moss compacted to a density of 0.15 g cm{sup -3} . Parameters that were monitored include BOD, pH, NO{sub 3}-N, SO{sub 4}, TSS, SRP, and TP. The milkhouse wastewater was characterized by having a BOD{sub 5} of approximately 1500 mg L{sup -1} , an average TSS concentration of 510 mg L{sup -1} and an average SRP concentration of 100 mg L{sup -1} . Removal efficiencies of BOD{sub 5} and TSS were observed to be 59% and 82% respectively. In general, phosphorus removal was poor and subsequent research will examine mechanisms of improving phosphorus removal. (author)

  3. Application of peat filters for treating milkhouse wastewater

    International Nuclear Information System (INIS)

    Fahie, C.R.; Gagnon, G.A.; Gordon, R.J.

    2002-01-01

    This study investigates the suitability of using peat as a filtering media for the treatment of agricultural wastewater. A full-scale experimental filter system was used to evaluate the ability of the filter system to treat milkhouse wastewater. The full-size modular peat filtration system was installed and monitored on a dairy farm located in Hilden, NS. The peat filter models used in the study were constructed from pre-cast concrete, which are approximately 3.2 m long by 1.8 m wide and 1.0 m high and filled are packed with sphagnum peat moss compacted to a density of 0.15 g cm -3 . Parameters that were monitored include BOD, pH, NO 3 -N, SO 4 , TSS, SRP, and TP. The milkhouse wastewater was characterized by having a BOD 5 of approximately 1500 mg L -1 , an average TSS concentration of 510 mg L -1 and an average SRP concentration of 100 mg L -1 . Removal efficiencies of BOD 5 and TSS were observed to be 59% and 82% respectively. In general, phosphorus removal was poor and subsequent research will examine mechanisms of improving phosphorus removal. (author)

  4. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia

    Directory of Open Access Journals (Sweden)

    T. Broder

    2012-04-01

    Full Text Available Ombrotrophic bogs in southern Patagonia have been examined with regard to paleoclimatic and geochemical research questions but knowledge about organic matter decomposition in these bogs is limited. Therefore, we examined peat humification with depth by Fourier Transformed Infrared (FTIR measurements of solid peat, C/N ratio, and δ13C and δ15N isotope measurements in three bog sites. Peat decomposition generally increased with depth but distinct small scale variation occurred, reflecting fluctuations in factors controlling decomposition. C/N ratios varied mostly between 40 and 120 and were significantly correlated (R2 > 0.55, p < 0.01 with FTIR-derived humification indices. The degree of decomposition was lowest at a site presently dominated by Sphagnum mosses. The peat was most strongly decomposed at the driest site, where currently peat-forming vegetation produced less refractory organic material, possibly due to fertilizing effects of high sea spray deposition. Decomposition of peat was also advanced near ash layers, suggesting a stimulation of decomposition by ash deposition. Values of δ13C were 26.5 ± 2‰ in the peat and partly related to decomposition indices, while δ15N in the peat varied around zero and did not consistently relate to any decomposition index. Concentrations of DOM partly related to C/N ratios, partly to FTIR derived indices. They were not conclusively linked to the decomposition degree of the peat. DOM was enriched in 13C and in 15N relative to the solid phase probably due to multiple microbial modifications and recycling of N in these N-poor environments. In summary, the depth profiles of C/N ratios, δ13C values, and FTIR spectra seemed to reflect changes in environmental conditions affecting decomposition, such as bog wetness, but were dominated by site specific factors, and are further influenced by ash

  5. Studies on liquefaction and pyrolysis of peat and biomass at KTH

    International Nuclear Information System (INIS)

    Bjoernbom, E.; Sjoestrom, K.; Hoernel, C.; Zanzi, R.; Bjoernbom, P.

    1996-01-01

    A brief review of the study on thermochemical conversion of solid fuels is done. The study have been performed in the Royal Institute of Technology, Stockholm, since the outbreak of energy crisis in the seventies. The main problems connected with utilisation of peat for energy are: 90% moisture content in the deposits and 35-40% oxygen content in the dry substance. Simultaneous dewatering and liquefaction of peat have been achieved by the Bjoerbom method. The wet peat has been treated with CO and H 2 O without preliminary drying, using water as a medium agent. After treatment water has been phase-separated from the heavy oil product. Another approach is de-oxygenation of peat prior to liquefaction. A significant part of oxygen in peat and biomass can be removed by thermal decomposition of the fuels prior to liquefaction and removal of carbon dioxide and water from the organic matter in them. The products obtained after de-oxygenation demand low consumption of external hydrogenation agent because they are rich in hydrogen. Some criteria for selection of peat as a raw material for liquefaction are given. The equipment and experimental procedure for pyrolysis of peat and biomass are described. A free fall tubular reactor with max operating pressure of 5 MPa and temperature of 1100 o C has been used. The effect of treatment conditions under the rapid pyrolysis in the free fall reactor on the yield and the reactivity of char obtained after the final pyrolysis is shown. Peat and wood are transformed into pyrolysis products for less than 1 second; 35-50% of the moisture- and ash-free peat and 70% of the wood have been converted into gaseous products.The char obtained in the rapid pyrolysis contains a fraction which can be further de-volatilized by slow pyrolysis for a few minutes - time much longer than the time for formation of primary products. High reactivity of char is favoured by lower pyrolysis temperature, shorter residence time and larger particle size of the fuel

  6. Peat in horticulture and conservation: the UK response to a changing world

    Directory of Open Access Journals (Sweden)

    P.D. Alexander

    2008-11-01

    Full Text Available Peat bogs are increasingly recognised as valuable habitats for wildlife and important stores of carbon. Yet the UK horticultural industry relies heavily on peat sourced from bogs in the UK and Republic of Ireland. Environmentalists, government and horticultural businesses in the UK now recognise the environmental consequences of using peat in horticulture, and the industry is turning increasingly to sustainable raw materials. In this paper, the strengths and weaknesses of campaigning since 1990 to implement this change are analysed, with the intention of providing useful information for other countries facing similar challenges. The campaign encountered deeply-ingrained practices so that the shift in behaviour has been slow and, although now widespread, still meets resistance in some quarters. The UK Government introduced targets for peat replacement which have helped stimulate the industry to develop suitable alternatives. The major gardening retailers have included peat replacement targets in their environmental codes of practice, and these are being met through incremental peat dilution with alternative materials such as green compost and processed timber by-products. Legislative requirements for European biodiversity conservation have led the UK government to terminate peat extraction on significant areas of former commercial extraction. The importance of peatlands for carbon sequestration and the major issue of climate change are increasingly focusing attention on peatland conservation, pointing towards the need for a more consistent approach to the use of peat across the European Community.

  7. GIS-based examination of peats and soils in Surfers Paradise, Australia

    Directory of Open Access Journals (Sweden)

    Al-Ani Haider

    2014-03-01

    Full Text Available The subsoil conditions of Surfers Paradise in Southeast Queensland of Australia have been examined in terms of soil stiffness by using geographic information system (GIS. Peat is a highly organic and compressible material. Surfers Paradise (as a study area has problematic peat layer due to its high water content, high compressibility, and low shear strength. This layer has various thicknesses at different locations ranging between R.L. . 10 to R.L. -19.6 m. Buildings in Surfers Paradise are using piled foundations to avoid the high compressibility and low shear strength peat layer. Spatial Analyst extension in the GIS ArcMap10 has been utilised to develop zonation maps for different depths in the study area. Each depth has been interpolated as a surface to create Standard Penetration Test SPT-N value GIS-based zonation maps for each depth. In addition, 8 interpolation techniques have been examined to evaluate which technique gives better representation for the Standard Penetration Test (SPT data. Inverse Distance weighing (IDW method in Spatial Analyst extension gives better representation for the utilised data with certain parameters. Two different cross sections have been performed in the core of the study area to determine the extent and the depth of the peat layer underneath already erected buildings. Physical and engineering properties of the Surfers Paradise peat have been obtained and showed that this peat falls within the category of tropical peat.

  8. Root growth of tomato seedlings intensified by humic substances from peat bogs

    Directory of Open Access Journals (Sweden)

    Alexandre Christofaro Silva

    2011-10-01

    Full Text Available Peats are an important reserve of humified carbon in terrestrial ecosystems. The interest in the use of humic substances as plant growth promoters is continuously increasing. The objective of this study was to evaluate the bioactivity of alkaline soluble humic substances (HS, humic (HA and fulvic acids (FA isolated from peats with different decomposition stages of organic matter (sapric, fibric and hemic in the Serra do Espinhaço Meridional, state of Minas Gerais. Dose-response curves were established for the number of lateral roots growing from the main plant axis of tomato seedlings. The bioactivity of HA was greatest (highest response in lateral roots at lowest concentration while FA did not intensify root growth. Both HS and HA stimulated root hair formation. At low concentrations, HS and HA induced root hair formation near the root cap, a typical hormonal imbalance effect in plants. Transgenic tomato with reporter gene DR5::GUS allowed the observation that the auxin-related signalling pathway was involved in root growth promotion by HA.

  9. Caesium dynamics in the peats and associated vegetation of northern Greece and northern Scotland

    International Nuclear Information System (INIS)

    Heaton, B.; Mitchell, R.D.J.; Killham, K.; Veresoglou, D.S.

    1990-01-01

    Sequential analyses have shown that Chernobyl-derived caesium has been largely retained in Greek basin peats (highly cultivated, base-rich, sedge peats) and retained/cycled in Scottish upland peats (uncultivated, base-poor, blanket peats). To investigate the mechanisms of retention and cycling in the Scottish peat/vegetation system, a laboratory experiment was carried out involving 'microcosms' intact peat cores. Festuca ovina was grown from seed in the cores prior to nebuliser-application of simulated rain containing caesium-134. The major factors investigated were competitive ion exchange from ammonium (designed to simulate animal waste inputs), freeze-thaw activity, and cropping (designed to simulate upland grazing). The effects of these factors are discussed in relation to the physio-cochemical and biological properties of the peat and vegetation and to our observations of the movement of caesium in the field. (author)

  10. Investigation of bacterial communities in peat land of the Gahai Lake natural conservation area

    Science.gov (United States)

    Bai, Yani; Wang, Jinchang; Zhan, Zhigao; Guan, Limei; Jin, Liang; Zheng, Guohua

    2017-10-01

    Peat is involved in the global carbon cycle and water conservation; therefore, it is implicated in global environmental change. Microorganisms play an important role in the function of peat. To investigate the bacterial communities in peat of Gahai Lake, different locations and depths were sampled and Illumina Miseq sequencing was used to analyze the microbial community. Chemical properties of peat samples were analyzed by China state standard methods (GB methods). The results showed that bacterial communities were affected by depth, with bacterial diversity and community structure at 90 and 120 cm significantly different from that at 10, 30 and 50 cm depth from the peat surface. Chemical properties of peat land including organic matter, total nitrogen and humus content did not significantly influence bacterial community structure in peat, with only one group from genus Rhizomicrobium that was significantly correlated with total nitrogen. A substantial proportion of the bacterial sequences were unclassified (1.4%), which indicates the great application potential of peat in the Gahai Lake natural conservation area in the future.

  11. An approach to peat formation period on both coast of Fildes Strait, Antarctica

    International Nuclear Information System (INIS)

    Wenfen, Z.

    1997-01-01

    Because peat consist mainly of organic matter, both credibility and comparability of the peat 14 C age are high. This paper discuss the use of radiocarbon ( 14 C) to study the peat age. The results of a comparative study of ten samples from China Great Wall Station in Antarctica and the nearby area (on both sides of Fildes Strait) are presented, indicating differences of peat formation period between the pole and other areas

  12. Resilient modulus characteristics of soil subgrade with geopolymer additive in peat

    Science.gov (United States)

    Zain, Nasuhi; Hadiwardoyo, Sigit Pranowo; Rahayu, Wiwik

    2017-06-01

    Resilient modulus characteristics of peat soil are generally very low with high potential of deformation and low bearing capacity. The efforts to improve the peat subgrade resilient modulus characteristics is required, one among them is by adding the geopolymer additive. Geopolymer was made as an alternative to replace portland cement binder in the concrete mix in order to promote environmentally friendly, low shrinkage value, low creep value, and fire resistant material. The use of geopolymer to improve the mechanical properties of peat as a road construction subgrade, hence it becomes important to identify the effect of geopolymer addition on the resilient modulus characteristics of peat soil. This study investigated the addition of 0% - 20% geopolymer content on peat soil derived from Ogan Komering Ilir, South Sumatera Province. Resilient modulus measurement was performed by using cyclic triaxial test to determine the resilience modulus model as a function of deviator stresses and radial stresses. The test results showed that an increase in radial stresses did not necessarily lead to an increase in modulus resilient, and on the contrary, an increase in deviator stresses led to a decrease in modulus resilient. The addition of geopolymer in peat soil provided an insignificant effect on the increase of resilient modulus value.

  13. Anaerobic digestion of palm oil mill effluent (POME) using bio-methane potential (BMP) test

    Science.gov (United States)

    Aziz, Nur Izzah Hamna A.; Hanafiah, Marlia M.

    2018-04-01

    Biogas is a promising sustainable and renewable energy alternative to reduce the dependence on fossil fuel. In Malaysia, the conversion of palm oil mill effluent (POME) to bioenergy has recently been expanded due to its high potential in generating energy. However, without a proper treatment and management, POME could be harmful to environment because it emits greenhouse gas emissions into the atmosphere and could also pollutes the watercourses if discharge directly due to the high acidity and chemical oxygen demand (COD) content. Many initiatives have been taken by the government towards sustainable development. Therefore, more efforts need to be practiced to improve and upscale the technology for a better waste management. In this study, the anaerobic digestion of POME was carried out using Bio-methane potential (BMP) test in batch and laboratory scales. Physicochemical characteristics and the biogas production of POME were measured. The BMP test under mesophilic condition was conducted for 23 consecutive days to measure the biogas production. The POME produced 721.3 cm3 of biogas by using anaerobic sludge as inoculum. The results also found that the methane (CH4) and carbon dioxide (CO2) gases produced with 360.65 cm3 and 288.52 cm3, respectively.

  14. Presence of carotinoids in peat wax

    Energy Technology Data Exchange (ETDEWEB)

    Yurkevich, E.A.; Dolidovich, E.F.; Bel' kevich, P.I.; Sheremet, L.S.; Drozdovskaya, S.V.

    1986-05-01

    Discusses biologically active substances present in peat which have various pharmacological properties. Describes separation of fractions rich in carotinoids from extracts of wax tar obtained by benzine treatment of highly decomposed pine-cotton grass peat. Extraction was carried out using hot ethanol. States that although identification of individual carotinoid in the fractions separated is very difficult due to complicity of composition, the tests carried out made it possible to infer that fractions studied contain not only xanthophylls but also fucoxanthains (formed in small amounts in nature) with fairly stable structure. Ultraviolet and infrared spectra of the carotinoid containing fraction in ethanol extracts are given. 6 refs.

  15. Radioactivity changes during burning of peat and chip

    International Nuclear Information System (INIS)

    Hedvall, R.; Erlandsson, B.; Mattsson, S.

    1985-01-01

    The increasing use of peat and chip as fuel materials in fossil-fuel power plants has resulted in the need for information about the change in radionuclides concentration in fuel after combustion. The paper describes a study of natural radionuclides from the uranium- and the thorium series and 40 K, as well as fission products from atmospheric nuclear explosions, in ashes from five peat and chip fuelled power plants in Sweden

  16. Utilization of new materials in peat machines; Uusien materiaalien kaeyttoe turvekoneissa

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, M.; Poeyhoenen, P.

    1996-12-31

    The objective of this three year research (1993-1995) was to study the suitability of new materials for different applications in peat production industry, exploiting the plastic and brush technologies, and surface coatings. The peat production machines will be intensified, lightened, made more firesafe, and ergonomical by using new materials (plastics, composites, metals and surface coatings). The research targets and materials were surveyed, the possibilities to construct an unsparkling miller were investigated, and low-friction materials, on which the peat glides easily, were sought in the beginning of the research. The unsparkling miller was studied and developed further in 1994 using platic plates, the application of brushing technology in sod peat technology, and a ridger, equipped with horizontal brushes, for sod peat were studied, and the possibilities to lighten the construction of the collector-wagon using light materials was investigated. The tasks for 1995 were to study the brushing technology for peat production, the properties of the bristle, and the applications of new materials for milling and sewing of peat using laboratory tests. The brush-ridger tests were made in cooperation with the brush experts of the NIITP. A rotating brush harrower mixed and ruffled the milled layer. The brush-harrower seemed to be more effective than the spoon-harrower with the driving speed higher than 8 km/h. The power consumption of the brush varied in between 1.5 - 4 kW/m, when the rotation speed was 200-300 1/min, the milled layer load 44 mm and the deformation of the bristles 20 mm

  17. A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit

    International Nuclear Information System (INIS)

    Su, Shi; Yu, Xinxiang

    2015-01-01

    Low concentration methane, emitted from various industries e.g. coal mines and landfills into atmosphere, is not only an important greenhouse gas, but also a wasted energy resource if not utilized. In the past decade, we have been developing a novel VAMCAT (ventilation air methane catalytic combustion gas turbine) technology. This turbine technology can be used to mitigate methane emissions for greenhouse gas reduction, and also to utilize the low concentration methane as an energy source. This paper presents our latest research results on the development and demonstration of a 25 kWe lean burn catalytic combustion gas turbine prototype unit. Recent experimental results show that the unit can be operated with 0.8 vol% of methane in air, producing about 19–21 kWe of electricity output. - Highlights: • A novel low concentration methane catalytic turbine prototype unit was developed. • The 25 kWe unit can be operated with ∼0.8 vol.% CH 4 in air with 19–21 kWe output. • A new start-up method was developed for the prototype unit

  18. The geology of selected peat-forming environments in temperate and tropical latitudes

    Science.gov (United States)

    Cameron, C.C.; Palmer, C.A.; Esterle, J.S.

    1990-01-01

    We studied peat in several geologic and climatic settings: (1) a glaciated terrain in cold-temperate Maine and Minnesota, U.S.A.; (2) an island in a temperate maritime climate in the Atlantic Ocean off the coast of Maine, U.S.A., where sea level is rising rapidly and changing the environment of peat accumulation; (3) swamps along the warm-temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often, thus creating sites for accumulation; and (4) in a tropical climate along the coast of Sarawak, Malaysia, and the delta of the Batang Hari River, Sumatra, Indonesia (Figs. 1 and 2). With the exception of the deposits on the Atlantic and Gulf Coastal Plains, most of the deposits described are domed bogs in which peat accumulation continued above the surface of the surrounding soil. The bogs of the U.S. Atlantic and Gulf Coastal Plains have almost level surfaces. All domed bogs are not entirely ombrotrophic (watered only from precipitation); multidomed bogs that rise from irregular or hilly surfaces may be crossed by streams that supply water to the bogs. The geologic processes or organic sedimentation, namely terrestrialization and paludification, are similar in all peat deposits considered here. Differences in geomorphology affecting the quantity and that quality of peat that has ash contents of less than 25%, which are desirable for commercial purposes, depend chiefly on: (1) high humidity, which is favorable to luxuriant growth of peat-forming vegetation; (2) a depositional setting that permits extensive accumulation relatively free from inorganic contamination from sea water and streams and from dust and volcanic ash; and (3) a stable regional water table that controls the rate of decomposition under aerobic conditions and protects the deposit against the ravages of fire. Differences in peat textures are due to the type of vegetation and to the degree of decomposition. The rate of decomposition is largely the result of the amount of oxidation

  19. The Characteristics of Peats and Co2 Emission Due to Fire in Industrial Plant Forests

    Science.gov (United States)

    Ratnaningsih, Ambar Tri; Rayahu Prasytaningsih, Sri

    2017-12-01

    Riau Province has a high threat to forest fire in peat soils, especially in industrial forest areas. The impact of fires will produce carbon (CO2) emissions in the atmosphere. The magnitude of carbon losses from the burning of peatlands can be estimated by knowing the characteristics of the fire peat and estimating CO2 emissions produced. The objectives of the study are to find out the characteristics of fire-burning peat, and to estimate carbon storage and CO2 emissions. The location of the research is in the area of industrial forest plantations located in Bengkalis Regency, Riau Province. The method used to measure peat carbon is the method of lost in ignation. The results showed that the research location has a peat depth of 600-800 cm which is considered very deep. The Peat fiber content ranges from 38 to 75, classified as hemic peat. The average bulk density was 0.253 gram cm-3 (0.087-0,896 gram cm-3). The soil ash content is 2.24% and the stored peat carbon stock with 8 meter peat thickness is 10723,69 ton ha-1. Forest fire was predicted to burn peat to a depth of 100 cm and produced CO2 emissions of 6,355,809 tons ha-1.

  20. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size.

    Science.gov (United States)

    Li, Zongjun; Liu, Nannan; Cao, Yangchun; Jin, Chunjia; Li, Fei; Cai, Chuanjiang; Yao, Junhu

    2018-01-01

    In rumen fermentation, fumaric acid (FA) could competitively utilize hydrogen with methanogenesis to enhance propionate production and suppress methane emission, but both effects were diet-dependent. This study aimed to explore the effects of FA supplementation on methanogenesis and rumen fermentation in goats fed diets varying in forage and concentrate particle size. Four rumen-cannulated goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments: low or high ratio of forage particle size: concentrate particle size (Fps:Cps), without or with FA supplementation (24 g/d). Fps:Cps was higher in the diet with chopped alfalfa hay plus ground corn than in that with ground alfalfa hay plus crushed corn. Both increasing dietary Fps:Cps and FA supplementation shifted ruminal volatile fatty acid (VFA) patterns toward more propionate and less acetate in goats. An interaction between dietary Fps:Cps and FA supplementation was observed for the ratio of acetate to propionate (A:P), which was more predominant when FA was supplemented in the low-Fps:Cps diet. Methane production was reduced by FA, and the reduction was larger in the low-Fps:Cps diet (31.72%) than in the high-Fps:Cps diet (17.91%). Fumaric acid decreased ruminal total VFA concentration and increased ruminal pH. No difference was found in ruminal DM degradation of concentrate or alfalfa hay by dietary Fps:Cps or FA. Goats presented a lower ruminal methanogen abundance with FA supplementation and a higher B. fibrisolvens abundance with high dietary Fps:Cps. Adjusting dietary Fps:Cps is an alternative dietary model for studying diet-dependent effects without changing dietary chemical composition. Fumaric acid supplementation in the low-Fps:Cps diet showed greater responses in methane mitigation and propionate increase.

  1. Soil ecology and ecosystem services of dairy and semi-natural grasslands on peat

    NARCIS (Netherlands)

    Deru, Joachim G.C.; Bloem, Jaap; Goede, de Ron; Keidel, Harm; Kloen, Henk; Rutgers, Michiel; Akker, van den Jan; Brussaard, Lijbert; Eekeren, van Nick

    2018-01-01

    Peat wetlands are of major importance for ecosystem services such as carbon storage, water regulation and maintenance of biodiversity. However, peat drainage for farming leads to CO2 emission, soil subsidence and biodiversity losses. In the peat areas in the Netherlands, solutions are sought in

  2. Technologies for the bioconversion of methane into more valuable products.

    Science.gov (United States)

    Cantera, Sara; Muñoz, Raúl; Lebrero, Raquel; López, Juan Carlos; Rodríguez, Yadira; García-Encina, Pedro Antonio

    2018-04-01

    Methane, with a global warming potential twenty five times higher than that of CO 2 is the second most important greenhouse gas emitted nowadays. Its bioconversion into microbial molecules with a high retail value in the industry offers a potential cost-efficient and environmentally friendly solution for mitigating anthropogenic diluted CH 4 -laden streams. Methane bio-refinery for the production of different compounds such as ectoine, feed proteins, biofuels, bioplastics and polysaccharides, apart from new bioproducts characteristic of methanotrophic bacteria, has been recently tested in discontinuous and continuous bioreactors with promising results. This review constitutes a critical discussion about the state-of-the-art of the potential and research niches of biotechnologies applied in a CH 4 biorefinery approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Enhanced mobilization of major inorganics during coalification of peats

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, A.M. [Univ. of Southwestern Louisiana, Lafayette, LA (United States); Cohen, A.D. [Univ. of South Carolina, Columbia, SC (United States); Orem, W.H. [Geological Survey, Reston, VA (United States)

    1995-12-01

    Release patterns for Na, Cl, Ca, Mg, and Si from Cladium, Rhizophora, and Cyrilla peats have been determined by means of experiments to 60{degrees}C and 2100 psi. Where pore solution concentrations are high, significant mobilization is directly through loss of pore solutions. Changes in organic structures during early stage coalification may also mobilize exchangeable ions. Attack on solid inorganic phases begins during peatification and may be accelerated at temperatures above 40{degrees}C by increased organic acid production. Respective maximum concentrations for acetate, formate, and oxalate are around 900, 700, and 70 mg/l in the Cyrilla experiments at 60{degrees}C. Enhanced concentrations of Si, Al and other inorganics may result from these.

  4. An analytical protocol for the determination of total mercury concentrations in solid peat samples

    DEFF Research Database (Denmark)

    Roos-Barraclough, F; Givelet, N; Martinez-Cortizas, A

    2002-01-01

    Traditional peat sample preparation methods such as drying at high temperatures and milling may be unsuitable for Hg concentration determination in peats due to the possible presence of volatile Hg species, which could be lost during drying. Here, the effects of sample preparation and natural.......12 and 8.52 ng kg(-1) h(-1), respectively). Fertilising the peat slightly increased Hg loss (3.08 ng kg(-1) h(-1) in NPK-fertilised peat compared to 0.28 ng kg(-1) h(-1) in unfertilised peat, when averaged over all temperatures used). Homogenising samples by grinding in a machine also caused a loss of Hg....... A comparison of two Hg profiles from an Arctic peat core, measured in frozen samples and in air-dried samples, revealed that no Hg losses occurred upon air-drying. A comparison of Hg concentrations in several plant species that make up peat, showed that some species (Pinus mugo, Sphagnum recurvum...

  5. Approaches to estimating humification indicators for peat

    Directory of Open Access Journals (Sweden)

    M. Klavins

    2008-10-01

    Full Text Available Degree of decomposition is an important property of the organic matter in soils and other deposits which contain fossil carbon. It describes the intensity of transformation, or the humification degree (HD, of the original living organic matter. In this article, approaches to the determination of HD are thoroughly described and 14C dated peat columns extracted from several bogs in Latvia are investigated and compared. A new humification indicator is suggested, namely the quantity of humic substances as a fraction of the total amount of organic matter in the peat.

  6. Study of compounds emitted during thermo-oxidative decomposition of polyester fabrics

    Directory of Open Access Journals (Sweden)

    Dzięcioł Małgorzata

    2016-03-01

    Full Text Available Compounds emitted during thermo-oxidative decomposition of three commercial polyester fabrics for indoor outfit and decorations (upholstery, curtains were studied. The experiments were carried out in a flow tubular furnace at 600°C in an air atmosphere. During decomposition process the complex mixtures of volatile and solid compounds were emitted. The main volatile products were carbon oxides, benzene, acetaldehyde, vinyl benzoate and acetophe-none. The emitted solid compounds consisted mainly of aromatic carboxylic acids and its derivatives, among which the greatest part took terephthalic acid, monovinyl terephthalate and benzoic acid. The small amounts of polycyclic aromatic hydrocarbons were also emitted. The emission profiles of the tested polyester fabrics were similar. The presence of toxic compounds indicates the possibility of serious hazard for people during fire.

  7. Low temperature activation of methane over a zinc-exchanged heteropolyacid as an entry to its selective oxidation to methanol and acetic acid

    KAUST Repository

    Patil, Umesh; Saih, Youssef; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Pelletier, Jeremie; Basset, Jean-Marie

    2014-01-01

    A Zn-exchanged heteropolyacid supported onto silica (Zn-HPW/SiO2) activates methane at 25 °C into Zn-methyl. At higher temperatures and with CH4/O2 or CH4/CO2, it gives methanol and acetic acid respectively. This journal is

  8. Methane production from cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J Q; Liao, P H; Lo, K V

    1988-01-01

    Cheese whey was treated in a 17.5-litre laboratory-scale up-flow anaerobic sludge blanket reactor operated over a range of hydraulic retention times and organic loading rates. The reactor performance was determined in terms of methane production, volatile fatty acids conversion and chemical oxygen demand (COD) reduction. At a constant influent strength, the methane production rate decreased with decreasing hydraulic retention time. At constant hydraulic retention time the methane production rate increased as the influent strength was increased up to a concentration of 28.8 g COD litre/sup -1/. The methane production rate was similar for two influent concentrations studied at hydraulic retention times longer than 10 days. The effect of short hydraulic retention times on methane production rate was more pronounced for the higher influent concentration than for the lower influent concentration. The highest methane production rate of 9.57 litres CH/sub 4/ litre/sup -1/ feed day/sup -1/ was obtained at a loading rate of 5.96 g/sup -1/ COD litre/sup -1/ and an influent concentration of 28.8 g COD litre/sup -1/. A high treatment efficiency in terms of chemical oxygen demand reduction was obtained. In general, over 98% removal of chemical oxygen demand was achieved. The results indicated that anaerobic digestion of cheese whey using an upflow sludge blanket reactor could reduce pollution strength and produce energy for a cheese plant.

  9. Sedimentology of Fraser River delta peat deposits: a modern analogue for some deltaic coals

    Energy Technology Data Exchange (ETDEWEB)

    Styan, W B; Bustin, R M

    1984-01-01

    On the Recent lobe of the Fraser River delta, peat accumulation has actively occurred on the distal lower delta plain, the transition between upper and lower delta plains, and the alluvial plain. Distal lower delta plain peats developed from widespread salt and brackish marshes and were not influenced appreciably by fluvial activity. Lateral development of the marsh facies were controlled by compaction and eustatic sea-level rise. The resulting thin, discontinuous peat network contains numerous silty clay partings and high concentrations of sulphur. Freshwater marsh facies formed but were later in part eroded and altered by transgressing marine waters. Peats overlie a thin, fluvial, fining-upward sequence which in turn overlies a thick, coarsening-upward, prodelta-delta front succession. Lower- upper delta plain peats initially developed from interdistributary brackish marshes and were later fluvially influenced as the delta prograded. Thickest peats occur in areas where distributary channels were abandoned earliest. Sphagnum biofacies replace sedge-grass-dominated communities except along active channel margins, where the sedge-grass facies is intercalated with overbank and splay deposits. Peats are underlain by a relatively thin sequence of fluvial deposits which in turn is underlain by a major coarsening-upward delta front and pro-delta sequence. Alluvial plain peats accumulated in back swamp environments of the flood plain. Earliest sedge-clay and gyttja peats developed over thin fining-upward fluvial cycles or are interlaminated with fine-grained flood deposits. Thickest accumulations occur where peat fills small avulsed flood channels. Overlying sedge-grass and sphagnum biofacies are horizontally stratified and commonly have sharp boundaries with fine-grained flood sediments. At active channel margins, however, sedge-grass peats are intercalated with natural levee deposits consisting of silty clay.

  10. Case-specific comparison of water pollution control alternatives in peat production

    International Nuclear Information System (INIS)

    Savolainen, M.; Kaasinen, A.; Heikkinen, K.; Ihme, R.; Kaemae, T.; Alasaarela, E.

    1996-01-01

    The present practice water pollution control in peat production and the elements of planning were analyzed, the water purification methods were classified and their weaknesses estimated. Furthermore, the cost of the water purification constructions was estimated and their significance for the watercourses evaluated. 54 peat production plans were chosen from the catchment areas of the rivers Iijoki, Siikajoki and Pyhaejoki. The suitability of the chosen water pollution control methods was evaluated on the basis of the plans and, further, on the basis of field surveys. The suitability of the purification methods to practical water pollution control was assessed by making plans for 15 peat mining areas. There is a need to develop the planning and implementation of water pollution control in peat mining. The methods that are used do not always work in the expected way in practice. Despite this planning is compatible with the water protection program and the regulations that are in force. The study gives a good idea of how to update the planning instructions for water pollution control. The accompanying report includes plan for 11 peat mining areas. (orig.)

  11. Carbon leaching from tropical peat soils and consequences for carbon balances

    Directory of Open Access Journals (Sweden)

    Tim Rixen

    2016-07-01

    Full Text Available Drainage and deforestation turned Southeast (SE Asian peat soils into a globally important CO2 source, because both processes accelerate peat decomposition. Carbon losses through soil leaching have so far not been quantified and the underlying processes have hardly been studied. In this study, we use results derived from nine expeditions to six Sumatran rivers and a mixing model to determine leaching processes in tropical peat soils, which are heavily disturbed by drainage and deforestation. Here we show that a reduced evapotranspiration and the resulting increased freshwater discharge in addition to the supply of labile leaf litter produced by re-growing secondary forests increase leaching of carbon by ~200%. Enhanced freshwater fluxes and leaching of labile leaf litter from secondary vegetation appear to contribute 38% and 62% to the total increase, respectively. Decomposition of leached labile DOC can lead to hypoxic conditions in rivers draining disturbed peatlands. Leaching of the more refractory DOC from peat is an irrecoverable loss of soil that threatens the stability of peat-fringed coasts in SE Asia.

  12. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    Science.gov (United States)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our

  13. Agricultural management impact on physical and chemical functions of European peat soils.

    Science.gov (United States)

    Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph

    2017-04-01

    Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which

  14. Incorporation of radiometric tracers in peat and implications for estimating accumulation rates

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Sophia V., E-mail: sophia.hansson@emg.umu.se [Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå (Sweden); Kaste, James M. [Geology Department, The College of William and Mary, Williamsburg, VA 23187 (United States); Olid, Carolina; Bindler, Richard [Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå (Sweden)

    2014-09-15

    Accurate dating of peat accumulation is essential for quantitatively reconstructing past changes in atmospheric metal deposition and carbon burial. By analyzing fallout radionuclides {sup 210}Pb, {sup 137}Cs, {sup 241}Am, and {sup 7}Be, and total Pb and Hg in 5 cores from two Swedish peatlands we addressed the consequence of estimating accumulation rates due to downwashing of atmospherically supplied elements within peat. The detection of {sup 7}Be down to 18–20 cm for some cores, and the broad vertical distribution of {sup 241}Am without a well-defined peak, suggest some downward transport by percolating rainwater and smearing of atmospherically deposited elements in the uppermost peat layers. Application of the CRS age–depth model leads to unrealistic peat mass accumulation rates (400–600 g m{sup −2} yr{sup −1}), and inaccurate estimates of past Pb and Hg deposition rates and trends, based on comparisons to deposition monitoring data (forest moss biomonitoring and wet deposition). After applying a newly proposed IP-CRS model that assumes a potential downward transport of {sup 210}Pb through the uppermost peat layers, recent peat accumulation rates (200–300 g m{sup −2} yr{sup −1}) comparable to published values were obtained. Furthermore, the rates and temporal trends in Pb and Hg accumulation correspond more closely to monitoring data, although some off-set is still evident. We suggest that downwashing can be successfully traced using {sup 7}Be, and if this information is incorporated into age–depth models, better calibration of peat records with monitoring data and better quantitative estimates of peat accumulation and past deposition are possible, although more work is needed to characterize how downwashing may vary between seasons or years. - Highlights: • {sup 210}Pb, {sup 137}Cs, {sup 241}Am and {sup 7}Be, and tot-Pb and tot Hg were measured in 5 peat cores. • Two age–depth models were applied resulting in different accumulation rates

  15. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile isotopic methane analysis based on Cavity Ringdown Spectroscopy

    Science.gov (United States)

    Rella, Chris; Winkler, Renato; Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Crosson, Eric

    2014-05-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of carbon dioxide emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the isotopic carbon signature to distinguish between natural gas and landfills or ruminants. We present measurements of methane using a mobile spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Performance of the CRDS isotope analyzer is presented, including precision, calibration, stability, and the potential for measurement bias due to other atmospheric constituents. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to

  16. Regulations for the peat production water pollution control; Turvetuotannon vesiensuojeluohjeisto

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, M.; Heikkinen, K.; Ihme, R. [ed.] [VTT Communities and Infrastructure, Espoo (Finland)

    1996-12-31

    The regulations for peat production water pollution control include the latest information on anti-pollution constructions applicable to peat production including field ditches, sedimentation basins, overland flow areas, forest soil saturation, evaporation basins, chemicalization, detention of runoff and artificial flood plains. Information on subsurface drainage in peat mining is also given. The regulations deal with environmental viewpoints, planning of water protection and information on how to build, use and maintain anti-pollution constructions. Special attention is given to the soil conditions, because they play an important role in the building of different constructions. (orig.) (48 refs.)

  17. Geochemical characteristics of peat from two raised bogs of Germany

    Science.gov (United States)

    Mezhibor, A. M.

    2016-11-01

    Peat has a wide range of applications in different spheres of human activity, and this is a reason for a comprehensive study. This research represents the results of an ICP-MS study of moss and peat samples from two raised bogs of Germany. Because of the wide use of sphagnum moss and peat, determining their geochemical characteristics is an important issue. According to the results obtained, we can resume that the moss samples from Germany are rich in Cu, As, Y, Zr, Nb, and REE. The geochemical composition of the bogs reflects the regional environmental features and anthropogenic influence.

  18. Methane bubbling from northern lakes: present and future contributions to the global methane budget.

    Science.gov (United States)

    Walter, Katey M; Smith, Laurence C; Chapin, F Stuart

    2007-07-15

    Large uncertainties in the budget of atmospheric methane (CH4) limit the accuracy of climate change projections. Here we describe and quantify an important source of CH4 -- point-source ebullition (bubbling) from northern lakes -- that has not been incorporated in previous regional or global methane budgets. Employing a method recently introduced to measure ebullition more accurately by taking into account its spatial patchiness in lakes, we estimate point-source ebullition for 16 lakes in Alaska and Siberia that represent several common northern lake types: glacial, alluvial floodplain, peatland and thermokarst (thaw) lakes. Extrapolation of measured fluxes from these 16 sites to all lakes north of 45 degrees N using circumpolar databases of lake and permafrost distributions suggests that northern lakes are a globally significant source of atmospheric CH4, emitting approximately 24.2+/-10.5Tg CH4yr(-1). Thermokarst lakes have particularly high emissions because they release CH4 produced from organic matter previously sequestered in permafrost. A carbon mass balance calculation of CH4 release from thermokarst lakes on the Siberian yedoma ice complex suggests that these lakes alone would emit as much as approximately 49000Tg CH4 if this ice complex was to thaw completely. Using a space-for-time substitution based on the current lake distributions in permafrost-dominated and permafrost-free terrains, we estimate that lake emissions would be reduced by approximately 12% in a more probable transitional permafrost scenario and by approximately 53% in a 'permafrost-free' Northern Hemisphere. Long-term decline in CH4 ebullition from lakes due to lake area loss and permafrost thaw would occur only after the large release of CH4 associated thermokarst lake development in the zone of continuous permafrost.

  19. Geotechnical properties of peat soil stabilised with shredded waste tyre chips

    Directory of Open Access Journals (Sweden)

    M.A. Rahgozar

    2016-02-01

    Full Text Available To accommodate major civil engineering projects in or in the vicinity of peatlands, it is essential to stabilise peat deposits. On the other hand, the accumulation of waste tyres in recent decades has caused environmental problems around the world. An effective remedy for both issues is to use scrap tyre material to stabilise problematic peat soils. This article reports an experimental investigation of the effects of adding shredded tyre chips on the stability and bearing capacity of peat soil. Peat soil samples from the Chaghakhor Wetland (Chaharmahal and Bakhtiari Province, Iran were mixed with sand at a constant dosage of 400 kg m-3 and different percentages (0 %, 5 %, 10 %, 15 % and 20 % by weight of shredded tyre chips. The unconfined compressive strength, effective cohesion, angle of internal friction and coefficient of permeability were measured for all of these mixtures. The results showed that adding shredded tyre chips significantly improved the geotechnical properties of the peat soil. The mixture with 10 % shredded tyre chips showed the highest unconfined compressive strength; the one with 15 % tyre chips exhibited the highest ductility; and adding 20 % shredded tyre chips provided the highest values for angle of internal friction, effective cohesion and coefficient of permeability. Scanning Electron Micrographs (SEM showed that the pore spaces in the stabilised peat were mostly filled with sand.

  20. Growth of micropropagated lowbush blueberry with defined fungi in irradiated peat mix

    International Nuclear Information System (INIS)

    Litten, Walter; Smagula, J.M.; Dalpe, Yolande

    1992-01-01

    There is an interest in vegetative multiplication of high-yielding clones of Vaccinium angustifolium Ait. to establish or enhance blueberry production. This study evaluates mycorrhizal inoculation as an aid in such propagation from microcuttings. Shoots of Vaccinium angustifolium (clone 7062) generated in vitro were rooted in a peat-vermiculite-perlite substrate with or without ericoid mycorrhizal fungi fortification by Hymenoscyphus ericae or Scytalidium vaccinii and with or without peat sterilization by γ irradiation. Both in irradiated peat mix inoculated with S. vaccinii and in unirradiated peat mix with H. ericae, microcuttings grew taller and branched more than with the four other treatments. The profusely rooted plantlets available from all treatments of the cuttings put on significantly more total length of stems and branches after 167 days in the greenhouse when growing with either inoculant in unirradiated peat than in the unirradiated peat without inoculation. However, the magnitude of difference might be of borderline importance in commercial nursery operations. A higher level of copper and zinc in stem tissue was observed in stem tissue of plants grown with H. ericae with or without irradiation but not with S. vaccinii

  1. Overview of the Sustainable Uses of Peat Soil in Malaysia with Some Relevant Geotechnical Assessments

    OpenAIRE

    Rashidah Adon; Ismail Bakar; Devapriya Chitral Wijeyesekera; Adnan Zainorabidin

    2013-01-01

    Peat soil is an important ecosystem that provides a significant contribution to the global climate stability. In Malaysia, peat soils are considered as a soil with little economic benefit, apart from it being used for agricultural activity. The total world coverage of peat soil is about thirty million hectares with Canada and Russia having the largest distribution of peat (Zainorabiddin,2010). More than sixty percent of the world’s tropical peat lands are found in South-East Asia (Lette,2006...

  2. Distribution of sulphur and trace elements in peat. [Literature survey with some additional sulphur analyses

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S; Karhu, M

    1981-01-01

    A survey on the literature and contemporary research was made on peat sulphur and trace element studies. Marked variance between different peatlands and peat types has been noted. The available information is still inadequate for generalizations or statistical analysis mainly due to methodological variations and temporal and spatial variations in results. At the moment, the criteria applied in peatland inventories and evaluations are inadequate with respect to peat quality determinations. To some extent the quality of fuel peat should be determined in a mire inventory prior to peatland utilization. The areas over sulphide clay and some sulphate depositions may considerably increase the peat sulphur content. A proposal has been made to include the sulphur content monitoring in the cases where it exceeds 0.3 per cent. The trace elements may also bring about an increase in peat emissions if the deepest peat layers or polluted layers are burnt. The most important elements in this respect are Al, Fe, Mn, Pb, Zn, V, Ni, Hg, Cu, Cr, as well as As and U. The first ten because of the relatively high concentrations and last two because of pollution or toxocity and ore deposit factors. The peat hydrogen ion concentration has a positive correlation with copper and vanadium. The correlation is positive with the cobalt and nickel contents when the pH is low, and negative at a higher pH. A general peat type correlation shows maximum trace element contents in basal Carex peats with subsoil effects. The peat ash content and the Ti, Pb, V, Cr, Ni and S contents have positive correlations.

  3. Peat briquette as an alternative to cooking fuel: A techno-economic viability assessment in Rwanda

    International Nuclear Information System (INIS)

    Hakizimana, Jean de Dieu K.; Kim, Hyung-Taek

    2016-01-01

    Commercialization of peat briquetting technology was analyzed to know whether the technology is economically viable or not compared to commercialization of charcoal. The investigation of economic viability was assessed from raw-peat production to briquetting technologies. The briquettes were made by naturally dried of peat from Bisika, Bahimba, Ndongozi and Nyirabirande bogs, through a rotary pulverizer and a briquette press; they were carbonized into furnace at 450 °C to reduce its health effects. The burning rate of peat briquettes made varied from 0.178 kg/hour to 0.222 kg/hour. Ash content varying between 3 and 7.2 percent was also observed. The results showed that peat briquettes can be sold at USD0.18 per unit, with a total NPV of USD17.2 million. However, as the NPV tends to be zero, the selling price would be approximately USD0.155 per briquette. Monthly charcoal expenses were about USD23.20/household compared to a per-household cost of USD16.20/month of peat briquettes consumption; the supplanting of charcoal by peat briquettes would help the average Rwandan household reduce its monthly expenses by 30 percent. Peat briquettes utilization as cooking fuel in Rwanda could save 0.05 percent of CO_2 and more than 99 percent of CH_4 emissions, compared to charcoal emissions. - Highlights: • A technical process for peat production and peat briquetting. • An efficiency test of carbonized briquettes. • Commercialization of peat briquettes is compared to commercialization of charcoal. • Opportunities for greenhouse gas emissions reduction.

  4. A statistical approach to determining the uncertainty of peat thickness

    Directory of Open Access Journals (Sweden)

    J. Torppa

    2011-06-01

    Full Text Available This paper presents statistical studies of peat thickness to define its expected maximum variation (∆dm(∆r as a function of separation distance Δr. The aim was to provide an estimate of the observational uncertainty in peat depth due to positioning error, and the prediction uncertainty of the computed model. The data were GPS position and ground penetrating radar depth measurements of six mires in different parts of Finland. The calculated observational uncertainty for Finnish mires in general caused, for example, by a 20 m positioning error, is 43 cm in depth with 95 % confidence. The peat depth statistics differed among the six mires, and it is recommended that the mire specific function ∆dm(∆r is defined for each individual mire to obtain the best estimate of observational uncertainty. Knowledge of the observational error and function ∆dm(∆r should be used in peat depth modelling for defining the uncertainty of depth predictions.

  5. Construction of Buildings on Peat: Case Studies and Lessons Learned

    Directory of Open Access Journals (Sweden)

    Mahmod Ali Abdul-Wadoud

    2016-01-01

    Full Text Available Building construction on soft soils including on peat has many challenges and difficulties. The failed and deteriorated buildings have a big impact on the community. The IConCEES International Workshop 2015 which was conducted on October 2015 convened as a joint venture between Universiti Tun Hussein Onn Malaysia (UTHM and the University College of Technology Sarawak (UCTS. The aim was to invite regional experts from academia and the industry to formally present and discuss the various construction problems encountered when working with peat. The discussions were divided into two divisions; infrastructure and building construction. This paper discusses the outcomes of the workshop and focuses on the factors and relevant challenges when constructing buildings on peat. The experts have discussed regulatory and construction issues including: drainage issues, site investigation practices, monitoring and construction guidelines. A few suggestions were outlined as a remedy to these problems and to better assist the peat practitioner at work.

  6. Excavation-drier method of energy-peat extraction reduces long-term climatic impact

    Energy Technology Data Exchange (ETDEWEB)

    Silvan, N.; Silvan, K.; Laine, J. [Finnish Forest Research Inst., Parkano (Finland)], e-mail: niko.silvan@metla.fi; Vaisanen, S.; Soukka, R. [Lappeenranta Univ.of Techology (Finland)

    2012-11-01

    Climatic impacts of energy-peat extraction are of increasing concern due to EU emissions trading requirements. A new excavation-drier peat extraction method has been developed to reduce the climatic impact and increase the efficiency of peat extraction. To quantify and compare the soil GHG fluxes of the excavation drier and the traditional milling methods, as well as the areas from which the energy peat is planned to be extracted in the future (extraction reserve area types), soil CO{sub 2}, CH{sub 4} and N{sub 2}O fluxes were measured during 2006-2007 at three sites in Finland. Within each site, fluxes were measured from drained extraction reserve areas, extraction fields and stockpiles of both methods and additionally from the biomass driers of the excavation-drier method. The Life Cycle Assessment (LCA), described at a principal level in ISO Standards 14040:2006 and 14044:2006, was used to assess the long-term (100 years) climatic impact from peatland utilisation with respect to land use and energy production chains where utilisation of coal was replaced with peat. Coal was used as a reference since in many cases peat and coal can replace each other in same power plants. According to this study, the peat extraction method used was of lesser significance than the extraction reserve area type in regards to the climatic impact. However, the excavation-drier method seems to cause a slightly reduced climatic impact as compared with the prevailing milling method. (orig.)

  7. Spatial variation of peat soil properties in the oil-producing region of northeastern Sakhalin

    Science.gov (United States)

    Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Zavgorodnyaya, Yu. A.; Rozanova, M. S.; Brekhov, P. T.

    2017-07-01

    Morphology and properties of medium-deep oligotrophic peat, oligotrophic peat gley, pyrogenic oligotrophic peat gley, and peat gley soils on subshrub-cotton grass-sphagnum bogs and in swampy larch forests of northeastern Sakhalin have been studied. Variation in the thickness and reserves of litters in the studied bog and forest biogeocenoses has been analyzed. The profile distribution and spatial variability of moisture, density, ash, and pHKCl in separate groups of peat soils have been described. The content and spatial variability of petroleum hydrocarbons have been considered in relation to the accumulation of natural bitumoids by peat soils and the technogenic pressing in the oil-producing region. Variation of each parameter at different distances (10, 50, and 1000 m) has been estimated using a hierarchical sampling scheme. The spatial conjugation of soil parameters has been studied by factor analysis using the principal components method and Spearman correlation coefficients. Regression equations have been proposed to describe relationships of ash content with soil density and content of petroleum hydrocarbons in peat horizons.

  8. Methane production by anaerobic digestion of algae. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nyns, E.J.; Naveau, H.P.

    Methane is produced experimentally by anaerobic fermentation of algae, principally of species Hydrodictyon and Cladophora, grown in cooling water from nuclear power plants. The accumulation of fatty acids, by-products of fermentation, is found to have an inhibitory effect on methane production. Methods to remove fatty acids and stabilise the reaction are investigated. An economic analysis is presented using a financial model processor based on data from experimental digesters. The experimental work is described and the results are presented in an Appendix (in French). Seven relevant papers, of which two are in French are also annexed.

  9. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    Science.gov (United States)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  10. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions

    Science.gov (United States)

    Isaksen, Ivar S.A.; Gauss, Michael; Myhre, Gunnar; Walter Anthony, Katey M.; Ruppel, Carolyn

    2011-01-01

    The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.

  11. Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood

    NARCIS (Netherlands)

    Kulichevskaya, I.S.; Kostina, L.A.; Valášková, V.; Rijpstra, I.C.; Sinninghe Damsté, J.S.; De Boer, W.; Dedysh, S.N.

    2012-01-01

    Two strains of subdivision 1 Acidobacteria, namely the pink-pigmented bacterium KA1T and the colorless isolate WH120T, were obtained from acidic Sphagnum peat and wood under decay by the white-rot fungus Hyploma fasciculare, respectively. Cells of these isolates are Gram-negative, non-motile, short

  12. Towards sustainable ecological networks of peat bogs in central Russia; development of local environmental action program (LEAP) as a practical tool for protection and restoration of peat bogs in Egorievsk sub region

    NARCIS (Netherlands)

    Butovsky, R.O.; Reijnen, R.; Bondartchuk, E.A.; Otchagov, D.M.; Melik-Bagdasarov, E.M.

    2001-01-01

    In central and northern Meshera the habitats for many characteristic peat bog species now show a very fragmented pattern. As a result, the potential for viable populations of characteristic peat bog species has decreased considerably. Peat-mining and other human influences are the most important

  13. Short communication: Genetic study of methane production predicted from milk fat composition in dairy cows.

    Science.gov (United States)

    van Engelen, S; Bovenhuis, H; Dijkstra, J; van Arendonk, J A M; Visker, M H P W

    2015-11-01

    Dairy cows produce enteric methane, a greenhouse gas with 25 times the global warming potential of CO2. Breeding could make a permanent, cumulative, and long-term contribution to methane reduction. Due to a lack of accurate, repeatable, individual methane measurements needed for breeding, indicators of methane production based on milk fatty acids have been proposed. The aim of the present study was to quantify the genetic variation for predicted methane yields. The milk fat composition of 1,905 first-lactation Dutch Holstein-Friesian cows was used to investigate 3 different predicted methane yields (g/kg of DMI): Methane1, Methane2, and Methane3. Methane1 was based on the milk fat proportions of C17:0anteiso, C18:1 rans-10+11, C18:1 cis-11, and C18:1 cis-13 (R(2)=0.73). Methane2 was based on C4:0, C18:0, C18:1 trans-10+11, and C18:1 cis-11 (R(2)=0.70). Methane3 was based on C4:0, C6:0, and C18:1 trans-10+11 (R(2)=0.63). Predicted methane yields were demonstrated to be heritable traits, with heritabilities between 0.12 and 0.44. Breeding can, thus, be used to decrease methane production predicted based on milk fatty acids. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Carbon balance of rewetted and drained peat soils used for biomass production: A mesocosm study

    DEFF Research Database (Denmark)

    Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka

    2016-01-01

    of lower CO2 emissions without losing agricultural land. The present study quantified the carbon balance (CO2, CH4 and harvested biomass C) of rewetted and drained peat soils under intensively managed reed canary grass (RCG) cultivation. Mesocosms were maintained at five different ground water levels (GWL......), i.e., 0, 10, 20 cm below the soil surface, representing rewetted peat soils, and 30 and 40 cm below the soil surface, representing drained peat soils. Net ecosystem exchange (NEE) of CO2 and CH4 emissions were measured during the growing period of RCG (May to September) using transparent and opaque...... closed chamber methods. The average dry biomass yield was significantly lower from rewetted peat soils (12 Mg ha−1) than drained peat soils (15 Mg ha−1). Also, CO2 fluxes of gross primary production (GPP) and ecosystem respiration (ER) from rewetted peat soils were significantly lower than drained peat...

  15. A carbon fibre composite (CFC Byelorussian peat corer

    Directory of Open Access Journals (Sweden)

    L.G. Franzén

    2009-01-01

    Full Text Available The design specification, development and manufacture of a Byelorussian (Russian peat corer constructed from carbon fibre composite (CFC are described. The availability of this new composite material introduces new possibilities for constructing field instruments that are as strong as, or stronger than, equipment made from steel and other metals. One advantage is a significant weight reduction. A 10.5 metre coring set in standard stainless and soft steel weighs around 16 kg, whereas the total weight of a similar CFC set is 5.2 kg, giving a weight reduction of almost 70%. The CFC sample chamber is 500 mm long with internal diameter 65 mm, and so contains almost twice the volume of peat that can be collected with a standard 45 mm diameter steel corer. The diameter of the rods is 30 mm, which improves ergonomics, and the CFC has better thermic properties for winter use. Another advantage is that the contamination of samples (notably by chromium and nickel associated with the use of steel corers is eliminated. The CFC sampler works well in soft peats such as Sphagnum and Carex types. It is less suitable for little-decomposed fibrous and forest peats (e.g. Polytrichum type and those containing hardwood remains, especially in the more compacted bottom layers. It should be totally satisfactory for organic lake sediments, but probably not for stiff and coarse mineral deposits.

  16. Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990-2000 in Taiwan

    International Nuclear Information System (INIS)

    Shangshyng Yang; Chungming Liu; Yenlan Liu; Chaoming Lai

    2003-01-01

    To investigate the greenhouse gases emissions from paddy fields and uplands, methane and nitrous oxide emissions were estimated from local measurement and the IPCC guidelines during 1990-2000 in Taiwan. Annual methane emission from 182 807 to 242 298 ha of paddy field in the first crop season ranged from 8062 to 12 066 ton, and it was between 16 261 and 25 007 ton for 144 178-211 968 ha in the second crop season with local measurement. The value ranged from 12 132 to 17 465 ton, and from 16 046 to 24 762 ton of methane in the first and second crop season with the IPCC guidelines for multiple aeration treatments, respectively. Annual nitrous oxide emission was between 472 and 670 ton and between 236 and 359 ton in the first and second crop season, respectively. Methane and nitrous oxide emissions from uplands depend on crop, growth season, fertilizer application and environmental conditions. Annual methane emission from upland crops, vegetable, fruit, ornamental plants, forage crops and green manure crops was 138-252, 412-460, 97-100, 3-5, 4-5 and 3-51 ton, respectively. Annual nitrous oxide emission was 1080-1976, 1784-1994, 2540-2622, 31-54, 43-53 and 38-582 ton, respectively. Annual nitrous oxide emission ranged from 91 to 132 ton for 77 593-112 095 ton of nitrogen-fixing crops, from 991 to 1859 ton for 325 9731-6 183 441 ton of non-nitrogen-fixing crops, and from 1.77 to 2.22 Gg for 921 169-1 172 594 ton of chemical fertilizer application. In addition, rice hull burning emitted 19.3-24.2 ton of methane and 17.2-21.5 ton of nitrous oxide, and corn stalk burning emitted 2.1-4.2 ton of methane and 1.9-3.8 ton of nitrous oxide. Methane emission from the agriculture sector was 26 421-37 914 ton, and nitrous oxide emission was 9810-11 649 ton during 1990-2000 in Taiwan. Intermittent irrigation in paddy fields reduces significantly methane emission; appropriate application of nitrogen fertilization and irrigation in uplands and paddy fields also decreases nitrous oxide

  17. Coal-packed methane biofilter for mitigation of green house gas emissions from coal mine ventilation air.

    Science.gov (United States)

    Limbri, Hendy; Gunawan, Cindy; Thomas, Torsten; Smith, Andrew; Scott, Jason; Rosche, Bettina

    2014-01-01

    Methane emitted by coal mine ventilation air (MVA) is a significant greenhouse gas. A mitigation strategy is the oxidation of methane to carbon dioxide, which is approximately twenty-one times less effective at global warming than methane on a mass-basis. The low non-combustible methane concentrations at high MVA flow rates call for a catalytic strategy of oxidation. A laboratory-scale coal-packed biofilter was designed and partially removed methane from humidified air at flow rates between 0.2 and 2.4 L min-1 at 30°C with nutrient solution added every three days. Methane oxidation was catalysed by a complex community of naturally-occurring microorganisms, with the most abundant member being identified by 16S rRNA gene sequence as belonging to the methanotrophic genus Methylocystis. Additional inoculation with a laboratory-grown culture of Methylosinus sporium, as investigated in a parallel run, only enhanced methane consumption during the initial 12 weeks. The greatest level of methane removal of 27.2±0.66 g methane m-3 empty bed h-1 was attained for the non-inoculated system, which was equivalent to removing 19.7±2.9% methane from an inlet concentration of 1% v/v at an inlet gas flow rate of 1.6 L min-1 (2.4 min empty bed residence time). These results show that low-cost coal packing holds promising potential as a suitable growth surface and contains methanotrophic microorganisms for the catalytic oxidative removal of methane.

  18. Diverse origins of Arctic and Subarctic methane point source emissions identified with multiply-substituted isotopologues

    Science.gov (United States)

    Douglas, P. M. J.; Stolper, D. A.; Smith, D. A.; Walter Anthony, K. M.; Paull, C. K.; Dallimore, S.; Wik, M.; Crill, P. M.; Winterdahl, M.; Eiler, J. M.; Sessions, A. L.

    2016-09-01

    Methane is a potent greenhouse gas, and there are concerns that its natural emissions from the Arctic could act as a substantial positive feedback to anthropogenic global warming. Determining the sources of methane emissions and the biogeochemical processes controlling them is important for understanding present and future Arctic contributions to atmospheric methane budgets. Here we apply measurements of multiply-substituted isotopologues, or clumped isotopes, of methane as a new tool to identify the origins of ebullitive fluxes in Alaska, Sweden and the Arctic Ocean. When methane forms in isotopic equilibrium, clumped isotope measurements indicate the formation temperature. In some microbial methane, however, non-equilibrium isotope effects, probably related to the kinetics of methanogenesis, lead to low clumped isotope values. We identify four categories of emissions in the studied samples: thermogenic methane, deep subsurface or marine microbial methane formed in isotopic equilibrium, freshwater microbial methane with non-equilibrium clumped isotope values, and mixtures of deep and shallow methane (i.e., combinations of the first three end members). Mixing between deep and shallow methane sources produces a non-linear variation in clumped isotope values with mixing proportion that provides new constraints for the formation environment of the mixing end-members. Analyses of microbial methane emitted from lakes, as well as a methanol-consuming methanogen pure culture, support the hypothesis that non-equilibrium clumped isotope values are controlled, in part, by kinetic isotope effects induced during enzymatic reactions involved in methanogenesis. Our results indicate that these kinetic isotope effects vary widely in microbial methane produced in Arctic lake sediments, with non-equilibrium Δ18 values spanning a range of more than 5‰.

  19. Homogenous conversion of methane to methanol. 1: Catalytic activation and functionalization of methane by cis-platin in sulfuric acid -- a density functional study of the thermochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mylvaganam, K.; Bacskay, G.B.; Hush, N.S. [Univ. of Sydney, New South Wales (Australia)

    1999-05-19

    The selective oxidation of methane to methanol or other efficiently transportable material represents one of the outstanding challenges of the chemical industry. Methane, being the dominant component of natural gas, is an abundant resource, yet in comparison with petroleum products it is currently underutilized, mainly because the transportation of a gas with a very low boiling point is expensive. The situation could change drastically if a simple, efficient, and economical method were found to convert methane to a readily transportable material such as methanol. The recent announcement by Periana et al. (Science, 1998, 280, 560) of 70% one-pass homogeneous catalysis of methane-to-methanol conversion with high selectivity in sulfuric acid solution under moderate conditions represents an important advance in the selective oxidation of alkanes, an area of considerable current interest and activity. The conversion is catalyzed by bis(2,2{prime}-bipyrimidine)Pt(II)Cl{sub 2}. In this work, the thermodynamics of the activation and functionalization steps of the related cis-platin-catalyzed process in H{sub 2}SO{sub 4} are calculated using density functional techniques, including the calculation of solvation free energies by a dielectric continuum method. It is concluded that electrophilic attack by CH{sub 4} on an intermediate which may be regarded as a tetracoordinate solvated analogue of a gas-phase, T-shaped, three-coordinate Pt(II) species, followed by oxidation of the resulting methyl complex to a methyl bisulfate ester, is thermodynamically feasible. This is in general accord with the mechanism proposed by Periana et al., but now, on the basis of the computational predictions, the nature of the active catalyst, as well as that of the intermediates, can be more precisely defined. While the alternative mechanism of oxidative addition does not appear to be thermodynamically feasible when using Pt(II) catalysts, catalysis by a Pt(IV) species is predicted to be, on

  20. Immobilization of Lead from Pb-Contaminated Soil Amended with Peat Moss

    Directory of Open Access Journals (Sweden)

    Seul-Ji Lee

    2013-01-01

    Full Text Available Immobilization of lead (Pb using soil amendments can reduce Pb toxicity and bioavailability in soil. This study evaluated Pb immobilization in a Pb-contaminated soil by using peat moss through various tests. The Pb-contaminated soil (2000 mg Pb·kg−1 was amended with 1%, 5%, and 10% of peat moss to immobilize Pb in the soil. The immobilization properties of Pb in the contaminated soil were evaluated by a column leaching experiment, a microcosm test, and a batch incubation test. Peat moss significantly reduced the Pb leaching in all of the experiments and more effectively reduced mobility and toxicity of Pb in the column leaching and microcosm tests than bioavailability in the batch incubation test. The immobilized lead from the soils amended with 1%, 5%, and 10% of peat moss was 37.9%, 87.1%, and 95.4% from the column leaching test, 18.5%, 90.9%, and 96.4% from the microcosm test, and 2.0%, 36.9%, and 57.9% from the NH4NO3 extraction method, respectively, indicating that peat moss can be effectively used for the remediation of Pb-contaminated soil.

  1. The effects of peat mining on fluvial fish and their environment

    International Nuclear Information System (INIS)

    Laine, A.; Sutela, T.; Heikkinen, K.; Karvonen, K.; Huhta, A.; Mutka, T.; Lappalainen, A.

    1996-01-01

    The effects of peat mining on the quality of the stream bed, benthic fauna and fluvial fish were studied at rifles of the Rivers Iijoki and Kiiminkijoki in 1991-94. The amount of organic matter that accumulated on the bottom increased below peat mining areas. Some shifts were seen also in the composition and density of the benthic fauna. In spite of the increase in the total density of the benthic fauna, the growth of the young salmonids was weaker in the riffles that were affected by peat production. Especially large-sized caddish fly larvae were eaten less and also the stomachs of one- year-old salmon were on the average less full there than in the reference areas. Fish densities varied a lot, and no statistical differences were observed between the loaded and the reference areas. The survival of the stocked 0+ salmon fry, however, decreased along with increasing load from peat mining areas. Below the peat mining areas, also the mortality of the incubated brown trout roe was higher than in the reference areas, most probably because of the siltage of the river bottom

  2. Production and emission of methane and carbon dioxide by ruminants

    International Nuclear Information System (INIS)

    Chouinard, Y.

    2003-01-01

    Animal digestion is responsible for the production of both carbon dioxide and methane, while breathing produces only carbon dioxide. The author described the digestion mechanism of ruminants, explaining that they produce higher levels of methane and carbon dioxide than other animals. Fermentation stoichiometry of ruminants was also discussed along with the influence that diet has on methane production. It was noted that methane production can be decreased by increasing animal productivity, or by using ionophore antibiotics and long chain fatty acids. Test results from each of these methods have revealed side effects and none appears to be applicable for the time being. 10 refs., 1 tab., 1 fig

  3. Evaluation of ecological constraints on peat mining in New Brunswick

    Energy Technology Data Exchange (ETDEWEB)

    Gautreau-Daigle, H

    1990-07-01

    A study was undertaken to obtain baseline information on moose and waterfowl usage of peatlands in the Escuminac bog complex in New Brunswick, in order to determine the impact of existing peat mining activities and to assist in making decisions regarding future resource development. The bog complex comprises a relatively large number of freshwater ponds which support breeding populations for waterfowl and serve as staging areas during bird migrations. Aerial surveys were carried out to quantify the use of these ponds by waterfowl and to determine changes in their level of use as a result of peat extraction. Results indicate that usage of ponds by birds seems mostly limited to staging and migration, except for black and ring-necked ducks. Those species are the most significant users of bog ponds and have been found to breed and raise young in the ponds. Some areas were found to get more waterfowl than others, but this was not shown to be related to peat mining activity. Active mined areas were devoid of waterfowl, but this area was a relatively small portion of the total bog area. The moose survey examined moose activity in a control area (without peat mining) and a representative bog area where peat mining occurred. Results do not indicate a difference in the moose activity patterns between the two areas. 9 refs., 25 figs., 17 tabs.

  4. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    DEFF Research Database (Denmark)

    Nauta, Ake L.; Heijmans, Monique P.D.; Blok, Daan

    2015-01-01

    , including expansion of woody vegetation5,6, in response to changing climate conditions. How such vegetation changes contribute to stabilization or destabilization of the permafrost is unknown. Here we present six years of field observations in a shrub removal experiment at a Siberian tundra site. Removing...... the shrub part of the vegetation initiated thawing of ice-rich permafrost, resulting in collapse of the originally elevated shrub patches into waterlogged depressions within five years. This thaw pond development shifted the plots from a methane sink into a methane source. The results of our field......-emitting wet depressions could become more abundant in the lowland tundra landscape, at the cost of permafrost-stabilizing low shrub vegetation....

  5. UV production of methane from surface and sedimenting IDPs on Mars in light of REMS data and with insights for TGO

    Science.gov (United States)

    Moores, John E.; Smith, Christina L.; Schuerger, Andrew C.

    2017-11-01

    This paper refines model predictions for the production of methane from UV-irradiated interplanetary dust particles (IDPs) now that the Rover Environmental Monitoring Station (REMS) instrument onboard the Mars Science Laboratory (MSL) Rover has made the first measurements of the UV environment on the surface of Mars, at Gale Crater. Once these measurements are included in a UV radiative transfer model, we find that modelled UV sol-integrated energies across the planet are lower than pre-measurement estimates by 35% on average, considering all latitudes and seasons. This reduction, in turn, reduces the predicted production of methane from individual accreting IDPs, extending their lifetimes and increasing the surface concentration of organics that must accumulate in order to emit sufficient methane to balance the accretion of organic compounds to Mars. Emission from reasonable accumulations of IDPs could range up to ∼7.9 × 10-4 ppbv sol-1. Richer deposits of organic carbon at the surface may emit methane at no more than 3.9 ppbv sol-1. An examination of IDP-derived methane production during atmospheric settling indicates that no more than 0.32% of organic carbon from meteor streams may be deposited in the atmosphere. Thus, such a process cannot explain either the spikes observed in methane nor the low equilibrium values observed by MSL. Instead, this discrepancy may be explained if geographical and vertical distribution will be an important input for models attempting to understand the results to be derived from the Trace Gas Orbiter (TGO) mission that will map methane concentrations in the martian atmosphere in 2018 at 0.01 ppbv.

  6. Vehicle-based Methane Mapping Helps Find Natural Gas Leaks and Prioritize Leak Repairs

    Science.gov (United States)

    von Fischer, J. C.; Weller, Z.; Roscioli, J. R.; Lamb, B. K.; Ferrara, T.

    2017-12-01

    Recently, mobile methane sensing platforms have been developed to detect and locate natural gas (NG) leaks in urban distribution systems and to estimate their size. Although this technology has already been used in targeted deployment for prioritization of NG pipeline infrastructure repair and replacement, one open question regarding this technology is how effective the resulting data are for prioritizing infrastructure repair and replacement. To answer this question we explore the accuracy and precision of the natural gas leak location and emission estimates provided by methane sensors placed on Google Street View (GSV) vehicles. We find that the vast majority (75%) of methane emitting sources detected by these mobile platforms are NG leaks and that the location estimates are effective at identifying the general location of leaks. We also show that the emission rate estimates from mobile detection platforms are able to effectively rank NG leaks for prioritizing leak repair. Our findings establish that mobile sensing platforms are an efficient and effective tool for improving the safety and reducing the environmental impacts of low-pressure NG distribution systems by reducing atmospheric methane emissions.

  7. A Novel Framework for Quantifying past Methane Recycling by Sphagnum-Methanotroph Symbiosis Using Carbon and Hydrogen Isotope Ratios of Leaf Wax Biomarkers

    Science.gov (United States)

    Nichols, Jonathan E.; Isles, Peter D. F.; Peteet, Dorothy M.

    2014-01-01

    The concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, 'PRM.' We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, delta C-13 of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene.

  8. Fluxed of nitrous oxide and methane in a lake border ecosystem in northern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Rusch, H.; Rembges, D.; Papke, H.; Rennenberg, H. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1995-12-31

    Methane and nitrous oxide are radiatively active trace gases. This accounts for approximately 20 % of the total anticipated greenhouse effect. The atmospheric mixing ratio of both gases has increased significantly during the last decades at a rate of 0.25 % yr{sup -l} for N{sub 2}O and a rate of 1 % yr{sup -1} for CH{sub 4}. Whether this increase is caused by enhanced biogenic production of both gases or is due to decreased global sinks, has not been definitely elucidated. Soils are an important source of methane and nitrous oxide. Natural wetlands, e.g., have a similar global source strength of methane as rice paddies. On the other hand, well aerated grasslands have been shown to be a sink for atmospheric methane due to methane oxidation. Nitrous oxide is emitted by a wide range of soil types. Its rate of emission is strongly enhanced by nitrogen fertilization. In the present study, fluxes of methane and nitrous oxide were determined in a lake border ecosystem along a toposequence from reed to dry pasture. The aim of this study was to characterize the influence of soil type, land use and season on the flux rates of these greenhouse gases. (author)

  9. Fluxed of nitrous oxide and methane in a lake border ecosystem in northern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Rusch, H; Rembges, D; Papke, H; Rennenberg, H [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1996-12-31

    Methane and nitrous oxide are radiatively active trace gases. This accounts for approximately 20 % of the total anticipated greenhouse effect. The atmospheric mixing ratio of both gases has increased significantly during the last decades at a rate of 0.25 % yr{sup -l} for N{sub 2}O and a rate of 1 % yr{sup -1} for CH{sub 4}. Whether this increase is caused by enhanced biogenic production of both gases or is due to decreased global sinks, has not been definitely elucidated. Soils are an important source of methane and nitrous oxide. Natural wetlands, e.g., have a similar global source strength of methane as rice paddies. On the other hand, well aerated grasslands have been shown to be a sink for atmospheric methane due to methane oxidation. Nitrous oxide is emitted by a wide range of soil types. Its rate of emission is strongly enhanced by nitrogen fertilization. In the present study, fluxes of methane and nitrous oxide were determined in a lake border ecosystem along a toposequence from reed to dry pasture. The aim of this study was to characterize the influence of soil type, land use and season on the flux rates of these greenhouse gases. (author)

  10. The occurrence and development of peat mounds on King George Island (Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    Jerzy Fabiszewski

    2014-01-01

    Full Text Available On King George Island, South Shetlands Islands, a type of peat formation has been discovered which has not previously been reported from the Antarctic. These formations are in shape of mounds up to 7x 15 m in area, with a peat layer of about I m thick. About twenty five cm below the surface there is a layer of permanently frozen peat. The mounds are covered by living mosses (Polytrichum alpinum and Drepanocladus uncinatus, Antarctic hair grass (Deschampsia antarctica and lichens. Erosion fissures occurring on the surface are evidence of contemporary drying and cessation of the mound's growth. The initial phase of the development of the mounds began with a community dominated by Calliergidium austro-stramineum and Deschampsia antarctica, and their further development has been due to peat accumulation formed almost entirely by Calliergidium. The location of the mounds is near a penguin rookery, which clearly conditioned the minerotrophic character of these formations, as compared with the "moss peat banks" formed by Chorisodontium aciphyllum and Polytrichum al-pestre. Moreover, the peat mounds differ from the latter in several ways, e.g. rate of growth and floristic composition. Radiocarbon dating of peat from the base of one mound gave an age of 4090±60 years B.P. This suggests that the age of the tundra on King George Island is about 5000-4000 years.

  11. TECHNOLOGY AND EFFICIENCY OF PEAT ASH USAGE IN CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    G. D. Liakhevich

    2015-01-01

    Full Text Available One of the main ways to improve physical and mechanical properties of cement concrete is an introduction of ash obtained due to burning of fossil fuels into concrete mix. The concrete mixes with ash are characterized by high cohesion, less water gain and disintegration. At the same time the concrete has high strength, density, water resistance, resistance to sulfate corrosion. The aim of this paper is to explore the possibility to use peat ash and slag of peat enterprises of the Republic of Belarus in the concrete for improvement of its physical and mechanical properties and characteristics of peat ash, slag, micro-silica, cement, superplasticizing agent. Compositions and technology for preparation of concrete mixes have been developed and concrete samples have been have been fabricated and tested in the paper. It has been shown that the concrete containing ash, slag obtained due to burning of peat in the industrial installations of the Usiazhsky and Lidsky Peat Briquette Plants and also MK-85-grade micro-silica NSPKSAUsF-1-grade superplasticizing agent have concrete tensile strength within 78–134 MPa under axial compression and 53 MPa – for the control composition. This index is 1.5–2.5 times more than for the sample containing no additives.The usage of peat ash, slag together with MK-85-grade micro-silica and NSPKSAUsF-1-grade superplasticizing agent for fabrication of concrete and reinforced bridge and tunnel structures will provide the following advantages: reduction of cross-sectional area of structures while maintaining their bearing capacity due to higher value of tensile strength in case of axial compression; higher density, waterand gas tightness due to low water cement ratio; high resistance to aggressive environment due to lower content of capillary pores that ensures bridge structure longevity; achievement of environmental and social impacts.

  12. Long-term disturbance dynamics and resilience of tropical peat swamp forests.

    Science.gov (United States)

    Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J

    2015-01-01

    1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c . 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c . 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c . 500 years ago, these communities started to decline. 5. Synthesis . Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude

  13. Peat exploitation - Environment. Effects and measures

    International Nuclear Information System (INIS)

    Stenbeck, G.

    1996-01-01

    This report gives a detailed description of the influence of peat exploitation on the land-, water- and atmospheric environments. Proposals for mitigatory measures to minimize damage to the environment are also given

  14. Assessing methane emission from dairy cows : modeling and experimental approaches on rumen microbial metabolism

    NARCIS (Netherlands)

    Lingen, Henk J.

    2017-01-01

    Methane (CH4) is a greenhouse gas (GHG) with a global warming potential of 28 CO2 equivalents. The livestock sector was estimated to emit 7.1 gigatonnes of CO2 equivalents, which is approximately 14.5% of total global anthropogenic GHG emissions. Enteric CH4 production is the main source of GHG

  15. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production

    Science.gov (United States)

    Maia, Margarida R. G.; Fonseca, António J. M.; Oliveira, Hugo M.; Mendonça, Carla; Cabrita, Ana R. J.

    2016-08-01

    This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions.

  16. Pedochronology and development of peat bog in the environmental protection area pau-de-fruta - Diamantina, Brazil

    Directory of Open Access Journals (Sweden)

    José Ricardo da Rocha Campos

    2010-12-01

    Full Text Available In the region of the Serra do Espinhaço Meridional, peat bog is formed in hydromorphic environments developed in sunken areas on the plain surfaces with vegetation adapted to hydromorphic conditions, favoring the accumulation and preservation of organic matter. This pedoenvironment is developed on the regionally predominant quartzite rocks. Peat bog in the Environmental Protection Area - APA Pau-de-Fruta, located in the watershed of Córrego das Pedras, Diamantina,Brazil, was mapped and three representative profiles were morphologically characterized and sampled for physical, chemical and microbiological analyses. The organic matter was fractionated into fulvic acid (FA, humic acids (HA and humin (H. Two profiles were sampled to determine the radiocarbon age and δ13C. The structural organization of the three profiles is homogeneous. The first two layers consist of fibric, the two subsequent of hemic and the four deepest of sapric peat, showing that organic matter decomposition advances with depth and that the influence of mineral materials in deeper layers is greater. Physical properties were homogeneous in the profiles, but varied in the sampled layers. Chemical properties were similar in the layers, but the Ca content, sum of bases and base saturation differed between profiles. Contents of H predominated in the more soluble organic matter fractions and were accumulated at a higher rate in the surface and deeper layers, while HA levels were higher in the intermediate and FA in the deeper layers. Microbial activity did not vary among profiles and was highest in the surface layers, decreasing with depth. From the results of radiocarbon dating and isotope analysis, it was inferred that bog formation began about 20 thousand years ago and that the vegetation of the area had not changed significantly since then.

  17. History of atmospheric deposition of Cd, Hg, and Pb in North America: Evidence from lake and peat bog sediments

    International Nuclear Information System (INIS)

    Norton, S.A.; Dillon, P.J.; Evans, R.D.; Mierle, G.; Kahl, J.S.

    1990-01-01

    The precipitation chemistry and lake and peat sediment chemistry of three metals emitted to the atmosphere in significant amounts as a result of anthropogenic activity are reviewed. The three metals, Cd, Hg, and Pb, have contrasting source terms, atmospheric residence times, and chemical mobility. Lake and ombrotrophic peat bog sediments record increases in the concentrations and accumulation rates of the metals for most of temperate North America for the last 100 years. These increases are largely related to the burning of coal, smelting of nonferrous metals, the transportation industry, and the industrial production of chlorine. Modern atmospheric fluxes of Cd in central North America are about 1,000 times background fluxes; accumulation rates for Cd in sediments have increased two to 3 times above background, beginning about 100 years ago. Global scale Hg pollution off the atmosphere is suggested by concentrations in northern hemisphere air that are double the Hg content of southern hemisphere air. Accumulation rates of Hg in sediment have approximately doubled in the last 100 years. However, these rates are approximately an order of magnitude less than those for Cd. Modern increases in Pb concentrations are ubiquitous for all lakes examines thus far in North America. Input is from multiple sources and thus the timing of increased accumulation rates in sediment varies across the continent. Typical modern accumulation rates reach maxima at 20 to 30 mg/sq-m/yr, or 100 times that of Cd and 1,000 times that off Hg. Recent decreases in atmospheric lead are reflected in decreases in the accumulation rate of Pb in both lake and peat bog sediment in eastern North America

  18. Applications of scanning electron microscopy to the study of mineral matter in peat

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, R. Jr.; Andrejko, M.J.; Bardin, S.W.

    1983-01-01

    Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) have been used for in situ analysis of minerals in peats by combining methods for producing oriented microtome sections of peat with methods for critical point drying. The combined technique allows SEM analysis of the inorganic components and their associated botanical constituents, along with petrographic identification of the botanical constituents. In peat deposits with abundant fluvial- or marine-derived minerals, one may use the above technique and/or medium- or low-temperature ashing followed by x-ray diffraction to readily identify the various mineral components. However, in some freshwater environments the scarcity of non-silica minerals makes the above techniques impractical. By separating the inorganic residues from the peat, one can isolate the non-silica mineral matter in the SEM for analysis by EDS. Furthermore, such separation allows SEM analysis of features and textures of both silica and non-silica mineral particles that might otherwise be unidentifiable. Results indicate the occurrence of detritial minerals in both Okefenokee and Snuggedy Swamp peats, the presence of authigenic or diagenetic minerals growing within peats, and dissolution features on freshwater sponge spicules that may account for the absence of spicules in Tertiary lignites.

  19. Methane and carbon dioxide exchange in a post-extraction, unrestored peatland in Eastern Quebec, Canada

    Science.gov (United States)

    Rankin, Tracy; Strachan, Ian; Strack, Maria

    2017-04-01

    Peatlands, in their pristine state, are important long-term sinks of carbon. The extraction of peat for agricultural purposes or for biofuel leads to a shift in the carbon dynamics. Changes in environmental conditions post extraction may also allow for invasive species to establish and spread across the peatland. Many studies have shown the benefits and advantages of various restoration management practices, but few studies have explored the carbon exchange from unrestored peatlands. Our study reports the methane (CH4) and carbon dioxide (CO2) fluxes from a post-extraction, unrestored peatland in Eastern Québec at both the plant community scale using static chambers, and at the ecosystem scale using an eddy covariance flux tower, over two complete years. Extraction of the Saint-Alexandre-de-Kamouraska peatland (SAK) started in the early 1970's and was halted in 1999. No restoration efforts have been implemented and the remnant ditches remain unblocked. The site consists of sparse patches of Eriophorum and a vast area of bare peat. Consequently, SAK is an overall source of carbon to the atmosphere, releasing an annual total of 153 g C m-2 and 241 g C m-2 in CO2 emissions for 2014 and 2015, respectively, and an average annual total of 1 g C m-2yr-1 in CH4 emissions. Phragmites and Typha, both invasive species, have established themselves in the ditches and are sources of methane; partly explaining the increased emissions in carbon fluxes to the atmosphere post extraction. Results from this study will help managers assess the importance of post-extraction peatland restoration, by comparing the differences in CO2 and CH4 exchange between restored and unrestored peatlands.

  20. Interannual Variability of Carbon Dioxide, Methane and Nitrous Oxide Fluxes in Subarctic European Russian Tundra

    Science.gov (United States)

    Marushchak, M. E.; Voigt, C.; Gil, J.; Lamprecht, R. E.; Trubnikova, T.; Virtanen, T.; Kaverin, D.; Martikainen, P. J.; Biasi, C.

    2017-12-01

    Southern tundra landscapes are particularly vulnerable to climate warming, permafrost thaw and associated landscape rearrangement due to near-zero permafrost temperatures. The large soil C and N stocks of subarctic tundra may create a positive feedback for warming if released to the atmosphere at increased rates. Subarctic tundra in European Russia is a mosaic of land cover types, which all play different roles in the regional greenhouse gas budget. Peat plateaus - massive upheaved permafrost peatlands - are large storehouses of soil carbon and nitrogen, but include also bare peat surfaces that act as hot-spots for both carbon dioxide and nitrous oxide emissions. Tundra wetlands are important for the regional greenhouse gas balance since they show high rates of methane emissions and carbon uptake. The most dominant land-form is upland tundra vegetated by shrubs, lichens and mosses, which displays a close-to-neutral balance with respect to all three greenhouse gases. The study site Seida (67°03'N, 62°56'E), located in the discontinuous permafrost zone of Northeast European Russia, incorporates all these land forms and has been an object for greenhouse gas investigations since 2007. Here, we summarize the growing season fluxes of carbon dioxide, methane and nitrous oxide measured by chamber techniques over the study years. We analyzed the flux time-series together with the local environmental data in order to understand the drivers of interannual variability. Detailed soil profile measurements of greenhouse gas concentrations, soil moisture and temperature provide insights into soil processes underlying the net emissions to the atmosphere. The multiannual time-series allows us to assess the importance of the different greenhouse gases and landforms to the overall climate forcing of the study region.

  1. Peat Biomass Smoke Particle Exposure in Rats Decreases ...

    Science.gov (United States)

    Wildland fires, favored by prolonged drought and rising temperatures, generate significant amounts of ambient particulate matter (PM), which has been linked to adverse health outcomes. The eastern North Carolina peat fires of Pocosin Lake in 2008 and Pains Bay in 2011 were some of the more prominent recent wildland fires and were associated with increased cardiovascular hospitalizations. The biological impacts of peat biomass emissions and the specific mechanisms driving these responses are unclear. The purpose of this study was to investigate the cardiopulmonary responses of peat biomass smoke exposure in rats. We hypothesized that PM exposure would dose-dependently alter cardiopulmonary function. Male Sprague-Dawley rats were exposed to 30 µg (Lo PM) or 300 µg (Hi PM) of peat biomass smoke PM extracts suspended in 200 µL of saline, or saline vehicle alone by oropharyngeal aspiration (OA). Immediately following OA rats were placed in a whole-body plethysmograph and ventilatory data were recorded for 12 minutes. One day following OA, rats were anesthetized with isoflurane for ultrasound assessment of cardiovascular function. Hi PM caused decreases in expiratory timing as early as 4-6 minutes after exposure relative to Lo PM (p = 0.02) and Vehicle (p= 0.06), which resolved shortly thereafter. One day after OA, ultrasounds revealed that Hi PM exposure increased end diastolic volume (EDV) by 16% (p = 0.03) over Vehicle and 13% (p = 0.06) over Lo PM. In addition,

  2. Effect of hemicellulolytic enzymes on mesophilic methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Oi, S; Matsui, Y; Iizuka, M; Yamamoto, T

    1977-01-01

    Mesophilic methane fermentation was examined using soybean seed coat, a waste from soybean processing for oil manufacture, with or without treatment with hemicellulolytic enzymes of Aspergillus niger, and the following results were obtained: (1) The methane fermentation bacteria acclimated to soybean seed coat medium were shown to consume monosaccharides and evolve methane in the following decreasing order: glucose, fructose, mannose > xylose, galactose, glucosamine, galacturonic acid > arabinose. The bacteria were also shown to form methane from a gas mixture of hydrogen and carbon dioxide. (2) In fermentation of soybean seed coat treated with the fungal enzyme, about 70% of the total sugar content as consumed in four weeks, and the gas evolution was about twice that without the fungal enzyme. The gas evolved was composed of 60% methane and 36% carbon dioxide. In general, vigorous evolution of hydrogen and carbon dioxide occurred at a very early stage of fermentation, and was followed by formation of methane. The maximum gas evolution of the enzyme-treated mash took place in 6 days while that of untreated mash occurred one week later. Chemical oxygen demand of the supernatant of the former mash was decreased by fermentation to 7.0% of the initial level.

  3. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    Science.gov (United States)

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  4. Study of the organic material in peat formations in Puerto de Tornos (Santander)

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, M C; Almendrus, G; Dorado, E; Polo, A

    1985-01-01

    Different hydrophysical, agrochemical and biochemical features in a raised peat from Puerto de Tornos (Santander, Northern Spain) have been described. Correlations and affinities among data were studied in seven peat horizons. The studied peat was constituted by the alternance of humic and sapric layers, showing a very high content in extractable humic substances, and a low proportion of exchangeable cations, mainly in deeper layers.

  5. The genesis, stratigraphy and age of Finnish peat deposits. Soiden syntvy, rakenne ja ikae Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Glueckert, G [Turun yliopisto (Finland). Maaperaegeologian osasto

    1986-01-01

    The genesis, stratigraphy and age of Finnish peat deposits are briefly described. Finnish peats are classified according to their botanical composition to Sphagnum, sedge (Carex) and wood peats. They form complex types of peat land: the ombrotrophic raised bogs in southern Finland and the minerotrophic open sedge (aapa) bogs in northern Finland. The structural bog types in the geological classification are mainly composed of Sphagnum and Carex peats. The raised bogs are predominantly built up of Sphagnum peat, the aapa bogs of Carex peat. The bogs are formed by paludification of lakes, of rising coasts or of low-lying forests. The thickness of peat varies from 3 to 8 m in southern Finland and from 1 to 3 m in northern Finland. The age of the bogs varies according to the uplift of land and the altitude of the bog gasin above sea level. The oldest bogs are 9500-10000 years old and formed in southern and eastern Finland on high-lying upland tracts just after the retreat of the ice at the end of the last glaciation. The geological and palaeontological development of bogs and the history of climate and vegetation can be studied and dated pollenanalytically and with the radiocarbon method.

  6. Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog

    Directory of Open Access Journals (Sweden)

    S. Beetz

    2013-02-01

    Full Text Available Wetlands can either be net sinks or net sources of greenhouse gases (GHGs, depending on the mean annual water level and other factors like average annual temperature, vegetation development, and land use. Whereas drained and agriculturally used peatlands tend to be carbon dioxide (CO2 and nitrous oxide (N2O sources but methane (CH4 sinks, restored (i.e. rewetted peatlands rather incorporate CO2, tend to be N2O neutral and release CH4. One of the aims of peatland restoration is to decrease their global warming potential (GWP by reducing GHG emissions.

    We estimated the greenhouse gas exchange of a peat bog restoration sequence over a period of 2 yr (1 July 2007–30 June 2009 in an Atlantic raised bog in northwest Germany. We set up three study sites representing different land use intensities: intensive grassland (deeply drained, mineral fertilizer, cattle manure and 4–5 cuts per year; extensive grassland (rewetted, no fertilizer or manure, up to 1 cutting per year; near-natural peat bog (almost no anthropogenic influence. Daily and annual greenhouse gas exchange was estimated based on closed-chamber measurements. CH4 and N2O fluxes were recorded bi-weekly, and net ecosystem exchange (NEE measurements were carried out every 3–4 weeks. Annual sums of CH4 and N2O fluxes were estimated by linear interpolation while NEE was modelled.

    Regarding GWP, the intensive grassland site emitted 564 ± 255 g CO2–C equivalents m−2 yr−1 and 850 ± 238 g CO2–C equivalents m−2 yr−1 in the first (2007/2008 and the second (2008/2009 measuring year, respectively. The GWP of the extensive grassland amounted to −129 ± 231 g CO2–C equivalents m−2 yr−1 and 94 ± 200 g CO2–C equivalents m−2 yr

  7. Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment

    Science.gov (United States)

    Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda

    2015-04-01

    For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption

  8. Constructing deposition chronologies for peat deposits using radiocarbon dating

    Directory of Open Access Journals (Sweden)

    N. Piotrowska

    2011-06-01

    Full Text Available Radiocarbon dating is one of the main methods used to establish peat chronologies. This article reviews the basis of the method and its application to dating of peat deposits. Important steps in the radiocarbon dating procedure are described, including selection and extraction of material (and fractions for dating, chemical and physical preparation of media suitable for measurements, measurements of 14C activity or concentration, calculations, calibration of results and age-depth modelling.

  9. Abundance and δ13C values of fatty acids in lacustrine surface sediments: Relationships with in-lake methane concentrations

    Science.gov (United States)

    Stötter, Tabea; Bastviken, David; Bodelier, Paul L. E.; van Hardenbroek, Maarten; Rinta, Päivi; Schilder, Jos; Schubert, Carsten J.; Heiri, Oliver

    2018-07-01

    Proxy-indicators in lake sediments provide the only approach by which the dynamics of in-lake methane cycling can be examined on multi-decadal to centennial time scales. This information is necessary to constrain how lacustrine methane production, oxidation and emissions are expected to respond to global change drivers. Several of the available proxies for reconstructing methane cycle changes of lakes rely on interpreting past changes in the abundance or relevance of methane oxidizing bacteria (MOB), either directly (e.g. via analysis of bacterial lipids) or indirectly (e.g. via reconstructions of the past relevance of MOB in invertebrate diet). However, only limited information is available about the extent to which, at the ecosystem scale, variations in abundance and availability of MOB reflect past changes in in-lake methane concentrations. We present a study examining the abundances of fatty acids (FAs), particularly of 13C-depleted FAs known to be produced by MOB, relative to methane concentrations in 29 small European lakes. 39 surface sediment samples were obtained from these lakes and FA abundances were compared with methane concentrations measured at the lake surface, 10 cm above the sediments and 10 cm within the sediments. Three of the FAs in the surface sediment samples, C16:1ω7c, C16:1ω5c/t, and C18:1ω7c were characterized by lower δ13C values than the remaining FAs. We show that abundances of these FAs, relative to other short-chain FAs produced in lake ecosystems, are related with sedimentary MOB concentrations assessed by quantitative polymerase chain reaction (qPCR). We observed positive relationships between methane concentrations and relative abundances of C16:1ω7c, C16:1ω5c/t, and C18:1ω7c and the sum of these FAs. For the full dataset these relationships were relatively weak (Spearman's rank correlation (rs) of 0.34-0.43) and not significant if corrected for multiple testing. However, noticeably stronger and statistically significant

  10. Coal-Packed Methane Biofilter for Mitigation of Green House Gas Emissions from Coal Mine Ventilation Air

    Science.gov (United States)

    Limbri, Hendy; Gunawan, Cindy; Thomas, Torsten; Smith, Andrew; Scott, Jason; Rosche, Bettina

    2014-01-01

    Methane emitted by coal mine ventilation air (MVA) is a significant greenhouse gas. A mitigation strategy is the oxidation of methane to carbon dioxide, which is approximately twenty-one times less effective at global warming than methane on a mass-basis. The low non-combustible methane concentrations at high MVA flow rates call for a catalytic strategy of oxidation. A laboratory-scale coal-packed biofilter was designed and partially removed methane from humidified air at flow rates between 0.2 and 2.4 L min−1 at 30°C with nutrient solution added every three days. Methane oxidation was catalysed by a complex community of naturally-occurring microorganisms, with the most abundant member being identified by 16S rRNA gene sequence as belonging to the methanotrophic genus Methylocystis. Additional inoculation with a laboratory-grown culture of Methylosinus sporium, as investigated in a parallel run, only enhanced methane consumption during the initial 12 weeks. The greatest level of methane removal of 27.2±0.66 g methane m−3 empty bed h−1 was attained for the non-inoculated system, which was equivalent to removing 19.7±2.9% methane from an inlet concentration of 1% v/v at an inlet gas flow rate of 1.6 L min−1 (2.4 min empty bed residence time). These results show that low-cost coal packing holds promising potential as a suitable growth surface and contains methanotrophic microorganisms for the catalytic oxidative removal of methane. PMID:24743729

  11. Ground-penetrating radar study of the Cena Bog, Latvia: linkage of reflections with peat moisture content

    Directory of Open Access Journals (Sweden)

    Karušs, J.

    2015-12-01

    Full Text Available Present work illustrates results of the ground-penetrating radar (GPR study of the Cena Bog, Latvia. Six sub-horizontal reflections that most probably correspond to boundaries between sediments with different electromagnetic properties were identified. One of the reflections corresponds to bog peat mineral bottom interface but the rest are linked to boundaries within the peat body. The radar profiles are incorporated with sediment cores and studies of peat moisture and ash content, and degree of decomposition. Most of the electromagnetic wave reflections are related to changes in peat moisture content. The obtained data show that peat moisture content changes of at least 3 % are required to cause GPR signal reflection. However, there exist reflections that do not correlate with peat moisture content. As a result, authors disagree with a dominant opinion that all reflections in bogs are solely due to changes in volumetric peat moisture content.

  12. Physics of coal methane: decisive role of iron compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavriljuk, V. G., E-mail: gavr@imp.kiev.ua; Skoblik, A. P. [G.V. Kurdyumov Institute for Metal Physics (Ukraine); Shanina, B. D.; Konchits, A. A. [V. Ye. Lashkarev Institute for Semiconductor Physics (Ukraine)

    2016-12-15

    The role of iron in formation of the coal methane is clarified based on the studies performed on the coal samples taken from different mines in Donetsk coal basin. Using Mössbauer spectroscopy, a correlation is found between the iron content and methane capacity of coal seams. By means of electron paramagnetic resonance, it is found that iron increases the concentration of non-compensated electron spins, i.e. dangled bonds at the carbon atoms. These bonds can be occupied by hydrogen atoms as a prerequisite of methane formation. The two-valence iron is shown to be the most effective in the increase of spin concentration. By using the ion mass spectrometry, the modelling of methane formation is carried out on the mechanical mixture of the iron-free reactor graphite, iron compounds and diluted sulphuric acid as a source of hydrogen atoms. The proposed mechanism is also confirmed by methane formation in the mixture of iron compounds and the coal from the mine where the iron and methane are practically absent.

  13. The effect of lactic acid bacteria included as a probiotic or silage inoculant on in vitro rumen digestibility, total gas and methane production

    NARCIS (Netherlands)

    Ellis, J.L.; Bannink, A.; Hindrichsen, I.K.; Kinley, R.D.; Pellikaan, W.F.; Milora, N.L.; Dijkstra, J.

    2016-01-01

    Through alterations in silage and rumen fermentation, lactic acid bacteria (LAB) silage inoculants may affect OM digestibility and methane (CH4) emissions. In order to identify LAB that may have beneficial effects on CH4 emissions and/or OM digestibility in vivo, a series of in vitro gas production

  14. Liquid fuels from Canadian peat by the Waterloo fast pyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Piskorz, J.; Majerski, P.; Scott, D.S. (Univ. of Waterloo, ON (Canada))

    1990-06-01

    Two Quebec peats were pyrolyzed in the Waterloo fast pyrolysis process with the objective of maximizing liquid yields. A young sphagnum peat gave maximum organic liquid yields of 45-47% in an optimum range of 450-550{degree}C and 1 atm pressure. Char yields varied from 35% to 26% and gas yields from 12% to 17% over the range. The character of the liquid product changed significantly over the optimum temperature range, with the ratio of water soluble to water insoluble components decreasing from 2.3 to 0.6 as temperature increased, with an accompanying decrease in oxygen content. Pyrolytic oil yields from an old black peat gave similar results, although with somewhat lower yields of organic liquids. Char yield was somewhat higher (33%) at optimum conditions, but gas yield was nearly identical. Upgrading tests of the peat oil obtained a yield of ca 33% of the liquid feed as a gasoline-like liquid under hydrodeoxygenation conditions. 7 refs., 11 figs., 6 tabs.

  15. Distribution of sulphur and trace elements in peat. A literature survey with some additional sulphur analyses

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S; Karhu, M

    1981-01-01

    A survey on the literature and contemporary research was made on peat sulphur and trace element studies. Marked variance between different peatlands and peat types has been noted. The available information is still inadequate for generalizations or statistical analysis mainly due to methodological variations and temporal and spatial variations in results. At the moment, the criteria applied in peatland inventories and evaluations are inadequate with respect to peat quality determinations. To some extent the quality of fuel peat should be determined in a mire inventory prior to peatland utilization. The areas over sulphide clay and some sulphate depositions may considerably increase the peat sulphur content. A proposal has been made to include the sulphur content monitoring in the cases where it exceeds 0.3 per cent. The trace elements may also bring about an increase in peat emissions if the deepest peat layers or polluted layers are burnt. The most important elements in this respect are Al, Fe, Mn, Pb, Zn, V, Ni, Hg, Cu, Cr, as well as As and U. The first ten because of the relatively high concentrations and last two because of pollution or toxocity and ore deposit factors. The peat hydrogen ion concentration has a positive correlation with copper and vanadium. The correlation is positive with the cobalt and nickel contents when the pH is low, and negative at a higher pH. A general peat type correlation shows maximum trace element contents in basal Carex peats with subsoil effects. The peat ash content and the Ti, Pb, V, Cr, Ni, and S contents have positive correlations. (Refs. 290).

  16. Effect of increased utilization of wetland for peat harvesting and forest drainage on employment

    Energy Technology Data Exchange (ETDEWEB)

    Carlen, O; Muller, A

    1984-01-01

    Wetlands cover 15 percent of the area of Sweden. Most of it is peatland and part of it supports forest growth. The prognosis of peat production and ditching for drainage is based upon economical evaluations. A questioning of peat producers has also been performed. Two prognoses have been made for the effect of peat fuel production on the employment. By 1990 about 800 man-years were expected. On the advent of government subsidies to peat fuelled plants, about 1000 more jobs were expected. Unemployment and coal fuelled plants as an alternative are understood by implication. Indirect effects are expected among equipment manufacturers amounting to 50-100 yearly workers. Draining of forests and peat-lands will take 124 man-years as a minimum by 1990 and about 200 more if there will be financial assistance.

  17. Comparative use of different emission measurement approaches to determine methane emissions from a biogas plant.

    Science.gov (United States)

    Reinelt, Torsten; Delre, Antonio; Westerkamp, Tanja; Holmgren, Magnus A; Liebetrau, Jan; Scheutz, Charlotte

    2017-10-01

    A sustainable anaerobic biowaste treatment has to mitigate methane emissions from the entire biogas production chain, but the exact quantification of these emissions remains a challenge. This study presents a comparative measurement campaign carried out with on-site and ground-based remote sensing measurement approaches conducted by six measuring teams at a Swedish biowaste treatment plant. The measured emissions showed high variations, amongst others caused by different periods of measurement performance in connection with varying operational states of the plant. The overall methane emissions measured by ground-based remote sensing varied from 5 to 25kgh -1 (corresponding to a methane loss of 0.6-3.0% of upgraded methane produced), depending on operating conditions and the measurement method applied. Overall methane emissions measured by the on-site measuring approaches varied between 5 and 17kgh -1 (corresponding to a methane loss of 0.6 and 2.1%) from team to team, depending on the number of measured emission points, operational state during the measurements and the measurement method applied. Taking the operational conditions into account, the deviation between different approaches and teams could be explained, in that the two largest methane-emitting sources, contributing about 90% of the entire site's emissions, were found to be the open digestate storage tank and a pressure release valve on the compressor station. Copyright © 2017. Published by Elsevier Ltd.

  18. Import of biofuels and peat

    International Nuclear Information System (INIS)

    Albertsson, N.

    1993-06-01

    In areas neighbouring Sweden, i.e., foremost the Baltic States, it is probable that a large part of the available amounts will be consumed on the domestic market. Studies of the possible use of wood fuel in Estonia, Latvia and Lithuania are being made by the World Bank. Considerable investments will probably be made in the near future to replace existing coal- and oil-fired boiler plants with plants burning wood fuel. Consequently, the opportunities for exports of wood fuel will probably be small. In a global perspective, peat is used only to a limited extent as fuel. In the former Soviet Union alone it is estimated that the amount of peat that is economically feasible to extract is about 166x10 9 tonnes at a moisture content of 40%. Among the most interesting bio products that can be used in energy production from different food processing industries are nut-shells and fruit stones. Some stones, such as those in olives, plums and peaches, are excellent as fuels. The advantage with olive stones, in comparison with chips is that the bulk weight is high and the moisture content is low. Olive stones are thus similar to processed biofuels such as pellets. Due to their high energy content the olive stones can replace coal, which cannot be done by unprocessed fuels without expensive investments in materials handling equipment. Our survey shows that processed forest fuels and crushed olive stones are the products of greatest interest for the Swedish market. It also shows that both chips and peat-based products from the Baltic States are competitive

  19. The thin brown line: The crucial role of peat in protecting permafrost in Arctic Alaska

    Science.gov (United States)

    Gaglioti, B.; Mann, D. H.; Farquharson, L. M.; Baughman, C. A.; Jones, B. M.; Romanovsky, V. E.; Williams, A. P.; Andreu-Hayles, L.

    2017-12-01

    Ongoing warming threatens to thaw Arctic permafrost and release its stored carbon, which could trigger a permafrost-carbon feedback capable of augmenting global warming. The effects of warming air temperatures on permafrost are complicated by the fact that across much of the Arctic and Subarctic a mat of living plants and decaying litter cover the ground and buffer underlying permafrost from air temperatures. For simplicity here, we refer to this organic mat as "peat". Because this peat modifies heat flow between ground and air, the rate and magnitude of permafrost responses to changing climate - and hence the permafrost-carbon feedback - are partly slaved to the peat layer's slower dynamics. To explore this relationship, we used 14C-age offsets within lake sediments in Alaskan watersheds underlain by yedoma deposits to track the changing responses of permafrost thaw to fluctuating climate as peat accumulated over the last 14,000 years. As the peat layer built up, warming events became less effective at thawing permafrost and releasing ancient carbon. Consistent with this age-offset record, the geological record shows that early in post-glacial times when the peat cover was still thin and limited in extent, warm intervals triggered extensive thermokarst that resulted in rapid aggradation of floodplains. Today in contrast, hillslopes and floodplains remain stable despite rapid warming, probably because of the buffering effects of the extensive peat cover. Another natural experiment is provided by tundra fires like the 2007 Anaktuvuk River fire that removed the peat cover from tundra underlain by continuous permafrost and resulted in widespread thermkarsting. Further support for peat's critical role in protecting permafrost comes from the results of modeling how permafrost temperatures under different peat thicknesses respond to warming air temperature. Although post-industrial warming has not yet surpassed the buffering capacity of 14,000 years of peat buildup in

  20. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality

    Directory of Open Access Journals (Sweden)

    Jing Xiong

    2017-08-01

    Full Text Available Rockwool (RC and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better. For all substrates, the blossom-end rot (BER of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato.