WorldWideScience

Sample records for methane clathrate formation

  1. Methane clathrates in the solar system.

    Science.gov (United States)

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate

  2. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate.

    Science.gov (United States)

    Kennedy, Martin; Mrofka, David; von der Borch, Chris

    2008-05-29

    The start of the Ediacaran period is defined by one of the most severe climate change events recorded in Earth history--the recovery from the Marinoan 'snowball' ice age, approximately 635 Myr ago (ref. 1). Marinoan glacial-marine deposits occur at equatorial palaeolatitudes, and are sharply overlain by a thin interval of carbonate that preserves marine carbon and sulphur isotopic excursions of about -5 and +15 parts per thousand, respectively; these deposits are thought to record widespread oceanic carbonate precipitation during postglacial sea level rise. This abrupt transition records a climate system in profound disequilibrium and contrasts sharply with the cyclical stratigraphic signal imparted by the balanced feedbacks modulating Phanerozoic deglaciation. Hypotheses accounting for the abruptness of deglaciation include ice albedo feedback, deep-ocean out-gassing during post-glacial oceanic overturn or methane hydrate destabilization. Here we report the broadest range of oxygen isotope values yet measured in marine sediments (-25 per thousand to +12 per thousand) in methane seeps in Marinoan deglacial sediments underlying the cap carbonate. This range of values is likely to be the result of mixing between ice-sheet-derived meteoric waters and clathrate-derived fluids during the flushing and destabilization of a clathrate field by glacial meltwater. The equatorial palaeolatitude implies a highly volatile shelf permafrost pool that is an order of magnitude larger than that of the present day. A pool of this size could have provided a massive biogeochemical feedback capable of triggering deglaciation and accounting for the global postglacial marine carbon and sulphur isotopic excursions, abrupt unidirectional warming, cap carbonate deposition, and a marine oxygen crisis. Our findings suggest that methane released from low-latitude permafrost clathrates therefore acted as a trigger and/or strong positive feedback for deglaciation and warming. Methane hydrate

  3. Geochemistry of clathrate-derived methane in Arctic Ocean waters

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2010-03-15

    Alterations to the composition of seawater are estimated for microbial oxidation of methane from large polar clathrate destabilizations, which may arise in the coming century. Gas fluxes are taken from porous flow models of warming Arctic sediment. Plume spread parameters are then used to bracket the volume of dilution. Consumption stoichiometries for the marine methanotrophs are based on growth efficiency and elemental/enzyme composition data. The nutritional demand implied by extra CH{sub 4} removal is compared with supply in various high latitude water masses. For emissions sized to fit the shelf break, reaction potential begins at one hundred micromolar and falls to order ten a thousand kilometers downstream. Oxygen loss and carbon dioxide production are sufficient respectively to hypoxify and acidify poorly ventilated basins. Nitrogen and the monooxygenase transition metals may be depleted in some locations as well. Deprivation is implied relative to existing ecosystems, along with dispersal of the excess dissolved gas. Physical uncertainties are inherent in the clathrate abundance, patch size, outflow buoyancy and mixing rate. Microbial ecology is even less defined but may involve nutrient recycling and anaerobic oxidizers.

  4. CLATHRATE HYDRATES FORMATION IN SHORT-PERIOD COMETS

    International Nuclear Information System (INIS)

    Marboeuf, Ulysse; Mousis, Olivier; Petit, Jean-Marc; Schmitt, Bernard

    2010-01-01

    The initial composition of current models of cometary nuclei is only based on two forms of ice: crystalline ice for long-period comets and amorphous ice for short-period comets. A third form of ice, i.e., clathrate hydrate, could exist within the short-period cometary nuclei, but the area of formation of this crystalline structure in these objects has never been studied. Here, we show that the thermodynamic conditions in the interior of short-period comets allow the existence of clathrate hydrates in Halley-type comets. We show that their existence is viable in the Jupiter family comets only when the equilibrium pressure of CO clathrate hydrate is at least 1 order of magnitude lower than the usually assumed theoretical value. We calculate that the amount of volatiles that could be trapped in the clathrate hydrate layer may be orders of magnitude greater than the daily amount of gas released at the surface of the nucleus at perihelion. The formation and the destruction of the clathrate hydrate cages could then explain the diversity of composition of volatiles observed in comets, as well as some pre-perihelion outbursts. We finally show that the potential clathrate hydrate layer in comet 67P/Churyumov-Gerasimenko would, unfortunately, be deep inside the nucleus, out of reach of the Rosetta lander. However, such a clathrate hydrate layer would show up by the gas composition of the coma.

  5. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    Science.gov (United States)

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  6. CO_2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters

    International Nuclear Information System (INIS)

    Kim, Soyoung; Choi, Sung-Deuk; Seo, Yongwon

    2017-01-01

    Tetrahydrofuran (THF) as a water-soluble sII clathrate former, cyclopentane (CP) as a water-insoluble sII clathrate former, and tetra n-butyl ammonium chloride (TBAC) as a water-soluble semiclathrate former were used to investigate their thermodynamic promotion effects on clathrate-based CO_2 capture from simulated flue gas. The phase equilibria of CO_2 (20%) + N_2 (80%) + promoter clathrates at different promoter concentrations revealed that the presence of THF, CP, and TBAC could significantly reduce the clathrate formation pressure. THF solutions provided the highest gas uptake and steepest CO_2 concentration changes in the vapor phase, whereas TBAC solutions showed the highest CO_2 selectivity (∼61%) in the clathrate phase. CP solutions exhibited a slower formation rate, but their final gas uptake and CO_2 selectivity in the clathrate phase were comparable to the THF solutions. Raman spectroscopy confirmed the enclathration of both CO_2 and N_2 in the clathrate cages and a structural transition due to the inclusion of promoters in the clathrate phase. The overall experimental results indicate that TBAC is a viable thermodynamic promoter for clathrate-based CO_2 capture from simulated flue gas, considering the lower pressure requirement for clathrate formation, higher CO_2 enrichment in the clathrate phase, non-toxicity, and non-volatility. - Highlights: • Clathrate-based CO_2 capture was investigated in the presence of thermodynamic promoters. • THF, CP, and TBAC demonstrated a significant thermodynamic promotion for CO_2 (20%) + N_2 (80%) clathrates. • The highest gas uptake was observed for the THF (5.6 mol%) solution. • TBAC solutions showed the highest CO_2 selectivity in the clathrate phase (∼61%). • Raman spectroscopy confirmed the guest gas enclathration and clathrate structure.

  7. Molecular dynamics study on the structure I clathrate-hydrate of methane + ethane mixture

    International Nuclear Information System (INIS)

    Erfan-Niya, Hamid; Modarress, Hamid; Zaminpayma, Esmaeil

    2011-01-01

    Molecular dynamics (MD) simulations are used to study the structure I stability of methane + ethane clathrate-hydrates at temperatures 273, 275 and 277 K. NVT- and NPT-ensembles are utilized in MD simulation, and each consists of 3 x 3 x 3 replica unit cells containing 46 water molecules which are considered as the host molecules and up to eight methane + ethane molecules considered as the guest molecules. In MD simulations for host-host interactions, the potential model used was a type of simple point charge (SPC) model, and for guest-guest and host-guest interactions the potential used was Lennard-Jones model. In the process of MD simulation, achieving equilibrium of the studied system was recognized by stability in calculated pressure for NVT-ensemble and volume for NPT-ensemble. To understand the characteristic configurations of the structure I hydrate, the radial distribution functions (RDFs) of host-host, host-guest and guest-guest molecules as well as other properties including kinetic energy, potential energy and total energy were calculated. The results show that guest molecules interaction with host molecules cannot decompose the hydrate structure, and these results are consistent with most previous experimental and theoretical investigations that methane + ethane mixtures form structure I hydrates over the entire mixture composition range.

  8. Measurements of relevant parameters in the formation of clathrate hydrates by a novel experimental apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Arca, S.; Di Profio, P.; Germani, R.; Savelli, G. [Perugia Univ., CEMIN, Perugia (Italy). Dept. of Chemistry

    2008-07-01

    There is a growing interest in understanding the thermodynamics and kinetics of clathrate hydrate formation. This paper presented a study that involved the design, construction, calibration, and testing of a new apparatus that could obtain as many parameters as possible in a single formation batch and that could measure unexplored clathrate hydrate parameters. The apparatus was capable of measuring equilibrium phases involving gaseous components. The paper described the conceptual design as well as the chamber, pressure line, temperature control, liquid addition line, and conductometric probe. The paper also discussed data acquisition, stirring, measurement examples, and internal illumination and video monitoring. It was concluded that refining measurements, particularly those concerning kinetic characterizations, is important in order to clarify several uncertain kinetic behaviors of clathrate hydrates. 6 refs., 16 figs.

  9. Clathrate hydrates - the energy of the future an overview and a postulated formation mechanism

    International Nuclear Information System (INIS)

    Pratt, R.M.

    2000-01-01

    Clathrate hydrates are non-stoichiometric compounds that form when water and certain low molecular weight hydrocarbons coexist at high pressures and low temperatures. The majority of the earth hydrocarbons are in the hydrate phase and are primarily located along the ocean bottoms and to a lesser degree in the permafrost regions. In addition, hydrate formation is induced in undersea gas transmission lines and causes costly pipeline plugs and requires expensive inhibition measures to be taken. Therefore, both a stick and a carrot motivate hydrate research. They are a costly and dangerous nuisance to the oil and gas industry and represent a tremendous, untapped energy resource of the future. The formation mechanism of clathrate hydrate formation has always been shrouded in mystery, and an ongoing debate has ensued as to whether their formation is a bulk or surface phenomenon. Molecular dynamics simulation and fractal modeling suggest that this may be an irrelevant issue and that two independent factors contribute to the symmetrical ordered structure of clathrate hydrates: hydrophobic hydration of hydrocarbon molecules in water and formation of linked cavities as these small clusters aggregate. (Author)

  10. Phase equilibrium measurements and the tuning behavior of new sII clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woongchul; Park, Seongmin; Ro, Hyeyoon; Koh, Dong-Yeun; Seol, Jiwoong [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701 (Korea, Republic of); Lee, Huen, E-mail: h_lee@kaist.ac.kr [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701 (Korea, Republic of); Graduate School of EEWS, KAIST, Daejeon 305-701 (Korea, Republic of)

    2012-01-15

    Graphical abstract: Pyrrolidine and piperidine act as sII clathrate hydrate formers under methane gas. Highlights: > New sII clathrate hydrate formers were proposed: pyrrolidine and piperidine. > Formation of gas hydrate with methane as help gas was confirmed. > NMR, Raman, and XRD patterns were analyzed to identify the hydrate structures. > We measured (L + H + V) phase equilibrium with proposed hydrate formers. > Tuning phenomena increase gas storage in (pyrrolidine + CH{sub 4}) clathrate hydrates. - Abstract: We suggest two types of new amine-type sII formers: pyrrolidine and piperidine. These guest compounds fail to form clathrate hydrate structures with host water, but instead have to combine with light gaseous guest molecules (methane) for enclathration. First, two binary clathrate hydrates of (pyrrolidine + methane) and (piperidine + methane) were synthesized at various amine concentrations. {sup 13}C NMR and Raman analysis were done to identify the clathrate hydrate structure and guest distribution over sII-S and sII-L cages. XRD was also used to find the exact structure and corresponding cell parameters. At a dilute pyrrolidine concentration of less than 5.56 mol%, the tuning phenomenon is observed such that methane molecules surprisingly occupy sII-L cages. At the critical guest concentration of about 0.1 mol%, the cage occupancy ratio reaches the maximum of approximately 0.5. At very dilute guest concentration below 0.1 mol%, the methane molecules fail to occupy large cages on account of their rarefied distribution in the network. Direct-release experiments were performed to determine the actual guest compositions in the clathrate hydrate phases. Finally, we measured the clathrate hydrate phase equilibria of (pyrrolidine + methane) and (piperidine + methane).

  11. Phase equilibrium measurements and the tuning behavior of new sII clathrate hydrates

    International Nuclear Information System (INIS)

    Shin, Woongchul; Park, Seongmin; Ro, Hyeyoon; Koh, Dong-Yeun; Seol, Jiwoong; Lee, Huen

    2012-01-01

    Graphical abstract: Pyrrolidine and piperidine act as sII clathrate hydrate formers under methane gas. Highlights: → New sII clathrate hydrate formers were proposed: pyrrolidine and piperidine. → Formation of gas hydrate with methane as help gas was confirmed. → NMR, Raman, and XRD patterns were analyzed to identify the hydrate structures. → We measured (L + H + V) phase equilibrium with proposed hydrate formers. → Tuning phenomena increase gas storage in (pyrrolidine + CH 4 ) clathrate hydrates. - Abstract: We suggest two types of new amine-type sII formers: pyrrolidine and piperidine. These guest compounds fail to form clathrate hydrate structures with host water, but instead have to combine with light gaseous guest molecules (methane) for enclathration. First, two binary clathrate hydrates of (pyrrolidine + methane) and (piperidine + methane) were synthesized at various amine concentrations. 13 C NMR and Raman analysis were done to identify the clathrate hydrate structure and guest distribution over sII-S and sII-L cages. XRD was also used to find the exact structure and corresponding cell parameters. At a dilute pyrrolidine concentration of less than 5.56 mol%, the tuning phenomenon is observed such that methane molecules surprisingly occupy sII-L cages. At the critical guest concentration of about 0.1 mol%, the cage occupancy ratio reaches the maximum of approximately 0.5. At very dilute guest concentration below 0.1 mol%, the methane molecules fail to occupy large cages on account of their rarefied distribution in the network. Direct-release experiments were performed to determine the actual guest compositions in the clathrate hydrate phases. Finally, we measured the clathrate hydrate phase equilibria of (pyrrolidine + methane) and (piperidine + methane).

  12. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines, Golden, CO (United States)

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  13. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2004-01-01

    The process energy consumption was estimated for gas separation processes by the formation of clathrate hydrates. The separation process is based on the equilibrium partition of the components between the gaseous phase and the hydrate phase. The separation and capturing processes of greenhouse gases were examined in this study. The target components were hydrofluorocarbon (HFC-134a) from air, sulfur hexafluoride (SF 6 ) from nitrogen, and CO 2 from flue gas. Since these greenhouse gases would form hydrates under much lower pressure and higher temperature conditions than the accompanying components, the effective capturing of the greenhouse gases could be achieved by using hydrate formation. A model separation process for each gaseous mixture was designed from the basis of thermodynamics, and the process energy consumption was estimated. The obtained results were then compared with those for conventional separation processes such as liquefaction separation processes. For the recovery of SF 6 , the hydrate process is preferable to liquefaction process in terms of energy consumption. On the other hand, the liquefaction process consumes less energy than the hydrate process for the recovery of HFC-134a. The capturing of CO 2 by the hydrate process from a flue gas will consume a considerable amount of energy; mainly due to the extremely high pressure conditions required for hydrate formation. The influences of the operation conditions on the heat of hydrate formation were elucidated by sensitivity analysis. The hydrate processes for separating these greenhouse gases were evaluated in terms of reduction of global warming potential (GWP)

  14. Micro-Tomographic Investigation of Ice and Clathrate Formation and Decomposition under Thermodynamic Monitoring

    Directory of Open Access Journals (Sweden)

    Stefan Arzbacher

    2016-08-01

    Full Text Available Clathrate hydrates are inclusion compounds in which guest molecules are trapped in a host lattice formed by water molecules. They are considered an interesting option for future energy supply and storage technologies. In the current paper, time lapse 3D micro computed tomographic (µCT imaging with ice and tetrahydrofuran (THF clathrate hydrate particles is carried out in conjunction with an accurate temperature control and pressure monitoring. µCT imaging reveals similar behavior of the ice and the THF clathrate hydrate at low temperatures while at higher temperatures (3 K below the melting point, significant differences can be observed. Strong indications for micropores are found in the ice as well as the THF clathrate hydrate. They are stable in the ice while unstable in the clathrate hydrate at temperatures slightly below the melting point. Significant transformations in surface and bulk structure can be observed within the full temperature range investigated in both the ice and the THF clathrate hydrate. Additionally, our results point towards an uptake of molecular nitrogen in the THF clathrate hydrate at ambient pressures and temperatures from 230 K to 271 K.

  15. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system

    Science.gov (United States)

    Lunine, J. I.; Stevenson, D. J.

    1985-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  16. Formation temperatures of thermogenic and biogenic methane

    Science.gov (United States)

    Stolper, D.A.; Lawson, M.; Davis, C.L.; Ferreira, A.A.; Santos Neto, E. V.; Ellis, G.S.; Lewan, M.D.; Martini, Anna M.; Tang, Y.; Schoell, M.; Sessions, A.L.; Eiler, J.M.

    2014-01-01

    Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a “clumped isotope” technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yield formation temperatures consistent with their comparatively lower-temperature formational environments (<50°C). In systems where gases have migrated and other proxies for gas-generation temperature yield ambiguous results, methane clumped-isotope temperatures distinguish among and allow for independent tests of possible gas-formation models.

  17. Experimental study and thermodynamic modelling of methane clathrate hydrate dissociation conditions in silica gel porous media in the presence of methanol aqueous solution

    International Nuclear Information System (INIS)

    Hashemi, Hamed; Javanmardi, Jafar; Zarifi, Mojdeh; Eslamimanesh, Ali; Mohammadi, Amir H.

    2012-01-01

    Highlights: ► Phase equilibria of hydrates of methane in confined silica gel pores are reported. ► Dissociation data in the presences of methanol aqueous solution are also measured. ► A thermodynamic model is developed for prediction of the obtained data. ► Acceptable agreement is found between the obtained data and the predicted results. - Abstract: In this work, the phase equilibria of clathrate hydrates of methane in the presence of pure water and 0.035 mass fraction of methanol aqueous solution in confined silica gel pores with (10 and 15) nm mean diameters are measured and reported. A thermodynamic model is also developed for prediction of the obtained experimental hydrate dissociation data. The Valderrama–Patel–Teja (VPT-EoS) equation of state (EoS) accompanied with the non-density dependent (NDD) mixing rules coupled with a previously developed activity model are applied to evaluate the fugacity of the species present and the activity coefficient of water in methanol aqueous solution. Acceptable agreement between the reported data and the predicted results using the proposed model and an existing method reported in the literature demonstrates the reliability of the presented model.

  18. Observations of CO{sub 2} clathrate hydrate formation and dissolution under deep-ocean disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Warzinski, R.P.; Cugini, A.V. [Department of Energy, Pittsburgh, PA (United States); Holder, G.D. [Univ. of Pittsburgh, Pittsburgh, PA (United States)

    1995-11-01

    Disposal of anthropogenic emissions of CO{sub 2} may be required to mitigate rises in atmospheric levels of this greenhouse gas if other measures are ineffective and the worst global warming scenarios begin to occur. Long-term storage of large quantities of CO{sub 2} has been proposed, but the feasibility of large land and ocean disposal options remains to be established. Determining the fate of liquid CO{sub 2} injected into the ocean at depths greater than 500 m is complicated by uncertainties associated with the physical behavior of CO{sub 2} under these conditions, in particular the possible formation of the ice-like CO{sub 2} clathrate hydrate. Resolving this issue is key to establishing the technical feasibility of this option. Experimental and theoretical work in this area is reported.

  19. Thermodynamic promotion of carbon dioxide-clathrate hydrate formation by tetrahydrofuran, cyclopentane and their mixtures

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2013-01-01

    Gas clathrate hydrate dissociation pressures are reported for mixtures of carbon dioxide, water and thermodynamic promoters forming structure II hydrates.Hydrate (H)-aqueous liquid (Lw)-vapour (V) equilibrium pressures for the ternary system composed of water, tetrahydrofuran (THF), and carbon....... It is shown that upon adding THF to the pure aqueous phase to form a 4mass percent solution, the equilibrium pressure of the formed hydrates may be lowered compared to the ternary system of water, cyclopentane and carbon dioxide. © 2013 Elsevier Ltd....... dioxide (CO2), with 5.0mole percent THF in the initial aqueous phase, are presented in the temperature range from 283.3K to 285.2K. At 283.3K, the three-phase equilibrium pressure is determined to be 0.61MPa (absolute pressure).Four-phase hydrate (H)-aqueous liquid (Lw)-organic liquid (La)-vapour (V...

  20. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  1. Alloys of clathrate allotropes for rechargeable batteries

    Science.gov (United States)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  2. Coloration and darkening of methane clathrate and other ices by charged particle irradiation - Applications to the outer solar system

    Science.gov (United States)

    Thompson, W. Reid; Murray, B. G. J. P. T.; Khare, B. N.; Sagan, Carl

    1987-01-01

    The results of laboratory experiments simulating the irradiation of hydrocarbon-H2O or hydrocarbon-H2O/NH3 clathrates by charged particles in the outer solar system are reported. Ices produced by condensing and boiling liquid CH4 on an H2O frost surface at 100 K or by cocondensing frosts from gaseous mixtures were exposed to coronal-discharge electron irradiation at 77 K, and the spectral properties of the irradiated surfaces were determined. Significant darkening of the initially white ices was observed at doses of 1 Gerg/sq cm, corresponding to 8-500 yrs of irradiation by Uranian magnetospheric electrons on the surfaces of the principal Uranian satellites, or to total destruction of CH4 in the upper 1 mm of the satellite surfaces after 0.05-3.0 Myr. It is estimated that 10 m or more of icy satellite or comet surfaces would be radiation-hardened to a CH4-free ice-tholin mixture over 4 Gyr.

  3. Simulation and Characterization of Methane Hydrate Formation

    Science.gov (United States)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  4. Modeling the methane hydrate formation in an aqueous film submitted to steady cooling

    Energy Technology Data Exchange (ETDEWEB)

    Avendano-Gomez, J.R. [ESIQIE, Laboratorio de Ingenieria Quimica Ambiental, Mexico (Mexico). Inst. Politecnico Nacional; Garcia-Sanchez, F. [Laboratorio de Termodinamica, Mexico (Mexico). Inst. Mexicano del Petroleo; Gurrola, D.V. [UPIBI, Laboratorio de Diseno de Plantas, Mexico (Mexico). Inst. Politecnico Nacional

    2008-07-01

    Gas hydrates, or clathrate hydrates, are ice-like compounds that results from the kinetic process of crystallization of an aqueous solution supersaturated with a dissolved gas. This paper presented a model that took into account two factors involved in the hydrate crystallization, notably the stochastic nature of crystallization that causes sub-cooling and the heat resulting from the exothermic enthalpy of hydrate formation. The purpose of this study was to model the thermal evolution inside a hydrate forming system which was submitted to an imposed steady cooling. The study system was a cylindrical thin film of aqueous solution at 19 Mpa. The study involved using methane as the hydrate forming molecule. It was assumed that methane was homogeneously dissolved in the aqueous phase. Ethane hydrate was formed through a kinetic process of nucleation and crystallization. In order to predict the onset time of nucleation, the induction time needed to be considered. This paper discussed the probability of nucleation as well as the estimation of the rate of nucleation. It also presented the mathematical model and boundary conditions. These included assumptions and derivation of the model; boundary conditions; initial conditions; and numerical solution of the model equation. It was concluded that the heat source must be considered when investigating crystallization effects. 34 refs., 2 tabs., 2 figs.

  5. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application

    International Nuclear Information System (INIS)

    Veluswamy, Hari Prakash; Kumar, Asheesh; Kumar, Rajnish; Linga, Praveen

    2017-01-01

    Highlights: • Innovative combinatorial hybrid approach to reduce nucleation stochasticity and enhance hydrate growth. • Methane hydrate growth curves are similar in UTR and STR configurations in presence of leucine. • Amalgamation of stirred (STR) and unstirred (UTR) configuration is demonstrated. • Reliable method for scale up and commercial production of Solidified Natural Gas (SNG). - Abstract: Natural gas storage in clathrate hydrates or solidified natural gas (SNG) offers the safest, cleanest and the most compact mode of storage aided by the relative ease in natural gas (NG) recovery with minimal cost compared to known conventional methods of NG storage. The stochastic nature of hydrate nucleation and the slow kinetics of hydrate growth are major challenges that needs to be addressed on the SNG production side. A deterministic and fast nucleation coupled with rapid crystallization kinetics would empower this beneficial technology for commercial application. We propose a hybrid combinatorial approach of methane hydrate formation utilizing the beneficial aspect of environmentally benign amino acid (leucine) as a kinetic promoter by combining stirred and unstirred reactor operation. This hybrid approach is simple, can easily be implemented and scaled-up to develop an economical SNG technology for efficient storage of natural gas on a large scale. Added benefits include the minimal energy requirement during hydrate growth resulting in overall cost reduction for SNG technology.

  6. Characteristics of Methane Hydrate Formation in Artificial and Natural Media

    OpenAIRE

    Peng Zhang; Qingbai Wu; Yuzhong Yang

    2013-01-01

    The formation of methane hydrate in two significantly different media was investigated, using silica gel as an artificial medium and loess as a natural medium. The methane hydrate formation was observed through the depletion of water in the matrix, measured via the matrix potential and the relationship between the matrix potential and the water content was determined using established equations. The velocity of methane hydrate nucleation slowed over the course of the reaction, as it relied on...

  7. Methane formation in tritium gas exposed to stainless steel

    International Nuclear Information System (INIS)

    Morris, G.A.

    1977-01-01

    Tests were performed to determine the effect cleanliness of a surface exposed to tritium gas had on methane formation. These tests performed on 304 stainless steel vessels, cleaned in various ways, showed that the methane formation was reduced by the use of various cleaning procedures

  8. Investigation of the Methane Hydrate Formation by Cavitation Jet

    Science.gov (United States)

    Morita, H.; Nagao, J.

    2015-12-01

    Methane hydrate (hereafter called "MH") is crystalline solid compound consisting of hydrogen-bonded water molecules forming cages and methane gas molecules enclosed in the cage. When using MH as an energy resource, MH is dissociated to methane gas and water and collect only the methane gas. The optimum MH production method was the "depressurization method". Here, the production of MH means dissociating MH in the geologic layers and collecting the resultant methane gas by production systems. In the production of MH by depressurization method, MH regeneration was consider to important problem for the flow assurance of MH production system. Therefore, it is necessary to clarify the effect of flow phenomena in the pipeline on hydrate regeneration. Cavitation is one of the flow phenomena which was considered a cause of MH regeneration. Large quantity of microbubbles are produced by cavitation in a moment, therefore, it is considered to promote MH formation. In order to verify the possible of MH regeneration by cavitation, it is necessary to detailed understanding the condition of MH formation by cavitation. As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on MH formation using by cavitation. The primary objective of this study is to demonstrate the formation MH by using cavitation in the various temperature and pressure condition, and to clarify the condition of MH formation by using observation results.

  9. Critical guest concentration and complete tuning pattern appearing in the binary clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Cha, J.H.; Lee, H. [Korea Advanced Inst. of Science and Technology, Yuseong-gu, Daejeon (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering; Kim, D.Y. [SK Engineering and Construction, Jongno-gu, Seoul (Korea, Republic of); Park, J. [Hanwha Chemical R and D Center, Yuseong-gu, Daejeon (Korea, Republic of); Lee, J.W. [Kongju National Univ., Cheonan, Chungnam (Korea, Republic of); Ripmeester, J.A. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences

    2008-07-01

    Clathrate hydrates, or gas hydrates, are stabilized by van der Waals interaction between a guest molecule and a host framework. Because of their property, they are a potential resource in the exploitation of natural gas hydrates, as a material for the sequestration of carbon dioxide (CO{sub 2}), as a means of storage and transportation of natural gas, as well as hydrogen storage. Clathrate hydrate research can be divided into two categories that emphasize either macroscopic or microscopic approaches. However, these two approaches need to be closely linked for a better understanding of the structures and processes involving both natural phenomena and hydrates for industrial processes. Details on the molecular scale that concern the less usual properties of clathrate hydrates remain unknown. This paper presented the results of a study that reported on the existence of a critical guest concentration (CGC) and established the complete tuning pattern that occurred in the binary hydrates, including water-soluble hydrate formers (promoters) and water-insoluble guests. The paper presented the experimental procedures, including formation of the methane (CH{sub 4}) and tetrahydrofuran (THF) binary hydrate; a schematic diagram of the experimental apparatus; and formation of the CH{sub 4} and t-BuNH{sub 2} binary hydrate. Nuclear magnetic resonance (NMR) spectroscopic measurements and thermodynamic measurements were also presented. It was concluded that the CGC value appeared to primarily depend on the chemical nature of a liquid guest component participating in the binary hydrate formation. 10 refs., 2 tabs., 9 figs.

  10. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    Science.gov (United States)

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  11. Characteristics of Methane Hydrate Formation in Artificial and Natural Media

    Directory of Open Access Journals (Sweden)

    Qingbai Wu

    2013-03-01

    Full Text Available The formation of methane hydrate in two significantly different media was investigated, using silica gel as an artificial medium and loess as a natural medium. The methane hydrate formation was observed through the depletion of water in the matrix, measured via the matrix potential and the relationship between the matrix potential and the water content was determined using established equations. The velocity of methane hydrate nucleation slowed over the course of the reaction, as it relied on water transfer to the hydrate surfaces with lower Gibbs free energy after nucleation. Significant differences in the reactions in the two types of media arose from differences in the water retention capacity and lithology of media due to the internal surface area and pore size distributions. Compared with methane hydrate formation in silica gel, the reaction in loess was much slower and formed far less methane hydrate. The results of this study will advance the understanding of how the properties of the environment affect the formation of gas hydrates in nature.

  12. An effect of surface properties on detachment of adhered solid to cooling surface for formation of clathrate hydrate slurry

    Science.gov (United States)

    Daitoku, Tadafumi; Utaka, Yoshio

    In air-conditioning systems, it is desirable that the liquid-solid phase change temperature of a cool energy storage material is approximately 10 °C from the perspective of improving coefficient of performance (COP). Moreover, a thermal storage material that forms slurry can realize large heat capacity of working fluids. Since the solid that adheres to the heat transfer surface forms a thermal resistance layer and remarkably reduces the rate of cold storage, it is important to avoid the adhesion of a thick solid layer on the surface so as to realize efficient energy storage. Considering a harvest type cooling unit, the force required for removing the solid phase from the heat transfer surface was studied. Tetra-n-butylammonium Bromide (TBAB) clathrate hydrate was used as a cold storage material. The effect of the heat transfer surface properties on the scraping force for detachment of adhered solid of TBAB hydrate to the heat transfer surface was examined experimentally.

  13. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  14. Formation of methane and nitrous oxide in plants

    Science.gov (United States)

    Keppler, Frank; Lenhart, Katharina

    2017-04-01

    and mosses, so called cryptogamic covers, were recently identified to release substantial amounts of nitrous oxide (Lenhart et al. 2015). In this presentation we will give a brief overview of recent observations of aerobic methane formation and nitrous oxide emissions from terrestrial vegetation. Furthermore, we will present new results from laboratory incubation experiments that provide further insights into the formation of methane and nitrous oxide from plants. References: Bruhn, D. et al.: Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen. Plant Biology 16, 512-516, 2014. Chang, C. et al.: Nitrous Oxide Emission through Plants. Soil Science Society of America Journal 62, 35-38, 1998. Dean, J. V., Harper, J. E.: Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiology 82, 718-723, 1986. Keppler, F., Boros, M., Frankenberg, C., Lelieveld, J., McLeod, A., Pirttilä, A. M., Röckmann, T., Schnitzler, J.: Methane formation in aerobic environments, Environmental Chemistry, 6, 459-465, 2009. Lenhart, K. et al.: Nitrous oxide and methane emissions from cryptogamic covers. Global Change Biology 21, 3889-3900, 2015. Pihlatie, M., Ambus, P., Rinne, J., Pilegaard, K., Vesala, T.: Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves. New Phytologist 168, 93-98, 2005. Wang, Z.-P., Chang, S. X., Chen, H., Han, X.-G.: Widespread non-microbial methane production by organic compounds and the impact of environmental stresses, Earth-Science Reviews, 127, 193-202, 2013.

  15. Formation and retention of methane in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  16. Molecular dynamics study of methane hydrate formation at a water/methane interface.

    Science.gov (United States)

    Zhang, Junfang; Hawtin, R W; Yang, Ye; Nakagava, Edson; Rivero, M; Choi, S K; Rodger, P M

    2008-08-28

    We present molecular dynamics simulation results of a liquid water/methane interface, with and without an oligomer of poly(methylaminoethylmethacrylate), PMAEMA. PMAEMA is an active component of a commercial low dosage hydrate inhibitor (LDHI). Simulations were performed in the constant NPT ensemble at temperatures of 220, 235, 240, 245, and 250 K and a pressure of 300 bar. The simulations show the onset of methane hydrate growth within 30 ns for temperatures below 245 K in the methane/water systems; at 240 K there is an induction period of ca. 20 ns, but at lower temperatures growth commences immediately. The simulations were analyzed to calculate hydrate content, the propensity for hydrogen bond formation, and how these were affected by both temperature and the presence of the LDHI. As expected, both the hydrogen bond number and hydrate content decreased with increasing temperature, though little difference was observed between the lowest two temperatures considered. In the presence of PMAEMA, the temperature below which sustained hydrate growth occurred was observed to decrease. Some of the implications for the role of PMAEMA in LDHIs are discussed.

  17. Surface Assisted Formation of methane Hydrates on Ice and Na Montmorillonite Clay

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Teich-McGoldrick, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cygan, Randall Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    Methane hydrates are extremely important naturally-occurring crystalline materials that impact climate change, energy resources, geological hazards, and other major environmental issues. Whereas significant experimental effort has been completed to understanding the bulk thermodynamics of methane hydrate assemblies, little is understood on heterogeneous nucleation and growth of methane hydrates in clay-rich environments. Controlled synthesis experiments were completed at 265-285 K and 6.89 MPa to examine the impact of montmorillonite surfaces in clay-ice mixtures to nucleate and form methane hydrate. The results suggest that the hydrophilic and methane adsorbing properties of Namontmorillonite reduce the nucleation period of methane hydrate formation in pure ice systems.

  18. [The processes of methane formation and oxidation in the soils of the Russian arctic tundra].

    Science.gov (United States)

    Berestovskaia, Iu Iu; Rusanov, I I; Vasil'eva, L V; Pimenov, N V

    2005-01-01

    Methane emission from the following types of tundra soils was studied: coarse humic gleyey loamy cryo soil, peaty gley soil, and peaty gleyey midloamy cryo soil of the arctic tundra. All the soils studied were found to be potential sources of atmospheric methane. The highest values of methane emission were recorded in August at a soil temperature of 8-10 degrees C. Flooded parcels were the sources of atmospheric methane throughout the observation period. The rates of methane production and oxidation in tundra soils of various types at 5 and 15 degrees C were studied by the radioisotope method. Methane oxidation was found to occur in bog water, in the green part of peat moss, and in all the soil horizons studied. Methane formation was recorded in the horizons of peat, in clay with plant roots, and in peaty moss dust of the bogey parcels. At both temperatures, the methane oxidation rate exceeded the rate of methane formation in all the horizons of the mossy-lichen tundra and of the bumpy sinkhole complex. Methanogenesis prevailed only in a sedge-peat moss bog at 15 degrees C. Enrichment bacterial cultures oxidizing methane at 5 and 15 degrees C were obtained. Different types of methanotrophic bacteria were shown to be responsible for methane oxidation under these conditions. A representative of type I methylotrophs oxidized methane at 5 degrees C, and Methylocella tundrae, a psychroactive representative of an acidophilic methanotrophic genus Methylocella, at 15 degrees C.

  19. Weak interactions between water and clathrate-forming gases at low pressures

    Energy Technology Data Exchange (ETDEWEB)

    Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  20. Abiotic methane formation during experimental serpentinization of olivine.

    Science.gov (United States)

    McCollom, Thomas M

    2016-12-06

    Fluids circulating through actively serpentinizing systems are often highly enriched in methane (CH 4 ). In many cases, the CH 4 in these fluids is thought to derive from abiotic reduction of inorganic carbon, but the conditions under which this process can occur in natural systems remain unclear. In recent years, several studies have reported abiotic formation of CH 4 during experimental serpentinization of olivine at temperatures at or below 200 °C. However, these results seem to contradict studies conducted at higher temperatures (300 °C to 400 °C), where substantial kinetic barriers to CH 4 synthesis have been observed. Here, the potential for abiotic formation of CH 4 from dissolved inorganic carbon during olivine serpentinization is reevaluated in a series of laboratory experiments conducted at 200 °C to 320 °C. A 13 C-labeled inorganic carbon source was used to unambiguously determine the origin of CH 4 generated in the experiments. Consistent with previous high-temperature studies, the results indicate that abiotic formation of CH 4 from reduction of dissolved inorganic carbon during the experiments is extremely limited, with nearly all of the observed CH 4 derived from background sources. The results indicate that the potential for abiotic synthesis of CH 4 in low-temperature serpentinizing environments may be much more limited than some recent studies have suggested. However, more extensive production of CH 4 was observed in one experiment performed under conditions that allowed an H 2 -rich vapor phase to form, suggesting that shallow serpentinization environments where a separate gas phase is present may be more favorable for abiotic synthesis of CH 4 .

  1. Chemical-clathrate hybrid hydrogen storage: storage in both guest and host.

    Science.gov (United States)

    Strobel, Timothy A; Kim, Yongkwan; Andrews, Gary S; Ferrell, Jack R; Koh, Carolyn A; Herring, Andrew M; Sloan, E Dendy

    2008-11-12

    Hydrogen storage from two independent sources of the same material represents a novel approach to the hydrogen storage problem, yielding storage capacities greater than either of the individual constituents. Here we report a novel hydrogen storage scheme in which recoverable hydrogen is stored molecularly within clathrate cavities as well as chemically in the clathrate host material. X-ray diffraction and Raman spectroscopic measurements confirm the formation of beta-hydroquinone (beta-HQ) clathrate with molecular hydrogen. Hydrogen within the beta-HQ clathrate vibrates at considerably lower frequency than hydrogen in the free gaseous phase and rotates nondegenerately with splitting comparable to the rotational constant. Compared with water-based clathrate hydrate phases, the beta-HQ+H2 clathrate shows remarkable stability over a range of p-T conditions. Subsequent to clathrate decomposition, the host HQ was used to directly power a PEM fuel cell. With one H2 molecule per cavity, 0.61 wt % hydrogen may be stored in the beta-HQ clathrate cavities. When this amount is combined with complete dehydrogenation of the host hydroxyl hydrogens, the maximum hydrogen storage capacity increases nearly 300% to 2.43 wt %.

  2. Synergistic methane formation kinetics for hydrogen impact on carbon

    International Nuclear Information System (INIS)

    Haasz, A.A.; Davis, J.W.

    1986-06-01

    A physical/chemical model is presented for the reaction kinetics for methane formation from carbon, due to bombardment by energetic (∼ 100's eV) H + ions and thermal (∼ 1 eV) H 0 atoms. While the model was developed for H + and H 0 , it can be readily applied to non-hydrogenic energetic particles (ions or atoms, e.g., Ar + , He + , He) in combination with thermal (∼ 1 eV) hydrogen (again ions or atoms) impacting on carbon. Both collisional (in the case of the energetic particles) and chemical reaction processes are included. Special cases of sub-eV H 0 alone, energetic H + alone and combined H 0 plus H + were considered and fitted to experimental data. Generally good agreement was found between theoretical predictions and experimental results over the experimental flux and H + energy ranges studied (H 0 flux: 6x10 14 - 7x10 15 H 0 /cm 2 s, H + flux: 6x10 12 - 5x10 15 H + /cm 2 s, H + energy: 300 eV/H + and 1 keV/H + )

  3. Hydrogen storage in double clathrates with tert-butylamine.

    Science.gov (United States)

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sum, Amadeu K; Sloan, E Dendy; Koh, Carolyn A

    2009-06-18

    The first proof-of-concept of the formation of a double tert-butylamine (t-BuNH(2)) + hydrogen (H(2)) clathrate hydrate has been demonstrated. Binary clathrate hydrates with different molar concentrations of the large guest t-BuNH(2) (0.98-9.31 mol %) were synthesized at 13.8 MPa and 250 K, and characterized by powder X-ray diffraction and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed under hydrogen pressures. Raman spectroscopic data suggested that the hydrogen molecules occupied the small cages and had similar occupancy to hydrogen in the double tetrahydrofuran (THF) + H(2) clathrate hydrate. The hydrogen storage capacity in this system was approximately 0.7 H(2) wt % at the molar concentration of t-BuNH(2) close to the sII stoichiometry.

  4. Overview: Nucleation of clathrate hydrates.

    Science.gov (United States)

    Warrier, Pramod; Khan, M Naveed; Srivastava, Vishal; Maupin, C Mark; Koh, Carolyn A

    2016-12-07

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  5. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  6. Methane Hydrate Formation and Dissociation in the Presence of Silica Sand and Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Kumar Saw V.

    2015-11-01

    Full Text Available The formation and dissociation of methane hydrates in a porous media containing silica sand of different sizes and bentonite clay were studied in the presence of synthetic seawater with 3.55 wt% salinity. The phase equilibrium of methane hydrate under different experimental conditions was investigated. The effects of the particle size of silica sand as well as a mixture of bentonite clay and silica sand on methane hydrate formation and its dissociation were studied. The kinetics of hydrate formation was studied under different subcooling conditions to observe its effects on the induction time of hydrate formation. The amount of methane gas encapsulated in hydrate was computed using a real gas equation. The Clausius-Clapeyron equation is used to estimate the enthalpy of hydrate dissociation with measured phase equilibrium data.

  7. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard

    1996-01-01

    , and conceivably all hydrocarbons are quantitatively converted into methane at temperatures below 600 C, that is, before the proper combustion has started. The splitting of the C-C bonds is preceded by hydrogenation of double and triple bonds and aromatic rings. The reactions, no doubt, are caused by hydrogen...... atoms, which are formed in the burning hydrogen and which diffuse into the inner core of the flame. The quantitative formation of methane appears to explain the "equal per carbon" rule for the detector response of hydrocarbons, since all carbons are "exchanged" for methane molecules....

  8. Volatile inventories in clathrate hydrates formed in the primordial nebula.

    Science.gov (United States)

    Mousis, Olivier; Lunine, Jonathan I; Picaud, Sylvain; Cordier, Daniel

    2010-01-01

    The examination of ambient thermodynamic conditions suggests that clathrate hydrates could exist in the Martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates are probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at a given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically averaged Kihara potential with a nominal set of parameters, most of which are fitted to experimental equilibrium data. Our model allows us to find that Kr, Ar and N2 can be efficiently encaged in clathrate hydrates formed at temperatures higher than approximately 48.5 K in the primitive nebula, instead of forming pure condensates below 30 K. However, we find at the same time that the determination of the relative abundances of guest species incorporated in these clathrate hydrates strongly depends on the choice of the parameters of the Kihara potential and also on the adopted size of cages. Indeed, by testing different potential parameters, we have noted that even minor dispersions between the different existing sets can lead to non-negligible variations in the determination of the volatiles trapped in clathrate hydrates formed in the primordial nebula. However, these variations are not found to be strong enough to reverse the relative abundances

  9. Numerical and experimental investigation of NO{sub x} formation in lean premixed combustion of methane

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, K; Benz, P; Marti, T; Schaeren, R; Schlegel, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A high pressure jet-stirred reactor has been built and employed to investigate NO{sub x} formation in lean premixed combustion of methane/air. Experimental results are compared with numerical predictions using the model of a perfectly stirred reactor and elementary reaction mechanisms. Four reaction mechanisms are considered with respect to NO{sub x} formation. (author) 3 figs., 6 refs.

  10. The potential for methane hydrate formation in deep repositories of spent nuclear fuel in granitic rocks

    International Nuclear Information System (INIS)

    Tohidi, Bahman; Chapoy, Antonin; Smellie, John; Puigdomenech, Ignasi

    2010-12-01

    The main aim of this work was to establish whether the pertaining pressure and temperature conditions and dissolved gas concentration in groundwater is conducive to gas hydrate formation using a modelling approach. The hydrate stability pressure-temperature zone of dissolved methane in the presence of salt has been obtained through calculations which show that a decrease in the system pressure and/or an increase in salt concentration favours hydrate formation, as both factors reduce equilibrium gas solubility in the aqueous phase. This behaviour is unlike that of the system including a gas phase, where the water phase is always saturated with methane, and hence the methane solubility in water is not a limiting factor. The main conclusion is that hydrate formation is not possible at the reported methane concentrations and water salinities for the Forsmark and Laxemar sites in Sweden and Olkiluoto in Finland. At the highest salinities and methane concentrations encountered, namely ∼0.00073 mole fraction methane and ∼10 mass % NaCl at a depth of 1,000 m in Olkiluoto, Finland, hydrates could form if the system temperatures and pressures are below 2.5 deg C and 60 bar, respectively, i.e. values that are much lower than those prevailing at that depth (∼20 deg C and ∼100 bar, respectively). Furthermore, the calculated results provide the necessary data to estimate the effect of increase in dissolved methane concentration on potential hydrate formation, as well as two phase flow. The available depth dependency of methane concentration at the sites studied in Sweden and Finland was used in another study to estimate the diffusive flow of methane in the rock volumes. These diffusion rates, which are highest at Olkiluoto, indicate that even if the conditions were to become favourable to methane hydrate formation, then it would take several millions of years before a thin layer of hydrates could be formed, a condition which is outside the required period of satisfactory

  11. The potential for methane hydrate formation in deep repositories of spent nuclear fuel in granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Tohidi, Bahman; Chapoy, Antonin (Hydrafact Ltd, Inst. of Petroleum Engineering, Heriot-Watt Univ., Edinburgh (United Kingdom)); Smellie, John (Conterra AB, Uppsala (Sweden)); Puigdomenech, Ignasi (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-12-15

    The main aim of this work was to establish whether the pertaining pressure and temperature conditions and dissolved gas concentration in groundwater is conducive to gas hydrate formation using a modelling approach. The hydrate stability pressure-temperature zone of dissolved methane in the presence of salt has been obtained through calculations which show that a decrease in the system pressure and/or an increase in salt concentration favours hydrate formation, as both factors reduce equilibrium gas solubility in the aqueous phase. This behaviour is unlike that of the system including a gas phase, where the water phase is always saturated with methane, and hence the methane solubility in water is not a limiting factor. The main conclusion is that hydrate formation is not possible at the reported methane concentrations and water salinities for the Forsmark and Laxemar sites in Sweden and Olkiluoto in Finland. At the highest salinities and methane concentrations encountered, namely approx0.00073 mole fraction methane and approx10 mass % NaCl at a depth of 1,000 m in Olkiluoto, Finland, hydrates could form if the system temperatures and pressures are below 2.5 deg C and 60 bar, respectively, i.e. values that are much lower than those prevailing at that depth (approx20 deg C and approx100 bar, respectively). Furthermore, the calculated results provide the necessary data to estimate the effect of increase in dissolved methane concentration on potential hydrate formation, as well as two phase flow. The available depth dependency of methane concentration at the sites studied in Sweden and Finland was used in another study to estimate the diffusive flow of methane in the rock volumes. These diffusion rates, which are highest at Olkiluoto, indicate that even if the conditions were to become favourable to methane hydrate formation, then it would take several millions of years before a thin layer of hydrates could be formed, a condition which is outside the required period of

  12. Inhibition of Methane Hydrate Formation by Ice-Structuring Proteins

    DEFF Research Database (Denmark)

    Jensen, Lars; Ramløv, Hans; Thomsen, Kaj

    2010-01-01

    , assumed biodegradable, are capable of inhibiting the growth of methane hydrate (a structure I hydrate). The ISPs investigated were type III HPLC12 (originally identified in ocean pout) and ISP type III found in meal worm (Tenebrio molitor). These were compared to polyvinylpyrrolidone (PVP) a well...... of inhibitors. The profile of the nonlinear growth was concentration-dependent but also dependent on the stirring rate. ISP type III HPLC12 decreased the growth rate of methane hydrate during the linear growth period by 17−75% at concentrations of 0.01−0.1 wt % (0.014−0.14 mM) while ISP from Tenebrio molitor...... and PVP decreased the growth rate by 30% and 39% at concentrations of 0.004 wt % (0.005 mM) and 0.1 wt % (0.1 mM), respectively. Considering the low concentration of Tenebrio molitor ISP used, these results indicate that ISP from Tenebrio molitor is the most effective hydrate inhibitor among those...

  13. Observation of ice sheet formation on methane and ethane gas hydrates using a scanning confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, J.; Shimomura, N.; Ebinuma, T.; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira, Sapporo (Japan). Methane Hydrate Research Lab.

    2008-07-01

    Interest in gas hydrates has increased in recent years due to the discovery of large deposits under the ocean floor and in permafrost regions. Natural gas hydrates, including methane, is expected to become a new energy source and a medium for energy storage and transportation. Gas hydrates consist of an open network of water molecules that are hydrogen-bonded in a similar manner to ice. Gas molecules are interstitially engaged under high pressures and low temperatures. Although the dissociation temperature of methane hydrate under atmospheric pressure is about 193 K, studies have shown that methane hydrate can be stored at atmospheric pressure and 267 K for 2 years. Because of this phenomenon, known as self-preservation, transportation and storage of methane hydrate can occur at temperature conditions milder than those for liquefied methane gas at atmospheric pressure. This study examined the surface changes of methane and ethane hydrates during dissociation using an optical microscope and confocal scanning microscope (CSM). This paper reported on the results when the atmospheric gas pressure was decreased. Ice sheets formed on the surfaces of methane and ethane gas hydrates due to depressurizing dissociation of methane and ethane hydrates when the methane and ethane gas pressures were decreased at designated temperatures. The dissociation of methane gas hydrate below below 237 K resulted in the generation of small ice particles on the hydrate surface. A transparent ice sheet formed on the hydrate surface above 242 K. The thickness of the ice sheet on the methane hydrate surface showed the maximum of ca. 30 {mu}m at 253 K. In the case of ethane hydrates, ice particles and ice sheets formed below 262 and 267 respectively. Since the ice particles and ice sheets were formed by water molecules generated during the gas hydrate dissociation, the mechanism of ice sheet formation depends on the dissociation rate of hydrate, ice particle sintering rate, and water molecule

  14. Subsurface methane formation in graphite due to exposure to H+ and D+

    International Nuclear Information System (INIS)

    Chiu, S.; Haasz, A.A.

    1994-01-01

    The extent of H-D mixing in the form of mixed-isotope methane formation during simultaneous H + /D + bombardment of graphite was measured and found to be a sensitive function of H + -D + ion range separation. The result strongly supports the model that methane molecules are formed at the end of ion range in the bulk of graphite. A long steadily decreasing transient was observed in the methane emission when bombarding a virgin graphite sample with 10 keV D + at 800 K. The effect was less pronounced for low density fine grain isographites (EK98) than for high density pyrolytic graphite (HPG99) and monocrystal carbons. We propose a model which attributes this transient to the creation of new internal ''surfaces'', formed during ion irradiation along with ion-created micropaths. The increase in internal surface area effectively ''dilutes'' the inner surface hydrogen concentration in the region where incident hydrogen ions thermalize. We propose that, initially, methane molecules are formed mainly on inherent internal surfaces (pore and grain/crystallite boundary surfaces) in the region where hydrogen ions thermalize; then as damage builds up, newly produced internal ''surfaces'' also contribute to methane formation. (orig.)

  15. A polyether glycol derived from cashew nutshell as a kinetic inhibitor for methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Jorge Cesar; Esteves, Pierre M., E-mail: pesteves@iq.ufrj.br [Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Teixeira, Adriana [Centro de Pesquisa e Desenvolvimento Leopoldo Americo Miguez de Mello, PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The polyether glycol derived from cashew nutshell liquid inhibited the formation of methane hydrate. The polymer proved to be more efficient than the polyvinyl pyrrolidone-poly(N-vinyl) caprolactam (PVP-PVCap) co-polymer under tested conditions (CH{sub 4}, 1470 psi and 4 degree C), being the latter one of the best commercially available hydrate inhibitors. (author)

  16. Titan's Methane Cycle is Closed

    Science.gov (United States)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  17. Cyclodextrin-Based Solid-Gas Clathrates

    NARCIS (Netherlands)

    Pereva, Stiliana; Himitliiska, Tsveta; Spassov, Tony; Stoyanov, S.D.; Arnaudov, L.N.; Dudev, Todor

    2015-01-01

    "Cyclodextrin-gas" clathrates were obtained by crystallization from water solution of α-, β-, and γ-cyclodextrins (CDs) under pressure of the gas to be entrapped into the CD molecules. When the pressure is released, these clathrates are stable at ambient conditions and dissociate at elevated

  18. Increase of methane formation by ethanol addition during continuous fermentation of biogas sludge.

    Science.gov (United States)

    Refai, Sarah; Wassmann, Kati; van Helmont, Sebastian; Berger, Stefanie; Deppenmeier, Uwe

    2014-12-01

    Very recently, it was shown that the addition of acetate or ethanol led to enhanced biogas formation rates during an observation period of 24 h. To determine if increased methane production rates due to ethanol addition can be maintained over longer time periods, continuous reactors filled with biogas sludge were developed which were fed with the same substrates as the full-scale reactor from which the sludge was derived. These reactors are well reflected conditions of a full-scale biogas plant during a period of 14 days. When the fermenters were pulsed with 50-100 mM ethanol, biomethanation increased by 50-150 %, depending on the composition of the biogas sludge. It was also possible to increase methane formation significantly when 10-20 mM pure ethanol or ethanolic solutions (e.g. beer) were added daily. In summary, the experiments revealed that "normal" methane production continued to take place, but ethanol led to production of additional methane.

  19. Water Transfer Characteristics during Methane Hydrate Formation Processes in Layered Media

    Directory of Open Access Journals (Sweden)

    Yousheng Deng

    2011-08-01

    Full Text Available Gas hydrate formation processes in porous media are always accompanied by water transfer. To study the transfer characteristics comprehensively, two kinds of layered media consisting of coarse sand and loess were used to form methane hydrate in them. An apparatus with three PF-meter sensors detecting water content and temperature changes in media during the formation processes was applied to study the water transfer characteristics. It was experimentally observed that the hydrate formation configurations in different layered media were similar; however, the water transfer characteristics and water conversion ratios were different.

  20. Silicon clathrates for lithium ion batteries: A perspective

    International Nuclear Information System (INIS)

    Warrier, Pramod; Koh, Carolyn A.

    2016-01-01

    Development of novel energy storage techniques is essential for the development of sustainable energy resources. Li-ion batteries have the highest rated energy density among rechargeable batteries and have attracted a lot of attention for energy storage in the last 15–20 years. However, significant advancements are required in anode materials before Li-ion batteries become viable for a wide variety of applications, including in renewable energy storage, grid storage, and electric vehicles. While graphite is the current standard anode material in commercial Li-ion batteries, it is Si that exhibits the highest specific energy density among all materials considered for this purpose. Si, however, suffers from significant volume expansion/contraction and the formation of a thick solid-electrolyte interface layer. To resolve these issues, Si clathrates are being considered for anode materials. Clathrates are inclusion compounds and contain cages in which Li could be captured. While Si clathrates offer promising advantages due to their caged structure which enables negligible volume change upon Li insertion, there remains scientific challenges and knowledge gaps to be overcome before these materials can be utilized for Li-ion battery applications, i.e., understanding lithiation/de-lithiation mechanisms, optimizing guest concentrations, as well as safe and economic synthesis routes.

  1. Silicon clathrates for lithium ion batteries: A perspective

    Energy Technology Data Exchange (ETDEWEB)

    Warrier, Pramod, E-mail: pramod.warrier@gmail.com; Koh, Carolyn A. [Center for Hydrate Research, Chemical & Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401 (United States)

    2016-12-15

    Development of novel energy storage techniques is essential for the development of sustainable energy resources. Li-ion batteries have the highest rated energy density among rechargeable batteries and have attracted a lot of attention for energy storage in the last 15–20 years. However, significant advancements are required in anode materials before Li-ion batteries become viable for a wide variety of applications, including in renewable energy storage, grid storage, and electric vehicles. While graphite is the current standard anode material in commercial Li-ion batteries, it is Si that exhibits the highest specific energy density among all materials considered for this purpose. Si, however, suffers from significant volume expansion/contraction and the formation of a thick solid-electrolyte interface layer. To resolve these issues, Si clathrates are being considered for anode materials. Clathrates are inclusion compounds and contain cages in which Li could be captured. While Si clathrates offer promising advantages due to their caged structure which enables negligible volume change upon Li insertion, there remains scientific challenges and knowledge gaps to be overcome before these materials can be utilized for Li-ion battery applications, i.e., understanding lithiation/de-lithiation mechanisms, optimizing guest concentrations, as well as safe and economic synthesis routes.

  2. Silicon clathrates for lithium ion batteries: A perspective

    Science.gov (United States)

    Warrier, Pramod; Koh, Carolyn A.

    2016-12-01

    Development of novel energy storage techniques is essential for the development of sustainable energy resources. Li-ion batteries have the highest rated energy density among rechargeable batteries and have attracted a lot of attention for energy storage in the last 15-20 years. However, significant advancements are required in anode materials before Li-ion batteries become viable for a wide variety of applications, including in renewable energy storage, grid storage, and electric vehicles. While graphite is the current standard anode material in commercial Li-ion batteries, it is Si that exhibits the highest specific energy density among all materials considered for this purpose. Si, however, suffers from significant volume expansion/contraction and the formation of a thick solid-electrolyte interface layer. To resolve these issues, Si clathrates are being considered for anode materials. Clathrates are inclusion compounds and contain cages in which Li could be captured. While Si clathrates offer promising advantages due to their caged structure which enables negligible volume change upon Li insertion, there remains scientific challenges and knowledge gaps to be overcome before these materials can be utilized for Li-ion battery applications, i.e., understanding lithiation/de-lithiation mechanisms, optimizing guest concentrations, as well as safe and economic synthesis routes.

  3. NO{sub x} formation in lean premixed combustion of methane at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, K U.M.; Griebel, P; Schaeren, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    High pressure experiments in a jet-stirred reactor have been performed to study the NO{sub x} formation in lean premixed combustion of methane/air mixtures. The experimental results are compared with numerical predictions using four well known reaction mechanisms and a model which consists of a series of two perfectly stirred reactors and a plug flow reactor. (author) 2 figs., 7 refs.

  4. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization

    DEFF Research Database (Denmark)

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin

    2016-01-01

    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H-2/CO2), CH4 production kinetics were investigated at 37 +/- 1 degrees C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from...... formate, acetate and H-2/CO2 were 19.58 +/- 0.49, 42.65 +/- 1.17 and 314.64 +/- 3.58 N mL/gVS/d in digested manure system and 6.53 +/- 0.31, 132.04 +/- 3.96 and 640.16 +/- 19.92 N mL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular...... sludge system, while the rate of formate methanation was faster than from H-2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H-2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales...

  5. Synergistic methane formation on pyrolytic graphite due to combined H+ ion and H0 atom impact

    International Nuclear Information System (INIS)

    Haasz, A.A.; Davis, J.W.; Auciello, O.; Strangeby, P.C.; Vietzke, E.; Flaskamp, K.; Philipps, V.

    1986-06-01

    Exposure of graphite to multispecies hydrogenic impact, as is the case in tokamaks, could lead to synergistic mechanisms resulting in an enhancement of methane formation, and consequently in increased carbon erosion. We present results obtained in controlled experiments in our laboratories in Toronto and Juelich for the synergistic methane production due to combined sub-eV H 0 atoms and energetic H + ion impact on pyrolytic graphite. Flux densities were 10 14 -2x10 16 H 0 /cm 2 s for the sub-eV H 0 atoms and 6x10 12 -5x10 15 H + /cm 2 for H + ions of 300 eV to 2.5 keV energy. Synergistic factors (defined as the ratio of methane formation rate due to combined H 0 and H + fluxes to the sum of the formation rates due to separate species impact) ranged from about 1.5-15 for the experimental parameters used. In addition, a spectrum of formed hydrocarbons in the synergistic reaction of H + and H 0 on graphite is presented

  6. Methane formation during deuteron bombardment of carbon in the energy range of 100 to 1500 eV

    International Nuclear Information System (INIS)

    Sone, K.

    1982-01-01

    Methane (CD 4 ) formation rates during deuteron bombardment of carbon (Papyex) have been measured in the energy range of 100 to 1500 eV. The temperature dependence of the methane formation rate is well explained by the model proposed by Erents et al. in the temperature range of 600 to 1150 K. The model, however, does not explain the dependence of the methane formation rate on the flux of incident deuterons at a certain temperature near Tsub(m) at which the formation rate has a maximum value. An alternative model is proposed in which the methane formation rate is assumed to be proportional to the product of the following three parameters: the surface concentration of deuterium atoms, the chemical reaction rate for the formation of methane, and the rate of production of vacancies on the surface by the deuteron bombardment. This model predicts an energy dependence of methane formation which has a maximum around 900 eV even at different deuteron fluxes, when the calculated result by Weissman and Sigmund is used for the surface deposited energy responsible for the production of vacancies. (author)

  7. Thermodynamic studies on semi-clathrate hydrates of TBAB + gases containing carbon dioxide

    International Nuclear Information System (INIS)

    Eslamimanesh, Ali

    2012-01-01

    CO 2 capture has become an important area of research mainly due to its drastic greenhouse effects. Gas hydrate formation as a separation technique shows tremendous potential, both from a physical feasibility as well as an envisaged lower energy utilization criterion. Briefly, gas (clathrate) hydrates are non-stoichiometric, ice-like crystalline compounds formed through a combination of water and suitably sized guest molecule(s) under low-temperatures and elevated pressures. As the pressure required for gas hydrate formation is generally high, therefore, aqueous solution of tetra-n-butyl ammonium bromide (TBAB) is added to the system as a gas hydrate promoter. TBAB generally reduces the required hydrate formation pressure and/or increases the formation temperature as well as modifies the selectivity of hydrate cages to capture CO 2 molecules. TBAB also takes part in the hydrogen-bonded cages. Such hydrates are called 'semi-clathrate' hydrates. Evidently, reliable and accurate phase equilibrium data, acceptable thermodynamic models, and other thermodynamic studies should be provided to design efficient separation processes using the aforementioned technology. For this purpose, phase equilibria of clathrate/semi-clathrate hydrates of various gas mixtures containing CO 2 (CO 2 + CH 4 /N 2 /H 2 ) in the presence of pure water and aqueous solutions of TBAB have been measured in this thesis. In the theoretical section of the thesis, a thermodynamic model on the basis of the van der Waals and Platteeuw (vdW-P) solid solution theory along with the modified equations for determination of the Langmuir constants of the hydrate formers has been successfully developed to represent/predict equilibrium conditions of semi-clathrate hydrates of CO 2 , CH 4 , and N 2 . Later, several thermodynamic consistency tests on the basis of Gibbs-Duhem equation as well as a statistical approach have been applied on the phase equilibrium data of the systems of mixed/simple clathrate hydrates

  8. The inhibition of methane hydrate formation by water alignment underneath surface adsorption of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc N.; Nguyen, Anh V.; Dang, Liem X.

    2017-06-01

    Sodium dodecyl sulfate (SDS) has been widely shown to strongly promote the formation of methane hydrate. Here we show that SDS displays an extraordinary inhibition effect on methane hydrate formation when the surfactant is used in sub-millimolar concentration (around 0.3 mM). We have also employed Sum Frequency Generation vibrational spectroscopy (SFG) and molecular dynamics simulation (MDS) to elucidate the molecular mechanism of this inhibition. The SFG and MDS results revealed a strong alignment of water molecules underneath surface adsorption of SDS in its sub-millimolar solution. Interestingly, both the alignment of water and the inhibition effect (in 0.3 mM SDS solution) went vanishing when an oppositely-charged surfactant (tetra-n-butylammonium bromide, TBAB) was suitably added to produce a mixed solution of 0.3 mM SDS and 3.6 mM TBAB. Combining structural and kinetic results, we pointed out that the alignment of water underneath surface adsorption of dodecyl sulfate (DS-) anions gave rise to the unexpected inhibition of methane hydration formation in sub-millimolar solution of SDS. The adoption of TBAB mitigated the SDS-induced electrostatic field at the solution’s surface and, therefore, weakened the alignment of interfacial water which, in turn, erased the inhibition effect. We discussed this finding using the concept of activation energy of the interfacial formation of gas hydrate. The main finding of this work is to reveal the interplay of interfacial water in governing gas hydrate formation which sheds light on a universal molecular-scale understanding of the influence of surfactants on gas hydrate formation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  9. chemical kinetic study of nitrogen oxides formation in methane flameless combustion

    International Nuclear Information System (INIS)

    Alvarado T, Pedro N; Cadavid S, Francisco; Mondragon, P Fanor; Ruiz, Wilson

    2009-01-01

    The present paper deals with the nitrogen oxides formation in a flameless combustion process characterized for using air highly diluted and preheated at high temperatures. The combustion model used in this study was the one dimensional counterflow methane air diffusion flame. The NOx production rate analysis showed that the thermal and prompt mechanisms are the most important for the formation and consumption of NO under dilution conditions for the oxidant in N 2 and combustion products. These mechanisms are related since the starting reaction for NO formation (N2 molecular dissociation) belongs to the prompt mechanism while the NO formation is reported mainly for the thermal mechanism reactions. On the other hand, the NO - NO 2 equilibrium showed that the reaction rates are comparable to that obtained by the thermal and prompt mechanisms, but its global contribution to NO formation are almost insignificant due to the oxidation reaction with radicals HO 2 .

  10. Short-term effect of acetate and ethanol on methane formation in biogas sludge.

    Science.gov (United States)

    Refai, Sarah; Wassmann, Kati; Deppenmeier, Uwe

    2014-08-01

    Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate.

  11. Methane oxidation and formation of EPS in compost: effect of oxygen concentration

    International Nuclear Information System (INIS)

    Wilshusen, J.H.; Hettiaratchi, J.P.A.; Visscher, A. de; Saint-Fort, R.

    2004-01-01

    Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters. - 1.5% oxygen resulted in a slightly higher and more stable methane oxidation activity

  12. Heat-pump cool storage in a clathrate of freon

    Science.gov (United States)

    Tomlinson, J. J.

    Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.

  13. A study of the methane hydrate formation by in situ turbidimetry

    Energy Technology Data Exchange (ETDEWEB)

    Herri, J M

    1996-02-02

    The study of the Particle Size Distribution (PSD) during the processes of crystallization is a subject of considerable interest, notably in the offshore exploitation of liquid fuels where the gas hydrate crystallization can plug production, treatment and transport facilities. The classical remedy to this problem is mainly thermodynamic additives such as alcohols or salts, but a new way of research is the use of dispersant additives which avoid crystals formation. In this paper, we show an original apparatus that is able to measure in situ the polychromatic UV-Visible turbidity spectrum in a pressurised reactor. We apply this technology to the calculation of the PSD during the crystallization of methane hydrate particles in a stirred semi-batch tank reactor. We discuss the mathematics treatment of the turbidity spectrum in order to determine the PSD and especially the method of matrix inversion with constraint. Moreover, we give a method to calculate theoretically the refractive index of the hydrate particles and we validate it experimentally with the methane hydrate particles. We apply this technology to the study of the crystallization of methane hydrate from pure liquid water and methane gas into the range of temperature [0-2 deg. C], into the range of pressure [30-100 bars] and into the range of stirring rate [0-600 rpm]. We produce a set of experiments concerning these parameters. Then we realize a model of the crystallization taking into account the processes of nucleation, of growth, of agglomeration and flotation. We compare this model with the experimental results concerning the complex influence of stirring rate at 1 deg. C and 30 bars. Then, we investigate the influence of additives such as Fontainebleau Sand, Potassium Chloride and a surfactant such as Poly-Vinyl-Pyrrolydone. (authors). 133 refs., 210 figs., 54 tabs.

  14. A statistical method for evaluation of the experimental phase equilibrium data of simple clathrate hydrates

    DEFF Research Database (Denmark)

    Eslamimanesh, Ali; Gharagheizi, Farhad; Mohammadi, Amir H.

    2012-01-01

    We, herein, present a statistical method for diagnostics of the outliers in phase equilibrium data (dissociation data) of simple clathrate hydrates. The applied algorithm is performed on the basis of the Leverage mathematical approach, in which the statistical Hat matrix, Williams Plot, and the r......We, herein, present a statistical method for diagnostics of the outliers in phase equilibrium data (dissociation data) of simple clathrate hydrates. The applied algorithm is performed on the basis of the Leverage mathematical approach, in which the statistical Hat matrix, Williams Plot...... in exponential form is used to represent/predict the hydrate dissociation pressures for three-phase equilibrium conditions (liquid water/ice–vapor-hydrate). The investigated hydrate formers are methane, ethane, propane, carbon dioxide, nitrogen, and hydrogen sulfide. It is interpreted from the obtained results...

  15. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    Science.gov (United States)

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  16. Pentagonal dodecahedron methane hydrate cage and methanol ...

    Indian Academy of Sciences (India)

    methane hydrate in sea bed near continental margin and underneath of permafrost ... clathrate structure,6,7 IR spectroscopy analysis of vibra- tional form of guest .... Hydrogen (H71) of the hydroxyl group of methanol is found to have formed ...

  17. Numerical Modeling of Methane Leakage from a Faulty Natural Gas Well into Fractured Tight Formations.

    Science.gov (United States)

    Moortgat, Joachim; Schwartz, Franklin W; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High-pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high-pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (∼10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast-developing gas contamination (0-3 months) or large length scales (∼1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small-volume, low-pressure leakage events. © 2018, National Ground Water Association.

  18. Carbon and hydrogen isotope ratios of bacterial methane and its formation mechanism

    International Nuclear Information System (INIS)

    Sugimoto, A.; Wada, E.

    1993-01-01

    Anaerobic incubations of paddy soil collected from Konosu, Japan, were carried out for 10 weeks to clarify the general principles that govern the variation of carbon isotopic composition of bacterial methane from freshwater areas. The δ 13 C value of produced CH 4 was highly variable ranging from -60 to -33%, corresponding to change in its formation pathways: acetate fermentation and CO 2 /H 2 reduction. The δ 13 C value of CH 4 from CO 2 /H 2 was estimated as -77 to -60%, adopting 45% of δ 13 C difference between the CH 4 and its source CO 2 . The δ 13 C value of methyl carbon of acetate accumulated with addition of inhibitor for methanogenesis ranged from -43 to -30%, which was considered with the δ 13 C value of CH 4 from acetate. Variability of CH 4 δ 13 C resulted from the difference in contribution of each biological process. It was demonstrated that δ 13 C value of methane was a useful indicator for assessing the contribution of each process in wetlands and paddy fields. (author)

  19. Methane clumped isotopes in the Songliao Basin (China): New insights into abiotic vs. biotic hydrocarbon formation

    Science.gov (United States)

    Shuai, Yanhua; Etiope, Giuseppe; Zhang, Shuichang; Douglas, Peter M. J.; Huang, Ling; Eiler, John M.

    2018-01-01

    Abiotic hydrocarbon gas, typically generated in serpentinized ultramafic rocks and crystalline shields, has important implications for the deep biosphere, petroleum systems, the carbon cycle and astrobiology. Distinguishing abiotic gas (produced by chemical reactions like Sabatier synthesis) from biotic gas (produced from degradation of organic matter or microbial activity) is sometimes challenging because their isotopic and molecular composition may overlap. Abiotic gas has been recognized in numerous locations on the Earth, although there are no confirmed instances where it is the dominant source of commercially valuable quantities in reservoir rocks. The deep hydrocarbon reservoirs of the Xujiaweizi Depression in the Songliao Basin (China) have been considered to host significant amounts of abiotic methane. Here we report methane clumped-isotope values (Δ18) and the isotopic composition of C1-C3 alkanes, CO2 and helium of five gas samples collected from those Xujiaweizi deep reservoirs. Some geochemical features of these samples resemble previously suggested identifiers of abiotic gas (13C-enriched CH4; decrease in 13C/12C ratio with increasing carbon number for the C1-C4 alkanes; abundant, apparently non-biogenic CO2; and mantle-derived helium). However, combining these constraints with new measurements of the clumped-isotope composition of methane and careful consideration of the geological context, suggests that the Xujiaweizi depression gas is dominantly, if not exclusively, thermogenic and derived from over-mature source rocks, i.e., from catagenesis of buried organic matter at high temperatures. Methane formation temperatures suggested by clumped-isotopes (167-213 °C) are lower than magmatic gas generation processes and consistent with the maturity of local source rocks. Also, there are no geological conditions (e.g., serpentinized ultramafic rocks) that may lead to high production of H2 and thus abiotic production of CH4 via CO2 reduction. We propose

  20. Hysteresis of methane hydrate formation/decomposition at subsea geological conditions

    International Nuclear Information System (INIS)

    Klapproth, Alice; Piltz, Ross; Peterson, Vanessa K.; Kennedy, Shane J.; Kozielski, Karen A.; Hartley, Patrick G.

    2009-01-01

    Full text: Gas hydrates are a major risk when transporting oil and gas in offshore subsea pipelines. Under typical conditions in these pipelines (at high pressure and low temperature) the formation of gas hydrates is favourable. The hydrates form large solid plugs that can block pipelines and can even cause them to burst. This represents a major problem for the gas mining industry, which currently goes to extreme measures to reduce the risk of hydrate formation because there is no reliable experimental data on hydrate processes. The mechanisms of gas hydrate formation, growth and inhibition are poorly understood. A clear understanding of the fundamental processes will allow development of cost effective technologies to avoid production losses in gas pipelines. We are studying the nucleation of the methane hydrates by measuring the hysteresis of hydrate formation/decomposition by neutron diffraction. When a gas hydrate is decomposed (melted) the resulting water has a 'supposed memory effect' raising the probability of rapid hydrate reformation. This rapid reformation does not occur for pure water where nucleation can be delayed by several hours (induction time) due to metastability [1]. The memory effect can only be destroyed by extreme heating of the effected area. Possible causes of this effect include residual water structure, persistent hydrate crystal lites remaining in solution and remaining dissolved gas. We will compare the kinetics of formation and the stability region of hydrate formation of 'memory' water for comparison with pure water. This information has important implications for the oil and gas industry because it should provide a better understanding of the role of multiple dissociation and reformation of gas hydrates in plug formation.

  1. Raman spectroscopic studies of hydrogen clathrate hydrates.

    Science.gov (United States)

    Strobel, Timothy A; Sloan, E Dendy; Koh, Carolyn A

    2009-01-07

    Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran+hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H(2) molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H(2) content as a function of pressure, and with D(2) isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H(2) vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H(2) within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para-H(2) occurs over a relatively slow time period (days). The rotational degeneracy of H(2) molecules within the clathrate cavities is lifted, observed directly in splitting of the para-H(2) roton band. Raman spectra from H(2) and D(2) hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D(2) is a suitable substitute for H(2). The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.

  2. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2006-01-01

    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.

  3. Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions

    International Nuclear Information System (INIS)

    Zhong, Dong-Liang; Ding, Kun; Lu, Yi-Yu; Yan, Jin; Zhao, Wei-Long

    2016-01-01

    Highlights: • A water-in-oil emulsion was developed for CH_4 separation from coal mine methane gas. • Stable W/O emulsions were obtained with water cut in the range of (10–70%). • Gas hydrates nucleated faster with the reduction of water–oil volume ratio. • Gas uptake increased with the decrease of water–oil volume ratio. • CH_4 recovery was greatly enhanced by hydrate formation in W/O emulsions. - Abstract: In this work, a water-in-oil (W/O) emulsion was developed using liquid water, mineral oil, Sorbitan monooleate (Span 80), and cyclopentane. It was employed to enhance gas hydrate formation for CH_4 separation from a simulated coal mine methane (CMM) gas (30 mol% CH_4, 60 mol% N_2, and 10 mol% O_2). The stability test at atmospheric pressure and at a high pressure of 3.5 MPa showed that stable W/O emulsions were obtained when the water–oil volume ratio (WOR) was below 80%. The emulsified droplets size was measured with WOR ranging from 10% to 70%. Then kinetic experiments of CH_4 separation by hydrate formation in W/O emulsions were carried out at 273.6 K and (3.5–5.0) MPa in batch operation. The results indicated that water–oil volume ratio is a key factor that affects the kinetics of gas hydrate formation from the CMM gas mixture. Hydrate nucleation was observed to occur faster while WOR was decreased, and gas uptake increased significantly with the decrease of WOR. CH_4 concentration in the recovered gas mixture was increased to 52 mol% as compared to 30 mol% in the original gas mixture through one-stage hydrate formation in the W/O emulsions. It was found that the experimental conditions of 273.6 K, 3.5 MPa and WOR = 30% were favorable for CH_4 recovery from the CMM gas. The CH_4 recovery obtained under these conditions was 43%. It was higher than those obtained at WOR = 10% and 70%, and was greatly increased as compared with those obtained in the same reactor with the presence of TBAB (26%) and CP (33%).

  4. Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames

    DEFF Research Database (Denmark)

    Cuoci, Alberto; Frassoldati, Alessio; Faravelli, Tiziano

    2013-01-01

    In the present paper, synchrotron VUV photoionization mass spectrometry is used to study the detailed chemistry of co-flow methane diffusion flames with different dilution ratios. The experimental results constitute a comprehensive characterization of species important for PAH and soot formation...

  5. Experimental determination of methane hydrate formation in the presence of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.B.; Wang, L.Y.; Liu, A.X.; Guo, X.Q.; Chen, G.J.; Ma, Q.L.; Li, G.W. [China Univ. of Petroleum, Beijng (China). State Key Laboratory of Heavy Oil Processing

    2008-07-01

    Gas hydrates are non-stoichiometric inclusion compounds that are created by a lattice of water molecules. The host molecule has a strong hydrogen bond and encages low molecular weight gases or volatile liquids. The guest molecules favor hydrate formation. Historically, gas hydrates have been thought to be problematic during natural gas transportation because the formed solid hydrate can block pipelines and cause tubing and casing collapse. However, the discovery of huge deposits of gas hydrates in deep-sea sediments and in permafrost has renewed interest in gas hydrates as a new energy resource. This paper discussed a study that is a part of an ongoing experimental and computational program dealing with the thermodynamics of gas hydrate formation in ammonia-water systems. The purpose of the study was to develop a new method to separate and recycle the vent gas of ammonia synthesis by forming or dissociating hydrate. The hydrate-forming conditions of methane in ammonia and water system were studied and reported in this paper with reference to the experimental apparatus and procedure. The materials and preparation of samples were also explained. The experimental results showed that the ammonia had an inhibitive effect on the hydrate formation. 26 refs., 2 tabs., 3 figs.

  6. Metagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analogue

    Directory of Open Access Journals (Sweden)

    Stuart E Denman

    2015-10-01

    Full Text Available Japanese goats fed a diet of 50% Timothy grass and 50% concentrate with increasing levels of the anti-methanogenic compound, bromochloromethane (BCM were investigated with respect to the microbial shifts in the rumen. Microbial ecology methods identified many species that exhibited positive and negative responses to the increasing levels of BCM. The methane-inhibited rumen appeared to adapt to the higher H2 levels by shifting fermentation to propionate which was mediated by an increase in the population of hydrogen-consuming Prevotella and Selenomonas spp. Metagenomic analysis of propionate production pathways was dominated by genomic content from these species. Reductive acetogenic marker gene libraries and metagenomics analysis indicate that reductive acetogenic species do not play a major role in the BCM treated rumen.

  7. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    Energy Technology Data Exchange (ETDEWEB)

    Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

    2010-07-01

    To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

  8. The rates measurement of methane hydrate formation and dissociation using micro-drilling system application for gas hydrate exploration

    Energy Technology Data Exchange (ETDEWEB)

    Bin Dou [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)]|[Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Reinicke, K.M. [Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Guosheng Jiang; Xiang Wu; Fulong Ning [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)

    2006-07-01

    When drilling through gas hydrate bearing formations, the energy supplied by virtue of the drilling process may lead to a destabilization of the hydrates surrounding the wellbore. Therefore, as the number of oil and gas fields being development in deepwater and onshore arctic environments increases, greater emphasis should be placed on quantifying the risks, gas hydrates pose to drilling operations. The qualification of these risks requires a comprehensive understanding of gas hydrate-formation and dissociation as a result of drilling induced processes. To develop the required understanding of gas hydrat formation and dissociation, the authors conducted laboratory experiments by using a micro-drilling system, to study the dissociation rates of methane hydrates contained in a tank reactor. The test facility used is a development of China University of Geosciences. The rates of methane hydrate formation and dissociation in the tank reactor were measured at steady-state conditions at pressures ranging from 0.1 to 25 MPa and temperatures ranging from -5 to 20 C. The experimental results show that the rate of hydrate formation is strongly influenced by the fluid system used to form the hydrates, pressure and temperature, with the influence of the temperature on methane hydrate dissociation being stronger than that of the pressure. Drilling speed, drilling fluids and hydrate dissociation inhibitors were also shown to influence hydrate dissociation rate. The derived results have been used to predict hydrate drilling stability for several drilling fluid systems.

  9. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane.

    Science.gov (United States)

    Khadka, Nimesh; Dean, Dennis R; Smith, Dayle; Hoffman, Brian M; Raugei, Simone; Seefeldt, Lance C

    2016-09-06

    The reduction of N2 to NH3 by Mo-dependent nitrogenase at its active-site metal cluster FeMo-cofactor utilizes reductive elimination of Fe-bound hydrides with obligatory loss of H2 to activate the enzyme for binding/reduction of N2. Earlier work showed that wild-type nitrogenase and a nitrogenase with amino acid substitutions in the MoFe protein near FeMo-cofactor can catalytically reduce CO2 by two or eight electrons/protons to carbon monoxide (CO) and methane (CH4) at low rates. Here, it is demonstrated that nitrogenase preferentially reduces CO2 by two electrons/protons to formate (HCOO(-)) at rates >10 times higher than rates of CO2 reduction to CO and CH4. Quantum mechanical calculations on the doubly reduced FeMo-cofactor with a Fe-bound hydride and S-bound proton (E2(2H) state) favor a direct reaction of CO2 with the hydride ("direct hydride transfer" reaction pathway), with facile hydride transfer to CO2 yielding formate. In contrast, a significant barrier is observed for reaction of Fe-bound CO2 with the hydride ("associative" reaction pathway), which leads to CO and CH4. Remarkably, in the direct hydride transfer pathway, the Fe-H behaves as a hydridic hydrogen, whereas in the associative pathway it acts as a protic hydrogen. MoFe proteins with amino acid substitutions near FeMo-cofactor (α-70(Val→Ala), α-195(His→Gln)) are found to significantly alter the distribution of products between formate and CO/CH4.

  10. Confining CO2 inside the nanocavities of the sI clathrate: a quantum dynamics study

    International Nuclear Information System (INIS)

    Prosmiti, R; Arismendi-Arrieta, D J; Valdés, Á

    2015-01-01

    Clathrate hydrates have been found to occur naturally, and have been extensively studied due to their important industrial applications, such as the storage of the CO 2 from the atmosphere and control climate change. Thus, quantitative understanding of physical and chemical properties, as well as the factors that control the formation of CO 2 hydrates, on both macroscopic and microscopic levels is essential in several areas of physical science. (paper)

  11. Determination of Methane and Carbon Dioxide Formation Rate Constants for Semi-Continuously Fed Anaerobic Digesters

    Directory of Open Access Journals (Sweden)

    Jan Moestedt

    2015-01-01

    Full Text Available To optimize commercial-scale biogas production, it is important to evaluate the performance of each microbial step in the anaerobic process. Hydrolysis and methanogenesis are usually the rate-limiting steps during digestion of organic waste and by-products. By measuring biogas production and methane concentrations on-line in a semi-continuously fed reactor, gas kinetics can be evaluated. In this study, the rate constants of the fermentative hydrolysis step (kc and the methanogenesis step (km were determined and evaluated in a continuously stirred tank laboratory-scale reactor treating food and slaughterhouse waste and glycerin. A process additive containing Fe2+, Co2+ and Ni2+ was supplied until day 89, after which Ni2+ was omitted. The omission resulted in a rapid decline in the methanogenesis rate constant (km to 70% of the level observed when Ni2+ was present, while kc remained unaffected. This suggests that Ni2+ mainly affects the methanogenic rather than the hydrolytic microorganisms in the system. However, no effect was initially observed when using conventional process monitoring parameters such as biogas yield and volatile fatty acid concentration. Hence, formation rate constants can reveal additional information on process performance and km can be used as a complement to conventional process monitoring tools for semi-continuously fed anaerobic digesters.

  12. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Østberg, M.

    2004-01-01

    Conversion of methane to higher hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and soot was investigated under fuel-rich conditions in a laminar flow reactor. The effects of stoichiometry, dilution, and water vapor addition were studied at temperatures between 1073 and 1823 K. A chemical...... kinetic mechanism was established for methane oxidation, with emphasis on formation of higher hydrocarbons and PAH. A submodel for soot formation was adopted from the work of Frenklach and co-workers without changes. Modeling predictions showed good agreement with experimental results. Reactants, stable...... decrease with increasing addition of water vapor. The effect is described qualitatively by the reaction mechanism. The enhanced oxidation of acetylene is attributed to higher levels of hydroxyl radicals, formed from the reaction between the water vapor and hydrogen atoms....

  13. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    Science.gov (United States)

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  14. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  15. Experimental investigation of methane release from hydrate formation in sandstone through both hydrate dissociation and CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Stevens, J.; Howard, J.J. [ConocoPhillips, Ponca City, OK (United States); Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States)

    2008-07-01

    Large amounts of natural gas trapped in hydrate reservoirs are found in Arctic regions and in deep offshore locations around the world. Natural gas production from hydrate deposits offer significant potential for future energy needs. However, research is needed in order to propose potential production schemes for natural gas hydrates. Natural gas molecules can be freed from hydrate structured cages by depressurization, by heating and by exposing the hydrate to a substance that will form a thermodynamically more stable hydrate structure. This paper provided a comparison of two approaches for releasing methane from methane hydrate in porous sandstone. The study scope covered the dissociation rate of methane hydrate in porous media through depressurization, and also referred to previous work done on producing methane from hydrates in sandstone while sequestering carbon dioxide (CO{sub 2}). The study was conducted in a laboratory setting. The paper discussed the experimental design which included the placing of a pressure- and temperature-controlled sample holder inside the bore of a magnetic resonance imager. The experimental procedures were then outlined, with reference to hydrate formation; carbon dioxide sequestration; hydrate dissociation experiments with constant volume; and hydrate dissociation experiments at constant pressure. The constant volume experiments demonstrated that in order to dissociate a large amount of hydrate, the initial depressurization had to be significantly lower than the hydrate stability pressure. 9 refs., 9 figs.

  16. Novel nanotechnology for efficient production of binary clathrate hydrates of hydrogen and other compounds

    Energy Technology Data Exchange (ETDEWEB)

    Di Profio, P.; Arca, S.; Germani, R.; Savelli, G. [Perugia Univ., Perugia (Italy). Dept. of Chemistry, Center of Excellence on Innovative Nanostructured Materials

    2008-07-01

    The development of a hydrogen-based economy depends on finding ways to store hydrogen, but current hydrogen storage methods have significant disadvantages. One main challenge in storing sufficient amounts of hydrogen (up to 4 weight per cent) into a clathrate matrix is that of a kinetic origin, in that the mass transfer of hydrogen gas into clathrate structures is significantly limited by the macroscopic scale of the gas-liquid or gas-ice interfaces involved. This paper discussed the possibility of storing hydrogen in clathrate hydrates. It presented a newly developed method for preparing binary hydrogen hydrates that is based on the formation of amphiphile-aided nanoemulsions. Nanotechnology is used to reduce the size of hydrate particles to a few nanometers, thereby minimizing the kinetic hindrance to hydrate formation. This process has potential for increasing the amount of hydrogen stored, as it has provided ca. 1 weight per cent of hydrogen. Two new co-formers were also successfully tested, namely cyclopentane and tetrahydrothiophene. 23 refs., 10 figs.

  17. Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Rolsted, M. M. M.

    2014-01-01

    to this, we demonstrated that the UV radiation-induced CH4 emission is independent of leaf area index above unity. Further, we observed that the presence of O2 in the atmosphere was necessary for achieving the highest rates of CH4 emission. Methane formation from leaf surface wax is supposedly a two...... investigated the potential of the leaf surface wax itself as a source of UV radiationinduced leaf aerobic CH4 formation. Isolated leaf surface wax emitted CH4 at substantial rates in response to UV radiation. This discovery has implications for how the phenomenon should be scaled to global levels. In relation...

  18. Adsorbed Carbon Formation and Carbon Hydrogenation for CO_2 Methanation on the Ni(111) Surface: ASED-MO Study

    International Nuclear Information System (INIS)

    Choe, Sang Joon; Kang, Hae Jin; Kim, Su Jin; Park, Sung Bae; Park, Dong Ho; Huh, Do Sung

    2005-01-01

    Using the ASED-MO (Atom Superposition and Electron Delocalization-Molecular Orbital) theory, we investigated carbon formation and carbon hydrogenation for CO_2 methanation on the Ni (111) surface. For carbon formation mechanism, we calculated the following activation energies, 1.27 eV for CO_2 dissociation, 2.97 eV for the CO, 1.93 eV for 2CO dissociation, respectively. For carbon methanation mechanism, we also calculated the following activation energies, 0.72 eV for methylidyne, 0.52 eV for methylene and 0.50 eV for methane, respectively. We found that the calculated activation energy of CO dissociation is higher than that of 2CO dissociation on the clean surface and base on these results that the CO dissociation step are the ratedetermining of the process. The C-H bond lengths of CH_4 the intermediate complex are 1.21 A, 1.31 A for the C···H_(_1_), and 2.82 A for the height, with angles of 105 .deg. for H_(_1_)CH and 98 .deg. for H_(_1_)CH_(_1_)

  19. Precise structural analysis of methane hydrate by neutron diffraction

    International Nuclear Information System (INIS)

    Igawa, Naoki; Hoshikawa, Akinori; Ishii, Yoshinobu

    2006-01-01

    Methane hydrate has attracted great interest as an energy resource to replace natural gas since this material is deposited in the seafloor and the deposits are estimated to exceed those of natural gas. Understanding the physical proprieties, such as the temperature dependence of the crystal structure, helps to specify the optimum environmental temperature and pressure during drilling, transport, and storage of methane hydrate. Clathrate hydrates consisted of encaging atomic and/or molecular species as a guest and host water formed by a hydrogen bonding. Although many studies on the clathrate hydrate including methane hydrate were reported, no detailed crystallographic property has yet been cleared. We focused on the motion of methane in the clathrate hydrate by the neutron diffraction. The crystal structure of the methane hydrate was analyzed by the applying the combination of the Rietveld refinement and the maximum entropy method (MEM) to neutron powder diffraction. Temperature dependence of the scattering-length density distribution maps revealed that the motion of methane molecules differs between the shapes of dodecahedron and tetrakaidecahedron. (author)

  20. Formaldehyde formation in coupled oxidation of methane and methanol over V2O5 and MoO3 silica supported catalysts

    International Nuclear Information System (INIS)

    Lojewska, J.; Makowski, W.; Fajardo Farre, A.; Dziembaj, R.

    2003-01-01

    The effect of methanol on partial oxidation of methane has been studied on standard molybdena and vanadia catalysts supported on silica. Prior to catalytic tests the catalysts were characterized by BET, SEM/EDAX and TPR/O methods. Three types of catalytic tests were performed giving temperature and contact time dependence on the catalyst activity and selectivity: partial oxidations of methane, methanol and methane/methanol mixtures. The methanol showed an activating impact on the partial oxidation of methane over all used catalysts samples, but the strongest one over Mo 3 /SiO 2 . In the absence of CH 3 OH the only catalyst, which exhibited HCHO selectivity, was low loaded vanadia catalyst. It has been put forward that methanol may enhance formation of oxygen active species, prerequisites for activating methane molecules, through reducing vanadia cations and causing breakage of vanadium oxygen bonds. (author)

  1. Polymorphism in Br2 clathrate hydrates.

    Science.gov (United States)

    Goldschleger, I U; Kerenskaya, G; Janda, K C; Apkarian, V A

    2008-02-07

    The structure and composition of bromine clathrate hydrate has been controversial for more than 170 years due to the large variation of its observed stoichiometries. Several different crystal structures were proposed before 1997 when Udachin et al. (Udachin, K. A.; Enright, G. D.; Ratcliffe, C. I.; Ripmeester, J. A. J. Am. Chem. Soc. 1997, 119, 11481) concluded that Br2 forms only the tetragonal structure (TS-I). We show polymorphism in Br2 clathrate hydrates by identifying two distinct crystal structures through optical microscopy and resonant Raman spectroscopy on single crystals. After growing TS-I crystals from a liquid bromine-water solution, upon dropping the temperature slightly below -7 degrees C, new crystals of cubic morphology form. The new crystals, which have a limited thermal stability range, are assigned to the CS-II structure. The two structures are clearly distinguished by the resonant Raman spectra of the enclathrated Br2, which show long overtone progressions and allow the extraction of accurate vibrational parameters: omega(e) = 321.2 +/- 0.1 cm(-1) and omega(e)x(e) = 0.82 +/- 0.05 cm(-1) in TS-I and omega(e) = 317.5 +/- 0.1 cm(-1) and omega(e)x(e) = 0.70 +/- 0.1 cm(-1) in CS-II. On the basis of structural analysis, the discovery of the CS-II crystals implies stability of a large class of bromine hydrate structures and, therefore, polymorphism.

  2. Kinetics of CO2 and methane hydrate formation : an experimental analysis in the bulk phase

    NARCIS (Netherlands)

    He, Y.; Rudolph, E.S.J.; Zitha, P.L.J.; Golombok, M.

    2011-01-01

    Gas resources captured in the form of gas hydrates are by an order of magnitude larger than the resources available from conventional resources. In order to keep the CO2CO2 footprint in the world as small as possible, the idea is to produce methane hydrates and sequestrate CO2CO2 into hydrates in

  3. Anaerobic digestion of glucose with separated acid production and methane formation

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R J; Zoetemeyer, R J; Van Deursen, A; Van Andel, J G

    1979-01-01

    In a two-phase anaerobic-digestion system, with separate reactors for the acidification and methane fermentation phases, the glucose of a 1% glucose solution was almost completely converted into biomass and gases. The acid reactor was operated at 30/sup 0/C and a pH of 6.0, with a retention time of 10 h. The main products of the acid-forming phase were hydrogen, carbon dioxide, butyrate and acetate. On a molar base, these products represented over 96% of all products formed. On average, 12% of the COD content of the influent was evolved as hydrogen. The effluent of the first reactor was pumped to the methane reactor after passing through a storage vessel. The methane reactor was operated at 30/sup 0/C, pH 7.8 and a retention time of 100 h. Approximately 98% of the organic substances fed to this reactor were converted to methane, carbon dioxide and biomass. About 11% of the glucose fed to the digesting system was converted to bacterial mass.

  4. Anaerobic digestion of gucose with separated acid production and methane formation

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A; Zoetemeyer, R J; van Deursen, A; van Andel, J G

    1979-01-01

    In a two-phase anaerobic-digestion system, with separate reactors for the acidification phase and the methane fermentation phase, the Universiteit van Amsterdam found the glucose of a 1% glucose solution (sucrose/starch-containing wastewater from agricultural industries) to be almost completely converted into biomass and gases. The acid reactor was operated at 86/sup 0/F (30/sup 0/C) and pH 6.0, with a retention time of 10 hr. The main products of the acid-forming phase were hydrogen, carbon dioxide, butyrate, and acetate. On a molar base, these products represented over 96% of all products formed. On the average, 12% of the chemical-oxygen-demand content of the influent was evolved as hydrogen. The effluent of the first reactor went to the methane reactor after passing through a storage vessel. The methane reactor operated at 86/sup 0/F (30/sup 0/C), pH 7.8, and a retention time of 100 hr. Approximately 98% of the organic substances fed to this reactor was converted to methane, carbon dioxide, and biomass. About 11% of the glucose fed to the digesting system was converted to bacterial mass.

  5. The influence of sulfate and nitrate on the methane formation by methanogenic archaea in freshwater sediments

    NARCIS (Netherlands)

    Scholten, J.C.M.

    1999-01-01

    In this thesis the effect of inorganic electron acceptors (sulfate and nitrate) on methane emission from freshwater sediments in the Netherlands was investigated. The chosen study area was a polder located between Leiden and Utrecht, and is representative for similar polders

  6. Accurate description of phase diagram of clathrate hydrates on molecular level

    Energy Technology Data Exchange (ETDEWEB)

    Belosludov, V.; Subbotin, O. [Niklaev Inst. of Inorganic Chemistry, Novosibirsk (Russian Federation). Siberian Branch of Russian Academy of Science; Belosludov, R.; Mizuseki, H.; Kawazoe, Y. [Tohoku Univ., Aoba-ku, Sendai (Japan). Inst. for Materials Research

    2008-07-01

    A number of experimental and theoretical studies of hydrogen hydrates have been conducted using different methods. In order to accurately estimate the thermodynamic properties of clathrate hydrates that multiply filling the cages, this paper presented a method based on the solid solution theory of van der Waals and Platteeuw with several modifications, including multiple occupancies, host relaxation, and the description of the quantum nature of hydrogen behavior in the cavities. The validity of the proposed approach was verified for argon, methane, and xenon hydrates. The results were in agreement with known experimental data. The model was then used to calculate the curves of monovariant three-phase equilibrium gas-hydrate-ice and the degree of filling of the large and small cavities for pure hydrogen and mixed hydrogen/propane hydrates in a wide range of pressure and at low temperatures. The paper presented the theory, including equations, monovariant equilibria, and computational details. It was concluded that the proposed model accounted for the influence of guest molecules on the host lattice and guest-guest interaction. The model could be used with other inclusion compounds with the same type of composition such as clathrate silicon, zeolites, and inclusion compounds of semiconductor elements. The calculated curves of monovariant equilibrium agree with the experiment. 33 refs., 1 tab., 9 figs.

  7. Crystal structure of clathrates of Hofmann dma-type

    International Nuclear Information System (INIS)

    NIshikiori, Sh.; Ivamoto, T.

    1999-01-01

    Seven new clathrates Cd(DMA) 2 Ni(CN) 4 ·xG (x=1, G=aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine, and x=2, G=2,4,6-trimethylaniline) of Hofmann type are synthesized by amine substitution for dimethylamine (DMA). On the base of x-ray diffraction data it is shown that geometry of guest molecule in cage-like hollow determines the structure of the host and crystal structure of clathrates. Two-dimension metallocomplex of the host of studied clathrates is characterized by elastic folded structure appearing as a result of angular deformation of bond between Cd atoms and host cyanide bridge. Guest molecule orientation is fixed by hydrogen bond. Structural elasticity of the host complex directs to differences in crystal structure of clathrates formed and to considerable variety of incorporated guests [ru

  8. Mechanism of the thermal conductivity of type-I clathrates

    International Nuclear Information System (INIS)

    Ikeda, M. S.

    2015-01-01

    Due to their intrinsically low thermal conductivity, intermetallic type-I clathrates are promising candidates for thermoelectric energy conversion, most notably for waste-heat recovery above room temperature. Combining their low thermal conductivity with the enhanced electrical power factor of strongly correlated materials can be considered as one of the most promising routes to a next generation thermoelectric material. However, although much investigated, the physical origin of the low thermal conductivity of type-I clathrates is still debated. Therefore, the main goal of this thesis was to gain deeper insight into the mechanism of the low thermal conductivity of type-I clathrates. On the basis of recent inelastic neutron and X-ray scattering studies on type-I clathrates and skutterudites, an analytical model for describing the phonon thermal conductivity of such filled cage compounds was developed within this thesis. This model is based on the phononic filter effect and on strongly enhanced Umklapp scattering. Data on several Ge-based single crystalline type-I clathrates are discussed in the context of this model, revealing the influence of host framework vacancies, charge carriers, and large defects such as grain boundaries on the low-temperature thermal conductivity of type-I clathrates. Since for waste heat recovery the thermal conductivity at elevated temperatures is of interest, a sophisticated 3w-experiment for accurate measurements of bulk and thin film materials at elevated temperatures was developed. With the help of this experiment, a universal dependence of the intrinsic phonon thermal conductivity of type-I clathrates on the sound velocity and the lowest-lying guest Einstein mode was demonstrated for the first time. Further investigations on thermoelectric materials including the first Ce-containing type-I clathrate, skutterudites, and thin films complete this doctoral work. (author)

  9. The influence of sulfate and nitrate on the methane formation by methanogenic archaea in freshwater sediments

    OpenAIRE

    Scholten, J.C.M.

    1999-01-01

    In this thesis the effect of inorganic electron acceptors (sulfate and nitrate) on methane emission from freshwater sediments in the Netherlands was investigated. The chosen study area was a polder located between Leiden and Utrecht, and is representative for similar polders in The Netherlands (Chapter 3). The polder contains peat grasslands in which ditches are lying used for maintaining stable water levels. The ditches contain sediment which is a potential source of C...

  10. Methane Hydrate Formation from Enhanced Organic Carbon Burial During Glacial Lowstands: Examples from the Gulf of Mexico

    Science.gov (United States)

    Malinverno, A.; Cook, A.; Daigle, H.; Oryan, B.

    2017-12-01

    Methane hydrates in fine-grained marine sediments are often found within veins and fractures occupying discrete depth intervals that are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the methane hydrate stability zone (MHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. We investigate here the hypothesis that these hydrate deposits form in sediments that were deposited during glacial lowstands and contain higher amounts of labile particulate organic carbon (POC), leading to enhanced microbial methanogenesis. During Pleistocene lowstands, river loads are deposited near the steep top of the continental slope and turbidity currents transport organic-rich, fine-grained sediments to deep waters. Faster sedimentation rates during glacial periods result in better preservation of POC because of decreased exposure times to oxic conditions. The net result is that more labile POC enters the methanogenic zone and more methane is generated in these sediments. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent deposition of labile POC at the seafloor controlled by glacioeustatic sea level variations in the last 250 kyr. The model is run for parameters estimated at three sites drilled by the 2009 Gulf of Mexico Joint Industry Project: Walker Ridge in the Terrebonne Basin (WR313-G and WR313-H) and Green Canyon near the canyon embayment into the Sigsbee Escarpment (GC955-H). In the model, gas hydrate forms in sediments with higher labile POC content deposited during the glacial cycle between 230 and 130 kyr (marine isotope stages 6 and 7). The corresponding depth intervals in the three sites contain hydrates, as shown by high bulk electrical resistivities and resistive subvertical fracture fills. This match supports the hypothesis that enhanced POC burial during glacial lowstands can result in hydrate formation from in situ

  11. Methane Hydrate Formation from Enhanced Organic Carbon Burial During Glacial Lowstands: Examples from the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Malinverno, Alberto; Cook, Ann; Daigle, Hugh; Oryan, Bar

    2017-12-15

    Methane hydrates in fine-grained marine sediments are often found within veins and fractures occupying discrete depth intervals that are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the methane hydrate stability zone (MHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. We investigate here the hypothesis that these hydrate deposits form in sediments that were deposited during glacial lowstands and contain higher amounts of labile particulate organic carbon (POC), leading to enhanced microbial methanogenesis. During Pleistocene lowstands, river loads are deposited near the steep top of the continental slope and turbidity currents transport organic-rich, fine-grained sediments to deep waters. Faster sedimentation rates during glacial periods result in better preservation of POC because of decreased exposure times to oxic conditions. The net result is that more labile POC enters the methanogenic zone and more methane is generated in these sediments. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent deposition of labile POC at the seafloor controlled by glacioeustatic sea level variations in the last 250 kyr. The model is run for parameters estimated at three sites drilled by the 2009 Gulf of Mexico Joint Industry Project: Walker Ridge in the Terrebonne Basin (WR313-G and WR313-H) and Green Canyon near the canyon embayment into the Sigsbee Escarpment (GC955-H). In the model, gas hydrate forms in sediments with higher labile POC content deposited during the glacial cycle between 230 and 130 kyr (marine isotope stages 6 and 7). The corresponding depth intervals in the three sites contain hydrates, as shown by high bulk electrical resistivities and resistive subvertical fracture fills. This match supports the hypothesis that enhanced POC burial during glacial lowstands can result in hydrate formation from in situ

  12. Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongguang; Yu, Zhisheng; Liu, Ruyin [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Resources and Environment; Zhang, Hongxun [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Resources and Environment; Chinese Academy of Sciences, Beijing (China). Research Center for Eco-Environmental Sciences; Zhong, Qiding; Xiong, Zhenghe [China National Research Institute of Food and Fermentation Industries, Beijing (China). Food Analysis using Isotope Technology Lab

    2012-12-15

    To identify the methanogenic pathways present in a deep coal bed methane (CBM) reservoir associated with Eastern Ordos Basin in China, a series of geochemical and microbiological studies was performed using gas and water samples produced from the Liulin CBM reservoir. The composition and stable isotopic ratios of CBM implied a mixed biogenic and thermogenic origin of the methane. Archaeal 16S rRNA gene analysis revealed the dominance of the methylotrophic methanogen Methanolobus in the water produced. The high potential of methane production by methylotrophic methanogens was found in the enrichments using the water samples amended with methanol and incubated at 25 and 35 C. Methylotrophic methanogens were the dominant archaea in both enrichments as shown by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). Bacterial 16S rRNA gene analysis revealed that fermentative, sulfate-reducing, and nitrate-reducing bacteria inhabiting the water produced were a factor in coal biodegradation to fuel methanogens. These results suggested that past and ongoing biodegradation of coal by methylotrophic methanogens and syntrophic bacteria, as well as thermogenic CBM production, contributed to the Liulin CBM reserves associated with the Eastern Ordos Basin. (orig.)

  13. Titan's Tropopause Temperatures from CIRS: Implications for Stratospheric Methane Cloud Formation

    Science.gov (United States)

    Anderson, C. M.; Samuelson, R. E.; Achterberg, R. K.; Barnes, J. W.; Flasar, F. M.

    2012-01-01

    Analysis of Cassini Composite Infrared Spectrometer (CIRS) far-IR spectra enable the construction of Titan's temperature profile in the altitude region containing the tropopause. Whereas the methane V4 band at 1306/cm (7.7 microns) is the primary opacity source for deducing thermal structure between 100 km and 500 km, N2-N2 collision-induced absorption between 70 and 140/cm (143 microns and 71 microns) is utilized to determine temperatures at Titan's tropopause. Additional opacity due to aerosol and nitrile ices must also be taken into account in this part of the far-IR spectral region. The spectral characteristics of these particulate opacities have been deduced from CIRS limb data at 58degS, 15degS, 15degN, and 85degN. Empirically, the spectral shapes of these opacities appear to be independent of both latitude and altitude below 300 km (Anderson and Samuelson, 2011, Icarus 212, 762-778), justifying the extension of these spectral properties to all latitudes. We find that Titan's tropopause temperature is cooler than the HAS! value of 70.5K by approx. 6K. This leads to the possibility that subsidence at high northern latitudes can cause methane condensation in the winter polar stratosphere. A search for methane clouds in this region is in progress.

  14. Influence of photostimulated processes of methane to ozone formations and decomposition in the air medium

    International Nuclear Information System (INIS)

    Mammadova, S.M.

    2014-01-01

    Full text : In this paper it is presented an experimental study of kinetics of the photochemical conversion of methane in its mixture with air in the range of composition change, reaction time of irradiation up to 6 hours and two wavelengths of the vacuum ultraviolet. To improve reliability, determine the velocity and quantum yields of products in all the cases it was investigated the time dependence of changes in concentration of products in reaction mixture and the reaction rate is determined from the initial linear portions of the kinetic curves

  15. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane

    OpenAIRE

    Khadka, Nimesh; Dean, Dennis R.; Smith, Dayle; Hoffman, Brian M.; Raugei, Simone; Seefeldt, Lance C.

    2016-01-01

    The reduction of N2 to NH3 by Mo-dependent nitrogenase at its active-site metal cluster FeMo-cofactor utilizes reductive elimination (re) of Fe-bound hydrides with obligatory loss of H2 to activate the enzyme for binding/reduction of N2. Earlier work showed that wild type nitrogenase and a nitrogenase having amino acid substitutions in the MoFe protein near FeMo-cofactor can catalytically reduce CO2 by 2 or 8 electrons/protons to carbon monoxide (CO) and methane (CH4) at low rates. Here, it i...

  16. Quantifying the percentage of methane formation via acetoclastic and syntrophic acetate oxidation pathways in anaerobic digesters.

    Science.gov (United States)

    Jiang, Ying; Banks, Charles; Zhang, Yue; Heaven, Sonia; Longhurst, Philip

    2018-01-01

    Ammonia concentration is one of the key factors influencing the methanogenic community composition and dominant methanogenic pathway in anaerobic digesters. This study adopted a radiolabelling technique using [2- 14 C] acetate to investigate the relationship between total ammonia nitrogen (TAN) and the methanogenic pathway. The radiolabelling experiments determined the ratio of 14 CO 2 and 14 CH 4 in the biogas which was used to quantitatively determine the percentage of CH 4 derived from acetoclastic and syntrophic acetate oxidation routes, respectively. This technique was performed on a selection of mesophilic digesters representing samples of low to high TAN concentrations (0.2-11.1gkg -1 wet weight). In high TAN digesters, the ratio between 14 CO 2 and 14 CH 4 was in the range 2.1-3.0; indicating 68-75% of methane was produced via the hydrogenotrophic route; whereas in low ammonia samples the ratio was 0.1-0.3, indicating 9-23% of methane was produced by the hydrogenotrophic route. These findings have been confirmed further by phylogenetic studies. Copyright © 2017. Published by Elsevier Ltd.

  17. Methane hydrates in quaternary climate change

    International Nuclear Information System (INIS)

    Kennett, J. P.; Hill, T. M.; Behl, R. J.

    2005-01-01

    The hydrate reservoir in marine sediments is known to contain a large volume of exchangeable carbon stored as solid methane hydrate and associated free gas. This reservoir has been shown to be potentially unstable in response to changing intermediate water temperature and sea level (pressure). Evidence continues to grow for past episodes of major methane release at times of climatic warming. Yet few studies of late Quaternary climate change include methane hydrates as an integral part of the global climate system, in spite of the largest known oscillations at this time in sea level and upper ocean temperature changes for the Cenozoic or earlier, conditions that favor instability of the methane hydrate reservoir. Abrupt increases in atmospheric methane recorded in polar ice cores are widely believed to have resulted, not from ocean-floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data. Furthermore, as part of this Wetland Methane Hypothesis, the abrupt methane increases have been seen as a response to climatic warming rather than contributing significantly to the change. An alternative view (formulated as the Clathrate Gun Hypothesis) is that the speed, magnitude and timing of abrupt climate change in the recent geologic past are consistent with the process of major degassing of methane hydrates. We summarize aspects of this hypothesis here and needs to test this hypothesis. (Author)

  18. Effect of conditioners upon the thermodynamics and kinetics of methane hydrate formation. A preliminary structure-properties relationship study

    Energy Technology Data Exchange (ETDEWEB)

    Di Profio, Pietro; Arca, Simone; Germani, Raimondo; Savelli, Gianfranco

    2005-07-01

    The synthesis and stability of gas hydrates was found to be heavily affected by the presence of small quantities of additives, or conditioners, particularly surfactants. In a recent work, we showed that the enhancement of hydrate formation, both from previously described and newly synthesized surfactants, is probably due to surfactant monomers, rather than micelles, and that the features of hydrate induction time should not be used as a measure of critical micelle concentration. In the present paper, we discuss the results of a structure-properties relationship study in which a preliminary attempt to relate the structural features of several amphiphilic additives to some kinetic and thermodynamic parameters of methane hydrate formation - e.g., induction times, rate of formation, occupancy, etc. - is conducted. According to the present study, it is found that, for a particular conditioner, a reduction of induction time does not correlate to an increase of the formation rate and occupancy, and vice versa. This may be related to the nature of chemical moieties forming a particular amphiphile (e.g., the hydrophobic tail, head group, counterion, etc.). The understanding of the mechanisms by which those moieties play their differential role may be the key tool to the design and synthesis of tailored conditioners. (Author)

  19. Martian Methane From a Cometary Source: A Hypothesis

    Science.gov (United States)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; hide

    2016-01-01

    In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.

  20. Visible-light-driven methane formation from CO2 with a molecular iron catalyst

    Science.gov (United States)

    Rao, Heng; Schmidt, Luciana C.; Bonin, Julien; Robert, Marc

    2017-08-01

    Converting CO2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO2 to CO known, can also catalyse the eight-electron reduction of CO2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO2 photoreduction reaction, but a two-pot procedure that first reduces CO2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO2 under mild conditions.

  1. Do Pleistocene Glacial-Interglacial Cycles Control Methane Hydrate Formation? An Example from Green Canyon, Gulf of Mexico

    Science.gov (United States)

    Oryan, B.; Malinverno, A.; Goldberg, D.; Fortin, W.

    2017-12-01

    Well GC955-H was drilled in the Green Canyon region under the Gulf of Mexico Gas Hydrates Joint Industry Project in 2009. Logging-while-drilling resistivity logs obtained at the well indicate that the saturation of gas hydrate varies between high and low values in an alternating fashion. This trend is observed from 180 to 360mbsf, depths that correspond to the Late Pleistocene. Similar gas hydrate saturation patterns have been observed in other Gulf of Mexico locations (Walker Ridge sites WR313-G and 313-H) in Late Pleistocene sediments. Our hypothesis is that these variations in saturation can be explained by sea level changes through time during glacial-interglacial cycles. A higher amount of organic matter is deposited and buried in the sediment column during glacial intervals when sea level is low. Microbes in the sediment column degrade organic matter and produce methane gas as a byproduct. Higher availability of organic matter in the sediment column can increase the concentration of methane in the sediment pore water and in turn lead to the formation of gas hydrate. We use a time-dependent numerical model of the formation of gas hydrate to test this hypothesis. The model predicts the volume and distribution of gas hydrates using mass balance equations. Model inputs include in situ porosity determined from bulk density logs; local thermal gradient estimated from the depth of the bottom of the gas hydrate stability zone in proximity to the well; and sedimentation rate determined using the biostratigraphy of an industry well in the vicinity of GC955-H. Initial results show a good match between gas hydrate saturation predicted by the model and resistivity logs obtained in the well. We anticipate that this correlation will establish whether a causal link exists between the saturation of gas hydrate in this reservoir and glacioeustatic sea level changes in the Late Pleistocene.

  2. Global Methane Biogeochemistry

    Science.gov (United States)

    Reeburgh, W. S.

    2003-12-01

    . Methane absorbs infrared radiation in the troposphere, as do CO2 and H2O, and is an important greenhouse gas (Lacis et al., 1981; Ramanathan et al., 1985).A number of review articles on atmospheric CH4 have appeared during the last 15 years. Cicerone and Oremland (1988) reviewed evidence for the temporal atmospheric increase, updated source estimates in the global CH4 budget, and placed constraints on the global budget, emphasizing that the total is well constrained, but that the constituent sources may be uncertain by a factor of 2 or more. This paper was part of a special section in Global Biogeochemical Cycles that resulted from a 1987 American Chemical Society Symposium, "Atmospheric Methane: Formation and Fluxes form the Biosphere and Geosphere." Tyler (1991) and Wahlen (1993) emphasized new information on stable isotopes of CH4 and 14CH4, respectively. Several reviews deal with the microbially mediated CH4 oxidation. King (1992) reviewed the ecology of microbial CH4 oxidation, emphasizing the important role of this process in global CH4 dynamics. R. S. Hanson and T. E. Hanson (1996) reviewed the physiology and taxonomy of methylotrophic bacteria, their role in the global carbon cycle, and the ecology of methanotrophic bacteria. Conrad (1996) reviewed the role of soils and soil microbial communities as controllers of CH4 fluxes, as well as those of H2, CO, OCS, N2O, and NO. Two meetings focusing on CH4 biogeochemistry were held in 1991: an NATO Advanced Science Workshop held at Mt. Hood, OR, and the Tenth International Symposium on Environmental Biogeochemistry (ISEB). A dedicated issue of Chemosphere (26(1-4), 1993) contains contributions from the NATO workshop; two additional volumes (Khalil, 1993 and Khalil, 2000) contain a report of the workshop and updates of important topics. Contributions to the ISEB meeting are presented in Oremland (1993). Wuebbles and Hayhoe (2002) reviewed the effects of CH4 on atmospheric chemistry and examined the direct and indirect

  3. Alcoholic fermentation process and methane formation unit with biomass in fixed bed; Processo de fermentacao alcoolica e fermentador de metanizacao com biomassa em leito fixo

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, Claude [Societe Generale de Techniques Nouvelles (France)

    1986-01-01

    The pollution, measured from Biochemical Oxygen Demand, is constituted primary of organic carbon. The pollution abatement is made traditionally by thr reduction of this carbon by an aerobic way. Were made some tries in order to recover this carbon as an energy source and the methane formation process arises like the most attractive alternative 2 figs.

  4. Fundamental limits of NO formation in fuel-rich premixed methane-air flames

    NARCIS (Netherlands)

    van Essen, Vincent Martijn

    2007-01-01

    Increasingly stringent regulations on pollutant emission are the driving force for designers of natural-gas-fired combustion systems to find ways of controlling NOx formation. To achieve significant emissions reduction, more insight is needed into the mechanisms of NO formation. Martijn van Essen’s

  5. Mineral-like clathrate of cadmium cyanide with benzene

    International Nuclear Information System (INIS)

    Kitazava, T.; Nishimura, A.

    1999-01-01

    A new mineral-like clathrate of cadmium cyanide with benzene Cd(CN) 2 ·C 6 H 6 is prepared. Data of x-ray diffraction analysis show that benzene molecule is incorporated in cadmium cyanide lattice and a new mineral-like lattice of Cd(CN) 2 belongs to structures of cristobalite type. Clathrate Cd(CN) 2 ·C 6 H 6 crystallizes in trigonal space group R3m, a=8.953(4), c=21929(6) A [ru

  6. The effect of gamma irradiation and ethyl methan sulfonate on somatic embryo formation of soybean (Glycine max L.)

    International Nuclear Information System (INIS)

    Ragapadmi Purnamaningsih; Ika Mariska; Lestari, E.G.; Sri Hutami; Rossa Yunita

    2014-01-01

    Soybean is a source of protein and vegetable oil. Global climate change affect the productivity of soybean, so that new cultivars that have superior characteristic can be produced. In vitro techniques through somaclonal variation and mutation is one alternative for obtaining new varieties when genetic material as the material selection is not available. Mutation induction can be performed on embryogenic cell populations using gamma irradiation or chemical compounds, such as Ethyl Methane Sulfonate (EMS). Both of these methods have been widely used to increase the genetic diversity of plants and have produced new clones with superior characteristic. The main component that must be controlled in the implementation of these technologies is somatic cells regeneration after mutation treatment in order to get in vitro shoots. Regeneration methods which are successfully applied to certain varieties, often is not successfully for other varieties of the same species. Some factors that influence it, are such as explants source, genotype, medium composition, genotype, medium composition, etc. Somaclonal variation and mutation treatment can cause cell damage that is sometimes necessary need modifications of the regeneration method that has been produced before. The aim of the experiment was to get cell population and planlet mutation with gamma irradiation and Ethyl Methan Sulfonate (EMS). Young embryozygotic was used as explant came from young pod that was harvested at 12-20 days after fertilization of Willis, Burangrang and Baluran varieties and accession No B 3592. Embryogenic callus induction was done by using MS media with vitamin B5 added with 20 mg/l of 2,4-D and 3% sucrose. The callus were irradiated by gamma rays 400 rad or dilute in EMS solution with 0.1%, 0.3% and 0.5% concentration for 1, 2, and 3 hours. After mutation treatment, the callus were sub culture for seed somatic induction. The results showed that callus formation was influenced by plant genotype. All

  7. Molecular simulations and density functional theory calculations of bromine in clathrate hydrate phases

    Energy Technology Data Exchange (ETDEWEB)

    Dureckova, Hana, E-mail: houci059@uottawa.ca; Woo, Tom K., E-mail: tom.woo@uottawa.ca [Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 5N6 (Canada); Alavi, Saman, E-mail: saman.alavi@nrc-cnrc.gc.ca [Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 5N6 (Canada); National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1N 6N5 (Canada); Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 (Canada)

    2016-01-28

    Bromine forms a tetragonal clathrate hydrate structure (TS-I) very rarely observed in clathrate hydrates of other guest substances. The detailed structure, energetics, and dynamics of Br{sub 2} and Cl{sub 2} in TS-I and cubic structure I (CS-I) clathrate hydrates are studied in this work using molecular dynamics and quantum chemical calculations. X-ray diffraction studies show that the halogen-water–oxygen distances in the cages of these structures are shorter than the sum of the van der Waals radii of halogen and oxygen atoms. This suggests that the stabilizing effects of halogen bonding or other non-covalent interactions (NCIs) may contribute to the formation of the unique tetragonal bromine hydrate structure. We performed molecular dynamics simulations of Br{sub 2} and Cl{sub 2} clathrate hydrates using our previously developed five-site charge models for the dihalogen molecules [Dureckova et al. Can. J. Chem. 93, 864 (2015)] which reproduce the computed electrostatic potentials of the dihalogens and account for the electropositive σ-hole of the halogen bond donor (the dihalogen). Analysis of the radial distribution functions, enthalpies of encapsulation, velocity and orientation autocorrelation functions, and polar angle distributions are carried out for Br{sub 2} and Cl{sub 2} guests in various cages to contrast the properties of these guests in the TS-I and CS-I phases. Quantum chemical partial geometry optimizations of Br{sub 2} and Cl{sub 2} guests in the hydrate cages using the M06-2X functional give short halogen-water distances compatible with values observed in X-ray diffraction experiments. NCI plots of guest-cage structures are generated to qualitatively show the relative strength of the non-bonding interactions between dihalogens and water molecules. The differences between behaviors of Br{sub 2} and Cl{sub 2} guests in the hydrate cages may explain why bromine forms the unique TS-I phase.

  8. A possible reason behind the initial formation of pentagonal dodecahedron cavities in sI-methane hydrate nucleation: A DFT study

    Science.gov (United States)

    Mondal, Sukanta; Goswami, Tamal; Jana, Gourhari; Misra, Anirban; Chattaraj, Pratim Kumar

    2018-01-01

    In this letter, a possible reason behind selective host-guest organization in the initial stage of sI methane hydrate nucleation is provided, through density functional theory based calculations. In doing so, we have connected earlier experimental and theoretical observations on the structure and energetics of sI methane hydrate to our findings. Geometry and relative stability of small (H2O)5 and (H2O)6 clusters, presence of CH4 guest, integrity and cavity radius of (H2O)20 and (H2O)24, as well as the weak van der Waals type of forces, particularly dispersion interaction, are major factors responsible for initial formation of methane encapsulated dodecahedron cavity over tetrakaidecahedron.

  9. Quantitative evaluation of ruminal methane and carbon dioxide formation from formate through C-13 stable isotope analysis in a batch culture system.

    Science.gov (United States)

    He, Z X; Qiao, J Y; Yan, Q X; Tan, Z L; Wang, M

    2018-04-12

    Methane produced from formate is one of the important methanogensis pathways in the rumen. However, quantitative information of CH4 production from formate has been rarely reported. The aim of this study was to characterize the conversion rate (CR) of formic acid into CH4 and CO2 by rumen microorganisms. Ground lucerne hay was incubated with buffered ruminal fluid for 6, 12, 24 and 48 h. Before the incubation, 13C-labeled H13COOH was also supplied into the incubation bottle at a dose of 0, 1.5, 2.2 or 2.9 mg/g of DM substrate. There were no interactions (P>0.05) between dose and incubation time for all variables evaluated. When expressed as an absolute amount (ml in gas sample) or a relative CR (%), both 13CH4 and 13CO2 production quadratically increased (P<0.01) with the addition of H13COOH. The total 13C (13CH4 and 13CO2) CR was also quadratically increased (P<0.01) when H13COOH was added. Moreover, formate addition linearly decreased (P<0.031) the concentrations of NH3-N, total and individual volatile fatty acids (acetate, propionate and butyrate), and quadratically decreased (P<0.014) the populations of protozoa, total methanogens, Methanosphaera stadtmanae, Methanobrevibacter ruminantium M1, Methanobrevibacter smithii and Methanosarcina barkeri. In summary, formate affects ruminal fermentation and methanogenesis, as well as the rumen microbiome, in particular microorganisms which are directly or indirectly involved in ruminal methanogenesis. This study provides quantitative verification for the rapid dissimilation of formate into CH4 and CO2 by rumen microorganisms.

  10. Formation of hydrogenated amorphous carbon films of controlled hardness from a methane plasma

    International Nuclear Information System (INIS)

    Vandentop, G.J.; Kawasaki, M.; Nix, R.M.; Brown, I.G.; Salmeron, M.; Somorjai, G.A.; Department of Chemistry, University of California at Berkeley, Berkeley, California 94720)

    1990-01-01

    Studies of amorphous hydrogenated carbon (a-C:H) film deposition revealed that methyl radicals are the precursor species responsible for the bulk mass deposition of the films, while the ions act to improve the mechanical properties. The films were deposited on Si(100) substrates both on the powered (negatively self-biased) and on the grounded electrodes from a methane rf plasma (13.56 MHz) at 68 to 70 mTorr and 300 to 370 K. The films produced on the powered electrode exhibited superior mechanical properties, such as high hardness. A mass spectrometer was used to identify neutral species and positive ions incident on the electrodes from the plasma, and also to measure ion energies. Methyl radicals were incident on the electrode surface with an estimated flux of 10 16 cm -2 s -1 , for a rf power of 50 W. Methyl radicals appear to be the dominant intermediates in the growth of the soft carbon polymer, and there is a remarkable decrease in deposition rate due to the introduction of NO, a radical scavenger. A novel pulsed biasing technique was used so that the role of ions in the plasma could be studied separately. It was found that the hardness of the films depends on the power supplied by the ions to the growing film surface (the time averaged difference between the plasma potential and the electrode potential), but not on the energy of individual ions. The pulsed biasing technique offers an efficient method to adjust the film hardness by independent control of the neutral radical and ion fluxes to the surface

  11. Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Durgesh Narain; Kumar, Ashok; Tripathi, Anil Kumar [Banaras Hindu Univ., Varanasi (India). School of Biotechnolgy; Sarbhai, Munish Prasad [Oil and Natural Gas Commission, Ahmedabad (India). Inst. of Reservoir Studies

    2012-02-15

    Biogenic origin of the significant proportion of coal bed methane has indicated the role of microbial communities in methanogenesis. By using cultivation-independent approach, we have analysed the archaeal and bacterial community present in the formation water of an Indian coal bed at 600-700 m depth to understand their role in methanogenesis. Presence of methanogens in the formation water was inferred by epifluorescence microscopy and PCR amplification of mcrA gene. Archaeal 16S rRNA gene clone library from the formation water metagenome was dominated by methanogens showing similarity to Methanobacterium, Methanothermobacter and Methanolinea whereas the clones of bacterial 16S rRNA gene library were closely related to Azonexus, Azospira, Dechloromonas and Thauera. Thus, microbial community of the formation water consisted of predominantly hydrogenotrophic methanogens and the proteobacteria capable of nitrogen fixation, nitrate reduction and polyaromatic compound degradation. Methanogenic potential of the microbial community present in the formation water was elucidated by the production of methane in the enrichment culture, which contained 16S rRNA gene sequences showing close relatedness to the genus Methanobacterium. Microcosm using formation water as medium as well as a source of inoculum and coal as carbon source produced significant amount of methane which increased considerably by the addition of nitrite. The dominance of Diaphorobacter sp. in nitrite amended microcosm indicated their important role in supporting methanogenesis in the coal bed. This is the first study indicating existence of methanogenic and bacterial community in an Indian coal bed that is capable of in situ biotransformation of coal into methane. (orig.)

  12. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.

    Science.gov (United States)

    Zhang, Zhengcai; Guo, Guang-Jun

    2017-07-26

    Although ice powders are widely used in gas hydrate formation experiments, the effects of ice on hydrate nucleation and what happens in the quasi-liquid layer of ice are still not well understood. Here, we used high-precision constant energy molecular dynamics simulations to study methane hydrate nucleation from vapor-liquid mixtures exposed to the basal, prismatic, and secondary prismatic planes of hexagonal ice (ice Ih). Although no significant difference is observed in hydrate nucleation processes for these different crystal planes, it is found, more interestingly, that methane hydrate can nucleate either on the ice surface heterogeneously or in the bulk solution phase homogeneously. Several factors are mentioned to be able to promote the heterogeneous nucleation of hydrates, including the adsorption of methane molecules at the solid-liquid interface, hydrogen bonding between hydrate cages and the ice structure, the stronger ability of ice to transfer heat than that of the aqueous solution, and the higher occurrence probability of hydrate cages in the vicinity of the ice surface than in the bulk solution. Meanwhile, however, the other factors including the hydrophilicity of ice and the ice lattice mismatch with clathrate hydrates can inhibit heterogeneous nucleation on the ice surface and virtually promote homogeneous nucleation in the bulk solution. Certainly, the efficiency of ice as a promoter and as an inhibitor for heterogeneous nucleation is different. We estimate that the former is larger than the latter under the working conditions. Additionally, utilizing the benefit of ice to absorb heat, the NVE simulation of hydrate formation with ice can mimic the phenomenon of ice shrinking during the heterogeneous nucleation of hydrates and lower the overly large temperature increase during homogeneous nucleation. These results are helpful in understanding the nucleation mechanism of methane hydrate in the presence of ice.

  13. Thermoelectric properties of low-dimensional clathrates from first principles

    Science.gov (United States)

    Kasinathan, Deepa; Rosner, Helge

    2011-03-01

    Type-I inorganic clathrates are host-guest structures with the guest atoms trapped in the framework of the host structure. From a thermoelectric point of view, they are interesting because they are semiconductors with adjustable bandgaps. Investigations in the past decade have shown that type-I clathrates X8 Ga 16 Ge 30 (X = Ba, Sr, Eu) may have the unusual property of ``phonon glass-electron crystal'' for good thermoelectric materials. Among the known clathrates, Ba 8 Ga 16 Ge 30 has the highest figure of merit (ZT~1). To enable a more widespread usage of thermoelectric technology power generation and heating/cooling applications, ZT of at least 2-3 is required. Two different research approaches have been proposed for developing next generation thermoelectric materials: one investigating new families of advanced bulk materials, and the other studying low-dimensional materials. In our work, we concentrate on understanding the thermoelectric properties of the nanostructured Ba-based clathrates. We use semi-classical Boltzmann transport equations to calculate the various thermoelectric properties as a function of reduced dimensions. We observe that there exists a delicate balance between the electrical conductivity and the electronic part of the thermal conductivity in reduced dimensions. Insights from these results can directly be used to control particle size in nanostructuring experiments.

  14. Clathrates - An Exploration of the Chemistry of Caged Compounds

    Indian Academy of Sciences (India)

    also found on the icy moons of our solar system, at Saturn and .... This mineral loses water rapidly on heating and seemed ... The prototype of clathrate-I structure for gas hydrate has a .... Useful for studies of air pollution, process control and.

  15. Experimental flowloop study on methane hydrate formation and agglomeration in high water cut emulsion systems

    OpenAIRE

    Pham , Trung-Kien; Cameirao , Ana ,; Herri , Jean-Michel

    2016-01-01

    Thème de cette communication: International Conference on Integrated Petroleum Engineering (IPE); International audience; hydrate risk also increases. Especially in the offshore systems, operating at low temperature and high pressure, conditions are favourable to the formation of gas hydrate, from the combination of liquid water and gas molecules, under the form of a solid phase. It is a serious issue in the flow assurance; it may cause many troubles, up to plugging.This work brings new under...

  16. Capillary pressure controlled methane hydrate and ice growth-melting patterns in porous media : synthetic silica versus natural sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Tohidi, B.; Webber, B. [Heriot-Watt Univ., Centre for Gas Research, Edinburgh (United Kingdom). Inst. of Petroleum Engineering

    2008-07-01

    Although naturally-occurring gas hydrates (or clathrate hydrates) in marine sediments can pose a hazard to deepwater hydrocarbon production operations, they represent a potential strategic energy reserve. Gas hydrates can also provide a means for deep ocean carbon dioxide disposal through sequestration/storage. They have long-term importance with respect to ocean margin stability, methane release, and global climate change. However, fundamental knowledge is still lacking regarding the mechanisms of hydrate growth, accumulation and distribution within the subsurface. Marine sediments which host gas hydrates are commonly fine-grained silts, muds, and clays with narrow mean pore diameters, leading to speculation that capillary phenomena could play a significant role in controlling hydrate distribution in the seafloor, and may be partly responsible for discrepancies between observed and predicted hydrate stability zone thicknesses. A close relationship between hydrate inhibition and pore size has been confirmed through previous laboratory studies. Clathrate stability has been significantly reduced in narrow pores. However, the focus of investigations has generally been hydrate dissociation conditions in porous media, with capillary controls on the equally important process of hydrate growth being largely overlooked. This paper presented the results of an experimental investigation into methane hydrate growth and dissociation equilibria in natural medium grained sandstone. The study also compared data with that previously measured for mesoporous silica glasses. The paper discussed solid-liquid phase behaviour in confined geometries including hysteresis in porous media. It also discussed the experimental equipment and method. It was concluded that, as for synthetic silicas, hydrate growth and dissociation in the sandstone were characterised by a measurable hysteresis between opposing transitions, notably hydrate (or ice) formation occurring at temperatures lower than

  17. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the earth's early atmosphere

    Science.gov (United States)

    Zahnle, K. J.

    1986-01-01

    A one-dimensional photochemical model is used to analyze the photochemistries of CH4 and HCN in the primitive terrestrial atmosphere. CH4, N2, and HCN photolysis are examined. The background atmosphere and boundary conditions applied in the analysis are described. The formation of HCN as a by-product of N2 and CH4 photolysis is investigated; the effects of photodissociation and rainfall on HCN is discussed. The low and high CH4 mixing ratios and radical densities are studied.

  18. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  19. Coalbed methane potential of the Upper Cretaceous Mesaverde and Meeteetse formations, Wind River Reservation, Wyoming

    Science.gov (United States)

    Johnson, R.C.; Clark, A.C.; Barker, C.E.; Crysdale, B.L.; Higley, D.K.; Szmajter, R.J.; Finn, T.M.

    1993-01-01

    The environments of deposition of the uppermost part of the Cody Shale and the Mesaverde and Meeteetse Formations of Late Cretaceous age were studied on outcrop in the Shotgun Butte area in the north-central part of the Wind River Reservation. A shoreface sandstone occurs in the lower part of the Mesaverde Formation at all localities studied, and is directly overlain by a coaly interval. Repetitive coarsening-upward cycles of mudstone, siltstone, and sandstone occur in the 200 ft interval of the upper part of the Cody Shale below the shoreface sandstone. These Cody sandstones are typically hummocky cross stratified with symmetrical ripples near the top, indicating that they are largely storm surge deposits that were later reworked. Channel-form sandstones from 10 to 20 ft thick, with abundant locally derived clayey clasts, occur in a 75 ft thick interval below the shoreface at one locality. These unusual sandstones are largely confined to a narrow area of the outcrop and grade laterally into more typical storm surge deposits. They may be unusually large storm surge channels created when high-energy flow conditions were localized to a limited area of the shelf.The Mesaverde Formation above the shoreface sandstone is divided into a middle member and the Teapot Sandstone Member. The lower part of the middle member is everywhere coaly. Erosional-based sandstones in this coaly interval are highly variable in thickness and architecture. Thin, single channel sandstone bodies were deposited by moderate to high sinuosity streams, and thick, multistory channel sandstone bodies were deposited by rapidly switching fluvial channel systems that remained relatively stationary for extended periods of time. The architecture of the fluvial channel sandstones in the overlying noncoaly interval appears to be highly variable as well, with complex multistory sandstones occurring at different stratigraphic levels at different localities. This distribution may be explained by long term

  20. Type I Clathrates as Novel Silicon Anodes: An Electrochemical and Structural Investigation

    OpenAIRE

    Li, Ying; Raghavan, Rahul; Wagner, Nicholas A.; Davidowski, Stephen K.; Baggetto, Lo?c; Zhao, Ran; Cheng, Qian; Yarger, Jeffery L.; Veith, Gabriel M.; Ellis?Terrell, Carol; Miller, Michael A.; Chan, Kwai S.; Chan, Candace K.

    2015-01-01

    Silicon clathrates contain cage?like structures that can encapsulate various guest atoms or molecules. An electrochemical evaluation of type I silicon clathrates based on Ba8Al y Si46?y as the anode material for lithium?ion batteries is presented here. Postcycling characterization with nuclear magnetic resonance and X?ray diffraction shows no discernible structural or volume changes even after electrochemical insertion of 44 Li (?1 Li/Si) into the clathrate structure. The observed properties ...

  1. Effects of ensiling treatments on lactic acid production and supplementary methane formation of maize and amaranth--an advanced green biorefining approach.

    Science.gov (United States)

    Haag, Nicola Leonard; Nägele, Hans-Joachim; Fritz, Thomas; Oechsner, Hans

    2015-02-01

    A green biorefinery enables the material and energetic use of biomass via lactic acid and methane production. Different ensiling techniques were applied to maize and amaranth with the aim to increase the amount of lactic acid in the silage. In addition the methane formation potential of the ensiled samples and the remaining solid residues after separating the organic juice were assessed. Treating maize with homofermentative lactic acid bacteria in combination with carbonated lime increased the amount of lactic acid about 91.9%. For amaranth no additional lactic acid production was obtained by treating the raw material. Specific methane yields for the solid residues of amaranth were significantly lower in comparison to the corresponding silages. The most promising treatment resulted in a production of 127.9±4.1 g kg(-1) DM lactic acid and a specific methane yield for the solid residue of 349.5±6.6 lN kg(-1) ODM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Methane storage capacity of the early martian cryosphere

    Science.gov (United States)

    Lasue, Jeremie; Quesnel, Yoann; Langlais, Benoit; Chassefière, Eric

    2015-11-01

    Methane is a key molecule to understand the habitability of Mars due to its possible biological origin and short atmospheric lifetime. Recent methane detections on Mars present a large variability that is probably due to relatively localized sources and sink processes yet unknown. In this study, we determine how much methane could have been abiotically produced by early Mars serpentinization processes that could also explain the observed martian remanent magnetic field. Under the assumption of a cold early Mars environment, a cryosphere could trap such methane as clathrates in stable form at depth. The extent and spatial distribution of these methane reservoirs have been calculated with respect to the magnetization distribution and other factors. We calculate that the maximum storage capacity of such a clathrate cryosphere is about 2.1 × 1019-2.2 × 1020 moles of CH4, which can explain sporadic releases of methane that have been observed on the surface of the planet during the past decade (∼1.2 × 109 moles). This amount of trapped methane is sufficient for similar sized releases to have happened yearly during the history of the planet. While the stability of such reservoirs depends on many factors that are poorly constrained, it is possible that they have remained trapped at depth until the present day. Due to the possible implications of methane detection for life and its influence on the atmospheric and climate processes on the planet, confirming the sporadic release of methane on Mars and the global distribution of its sources is one of the major goals of the current and next space missions to Mars.

  3. The influence of methane/argon plasma composition on the formation of the hydrogenated amorphous carbon films

    International Nuclear Information System (INIS)

    Chen, Hsin-Hung; Liao, Jiunn-Der; Weng, Chih-Chiang; Hsieh, Jui-Fu; Chang, Chia-Wei; Lin, Chao-Hsien; Cho, Ting-Pin

    2011-01-01

    The quality of the a-C:H films was particularly correlated with the mixed ratio of methane/argon plasma. For a constant supply of energy and flowing rate, the optical emission from H α intensity linearly increased with the addition of methane in argon plasma, while that from intensities of radiation of diatmoic radicals (CH*and C 2 *) exponentially decreased. For the a-C:H films, the added methane in argon plasma tended to raise the quantity of hydrogenated carbon or sp 3 C-H structure, which exponentially decreased the nano-hardness and friction coefficient of the films. In contrast, the electric resistance of the films enlarged dramatically with the increase of the methane content in argon plasma. It is therefore advantageous to balance the mechanical properties and electrical resistance of the a-C:H film by adjusting plasma composition in the course of the film-growing process.

  4. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    Science.gov (United States)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  5. A computational study of radiation and gravity effect on temperature and soot formation in a methane air co-flow diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Bhowal, Arup Jyoti, E-mail: arupjyoti.bhowal@heritageit.edu [Department of Mechanical Engineering, Heritage Institute of Technology, Chowbaga Road, Anandapur, Kolkata-700 107, West Bengal (India); Mandal, Bijan Kumar, E-mail: bkm375@yahoo.co.in [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ∼7 of that at normal gravity. However, if radiation is not considered, soot formation is found to be much more.

  6. Synthesis and thermal conductivity of type II silicon clathrates

    Science.gov (United States)

    Beekman, M.; Nolas, G. S.

    2006-08-01

    We have synthesized and characterized polycrystalline Na 1Si 136 and Na 8Si 136, compounds possessing the type II clathrate hydrate crystal structure. Resistivity measurements from 10 to 300 K indicate very large resistivities in this temperature range, with activated temperature dependences indicative of relatively large band gap semiconductors. The thermal conductivity is very low; two orders-of-magnitude lower than that of diamond-structure silicon at room temperature. The thermal conductivity of Na 8Si 136 displays a temperature dependence that is atypical of crystalline solids and more indicative of amorphous materials. This work is part of a continuing effort to explore the many different compositions and structure types of clathrates, a class of materials that continues to be of interest for scientific and technological applications.

  7. Generalized hypothesis of the origin of the living-matter simplest elements, transformation of the Archean atmosphere, and the formation of methane-hydrate deposits

    International Nuclear Information System (INIS)

    Ostrovskii, Viktor E; Kadyshevich, Elena A

    2007-01-01

    The original hydrate hypothesis of the origin of living-matter simplest elements (LMSEs), i.e., the 'Life Origination Hydrate hypothesis,' abbreviated as the LOH hypothesis, is discussed. It includes notions of the interdependence and interconditionality of processes leading to the life origin, to the transformation of the primary atmosphere, and to the underground methane-hydrate formation. Saturation of the young earth's crust with nebular hydrogen is taken into consideration for the first time. The origin of LMSEs is regarded as a result of regular and thermodynamically caused inevitable chemical transformations and of the universal physical and chemical laws. According to the LOH hypothesis, LMSEs originated repeatedly and, maybe, are now originating from methane (or other simple hydrocarbons), niter, and phosphate within boundary layers of the solid phases of the hydrates of the simplest hydrocarbons. It is assumed that the phenomenon of monochirality of nucleic acids is caused by geometric features of the structure matrix. (reviews of topical problems)

  8. Electrochemical stability of ionic clathrate hydrates and their structural consideration

    International Nuclear Information System (INIS)

    Lee, Wonhee; Lim, Dongwook; Lee, Huen

    2013-01-01

    Although electrochemical stability is an essential factor in relation to the potential applications of ionic clathrate hydrates to solid electrolytes, most studies regarding the proton conductors have focused on their ionic conductivity and thermal stability. Solid electrolytes in various electrochemical devices have to endure the applied potentials; thus, we examined the linear sweep voltammograms of various tetraalkylammonium hydroxide hydrates in order to shed light on the trend of electrochemical stability depending on the hydrate structure. We revealed that the electrochemical stability of Me 4 NOH hydrates is mainly affected by both their ionic concentration and cage occupancy. In particular, the true clathrate structures of β-Me 4 NOH hydrates are more electrochemically stable than their α-forms that possess partially broken hydrogen bonds. We also observed that the binary THF–Pr 4 NOH and pure Bu 4 NOH clathrate hydrates exhibit greater electrochemical stability than those of pure Me 4 NOH hydrates having lower or similar ionic concentrations. These results are considered to arise from the fact that each of the Pr 4 N + and Bu 4 N + ions occupies an extended space comprising four cages, which leads to stabilization of the larger unit, whereas a Me 4 N + ion is completely included only in one cage

  9. Growth mode transition of tetrahydrofuran clathrate hydrates in the guest/host concentration boundary layer.

    Science.gov (United States)

    Sabase, Yuichiro; Nagashima, Kazushige

    2009-11-19

    Clathrate hydrates are known to form a thin film along a guest/host boundary. We present here the first report of tetrahydrofuran (THF) clathrate hydrate formation in a THF/water concentration boundary layer. We found that the THF-water system also forms a hydrate film separating the guest/host phases. The lateral growth rate of the film increases as supercooling increases. The thickness of the film at the growth tip decreases as supercooling and the lateral growth rate increase. These tendencies are consistent with reports of experiments for other hydrates and predictions of heat-transfer models. After film formation and slight melting, two types of growth modes are observed, depending on temperature T. At T = 3.0 degrees C, the film slowly thickens. The thickening rate is much lower than the lateral growth rate, as reported for other hydrates. At T agglomerate of small polycrystalline hydrates forms in each phase. Grain boundaries in the film and pore spaces in the agglomerate act as paths for permeation of each liquid. Timing when continuous nucleation starts is dominantly controlled by the time of initiation of liquid permeation through the film. Digital particle image velocimetry analysis of the agglomerate shows that it expands not by growth at the advancing front but rather by continuous nucleation in the interior. Expansion rates of the agglomerate tend to be higher for the cases of multipermeation paths in the film and the thinner film. We suppose that the growth mode transition to continuous nucleation is caused by the memory effect due to slight melting of the hydrate film.

  10. Vibrational spectroscopic and quantum theoretical study of host-guest interactions in clathrates: I. Hofmann type clathrates

    Directory of Open Access Journals (Sweden)

    VLADIMIR M. PETRUSEVSKI

    2000-06-01

    Full Text Available Hofmann type clatharates are host-guest compounds with the general formula M(NH32M'(CN4·2G, in which M(NH32M'(CN4 is the host lattice and G is benzene, the guest molecule. In previous studies, host-guest interactions have been investigated by analyzing the RT and LNT vibrational (infrared, far infrared and Raman spectra of these clathrates. All the observed changes in the vibrational spectra of these clathrates are referred to a host-guest interaction originating from weak hydrogen bonding between the ammonia hydrogen atoms from the host lattice and the p electron cloud of the guest (benzene molecules. In order to obtain an insight into the relative importance of the local crystalline field vs. the anharmonicity effects on the spectroscopic properties of the guest species upon enclathration, as well as to explain the observed band shifts and splittings, several quantum theoretical approaches are proposed.

  11. Marine methane cycle simulations for the period of early global warming

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.; Maltrud, M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2011-01-02

    Geochemical environments, fates, and effects are modeled for methane released into seawater by the decomposition of climate-sensitive clathrates. A contemporary global background cycle is first constructed, within the framework of the Parallel Ocean Program. Input from organics in the upper thermocline is related to oxygen levels, and microbial consumption is parameterized from available rate measurements. Seepage into bottom layers is then superimposed, representing typical seabed fluid flow. The resulting CH{sub 4} distribution is validated against surface saturation ratios, vertical sections, and slope plume studies. Injections of clathrate-derived methane are explored by distributing a small number of point sources around the Arctic continental shelf, where stocks are extensive and susceptible to instability during the first few decades of global warming. Isolated bottom cells are assigned dissolved gas fluxes from porous-media simulation. Given the present bulk removal pattern, methane does not penetrate far from emission sites. Accumulated effects, however, spread to the regional scale following the modeled current system. Both hypoxification and acidification are documented. Sensitivity studies illustrate a potential for material restrictions to broaden the perturbations, since methanotrophic consumers require nutrients and trace metals. When such factors are considered, methane buildup within the Arctic basin is enhanced. However, freshened polar surface waters act as a barrier to atmospheric transfer, diverting products into the deep return flow. Uncertainties in the logic and calculations are enumerated including those inherent in high-latitude clathrate abundance, buoyant effluent rise through the column, representation of the general circulation, and bacterial growth kinetics.

  12. Marine methane cycle simulations for the period of early global warming

    Science.gov (United States)

    Elliott, Scott; Maltrud, Mathew; Reagan, Matthew; Moridis, George; Cameron-Smith, Philip

    2011-03-01

    Geochemical environments, fates, and effects are modeled for methane released into seawater by the decomposition of climate-sensitive clathrates. A contemporary global background cycle is first constructed, within the framework of the Parallel Ocean Program. Input from organics in the upper thermocline is related to oxygen levels, and microbial consumption is parameterized from available rate measurements. Seepage into bottom layers is then superimposed, representing typical seabed fluid flow. The resulting CH4 distribution is validated against surface saturation ratios, vertical sections, and slope plume studies. Injections of clathrate-derived methane are explored by distributing a small number of point sources around the Arctic continental shelf, where stocks are extensive and susceptible to instability during the first few decades of global warming. Isolated bottom cells are assigned dissolved gas fluxes from porous-media simulation. Given the present bulk removal pattern, methane does not penetrate far from emission sites. Accumulated effects, however, spread to the regional scale following the modeled current system. Both hypoxification and acidification are documented. Sensitivity studies illustrate a potential for material restrictions to broaden the perturbations, since methanotrophic consumers require nutrients and trace metals. When such factors are considered, methane buildup within the Arctic basin is enhanced. However, freshened polar surface waters act as a barrier to atmospheric transfer, diverting products into the deep return flow. Uncertainties in the logic and calculations are enumerated including those inherent in high-latitude clathrate abundance, buoyant effluent rise through the column, representation of the general circulation, and bacterial growth kinetics.

  13. The formation of nitrogeneous compounds in the γ-radiolyses of liquid nitrogen solutions of hydrogen, methane, and ethane

    International Nuclear Information System (INIS)

    Horigome, Keiichi; Hirokami, Shun-ichi; Sato, Shin

    1978-01-01

    The γ-radiolyses of liquid nitrogen solutions of hydrogen, methane, and ethane have been reinvestigated. A complete survey of nitrogen-containing products has been attempted. The nitrogeneous compounds observed were ammonia (0.7) and hydrogen azide (0.02) in the case of hydrogen, ammonia (0.3), hydrogen cyanide (0.1), methyl azide (0.01), and a polymer in the case of methane, and ammonia (0.3), hydrogen cyanide (0.05), acetonitrile (0.04), ethyl azide (0.01), and a polymer in the case of ethane. The values in parentheses are the G-values obtained at optimum conditions. The hydrolysis of the polymer obtained with methane gave formaldehyde in amounts which correspond to the fact that the G-value of the nitrogen atoms which were converted into the polymer is about 1.0. In order to explain these results, possible reaction mechanisms are discussed. (auth.)

  14. Paraffin molecule mobility in channel clathrates of urea on spectroscopic NMR relaxation data

    CERN Document Server

    Kriger, Y G; Chekhova, G N

    2001-01-01

    The temperature dependences of the protons spin-lattice relaxation time (T sub I) in the channel clathrates of urea with paraffins are measured. The data on the T sub I are interpreted within the frames of the model of the paraffins molecules and their fragments orientation in the clathrate channels. The dynamics peculiarities are connected with the disproportion effects of these compounds

  15. Large methane releases lead to strong aerosol forcing and reduced cloudiness

    DEFF Research Database (Denmark)

    Kurten, T.; Zhou, L.; Makkonen, R.

    2011-01-01

    forcing that is comparable in magnitude to the long-wave radiative forcing ("enhanced greenhouse effect") of the added methane. Together, the indirect CH4-O-3 and CH4-OHaerosol forcings could more than double the warming effect of large methane increases. Our findings may help explain the anomalously......The release of vast quantities of methane into the atmosphere as a result of clathrate destabilization is a potential mechanism for rapid amplification of global warming. Previous studies have calculated the enhanced warming based mainly on the radiative effect of the methane itself, with smaller...... contributions from the associated carbon dioxide or ozone increases. Here, we study the effect of strongly elevated methane (CH4) levels on oxidant and aerosol particle concentrations using a combination of chemistry-transport and general circulation models. A 10-fold increase in methane concentrations...

  16. Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars

    Science.gov (United States)

    Kite, Edwin S.; Gao, Peter; Goldblatt, Colin; Mischna, Michael A.; Mayer, David P.; Yung, Yuk L.

    2017-10-01

    Lakes existed on Mars later than 3.6 billion years ago, according to sedimentary evidence for deltaic deposition. The observed fluviolacustrine deposits suggest that individual lake-forming climates persisted for at least several thousand years (assuming dilute flow). But the lake watersheds’ little-weathered soils indicate a largely dry climate history, with intermittent runoff events. Here we show that these observational constraints, although inconsistent with many previously proposed triggers for lake-forming climates, are consistent with a methane burst scenario. In this scenario, chaotic transitions in mean obliquity drive latitudinal shifts in temperature and ice loading that destabilize methane clathrate. Using numerical simulations, we find that outgassed methane can build up to atmospheric levels sufficient for lake-forming climates, if methane clathrate initially occupies more than 4% of the total volume in which it is thermodynamically stable. Such occupancy fractions are consistent with methane production by water-rock reactions due to hydrothermal circulation on early Mars. We further estimate that photochemical destruction of atmospheric methane curtails the duration of individual lake-forming climates to less than a million years, consistent with observations. We conclude that methane bursts represent a potential pathway for intermittent excursions to a warm, wet climate state on early Mars.

  17. A study of the process of joint formation of methane gas-hydrate and authigenic carbonates in bottom sediments in the Sea of Okhotsk

    Energy Technology Data Exchange (ETDEWEB)

    Esikov, A D [AN SSSR, Moscow (USSR). Water Problems Inst.; Pashkina, V I [AN SSSR, Moscow (USSR). Inst. Okeanologii

    1990-01-01

    The discovery of gas-hydrates in bottom sediments in the Sea of Okhotsk has allowed isotope fractionation of oxygen and hydrogen to be determined in the formation of the crystal lattice. It was established that the structure of gas-hydrate selectively included the heavier isotopes of oxygen and hydrogen, so that the gas-hydrate water had values of {delta}{sup 18}O = +1.9 per mille and {delta}D = +23 per mille, whereas the interstitial water was ''lighter'' in isotopes, with the values of {delta}{sup 18}O = -0.5 per mille and {delta}D = -5 per mille (relative to SMOW (standard mean ocean water)). The formation of gas-hydrates under the conditions of underwater discharge of methane alters the chemical composition of interstitial water, so that the carbonate equilibrium is shifted, and carbonates of authigenic origin are formed. The isotope composition of the carbonates is characterized by a low content of {sup 13}C({delta}{sup 13}C from -39.3 to -51.8 per mille PDB) and a high content of {sup 18}O({delta}{sup 18}O from + 2.7 to +6.3 per mille PDB) in comparison with carbonates of sea origin. These characteristics of the isotope composition suggest the participation of methane in the formation of authigenic carbonates, due to its anaerobic oxidation and the involvement of sulfate in the silt water. (author).

  18. A Possible Sink for Methane on Mars

    NARCIS (Netherlands)

    Nørnberg, P.; Jensen, S. J. K.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, E.; Iversen, J. J.; Kondrup, J. C.

    2014-01-01

    Mechanical simulated wind activation of mineral surfaces act as a trap for Methane through formation of covalent Si-C bonds stable up to temperatures above 250 C. This mechanism is proposed as a Methane sink on Mars.

  19. Methane cycling. Nonequilibrium clumped isotope signals in microbial methane.

    Science.gov (United States)

    Wang, David T; Gruen, Danielle S; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C; Holden, James F; Hristov, Alexander N; Pohlman, John W; Morrill, Penny L; Könneke, Martin; Delwiche, Kyle B; Reeves, Eoghan P; Sutcliffe, Chelsea N; Ritter, Daniel J; Seewald, Jeffrey S; McIntosh, Jennifer C; Hemond, Harold F; Kubo, Michael D; Cardace, Dawn; Hoehler, Tori M; Ono, Shuhei

    2015-04-24

    Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (13)CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (13)CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters. Copyright © 2015, American Association for the Advancement of Science.

  20. Raman scattering of type-I clathrate compounds

    International Nuclear Information System (INIS)

    Takasu, Y.; Hasegawa, T.; Ogita, N.; Udagawa, M.; Avila, M.A.; Takabatake, T.

    2006-01-01

    Lattice dynamical properties of the type-I clathrate compounds of A 8 Ga 16 Ge 30 (A=Eu, Sr, Ba) have been investigated by Raman scattering. We are successful in the assignment of the observed Raman active phonons to proper symmetry and are able to separate the guest atom origin modes from framework origin modes for the first time experimentally. From the measurements of temperature dependence of the guest origin peaks, we also demonstrate the difference of the behavior of the guest atom at high temperature and low temperature

  1. Thermodynamic analysis of carbon formation in solid oxide fuel cells with a direct internal reformer fueled by ethanol, methanol, and methane

    International Nuclear Information System (INIS)

    Laosiripojana, N.; Assabumrungrat, S.; Pavarajarn, V.; Sangtongkitcharoen, W.; Tangjitmatee, A.; Praserthdam, P.

    2004-01-01

    'Full text:' This paper concerns a detailed thermodynamic analysis of carbon formation for a Direct Internal Reformer (DIR) Solid Oxide Fuel Cells (SOFC). The modeling of DIR-SOFC fueled by ethanol, methanol, and methane were compared. Two types of fuel cell electrolytes, i.e. oxygen-conducting and hydrogen-conducting, are considered. Equilibrium calculations were performed to find the ranges of inlet steam/fuel ratio where carbon formation is thermodynamically unfavorable in the temperature range of 500-1200 K. It was found that the key parameters determining the boundary of carbon formation are temperature, type of solid electrolyte and extent of the electrochemical reaction of hydrogen. The minimum requirements of H2O/fuel ratio for each type of fuel in which the carbon formation is thermodynamically unfavored were compared. At the same operating conditions, DIR-SOFC fueled by ethanol required the lowest inlet H2O/fuel ratio in which the carbon formation is thermodynamically unfavored. The requirement decreased with increasing temperature for all three fuels. Comparison between two types of the electrolytes reveals that the hydrogen-conducting electrolyte is impractical for use, regarding to the tendency of carbon formation. This is due mainly to the water formed by the electrochemical reaction at the electrodes. (author)

  2. Structure and physical properties of type-I clathrate solid-solution Ba8PtxGe46-x-y□y (□=vacancy)

    International Nuclear Information System (INIS)

    Melnychenko-Koblyuk, N.; Grytsiv, A.; Rogl, P.; Rotter, M.; Lackner, R.; Bauer, E.; Fornasari, L.; Marabelli, F.; Giester, G.

    2007-01-01

    Formation, crystal chemistry, and physical properties were investigated for the solid-solution Ba 8 Pt x Ge 46-x-y □ y (□ is a vacancy) deriving from binary clathrate Ba 8 Ge 43 □ 3 with a solubility limit of ∼3.5 Pt atoms/f.u. at T=800 deg. C. Structural investigations throughout the homogeneity region confirm isotypism with the cubic primitive clathrate type-I structure (space group type Pm3n) and lattice parameters ranging from a=1.0657(2) nm for Ba 8 Ge 43 □ 3 to a=1.0752(2) nm for Ba 8 Pt 3.5 Ge 41.5 □ 1.0 . Phase relations for the region concerning the clathrate solution were derived at subsolidus temperatures as well as at 800 deg. C. Transport properties evidence electrons as the majority charge carriers in the system with a slight dependency on the Pt content. The system is located close to a semiconducting regime with a gap in the electronic density of states of a few thousand K. No low temperature maximum is obvious from thermal conductivity which is dominated by the lattice contribution. Thermal conductivity furthermore documents a high efficiency of phonon scattering on vacancies

  3. Large methane releases lead to strong aerosol forcing and reduced cloudiness

    DEFF Research Database (Denmark)

    Kurten, T.; Zhou, L.; Makkonen, R.

    2011-01-01

    The release of vast quantities of methane into the atmosphere as a result of clathrate destabilization is a potential mechanism for rapid amplification of global warming. Previous studies have calculated the enhanced warming based mainly on the radiative effect of the methane itself, with smaller...... is predicted to significantly decrease hydroxyl radical (OH) concentrations, while moderately increasing ozone (O-3). These changes lead to a 70% increase in the atmospheric lifetime of methane, and an 18% decrease in global mean cloud droplet number concentrations (CDNC). The CDNC change causes a radiative...... forcing that is comparable in magnitude to the long-wave radiative forcing ("enhanced greenhouse effect") of the added methane. Together, the indirect CH4-O-3 and CH4-OHaerosol forcings could more than double the warming effect of large methane increases. Our findings may help explain the anomalously...

  4. Observation of interstitial molecular hydrogen in clathrate hydrates.

    Science.gov (United States)

    Grim, R Gary; Barnes, Brian C; Lafond, Patrick G; Kockelmann, Winfred A; Keen, David A; Soper, Alan K; Hiratsuka, Masaki; Yasuoka, Kenji; Koh, Carolyn A; Sum, Amadeu K

    2014-09-26

    The current knowledge and description of guest molecules within clathrate hydrates only accounts for occupancy within regular polyhedral water cages. Experimental measurements and simulations, examining the tert-butylamine + H2 + H2O hydrate system, now suggest that H2 can also be incorporated within hydrate crystal structures by occupying interstitial sites, that is, locations other than the interior of regular polyhedral water cages. Specifically, H2 is found within the shared heptagonal faces of the large (4(3)5(9)6(2)7(3)) cage and in cavities formed from the disruption of smaller (4(4)5(4)) water cages. The ability of H2 to occupy these interstitial sites and fluctuate position in the crystal lattice demonstrates the dynamic behavior of H2 in solids and reveals new insight into guest-guest and guest-host interactions in clathrate hydrates, with potential implications in increasing overall energy storage properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Superconductivity of Ba8Si46-xGax clathrates

    Science.gov (United States)

    Li, Yang; Zhang, Ruihong; Chen, Ning; Ma, Xingqiao; Cao, Guohui; Luo, Z. P.; Hu, C. R.; Ross, Joseph H., Jr.

    2007-03-01

    We have presented a combined experimental and theoretical study of the effect of Gallium substitution on the superconductivity of the type I clathrate Ba8Si46-xGax. In Ga-doped clathrates, the Ga state is found to be strongly hybridized with the cage conduction-band state. Ga substitution results in a shift toward to a lower energy, a decrease of density of states at Fermi level, a lowering of the carrier concentration and a breakage of integrity of the sp3 hybridized networks. These play key roles in the suppression of superconductivity. For Ba8Si40Ga6, the onset of the superconducting transition occurs at Tc=3.3 K. The investigation of the magnetic superconducting state shows that Ba8Si40Ga6 is a type II superconductor. The critical magnetic fields were measured to be Hc1=35 Oe and Hc2=8.5 kOe. Our estimate of the lectron-phonon coupling reveals that Ba8Si40Ga6 is a moderate phonon-mediated BCS superconductor.

  6. Deactivating Carbon Formation on a Ni/Al2O3 Catalyst under Methanation Conditions

    DEFF Research Database (Denmark)

    Olesen, Sine Ellemann; Andersson, Klas J.; Damsgaard, Christian Danvad

    2017-01-01

    . The longer the duration of the methanation test, the more carbon was built up on the Ni surfaces and the highest observed amount was quantified to be as much as eight carbon atoms per Ni surface atom (8 C/Nisurf), which would roughly correspond to an average coverage of four monolayers of graphene. From H2...... desorption measurements after reaction the 650 K TPH peak carbon structure is proposed to be partially hydrogenated, possibly resembling polycyclic aromatic-like carbon. The 775 K peak carbon species are likely more graphene-like. Results indicate that although carbon deposition nucleation may be initiated...

  7. Global Assessment of Methane Gas Hydrates: Outreach for the public and policy makers

    Science.gov (United States)

    Beaudoin, Yannick

    2010-05-01

    The United Nations Environment Programme (UNEP), via its official collaborating center in Norway, GRID-Arendal, is in the process of implementing a Global Assessment of Methane Gas Hydrates. Global reservoirs of methane gas have long been the topic of scientific discussion both in the realm of environmental issues such as natural forces of climate change and as a potential energy resource for economic development. Of particular interest are the volumes of methane locked away in frozen molecules known as clathrates or hydrates. Our rapidly evolving scientific knowledge and technological development related to methane hydrates makes these formations increasingly prospective to economic development. In addition, global demand for energy continues, and will continue to outpace supply for the foreseeable future, resulting in pressure to expand development activities, with associated concerns about environmental and social impacts. Understanding the intricate links between methane hydrates and 1) natural and anthropogenic contributions to climate change, 2) their role in the carbon cycle (e.g. ocean chemistry) and 3) the environmental and socio-economic impacts of extraction, are key factors in making good decisions that promote sustainable development. As policy makers, environmental organizations and private sector interests seek to forward their respective agendas which tend to be weighted towards applied research, there is a clear and imminent need for a an authoritative source of accessible information on various topics related to methane gas hydrates. The 2008 United Nations Environment Programme Annual Report highlighted methane from the Arctic as an emerging challenge with respect to climate change and other environmental issues. Building upon this foundation, UNEP/GRID-Arendal, in conjunction with experts from national hydrates research groups from Canada, the US, Japan, Germany, Norway, India and Korea, aims to provide a multi-thematic overview of the key

  8. Catalytic aromatization of methane.

    Science.gov (United States)

    Spivey, James J; Hutchings, Graham

    2014-02-07

    Recent developments in natural gas production technology have led to lower prices for methane and renewed interest in converting methane to higher value products. Processes such as those based on syngas from methane reforming are being investigated. Another option is methane aromatization, which produces benzene and hydrogen: 6CH4(g) → C6H6(g) + 9H2(g) ΔG°(r) = +433 kJ mol(-1) ΔH°(r) = +531 kJ mol(-1). Thermodynamic calculations for this reaction show that benzene formation is insignificant below ∼600 °C, and that the formation of solid carbon [C(s)] is thermodynamically favored at temperatures above ∼300 °C. Benzene formation is insignificant at all temperatures up to 1000 °C when C(s) is included in the calculation of equilibrium composition. Interestingly, the thermodynamic limitation on benzene formation can be minimized by the addition of alkanes/alkenes to the methane feed. By far the most widely studied catalysts for this reaction are Mo/HZSM-5 and Mo/MCM-22. Benzene selectivities are generally between 60 and 80% at methane conversions of ∼10%, corresponding to net benzene yields of less than 10%. Major byproducts include lower molecular weight hydrocarbons and higher molecular weight substituted aromatics. However, carbon formation is inevitable, but the experimental findings show this can be kinetically limited by the use of H2 or oxidants in the feed, including CO2 or steam. A number of reactor configurations involving regeneration of the carbon-containing catalyst have been developed with the goal of minimizing the cost of regeneration of the catalyst once deactivated by carbon deposition. In this tutorial review we discuss the thermodynamics of this process, the catalysts used and the potential reactor configurations that can be applied.

  9. Methane Seepage on Mars: Where to Look and Why.

    Science.gov (United States)

    Oehler, Dorothy Z; Etiope, Giuseppe

    2017-12-01

    Words: Mars-Methane-Seepage-Clathrate-Fischer-Tropsch-Serpentinization. Astrobiology 17, 1233-1264.

  10. Generalized hypothesis of the origin of the living-matter simplest elements, transformation of the Archean atmosphere, and the formation of methane-hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovskii, Viktor E [L. Ya. Karpov Institute of Physical Chemistry, Moscow (Russian Federation); Kadyshevich, Elena A [A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2007-02-28

    The original hydrate hypothesis of the origin of living-matter simplest elements (LMSEs), i.e., the 'Life Origination Hydrate hypothesis,' abbreviated as the LOH hypothesis, is discussed. It includes notions of the interdependence and interconditionality of processes leading to the life origin, to the transformation of the primary atmosphere, and to the underground methane-hydrate formation. Saturation of the young earth's crust with nebular hydrogen is taken into consideration for the first time. The origin of LMSEs is regarded as a result of regular and thermodynamically caused inevitable chemical transformations and of the universal physical and chemical laws. According to the LOH hypothesis, LMSEs originated repeatedly and, maybe, are now originating from methane (or other simple hydrocarbons), niter, and phosphate within boundary layers of the solid phases of the hydrates of the simplest hydrocarbons. It is assumed that the phenomenon of monochirality of nucleic acids is caused by geometric features of the structure matrix. (reviews of topical problems)

  11. Experimental study of methanic fermentation of straw

    Energy Technology Data Exchange (ETDEWEB)

    Dopter, P; Beerens, H

    1952-12-03

    The amount of liquid manure obtainable was a limiting factor in methanic fermentation of wheat straw. An equal volume of 0.2% aqueous solution of Na formate could be substituted for 90% of the normal requirements of liquid manure. This shortened the preliminary stages of cellulosic fermentation when no methane was produced and slightly increased the subsequent yield of methane.

  12. UV-visible and resonance Raman spectroscopy of halogen molecules in clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Janda, K.C.; Kerenskaya, G.; Goldsheleger, I.U.; Apkarian, V.A.; Fleischer, E.B. [California Univ., Irvine, CA (United States). Dept. of Chemistry

    2008-07-01

    Resonance Raman spectroscopy was used to study halogen clathrate hydrate solids. In particular, this paper presented an ultraviolet-visible spectra for a polycrystalline sample of chlorine clathrate hydrate and two single crystal samples of bromine clathrate hydrate. UV-visible spectroscopy was used to study the interactions between the halogen guest molecule and the host water lattice. The spectrum for chlorine hydrate had a strong temperature dependence, while the spectra for bromine clathrate hydrate single crystals had a stable cubic type 2 structure as well as a tetragonal structure. A metastable cubic type 1 structure was also observed. Resonance Raman spectroscopy showed how the molecules fit into the host cages. 25 refs., 2 tabs., 7 figs.

  13. Excimer-mediated photoionization of covalently-linked diaryl compounds: Energy thresholds for excimer formation and excimer-assisted photoionization of jet-cooled bis (9-Fluorenyl) methane

    International Nuclear Information System (INIS)

    Lee, Jae Kwang; Kang, Heun Kag; Cho, Han Joung; Boo, Bong Hyun; Lim, Edward C.

    2001-01-01

    Diarylakanes capable of adopting a face-to face arrangement of the two aromatic rings are ideal systems in which to probe the excited-state dynamics leading to excimer formation and the role of the singlet excimer in the photoionization of covalently linked bichromophoric molecules. Bis (9-eluorenyl) methane, BFM, is a good example of such diaryl compounds. Boo and co-workers have shown that BFM exhibits excrimer fluorescence in solution at ambient temperatures. An Arrhenius plot of the temperature-dependent excimer formation rate yielded activation energy of about 15 kJ·mol -1 . It has been proposed that the activation energy is related to the barrier for transforming the initial S 1 geometry to the face-to face (sandwich-pair) geometry of the intramolecular singlet excimer. This is accord with the study of an intramolecular excimer formation in jet-cooled 1, 3-diphenylpropane (DPP), and that of an intramolecular exciplex formation in 1-(9-anthryl)-3-(4-N, N-dimethylaniline) propane, which indicate that the energy threshold for such conformational changes is about 11 kJ·mol -1 .

  14. IR reflectance spectroscopy of carbon dioxide clathrate hydrates. Implications for Saturn's icy moons.

    Science.gov (United States)

    Oancea, A.; Grasset, O.; Le Menn, E.; Bezacier, L.; Bollengier, O.; Le Mouélic, S.; Tobie, G.

    2012-04-01

    A CO2 spectral band was discovered by VIMS on the Saturn's satellites Dione, Hyperion, Iapetus and Phoebe [1]. The band position on the three first satellites corresponds to CO2 trapped in a complex material, but no indication exists whether this latter is water ice or some mineral or complex organic compound [1]. On Phoebe, the CO2 spectral band is consistent with solid CO2 or CO2 molecules trapped in the small cages of a clathrate hydrate structure [2]. It is thought that clathrate hydrates could play a significant role in the chemistry of the solar nebula [3] and in the physical evolution of astrophysical objects [4]. But so far, no clathrate hydrate structure has been observed in astrophysical environments. Moreover, identification of molecules trapped in a clathrate hydrate structure is extremely difficult because of the strong IR vibration modes of the water ice matrix. In this work, experimental IR reflectance spectra for CO2 clathrate hydrates are studied on grains and films. Clathrates are synthesized in a high pressure autoclave at low temperatures. IR spectral analysis is made with a low pressure and low temperature cryostat. These experimental conditions - 80 spectrum will be presented. A comparison between the absorption bands of CO2 clathrate hydrates obtained in our lab and CO2 absorption bands as detected by VIMS on the icy satellites of Saturn will be shown. This experimental work confirms that VIMS data are not consistent with the presence of structure I CO2 clathrate hydrates on the surface of the icy moons. Possibility of having metastable structure II still remains unsolved and will be discussed. [1] Dalton et al., Space Sci. Rev. 2010, 153 : 113-154. [2] Cruikshank D.P. et al, Icarus, 2010, 206: 561-572. [3] Mousis O. et al , Ap. J. 2009, 691: 1780-1786. [4] Choukroun M. et al, in Solar System Ices, edited by Castillo-Rogez, J. et al., 2011.

  15. Preservation of carbon dioxide clathrate hydrate in the presence of trehalose under freezer conditions.

    Science.gov (United States)

    Nagashima, Hironori D; Takeya, Satoshi; Uchida, Tsutomu; Ohmura, Ryo

    2016-01-19

    To investigate the preservation of CO2 clathrate hydrate in the presence of sugar for the novel frozen dessert, mass fractions of CO2 clathrate hydrate in CO2 clathrate hydrate samples coexisting with trehalose were intermittently measured. The samples were prepared from trehalose aqueous solution with trehalose mass fractions of 0.05 and 0.10 at 3.0 MPa and 276.2 K. The samples having particle sizes of 1.0 mm and 5.6-8.0 mm were stored at 243.2 K and 253.2 K for three weeks under atmospheric pressure. The mass fractions of CO2 clathrate hydrate in the samples were 0.87-0.97 before the preservation, and CO2 clathrate hydrate still remained 0.56-0.76 in the mass fractions for 5.6-8.0 mm samples and 0.37-0.55 for 1.0 mm samples after the preservation. The preservation in the trehalose system was better than in the sucrose system and comparable to that in the pure CO2 clathrate hydrate system. This comparison indicates that trehalose is a more suitable sugar for the novel frozen carbonated dessert using CO2 clathrate hydrate than sucrose in terms of CO2 concentration in the dessert. It is inferred that existence of aqueous solution in the samples is a significant factor of the preservation of CO2 clathrate hydrate in the presence of sugar.

  16. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  17. Structural and thermoelectric properties of the type-I Sn clathrates Cs8Sn46−n(n=0,2) from Density Functional Theory (DFT)

    KAUST Repository

    Egbele, Peter O.; Shoko, Elvis; Joubert, Daniel P.

    2018-01-01

    Sn clathrates are promising phonon glass, electron crystal materials (PGEC), in which the phonon free paths are short and the electron free paths are long. We analysed the relaxed structure of Sn clathrates using four different Density Funtional

  18. An ir study of M(1-propanethiol)2Ni(CN)4.G (M=Cd,Ni and G=benzene) clathrates

    International Nuclear Information System (INIS)

    Kartal, Z.; Tuerkoz, D.; Bahceli, S.

    2004-01-01

    Two Hofmann-propanethiol-type clathrates of the for M(1-propanethiol) 2 Ni(CN) 4 .G (M=Cd or Ni; G = benzene) have been prepared in the powder form. The 1-propanethiol (1-PT) molecules provide the cavities in which the quest benzene molecules in clathrate structure ar accommodated. The infrared investigations of the obtained clathrates indicate that these compounds are similar in structure to the other Hofmann-type clathrates (Authors)

  19. Synthesis of polyphenylacetylene by radiation-induced polymerization in deoxycholic acid clathrate

    International Nuclear Information System (INIS)

    Cataldo, Franco; Strazzulla, Giovanni; Iglesias-Groth, Susana

    2009-01-01

    Phenylacetylene was polymerized as inclusion compound (clathrate) inside deoxycholic acid (DOCA) crystals. The polymerization was initiated by γ radiation and a total dose of 320 kGy was employed. The resulting polyphenylacetylene (PPA) was isolated by dissolution of deoxycholic acid in boiling ethanol. PPA high polymer was accompanied by a series of phenylacetylene oligomers, which were detected by liquid chromatographic analysis (HPLC). PPA was characterized by electronic absorption spectroscopy and by FT-IR spectroscopy in comparison to a reference PPA prepared by a stereospecific catalyst. The microstructure of PPA from inclusion polymerization was highly trans type, similar to that observed on PPA prepared by bulk radiolysis. No optical activity was detected by polarimetry on PPA prepared by inclusion polymerization. The host-guest complex PPA/DOCA was studied by differential thermal analysis (DTA) and by thermogravimetry (TGA). DTA provided evidences of the host-guest complex formation from the shift of the melting point of DOCA while the TGA confirmed the identity - in terms of thermal behaviour - of the PPA from inclusion polymerization with that from stereospecific polymerization

  20. Gas hydrates and clathrates. Flow assurance, environmental and economic perspectives and the Nigerian liquefied natural gas project

    International Nuclear Information System (INIS)

    Gbaruko, B.C.; Igwe, J.C.; Nwokeoma, R.C.; Gbaruko, P.N.

    2007-01-01

    Gas hydrates are nonstoichiometric crystalline compounds that belong to the inclusion group known as clathrates. They occur when water molecules attach themselves together through hydrogen bonding and form cavities which can be occupied by a single gas or volatile liquid molecule. Gas hydrates, asphaltenes and waxes are three major threats to flow assurance that must be well assessed by design team uptime. Gas hydrates are also looked upon as a future energy source and as a potential climate hazard. The purpose of this review is to show the chemistry and mechanism of gas hydrate formation, the problems they pose, especially to flow assurance, their system implications, their environmental and economic perspectives with respect to their prospects as storage and transport alternative to the liquefied natural gas technology. (author)

  1. Effect of gamma irradiation and ethyl methane sulphonate on flavour formation in garlic (Allium sativum L. ) cultures

    International Nuclear Information System (INIS)

    Malpathak, N.P.; David, S.B.

    1990-01-01

    In callus cultures both gamma irradiation and EMS treatments produced stimul ation of flavour formation at lower as well as at higher dosages. Different results were obtained when the plantlets differentiated from both the treatments were analysed. There was a gradual increase in flavour formation with increasing dosages, which declined at a higher dosages. Cytological observations showed an increase in polyploidy with increasing dosages. (author). 5 refs., 5 tabs

  2. Calibration and validation of a numerical model against experimental data of methane hydrate formation and dissociation in a sandy porous medium

    Science.gov (United States)

    Yin, Z.; Moridis, G. J.; Chong, Z. R.; Linga, P.

    2017-12-01

    Methane hydrates (MH) are known to trap enormous amounts of CH4 in oceanic and permafrost-associated deposits, and are being considered as a potential future energy source. Several powerful numerical simulators were developed to describe the behavior of natural hydrate-bearing sediments (HBS). The complexity and strong nonlinearities in HBS do not allow analytical solutions for code validation. The only reliable method to develop confidence in these models is through comparisons to laboratory and/or field experiments. The objective of this study is to reproduce numerically the results from earlier experiments of MH formation and depressurization (and the corresponding fluid production) in 1.0L reactor involving unconsolidated sand, thus validating and calibrating the TOUGH+Hydrate v1.5 simulator. We faithfully describe the reactor geometry and the experimental process that involves both hydrate formation and dissociation. We demonstrate that the laboratory experiments can only be captured by a kinetic hydration model. There is an excellent agreement between observations and predictions (a) of the cumulative gas depletion (during formation) and production (during dissociation) and (b) of pressure over time. The temperature agreement is less satisfactory, and the deviations are attributed to the fixed locations of the limited number of sensors that cannot fully capture the hydrate heterogeneity. We also predict the spatial distributions over time of the various phase (gas, aqueous and hydrate) saturations. Thus, hydrates form preferentially along the outer boundary of the sand core, and the hydrate front moves inward leaving a significant portion of the sand at the center hydrate-free. During depressurization, dissociation advances again inward from the reactor boundary to the center of the reactor. As expected, methane gas accumulates initially at the locations of most intense dissociation, and then gradually migrates to the upper section of the reactor because of

  3. Emission sources of non-methane volatile organic compounds (NMVOCs) and their contribution to photochemical ozone (O3) formation at an urban atmosphere in western India.

    Science.gov (United States)

    Yadav, R.; Sahu, L. K.; Tripathi, N.; Pal, D.

    2017-12-01

    Atmospheric non-methane volatile organic compounds (NMVOCs) were measured at a sampling site in Udaipur city of western India during 2015 to recognize their pollution levels, variation characteristics, sources and photochemical reactivity. The samples were analyzed for NMVOCs using a Gas Chromatograph equipped with Flame Ionization Detector (GC/FID) and Thermal Desorption (TD) system. The main focus on understand the sources responsible for NMVOC emissions, and evaluating the role of the identified sources towards ozone formation. Hourly variations of various NMVOC species indicate that VOCs mixing ratios were influenced by photochemical removal with OH radicals for reactive species, secondary formation for oxygenated VOCs. In general, higher mixing ratios were observed during winter/pre-monsoon and lower levels during the monsoon season due to the seasonal change in meteorological, transport path of air parcel and boundary layer conditions. The high levels of propane (C3H8) and butane (C4H10) show the dominance of LPG over the study location. The correlation coefficients of typical NMVOC pairs (ethylene/propylene, propylene/isoprene, and ethane/propane) depicted that vehicular emission and natural gas leakages were important sources for atmospheric hydrocarbons in Udaipur. Based on the annual data, PMF analysis suggest the source factors namely biomass burning/ bio-fuel, automobile exhaust, Industrial/ natural gas/power plant emissions, petrol/Diesel, gasoline evaporation, and use of liquid petroleum gas (LPG) contribute to NMVOCs loading. The propylene-equivalent and ozone formation potential of NMVOCs have also been calculated in order to find out their OH reactivity and contribution to the photochemical ozone formation.

  4. NO formation in the burnout region of a partially premixed methane-air flame with upstream heat loss

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, A.V.; Levinsky, H.B.

    1999-09-01

    Measurements of temperature and NO concentration in laminar, partially premixed methane-air flames stabilized on a ceramic burner in coflow are reported. The NO concentration and temperature were determined by laser-induced fluorescence (LIF) and coherent anti-Stokes Raman scattering (CARS), respectively. Upstream heat loss to the burner was varied by changing the exit velocity of the fuel-air mixture at a constant equivalence ratio of 1,3; this alters the structure of the flame from an axisymmetric Bunsen-type to a strongly stabilized flat flame. To facilitate analysis of the results, a method is derived for separating the effects of dilution from those of chemical reaction based on the relation between the measured temperature and the local mixture fraction, including the effects of upstream heat loss. Using this method, the amount of NO formed during burnout of the hot, fuel-rich combustion products can be ascertained. In the Bunsen-type flame, it is seen that {approximately}40 ppm of NO are produced in this burnout region, at temperatures between {approximately}2,100 K and {approximately}1,900 K, probably via the Zeldovich mechanism. Reducing the exit velocity of 12 cm/s reduces the flame temperature substantially, and effectively eliminates this contribution. At velocities of 12 and 8 cm/s, {approximately}10 ppm of NO are formed in the burnout region, even though the gas temperatures are too low for Zeldovich NO to be significant. Although the mechanism responsible for these observations is as yet unclear, the results are consistent with the idea that the low temperatures in the fuel-rich gases caused by upstream heat loss retard the conversion of HCN (formed via the Fenimore mechanism) to NO, with this residual HCN then being converted to NO during burnout.

  5. Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate

    Science.gov (United States)

    Hamdan, Leila J.; Wickland, Kimberly P.

    2016-01-01

    Methane is a powerful greenhouse gas, and atmospheric concentrations have risen 2.5 times since the beginning of the Industrial age. While much of this increase is attributed to anthropogenic sources, natural sources, which contribute between 35% and 50% of global methane emissions, are thought to have a role in the atmospheric methane increase, in part due to human influences. Methane emissions from many natural sources are sensitive to climate, and positive feedbacks from climate change and cultural eutrophication may promote increased emissions to the atmosphere. These natural sources include aquatic environments such as wetlands, freshwater lakes, streams and rivers, and estuarine, coastal, and marine systems. Furthermore, there are significant marine sediment stores of methane in the form of clathrates that are vulnerable to mobilization and release to the atmosphere from climate feedbacks, and subsurface thermogenic gas which in exceptional cases may be released following accidents and disasters (North Sea blowout and Deepwater Horizon Spill respectively). Understanding of natural sources, key processes, and controls on emission is continually evolving as new measurement and modeling capabilities develop, and different sources and processes are revealed. This special issue of Limnology and Oceanography gathers together diverse studies on methane production, consumption, and emissions from freshwater, estuarine, and marine systems, and provides a broad view of the current science on methane dynamics of aquatic ecosystems. Here, we provide a general overview of aquatic methane sources, their contribution to the global methane budget, and key uncertainties. We then briefly summarize the contributions to and highlights of this special issue.

  6. The effect of classical and quantum dynamics on vibrational frequency shifts of H2 in clathrate hydrates

    International Nuclear Information System (INIS)

    Plattner, Nuria; Meuwly, Markus

    2014-01-01

    Vibrational frequency shifts of H 2 in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H 2 in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H 2 in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H 2 vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H 2 in the 5 12 cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5 12 cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5 12 6 4 cages for which higher occupation numbers than one H 2 per cage are likely

  7. Type I Clathrates as Novel Silicon Anodes: An Electrochemical and Structural Investigation

    Science.gov (United States)

    Li, Ying; Raghavan, Rahul; Wagner, Nicholas A.; Davidowski, Stephen K.; Baggetto, Loïc; Zhao, Ran; Cheng, Qian; Yarger, Jeffery L.; Veith, Gabriel M.; Ellis‐Terrell, Carol; Miller, Michael A.; Chan, Kwai S.

    2015-01-01

    Silicon clathrates contain cage‐like structures that can encapsulate various guest atoms or molecules. An electrochemical evaluation of type I silicon clathrates based on Ba8AlySi46−y as the anode material for lithium‐ion batteries is presented here. Postcycling characterization with nuclear magnetic resonance and X‐ray diffraction shows no discernible structural or volume changes even after electrochemical insertion of 44 Li (≈1 Li/Si) into the clathrate structure. The observed properties are in stark contrast with lithiation of other silicon anodes, which become amorphous and suffer from large volume changes. The electrochemical reactions are proposed to occur as single phase reactions at approximately 0.2 and 0.4 V versus Li/Li+ during lithiation and delithiation, respectively, distinct from diamond cubic or amorphous silicon anodes. Reversible capacities as high as 499 mAh g−1 at a 5 mA g−1 rate were observed for silicon clathrate with composition Ba8Al8.54Si37.46, corresponding to ≈1.18 Li/Si. These results show that silicon clathrates could be promising durable anodes for lithium‐ion batteries. PMID:27980951

  8. Reaction of methane with coal

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K.; Batts, B.D.; Wilson, M.A.; Gorbaty, M.L.; Maa, P.S.; Long, M.A.; He, S.J.X.; Attala, M.I. [Macquarie University, Macquarie, NSW (Australia). School of Chemistry

    1997-10-01

    A study of the reactivities of Australian coals and one American coal with methane or methane-hydrogen mixtures, in the range 350-400{degree}C and a range of pressures (6.0-8.3 MPa, cold) is reported. The effects of aluminophosphates (AIPO) or zeolite catalysts, with and without exchanged metals, on reactivity have also been examined. Yields of dichloromethane extractable material are increased by using a methane rather than a nitrogen atmosphere and different catalysts assist dissolution to various extends. It appears that surface exchanged catalysts are effective, but incorporating metals during AIPO lattice formation is detrimental. Aluminium phosphate catalysts are unstable to water produced during coal conversion, but are still able to increase extraction yields. For the American coal, under methane-hydrogen and a copper exchanged zeolite, 51.5% conversion was obtained, with a product selectivity close to that obtained under hydrogen alone, and with only 2% hydrogen consumption. The conversion under methane-hydrogen was also to that obtained under hydrogen alone, while a linear dependence of conversion on proportion of methane would predict a 43% conversion under methane-hydrogen. This illustrates a synergistic effect of the methane-hydrogen atmosphere for coal liquefaction using this catalyst systems. 31 refs., 5 figs., 7 tabs.

  9. Experimental Study on Methane Hydrate Formation and Transport from Emulsions in a “Gas Lift” Riser in a Flowloop

    OpenAIRE

    Pham , Trung-Kien; Cameirao , Ana ,; Herri , Jean-Michel; Glenat , Philippe

    2017-01-01

    Session : Flow Assurance: Transportability Strategies - GasHyDyn : Logiciel de simulation de la composition et de la stabilité des hydrates de gaz; International audience; Production of crude oil with natural gas and water at low temperature and high pressure favours conditions for gas hydrate formation which can cause many troubles, up to blockage of pipelines. This work deals with hydrate kinetics of crystallization and agglomeration together with slurry transport and deposition under flowi...

  10. Coke Formation During Hydrocarbons Pyrolysis. Part Two: Methane Thermal Cracking Formation de coke pendant la pyrolyse des hydrocarbures. Deuxième partie : pyrolyse du méthane

    Directory of Open Access Journals (Sweden)

    Billaud F.

    2006-11-01

    Full Text Available Part one of this article dealt with coking in a steam cracking furnace. In this process, coke deposition is a very complex phenomenon due to the number of parameters involved. Nevertheless, for this process, coke deposition is a secondary reaction which does not affect steam cracking yields. It is completely different for methane thermal cracking. Coke is one of the main products of this reaction. Part two of this article deals with coke deposition on the walls of the reactors used for methane thermal cracking. After a brief description of the different set-ups used to study coke deposition, the main parameters involved are listed. The importance of temperature, conversion, type of diluent, and hydrocarbon partial pressure will be enhanced. To conclude, two approaches to the mechanism are proposed to explain coke formation during methane thermal cracking. La première partie de cet article faisait le point sur les réactions indésirables de cokage dans les réacteurs de vapocraquage : dans le cadre de ce procédé, la formation de coke est un phénomène complexe du fait du nombre important de paramètres mis en jeu. Toutefois, pour ce procédé, la réaction de formation du coke à la paroi des réacteurs est une réaction secondaire qui n'affecte pas les rendements de vapocraquage. Ceci est complètement différent dans le cas de la pyrolyse thermique du méthane, procédé pour lequel le coke est un produit principal et indésirable de la réaction. La seconde partie de cet article est consacrée plus particulièrement à la formation du coke, lors de la pyrolyse du méthane et présente les principaux résultats expérimentaux décrits dans la littérature. Parmi les différents montages expérimentaux utilisés pour mesurer le dépôt de coke, il est mentionné, à partir des travaux de la littérature, les 2 techniques suivantes : - la technique de la paroi chaude, - la technique du fil chaud. Pour la première technique, les montages exp

  11. Squeezing clathrate cages to host trivalent rare-earth guests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Iowa State Univ., Ames, IA (United States). Department of Chemistry; Ames Lab., Ames, IA (United States); He, Yuping [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mordvinova, Natalia E. [Laboratoire CRISMAT, ENSICAEN, CNRS UMR (France); Lebedev, Oleg [Laboratoire CRISMAT, ENSICAEN, CNRS UMR (France); Kovnir, Kirill [Iowa State Univ., Ames, IA (United States). Department of Chemistry; Ames Lab., Ames, IA (United States)

    2017-11-01

    Strike difference of the trivalent rare-earth cations from their alkali and alkaline-earth peers is in the presence of localized 4f-electrons and strong spin-orbit coupling. Placing trivalent rare-earth cations inside the fullerene molecules or in between the blocks of itinerant magnetic intermetallics gave rise to plethora of fascinating properties and materials. A long-time missing but hardly desired piece is the semiconducting or metallic compound where rare-earth cations are situated inside the oversized polyhedral cages of three-dimensional framework. In this work we present a synthesis of such compounds, rare-earth containing clathrates Ba8-xRxCu16P30. The unambiguous proofs of their composition and crystal structure were achieved by a combination of synchrotron powder diffraction, time-of-flight neutron powder diffraction, scanning-transmission electron microscopy, and electron energy-loss spectroscopy. Our quantum-mechanical calculations and experimental characterizations show that the incorporation of the rare-earth cations significantly enhances the hole mobility and concentration which results in the drastic increase in the thermoelectric performance.

  12. Methane Recycling During Burial of Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    You, K.; Flemings, P. B.

    2017-12-01

    We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with

  13. A Fundamental Study of Inorganic Clathrate and Other Open-Framework Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nolas, George [Univ. of South Florida, Tampa, FL (United States)

    2017-08-15

    Due to formidable synthetic challenges, many materials of scientific and technological interest are first obtained as microcrystalline powders. High purity, high yield processing techniques are often lacking and thus care must be taken in interpretation of the observed structural, chemical, and physical properties of powder or polycrystalline materials, which can be strongly influenced by extrinsic properties. Furthermore, the preparation of high-quality single crystals for many materials by traditional techniques can be especially challenging in cases where the elemental constituents have greatly differing melting points and/or vapor pressures, when the desired compound is thermodynamically metastable, or where growth with participation of the melt is generally not possible. New processing techniques are therefore imperative in order to investigate the intrinsic properties of these materials and elucidate their fundamental physical properties. Intermetallic clathrates constitute one such class of materials. The complex crystal structures of intermetallic clathrates are characterized by mainly group 14 host frameworks encapsulating guest-ions in polyhedral cages. The unique features of clathrate structures are intimately related to their physical properties, offering ideal systems for the study of structure-property relationships in crystalline solids. Moreover, intermetallic clathrates are being actively investigated due to their potential for application in thermoelectrics, photovoltaics and opto-electronics, superconductivity, and magnetocaloric technologies. We have developed different processing techniques in order to synthesize phase-pure high yield clathrates reproducibly, as well as grow single crystals for the first time. We also employed these techniques to synthesize new “open-framework” compounds. These advances in materials processing and crystal growth allowed for the investigation of the physical properties of a variety of different clathrate

  14. Formation and High-order Carboxylic Acids (RCOOH) in Interstellar Analogous Ices of Carbon Dioxide (CO2) and Methane(CH4)

    Science.gov (United States)

    Zhu, Cheng; Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91 ± 14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18 ± 3 eV). The traces of the {{{H}}}2{{C}}= {{C}}({OH}{)}2+ (m/z = 60) fragment—a link to linear carboxylic acids—implied that higher-order acids (C n H2n+1COOH, n ≥ 5) are likely branched, which correlates with the recent analysis of the structures of the monocarboxylic acids in the Murchison meteorite.

  15. Agricultural methanization

    International Nuclear Information System (INIS)

    2011-01-01

    After having briefly outlined the interest of the development of methanization of agricultural by-products in the context of struggle against climate change, and noticed that France is only now developing this sector as some other countries already did, this publication describes the methanization process also called anaerobic digestion, which produces a digestate and biogas. Advantages for the agriculture sector are outlined, as well as drawbacks and recommendations (required specific technical abilities, an attention to the use of energetic crops, an improved economic balance which still depends on public subsidies, competition in the field of waste processing). Actions undertaken by the ADEME are briefly evoked

  16. Enhanced Selectivity of the Separation of CO2 from N2 during Crystallization of Semi-Clathrates from Quaternary Ammonium Solutions

    International Nuclear Information System (INIS)

    Herri, J.M.; Bouchemoua, A.; Kwaterski, M.; Brantuas, P.; Galfre, A.; Bouillot, B.; Douzet, J.; Ouabbas, Y.; Cameirao, A.

    2014-01-01

    CO 2 mitigation is crucial environmental problem and a societal challenge for this century. CO 2 capture and sequestration is a route to solve a part of the problem, especially for the industries in which the gases to be treated are well localized. CO 2 capture by using hydrate is a process in which the cost of the separation is due to compression of gases to reach the gas hydrate formation conditions. Under pressure, the water and gas forms a solid that encapsulates preferentially CO 2 . The gas hydrate formation requires high pressures and low temperatures, which explains the use of thermodynamic promoters to decrease the operative pressure. Quaternary ammonium salts represent an interesting family of components because of their thermodynamic effect, but also because they can generate crystals that are easily handled. In this work, we have made experiments concerning the equilibrium of (CO 2 , N 2 ) in presence of Tetra-n-Butyl Ammonium Bromide (TBAB) which form a semi-clathrate hydrate. We propose equilibrium data (pressure, temperature) in presence of TBAB at different concentrations and we compare them to the literature. We have also measured the composition of the hydrate phase in equilibrium with the gas phase at different CO 2 concentrations. We observe that the selectivity of the separation is dramatically increased in comparison to the selectivity of the pure water gas clathrate hydrate. We observe also a benefice on the operative pressure which can be dropped down to the atmospheric pressure. (authors)

  17. Measurement of Clathrate Hydrate Thermodynamic Stability in the Presence of Ammonia

    Science.gov (United States)

    Dunham, Marc

    2012-01-01

    There is a lack of data available for the stability of clathrate hydrates in the presence of ammonia for low-to-moderate pressures in the 0-10 MPa range. Providing such data will allow for a better understanding of natural mass transfer processes on celestial bodies like Titan and Enceladus, on which destabilization of clathrates may be responsible for replenishment of gases in the atmosphere. The experimental process utilizes a custom-built gas handling system (GHS) and a cryogenic calorimeter to allow for the efficient testing of samples under varying pressures and gas species.

  18. Modeling of tri-chloro-fluoro-methane hydrate formation in a w/o emulsion submitted to steady cooling

    Energy Technology Data Exchange (ETDEWEB)

    Avendano-Gomez, Juan Ramon; Limas-Ballesteros, Roberto [Laboratorio de Investigacion en Ingenieria Quimica Ambiental, SEPI-ESIQIE, Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, Edificio 8, 3. piso 07738, Mexico DF (Mexico); Garcia-Sanchez, Fernando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico DF (Mexico)

    2006-05-15

    The aim of this work is to study the modeling of the thermal evolution inside an hydrate forming system which is submitted to an imposed steady cooling. The study system is a w/o emulsion where the formulation considers the CCl{sub 3}F as the hydrate forming molecule dissolved in the oil phase. The hydrate formation occurs in the aqueous phase of the emulsion, i.e. in the dispersed phase. The model equation is based on the resolution of the continuity equation in terms of a heat balance for the dispersed phase. The crystallization of the CCl{sub 3}F hydrate occurs at supercooling conditions (T{sub c}formation with a release of heat, (3) a last interval of steady cooling. (author)

  19. Large methane releases lead to strong aerosol forcing and reduced cloudiness

    Directory of Open Access Journals (Sweden)

    T. Kurtén

    2011-07-01

    Full Text Available The release of vast quantities of methane into the atmosphere as a result of clathrate destabilization is a potential mechanism for rapid amplification of global warming. Previous studies have calculated the enhanced warming based mainly on the radiative effect of the methane itself, with smaller contributions from the associated carbon dioxide or ozone increases. Here, we study the effect of strongly elevated methane (CH4 levels on oxidant and aerosol particle concentrations using a combination of chemistry-transport and general circulation models. A 10-fold increase in methane concentrations is predicted to significantly decrease hydroxyl radical (OH concentrations, while moderately increasing ozone (O3. These changes lead to a 70 % increase in the atmospheric lifetime of methane, and an 18 % decrease in global mean cloud droplet number concentrations (CDNC. The CDNC change causes a radiative forcing that is comparable in magnitude to the longwave radiative forcing ("enhanced greenhouse effect" of the added methane. Together, the indirect CH4-O3 and CH4-OH-aerosol forcings could more than double the warming effect of large methane increases. Our findings may help explain the anomalously large temperature changes associated with historic methane releases.

  20. Direct Aromaization of Methane

    Energy Technology Data Exchange (ETDEWEB)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  1. Landfill Methane

    Science.gov (United States)

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  2. Superconductivity in gallium-substituted Ba8Si46 clathrates

    Science.gov (United States)

    Li, Yang; Zhang, Ruihong; Liu, Yang; Chen, Ning; Luo, Z. P.; Ma, Xingqiao; Cao, Guohui; Feng, Z. S.; Hu, Chia-Ren; Ross, Joseph H., Jr.

    2007-02-01

    We report a joint experimental and theoretical investigation of superconductivity in Ga-substituted type-I silicon clathrates. We prepared samples of the general formula Ba8Si46-xGax , with different values of x . We show that Ba8Si40Ga6 is a bulk superconductor, with an onset at TC≈3.3K . For x=10 and higher, no superconductivity was observed down to T=1.8K . This represents a strong suppression of superconductivity with increasing Ga content, compared to Ba8Si46 with TC≈8K . Suppression of superconductivity can be attributed primarily to a decrease in the density of states at the Fermi level, caused by a reduced integrity of the sp3 -hybridized networks as well as the lowering of carrier concentration. These results are corroborated by first-principles calculations, which show that Ga substitution results in a large decrease of the electronic density of states at the Fermi level, which explains the decreased superconducting critical temperature within the BCS framework. To further characterize the superconducting state, we carried out magnetic measurements showing Ba8Si40Ga6 to be a type-II superconductor. The critical magnetic fields were measured to be HC1≈35Oe and HC2≈8.5kOe . We deduce the London penetration depth λ≈3700Å and the coherence length ξc≈200Å . Our estimate of the electron-phonon coupling reveals that Ba8Si40Ga6 is a moderate phonon-mediated BCS superconductor.

  3. Understanding lattice thermal conductivity in thermoelectric clathrates: A density functional theory study on binary Si-based type-I clathrates

    Science.gov (United States)

    Euchner, Holger; Pailhès, Stéphane; Giordano, Valentina M.; de Boissieu, Marc

    2018-01-01

    Despite their crystalline nature, thermoelectric clathrates exhibit a strongly reduced lattice thermal conductivity. While the reason for this unexpected behavior is known to lie in the peculiarities of the complex crystal structure and the interplay of the underlying guest-host framework, their respective roles are still not fully disentangled and understood. Our ab initio study of the most simple type-I clathrate phase, the binary compound Ba8Si46 and its derivatives Ba8 -xSi46 seeks to identify these mechanisms and provides insight into their origin. Indeed, the strongly decreased lattice thermal conductivity in thermoelectric clathrates is a consequence of a reduction of the acoustic phonon bandwidth, a lowering of the acoustic phonon group velocities, and the amplification of three-phonon-scattering processes. While the complexity of the crystal structure is demonstrated not to be the leading factor, the reasons are manifold. A modified Si-Si interaction causes a first decrease of the sound velocity, whereas the presence of flat Ba modes results in an additional lowering. These modes correspond to confined Bloch states that are localized on the Ba atoms and significantly increase the scattering phase space and, together with an increased anharmonicity of the interatomic interactions, strongly affect the phonon lifetimes.

  4. Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters

    NARCIS (Netherlands)

    Torres Trueba, A.; Rovetto, L.J.; Florusse, L.J.; Kroon, M.C.; Peters, C.J.

    2011-01-01

    Phase equilibrium measurements of single and mixed organic clathrate hydrates with hydrogen were determined within a pressure range of 2.0–14.0 MPa. The organic compounds studied were furan, 2,5-dihydrofuran, tetrahydropyran, 1,3-dioxolane and cyclopentane. These organic compounds are known to form

  5. NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines

    International Nuclear Information System (INIS)

    Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud

    2004-01-01

    Inelastic structure factors for rotational transitions of uniaxial NH 3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling

  6. Iodine capture by Hofmann-type clathrate Ni(II)(pz)[Ni(II)(CN)_4

    International Nuclear Information System (INIS)

    Massasso, Giovanni; Long, Jerome; Haines, Julien; Devautour-Vinot, Sabine; Maurin, Guillaume; Larionova, Joulia; Guerin, Christian; Guari, Yannick; Grandjean, Agnes; Onida, Barbara; Donnadieu, Bruno

    2014-01-01

    The thermally stable Hofmann-type clathrate framework Ni(II)(pz)[Ni(II)(CN)_4] (pz = pyrazine) was investigated for the efficient and reversible sorption of iodine (I_2) in the gaseous phase and in solution with a maximum adsorption capacity of 1 mol of I_2 per 1 mol of Ni(II)pz)[Ni(II)(CN)_4] in solution. (authors)

  7. Pressure-induced phase transformations in the Ba8Si46 clathrate

    DEFF Research Database (Denmark)

    Yang, Lirong; Ma, Y.M.; Iitaka, T.

    2006-01-01

    The nature of isostructural transformations of a type-I Ba8Si46 clathrate has been studied by in situ high-pressure angle-dispersive x-ray powder diffraction using liquid He as pressure transmitting medium. The good quality of the diffraction data permitted refinement of structural and thermal...

  8. Hydrogen storage in clathrate hydrates: Current state of the art and future directions

    International Nuclear Information System (INIS)

    Veluswamy, Hari Prakash; Kumar, Rajnish; Linga, Praveen

    2014-01-01

    Hydrogen is looked upon as the next generation clean energy carrier, search for an efficient material and method for storing hydrogen has been pursued relentlessly. Improving hydrogen storage capacity to meet DOE targets has been challenging and research efforts are continuously put forth to achieve the set targets and to make hydrogen storage a commercially realizable process. This review comprehensively summarizes the state of the art experimental work conducted on the storage of hydrogen as hydrogen clathrates both at the molecular level and macroscopic level. It identifies future directions and challenges for this exciting area of research. Hydrogen storage capacities of different clathrate structures – sI, sII, sH, sVI and semi clathrates have been compiled and presented. In addition, promising new approaches for increasing hydrogen storage capacity have been described. Future directions for achieving increased hydrogen storage and process scale up have been outlined. Despite few limitations in storing hydrogen in the form of clathrates, this domain receives prominent attention due to more environmental-friendly method of synthesis, easy recovery of molecular hydrogen with minimum energy requirement, and improved safety of the process

  9. Concentrations and carbon isotope compositions of methane in the cored sediments from offshore SW Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, P.C.; Yang, T.F.; Hong, W.L. [National Taiwan Univ., Taipei, Taiwan (China). Dept. of Geosciences; Lin, S.; Chen, J.C. [National Taiwan Univ., Taipei, Taiwan (China). Inst. of Oceanography; Sun, C.H. [CPC Corp., Wen Shan, Miaoli, Taiwan (China). Exploration and Development Research Inst.; Wang, Y. [Central Geological Survey, MOEA, Taipei, Taiwan (China)

    2008-07-01

    Gas hydrates are natural occurring solids that contain natural gases, mainly methane, within a rigid lattice of water molecules. They are a type of non-stoichiometric clathrates and metastable crystal products in low temperature and high pressure conditions and are widely distributed in oceans and in permafrost regions around the world. Gas hydrates have been considered as potential energy resources for the future since methane is the major gas inside gas hydrates. Methane is also a greenhouse gas that might affect the global climates from the dissociations of gas hydrates. Bottom simulating reflections (BSRs) have been found to be widely distributed in offshore southwestern Taiwan therefore, inferring the existence of potential gas hydrates underneath the seafloor sediments. This paper presented a study that involved the systematic collection of sea waters and cored sediments as well as the analysis of the gas composition of pore-space of sediments through ten cruises from 2003 to 2006. The paper discussed the results in terms of the distribution of methane concentrations in bottom waters and cored sediments; methane fluxes in offshore southwestern Taiwan; and isotopic compositions of methane in pore spaces of cored sediments. It was concluded that the carbon isotopic compositions of methane demonstrated that biogenic gas source was dominated at shallower depth. However, some thermogenic gases might be introduced from deeper source in this region. 15 refs., 5 figs.

  10. Photofragment imaging of methane

    International Nuclear Information System (INIS)

    Heck, A.J.; Zare, R.N.; Chandler, D.W.

    1996-01-01

    The photolysis of methane is studied using photofragment imaging techniques. Our study reveals that the photolysis of methane proceeds via many different pathways. The photofragment imaging technique is used to resolve and characterize these various pathways and provides therefore unique insight into the dynamical processes that govern this photodissociation. The formation of H-atom photofragments following absorption of a Lyman-α photon, and H 2 photofragments following absorption of two ultraviolet photons (λ=210 endash 230 nm) are studied. The measured H-atom photofragment images reveal that a channel that produces fast H atoms concomitant with methyl fragments is dominant in the Lyman-α photolysis of methane. This channel leads to an anisotropic recoil of the fragments. A secondary channel is observed leading to the formation of somewhat slower H atoms, but an unique identification of this second channel is not possible from the data. At least part of these slower H atoms are formed via a channel that produces H atoms concomitant with CH and H 2 photofragments. The recoil of these slower H atoms appears to be isotropic. The measured, state-resolved H 2 (v,J), photofragment images reveal that two channels lead to H 2 photofragments from the two-photon photolysis of methane: a channel that leads to H 2 products concomitant with methylene fragments; and a channel that leads to H 2 products concomitant with CH and H fragments. H 2 (v,J) rotational and vibrational distributions are measured for each of these two channels separately. The H 2 products formed via the H 2 +CH 2 channel are rotationally and vibrationally highly excited, whereas those formed via the H 2 +CH+H channel are rotationally and vibrationally cooler. Rotational distributions of H 2 formed via the H 2 +CH+H channel are well reproduced by Boltzmann distributions. (Abstract Truncated)

  11. Lithospheric diamond formation as a consequence of methane-rich volatile flooding: An example from diamondiferous eclogite xenoliths of the Karelian craton (Finland)

    Science.gov (United States)

    Smart, K. A.; Cartigny, P.; Tappe, S.; O'Brien, H.; Klemme, S.

    2017-06-01

    A collection of 61 xenocrystic and 12 eclogite xenolith-derived diamonds from the 600 Ma Lahtojoki kimberlite in central Finland has been investigated. Calculated pressure and temperature conditions for the diamondiferous eclogites are in excess of 5.5 GPa and 1300 °C, suggesting residence depths greater than 180 km, near the base of the Karelian cratonic mantle lithosphere. Geochemically, the eclogite xenoliths have gabbroic compositions showing positive Eu and Sr anomalies, relatively low ΣREE and elevated Al2O3 contents, yet garnets have ambiguous δ18O values of 5.7‰ and 5.9‰. Gabbroic eclogite formation could therefore be linked to either subduction processes during the 1.9 Ga Svecofennian orogeny or to cumulate processes during 2.1 Ga rift-induced magmatism. Determination of the oxygen fugacity of Lahtojoki eclogite xenoliths from both this work and previous studies suggests that diamond-bearing eclogites may be more reduced (ΔFMQ-3.5) compared to barren eclogites (ΔFMQ-1.7). While recycled oceanic crust protoliths for the eclogites remain a possibility, the carbon isotopic compositions and nitrogen abundances of the Lahtojoki diamonds indicate mantle-derived volatile sources. All diamonds (i.e., loose and eclogite xenolith-derived) display a restricted range of δ13C values from -7.8‰ to -3.7‰ that overlaps with the carbon isotopic composition of Earth's mantle. The Lahtojoki diamond δ13C values form a negatively skewed distribution, indicating diamond growth from reduced mantle-derived carbon sources such as methane- (CH4) bearing fluids. Nitrogen contents of the Lahtojoki diamonds range from 40 to 1830 atomic ppm with a mean of ∼670 atomic ppm; these elevated nitrogen contents combined with the close association to eclogites suggest an eclogitic or crustal volatile source. However, the Karelian craton was periodically intruded by ultramafic alkaline magmas since at least 1.8 Ga, noting in particular the occurrence of phlogopite

  12. Coalbed Methane Outreach Program

    Science.gov (United States)

    Coalbed Methane Outreach Program, voluntary program seeking to reduce methane emissions from coal mining activities. CMOP promotes profitable recovery/use of coal mine methane (CMM), addressing barriers to using CMM instead of emitting it to atmosphere.

  13. Motion of Br2 molecules in clathrate cages. A computational study of the dynamic effects on its spectroscopic behavior.

    Science.gov (United States)

    Bernal-Uruchurtu, M I; Janda, Kenneth C; Hernández-Lamoneda, R

    2015-01-22

    This work looks into the spectroscopic behavior of bromine molecules trapped in clathrate cages combining different methodologies. We developed a semiempirical quantum mechanical model to incorporate through molecular dynamics trajectories, the effect movement of bromine molecules in clathrate cages has on its absorption spectra. A simple electrostatic model simulating the cage environment around bromine predicts a blue shift in the spectra, in good agreement with the experimental evidence.

  14. Methane release

    International Nuclear Information System (INIS)

    Seifert, M.

    1999-01-01

    The Swiss Gas Industry has carried out a systematic, technical estimate of methane release from the complete supply chain from production to consumption for the years 1992/1993. The result of this survey provided a conservative value, amounting to 0.9% of the Swiss domestic output. A continuation of the study taking into account new findings with regard to emission factors and the effect of the climate is now available, which provides a value of 0.8% for the target year of 1996. These results show that the renovation of the network has brought about lower losses in the local gas supplies, particularly for the grey cast iron pipelines. (author)

  15. Nonequilibrium clumped isotope signals in microbial methane

    Science.gov (United States)

    Wang, David T.; Gruen, Danielle S.; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C.; Holden, James F.; Hristov, Alexander N.; Pohlman, John W.; Morrill, Penny L.; Könneke, Martin; Delwiche, Kyle B.; Reeves, Eoghan P.; Sutcliffe, Chelsea N.; Ritter, Daniel J.; Seewald, Jeffrey S.; McIntosh, Jennifer C.; Hemond, Harold F.; Kubo, Michael D.; Cardace, Dawn; Hoehler, Tori M.; Ono, Shuhei

    2015-01-01

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.

  16. Phase equilibria of carbon dioxide and methane gas-hydrates predicted with the modified analytical S-L-V equation of state

    Directory of Open Access Journals (Sweden)

    Span Roland

    2012-04-01

    Full Text Available Gas-hydrates (clathrates are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS [A. Yokozeki, Fluid Phase Equil. 222–223 (2004] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.

  17. Methane emissions from MBT landfills

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  18. Structured Ni catalysts on porous anodic alumina membranes for methane dry reforming: NiAl 2 O 4 formation and characterization

    KAUST Repository

    Zhou, Lu

    2015-06-29

    This communication presents the successful design of a structured catalyst based on porous anodic alumina membranes for methane dry reforming. The catalyst with a strong Ni-NiAl2O4 interaction shows both excellent activity and stability. This journal is © The Royal Society of Chemistry.

  19. Structured Ni catalysts on porous anodic alumina membranes for methane dry reforming: NiAl 2 O 4 formation and characterization

    KAUST Repository

    Zhou, Lu; Guo, Y.; Basset, Jean-Marie; Kameyama, H.

    2015-01-01

    This communication presents the successful design of a structured catalyst based on porous anodic alumina membranes for methane dry reforming. The catalyst with a strong Ni-NiAl2O4 interaction shows both excellent activity and stability. This journal is © The Royal Society of Chemistry.

  20. Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases

    Science.gov (United States)

    Shuai, Yanhua; Douglas, Peter M.J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.

    2018-01-01

    Multiply isotopically substituted molecules (‘clumped’ isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature–time conditions corresponding to ‘low,’ ‘mature,’ and ‘over-mature’ stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions (‘high’ to ‘over-mature’ stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where ‘secondary’ cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation

  1. Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases

    Science.gov (United States)

    Shuai, Yanhua; Douglas, Peter M. J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael D.; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.

    2018-02-01

    Multiply isotopically substituted molecules ('clumped' isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature-time conditions corresponding to 'low,' 'mature,' and 'over-mature' stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions ('high' to 'over-mature' stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where 'secondary' cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation of methane from an alkyl

  2. Methane Storage in Biosilica-Supported Semiclathrates at Ambient Temperature and Pressure

    Science.gov (United States)

    Li, Liang; Wang, Suying; Wang, Weixing

    2018-01-01

    Two key issues regarding the use of clathrates and semiclathrates for practical gas storage and transport is the pressure-temperature stability of the material and very low formation kinetics. For many practical applications, the avoidance of cooling, gas overpressure, and mechanical mixing would be very desirable. Here, we show that biosilica supports from rice husks greatly enhance gases uptake kinetics in tetra-iso-amyl ammonium bromide semiclathrates without introducing complex mixing technologies. These systems show excellent thermal stability and good recyclability.

  3. Phase equilibrium condition measurements in nitrogen and air clathrate hydrate forming systems at temperatures below freezing point of water

    International Nuclear Information System (INIS)

    Yasuda, Keita; Oto, Yuya; Shen, Renkai; Uchida, Tsutomu; Ohmura, Ryo

    2013-01-01

    Highlights: • Phase equilibrium conditions in the nitrogen and modelled air hydrate forming systems are measured. • Measurements are conducted at temperatures below the freezing point of water. • Results have relevance to the air hydrate formation in the ice sheets. • Measured data are quantitatively compared with the previously reported values. • Range of the equilibrium measurements was from (242 to 268) K. -- Abstract: Contained in this paper are the three phase equilibrium conditions of the (ice + clathrate hydrate + guest-rich) vapour in the (nitrogen + water) and the modelled (air + water) systems at temperatures below the freezing point of water. The precise determination of the equilibrium conditions in those systems are of importance for the analysis of the past climate change using the cored samples from the ice sheets at Antarctica and Greenland because the air hydrates keep the ancient climate signals. The mole ratio of the modelled air composed of nitrogen and oxygen is 0.790:0.210. The equilibrium conditions were measured by the batch, isochoric procedure. The temperature range of the measurements in the nitrogen hydrate forming system is (244.05 < T < 266.55) K and the corresponding equilibrium pressure range is (7.151 < p < 12.613) MPa. The temperature range of the measurements in the modelled air hydrate forming system is (242.55 < T < 267.85) K, and the corresponding equilibrium pressure range is (6.294 < p < 12.144) MPa. The data obtained quantitatively compared with the previously reported data

  4. High Pressure Properties of a Ba-Cu-Zn-P Clathrate-I

    Directory of Open Access Journals (Sweden)

    Juli-Anna Dolyniuk

    2016-08-01

    Full Text Available The high pressure properties of the novel tetrel-free clathrate, Ba8Cu13.1Zn3.3P29.6, were investigated using synchrotron powder X-ray diffraction. The pressure was applied using a diamond anvil cell. No structural transitions or decomposition were detected in the studied pressure range of 0.1–7 GPa. The calculated bulk modulus for Ba8Cu13.1Zn3.3P29.6 using a third-order Birch-Murnaghan equation of state is 65(6 GPa at 300 K. This bulk modulus is comparable to the bulk moduli of Ge- and Sn-based clathrates, like A8Ga16Ge30 (A = Sr, Ba and Sn19.3Cu4.7P22I8, but lower than those for the transition metal-containing silicon-based clathrates, Ba8TxSi46−x, T = Ni, Cu; 3 ≤ x ≤ 5.

  5. Computational characterization of 13C NMR lineshapes of carbon dioxide in structure 1 clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Dornan, P.; Woo, T.K. [Ottawa Univ., ON (Canada). Dept. of Chemistry

    2008-07-01

    Nonspherical large cages in structure one clathrates impose non-uniform motion of nonspherical guest molecules and anisotropic lineshapes in nuclear magnetic resonance (NMR) spectra of the guest. This paper presented a general method for calculating the chemical shift lineshape anisotropy of guest molecules in clathrate hydrate compounds from molecular dynamics simulations for the case of weak host, guest dipolar coupling. In order to calculate the cage chemical shielding tensors and the NMR lineshape produced by each guest molecule, the study involved the use of orientational distributions from molecular dynamics simulation along with time and powder angle averaging. The total predicted lineshape anisotropy was calculated from the superposition of the lineshapes of all guests. The approach was applied to calculate the temperature dependent 13C NMR lineshape anisotropy of carbon dioxide in structure 1 clathrates. The paper presented the computational methodology and results and discussion. It was concluded that the resulting lineshapes were in good agreement with the experimental 13C NMR spectrum at each temperature. The method provided a uniform procedure to calculate the lineshapes at different temperatures and no prior assumptions about the nature of the motion of the guest in cages was required. 37 refs., 2 tabs., 3 figs.

  6. Investigating the influence of lithologic heterogeneity on gas hydrate formation and methane recycling at the base of the gas hydrate stability zone in channelized systems

    Energy Technology Data Exchange (ETDEWEB)

    Daigle, Hugh; Nole, Michael; Cook, Ann; Malinverno, Alberto

    2017-12-14

    In marine environments, gas hydrate preferentially accumulates in coarse-grained sediments. At the meso- to micro-scale, however, hydrate distribution in these coarse-grained units is often heterogeneous. We employ a methane hydrate reservoir simulator coupling heat and mass transfer as well as capillary effects to investigate how capillary controls on methane solubility affect gas and hydrate accumulations in reservoirs characterized by graded bedding and alternating sequences of coarse-grained sands and fine-grained silt and clay. Simulations bury a channelized reservoir unit encased in homogeneous, fine-grained material characterized by small pores (150 nm) and low permeability (~1 md in the absence of hydrate). Pore sizes within each reservoir bed between vary between coarse sand and fine silt. Sands have a median pore size of 35 microns and a lognormal pore size distribution. We also investigate how the amount of labile organic carbon (LOC) affects hydrate growth due to microbial methanogenesis within the sediments. In a diffusion-dominated system, methane movies into reservoir layers along spatial gradients in dissolved methane concentration. Hydrate grows in such a way as to minimize these concentration gradients by accumulating slower in finer-grained reservoir layers and faster in coarser-grained layers. Channelized, fining-upwards sediment bodies accumulate hydrate first along their outer surfaces and thence inward from top to bottom. If LOC is present in thin beds within the channel, higher saturations of hydrate will be distributed more homogeneously throughout the unit. When buried beneath the GHSZ, gas recycling can occur only if enough hydrate is present to form a connected gas phase upon dissociation. Simulations indicate that this is difficult to achieve for diffusion-dominated systems, especially those with thick GHSZs and/or small amounts of LOC. However, capillary-driven fracturing behavior may be more prevalent in settings with thick GHSZs.

  7. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    Blake Ridge in the Atlantic Ocean in 1995, have also contributed greatly to our understanding of the geologic controls on the formation, occurrence, and stability of gas hydrates in marine environments. For the most part methane hydrate research expeditions carried out by the ODP and IODP provided the foundation for our scientific understanding of gas hydrates. The methane hydrate research efforts under ODP-­‐IODP have mostly dealt with the assessment of the geologic controls on the occurrence of gas hydrate, with a specific goal to study the role methane hydrates may play in the global carbon cycle.Over the last 10 years, national led methane hydrate research programs, along with industry interest have led to the development and execution of major methane hydrate production field test programs. Two of the most important production field testing programs have been conducted at the Mallik site in the Mackenzie River Delta of Canada and in the Eileen methane hydrate accumulation on the North Slope of Alaska. Most recently we have also seen the completion of the world’s first marine methane hydrate production test in the Nankai Trough in the offshore of Japan. Industry interest in gas hydrates has also included important projects that have dealt with the assessment of geologic hazards associated with the presence of hydrates.The scientific drilling and associated coring, logging, and borehole monitoring technologies developed in the long list of methane hydrate related field studies are one of the most important developments and contributions associated with methane hydrate research and development activities. Methane hydrate drilling has been conducted from advanced scientific drilling platforms like the JOIDES Resolution and the D/V Chikyu, which feature highly advanced integrated core laboratories and borehole logging capabilities. Hydrate research drilling has also included the use of a wide array of industry, geotechnical and multi-­‐service ships. All of

  8. Thermodynamic and structural signatures of water-driven methane-methane attraction in coarse-grained mW water.

    Science.gov (United States)

    Song, Bin; Molinero, Valeria

    2013-08-07

    Hydrophobic interactions are responsible for water-driven processes such as protein folding and self-assembly of biomolecules. Microscopic theories and molecular simulations have been used to study association of a pair of methanes in water, the paradigmatic example of hydrophobic attraction, and determined that entropy is the driving force for the association of the methane pair, while the enthalpy disfavors it. An open question is to which extent coarse-grained water models can still produce correct thermodynamic and structural signatures of hydrophobic interaction. In this work, we investigate the hydrophobic interaction between a methane pair in water at temperatures from 260 to 340 K through molecular dynamics simulations with the coarse-grained monatomic water model mW. We find that the coarse-grained model correctly represents the free energy of association of the methane pair, the temperature dependence of free energy, and the positive change in entropy and enthalpy upon association. We investigate the relationship between thermodynamic signatures and structural order of water through the analysis of the spatial distribution of the density, energy, and tetrahedral order parameter Qt of water. The simulations reveal an enhancement of tetrahedral order in the region between the first and second hydration shells of the methane molecules. The increase in tetrahedral order, however, is far from what would be expected for a clathrate-like or ice-like shell around the solutes. This work shows that the mW water model reproduces the key signatures of hydrophobic interaction without long ranged electrostatics or the need to be re-parameterized for different thermodynamic states. These characteristics, and its hundred-fold increase in efficiency with respect to atomistic models, make mW a promising water model for studying water-driven hydrophobic processes in more complex systems.

  9. Roles of Clathrate Hydrates in Crustal Heating and Volatile Storage/Release on Earth, Mars, and Beyond

    Science.gov (United States)

    Kargel, J. S.; Beget, J.; Furfaro, R.; Prieto-Ballesteros, O.; Palmero-Rodriguez, J. A.

    2007-12-01

    Clathrate hydrates are stable through much of the Solar System. These materials and hydrate-like amorphous associations of water with N2, CO, CH4, CO2, O2 and other molecules could, in fact, constitute the bulk of the non-rock components of some icy satellites, comets, and Kuiper Belt Objects. CO2 clathrate is thermodynamically stable at the Martian South Pole surface and could form a significant fraction of both Martian polar caps and icy permafrost distributed across one-third of the Martian surface. CH4 clathrate is the largest clathrate material in Earth's permafrost and cold seafloor regions, and it may be a major volatile reservoir on Mars, too. CO2 clathrate is less abundant on Earth but it might store most of Mars' CO2 inventory and thus may be one of the critical components in the climate system of that planet, just as CH4 clathrate is for Earth. These ice-like phases not only store biologically, geologically, and climatologically important gases, but they also are natural thermal insulators. Thus, they retard the conductive flow of geothermal heat, and thick accumulations of them can modify geotherms, cause brines to exist where otherwise they would not, and induce low-grade metamorphism of upper crustal rocks underlying the insulating bodies. This mechanism of crustal heating may be especially important in assisting hydrogeologic activity on Mars, gas-rich carbonaceous asteroids, icy satellites, and Kuiper Belt Objects. These worlds, compared to Earth, are comparatively energy starved and frozen but may partly make up for their deficit of joules by having large accumulations of joule-conserving hydrates. Thick, continuous layers of clathrate may seal in gases and produce high gas fugacities in aquifers underlying the clathrates, thus producing gas-rich reservoirs capable of erupting violently. This may have happened repeatedly in Earth history, with global climatic consequences for abrupt climate change. We have hypothesized that such eruptions may have

  10. Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process

    International Nuclear Information System (INIS)

    Babu, Ponnivalavan; Kumar, Rajnish; Linga, Praveen

    2013-01-01

    Hydrate based gas separation (HBGS) process with silica sand and silica gel as contact medium was employed to capture CO 2 from fuel gas mixture. Gas uptake measurement at three different pressures (7.5, 8.5 and 9.0 MPa) and 274.15 K were conducted for hydrate formation kinetics and overall conversion of water to hydrate, rate of hydrate formation were determined. Water conversion of up to 36% was achieved with silica sand bed compared to 13% conversion in the silica gel bed. Effect of driving force on the rate of hydrate formation and gas consumption was significant in silica sand bed whereas it was found to be insignificant in silica gel bed. Hydrate dissociation experiments by thermal stimulation (at constant pressure) alone and a combination of depressurization and thermal stimulation were carried out for complete recovery of the hydrated gas. A driving force of 23 K was found to be sufficient to recover all the hydrated gas within 1 h. This study indicates that silica sand can be an effective porous media for separation of CO 2 from fuel gas when compared to silica gel. - Highlights: ► The clathrate process for pre-combustion capture of carbon dioxide in a novel fixed bed reactor is presented. ► Performance of two contact media (silica gel and silica sand) was investigated. ► Water to hydrate conversion was higher in a silica sand column. ► A pressure reduction and thermal stimulation approach is presented for a complete recovery of the hydrated gas

  11. A spectroscopic study of the structure and occupancies of clathrate hydrates incorporating hydrogen

    Science.gov (United States)

    Grim, R. Gary

    With the ability to store and concentrate gases inside a clean and abundant water framework, clathrate hydrates are considered to be a promising material for many applications related to gas storage, separation, and sequestration. Hydrates of hydrogen are particularly interesting, for in addition to these potential applications, the small molecular size provides an opportunity for use as a model guest in many fundamental studies such as guest diffusion, multiple guest occupancy, and quantum mechanical effects upon confinement. In attempt to study these effects and the viability of H 2 hydrates as an energy storage material, a combined experimental and theoretical approach incorporating Raman spectroscopy, X-ray and neutron diffraction, nuclear magnetic resonance, ab-initio calculations, and molecular dynamic simulations was performed. One of the most significant challenges in the application of H2 clathrate hydrates is the demanding thermodynamic requirements needed for stability. In recent years, a mechanism known as the `tuning' effect had reportedly solved this issue where thermodynamic requirements could be reduced while simultaneously maintaining high storage capacities. In this work, the viability and validity of this technique is explored and alternative explanations in the form of epitaxial hydrate growth under high driving force conditions are discussed. A second, and equally important challenge facing clathrate hydrates as a future storage material is the overall storage capacity of H2. In previous work, H2 has only been experimentally verified to occupy the small 512 and 43566 3 cages and also in the large 51264 cages of the type II clathrate, often with an energy deficient promoter. In order to achieve more robust energy densities, other hydrate cages must be accessible. Herein a new method for increasing overall hydrate energy densities is presented involving the incorporation of H2 in the large cages of the type I clathrate with CH4 as a co

  12. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  13. Abiotic production of methane in terrestrial planets.

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  14. Technical Note: Methionine, a precursor of methane in living plants

    Science.gov (United States)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  15. Global Methane Initiative

    Science.gov (United States)

    The Global Methane Initiative promotes cost-effective, near-term methane recovery through partnerships between developed and developing countries, with participation from the private sector, development banks, and nongovernmental organizations.

  16. Hydrothermal waste package interactions with methane-containing basalt groundwater

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1984-01-01

    Hydrothermal waste package interaction tests were conducted with a mixture of crushed glass, basalt, and steel in methane-containing synthetic basalt groundwater. In the absence of gamma radiolysis, methane was found to have little influence on the corrosion behavior of the waste package constituents. Under gamma radiolysis, methane was found to significantly lower the solution oxidation potential when compared to identical tests without methane. In addition, colloidal hydrocarbon polymers that have been produced under the irradiation conditions of these experiments were not formed. The presence of the waste package constituents apparently inhibited the formation of the polymers. However, the mechanism which prevented their formation was not determined

  17. The anomalous halogen bonding interactions between chlorine and bromine with water in clathrate hydrates.

    Science.gov (United States)

    Dureckova, Hana; Woo, Tom K; Udachin, Konstantin A; Ripmeester, John A; Alavi, Saman

    2017-10-13

    Clathrate hydrate phases of Cl 2 and Br 2 guest molecules have been known for about 200 years. The crystal structure of these phases was recently re-determined with high accuracy by single crystal X-ray diffraction. In these structures, the water oxygen-halogen atom distances are determined to be shorter than the sum of the van der Waals radii, which indicates the action of some type of non-covalent interaction between the dihalogens and water molecules. Given that in the hydrate phases both lone pairs of each water oxygen atom are engaged in hydrogen bonding with other water molecules of the lattice, the nature of the oxygen-halogen interactions may not be the standard halogen bonds characterized recently in the solid state materials and enzyme-substrate compounds. The nature of the halogen-water interactions for the Cl 2 and Br 2 molecules in two isolated clathrate hydrate cages has recently been studied with ab initio calculations and Natural Bond Order analysis (Ochoa-Resendiz et al. J. Chem. Phys. 2016, 145, 161104). Here we present the results of ab initio calculations and natural localized molecular orbital analysis for Cl 2 and Br 2 guests in all cage types observed in the cubic structure I and tetragonal structure I clathrate hydrates to characterize the orbital interactions between the dihalogen guests and water. Calculations with isolated cages and cages with one shell of coordinating molecules are considered. The computational analysis is used to understand the nature of the halogen bonding in these materials and to interpret the guest positions in the hydrate cages obtained from the X-ray crystal structures.

  18. Effect of NiAl2O4 Formation on Ni/Al2O3 Stability during Dry Reforming of Methane

    KAUST Repository

    Zhou, Lu; Li, Lidong; Wei, Nini; Li, Jun; Basset, Jean-Marie

    2015-01-01

    A series of alumina-supported Ni catalysts were prepared to examine their activity and carbon deposition during dry reforming of methane (DRM). With an increase in the final calcination temperature to T=900 °C to form exclusively NiAl2O4, a catalyst with strong metal–support interactions was obtained. During a long-term DRM reaction (of about t=100 h) at T=700 °C and with CH4/CO2=1:1, reduced Ni (from NiAl2O4) showed a high resistance to sintering and coking. The DRM kinetics behaviors of the catalysts calcined at different temperatures were also investigated. Carbon growth models were proposed to rationalize the different carbon morphologies observed on the catalysts.

  19. Effect of NiAl2O4 Formation on Ni/Al2O3 Stability during Dry Reforming of Methane

    KAUST Repository

    Zhou, Lu

    2015-07-16

    A series of alumina-supported Ni catalysts were prepared to examine their activity and carbon deposition during dry reforming of methane (DRM). With an increase in the final calcination temperature to T=900 °C to form exclusively NiAl2O4, a catalyst with strong metal–support interactions was obtained. During a long-term DRM reaction (of about t=100 h) at T=700 °C and with CH4/CO2=1:1, reduced Ni (from NiAl2O4) showed a high resistance to sintering and coking. The DRM kinetics behaviors of the catalysts calcined at different temperatures were also investigated. Carbon growth models were proposed to rationalize the different carbon morphologies observed on the catalysts.

  20. Lattice dynamics study of low energy guest–host coupling in clathrate hydrate

    International Nuclear Information System (INIS)

    Yang Yuehai; Dong Shunle; Wang Lin

    2008-01-01

    Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15meV) and yield correct relative intensity. Based on the results, the uncertain profile at ∼6 meV is assigned to anharmonic guest modes coupled strongly to small cages. Blue shift is proposed in phonon dispersion sheet in the case of anticrossing and found to be an evident signal for guest-host coupling that explains the anomalous thermal conductivity of clathrate hydrate

  1. Modeling thermodynamic properties of propane or tetrahydrofuran mixed with carbon dioxide or methane in structure-II clathrate hydrates

    NARCIS (Netherlands)

    Fang, Bin; Ning, Fulong; Cao, Pinqiang; Peng, Li; Wu, Jianyang; Zhang, Zhun; Vlugt, T.J.H.; Kjelstrup, Signe

    2017-01-01

    A sound knowledge of thermodynamic properties of sII hydrates is of great importance to understand the stability of sII gas hydrates in petroleum pipelines and in natural settings. Here, we report direct molecular dynamics (MD) simulations of the thermal expansion coefficient, the

  2. FY1995 molecular control technology for mining of methane-gas-hydrate; 1995 nendo methane hydrate no bunshi seigyo mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objectives of the investigation are as follows: 1) developing a method to control formation/dissociation of methane-gas-hydrate, 2) developing a technology to displace methane gas by CO{sub 2} in methane-gas-hydrate deposit, 3) developing a technology to produce methane gas from the deposit efficiently. The final purpose of the project is to create new mining industry that solves both the problems of energy and global environment. 1) Clustering of water molecules is found to play the key role in the methane gas hydrate formation. 2) Equilibrium properties and kinetics of gas hydrates formation and dissociation in bulk-scale gas-hydrate are clarified in the practical environmental conditions. 3) Particle size of hydrate deposit influences the formation and dissociation of bulk-scale gas-hydrate crystal. 4) Mass transfer between gas and liquid phase in turbulent bubbly flow is a function of bubble diameter. The mass transfer depends on interfacial dynamics. (NEDO)

  3. An assessment of coalbed methane exploration projects in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, F.M.; Marchioni, D.L.; Anderson, T.C.; McDougall, W.J. [Suncor Energy Inc., Calgary, AB (Canada)

    2000-07-01

    A critical assessment of coalbed methane exploration opportunities is presented. Geological and production data from 59 well bores drilled in Canada's major coal basins are evaluated to assess the coalbed methane potential of the deposits. Data acquisition, geology, gas content, coal quality, adsorption isotherms, formation testing, and a technical assessment are presented for each area. Areas with the best potential for economic coalbed methane accumulations are indicated. 6 refs., 153 figs., 99 tabs.

  4. Structural and thermoelectric properties of the type-I Sn clathrates Cs8Sn46−n(n=0,2) from Density Functional Theory (DFT)

    KAUST Repository

    Egbele, Peter O.

    2018-02-08

    Sn clathrates are promising phonon glass, electron crystal materials (PGEC), in which the phonon free paths are short and the electron free paths are long. We analysed the relaxed structure of Sn clathrates using four different Density Funtional Exchange-Correlation functionals. The phonon structures were investigated as a first step in order to determine the phonon contribution to the thermal conductivity. We determined the Seebeck coefficient and electrical conductivity of the clathrate compound and the thermoelectric figure of merit. A glimpse into the dynamics of the system for the evaluation of the thermoelectric and electronic properties is presented.

  5. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    Science.gov (United States)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  6. Electric double-layer capacitor based on an ionic clathrate hydrate.

    Science.gov (United States)

    Lee, Wonhee; Kwon, Minchul; Park, Seongmin; Lim, Dongwook; Cha, Jong-Ho; Lee, Huen

    2013-07-01

    Herein, we suggest a new approach to an electric double-layer capacitor (EDLC) that is based on a proton-conducting ionic clathrate hydrate (ICH). The ice-like structures of clathrate hydrates, which are comprised of host water molecules and guest ions, make them suitable for applications in EDLC electrolytes, owing to their high proton conductivities and thermal stabilities. The carbon materials in the ICH Me4NOH⋅5 H2O show a high specific capacitance, reversible charge-discharge behavior, and a long cycle life. The ionic-hydrate complex provides the following advantages in comparison with conventional aqueous and polymer electrolytes: 1) The ICH does not cause leakage problems under normal EDLC operating conditions. 2) The hydrate material can be utilized itself, without requiring any pre-treatments or activation for proton conduction, thus shortening the preparation procedure of the EDLC. 3) The crystallization of the ICH makes it possible to tailor practical EDLC dimensions because of its fluidity as a liquid hydrate. 4) The hydrate solid electrolyte exhibits more-favorable electrochemical stability than aqueous and polymer electrolytes. Therefore, ICH materials are expected to find practical applications in versatile energy devices that incorporate electrochemical systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. LIQUID CLATHRATE FORMATION IN IONIC LIQUIDS/AROMATIC MIXTURES. (R828257)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Titan's methane clock

    Science.gov (United States)

    Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-04-01

    Measurements of the 12C/13C and D/H isotopic ratios in Titan's methane show intriguing differences from the values recorded in the giant planets. This implies that either (1) the atmosphere was differently endowed with material at the time of formation, or (2) evolutionary processes are at work in the moon's atmosphere - or some combination of the two. The Huygens Gas Chromatograph Mass Spectrometer Instrument (GCMS) found 12CH4/13CH4 = 82 +/- 1 (Niemann et al. 2005), some 7% lower than the giant planets' value of 88 +/- 7 (Sada et al. 1996), which closely matches the terrestrial inorganic standard of 89. The Cassini Composite Infrared Spectrometer (CIRS) has previously reported 12CH4/13CH4 of 77 +/-3 based on nadir sounding, which we now revise upwards to 80 +/- 4 based on more accurate limb sounding. The CIRS and GCMS results are therefore in agreement about an overall enrichment in 13CH4 of ~10%. The value of D/H in Titan's CH4 has long been controversial: historical measurements have ranged from about 8-15 x 10-5 (e.g. Coustenis et al. 1989, Coustenis et al. 2003). A recent measurement based on CIRS limb data by Bezard et al. (2007) puts the D/H in CH4 at (13 +/- 1) x 10-5, very much greater than in Jupiter and Saturn, ~2 x 10-5 (Mahaffy et al. 1998, Fletcher et al. 2009). To add complexity, the 12C/13C and D/H vary among molecules in Titan atmosphere, typically showing enhancement in D but depletion in 13C in the daughter species (H2, C2H2, C2H6), relative to the photochemical progenitor, methane. Jennings et al. (2009) have sought to interpret the variance in carbon isotopes as a Kinetic Isotope Effect (KIE), whilst an explanation for the D/H in all molecules remains elusive (Cordier et al. 2008). In this presentation we argue that evolution of isotopic ratios in Titan's methane over time forms a ticking 'clock', somewhat analogous to isotopic ratios in geochronology. Under plausible assumptions about the initial values and subsequent replenishment, various

  9. Semi-continuous anaerobic digestion of different silage crops: VFAs formation, methane yield from fiber and non-fiber components and digestate composition.

    Science.gov (United States)

    Pokój, T; Bułkowska, K; Gusiatin, Z M; Klimiuk, E; Jankowski, K J

    2015-08-01

    This study presents the results of long-term semi-continuous experiments on anaerobic digestion at an HRT of 45d with ten silages: 2 annual and 4 perennial crops, and 4 mixtures of annual with perennial crops. The composition of substrates and digestates was determined with Van Soest's fractionation method. Removal of non-fiber materials ranged from 49.4% (Miscanthus sacchariflorus) to 89.3% (Zea mays alone and mixed with M. sacchariflorus), that of fiber materials like lignin ranged from 0.005% (Z. mays alone and mixed with grasses at VS ratio of 90:10%) to 46.5% (Sida hermaphrodita). The lowest stability of anaerobic digestion, as confirmed by normalized data concentrations of volatile fatty acids, was reported for both miscanthuses and sugar sorghum. The methane yield coefficients for non-fiber and fiber materials were 0.3666 and 0.2556L/g, respectively. All digestate residues had high fertilizing value, especially those from mixtures of crops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hydration of krypton and consideration of clathrate models of hydrophobic effects from the perspective of quasi-chemical theory.

    Science.gov (United States)

    Ashbaugh, Henry S; Asthagiri, D; Pratt, Lawrence R; Rempe, Susan B

    2003-09-01

    Ab initio molecular dynamics (AIMD) results on a krypton-water liquid solution are presented and compared to recent XAFS results for the radial hydration structure for a Kr atom in liquid water solution. Though these AIMD calculations have important limitations of scale, the comparisons with the liquid solution results are satisfactory and significantly different from the radial distributions extracted from the data on the solid Kr/H(2)O clathrate hydrate phase. The calculations also produce the coordination number distribution that can be examined for metastable coordination structures suggesting possibilities for clathrate-like organization; none are seen in these results. Clathrate pictures of hydrophobic hydration are discussed, as is the quasi-chemical theory that should provide a basis for clathrate pictures. Outer shell contributions are discussed and estimated; they are positive and larger than the positive experimental hydration free energy of Kr(aq), implying that inner shell contributions must be negative and of comparable size. Clathrate-like inner shell hydration structures on a Kr atom solute are obtained for some, but not all, of the coordination number cases observed in the simulation. The structures found have a delicate stability. Inner shell coordination structures extracted from the simulation of the liquid, and then subjected to quantum chemical optimization, always decomposed. Interactions with the outer shell material are decisive in stabilizing coordination structures observed in liquid solution and in clathrate phases. The primitive quasi-chemical estimate that uses a dielectric model for the influence of the outer shell material on the inner shell equilibria gives a contribution to hydration free energy that is positive and larger than the experimental hydration free energy. The 'what are we to tell students' question about hydrophobic hydration, often answered with structural clathrate pictures, is then considered; we propose an

  11. The formation of gas hydrates and the effect of inhibitiors on their ...

    African Journals Online (AJOL)

    Natural gas hydrate is a solid crystalline compound produced by combining water and gas and it is considered as the clathrates. Guest gas molecules are stuck insider the pores of water networks produced by hydrogen bonds between molecules of water. There are different ways to analyze the hydrate formation operating ...

  12. Methane Hydrate in Confined Spaces: An Alternative Storage System.

    Science.gov (United States)

    Borchardt, Lars; Casco, Mirian Elizabeth; Silvestre-Albero, Joaquin

    2018-03-14

    Methane hydrate inheres the great potential to be a nature-inspired alternative for chemical energy storage, as it allows to store large amounts of methane in a dense solid phase. The embedment of methane hydrate in the confined environment of porous materials can be capitalized for potential applications as its physicochemical properties, such as the formation kinetics or pressure and temperature stability, are significantly changed compared to the bulk system. We review this topic from a materials scientific perspective by considering porous carbons, silica, clays, zeolites, and polymers as host structures for methane hydrate formation. We discuss the contribution of advanced characterization techniques and theoretical simulations towards the elucidation of the methane hydrate formation and dissociation process within the confined space. We outline the scientific challenges this system is currently facing and look on possible future applications for this technology. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Catalytic steam methane reforming over Ir/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-x}: resistance to coke formation and sulfur poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Postole, G.; Girona, K.; Kaddouri, A.; Gelin, P. [Institut de Recherches sur la Catalyse et l' Environnement de Lyon, Universite Lyon 1, CNRS, UMR 5256, IRCELYON, F-69626 Villeurbanne Cedex (France); Toyir, J. [Institut de Recherches sur la Catalyse et l' Environnement de Lyon, Universite Lyon 1, CNRS, UMR 5256, IRCELYON, F-69626 Villeurbanne Cedex (France); Universite Sidi Mohamed Ben Abdellah Fes, FP-Taza, B.P. 1223 Taza (Morocco)

    2012-04-15

    This work investigates the catalytic properties of Ir/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-x} (Ir/CGO) catalyst and CGO support in steam reforming of methane in the absence or presence of H{sub 2}S (50 ppm) for further application in a solid oxide fuel cell (SOFC) working under methane at intermediate temperatures and integrating a gradual internal reforming concept. The catalytic activity was measured at 750 C by using a 50 mol.% CH{sub 4}/5 mol.% H{sub 2}O/45 mol.% N{sub 2} mixture and a 10 mol.% CH{sub 4}/90 mol.% N{sub 2} mixture. The addition of Ir to CGO improves the catalytic activity in hydrogen production by two orders of magnitude with respect to that of CGO alone. Temperature programmed oxidation experiments were performed after reaction in both types of mixtures to study the eventual formation of carbon deposits. Over Ir/CGO, carbon formed in little amounts (even in the absence of H{sub 2}O in the feed), being highly reactive toward O{sub 2}. Upon H{sub 2}S addition, the CGO support exhibited surprisingly an improved catalytic activity on the contrary to Ir/CGO which partly deactivated. Upon suppression of H{sub 2}S in the feed the initial catalytic activity was fully restored for both catalysts. The catalytic behavior of CGO in the presence of H{sub 2}S was discussed, based upon temperature programmed reaction of CH{sub 4}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Doses from radioactive methane

    International Nuclear Information System (INIS)

    Phipps, A.W.; Kendall, G.M.; Fell, T.P.; Harrison, J.D.

    1990-01-01

    A possible radiation hazard arises from exposure to methane labelled with either a 3 H or a 14 C nuclide. This radioactive methane could be released from a variety of sources, e.g. land burial sites containing radioactive waste. Standard assumptions adopted for vapours would not apply to an inert alkane like methane. This paper discusses mechanisms by which radioactive methane would irradiate tissues and provides estimates of doses. Data on skin thickness and metabolism of methane are discussed with reference to these mechanisms. It is found that doses are dominated by dose from the small fraction of methane which is inhaled and metabolised. This component of dose has been calculated under rather conservative assumptions. (author)

  15. Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.

    Science.gov (United States)

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-10-22

    Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.

  16. Abiotic Production of Methane in Terrestrial Planets

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Escobar-Briones, Elva

    2013-01-01

    Abstract On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×108 and 1.3×109 molecules cm−2 s−1 for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life. Key Words: Serpentinization—Exoplanets—Biosignatures—Planetary atmospheres. Astrobiology 13, 550–559. PMID:23742231

  17. Utilization of coalbed methane

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, J.B. [Gustavson Associates Inc., Boulder, CO (United States)

    1996-02-01

    Substantial progress has been made in capturing coalbed methane (CBM gas), which constitutes a valuable source of clean burning energy. It is of importance to study the various potential uses of coalbed methane and to understand the various technologies required, as well as their economics and any institutional constraints. In industrialised countries, the uses of coalbed methane are almost solely dependent on microeconomics; coalbed methane must compete for a market against natural gas and other energy sources - and frequently, coalbed methane is not competitive against other energy sources. In developing countries, on the other hand, particularly where other sources of energy are in short supply, coalbed methane economics yield positive results. Here, constraints to development of CBM utilization are mainly lack of technology and investment capital. Sociological aspects such as attitude and cultural habits, may also have a strong negative influence. This paper outlines the economics of coalbed methane utilization, particularly its competition with natural gas, and touches upon the many different uses to which coalbed methane may be applied. 24 refs., 4 figs.

  18. Direct Activation Of Methane

    KAUST Repository

    Basset, Jean-Marie; Sun, Miao; Caps, Valerie; Pelletier, Jeremie; Abou-Hamad, Edy

    2013-01-01

    Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20.degree. C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin

  19. Methane and Climate Change

    NARCIS (Netherlands)

    Reay, D.; Smith, P.; Amstel, van A.R.

    2010-01-01

    Methane is a powerful greenhouse gas and is estimated to be responsible for approximately one-fifth of man-made global warming. Per kilogram, it is 25 times more powerful than carbon dioxide over a 100-year time horizon -- and global warming is likely to enhance methane release from a number of

  20. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    Science.gov (United States)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  1. Phase equilibria, crystal chemistry, electronic structure and physical properties of Ag-Ba-Ge clathrates

    Energy Technology Data Exchange (ETDEWEB)

    Zeiringer, I.; Chen Mingxing [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Bednar, I.; Royanian, E.; Bauer, E. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Podloucky, R.; Grytsiv, A. [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Rogl, P., E-mail: peter.franz.rogl@univie.ac.at [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Effenberger, H. [Institute of Mineralogy and Crystallography, University of Vienna, A-1090 Wien (Austria)

    2011-04-15

    In the Ag-Ba-Ge system the clathrate type-{Iota} solid solution, Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y}, extends at 800 deg. C from binary Ba{sub 8}Ge{sub 43{open_square}3} ({open_square} is a vacancy) to Ba{sub 8}Ag{sub 5.3}Ge{sub 40.7}. For the clathrate phase (1 {<=} x {<=} 5.3) the cubic space group Pm3-bar n was established by X-ray powder diffraction and confirmed by X-ray single-crystal analyses of the samples Ba{sub 8}Ag{sub 2.3}Ge{sub 41.9{open_square}1.8} and Ba{sub 8}Ag{sub 4.4}Ge{sub 41.3{open_square}0.3}. Increasing the concentration of Ag causes the lattice parameters of the solid solution to increase linearly from a value of a = 1.0656 (x = 0, y = 3) to a = 1.0842 (x = 4.8, y = 0) nm. Site preference determination using X-ray refinement reveals that Ag atoms preferentially occupy the 6d site randomly mixed with Ge and vacancies, which become filled in the compound Ba{sub 8}Ag{sub 4.8}Ge{sub 41.2} when the Ag content increases. At 600 {sup o}C the phase region of the clathrate solution Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} becomes separated from the Ba-Ge boundary and extends from 6.6 to 9.8 at.% Ag. The compound Ba{sub 6}Ge{sub 25} (clathrate type-{Iota}X) dissolves at 800 {sup o}C a maximum of 1.5 at.% Ag. The homogeneity regions of the two ternary compounds BaAg{sub 2-x}Ge{sub 2+x} (ThCr{sub 2}Si{sub 2}-type, 0.2 {<=} x {<=} 0.7) and Ba(Ag{sub 1-x}Ge{sub x}){sub 2} (AlB{sub 2}-type, 0.65 {<=} x {<=} 0.75) were established at 800 deg. C. Studies of transport properties for the series of Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} compounds evidenced that electrons are the predominant charge carriers with the Fermi energy close to a gap. Its position can be fine-tuned by the substitution of Ge by Ag atoms and by mechanical processing of the starting material, Ba{sub 8}Ge{sub 43}. The proximity of the electronic structure at Fermi energy of Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} to a gap is also corroborated by density

  2. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  3. The synthesis and the spectroscopic, thermal, and structural properties of the M2[(fumarate)Ni(CN)4]·2(1,4-Dioxane) clathrate (M = Co, Ni, Cd and Hg)

    Science.gov (United States)

    Kartal, Zeki; Yavuz, Abdülkerim

    2018-03-01

    In this study, the clathrates of fumarate-tetracyanonickel-dioxane, given by the formula M2[(fumarate)Ni(CN)4]·2(1,4-Dioxane) (M = Co, Ni, Cd and Hg), have been obtained for the first time through chemical methods. These clathrates have been characterized by elemental, thermal, FT-IR, and FT-Raman spectroscopies. The parameters of structures of clathrates have been determined by X-ray powder diffraction. The thermal behaviors of these clathrates have been also investigated by thermo-gravimetric analysis (TGA), differential thermal analysis (DTA), and derivative thermal gravimetric analysis (DTG) in the range of 20-900 °C. X-ray powder diffraction data have been recorded at ambient temperature in the 2θ range 5-50°. The FT-IR and FT-Raman spectra of clathrates have been recorded in the region of 4000-400 cm-1 and 4000-100 cm-1, respectively. The results of the spectral and thermal analyses of the newly synthesized clathrates of fumarate-tetracyanonickel-dioxane suggest that these clathrates are new examples of the Hofmann-type dioxane clathrates. In our study, the Hofmann-type dioxane clathrates, which are formed by bounding electrons of oxygen-donor atoms of fumarate ion ligand molecule to transition metal atoms, consist of the corrugated |M-Ni(CN)4|∞ polymeric layers, which are held in parallel through the chain of (-M-fumarate-M-).

  4. The direct aromatization of methane

    Energy Technology Data Exchange (ETDEWEB)

    Marcelin, G.; Oukaci, R.; Migone, R.A.; Kazi, A.M. [Altamira Instruments, Pittsburgh, PA (United States)

    1995-12-31

    The thermal decomposition of methane shows significant potential as a process for the production of higher unsaturated and aromatic hydrocarbons when the extent of the reaction is limited. Thermodynamic calculations have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that cooling the product and reacting gases as the reaction proceeds can significantly reduce or eliminate the formation of solid carbon and heavier (C{sub 10+}) materials. Much work remains to be done in optimizing the quenching process and this is one of the goals of this program. Means to lower the temperature of the reaction are being studied as this result in a more feasible commercial process due to savings realized in energy and material of construction costs. The use of free-radical generators and catalysts will be investigated as a means of lowering the reaction temperature thus allowing faster quenching. It is highly likely that such studies will lead to a successful direct methane to higher hydrocarbon process.

  5. Optimization of Methane Gas Formation Rate with The Addition of EM4 Starter-made from Tofu Liquid Waste and Husk Rice Waste Using Biogas Reactor-Fixed Dome in Langensari West Ungaran

    Directory of Open Access Journals (Sweden)

    Arifan Fahmi

    2018-01-01

    Full Text Available Indonesia is a country that has abundant energy resources, namely oil, gas, coal, geothermal, and so forth. Biogas is an alternative fuel that can be used as a substitute for primary fuel. The term biogas is already familiar to the people, it is because biogas has usefulness as a vehicle fuel, domestic (cooking, and generate electricity. Cow dung has a value of C / N ratio is large enough that 18. Rice husk has a C / N ratio is sufficient High temperatures of 38.9. EM-4 (effective microorganism is a bacterial culture which is usually used as an activator. In the manufacture of biogas from waste fluids out and chaff has the advantage because the content of the C / N is high enough. The composition of the raw materials used are liquid wastes out of 5 kg and 1 kg of husk-em with the addition of 4500 ml and the resulting calorific value of 1047.9 A fermentation time for 9 days. Ph maintained in neutral or alkaline conditions, namely 7-7.5, because the effectiveness of the methane formation is highly dependent on pH wherein the microorganism will grow and thrive in neutral. The test results has been done is the color of the flame and the time at yield is good enough where the color of the flame produced at day to9 blue with time for 40 seconds.

  6. Optimization of Methane Gas Formation Rate with The Addition of EM4 Starter-made from Tofu Liquid Waste and Husk Rice Waste Using Biogas Reactor-Fixed Dome in Langensari West Ungaran

    Science.gov (United States)

    Arifan, Fahmi; Muhammad, Fuad; Winarni, Sri; Rama Devara, Hafizh; Hanum, Latifah

    2018-02-01

    Indonesia is a country that has abundant energy resources, namely oil, gas, coal, geothermal, and so forth. Biogas is an alternative fuel that can be used as a substitute for primary fuel. The term biogas is already familiar to the people, it is because biogas has usefulness as a vehicle fuel, domestic (cooking), and generate electricity. Cow dung has a value of C / N ratio is large enough that 18. Rice husk has a C / N ratio is sufficient High temperatures of 38.9. EM-4 (effective microorganism) is a bacterial culture which is usually used as an activator. In the manufacture of biogas from waste fluids out and chaff has the advantage because the content of the C / N is high enough. The composition of the raw materials used are liquid wastes out of 5 kg and 1 kg of husk-em with the addition of 4500 ml and the resulting calorific value of 1047.9 A fermentation time for 9 days. Ph maintained in neutral or alkaline conditions, namely 7-7.5, because the effectiveness of the methane formation is highly dependent on pH wherein the microorganism will grow and thrive in neutral. The test results has been done is the color of the flame and the time at yield is good enough where the color of the flame produced at day to9 blue with time for 40 seconds.

  7. Start-up of intensive anaerobic wastewater methanization processes: impact of hydrodynamic conditions and of control strategy of organic load increase on biofilm formation and activity

    International Nuclear Information System (INIS)

    Cresson, Romain

    2006-01-01

    This research thesis aims at being a contribution to the understanding of mechanisms of anaerobic film development and maturation, in order to obtain a better control of their formation and this to decrease the duration of the bioreactor start-up phase. More precisely, the author analysed the impact of hydrodynamic parameters and of load rise strategy on biofilm characteristics (thickness, density, biodiversity) and on its activity (anaerobic breathing, decontamination kinetics) during its development. Thus, after a recall of the anaerobic digestion principle, the author presents processes, methods and techniques used during this research, reports and discusses the obtained results

  8. Mechanics of coalbed methane production

    Energy Technology Data Exchange (ETDEWEB)

    Creel, J C; Rollins, J B [Crawley, Gillespie and Associates, Inc. (United Kingdom)

    1994-12-31

    Understanding the behaviour of coalbed methane reservoirs and the mechanics of production is crucial to successful management of coalbed methane resources and projects. This paper discusses the effects of coal properties and coalbed methane reservoir characteristics on gas production rates and recoveries with a review of completion techniques for coalbed methane wells. 4 refs., 17 figs.

  9. Study of biogas storage; Biogas no chozo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Kimura, T; Umeda, H [Meiji University, Tokyo (Japan)

    1997-11-25

    Study was made on the storage method of a methane component in biogas mainly composed of CO2 and methane gases. Methane clathrate as molecular complex is one kind of clathrate compounds. Eight methane gas molecules are absorbed into 46 water molecules, or methane gas of 216 l is absorbed into water of 1 l, resulting in considerable compact methane storage. Although methane clathrate is usually stable only under a condition of low temperature and high pressure, its formation equilibrium shifts toward a low pressure/high temperature side by adding additives such as amine, ether and ketone. Acetone can shift formation pressure from 30 to 10atm at 1degC, and formation temperature from 1 to 10degC at 30atm. Although methane liquefaction is also an efficient storage method, it requires liquefaction temperature and pressure of -83degC and 45.6atm, respectively. The distance between methane molecules in clathrate lattice can be more shortened than that in high- pressure charged gas, suggesting higher storage efficiency. The study result showed that the handling of methane clathrate is possible around room temperature and pressure. 7 refs., 5 figs.

  10. Systematic Studies on Anharmonicity of Rattling Phonons in Type I Clathrates by Low Temperature Heat Capacity Measurements

    Science.gov (United States)

    Tanigaki, Katsumi; Wu, Jiazhen; Tanabe, Yoichi; Heguri, Satoshi; Shiimotani, Hidekazu; Tohoku University Collaboration

    2014-03-01

    Clathrates are featured by cage-like polyhedral hosts mainly composed of the IVth group elements of Si, Ge, or Sn and alkali metal or alkaline-earth metal elements can be accommodated inside as a guest atom. One of the most intriguing issues in clathrates is their outstanding high thermoelectric performances thanks to the low thermal conductivity. Being irrespective of good electric conductivity σ, the guest atom motions provide a low-energy lying less-dispersive phonons and can greatly suppress thermal conductivity κ. This makes clathrates close to the concept of ``phonon glass electron crystal: PGEC'' and useful in thermoelectric materials from the viewpoint of the figure of merit. In the present study, we show that the local phonon anharmonicity indicated by the tunneling-term of the endohedral atoms (αT) and the itinerant-electron term (γeT), both of which show T-linear dependences in specific heat Cp, can successfully be separated by employing single crystals with various carrier concentrations in a wide range of temperture experimennts. The factors affecting on the phonon anharmonicity as well as the strength of electron-phonon interactions will be discussed based on our recent experiments. The research was financially supported by Ministry of Education, Science, Sports and Culture, Grant in Aid for Science, and Technology of Japan.

  11. Synthesis and thermoelectric properties of rare earth Yb-doped Ba8−xYbxSi30Ga16 clathrates

    International Nuclear Information System (INIS)

    Liu, Lihua; Li, Feng; Wei, Yuping; Chen, Ning; Bi, Shanli; Qiu, Hongmei; Cao, Guohui; Li, Yang

    2014-01-01

    Highlights: • Samples with the chemical formula Ba8− x Yb x Si 30 Ga 16 (x = 0, 0.5, 0.7, 1 and 1.5) were prepared. • Some Yb atoms enter the clathrate lattice to replace Ba, while other Yb atoms are oxidized as Yb 2 O 3 . • The thermal conductivity decreases with Yb-doping. • Thermoelectric figure of merit ZT significantly increased. -- Abstract: The potential thermoelectric and magnetic application of clathrate materials with rare-earth doping is the focus of much of the recent research activity in the synthetic material physics and chemistry. A series of clathrate samples with the chemical formula Ba 8−x Yb x Si 30 Ga 16 (x = 0, 0.5, 0.7, 1 and 1.5) were prepared by combining arc melting, ball milling and spark plasma sintering (SPS) techniques. X-ray diffraction and scanning electronic microscopy combined with energy-dispersive X-ray spectroscopy (EDS) analysis showed the dominant phase to be the type-I clathrate. Whereas, X-ray structural refinement and EDS analysis indicated that some Yb atoms enter the clathrate lattice to replace Ba at 2a sites, while other Yb atoms are oxidized as Yb 2 O 3 precipitated around grain boundaries. The solid solubility of Yb into clathrate lattice yielded x ∼ 0.3. Comparative analysis between Yb-doped and Yb-free clathrates showed that the thermal conductivity decreases with Yb-doping. Consequently, thermoelectric figure of merit ZT significantly increased

  12. Adsorption of methane and CO2 onto olivine surfaces in Martian dust conditions

    Science.gov (United States)

    Escamilla-Roa, Elizabeth; Martin-Torres, Javier; Sainz-Díaz, C. Ignacio

    2018-04-01

    Methane has been detected on all planets of our Solar System, and most of the larger moons, as well as in dwarf-planets like Pluto and Eric. The presence of this molecule in rocky planets is very interesting because its presence in the Earth's atmosphere is mainly related to biotic processes. Space instrumentation in orbiters around Mars has detected olivine on the Martian soil and dust. On the other hand the measurements of methane from the Curiosity rover report detection of background levels of atmospheric methane with abundance that is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, elevated levels of methane about this background have been observed implying that Mars is episodically producing methane from an additional unknown source, making the reasons of these temporal fluctuations of methane a hot topic in planetary research. The goal of this study is to investigate at atomic level the interactions during the adsorption processes of methane and other Mars atmospheric species (CO2, H2O) on forsterite surfaces, through electronic structure calculations based on the Density Functional Theory (DFT). We propose two models to simulate the interaction of adsorbates with the surface of dust mineral, such as binary mixtures (5CH4+5H2O/5CH4+5CO2) and as a semi-clathrate adsorption. We have obtained interesting results of the adsorption process in the mixture 5CH4+5CO2. Associative and dissociative adsorptions were observed for water and CO2 molecules. The methane molecules were only trapped and held by water or CO2 molecules. In the dipolar surface, the adsorption of CO2 molecules produced new species: one CO from a CO2 dissociation, and, two CO2 molecules chemisorbed to mineral surface forming in one case a carbonate group. Our results suggest that CO2 has a strong interaction with the mineral surface when methane is present. These results could be confirmed after the

  13. Methane monitoring from space

    Science.gov (United States)

    Stephan, C.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    Methane is one of the strongest anthropogenic greenhouse gases. It contributes by its radiative forcing significantly to the global warming. For a better understanding of climate changes, it is necessary to apply precise space-based measurement techniques in order to obtain a global view on the complex processes that control the methane concentration in the atmosphere. The MERLIN mission is a joint French-German cooperation, on a micro satellite mission for space-based measurement of spatial and temporal gradients of atmospheric methane columns on a global scale. MERLIN will be the first Integrated Path Differential Absorption LIDAR for greenhouse gas monitoring from space. In contrast to passive methane missions, the LIDAR instrument allows measurements at alllatitudes, all-seasons and during night.

  14. Methane prediction in collieries

    CSIR Research Space (South Africa)

    Creedy, DP

    1999-06-01

    Full Text Available The primary aim of the project was to assess the current status of research on methane emission prediction for collieries in South Africa in comparison with methods used and advances achieved elsewhere in the world....

  15. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    REPORT Phytoremediation of Atmospheric Methane 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have transformed a plant, Arabidopsis thaliana, with the...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Mar-2012 Phytoremediation of Atmospheric Methane Report Title ABSTRACT We have transformed a...DD882) Scientific Progress See attachment Technology Transfer 1    Final Report for DARPA project W911NF1010027  Phytoremediation  of Atmospheric

  16. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  17. Methanation of Carbon Dioxide

    OpenAIRE

    Goodman, Daniel Jacob

    2013-01-01

    The emission of greenhouse gases into the atmosphere has been linked to global warming. Carbon dioxide's (CO2) one of the most abundant greenhouse gases. Natural gas, mainly methane, is the cleanest fossil fuel for electricity production helping meet the United States ever growing energy needs. The methanation of CO2 has the potential to address both of these problems if a catalyst can be developed that meets the activity, economic and environmental requirements to industrialize the process. ...

  18. Characterization of methane-hydrate formation inferred from insitu Vp-density relationship for hydrate-bearing sediment cores obtained off the eastern coast of India

    Science.gov (United States)

    Kinoshita, M.; Hamada, Y.; Hirose, T.; Yamada, Y.

    2017-12-01

    In 2015, the Indian National Gas Hydrate Program (NGHP) Drilling Expedition 02 was carried out off the eastern margin of the Indian Peninsula in order to investigate distribution and occurrence of gas hydrates. From 25 drill sites, downhole logging data, cored samples, and drilling performance data were collected. One of the target areas (area B) is located on the axial and flank of an anticline, where the BSR is identified 100 m beneath the summit of anticline. 3 sites were drilled in the crest. The lower potential hydrate zone II was suggested by downhole logging (LWD) at 270-290 m below seafloor across the top of anticline. Core samples from this interval is characterized by a higher natural gamma radiation, gamma-ray-based higher bulk density and lower porosity, and higher electrical resistivity. All these features are in good agreement with LWD results. During this expedition, numerous special core sampling operations (PCAT) were carried out, keeping its insitu pressure in a pressure-tight vessel. They enabled acquiring insitu P-wave velocity and gamma-ray attenuation density measurements. In-situ X-CT images exhibit very clear hydrate distribution as lower density patches. Hydrate-bearing sediments exhibit a Vp-density trend that is clearly different from the ordinary formation. Vp values are significantly higher than 2 km/s whereas the density remains constant at 2-2.2 g/cm3 in hydrate zones. At some hydrate-bearing sediments, we noticed that Vp is negatively correlated to the density in the deeper portion (235-285 mbsf). On the other hand, in the shallower portion they are positively correlated. From lithostratigraphy the shallower portion consists of sand, whereas deeper portion are silty-clay dominant. We infer that the sand-dominant, shallower hydrate is a pore-filling type, and Vp is correlated positively to density. On the other hand, the clay-dominant, deeper hydrate is filled in vertical veins, and Vp is negatively correlated to density. Negative

  19. Modeling dissociation behaviour of methane hydrate in porous soil media

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, A.G.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering

    2008-07-01

    Gas hydrates, or clathrates, exist in the form of crystalline solid structures of hydrogen bonded water molecules where the lattice cages are occupied by guest gas molecules. Methane gas hydrates are the most common. As such, hydrate bearing sediments are considered to be a potential future energy resource. Gas hydrates also function as a source or sink for atmospheric methane, which may influence global warming. The authors emphasized that an understanding of the behaviour of soils containing gas hydrates is necessary in order to develop ways of recovering the vast gas resources that exist in the form of hydrates, particularly since hydrates are also suspected to be a potential factor in the initiation and propagation of submarine slope failures. Gas hydrate dissociation occurs when water and gas are released, resulting in an increase in pore fluid pressure, thereby causing significant reductions in effective stress leading to sediment failure. Dissociation may occur as a result of pressure reductions or increases in temperature. This study focused on the strength and deformation behaviour of hydrate bearing soils associated with temperature induced dissociation. Modeling the dissociation behavior of hydrates in porous soil media involves an understanding of the geomechanics of hydrate dissociation. This paper addressed the issue of coupling the hydrate dissociation problem with the soil deformation problem. A mathematical framework was constructed in which the thermally stimulated hydrate dissociation process in porous soil media under undrained conditions was considered with conduction heat transfer. It was concluded that a knowledge of geomechanical response of hydrate bearing sediments will enable better estimates of benefits and risks associated with the recovery process, thereby ensuring safe and economical exploration. 20 refs., 1 fig., 1 appendix.

  20. Physics of coal methane: decisive role of iron compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavriljuk, V. G., E-mail: gavr@imp.kiev.ua; Skoblik, A. P. [G.V. Kurdyumov Institute for Metal Physics (Ukraine); Shanina, B. D.; Konchits, A. A. [V. Ye. Lashkarev Institute for Semiconductor Physics (Ukraine)

    2016-12-15

    The role of iron in formation of the coal methane is clarified based on the studies performed on the coal samples taken from different mines in Donetsk coal basin. Using Mössbauer spectroscopy, a correlation is found between the iron content and methane capacity of coal seams. By means of electron paramagnetic resonance, it is found that iron increases the concentration of non-compensated electron spins, i.e. dangled bonds at the carbon atoms. These bonds can be occupied by hydrogen atoms as a prerequisite of methane formation. The two-valence iron is shown to be the most effective in the increase of spin concentration. By using the ion mass spectrometry, the modelling of methane formation is carried out on the mechanical mixture of the iron-free reactor graphite, iron compounds and diluted sulphuric acid as a source of hydrogen atoms. The proposed mechanism is also confirmed by methane formation in the mixture of iron compounds and the coal from the mine where the iron and methane are practically absent.

  1. Coalbed methane: new frontier

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, S.

    2003-02-01

    There are large numbers of stacked coal seams permeated with methane or natural gas in the Western Canadian Sedimentary Basin, and approximately 20 coalbed methane pilot projects are operating in the area, and brief descriptions of some of them were provided. Coalbed methane reserves have a long life cycle. A definition of coalbed methane can be a permeability challenged reservoir. It is not uncommon for coalbed methane wells to flow water for periods varying from 2 to 6 months after completion before the production of natural gas. A made-in-Canada technological solution is being developed by CDX Canada Inc., along with its American parent company. The techniques used by CDX are a marriage between coal mining techniques and oil and gas techniques. A brief description of coalification was provided. Nexen is participating in the production of gas from an Upper Mannville coal at 1 000-metres depth in a nine-well pilot project. The Alberta Foothills are considered prime exploration area since older coal is carried close to the surface by thrusting. CDX Canada uses cavitation completion in vertical wells. Cavitation consists in setting the casing above the coal seam and drilling ahead under balanced. The design of wells for coalbed methane gas is based on rock and fluid mechanics. Hydraulic fracturing completions is also used, as are tiltmeters. An enhanced coalbed methane recovery pilot project is being conducted by the Alberta Research Council at Fenn-Big Valley, located in central Alberta. It injects carbon dioxide, which shows great potential for the reduction of greenhouse gas emissions. 1 figs.

  2. Evidence for a hydrogen-sink mechanism of (+)catechin-mediated emission reduction of the ruminant greenhouse gas methane

    NARCIS (Netherlands)

    Becker, P.M.; Wikselaar, van P.G.; Franssen, M.C.R.; Vos, de C.H.; Hall, R.D.; Beekwilder, M.J.

    2014-01-01

    Methane formation in the rumen is a major cause of greenhouse gas emission. Plant secondary compounds in ruminant diets, such as essential oils, saponins and tannins, are known to affect methane production. However, their methane-lowering properties have generally been associated with undesired side

  3. Hydrothermal waste package interactions with methane-containing basalt groundwater

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1984-11-01

    Hydrothermal waste package interaction tests with methane-containing synthetic basalt groundwater have shown that in the absence of gamma radiolysis, methane has little influence on the glass dissolution rate. Gamma radiolysis tests at fluxes of 5.5 x 10 5 and 4.4 x 10 4 R/hr showed that methane-saturated groundwater was more reducing than identical experiments where Ar was substituted for CH 4 . Dissolved methane, therefore, may be beneficial to the waste package in limiting the solubility of redox sensitive radionuclides such a 99 Tc. Hydrocarbon polymers known to form under the irradiation conditions of these tests were not produced. The presence of the waste package constituents apparently inhibited the formation of the polymers, however, the mechanism which prevented their formation was not determined

  4. Thermoelectric properties of Cu/Ag doped type-III Ba24Ge100 clathrates

    Science.gov (United States)

    Fu, Jiefei; Su, Xianli; Yan, Yonggao; Liu, Wei; Zhang, Zhengkai; She, Xiaoyu; Uher, Ctirad; Tang, Xinfeng

    2017-09-01

    Type-III Ba24Ge100 clathrates possess low thermal conductivity and high electrical conductivity at room temperature and, as such, have a great potential as thermoelectric materials for power generation. However, the Seebeck coefficient is very low due to the intrinsically high carrier concentration. In this paper, a series of Ba24CuxGe100-x and Ba24AgyGe100-y specimens were prepared by vacuum melting combined with the subsequent spark plasma sintering (SPS) process. Doping Cu or Ag on the Ge site not only suppresses the concentration of electrons but it also decreases the thermal conductivity. In addition, the carrier mobility and the Seebeck coefficient increase due to the decrease in the carrier concentration. Thus, the power factor is greatly improved, leading to an improvement in the dimensionless figure of merit ZT. Cu-doped Ba24Cu6Ge94 reaches the maximum ZT value of about 0.17 at 873 K, while Ag-doped Ba24Ag6Ge94 attains the dimensionless figure of merit ZT of 0.31 at 873 K, more than 2 times higher value compared to un-doped Ba24Ge100.

  5. A Second Glass Transition in Pressure Collapsed Type II Clathrate Hydrates.

    Science.gov (United States)

    Andersson, Ove; Häussermann, Ulrich

    2018-04-19

    Type II clathrate hydrates (CHs) M·17 H 2 O, with M = tetrahydrofuran (THF) or 1,3-dioxolane, are known to collapse, or amorphize, on pressurization to ∼1.3 GPa in the temperature range 77-140 K. On heating at 1 GPa, these pressure-amorphized CH states show a weak, stretched sigmoid-shaped, heat-capacity increase because of a glass transition. Here we use thermal conductivity and heat capacity measurements to show that also type II CH with M = cyclobutanone (CB) collapses on isothermal pressurization and undergoes a similar, weak, glass transition upon heating at 1 GPa. Furthermore, we reveal for both THF CH and CB CH a second, much more pronounced, glass transition at temperatures above the thermally weak glass transition on heating in the 0.2-0.7 GPa range. This result suggests the general occurrence of two glass transitions in water-rich (94 mol %) pressure-collapsed CHs. Because of a large increase in dielectric permittivity concurrently as the weak heat capacity increase, the first glass transition must be due to kinetic unfreezing of water molecules. The thermal features of the second glass transition, measured on isobaric temperature cycling, are typical of a glass-liquid-glass transition, which suggests that pressure-amorphized CHs transform reversibly to liquids.

  6. Thermoelectric properties of In-substituted Ge-based clathrates prepared by HPHT

    Directory of Open Access Journals (Sweden)

    Binwu Liu

    2018-03-01

    Full Text Available Bulk materials Ba8Ga16InxGe30-x (x = 0.5, 1.0, 1.5 were prepared by High-Pressure and High-Temperature (HPHT method and the crystal structure has been confirmed by X-ray diffraction and cell refinement. The actual In composition was much lower than the starting composition, and lattice constants increased with the increase of substitution. As the temperature increased, the Seebeck coefficient and electrical resistivity increased first and then decreased, while the thermal conductivity was the opposite, which leads to significant enhancement on thermoelectric properties of the clathrates. The substitution of indium elements decreased the seebeck coefficient and electrical resistivity, and also changed the microstructure of the compounds. A minimum thermal conductivity of 0.84 Wm−1K−1 was obtained, and a good ZT value of 0.52 was achieved. The grain boundaries and lattice defects generated by high pressure can effectively scatter phonons of different frequencies, which reduce the lattice thermal conductivity.

  7. Major occurrences and reservoir concepts of marine clathrate hydrates: Implications of field evidence

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Dillon, William P.; Clennell, M.B.; Rowe, M.M.

    1998-01-01

    This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). Questions concerning clathrate hydrate as an energy resource, as a factor in modifying global climate and as a triggering mechanism for mass movements invite consideration of what factors promote hydrate concentration, and what the quintessential hydrate-rich sediment may be. Gas hydrate field data, although limited, provide a starting point for identifying the environments and processes that lead to more massive concentrations. Gas hydrate zones are up to 30 m thick and the vertical range of occurrence at a site may exceed 200 m. Zones typically occur more than 100m above the phase boundary. Thicker zones are overwhelmingly associated with structural features and tectonism, and often contain sand. It is unclear whether an apparent association between zone thickness and porosity represents a cause-and-effect relationship. The primary control on the thickness of a potential gas hydrate reservoir is the geological setting. Deep water and low geothermal gradients foster thick gas hydrate stability zones (GHSZs). The presence of faults, fractures, etc. can favour migration of gas-rich fluids. Geological processes, such as eustacy or subsidence, may alter the thickness of the GHSZ or affect hydrate concentratiion. Tectonic forces may promote injection of gas into the GHSZ. More porous and permeable sediment, as host sediment properties, increase storage capacity and fluid conductivity, and thus also enhance reservoir potential.

  8. NMR and computational study of Ba8CuxGe46-x clathrate semiconductors

    International Nuclear Information System (INIS)

    Chen, Jing-Han; Sirusi Arvij, Ali; Zheng, Xiang; Rodriguez, Sergio Y.; Ross, Joseph H.

    2014-01-01

    Highlights: • Quadrupole NMR with first-principles calculations probes local site preferences. • Cu/Ge ratio is clarified vs. the ideal Zintl composition. • Modified Becke–Johnson exchange potential agrees well with NMR Knight shifts. - Abstract: Ba 8 Cu x Ge 46-x is a type-I clathrate material that forms as a semiconductor in a narrow composition range corresponding to the electron-balanced Zintl composition, with x = 5.3. We use NMR spectroscopy combined with ab initio electronic structure calculations to probe the electronic and structural behavior of these materials. Computational results based on a superstructure model for the atomic configuration of the alloy provide good agreement with the electric quadrupole-broadened NMR lineshapes. Modeling using the modified Becke–Johnson (TB-mBJ) exchange potential is also shown to agree well with experimental NMR Knight shifts. The results indicate that the Cu–Ge balance is the main factor determining the carrier density, within a narrow stability range near the ideal Zintl composition

  9. Solvent Clathrate Driven Dynamic Stereomutation of a Supramolecular Polymer with Molecular Pockets.

    Science.gov (United States)

    Kulkarni, Chidambar; Korevaar, Peter A; Bejagam, Karteek K; Palmans, Anja R A; Meijer, E W; George, Subi J

    2017-10-04

    Control over the helical organization of synthetic supramolecular systems is intensively pursued to manifest chirality in a wide range of applications ranging from electron spin filters to artificial enzymes. Typically, switching the helicity of supramolecular assemblies involves external stimuli or kinetic traps. However, efforts to achieve helix reversal under thermodynamic control and to understand the phenomena at a molecular level are scarce. Here we present a unique example of helix reversal (stereomutation) under thermodynamic control in the self-assembly of a coronene bisimide that has a 3,5-dialkoxy substitution on the imide phenyl groups (CBI-35CH), leading to "molecular pockets" in the assembly. The stereomutation was observed only if the CBI monomer possesses molecular pockets. Detailed chiroptical studies performed in alkane solvents with different molecular structures reveal that solvent molecules intercalate or form clathrates within the molecular pockets of CBI-35CH at low temperature (263 K), thereby triggering the stereomutation. The interplay among the helical assembly, molecular pockets, and solvent molecules is further unraveled by explicit solvent molecular dynamics simulations. Our results demonstrate how the molecular design of self-assembling building blocks can orchestrate the organization of surrounding solvent molecules, which in turn dictates the helical organization of the resulting supramolecular assembly.

  10. Heterogeneous Nucleation of Methane Hydrate in a Water-Decane-Methane Emulsion

    Science.gov (United States)

    Shestakov, V. A.; Kosyakov, V. I.; Manakov, A. Yu.; Stoporev, A. S.; Grachev, E. V.

    2018-07-01

    Heterogeneous nucleation in disperse systems with metastable disperse phases plays an important role in the mechanisms of environmental and technological processes. The effect the concentration and activity of particles that initiate the formation of a new phase have on nucleation processes in such systems is considered. An approach is proposed that allows construction of a spectrum of particle activity characterizing the features of nucleation in a sample, based on the fraction of crystallized droplets depending on the level of supercooling and the use of Weibull's distribution. The proposed method is used to describe experimental data on the heterogeneous nucleation of methane hydrate in an emulsion in a water-decane-methane system.

  11. Methane of the coal

    International Nuclear Information System (INIS)

    Vasquez, H.

    1997-01-01

    In the transformation process of the vegetable material to the coal (Carbonization), the products that are generated include CH 4, CO2, N2 and H2. The methane is generated by two mechanisms: below 50 centigrade degree, as product of microbial decomposition, the methanogenic is generated; and above 50 centigrade degree, due to the effects of the buried and increase of the range of the coal, the thermogenic methane is detachment, as a result of the catagenic. The generated methane is stored in the internal surfaces of the coal, macro and micro pores and in the natural fractures. The presence of accumulations of gas of the coal has been known in the entire world by many years, but only as something undesirable for its danger in the mining exploitation of the coal

  12. Direct Activation Of Methane

    KAUST Repository

    Basset, Jean-Marie

    2013-07-15

    Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20.degree. C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin structure: H.sub.4SiW.sub.12O.sub.40, H.sub.3PW.sub.12O.sub.40, H.sub.4SiMo.sub.12O.sub.40, or H.sub.3PMo.sub.12O.sub.40, can be when supported on silica.

  13. Methanization - Technical sheet

    International Nuclear Information System (INIS)

    Bastide, Guillaume

    2015-02-01

    This document explains fundamentals of methanization such as biological reactions and conditions suitable for biogas production (temperature, pH, anaerobic medium, and so on). It also proposes an overview of available techniques, of the present regulation, of environmental impacts, and of costs and profitability of methanization installations. Examples of installations are provided, as well as a set of questions and answers. Perspectives of development are finally discussed in terms of sector development potential, of regulatory evolution, of new perspectives for gas valorisation, of need of acquisition of reference data due to the relatively low number of existing installations, and of research and development

  14. Australian methane fluxes

    International Nuclear Information System (INIS)

    Williams, D.J.

    1990-01-01

    Estimates are provided for the amount of methane emitted annually into the atmosphere in Australia for a variety of sources. The sources considered are coal mining, landfill, motor vehicles, natural gas suply system, rice paddies, bushfires, termites, wetland and animals. This assessment indicates that the major sources of methane are natural or agricultural in nature and therefore offer little scope for reduction. Nevertheless the remainder are not trival and reduction of these fluxes could play a significant part in any Australian action on the greenhouse problem. 19 refs., 7 tabs., 1 fig

  15. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.; Sessions, Alex L.; Lawson, Michael; Shuai, Yanhua; Bishop, Andrew; Podlaha, Olaf G.; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Niemann, Martin; Steen, Arne S.; Huang, Ling; Chimiak, Laura; Valentine, David L.; Fiebig, Jens; Luhmann, Andrew J.; Seyfried, William E.; Etiope, Giuseppe; Schoell, Martin; Inskeep, William P.; Moran, James J.; Kitchen, Nami

    2017-11-01

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.

  16. Application of gas hydrate formation in separation processes: A review of experimental studies

    International Nuclear Information System (INIS)

    Eslamimanesh, Ali; Mohammadi, Amir H.; Richon, Dominique; Naidoo, Paramespri; Ramjugernath, Deresh

    2012-01-01

    Highlights: ► Review of gas hydrate technology applied to separation processes. ► Gas hydrates have potential to be a future sustainable separation technology. ► More theoretical, simulation, and economic studies needed. - Abstract: There has been a dramatic increase in gas hydrate research over the last decade. Interestingly, the research has not focussed on only the inhibition of gas hydrate formation, which is of particular relevance to the petroleum industry, but has evolved into investigations on the promotion of hydrate formation as a potential novel separation technology. Gas hydrate formation as a separation technology shows tremendous potential, both from a physical feasibility (in terms of effecting difficult separations) as well as an envisaged lower energy utilization criterion. It is therefore a technology that should be considered as a future sustainable technology and will find wide application, possibly replacing a number of current commercial separation processes. In this article, we focus on presenting a brief description of the positive applications of clathrate hydrates and a comprehensive survey of experimental studies performed on separation processes using gas hydrate formation technology. Although many investigations have been undertaken on the positive application of gas hydrates to date, there is a need to perform more theoretical, experimental, and economic studies to clarify various aspects of separation processes using clathrate/semi-clathrate hydrate formation phenomena, and to conclusively prove its sustainability.

  17. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates.

    Science.gov (United States)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M; Bačić, Zlatko

    2018-04-14

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H 2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H 2 in the v=0 and v=1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H 2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H 2 inside a hydrate domain is assumed to be pairwise additive. The H 2 -H 2 O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H 2 , v=0 or v=1, is derived from the high-quality ab initio full-dimensional (9D) PES of the H 2 -H 2 O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H 2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H 2 change very little with the domain size, unlike the H 2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H 2 O molecules in the first three complete hydration shells around H 2 .

  18. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates

    Science.gov (United States)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M.; Bačić, Zlatko

    2018-04-01

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H2 in the v =0 and v =1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H2 inside a hydrate domain is assumed to be pairwise additive. The H2-H2O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H2, v =0 or v =1 , is derived from the high-quality ab initio full-dimensional (9D) PES of the H2-H2O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H2 change very little with the domain size, unlike the H2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H2O molecules in the first three complete hydration shells around H2.

  19. The effect of stirring on the heterogeneous nucleation of water and of clathrates of tetrahydrofuran/water mixtures

    Directory of Open Access Journals (Sweden)

    P.W. Wilson

    2016-03-01

    Full Text Available The statistics of liquid-to-crystal nucleation are measured for both water and for clathrate-forming mixtures of tetrahydrofuran (THF and water using an automatic lag time apparatus (ALTA. We measure the nucleation temperature using this apparatus in which a single sample is repeatedly cooled, nucleated and thawed. The effect of stirring on nucleation has been evaluated numerically and is discussed. We find that stirring of the solution makes no difference to the nucleation temperature of a given solution in a given tube.

  20. Permafrost slowly exhales methane

    Science.gov (United States)

    Herndon, Elizabeth M.

    2018-04-01

    Permafrost soils store vast quantities of organic matter that are vulnerable to decomposition under a warming climate. Recent research finds that methane release from thawing permafrost may outpace carbon dioxide as a major contributor to global warming over the next century.

  1. Methane pellet moderator development

    International Nuclear Information System (INIS)

    Foster, C.A.; Schechter, D.E.; Carpenter, J.M.

    2004-01-01

    A methane pellet moderator assembly consisting of a pelletizer, a helium cooled sub-cooling tunnel, a liquid helium cooled cryogenic pellet storage hopper and a 1.5L moderator cell has been constructed for the purpose demonstrating a system for use in high-power spallation sources. (orig.)

  2. Methane emissions from grasslands

    NARCIS (Netherlands)

    Pol - van Dasselaar, van den A.

    1998-01-01

    Introduction

    Methane (CH 4 ) is an important greenhouse gas. The concentration of greenhouse gases in the atmosphere has been increasing since pre-industrial times, mainly due to human activities. This increase gives concern,

  3. Methane emissions from natural wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.L. [Georgia Univ., Athens, GA (United States); Burke, R.A. Jr. [Environmental Protection Agency, Athens, GA (United States). Environmental Research Lab.

    1993-09-01

    Analyses of air trapped in polar ice cores in conjunction with recent atmospheric measurements, indicate that the atmospheric methane concentration increased by about 250% during the past two or three hundred years (Rasmussen and Khalil, 1984). Because methane is a potent ``greenhouse`` gas, the increasing concentrations are expected to contribute to global warning (Dickinson and Cicerone, 1986). The timing of the methane increase suggests that it is related to the rapid growth of the human population and associated industrialization and agricultural development. The specific causes of the atmospheric methane concentration increase are not well known, but may relate to either increases in methane sources, decreases in the strengths of the sinks, or both.

  4. Dielectric relaxation of guest molecules in a clathrate structure of syndiotactic polystyrene.

    Science.gov (United States)

    Urakawa, Osamu; Kaneko, Fumitoshi; Kobayashi, Hideo

    2012-12-13

    Structure and dynamics of semicrystalline polymer films composed of syndiotactic polystyrene (sPS) and 2-butanone were examined through X-ray diffraction, polarized FTIR, and dielectric relaxation measurements. The X-ray and FTIR measurements revealed its crystal structure to be δ-clathrate containing 2-butanone molecules inside. The carbonyl group of 2-butanone in the crystal was found to orient preferentially parallel to the ac plane of the crystal through the polarized ATR FTIR measurements. Dielectric measurements were also conducted on these film samples to see only the relaxation dynamics of 2-butanone thanks to the high dielectric intensity of 2-butanone compared to sPS. Two relaxation modes denoted by slow and fast modes appeared. The former was assigned to the motion of 2-butanone molecules entrapped in the cavities of the crystalline (δ-form) and the latter to those in the amorphous region. We focused on the slow mode in order to elucidate the specific dynamics of the guest molecule confined in the crystalline region. The relaxation time of the slow mode was about 4 orders of magnitude longer than that of liquid 2-butanone. This suggests that the dynamics of guest molecules is highly restricted due to the high barrier to conformational and/or orientational change of the guest molecule in the cavity of δ-crystal. Furthermore, the dielectric intensity Δε of the slow mode was much smaller than the one calculated from that of bulk liquid 2-butanone and the guest concentration in the crystalline region (the intensity was only 10% of the estimated value from the bulk liquid data). This result also indicates that the free rotational motion of 2-butanone molecules is restricted inside the crystal. This will be consistently related to the weak uniplanar orientation of the carbonyl group of 2-butanone parallel to the ac plane revealed by the X-ray and polarized ATR FTIR measurements.

  5. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    Science.gov (United States)

    Yang, Jihui [Lakeshore, CA; Shi, Xun [Troy, MI; Bai, Shengqiang [Shanghai, CN; Zhang, Wenqing [Shanghai, CN; Chen, Lidong [Shanghai, CN; Yang, Jiong [Shanghai, CN

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  6. Study on molecular controlled mining system of methane hydrate; Methane hydrate no bunshi seigyo mining ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyagawa, M; Saito, T; Kobayashi, H; Karasawa, H; Kiyono, F; Nagaoki, R; Yamamoto, Y; Komai, T; Haneda, H; Takahashi, Y [National Institute for Resources and Environment, Tsukuba (Japan); Nada, H [Science and Technology Agency, Tokyo (Japan)

    1997-02-01

    Basic studies are conducted for the collection of methane from the methane hydrate that exists at levels deeper than 500m in the sea. The relationship between the hydrate generation mechanism and water cluster structure is examined by use of mass spectronomy. It is found that, among the stable liquid phase clusters, the (H2O)21H{sup +} cluster is the most stable. Stable hydrate clusters are in presence in quantities, and participate in the formation of hydrate crystal nuclei. For the elucidation of the nucleus formation mechanism, a kinetic simulation is conducted of molecules in the cohesion system consisting of water and methane molecules. Water molecules that array near methane molecules at the normal pressure is disarrayed under a higher pressure for rearray into a hydrate structure. Hydrate formation and breakdown in the three-phase equilibrium state of H2O, CH4, and CO2 at a low temperature and high pressure are tested, which discloses that supercooling is required for formation, that it is possible to extract CH4 first for replacement by guest molecule CO2 since CO2 is stabler than CH4 at a lower pressure or higher temperature, and that formation is easier to take place when the grain diameter is larger at the formation point since larger grain diameters result in a higher formation temperature. 3 figs.

  7. Hydrogen storage and carbon dioxide sequestration in TBAF semi-clathrate hydrates: Kinetics and evolution of hydrate-phase composition by in situ raman spectroscopy - Abstract -

    NARCIS (Netherlands)

    Torres Trueba, A.; Radoviæ, I.R.; Zevenbergen, J.F.; Kroon, M.C.; Peters, C.J.

    2012-01-01

    Carbon dioxide (CO2) represents almost one third of the emissions from the combustion of fossil fuels additionally, CO2 has been identified as the mayor contributor of global warming. Hydrogen (H2), on the other hand, due to its properties is considered a promising energy carrier. Clathrate hydrates

  8. Exploring the possibility to store the mixed oxygen-hydrogen cluster in clathrate hydrate in molar ratio 1:2 (O2+2H2).

    Science.gov (United States)

    Qin, Yan; Du, Qi-Shi; Xie, Neng-Zhong; Li, Jian-Xiu; Huang, Ri-Bo

    2017-05-01

    An interesting possibility is explored: storing the mixture of oxygen and hydrogen in clathrate hydrate in molar ratio 1:2. The interaction energies between oxygen, hydrogen, and clathrate hydrate are calculated using high level quantum chemical methods. The useful conclusion points from this study are summarized as follows. (1) The interaction energies of oxygen-hydrogen mixed cluster are larger than the energies of pure hydrogen molecular cluster. (2) The affinity of oxygen molecules with water molecules is larger than that of the hydrogen molecules with water molecules. (3) The dimension of O 2 -2H 2 interaction structure is smaller than the dimension of CO 2 -2H 2 interaction structure. (4) The escaping energy of oxygen molecules from the hydrate cell is larger than that of the hydrogen molecules. (5) The high affinity of the oxygen molecules with both the water molecules and the hydrogen molecules may promote the stability of oxygen-hydrogen mixture in the clathrate hydrate. Therefore it is possible to store the mixed (O 2 +2H 2 ) cluster in clathrate hydrate. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. FTIR spectroscopic study on the Hofmann -Td- type clathrates: Ni(benzoic acid)2M(CN)4.aniline (M=Zn, Cd, Hg)

    International Nuclear Information System (INIS)

    Kesan, G.; Kartal, Z.

    2010-01-01

    The Hofmann-Td-type clathrates formulated as Ni(L) 2 M(CN) 4 .nG where L is a bidentate or a pair of unidentate ligand molecule, M is Zn, Cd or Hg, G is a guest molecule and n is the number of guest molecule. The host lattice of the Hofmann-Td-type clathrates is formed from endless chains of -Ni-L-L-Ni-L-L-Ni- and M(CN) 4 ions arranged between the consecutive crossing -Ni-L-L-Ni-L-L-Ni- chains with the O-ends bound to the Ni metal atoms. These polymeric layers are held in parallel by Van der Walls interaction between ligand molecules. This structure provides α-type cavity. In this study, Ni(Benzoic Acid ) 2M(CN) 4 .Aniline (M = Zn, Cd, Hg) is obtained for the first time by means of chemical methods in powder form and their infrared spectra are reported in range of (4000-400) cm - 1. The spectral data suggest that the new clathrates are similar in structure to the Hofmann-type clathrates.

  10. In situ NMR studies of hydrogen storage kinetics and molecular diffusion in clathrate hydrate at elevated hydrogen pressures

    Energy Technology Data Exchange (ETDEWEB)

    Okuchi, T. [Okayama Univ., Misasa, Tottori (Japan); Moudrakovski, I.L.; Ripmeester, J.A. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences

    2008-07-01

    The challenge of storing high-density hydrogen into compact host media was investigated. The conventional storage scheme where an aqueous solution is frozen with hydrogen gas is too slow for practical use in a hydrogen-based society. Therefore, the authors developed a faster method whereby hydrogen was stored into gas hydrates. The hydrogen gas was directly charged into hydrogen-free, crystalline hydrate powders with partly empty lattices. The storage kinetics and hydrogen diffusion into the hydrate was observed in situ by nuclear magnetic resonance (NMR) in a pressurized tube cell. At pressures up to 20 MPa, the storage was complete within 80 minutes, as observed by growth of stored-hydrogen peak into the hydrate. Hydrogen diffusion within the crystalline hydrate media is the rate-determining step of current storage scheme. Therefore, the authors measured the diffusion coefficient of hydrogen molecules using the pulsed field gradient NMR method. The results show that the stored hydrogen is very mobile at temperatures down to 250 K. As such, the powdered hydrate media should work well even in cold environments. Compared with more prevailing hydrogen storage media such as metal hydrides, clathrate hydrates have the advantage of being free from hydrogen embrittlement, more chemically durable, more environmentally sound, and economically affordable. It was concluded that the powdered clathrate hydrate is suitable as a hydrogen storage media. 22 refs., 4 figs.

  11. Competing quantum effects in the free energy profiles and diffusion rates of hydrogen and deuterium molecules through clathrate hydrates.

    Science.gov (United States)

    Cendagorta, Joseph R; Powers, Anna; Hele, Timothy J H; Marsalek, Ondrej; Bačić, Zlatko; Tuckerman, Mark E

    2016-11-30

    Clathrate hydrates hold considerable promise as safe and economical materials for hydrogen storage. Here we present a quantum mechanical study of H 2 and D 2 diffusion through a hexagonal face shared by two large cages of clathrate hydrates over a wide range of temperatures. Path integral molecular dynamics simulations are used to compute the free-energy profiles for the diffusion of H 2 and D 2 as a function of temperature. Ring polymer molecular dynamics rate theory, incorporating both exact quantum statistics and approximate quantum dynamical effects, is utilized in the calculations of the H 2 and D 2 diffusion rates in a broad temperature interval. We find that the shape of the quantum free-energy profiles and their height relative to the classical free energy barriers at a given temperature, as well as the rate of diffusion, are strongly affected by competing quantum effects: above 25 K, zero-point energy (ZPE) perpendicular to the reaction path for diffusion between cavities decreases the quantum rate compared to the classical rate, whereas at lower temperatures tunneling outcompetes the ZPE and as a result the quantum rate is greater than the classical rate.

  12. Diverse origins of Arctic and Subarctic methane point source emissions identified with multiply-substituted isotopologues

    Science.gov (United States)

    Douglas, P. M. J.; Stolper, D. A.; Smith, D. A.; Walter Anthony, K. M.; Paull, C. K.; Dallimore, S.; Wik, M.; Crill, P. M.; Winterdahl, M.; Eiler, J. M.; Sessions, A. L.

    2016-09-01

    Methane is a potent greenhouse gas, and there are concerns that its natural emissions from the Arctic could act as a substantial positive feedback to anthropogenic global warming. Determining the sources of methane emissions and the biogeochemical processes controlling them is important for understanding present and future Arctic contributions to atmospheric methane budgets. Here we apply measurements of multiply-substituted isotopologues, or clumped isotopes, of methane as a new tool to identify the origins of ebullitive fluxes in Alaska, Sweden and the Arctic Ocean. When methane forms in isotopic equilibrium, clumped isotope measurements indicate the formation temperature. In some microbial methane, however, non-equilibrium isotope effects, probably related to the kinetics of methanogenesis, lead to low clumped isotope values. We identify four categories of emissions in the studied samples: thermogenic methane, deep subsurface or marine microbial methane formed in isotopic equilibrium, freshwater microbial methane with non-equilibrium clumped isotope values, and mixtures of deep and shallow methane (i.e., combinations of the first three end members). Mixing between deep and shallow methane sources produces a non-linear variation in clumped isotope values with mixing proportion that provides new constraints for the formation environment of the mixing end-members. Analyses of microbial methane emitted from lakes, as well as a methanol-consuming methanogen pure culture, support the hypothesis that non-equilibrium clumped isotope values are controlled, in part, by kinetic isotope effects induced during enzymatic reactions involved in methanogenesis. Our results indicate that these kinetic isotope effects vary widely in microbial methane produced in Arctic lake sediments, with non-equilibrium Δ18 values spanning a range of more than 5‰.

  13. Methane from dairy waste

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-22

    This short article describes a facility which will incorporate features to allow for the recovery of the methane gas that is produced in the manufacture of cheese and spray-dried whey powder at the site. The dairy plant is expected to produce about 1,385 m/sup 3//day of methane which will supplement the operation of oil burners and replace the annual consumption of 4,000 bbl of heavy fuel oil. In addition, development of the treatment system would eliminate the consumption of 7,200 kWh/day of electrical energy that would otherwise be required to operate an aerobic disposal system. Total annual energy savings, when the project is fully operational in the spring of 1984, are expected to reach $321,000.

  14. Methanation: reality or fiction?

    International Nuclear Information System (INIS)

    Gay, Michel

    2015-01-01

    The author discusses whether it is possible to partly replace oil and natural gas by electricity-based gas, i.e. to produce methane from water by electrolysis, or by using molecule cracking in dedicated nuclear reactors, and carbon dioxide. He outlines the benefits of this perspective in terms of reduction of imports, and of national electricity production optimisation. He also discusses the drawbacks: it will be difficult to produce the huge required quantity of CO 2 ; it will be even more difficult to produce the required quantity of electricity; the e-methane production cost is much higher than that of the currently imported natural gas. In appendix, the author discusses some key figures related to energy in France (consumption, shares, imports, crucial role of nuclear energy for the future)

  15. Project identification for methane reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  16. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  17. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C

    NARCIS (Netherlands)

    Liu, Dandan; Zhang, Lei; Chen, Si; Buisman, Cees; Heijne, ter Annemiek

    2016-01-01

    Anaerobic digestion at low temperature is an attractive technology especially in moderate climates, however, low temperature results in low microbial activity and low rates of methane formation. This study investigated if bioelectrochemical systems (BESs) can enhance methane production from

  18. Formation of methane versus benzene in the reactions of (C{sub 5}Me{sub 5}){sub 2}Th(CH{sub 3}){sub 2} with [CH{sub 3}PPh{sub 3}]X (X=Cl, Br, I) yielding thorium-carbene or thorium-ylide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Rungthanaphatsophon, Pokpong; Behrle, Andrew C.; Barnes, Charles L.; Walensky, Justin R. [Department of Chemistry, University of Missouri, Columbia, MO (United States); Bathelier, Adrien; Castro, Ludovic; Maron, Laurent [Toulouse Univ. and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO (France)

    2017-10-09

    The reaction of (C{sub 5}Me{sub 5}){sub 2}Th(CH{sub 3}){sub 2} with the phosphonium salts [CH{sub 3}PPh{sub 3}]X (X=Cl, Br, I) was investigated. When X=Br and I, two equivalents of methane are liberated to afford (C{sub 5}Me{sub 5}){sub 2}Th[CHPPh{sub 3}]X, rare terminal phosphorano-stabilized carbenes with thorium. These complexes feature the shortest thorium-carbon bonds (∼2.30 Aa) reported to date, and electronic structure calculations show some degree of multiple bonding. However, when X=Cl, only one equivalent of methane is lost with concomitant formation of benzene from an unstable phosphorus(V) intermediate, yielding (C{sub 5}Me{sub 5}){sub 2}Th[κ{sup 2}-(C,C{sup '})-(CH{sub 2})(CH{sub 2})PPh{sub 2}]Cl. Density functional theory (DFT) investigations of the reaction energy profiles for [CH{sub 3}PPh{sub 3}]X, X=Cl and I showed that in the case of iodide, thermodynamics prevents the production of benzene and favors formation of the carbene. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Genomic selection for methane emission

    DEFF Research Database (Denmark)

    de Haas, Yvette; Pryce, Jennie E; Wall, Eileen

    2016-01-01

    Climate change is a growing area of international concern, and it is well established that the release of greenhouse gases (GHG) is a contributing factor. Of the various GHG produced by ruminants, enteric methane (CH4 ) is the most important contributor. One mitigation strategy is to reduce methane...... emission through genetic selection. Our first attempt used beef cattle and a GWAS to identify genes associated with several CH4 traits in Angus beef cattle. The Angus population consisted of 1020 animals with phenotypes on methane production (MeP), dry matter intake (DMI), and weight (WT). Additionally......, two new methane traits: residual genetic methane (RGM) and residual phenotypic methane (RPM) were calculated by adjusting CH4 for DMI and WT. Animals were genotyped using the 800k Illumina Bovine HD Array. Estimated heritabilities were 0.30, 0.19 and 0.15 for MeP, RGM and RPM respectively...

  20. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin

    DEFF Research Database (Denmark)

    Treude, T.; Niggemann, J.; Kallmeyer, J.

    2005-01-01

    of AOM and SR activity, methane, sulfate, sulfide, pH, total chlorins, and a variety of other geochemical parameters. Depth-integrated rates of AOM within the SMT were between 7 and 1124 mmol m(-2) a(-1), effectively removing methane below the sediment-water interface. Single measurements revealed AOM...... with high organic input, to analyze the impact of AOM on the methane budget, and to determine the contribution of AOM to SR within the sulfate-methane transition zone (SMT). Furthermore, we investigated the formation of authigenic carbonates correlated with AOM. We determined the vertical distribution...

  1. Methanization of industrial liquid effluents

    International Nuclear Information System (INIS)

    Frederic, S.; Lugardon, A.

    2007-01-01

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  2. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Boyer, C.M.; Kelafant, J.R.; Kuuskraa, V.A.; Manger, K.C.; Kruger, D.

    1990-09-01

    The report estimates global methane emissions from coal mining on a country specific basis, evaluates the technologies available to degasify coal seams and assesses the economics of recovering methane liberated during mining. 33 to 64 million tonnes were liberated in 1987 from coal mining, 75 per cent of which came from China, the USSR, Poland and the USA. Methane emissions from coal mining are likely to increase. Emission levels vary between surface and underground mines. The methane currently removed from underground mines for safety reasons could be used in a number of ways, which may be economically attractive. 55 refs., 19 figs., 24 tabs

  3. Microbial methane in the shallow Paleozoic sediments and glacial deposits of Illinois, U.S.A.

    Science.gov (United States)

    Coleman, D.D.; Liu, Chao-Li; Riley, K.M.

    1988-01-01

    Methane formed by the microbial decomposition of buried organic matter is virtually ubiquitous in the groundwaters of Illinois. Chemical and carbon isotopic compositions are reported for gas samples collected from over 200 private and municipal water wells and from 39 small gas wells completed in glacial deposits (drift-gas wells). Carbon and hydrogen isotopic data for methane, carbon dioxide and water show that these gases were formed by the carbon dioxide reduction pathway, the same mechanism which has been previously shown to be responsible for microbial methane formation in the marine environment. The isotopic composition of methane in these samples can be closely correlated with the chemical composition of the gas and with water chemistry. The data are interpreted as indicating that isotopically very light methane is found in waters where the residence time of groundwater in the methanogenesis zone was very short relative to the methane production rate. ?? 1988.

  4. Platinum single crystal electrodes for the electrocatalysis of methane oxidation

    Directory of Open Access Journals (Sweden)

    Mayara Munaretto

    2011-03-01

    Full Text Available The main objective of this paper is to characterize the voltammetric profiles of platinum single crystals of low Miller indexes Pt(100 and Pt(110 and study their catalytic activities on the oxidation of methane. In this way, it was developed a metallic surface modified by presence of other metal oxide, which presents catalytic activity for this reaction. It is well known that the electrooxidation of methane (CH4 leads mainly to the formation of CO2 and H2O, however, the oxidation can also lead to the formation of CO, a reaction intermediate that has strong interaction with metal surfaces, such as platinum. This molecule tends to accumulate on the platinum surface and to passive it, due to the self-poisoning, decreasing its catalytic activity. Therefore, the main aim of this work was the development of a platinum electrode modified by deposition of titanium oxide, which presented electrocatalytic properties for the oxidation of methane.

  5. Effect of hemicellulolytic enzymes on mesophilic methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Oi, S; Matsui, Y; Iizuka, M; Yamamoto, T

    1977-01-01

    Mesophilic methane fermentation was examined using soybean seed coat, a waste from soybean processing for oil manufacture, with or without treatment with hemicellulolytic enzymes of Aspergillus niger, and the following results were obtained: (1) The methane fermentation bacteria acclimated to soybean seed coat medium were shown to consume monosaccharides and evolve methane in the following decreasing order: glucose, fructose, mannose > xylose, galactose, glucosamine, galacturonic acid > arabinose. The bacteria were also shown to form methane from a gas mixture of hydrogen and carbon dioxide. (2) In fermentation of soybean seed coat treated with the fungal enzyme, about 70% of the total sugar content as consumed in four weeks, and the gas evolution was about twice that without the fungal enzyme. The gas evolved was composed of 60% methane and 36% carbon dioxide. In general, vigorous evolution of hydrogen and carbon dioxide occurred at a very early stage of fermentation, and was followed by formation of methane. The maximum gas evolution of the enzyme-treated mash took place in 6 days while that of untreated mash occurred one week later. Chemical oxygen demand of the supernatant of the former mash was decreased by fermentation to 7.0% of the initial level.

  6. Investigation of Methane Hydrate Formation in a Recirculating Flow Loop: Modeling of the Kinetics and Tests of Efficiency of Chemical Additives on Hydrate Inhibition Étude de la formation de l'hydrate de méthane dans une conduite de recirculation : modélisation de la cinétique et tests d'efficacité d'additifs chimiques inhibiteurs d'hydrates de gaz

    Directory of Open Access Journals (Sweden)

    Peytavy J. L.

    2006-12-01

    Full Text Available Gas hydrates can be formed when light gases, such as the components of natural gas, come into contact with water under particular conditions of temperature and pressure. These solid compounds give rise to problems in natural gas and oil industry because they can plug pipelines and process equipment. To prevent hydrate formation methanol and glycols are commonly and extensively used as inhibitors. Today, the thermodynamic equilibria of hydrate formation are well known, but the kinetics of gas hydrate formation and growth has to be studied in order to find means of controlling these processes and to explore the mechanisms for hydrate formation that follows non equilibrium laws. The present work deals with the kinetics of methane hydrate formation studied in a laboratory loop where the liquid blend saturated with methane is circulated up to a pressure of 75 bar. Pressure is maintained at a constant value during experimental runs by means of methane gas make-up. First the effects of pressure (35-75 bar, liquid velocity (0. 5-3 m/s, liquid cooling temperature ramp (2-15°C/h, and liquid hydrocarbon amount (0-96%, on hydrate formation kinetics are investigated. Then a new method is proposed to predict firstly the thermodynamic conditions (pressure and temperature at the maximum values of the growth rate of methane hydrate and secondly the methane hydrate growth rate. A good agreement is found between calculated and experimental data. Finally the evaluation of the efficiency of some kinetic additives and some surfactants developed to avoid either nucleation or crystal growth and agglomeration of methane hydrates is tested based on the proposed experimental procedure. Les hydrates de gaz des composés légers du gaz naturel se forment lorsque ceux-ci entrent en contact avec l'eau dans certaines conditions de température et de pression. Ces composés solides sont nuisibles pour les industries gazière et pétrolière car des bouchons solides peuvent

  7. Methane from wood

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S

    2005-07-15

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  8. Methane from wood

    International Nuclear Information System (INIS)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S.

    2005-07-01

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  9. Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry.

    Science.gov (United States)

    Kobayashi, Kensei; Geppert, Wolf D; Carrasco, Nathalie; Holm, Nils G; Mousis, Olivier; Palumbo, Maria Elisabetta; Waite, J Hunter; Watanabe, Naoki; Ziurys, Lucy M

    2017-08-01

    To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution. Key Words: Methane-Interstellar environments-Submarine hydrothermal systems-Titan-Origin of life. Astrobiology 17, 786-812.

  10. Methanogenesis and methane genes

    International Nuclear Information System (INIS)

    Reeve, J.N.; Shref, B.A.

    1991-01-01

    An overview of the pathways leading to methane biosynthesis is presented. The steps investigated to date by gene cloning and DNA sequencing procedures are identified and discussed. The primary structures of component C of methyl coenzyme M reductase encoded by mcr operons in different methanogens are compared. Experiments to detect the primary structure of the genes encoding F420 reducing hydrogenase (frhABG) and methyl hydrogen reducing hydrogenase (mvhDGA) in methanobacterium thermoautotrophicum strain H are compared with each other and with eubacterial hydrogenase encoding genes. A biotechnological use for hydrogenases from hypermorphillic archaebacteria is suggested. (author)

  11. Collagen tissue treated with chitosan solution in H2O/CO2 mixtures: Influence of clathrates hydrates on the structure and mechanical properties.

    Science.gov (United States)

    Chaschin, Ivan S; Bakuleva, Natalia P; Grigoriev, Timofei E; Krasheninnikov, Sergey V; Nikitin, Lev N

    2017-03-01

    A mixture of water/carbon dioxide is a "green" perspective solvent from the viewpoint of biomedical applications. Clathrate hydrates are formed this solvent under certain conditions and a very interesting question is the impact of clathrates hydrates on the structure and properties of bovine pericardium, which is used in biomedicine, in particular as a main part of biological heart valve prostheses. The aim of the present work is to investigate the influence of clathrates on the structure and mechanical properties of the collagen tissue treated with chitosan in H 2 O/CO 2 mixtures under pressure 3.0-3.5MPa and temperatures 2-4°C. It was first found that the clathrate hydrates in this media due to the strong fluctuations "bomb" collagen tissue of bovine pericardium, which is manifested in the appearance of numerous small gaps (pores) with mean size of 225±25nm and large pores with size of 1-3μ on the surface and within collagen matrices. High porosity leads to averaging characteristics of the organization structure in tissues with different orientation of the collagen fibers. As a result, the mechanical properties of the collagen tissue with a different orientation of the collagen fibrils become similar, which is quite different from their original properties. The structural changes caused by the influence of the environment clathrate hydrates led to a significant decrease of the tensile strength (30-47% in total, p<0.05) and initial elastic moduli (74-83%, p<0.05). However, the final elastic moduli and the maximum tensile virtually unchanged compared to the control. Nevertheless, it was found that the direct deposition of chitosan from the H 2 O/CO 2 mixtures with clathrate improve the mechanical-strength properties of the porous matrices. We believe that these improved mechanical properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurized solutions in H 2 O/CO 2 mixtures. Copyright © 2016

  12. Methane adsorption on activated carbon

    NARCIS (Netherlands)

    Perl, Andras; Koopman, Folkert; Jansen, Peter; de Rooij, Marietta; van Gemert, Wim

    2014-01-01

    Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room

  13. Radiation effects on methane in the presence of molecular sieves

    International Nuclear Information System (INIS)

    Shimizu, Y.; Nagai, S.; Hatada, M.

    1983-01-01

    Product analysis has been carried out for the radiation-induced reaction of methane in the presence of molecular sieves (MS) 3A, 4A, 5A and 13X. Irradiation of methane over MS 4A selectively produces C 2 hydrocarbons, while the use of MS 5A leads to C 2 and C 3 hydrocarbons. The selectivity and yields of these hydrocarbons, however, decrease with irradiation time, owing to deposition of carbonaceous solid produced from methane on the surface of the molecular sieves. The carbonaceous solid is decomposed to low-molecular-weight hydrocarbons when irradiated in an H 2 atmosphere. Material balance estimated for the radiation-chemical reaction of argon containing 2 mol% methane over MS 5A reveals that the carbonaceous solid is highly abundant in carbon atoms. On the other hand the formation of carbonaceous solids plays a less important role in the radiation-chemical reaction of methane in the presence of silica gel, which is found to exhibit greater activity for the formation of hydrocarbons than the molecular sieves. (author)

  14. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    International Nuclear Information System (INIS)

    Mitchell, Jonathan L.

    2012-01-01

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or ∼0.04 W m –2 , is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is ∼0.5-1 W m –2 in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  15. Non-oxidative conversion of methane into higher hydrocarbons over ...

    Indian Academy of Sciences (India)

    SOURABH MISHRA

    2017-09-27

    Sep 27, 2017 ... (Syn-gas, CO+H2) formation via steam reforming, dry reforming or partial oxidation of methane ... Micromeritics ASAP 2010 apparatus at liquid nitrogen tem- perature. Nitrogen (N2) was the adsorbate ... some runs were carried out in triplicate and mass balance for all the runs was measured. Runs with a ...

  16. Oxygen-Methane Thruster

    Science.gov (United States)

    Pickens, Tim

    2012-01-01

    An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.

  17. Search for interstellar methane

    International Nuclear Information System (INIS)

    Knacke, R.F.; Kim, Y.H.; Noll, K.S.; Geballe, T.R.

    1990-01-01

    Researchers searched for interstellar methane in the spectra of infrared sources embedded in molecular clouds. New observations of several lines of the P and R branches of the nu 3 band of CH4 near 3.3 microns give column densities in the range N less than 1(-2) times 10 to the minus 16th power cm(-2). Resulting abundance ratios are (CH4)/(CO) less than 3.3 times 10 to the minus 2nd power toward GL961 in NGC 2244 and less than 2.4 times 10 to the minus 3rd power toward GL989 in the NGC 2264 molecular cloud. The limits, and those determined in earlier observations of BN in Orion and GL490, suggest that there is little methane in molecular clouds. The result agrees with predictions of chemical models. Exceptions could occur in clouds where oxygen may be depleted, for example by H2O freezing on grains. The present observations probably did not sample such regions

  18. Methanation process utilizing split cold gas recycle

    Science.gov (United States)

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  19. Methane production and methane consumption: a review of processes underlying wetland methane fluxes.

    NARCIS (Netherlands)

    Segers, R.

    1998-01-01

    Potential rates of both methane production and methane consumption vary over three orders of magnitude and their distribution is skew. These rates are weakly correlated with ecosystem type, incubation temperature, in situ aeration, latitude, depth and distance to oxic/anoxic interface. Anaerobic

  20. Methane eddy covariance flux measurements from a low flying aircraft: Bridging the scale gap between local and regional emissions estimates

    Science.gov (United States)

    Sayres, D. S.; Dobosy, R.; Dumas, E. J.; Kochendorfer, J.; Wilkerson, J.; Anderson, J. G.

    2017-12-01

    The Arctic contains a large reservoir of organic matter stored in permafrost and clathrates. Varying geology and hydrology across the Arctic, even on small scales, can cause large variability in surface carbon fluxes and partitioning between methane and carbon dioxide. This makes upscaling from point source measurements such as small flux towers or chambers difficult. Ground based measurements can yield high temporal resolution and detailed information about a specific location, but due to the inaccessibility of most of the Arctic to date have only made measurements at very few sites. In August 2013, a small aircraft, flying low over the surface (5-30 m), and carrying an air turbulence probe and spectroscopic instruments to measure methane, carbon dioxide, nitrous oxide, water vapor and their isotopologues, flew over the North Slope of Alaska. During the six flights multiple comparisons were made with a ground based Eddy Covariance tower as well as three region surveys flights of fluxes over three areas each approximately 2500 km2. We present analysis using the Flux Fragment Method and surface landscape classification maps to relate the fluxes to different surface land types. We show examples of how we use the aircraft data to upscale from a eddy covariance tower and map spatial variability across different ecotopes.

  1. Distribution of Al atoms in the clathrate-I phase Ba8AlxSi46-x at x = 6.9.

    Science.gov (United States)

    Bobnar, Matej; Böhme, Bodo; Wedel, Michael; Burkhardt, Ulrich; Ormeci, Alim; Prots, Yurii; Drathen, Christina; Liang, Ying; Nguyen, Hong Duong; Baitinger, Michael; Grin, Yuri

    2015-07-28

    The clathrate-I phase Ba8AlxSi46-x has been structurally characterized at the composition x = 6.9 (space group Pm3[combining macron]n, no. 223, a = 10.4645(2) Å). A crystal structure model comprising the distribution of aluminium and silicon atoms in the clathrate framework was established: 5.7 Al atoms and 0.3 Si atoms occupy the crystallographic site 6c, while 1.2 Al atoms and 22.8 Si atoms occupy site 24k. The atomic distribution was established based on a combination of (27)Al and (29)Si NMR experiments, X-ray single-crystal diffraction and wavelength-dispersive X-ray spectroscopy.

  2. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  3. Experimental Equipment Validation for Methane (CH4) and Carbon Dioxide (CO2) Hydrates

    Science.gov (United States)

    Saad Khan, Muhammad; Yaqub, Sana; Manner, Naathiya; Ani Karthwathi, Nur; Qasim, Ali; Mellon, Nurhayati Binti; Lal, Bhajan

    2018-04-01

    Clathrate hydrates are eminent structures regard as a threat to the gas and oil industry in light of their irritating propensity to subsea pipelines. For natural gas transmission and processing, the formation of gas hydrate is one of the main flow assurance delinquent has led researchers toward conducting fresh and meticulous studies on various aspects of gas hydrates. This paper highlighted the thermodynamic analysis on pure CH4 and CO2 gas hydrates on the custom fabricated equipment (Sapphire cell hydrate reactor) for experimental validation. CO2 gas hydrate formed at lower pressure (41 bar) as compared to CH4 gas hydrate (70 bar) while comparison of thermodynamic properties between CH4 and CO2 also presented in this study. This preliminary study could provide pathways for the quest of potent hydrate inhibitors.

  4. Methane hydrates in marine sediments - Untapped source of energy

    Digital Repository Service at National Institute of Oceanography (India)

    Jauhari, P.

    (Egorov et al 1999). Many known gas seep areas and mud volcanoes are characterised by the formation of authigenic carbonates. In the Gulf of Mexico, which is the best studied area, the association of bacterial mats, gas hydrates and authigenic carbonates... of methane hydrates offshore southern Mexico. In : Watkins, J.S., Moore J.R. et al. (Eds). Initial Reports deep Sea Drilling Project Leg 66. Washington, D.C., US Government Printing Office, pp. 547-556. Singh, A., & Singh, B.D. 1999. Methane Gas...

  5. Isotopic studies on oxidative methane coupling over samarium oxide

    International Nuclear Information System (INIS)

    Otsuka, Kiyoshi; Inaida, Masakatsu; Wada, Yuji; Komatsu, Takayuki; Morikawa, Akira

    1989-01-01

    The evident kinetic isotope effect was observed for the formations of ethylene and ethane through the oxidative coupling of methane on Sm 2 O 3 , when CH 4 and CD 4 were used as the reactants. Ethanes formed in the reaction of a mixture of CH 4 , CD 4 , and O 2 were C 2 H 6 , C 2 H 3 D 3 , and C 2 D 6 as major products. These results indicate that the rate-determining step of the reaction is abstraction of hydrogen from methane and that ethane is formed through the coupling of methyl intermediate. (author)

  6. A novel method for estimating methane emissions from underground coal mines: The Yanma coal mine, China

    Science.gov (United States)

    Ji, Zhong-Min; Chen, Zhi-Jian; Pan, Jie-Nan; Niu, Qing-He

    2017-12-01

    As the world's largest coal producer and consumer, China accounts for a relatively high proportion of methane emissions from coal mines. Several estimation methods had been established for the coal mine methane (CMM) emission. However, with large regional differences, various reservoir formation types of coalbed methane (CBM) and due to the complicated geological conditions in China, these methods may be deficient or unsuitable for all the mining areas (e.g. Jiaozuo mining area). By combing the CMM emission characteristics and considering the actual situation of methane emissions from underground coal mine, we found that the methane pre-drainage is a crucial reason creating inaccurate evaluating results for most estimation methods. What makes it so essential is the extensive pre-drainage quantity and its irrelevance with annual coal production. Accordingly, the methane releases were divided into two categories: methane pre-drainage and methane release during mining. On this basis, a pioneering method for estimating CMM emissions was proposed. Taking the Yanma coal mine in the Jiaozuo mining area as a study case, the evaluation method of the pre-drainage methane quantity was established after the correlation analysis between the pre-drainage rate and time. Thereafter, the mining activity influence factor (MAIF) was first introduced to reflect the methane release from the coal and rock seams around where affected by mining activity, and the buried depth was adopted as the predictor of the estimation for future methane emissions. It was verified in the six coal mines of Jiaozuo coalfield (2011) that the new estimation method has the minimum errors of 12.11%, 9.23%, 5.77%, -5.20%, -8.75% and 4.92% respectively comparing with other methods. This paper gives a further insight and proposes a more accurate evaluation method for the CMM emissions, especially for the coal seams with low permeability and strong tectonic deformation in methane outburst coal mines.

  7. Recent advances in methane activation

    Energy Technology Data Exchange (ETDEWEB)

    Huuska, M; Kataja, K [VTT Chemical Technology, Espoo (Finland)

    1997-12-31

    Considerable work has been done in the research and development of methane conversion technologies. Although some promising conversion processes have been demonstrated, further advances in engineering and also in the chemistry are needed before these technologies become commercial. High-temperature processes, e.g. the oxidative coupling of methane, studied thoroughly during the last 15 years, suffer from severe theoretical yield limits and poor economics. In the long term, the most promising approaches seem to be the organometallic and, especially, the biomimetic activation of methane. (author) (22 refs.)

  8. Recent advances in methane activation

    Energy Technology Data Exchange (ETDEWEB)

    Huuska, M.; Kataja, K. [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    Considerable work has been done in the research and development of methane conversion technologies. Although some promising conversion processes have been demonstrated, further advances in engineering and also in the chemistry are needed before these technologies become commercial. High-temperature processes, e.g. the oxidative coupling of methane, studied thoroughly during the last 15 years, suffer from severe theoretical yield limits and poor economics. In the long term, the most promising approaches seem to be the organometallic and, especially, the biomimetic activation of methane. (author) (22 refs.)

  9. Methane hydroxylation: a biomimetic approach

    International Nuclear Information System (INIS)

    Shilov, Aleksandr E; Shteinman, Al'bert A

    2012-01-01

    The review addresses direct methane oxidation — an important fundamental problem, which has attracted much attention of researchers in recent years. Analysis of the available results on biomimetic and bio-inspired methane oxygenation has demonstrated that assimilating of the experience of Nature on oxidation of methane and other alkanes significantly enriches the arsenal of chemistry and can radically change the character of the entire chemical production, as well as enables the solution of many material, energetic and environmental problems. The bibliography includes 310 references.

  10. Study of hydrogen-molecule guests in type II clathrate hydrates using a force-matched potential model parameterised from ab initio molecular dynamics

    Science.gov (United States)

    Burnham, Christian J.; Futera, Zdenek; English, Niall J.

    2018-03-01

    The force-matching method has been applied to parameterise an empirical potential model for water-water and water-hydrogen intermolecular interactions for use in clathrate-hydrate simulations containing hydrogen guest molecules. The underlying reference simulations constituted ab initio molecular dynamics (AIMD) of clathrate hydrates with various occupations of hydrogen-molecule guests. It is shown that the resultant model is able to reproduce AIMD-derived free-energy curves for the movement of a tagged hydrogen molecule between the water cages that make up the clathrate, thus giving us confidence in the model. Furthermore, with the aid of an umbrella-sampling algorithm, we calculate barrier heights for the force-matched model, yielding the free-energy barrier for a tagged molecule to move between cages. The barrier heights are reasonably large, being on the order of 30 kJ/mol, and are consistent with our previous studies with empirical models [C. J. Burnham and N. J. English, J. Phys. Chem. C 120, 16561 (2016) and C. J. Burnham et al., Phys. Chem. Chem. Phys. 19, 717 (2017)]. Our results are in opposition to the literature, which claims that this system may have very low barrier heights. We also compare results to that using the more ad hoc empirical model of Alavi et al. [J. Chem. Phys. 123, 024507 (2005)] and find that this model does very well when judged against the force-matched and ab initio simulation data.

  11. Methane production from coal by a single methanogen

    Science.gov (United States)

    Sakata, S.; Mayumi, D.; Mochimaru, H.; Tamaki, H.; Yamamoto, K.; Yoshioka, H.; Suzuki, Y.; Kamagata, Y.

    2017-12-01

    Previous geochemical studies indicate that biogenic methane greatly contributes to the formation of coalbed methane (CBM). It is unclear, however, what part of coal is used for the methane production and what types of microbes mediate the process. Here we hypothesized that methylotrophic methanogens use methoxylated aromatic compounds (MACs) derived from lignin. We incubated 11 species of methanogens belonging to order Methanosarcinales with 7 types of MACs. Two strains of methanogens, i.e., Methermicoccus shengliensis AmaM and ZC-1, produced methane from the MACs. In fact, these methanogens used over 30 types of commercially available MACs in addition to methanol and methylamines. To date, it is widely believed that methanogens use very limited number of small compounds such as hydrogen plus carbon dioxide, acetate, and methanol, and only three methanogenic pathways are recognized accordingly. Here, in contrast, two Methermicoccus strains used many types of MACs. We therefore propose this "methoxydotrophic" process as the fourth methanogenic pathway. Incubation of AmaM with 2-methoxybenzoate resulted in methanogenesis associated with the stoichiometric production of 2-hydroxybenzoate. Incubation with 2-methoxy-[7-13C] benzoate and with [13C] bicarbonate indicated that two thirds of methane carbon derived from the methoxy group and one third from CO2. Furthermore, incubation with [2-13C] acetate resulted in significant increases of 13C in both methane and CO2. These results suggest the occurrence of O-demethylation, CO2 reduction and acetyl-CoA metabolism in the methoxydotrophic methanogenesis. Furthermore, incubation of AmaM with lignite, subbituminous or bituminous coals in the bicarbonate-buffered media revealed that AmaM produced methane directly from coals via the methoxydotrophic pathway. Although 4 types of MACs were detected in the coal media in addition to methanol and methylamines, their total concentrations were too low to account for the methane

  12. Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry

    Science.gov (United States)

    Kobayashi, Kensei; Geppert, Wolf D.; Carrasco, Nathalie; Holm, Nils G.; Mousis, Olivier; Palumbo, Maria Elisabetta; Waite, J. Hunter; Watanabe, Naoki; Ziurys, Lucy M.

    2017-08-01

    To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution.

  13. Plasma catalytic process for CO2 methanation

    International Nuclear Information System (INIS)

    Nizio, Magdalena

    2016-01-01

    The limited resources of oil and natural gas, together with an increasing energy demand, forces us to seek more and more efficient and cleaner energy production alternatives. Hydrogen has been recently considered as a promising energy carrier. However, there are several inherent problems to the utilization of H 2 , from its transportation to its distribution. Transformation of the H 2 molecule by fixing into a carbon-containing compound, i.e. CH 4 , will offer the possibility of using the conventional transportation network. Indeed, the Sabatier reaction, which is highly exothermic, involves the reaction of carbon dioxide and hydrogen gas in order to produce methane and water. This process, called methanation, represents a feasible approach contributing to the reduction of the CO 2 emissions in our atmosphere, through a closed carbon cycle involving the valorization of CO 2 , i.e. from capture. However, below a temperature of 250 C, the conversion becomes practically close to 0 %, whereas at higher temperatures, i.e., (≥300 C), the co-existence of secondary reactions favours the formation of CO and H 2 . This is the reason why new catalysts and process conditions are continuously being investigated in order to maximize the methane selectivity at low reaction temperatures at atmospheric pressure. Therefore, by using catalysts combined to Dielectric Barrier Discharge plasmas (DBD), the activation of the methanation reaction can be enhanced and overcome the drawbacks of existing conventional processes. Several Ni-containing catalysts were prepared using various ceria-zirconia oxides as supports, with different Ce/Zr ratios. The results obtained in the adiabatic conditions at low temperatures (ranging between 100-150 C), in the presence of catalysts activated by plasma, are promising. Indeed, the conversion of CO 2 to CH 4 is about 85 % with a selectivity close to 100 %. The same conversion in the absence of the plasma activation of the catalyst is observed at 350 C

  14. Combined gas-phase oxidation of methane and ethylene

    International Nuclear Information System (INIS)

    Pogosyan, N.M.; Pogosyan, M.D.

    2009-01-01

    It is established that depending on the reaction conditions combined oxidation of methane and ethylene may result in ethylene and propylene oxides with high selectivity with respect to the process, where in the initial reaction mixture methane is replaced by the same quantity of nitrogen. The formed additional methyl radicals increase the yield of all reaction products except CO. At low temperatures methyl radicals react with oxygen resulting in methyl peroxide radicals, which in turn, reacting with ethylene provide its epoxidation and formation of other oxygen-containing products. At high temperatures as a result of addition reaction between methyl radicals and ethylene, propyl radicals are formed that, in turn yield propylene. Alongside with positive influence on the yield of reaction products, methane exerts negative influence upon the conversion, that is it decreases the rate of ethylene and oxygen conversion, simultaneously decreasing significantly the yield of CO

  15. Detection of Occupancy Differences in Methane Gas Hydrates by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    of reservoir fluids due to plugging. Methods to prevent hydrate formation are in use, e.g. by injection of inhibitors. From environmental and security points of view an easy way to detect hydrate formation is of interest. We have tried to detect methane hydrate formation by use of Raman spectroscopy....

  16. Plasma Thermal Conversion of Methane to Acetylene

    International Nuclear Information System (INIS)

    Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Detering, Brent Alan; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

    2002-01-01

    This paper describes a re-examination of a known process for the direct plasma thermal conversion of methane to acetylene. Conversion efficiencies (% methane converted) approached 100% and acetylene yields in the 90-95% range with 2-4% solid carbon production were demonstrated. Specificity for acetylene was higher than in prior work. Improvements in conversion efficiency, yield, and specificity were due primarily to improved injector design and reactant mixing, and minimization of temperature gradients and cold boundary layers. At the 60-kilowatt scale cooling by wall heat transfer appears to be sufficient to quench the product stream and prevent further reaction of acetylene resulting in the formation of heavier hydrocarbon products or solid carbon. Significantly increasing the quenching rate by aerodynamic expansion of the products through a converging-diverging nozzle led to a reduction in the yield of ethylene but had little effect on the yield of other hydrocarbon products. While greater product selectivity for acetylene has been demonstrated, the specific energy consumption per unit mass of acetylene produced was not improved upon. A kinetic model that includes the reaction mechanisms resulting in the formation of acetylene and heavier hydrocarbons, through benzene, is described

  17. Observation of Binding and Rotation of Methane and Hydrogen within a Functional Metal–Organic Framework

    KAUST Repository

    Savage, Mathew

    2016-07-27

    The key requirement for a portable store of natural gas is to maximize the amount of gas within the smallest possible space. The packing of methane (CH4) in a given storage medium at the highest possible density is, therefore, a highly desirable but challenging target. We report a microporous hydroxyl-decorated material, MFM-300(In) (MFM = Manchester Framework Material, replacing the NOTT designation), which displays a high volumetric uptake of 202 v/v at 298 K and 35 bar for CH4 and 488 v/v at 77 K and 20 bar for H2. Direct observation and quantification of the location, binding, and rotational modes of adsorbed CH4 and H2 molecules within this host have been achieved, using neutron diffraction and inelastic neutron scattering experiments, coupled with density functional theory (DFT) modeling. These complementary techniques reveal a very efficient packing of H2 and CH4 molecules within MFM-300(In), reminiscent of the condensed gas in pure component crystalline solids. We also report here, for the first time, the experimental observation of a direct binding interaction between adsorbed CH4 molecules and the hydroxyl groups within the pore of a material. This is different from the arrangement found in CH4/water clathrates, the CH4 store of nature.

  18. Observation of Binding and Rotation of Methane and Hydrogen within a Functional Metal–Organic Framework

    KAUST Repository

    Savage, Mathew; da Silva, Ivan; Johnson, Mark; Carter, Joseph H.; Newby, Ruth; Suetin, Mikhail; Besley, Elena; Manuel, Pascal; Rudić, Svemir; Fitch, Andrew N.; Murray, Claire; David, William I. F.; Yang, Sihai; Schrö der, Martin

    2016-01-01

    The key requirement for a portable store of natural gas is to maximize the amount of gas within the smallest possible space. The packing of methane (CH4) in a given storage medium at the highest possible density is, therefore, a highly desirable but challenging target. We report a microporous hydroxyl-decorated material, MFM-300(In) (MFM = Manchester Framework Material, replacing the NOTT designation), which displays a high volumetric uptake of 202 v/v at 298 K and 35 bar for CH4 and 488 v/v at 77 K and 20 bar for H2. Direct observation and quantification of the location, binding, and rotational modes of adsorbed CH4 and H2 molecules within this host have been achieved, using neutron diffraction and inelastic neutron scattering experiments, coupled with density functional theory (DFT) modeling. These complementary techniques reveal a very efficient packing of H2 and CH4 molecules within MFM-300(In), reminiscent of the condensed gas in pure component crystalline solids. We also report here, for the first time, the experimental observation of a direct binding interaction between adsorbed CH4 molecules and the hydroxyl groups within the pore of a material. This is different from the arrangement found in CH4/water clathrates, the CH4 store of nature.

  19. Synthetic methane for power storage

    NARCIS (Netherlands)

    Botta, G.; Barankin, Michael; Walspurger, S.

    2013-01-01

    With increased share of energy generated from variable renewable sources, storage becomes a critical issue to ensure constantly balanced supply/demand. Methane is a promising vector for energy storage and transport.

  20. Methane flux from boreal peatlands

    International Nuclear Information System (INIS)

    Crill, P.; Bartlett, K.; Roulet, N.

    1992-01-01

    The peatlands in the boreal zone (roughly 45 deg - 60 degN) store a significant reservoir of carbon, much of which is potentially available for exchange with the atmosphere. The anaerobic conditions that cause these soils to accumulate carbon also makes wet, boreal peatlands significant sources of methane to the global troposphere. It is estimated that boreal wetlands contribute approximately 19.5 Tg methane per year. The data available on the magnitude of boreal methane emissions have rapidly accumulated in the past twenty years. This paper offers a short review of the flux measured (with range roughly 1 - 2000 mg methane/m2d), considers environmental controls of the flux and briefly discusses how climate change might affect future fluxes

  1. Enteric Methane Emission from Pigs

    DEFF Research Database (Denmark)

    Jørgensen, Henry; Theil, Peter Kappel; Knudsen, Knud Erik Bach

    2011-01-01

    per kg meat produced is increased (Fernández et al. 1983; Lekule et al. 1990). The present chapter will summarise our current knowledge concerning dietary and enteric fermentation that may influence the methane (CH4) emission in pigs. Enteric fermentation is the digestive process by which.......3 % of the worlds pig population. The main number of pigs is in Asia (59.6 %) where the main pig population stay in China (47.8 % of the worlds pig population). The objective of the chapter is therefore: To obtain a general overview of the pigs’ contribution to methane emission. Where is the pigs’ enteric gas...... produced and how is it measured. The variation in methane emission and factors affecting the emission. Possibility for reducing the enteric methane emission and the consequences....

  2. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  3. An advanced cold moderator using solid methane pellets

    International Nuclear Information System (INIS)

    Foster, C.A.; Carpenter, J.M.

    2001-01-01

    This paper reports developments of the pellet formation and transport technologies required for producing a liquid helium or hydrogen cooled methane pellet moderator. The Phase I US DOE SBIR project, already completed, demonstrated the production of 3 mm transparent pellets of frozen methane and ammonia and transport of the pellets into a 40 cc observation cell cooled with liquid helium. The methane pellets, formed at 72 K, stuck together during the loading of the cell. Ammonia pellets did not stick and fell readily under vibration into a packed bed with a 60% fill fraction. A 60% fill fraction should produce a very significant increase in long-wavelength neutron production and advantages in shorter pulse widths as compared to a liquid hydrogen moderator. The work also demonstrated a method of rapidly changing the pellets in the moderator cell. The Phase II project, just now underway, will develop a full-scale pellet source and transport system with a 1.5 L 'moderator' cell. The Phase II effort will also produce an apparatus to sub-cool the methane pellets to below 20 K, which should prevent the methane pellets from sticking together. In addition to results of the phase I experiments, the presentation includes a short video of the pellets, and a description of plans for the Phase II project. (author)

  4. Multicomponent seismic applications in coalbed methane development

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.; Trend, S. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    Seismic applications for coalbed methane (CBM) development are used to address the following challenges: lateral continuity of coal zones; vertical continuity of coal seams; permeability of cleats and fractures; coal quality and gas content; wet versus dry coal zones; and, monitoring storage of greenhouse gases. This paper presented a brief description of existing seismic programs, including 2-D and 3-D surface seismic surveys; multicomponent seismic surveys; vertical seismic profiles; cross-well seismic surveys; and, time-lapse seismic surveys. A comparative evaluation of their use in the Horseshoe Canyon Formation and the Ardley Formation was presented. The study showed that variations in reservoir properties resulting from gas production and dewatering can be effectively imaged using seismic surveys. Seismic surveys are useful in reservoir management, monitoring sweep efficiency during enhanced natural gas from coal (NGC) production, monitoring disposal of produced water and verifying storage of carbon dioxide for carbon credits. tabs., figs.

  5. Methane gas from cow dung

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The Khadi and Village Industries Commission offers a gobar gas (methane gas) production scheme. The gas plant, available in sizes of 60 to 3000 cu ft, requires only low maintenance expenditures. The cow dung, which is at present being wasted or burned as domestic fuel, can be used for manufacturing methane for fuel gas. The residue will be a good fertilizer for increasing food production. There are now about 4000 gobar gas plants in India.

  6. Phase Behaviour of Methane Hydrate Under Conditions Relevant to Titan's Interior

    Science.gov (United States)

    Sclater, G.; Fortes, A. D.; Crawford, I. A.

    2018-06-01

    The high-pressure behaviour Clathrate hydrates, thought to be abundant in the outer solar system, underpins planetary modelling efforts of the interior of Titan, where clathrates are hypothesised to be the source of the dense N2, CH4 atmosphere.

  7. Dry Reforming of Methane Using a Nickel Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Jonas M. Leimert

    2017-12-01

    Full Text Available Dry reforming is a very interesting process for synthesis gas generation from CH 4 and CO 2 but suffers from low hydrogen yields due to the reverse water–gas shift reaction (WGS. For this reason, membranes are often used for hydrogen separation, which in turn leads to coke formation at the process temperatures suitable for the membranes. To avoid these problems, this work shows the possibility of using nickel self-supported membranes for hydrogen separation at a temperature of 800 ∘ C. The higher temperature effectively suppresses coke formation. The paper features the analysis of the dry reforming reaction in a nickel membrane reactor without additional catalyst. The measurement campaign targeted coke formation and conversion of the methane feedstock. The nickel approximately 50% without hydrogen separation. The hydrogen removal led to an increase in methane conversion to 60–90%.

  8. Methane production from cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J Q; Liao, P H; Lo, K V

    1988-01-01

    Cheese whey was treated in a 17.5-litre laboratory-scale up-flow anaerobic sludge blanket reactor operated over a range of hydraulic retention times and organic loading rates. The reactor performance was determined in terms of methane production, volatile fatty acids conversion and chemical oxygen demand (COD) reduction. At a constant influent strength, the methane production rate decreased with decreasing hydraulic retention time. At constant hydraulic retention time the methane production rate increased as the influent strength was increased up to a concentration of 28.8 g COD litre/sup -1/. The methane production rate was similar for two influent concentrations studied at hydraulic retention times longer than 10 days. The effect of short hydraulic retention times on methane production rate was more pronounced for the higher influent concentration than for the lower influent concentration. The highest methane production rate of 9.57 litres CH/sub 4/ litre/sup -1/ feed day/sup -1/ was obtained at a loading rate of 5.96 g/sup -1/ COD litre/sup -1/ and an influent concentration of 28.8 g COD litre/sup -1/. A high treatment efficiency in terms of chemical oxygen demand reduction was obtained. In general, over 98% removal of chemical oxygen demand was achieved. The results indicated that anaerobic digestion of cheese whey using an upflow sludge blanket reactor could reduce pollution strength and produce energy for a cheese plant.

  9. The California Baseline Methane Survey

    Science.gov (United States)

    Duren, R. M.; Thorpe, A. K.; Hopkins, F. M.; Rafiq, T.; Bue, B. D.; Prasad, K.; Mccubbin, I.; Miller, C. E.

    2017-12-01

    The California Baseline Methane Survey is the first systematic, statewide assessment of methane point source emissions. The objectives are to reduce uncertainty in the state's methane budget and to identify emission mitigation priorities for state and local agencies, utilities and facility owners. The project combines remote sensing of large areas with airborne imaging spectroscopy and spatially resolved bottom-up data sets to detect, quantify and attribute emissions from diverse sectors including agriculture, waste management, oil and gas production and the natural gas supply chain. Phase 1 of the project surveyed nearly 180,000 individual facilities and infrastructure components across California in 2016 - achieving completeness rates ranging from 20% to 100% per emission sector at < 5 meters spatial resolution. Additionally, intensive studies of key areas and sectors were performed to assess source persistence and variability at times scales ranging from minutes to months. Phase 2 of the project continues with additional data collection in Spring and Fall 2017. We describe the survey design and measurement, modeling and analysis methods. We present initial findings regarding the spatial, temporal and sectoral distribution of methane point source emissions in California and their estimated contribution to the state's total methane budget. We provide case-studies and lessons learned about key sectors including examples where super-emitters were identified and mitigated. We summarize challenges and recommendations for future methane research, inventories and mitigation guidance within and beyond California.

  10. Quantification of methane emissions from danish landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Mønster, Jacob; Kjeldsen, Peter

    2013-01-01

    Whole-landfill methane emission was quantified using a tracer technique that combines controlled tracer gas release from the landfill with time-resolved concentration measurements downwind of the landfill using a mobile high-resolution analytical instrument. Methane emissions from 13 Danish...... landfills varied between 2.6 and 60.8 kg CH4 h–1. The highest methane emission was measured at the largest (in terms of disposed waste amounts) of the 13 landfills, whereas the lowest methane emissions (2.6-6.1 kgCH4 h–1) were measured at the older and smaller landfills. At two of the sites, which had gas...... collection, emission measurements showed that the gas collection systems only collected between 30-50% of the methane produced (assuming that the produced methane equalled the sum of the emitted methane and the collected methane). Significant methane emissions were observed from disposed shredder waste...

  11. Is methane a new therapeutic gas?

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2012-09-01

    Full Text Available Abstract Background Methane is an attractive fuel. Biologically, methanogens in the colon can use carbon dioxide and hydrogen to produce methane as a by-product. It was previously considered that methane is not utilized by humans. However, in a recent study, results demonstrated that methane could exert anti-inflammatory effects in a dog small intestinal ischemia-reperfusion model. Point of view Actually, the bioactivity of methane has been investigated in gastrointestinal diseases, but the exact mechanism underlying the anti-inflammatory effects is required to be further elucidated. Methane can cross the membrane and is easy to collect due to its abundance in natural gas. Although methane is flammable, saline rich in methane can be prepared for clinical use. These seem to be good news in application of methane as a therapeutic gas. Conclusion Several problems should be resolved before its wide application in clinical practice.

  12. Biogenic methane potential of marine sediments. Application of chemical thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Arning, E.T.; Schulz, H.M. [Helmholtz Centre Potsdam GFZ, Potsdam (Germany); Berk, W. van [Technical Univ. of Clausthal (Germany). Dept. of Hydrogeology

    2013-08-01

    Accumulations of biogenic methane-dominated gas are widespread and occur in a variety of depositional settings and rock types. However, the potential of biogenic methane remains underexplored. This is mainly due to the fact that quantitative assessments applying numerical modeling techniques for exploration purposes are generally lacking to date. Biogenic methane formation starts in relatively shallow marine sediments below the sulfate reduction zone. When sulfate is exhausted, methanogenesis via the CO{sub 2} reduction pathway is often the dominant biogenic methane formation process in marine sediments (Claypool and Kaplan, 1974). The process can be simplified by the reaction: 2CH{sub 2}O + Ca{sup 2+} + H{sub 2}O {yields} CH{sub 4} + CaCO{sub 3} + 2H{sup +}. The products of early diagenetic reactions initiate coupled equilibrium reactions that induce a new state of chemical equilibrium among minerals, pore water and gas. The driving force of the complex biogeochemical reactions in sedimentary environments during early diagenesis is the irreversible redox-conversion of organic matter. Early diagenetic formation of biogenic methane shortly after deposition ('early diagenesis') was retraced using PHREEQC computer code that is applied to calculate homogenous and heterogeneous mass-action equations in combination with one-dimensional diffusion driven transport (Parkhurst and Appelo, 1999). Our modeling approach incorporates interdependent diagenetic reactions evolving into a diffusive multi-component and multiphase system by means of thermodynamic equilibrium calculations of species distribution (Arning et al., 2011, 2012, 2013). Reaction kinetics of organic carbon conversion is integrated into the set of equilibrium reactions by defining type and amount of converted organic matter in a certain time step. It is the aim (1) to calculate quantitatively thermodynamic equilibrium conditions (composition of pore water, mineral phase and gas phase assemblage) in

  13. Hydrate phase equilibrium and structure for (methane + ethane + tetrahydrofuran + water) system

    International Nuclear Information System (INIS)

    Sun Changyu; Chen Guangjin; Zhang Lingwei

    2010-01-01

    The separation of methane and ethane through forming hydrate is a possible choice in natural gas, oil processing, or ethylene producing. The hydrate formation conditions of five groups of (methane + ethane) binary gas mixtures in the presence of 0.06 mole fraction tetrahydrofuran (THF) in water were obtained at temperatures ranging from (277.7 to 288.2) K. In most cases, the presence of THF in water can lower the hydrate formation pressure of (methane + ethane) remarkably. However, when the composition of ethane is as high as 0.832, it is more difficult to form hydrate than without THF system. Phase equilibrium model for hydrates containing THF was developed based on a two-step hydrate formation mechanism. The structure of hydrates formed from (methane + ethane + THF + water) system was also determined by Raman spectroscopy. When THF concentration in initial aqueous solution was only 0.06 mole fraction, the coexistence of structure I hydrate dominated by ethane and structure II hydrate dominated by THF in the hydrate sample was clearly demonstrated by Raman spectroscopic data. On the contrary, only structure II hydrate existed in the hydrate sample formed from (methane + ethane + THF + water) system when THF concentration in initial aqueous solution was increased to 0.10 mole fraction. It indicated that higher THF concentration inhibited the formation of structure I hydrate dominated by ethane and therefore lowered the trapping of ethane in hydrate. It implies a very promising method to increase the separation efficiency of methane and ethane.

  14. High-temperature conversion of methane on a composite gadolinia-doped ceria-gold electrode

    DEFF Research Database (Denmark)

    Marina, O.A.; Mogensen, Mogens Bjerg

    1999-01-01

    Direct electrochemical oxidation of methane was attempted on a gadolinia-doped ceria Ce(0.6)Gd(0.4)O(1.8) (CG4) electrode in a solid oxide fuel cell using a porous gold-CG4 mixture as current collector Gold is relatively inert to methane in contrast to other popular SOFC anode materials such as n......Direct electrochemical oxidation of methane was attempted on a gadolinia-doped ceria Ce(0.6)Gd(0.4)O(1.8) (CG4) electrode in a solid oxide fuel cell using a porous gold-CG4 mixture as current collector Gold is relatively inert to methane in contrast to other popular SOFC anode materials...... such as nickel and platinum. CG4 was found to exhibit a low electrocatalytic activity for methane oxidation as well as no significant reforming activity implying that the addition of an electrocatalyst or cracking catalyst to the CG4 anode is required for SOFC operating on methane. The methane conversion...... observed at the open-circuit potential and low anodic overpotentials seems to be due to thermal methane cracking in the gas phase and on the alumina surfaces in the cell housing. At high anodic overpotentials, at electrode potentials where oxygen evolution was expected to take place, the formation of CO(2...

  15. [Microbial Processes and Genesis of Methane Gas Jets in the Coastal Areas of the Crimea Peninsula].

    Science.gov (United States)

    Malakhova, T V; Kanapatskii, T A; Egorov, V N; Malakhova, L V; Artemov, Yu G; Evtushenko, D B; Gulin, S B; Pimenov, N V

    2015-01-01

    Hydroasoustic techniques were used for detection and mapping of gas jet areas in the coastal regions of the Crimean peninsula. Gas seep areas in the bays Laspi, Khersones, and Kazach'ya were chosen for detailed microbiological investigation. The first type of gas jets, observed in the Laspi Bay, was probably associated with discarge of deep thermogenic methane along the faults. Methane isotopic composition was char- acterized by Δ13C of -35.3 degrees. While elevated rates of aerobic methane oxidation were revealed in the sandy sediments adjacent to the methane release site, no evidence of bacterial mats was found. The second type of gas emission, observed in the Khersones Bay, was accompanied by formation of bacterial biofilms of the "Thiodendron" microbial community type, predominated by filamentous, spirochete-like organisms, in the areas of gas seepage. The isotopic composition of methane was there considerably lower (-60.4 degrees), indicating a considerable contribution of modern microbial methane to the gas bubbles discharged in this bay. Activity of the third type of gas emission, the seeps of the Kazach'ya Bay, probably depended directly on modern microbial processes of organic matter degradation in the upper sediment layers. The rates of sulfate reduction and methanogenesis were 260 and 34 μmol dm(-3) day(-1), respectively. Our results indicate different mechanisms responsible for formation of methane jets in the Laspi Bay and in the coastal areas of the Heracles Peninsula, where the bays Kazach'ya and Khersones are located.

  16. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    Energy Technology Data Exchange (ETDEWEB)

    Kirchman, David L. [Univ. of Delaware, Lewes, DE (United States)

    2012-03-29

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (Methane in the Arctic Shelf or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (metagenomes ). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in

  17. Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors.

    Science.gov (United States)

    Ullrich, Timo; Lindner, Jonas; Bär, Katharina; Mörs, Friedemann; Graf, Frank; Lemmer, Andreas

    2018-01-01

    In order to investigate the influence of pressures up to 9bar absolute on the productivity of trickle-bed reactors for biological methanation of hydrogen and carbon dioxide, experiments were carried out in a continuously operated experimental plant with three identical reactors. The pressure increase promises a longer residence time and improved mass transfer of H 2 due to higher gas partial pressures. The study covers effects of different pressures on important parameters like gas hourly space velocity, methane formation rate, conversion rates and product gas quality. The methane content of 64.13±3.81vol-% at 1.5bar could be increased up to 86.51±0.49vol-% by raising the pressure to 9bar. Methane formation rates of up to 4.28±0.26m 3 m -3 d -1 were achieved. Thus, pressure increase could significantly improve reactor performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The origin of methane and biomolecules from a CO2 cycle on terrestrial planets

    Science.gov (United States)

    Civiš, Svatopluk; Knížek, Antonín; Ivanek, Ondřej; Kubelík, Petr; Zukalová, Markéta; Kavan, Ladislav; Ferus, Martin

    2017-10-01

    Understanding the chemical evolution of newly formed terrestrial planets involves uncertainties in atmospheric chemical composition and assessing the plausibility of biomolecule synthesis. In this study, an original scenario for the origin of methane on Mars and terrestrial planets is suggested. Carbon dioxide in Martian and other planetary atmospheres can be abiotically converted into a mixture of methane and carbon monoxide by `methanogenesis' on porous mineral photoactive surfaces under soft ultraviolet irradiation. On young planets exposed to heavy bombardment by interplanetary matter, this process can be followed by biomolecule synthesis through the reprocessing of reactive reducing atmospheres by impact-induced shock waves. The proposed mechanism of methanogenesis may help to answer the question concerning the formation of methane and carbon monoxide by photochemical processes, the formation of biomolecules on early Earth and other terrestrial planets, and the source and seasonal variation of methane concentrations on Mars.

  19. Experimental investigation on TBAB clathrate hydrate slurry flows in a horizontal tube: Forced convective heat transfer behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Wenji, Song [Guangzhou Institute of Energy Conversion, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Rui, Xiao; Chong, Huang; Shihui, He; Kaijun, Dong; Ziping, Feng [Guangzhou Institute of Energy Conversion, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China)

    2009-11-15

    Tetra-n-butyl-ammonium bromide (TBAB) clathrate hydrate slurry (CHS) is one kind of secondary refrigerants, which is promising to be applied into air-conditioning or latent-heat transportation systems as a thermal storage or cold carrying medium for energy saving. It is a solid-liquid two phase mixture which is easy to produce and has high latent heat and good fluidity. In this paper, the heat transfer characteristics of TBAB slurry were investigated in a horizontal stainless steel tube under different solid mass fractions and flow velocities with constant heat flux. One velocity region of weakened heat transfer was found. Moreover, TBAB CHS was treated as a kind of Bingham fluids, and the influences of the solid particles, flow velocity and types of flow on the forced convective heat transfer coefficients of TBAB CHS were investigated. At last, criterial correlations of Nusselt number for laminar and turbulent flows in the form of power function were summarized, and the error with experimental results was within {+-}20%. (author)

  20. Free NH3 quantum rotations in Hofmann clathrates: structure factors and line widths studied by inelastic neutron scattering

    International Nuclear Information System (INIS)

    Sobolev, O.; Vorderwisch, P.; Desmedt, A.

    2005-01-01

    Quantum rotations of NH 3 groups in Hofmann clathrates Ni-Ni-C 6 H 6 and Ni-Ni-C 12 H 10 have been studied using inelastic neutron scattering. Calculations of the dynamical structure factor for a free uniaxial quantum rotor reproduce the neutron scattering data with respect to their Q- and T-dependence as well as the relative intensities for the 0 → 1, 0 → 2 and 1 → 2 transitions. Though the effective NH 3 rotation constant is different from the gas phase value, the effective radius of rotation (i.e., the average distance of protons from the rotation axis) is equal or very close to the geometrical value r = 0.94 A for a NH 3 group. Comparing the experimental data with the calculated dynamical structure factor for the 0 → 3 transition it could be shown, that the corresponding transition line, in contrast to transitions between j = 0,1,2 levels measured so far, has a finite width at T = 0 K

  1. NMR and computational study of Ba{sub 8}Cu{sub x}Ge{sub 46-x} clathrate semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Han, E-mail: jhchen@tamu.edu; Sirusi Arvij, Ali; Zheng, Xiang; Rodriguez, Sergio Y.; Ross, Joseph H.

    2014-04-01

    Highlights: • Quadrupole NMR with first-principles calculations probes local site preferences. • Cu/Ge ratio is clarified vs. the ideal Zintl composition. • Modified Becke–Johnson exchange potential agrees well with NMR Knight shifts. - Abstract: Ba{sub 8}Cu{sub x}Ge{sub 46-x} is a type-I clathrate material that forms as a semiconductor in a narrow composition range corresponding to the electron-balanced Zintl composition, with x = 5.3. We use NMR spectroscopy combined with ab initio electronic structure calculations to probe the electronic and structural behavior of these materials. Computational results based on a superstructure model for the atomic configuration of the alloy provide good agreement with the electric quadrupole-broadened NMR lineshapes. Modeling using the modified Becke–Johnson (TB-mBJ) exchange potential is also shown to agree well with experimental NMR Knight shifts. The results indicate that the Cu–Ge balance is the main factor determining the carrier density, within a narrow stability range near the ideal Zintl composition.

  2. High-pressure studies on a new superconducting clathrate: Ba sub 6 Ge sub 2 sub 5

    CERN Document Server

    Yuan, H Q; Carrillo-Cabrera, W; Paschen, S; Sparn, G; Baenitz, M; Grin, Y; Steglich, F

    2002-01-01

    The effect of pressure on the low-temperature states of the newly discovered clathrate Ba sub 6 Ge sub 2 sub 5 is investigated by means of measurements of the electrical resistivity. At ambient pressure, Ba sub 6 Ge sub 2 sub 5 undergoes a two-step structural phase transition between 230 and 180 K from metallic behaviour to a high-resistivity state characterized by a mean free path of about 3 A. Interestingly, a Bardeen-Cooper-Schrieffer-like (BCS-like) superconducting transition occurs at T sub C approx 0.24 K from the resulting 'bad metal'. With increasing pressure, the structural phase transition is depressed but T sub C increases drastically. T sub C reaches a maximum value of 3.85 K at the critical pressure p sub C approx 2.8 GPa, where the structural distortion is completely suppressed and the system exhibits metallic behaviour. Higher pressures lead to a slight decrease of T sub C.

  3. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy

    Science.gov (United States)

    Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin

    2013-01-01

    Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985

  4. Methane as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Karlsdottir, S.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Methane is a key component in the atmosphere where its concentration has increased rapidly since pre-industrial time. About 2/3 of it is caused by human activities. Changes in methane will affect the concentrations of other gases, and a model is a very important tool to study sensitivity due to changes in concentration of gases. The author used a three-dimensional global chemistry transport model to study the effect of changes in methane concentration on other trace gases. The model includes natural and anthropogenic emissions of NOx, CO, CH{sub 4} and non-methane hydrocarbons. Wet and dry deposition are also included. The chemical scheme in the model includes 49 compounds, 101 reactions, and 16 photolytic reactions. The trace gas concentrations are calculated every 30 min, using a quasi steady state approximation. Model calculations of three cases are reported and compared. Enhanced methane concentration will have strongest effect in remote regions. In polluted areas local chemistry will have remarked effect. The feedback was always positive. Average atmospheric lifetime calculated in the model was 7.6 years, which agrees with recent estimates based on observations. 8 refs.

  5. Dissolved methane in New York groundwater, 1999-2011

    Science.gov (United States)

    Kappel, William M.; Nystrom, Elizabeth A.

    2012-01-01

    New York State is underlain by numerous bedrock formations of Cambrian to Devonian age that produce natural gas and to a lesser extent oil. The first commercial gas well in the United States was dug in the early 1820s in Fredonia, south of Buffalo, New York, and produced methane from Devonian-age black shale. Methane naturally discharges to the land surface at some locations in New York. At Chestnut Ridge County Park in Erie County, just south of Buffalo, N.Y., several surface seeps of natural gas occur from Devonian black shale, including one behind a waterfall. Methane occurs locally in the groundwater of New York; as a result, it may be present in drinking-water wells, in the water produced from those wells, and in the associated water-supply systems (Eltschlager and others, 2001). The natural gas in low-permeability bedrock formations has not been accessible by traditional extraction techniques, which have been used to tap more permeable sandstone and carbonate bedrock reservoirs. However, newly developed techniques involving horizontal drilling and high-volume hydraulic fracturing have made it possible to extract previously inaccessible natural gas from low-permeability bedrock such as the Marcellus and Utica Shales. The use of hydraulic fracturing to release natural gas from these shale formations has raised concerns with water-well owners and water-resource managers across the Marcellus and Utica Shale region (West Virginia, Pennsylvania, New York and parts of several other adjoining States). Molofsky and others (2011) documented the widespread natural occurrence of methane in drinking-water wells in Susquehanna County, Pennsylvania. In the same county, Osborn and others (2011) identified elevated methane concentrations in selected drinking-water wells in the vicinity of Marcellus gas-development activities, although pre-development samples were not available for comparison. In order to manage water resources in areas of gas-well drilling and hydraulic

  6. Chemical trends of the band gaps of idealized crystal of semiconducting silicon clathrates, M8Si38A8 (M = Na, K, Rb, Cs; A = Ga, Al, In), predicted by first-principle pseudopotential calculations

    International Nuclear Information System (INIS)

    Imai, Yoji; Imai, Motoharu

    2011-01-01

    Research highlights: → This paper reports the results of electronic structural calculations of Si clathrate, M 8 Si 38 Ga 8 (M: the encapsulated guest alkali atom; Na, K, Rb, and Cs). → All of them are found to be indirect semiconductors with the calculated gaps (E g ) from 0.45 to 0.89 eV, which should be compared to the calculated gap of 0.65 eV of crystalline Si with the diamond structure. The gaps become wider with the promotion to the heavier guest alkali atoms and the reasons of gap widening are discussed using the calculated dependence of E g on the cell-volume of guest-free silicon clathrate (Si 46 ). Effect of the substitutional elements in the clathrate framework (Al and In in place of Ga) was also discussed. - Abstract: We have calculated the band structures of Si clathrate, M 8 Si 38 Ga 8 (M = Na, K, Rb, and Cs), using the density-functional theory under the generalized gradient corrected local density approximation, where M is the encapsulated guest alkali atom. They are found to be indirect semiconductors with the calculated gaps (E g ) from 0.45 to 0.89 eV, which should be compared to the calculated gap of 0.65 eV of crystalline Si with the diamond structure. The gaps become wider with the promotion to the heavier guest alkali atoms and the reasons of gap widening are discussed using the calculated dependence of E g on the cell-volume of guest-free silicon clathrate (Si 46 ). Effect of the substitutional elements in the clathrate framework (Al and In in place of Ga) was also discussed.

  7. Biogenic Methane Generation Potential in the Eastern Nankai Trough, Japan: Effect of Reaction Temperature and Total Organic Carbon

    Science.gov (United States)

    Aung, T. T.; Fujii, T.; Amo, M.; Suzuki, K.

    2017-12-01

    Understanding potential of methane flux from the Pleistocene fore-arc basin filled turbiditic sedimentary formation along the eastern Nankai Trough is important in the quantitative assessment of gas hydrate resources. We considered generated methane could exist in sedimentary basin in the forms of three major components, and those are methane in methane hydrate, free gas and methane dissolved in water. Generation of biomethane strongly depends on microbe activity and microbes in turn survive in diverse range of temperature, salinity and pH. This study aims to understand effect of reaction temperature and total organic carbon on generation of biomethane and its components. Biomarker analysis and cultural experiment results of the core samples from the eastern Nankai Trough reveal that methane generation rate gets peak at various temperature ranging12.5°to 35°. Simulation study of biomethane generation was made using commercial basin scale simulator, PetroMod, with different reaction temperature and total organic carbon to predict how these effect on generation of biomethane. Reaction model is set by Gaussian distribution with constant hydrogen index and standard deviation of 1. Series of simulation cases with peak reaction temperature ranging 12.5°to 35° and total organic carbon of 0.6% to 3% were conducted and analyzed. Simulation results show that linear decrease in generation potential while increasing reaction temperature. But decreasing amount becomes larger in the model with higher total organic carbon. At higher reaction temperatures, >30°, extremely low generation potential was found. This is due to the fact that the source formation modeled is less than 1 km in thickness and most of formation do not reach temperature more than 30°. In terms of the components, methane in methane hydrate and free methane increase with increasing TOC. Drastic increase in free methane was observed in the model with 3% of TOC. Methane amount dissolved in water shows almost

  8. Methane layering in bord and pillar workings.

    CSIR Research Space (South Africa)

    Creedy, DP

    1997-08-01

    Full Text Available This report reviews the state of knowledge on the occurrence, investigation, detection, monitoring, prevention and dispensation of methane layers in coal mines. Mining practice throughout the world in respect of methane layering is generally reliant...

  9. IPNS grooved, solid methane moderator

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Schulke, A.W.; Scott, T.L.; Wozniak, D.G.; Benson, B.E.; Leyda, B.D.

    1985-01-01

    There are two motives for using cold moderators in pulsed neutron sources, to provide higher fluxes of long-wavelength neutrons, and to extend the epithermal range with its short pulse structure to lower energies. For both these purposes solid methane, operated at the lowest possible temperatures, is the best material we know of. Two problems accompany the use of solid methane in high power sources, namely heat transport in view of the low thermal conductivity of solid methane, and deterioration due to radiation damage. We have designed a system suitable to operate in IPNS, subject to nuclear heating of about 25 W, which incorporates an aluminum foam matrix to conduct the heat from within the moderator. We report the results of the first few months' operation and of a few tests that we have performed

  10. METHANE INCORPORATION BY PROCARYOTIC PHOTOSYNTHETICMICROORGANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Charles J.; Kirk, Martha; Calvin, Melvin

    1970-08-01

    The procaryotic photosynthetic microorganisms Anacystis nidulans, Nostoc and Rhodospirillum rubrum have cell walls and membranes that are resistant to the solution of methane in their lipid components and intracellular fluids. But Anacystis nidulans, possesses a limited bioxidant system, a portion of which may be extracellularly secreted, which rapidly oxidizes methane to carbon dioxide. Small C{sup 14} activities derived from CH{sub 4} in excess of experimental error are detected in all the major biochemical fractions of Anacystis nidulans and Nostoc. This limited capacity to metabolize methane appears to be a vestigial potentiality that originated over two billion years ago in the early evolution of photosynthetic bacteria and blue-green algae.

  11. Uncertainty assessment of the breath methane concentration method to determine methane production of dairy cows

    NARCIS (Netherlands)

    Wu, Liansun; Groot Koerkamp, Peter W.G.; Ogink, Nico

    2018-01-01

    The breath methane concentration method uses the methane concentrations in the cow's breath during feed bin visits as a proxy for the methane production rate. The objective of this study was to assess the uncertainty of a breath methane concentration method in a feeder and its capability to measure

  12. Handbook methane potential; Handbok metanpotential

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My (AnoxKaldnes AB (Sweden)); Schnurer, Anna (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden))

    2011-07-15

    Before using a organic material for biogas production it is essential to evaluate the methane production potential. The methane potential is one important tool possible to use during planning of new plants but also when new materials are considered for already running biogas plants. The chemical composition of different organic material varies extensively and this will have an impact on both the degradability and the methane potential. Information about the methane potential of a specific material can sometimes be found in the literature or can be calculated after a chemical/ physical or biological characterization. Here, the BMP test (Biochemical Methane Potential) is a commonly used method. Today the BMP test is a commonly used method to determine the methane potential. Many national and international research groups, consultants as well as personal at biogas plants are using this method and there is a lot of data available in the literature from such tests. In addition there are several protocols giving guidelines on how to execute a BMP-test. The BMP-test is performed in many different ways, not always under optimized conditions, and there is a lack of information on how to interpret the obtained data. This report summarizes knowledge from the literature and the experience from a Swedish referee group, consisting of persons being active performers of BMP-tests. The report does not include a standardized protocol as the procedure can be performed in different ways depending on available equipment and on the type of material to be tested. Instead the report discusses different factors of great importance for a successful test giving reliable results. The report also summarizes important information concerning the interpretation and how to present results in order to allow comparison of data from different test.

  13. Methane-fueled vehicles: A promising market for coalbed methane

    International Nuclear Information System (INIS)

    Deul, M.

    1993-01-01

    The most acceptable alternative fuel for motor vehicles is compressed natural gas (CNG). An important potential source of such gas is coalbed methane, much of which is now being wasted. Although there are no technological impediments to the use of CNG it has not been adequately promoted for a variety of reasons: structural, institutional and for coalbed gas, legal. The benefits of using CNG fuel are manifold: clean burning, low cost, abundant, and usable in any internal combustion engine. Even though more than 30,000 CNG vehicles are now in use in the U.S.A., they are not readily available, fueling stations are not easily accessible, and there is general apathy on the part of the public because of negligence by such agencies as the Department of Energy, the Department of Transportation and the Environmental Protection Agency. The economic benefits of using methane are significant: 100,000 cubic feet of methane is equivalent to 800 gallons of gasoline. Considering the many millions of cubic feet methane wasted from coal mines conservation and use of this resource is a worthy national goal

  14. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in

  15. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  16. 46 CFR 154.703 - Methane (LNG).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methane (LNG). 154.703 Section 154.703 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG) can...

  17. Methane emission reduction: an application of FUND

    NARCIS (Netherlands)

    Tol, R.S.J.; Heintz, R.J.; Lammers, P.E.M.

    2003-01-01

    Methane is, after carbon dioxide, the most important anthropogenic greenhouse gas. Governments plan to abate methane emissions. A crude set of estimates of reduction costs is included in FUND, an integrated assessment model of climate change. In a cost-benefit analysis, methane emission reduction is

  18. Pressure-induced amorphization and collapse of magnetic order in the type-I clathrate Eu8Ga16Ge30

    Science.gov (United States)

    Mardegan, J. R. L.; Fabbris, G.; Veiga, L. S. I.; Adriano, C.; Avila, M. A.; Haskel, D.; Giles, C.

    2013-10-01

    We investigate the low temperature structural and electronic properties of the type-I clathrate Eu8Ga16Ge30 under pressure using x-ray powder diffraction (XRD), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD) techniques. The XRD measurements reveal a transition to an amorphous phase above 18 GPa. Unlike previous reports on other clathrate compounds, no volume collapse is observed prior to the crystalline-amorphous phase transition which takes place when the unit cell volume is reduced to 81% of its ambient pressure value. Fits of the pressure-dependent relative volume to a Murnaghan equation of state yield a bulk modulus B0=65±3 GPa and a pressure derivative B0'=3.3±0.5. The Eu L2-edge XMCD data shows quenching of the magnetic order at a pressure coincident with the crystalline-amorphous phase transition. This information along with the persistence of an Eu2+ valence state observed in the XANES spectra up to the highest pressure point (22 GPa) indicates that the suppression of XMCD intensity is due to the loss of long range magnetic order. When compared with other clathrates, the results point to the importance of guest ion-cage interactions in determining the mechanical stability of the framework structure and the critical pressure for amorphization. Finally, the crystalline structure is not found to recover after pressure release, resulting in an amorphous material that is at least metastable at ambient pressure and temperature.

  19. The distribution of methane in groundwater in Alberta (Canada) and associated aqueous geochemistry conditions

    Science.gov (United States)

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Millot, Romain; Kloppmann, Wolfram

    2016-04-01

    Development of unconventional energy resources such as shale gas and coalbed methane has generated some public concern with regard to the protection of groundwater and surface water resources from leakage of stray gas from the deep subsurface. In terms of environmental impact to and risk assessment of shallow groundwater resources, the ultimate challenge is to distinguish: (a) natural in-situ production of biogenic methane, (b) biogenic or thermogenic methane migration into shallow aquifers due to natural causes, and (c) thermogenic methane migration from deep sources due to human activities associated with the exploitation of conventional or unconventional oil and gas resources. We have conducted a NSERC-ANR co-funded baseline study investigating the occurrence of methane in shallow groundwater of Alberta (Canada), a province with a long record of conventional and unconventional hydrocarbon exploration. Our objective was to assess the occurrence and sources of methane in shallow groundwaters and to also characterize the hydrochemical environment in which the methane was formed or transformed through redox processes. Ultimately our aim was to determine whether methane was formed in-situ or whether it migrated from deeper formations into shallow aquifers. Combining hydrochemical and dissolved and free geochemical gas data from 372 groundwater samples obtained from 186 monitoring wells of the provincial groundwater observation well network (GOWN) in Alberta, it was found that methane is ubiquitous in groundwater in Alberta and is predominantly of biogenic origin. The highest concentrations of dissolved biogenic methane (> 0.01 mM or > 0.2 mg/L), characterized by δ13CCH4 values deep thermogenic gas that had migrated in significant amounts into shallow aquifers either naturally or via anthropogenically induced pathways. This study shows that the combined interpretation of aqueous geochemistry data in concert with the chemical and isotopic composition of dissolved and

  20. Kinetic studies of methane-ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy.

    Science.gov (United States)

    Murshed, M Mangir; Kuhs, Werner F

    2009-04-16

    In situ formations of CH(4)-C(2)H(6) mixed gas hydrates were made using high flux neutron diffraction at 270 K and 5 MPa. For this purpose, a feed gas composition of CH(4) and C(2)H(6) (95 mol% CH(4)) was employed. The rates of transformation of spherical grains of deuterated ice Ih into hydrates were measured by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. Phase fractions of the crystalline constituents were obtained from Rietveld refinements. A concomitant formation of structure type I (sI) and structure type II (sII) hydrates were observed soon after the gas pressure was applied. The initial fast formation of sII hydrate reached its maximum volume and started declining very slowly. The formation of sI hydrate followed a sigmoid growth kinetics that slowed down due to diffusion limitation. This observation has been interpreted in terms of a kinetically favored nucleation of the sII hydrate along with a slow transformation into sI. Both powder diffraction and Raman spectroscopic results suggest that a C(2)H(6)-rich sII hydrate was formed at the early part of the clathration, which slowly decreased to approximately 3% after a reaction of 158 days as confirmed by synchrotron XRD. The final persistence of a small portion of sII hydrate points to a miscibility gap between CH(4)-rich sI and C(2)H(6)-rich sII hydrates.

  1. Manufacture of Methane Hydrate using Carbon Nano Tubes

    International Nuclear Information System (INIS)

    Park, Sung Seek

    2010-02-01

    Methane hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. More than 99% of naturally produced methane hydrate consists of methane, and is widely dispersed in the continental slope and continental Shelf of the Pacific and the Atlantic, the Antarctica etc. The reserve of fossil fuel is 500 billion carbon ton and the reserve of methane is 360 million carbon ton. The reserve of gas hydrate is more than 1 trillion carbon ton, which is twice the fossil fuel. Therefore, natural gas hydrate as a kind of gas hydrate is expected to replace fossil fuel as new energy source of 21st century. Also 1 m 3 hydrate of pure methane can be decomposed to the maximum of 216 m 3 methane at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18∼25% less than the liquefied transportation. However, when natural gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and increases gas consumption by adding MWCNT and NaCl into pure water. The results show that the equilibrium pressure in seawater is more higher than that in pure water, and methane hydrate could be formed rapidly during pressurization if the subcooling is maintained at 9K or above in seawater and 8K or above in pure water, respectively. Also, amount of consumed gas volume in pure water is more higher that in seawater at the same experimental conditions

  2. Methane-induced Activation Mechanism of Fused Ferric Oxide-Alumina Catalysts during Methane Decomposition

    KAUST Repository

    Reddy Enakonda, Linga

    2016-06-27

    Activation of Fe2O3-Al2O3 with CH4 (instead of H2) is a meaningful method to achieve catalytic methane decomposition (CMD). This reaction of CMD is more economic and simple against commercial methane steam reforming (MSR) as it produces COx-free H2. In this study, for the first time, structure changes of the catalyst were screened during CH4 reduction with time on stream. The aim was to optimize the pretreatment conditions through understanding the activation mechanism. Based on results from various characterization techniques, reduction of Fe2O3 by CH4 proceeds in three steps: Fe2O3→Fe3O4→FeO→Fe0. Once Fe0 is formed, it decomposes CH4 with formation of Fe3C, which is the crucial initiation step in the CMD process to initiate formation of multiwall carbon nanotubes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  4. Methane from benzene in argon dielectric barrier discharge

    International Nuclear Information System (INIS)

    Das, Tomi Nath; Dey, G.R.

    2013-01-01

    Highlights: ► Efficient on-line conversion of benzene to methane at room temperature. ► Absence of other H-atom donor suggests new type of chemistry. ► For parent loss > 90%, methane yield was ∼40% of limit due to H-atom availability. ► Surface moisture contributed ·OH radical for trace phenolic products’ formation. ► This method may emerge as an exploitable tactic for pollutants’ usable alterations. -- Abstract: A first-time account of direct, on-line, instantaneous and efficient chemical conversion of gas phase benzene to methane in argon Dielectric Barrier Discharge (DBD) is presented. In the absence of another overt hydrogen-donating source, potency of analogous parents toward methane generation is found to follow the order: benzene > toluene > p-xylene. Simultaneous production of trace amounts of phenolic surface deposits suggest (a) prompt decomposition of the parent molecules, including a large fraction yielding atomic transients (H-atom), (b) continuous and appropriate recombination of such parts, and (c) trace moisture in parent contributing ·OH radicals and additional H-atoms, which suitably react with the unreacted fraction of the parent, and also other intermediates. Results highlight Ar DBD to be a simple and exploitable technology for transforming undesirable hazardous aromatics to usable/useful low molecular weight open-chain products following the principles of green chemistry and engineering

  5. Cryptic Methane Emissions from Upland Forest Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Megonigal, Patrick [Smithsonian Institution, Washington, DC (United States); Pitz, Scott [Johns Hopkins Univ., Baltimore, MD (United States); Smithsonian Institution, Washington, DC (United States)

    2016-04-19

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) develop the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.

  6. Methane generation from waste materials

    Science.gov (United States)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  7. Methane Dynamics in Flooded Lands

    Science.gov (United States)

    Methane (CH4) is the second most important anthropogenic greenhouse gas with a heat trapping capacity 34 times greater than that of carbon dioxide on a100 year time scale. Known anthropogenic CH4 sources include livestock production, rice agriculture, landfills, and natural gas m...

  8. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  9. Desaturation reactions catalyzed by soluble methane monooxygenase.

    Science.gov (United States)

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  10. Crystallization of tetra-n-butyl ammonium bromide clathrate hydrate slurry and the related heat transfer characteristics

    International Nuclear Information System (INIS)

    Shi, X.J.; Zhang, P.

    2014-01-01

    Highlights: • Crystallization characteristics of TBAB CHS under different thermal conditions were clarified. • Overall heat transfer coefficients before and during the crystallization were obtained. • The crystallization characteristics of TBAB CHS mainly depend on the status of supercooled solution. • Dropping of TBAB CHS can accelerate the supercooling release and crystallization. - Abstract: Tetra-n-butyl ammonium bromide (TBAB) clathrate hydrate slurry (CHS) is a promising phase change material slurry for cold storage and transport in air-conditioning system. This slurry can be generated from the supercooled TBAB aqueous solution. In the present study, TBAB CHS was generated under different thermal conditions, i.e. different initial mass concentrations of TBAB aqueous solution and different supercooling degrees. The crystallization of TBAB CHS and the overall heat transfer coefficient under different thermal conditions were clarified. It was concluded that the crystallization characteristics of TBAB hydrate crystals mainly depended upon the thermal condition of the supercooled TBAB aqueous solution. In addition, the dropping of pre-produced TBAB CHS into supercooled TBAB aqueous solution could immediately induce the crystallization of TBAB hydrate crystals, and the initial type of TBAB hydrate crystals was only related to the status of the supercooled TBAB aqueous solution regardless of the type of the dropped TBAB CHS. Furthermore, the overall heat transfer coefficients before crystallization and during crystallization were also measured. It was found that more hydrate crystals would adhere to the vessel wall at larger supercooling degree and higher mass concentration of aqueous solution, which would deteriorate the heat transfer significantly. Moreover, images of TBAB hydrate crystals under different thermal conditions were recorded in order to help clarifying the crystallization characteristics

  11. Origin of methane and sources of high concentrations in Los Angeles groundwater

    Science.gov (United States)

    Kulongoski, Justin; McMahon, Peter B.; Land, Michael; Wright, Michael; Johnson, Theodore; Landon, Matthew K.

    2018-01-01

    In 2014, samples from 37 monitoring wells at 17 locations, within or near oil fields, and one site >5 km from oil fields, in the Los Angeles Basin, California, were analyzed for dissolved hydrocarbon gas isotopes and abundances. The wells sample a variety of depths of an aquifer system composed of unconsolidated and semiconsolidated sediments under various conditions of confinement. Concentrations of methane in groundwater samples ranged from 0.002 to 150 mg/L—some of the highest concentrations reported in a densely populated urban area. The δ13C and δ2H of the methane ranged from −80.8 to −45.5 per mil (‰) and −249.8 to −134.9‰, respectively, and, along with oxidation‐reduction processes, helped to identify the origin of methane as microbial methanogenesis and CO2 reduction as its main formation pathway. The distribution of methane concentrations and isotopes is consistent with the high concentrations of methane in Los Angeles Basin groundwater originating from relatively shallow microbial production in anoxic or suboxic conditions. Source of the methane is the aquifer sediments rather than the upward migration or leakage of thermogenic methane associated with oil fields in the basin.

  12. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Methane in German hard coal mining

    International Nuclear Information System (INIS)

    Martens, P.N.; Den Drijver, J.

    1995-01-01

    Worldwide, hard coal mining is being carried out at ever increasing depth, and has, therefore, to cope with correspondingly increasing methane emissions are caused by coal mining. Beside carbon dioxide, chloro-fluoro-carbons (CFCs) and nitrogen oxides, methane is one of the most significant 'greenhouse' gases. It is mainly through the release of such trace gases that the greenhouse effect is brought about. Reducing methane emissions is therefore an important problem to be solved by the coal mining industry. This paper begins by highlighting some of the fundamental principles of methane in hard coal mining. The methane problem in German hard coal mining and the industry's efforts to reduce methane emissions are presented. The future development in German hard coal mining is illustrated by an example which shows how large methane volumes can be managed, while still maintaining high outputs at increasing depth. (author). 7 tabs., 10 figs., 20 refs

  14. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  15. Response of the Black Sea methane budget to massive short-term submarine inputs of methane

    DEFF Research Database (Denmark)

    Schmale, O.; Haeckel, M.; McGinnis, D. F.

    2011-01-01

    A steady state box model was developed to estimate the methane input into the Black Sea water column at various water depths. Our model results reveal a total input of methane of 4.7 Tg yr(-1). The model predicts that the input of methane is largest at water depths between 600 and 700 m (7......% of the total input), suggesting that the dissociation of methane gas hydrates at water depths equivalent to their upper stability limit may represent an important source of methane into the water column. In addition we discuss the effects of massive short-term methane inputs (e. g. through eruptions of deep......-water mud volcanoes or submarine landslides at intermediate water depths) on the water column methane distribution and the resulting methane emission to the atmosphere. Our non-steady state simulations predict that these inputs will be effectively buffered by intense microbial methane consumption...

  16. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Temperature dependence of bioelectrochemical CO2 conversion and methane production with a mixed-culture biocathode.

    Science.gov (United States)

    Yang, Hou-Yun; Bao, Bai-Ling; Liu, Jing; Qin, Yuan; Wang, Yi-Ran; Su, Kui-Zu; Han, Jun-Cheng; Mu, Yang

    2018-02-01

    This study evaluated the effect of temperature on methane production by CO 2 reduction during microbial electrosynthesis (MES) with a mixed-culture biocathode. Reactor performance, in terms of the amount and rate of methane production, current density, and coulombic efficiency, was compared at different temperatures. The microbial properties of the biocathode at each temperature were also analyzed by 16S rRNA gene sequencing. The results showed that the optimum temperature for methane production from CO 2 reduction in MES with a mixed-culture cathode was 50°C, with the highest amount and rate of methane production of 2.06±0.13mmol and 0.094±0.01mmolh -1 , respectively. In the mixed-culture biocathode MES, the coulombic efficiency of methane formation was within a range of 19.15±2.31% to 73.94±2.18% due to by-product formation at the cathode, including volatile fatty acids and hydrogen. Microbial analysis demonstrated that temperature had an impact on the diversity of microbial communities in the biofilm that formed on the MES cathode. Specifically, the hydrogenotrophic methanogen Methanobacterium became the predominant archaea for methane production from CO 2 reduction, while the abundance of the aceticlastic methanogen Methanosaeta decreased with increased temperature. Copyright © 2017. Published by Elsevier B.V.

  18. First experience with the new solid methane moderator at the IBR-2 reactor

    International Nuclear Information System (INIS)

    Beliakov, A.A.; Shabalin, E.P.; Tretyakov, I.T.

    2001-01-01

    In the 1999 Fall the solid methane moderator (CM) has been installed and tested at full power at the IBR-2 pulsed reactor. Its main features are a beryllium reflector and a light water premoderator. Radiation load on the methane was three times as much as that of IPNS facility, namely, 0.1 W/g. Effects of temperature, operation time, concentration of a hydrogen scavenger, and annealing procedure on both neutron and service performances were studied. Maximum operation time of a newly loaded portion of methane was 4 days. In this time around 30% of methane is transformed into hydrogen, ethane, and high molecular hydrocarbons, and yet no deterioration in cold neutron intensity was detected. Among new knowledge, the most important are two facts observed: two-fold decrease in hydrogen formation rate when methane is poisoned with 2.5% to 5% of ethylene, and low formation rate of solid, inremovable products of radiolysis - (1.5/3)10 -7 g/J, which means that after 10 years of operation the methane chamber will be filled with only 100 g of residue. Gain of factor 20 in cold neutron flux was obtained as compared to the routine grooved light water moderator. Presently, it is the highest among the intense pulsed neutron sources. (author)

  19. Turbulent burning rates of methane and methane-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  20. Lithium-ion induced conformational change of 5,17-bis(9-fluorenyl)-25,26,27,28-tetrapropoxy calix[4]arene resulting in an egg-shaped dimeric clathrate

    DEFF Research Database (Denmark)

    Faldt, A.; Krebs, Frederik C; Jørgensen, Mikkel

    2000-01-01

    Synthesis and structural investigation of a 5,17-bis(9-fluorenyl)-25,26,27,28-tetrapropoxy calix[4]arene and its lithium complex salt that forms a dimeric clathrate with a molecule of solvent inside a cavity. At least three different interactions were identified as being responsible for the forma...

  1. Lattice Dynamics Study of Phonon Instability and Thermal Properties of Type-I Clathrate K₈Si46 under High Pressure.

    Science.gov (United States)

    Zhang, Wei; Zeng, Zhao Yi; Ge, Ni Na; Li, Zhi Guo

    2016-07-25

    For a further understanding of the phase transitions mechanism in type-I silicon clathrates K₈Si 46 , ab initio self-consistent electronic calculations combined with linear-response method have been performed to investigate the vibrational properties of alkali metal K atoms encapsulated type-I silicon-clathrate under pressure within the framework of density functional perturbation theory. Our lattice dynamics simulation results showed that the pressure induced phase transition of K₈Si 46 was believed to be driven by the phonon instability of the calthrate lattice. Analysis of the evolution of the partial phonon density of state with pressure, a legible dynamic picture for both guest K atoms and host lattice, was given. In addition, based on phonon calculations and combined with quasi-harmonic approximation, the specific heat of K₈Si 46 was derived, which agreed very well with experimental results. Also, other important thermal properties including the thermal expansion coefficients and Grüneisen parameters of K₈Si 46 under different temperature and pressure were also predicted.

  2. Lattice Dynamics Study of Phonon Instability and Thermal Properties of Type-I Clathrate K8Si46 under High Pressure

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-07-01

    Full Text Available For a further understanding of the phase transitions mechanism in type-I silicon clathrates K8Si46, ab initio self-consistent electronic calculations combined with linear-response method have been performed to investigate the vibrational properties of alkali metal K atoms encapsulated type-I silicon-clathrate under pressure within the framework of density functional perturbation theory. Our lattice dynamics simulation results showed that the pressure induced phase transition of K8Si46 was believed to be driven by the phonon instability of the calthrate lattice. Analysis of the evolution of the partial phonon density of state with pressure, a legible dynamic picture for both guest K atoms and host lattice, was given. In addition, based on phonon calculations and combined with quasi-harmonic approximation, the specific heat of K8Si46 was derived, which agreed very well with experimental results. Also, other important thermal properties including the thermal expansion coefficients and Grüneisen parameters of K8Si46 under different temperature and pressure were also predicted.

  3. Synthesis and Characterization of Novel Copper(II 2D Coordination Polymers from a Fluorinated Flexible Ligand with Remarkable Clathration Ability

    Directory of Open Access Journals (Sweden)

    Kayoko Kasai

    2011-11-01

    Full Text Available Two-dimensional (2D grid coordination polymers were prepared by the reaction of 1,4-bis(4-pyridylmethyltetrafluorobenzene (bpf with Cu(NO32 in the presence of aromatic compounds. Crystal structures of {[Cu(bpf2(NO32]·(biphenyl2}n (1, {[Cu(bpf2(NO32]·(m-C6H4(OMe22}n (2, {[Cu(bpf2(NO32]·PhtBu}n (3 and {[Cu(bpf2(NO3(H2O]NO3·(bpf0.5}n (4 were determined. The grid networks were held together by C–H···O and C–H···F hydrogen bonds via the NO3− anions and the tetrafluorophenylene rings of bpf, respectively. Biphenyl, m-dimethoxybenzene, t-butylbenzene, and bpf molecules were clathrated in cyclic cavities of the grid networks through arene-perfluoroarene interactions. These coordination networks have remarkable clathration ability for aromatic compounds.

  4. Methane: Fuel or Exhaust at the Emergence of Life?

    Science.gov (United States)

    Russell, Michael J; Nitschke, Wolfgang

    2017-10-01

    As many of the methanogens first encountered at hydrothermal vents were thermophilic to hyperthermophilic and comprised one of the lower roots of the evolutionary tree, it has been assumed that methanogenesis was one of the earliest, if not the earliest, pathway to life. It being well known that hydrothermal springs associated with serpentinization also bore abiotic methane, it had been further assumed that emergent biochemistry merely adopted and quickened this supposed serpentinization reaction. Yet, recent hydrothermal experiments simulating serpentinization have failed to generate methane so far, thus casting doubt on this assumption. The idea that the inverse view is worthy of debate, that is, that methanotrophy was the earlier, is stymied by the "fact" that methanotrophy itself has been termed "reverse methanogenesis," so allotting the methanogens the founding pedigree. Thus, attempting to suggest instead that methanogenesis might be termed reverse methanotrophy would require "unlearning"-a challenge to the subconscious! Here we re-examine the "impossibility" of methanotrophy predating methanogenesis as in what we have termed the "denitrifying methanotrophic acetogenic pathway." Advantages offered by such thinking are that methane would not only be a fuel but also a ready source of reduced carbon to combine with formate or carbon monoxide-available in hydrothermal fluids-to generate acetate, a target molecule of the first autotrophs. And the nitrate/nitrite required for the putative oxidation of methane with activated NO would also be a ready source of fixed nitrogen for amination reactions. Theoretical conditions for such a putative pathway would be met in a hydrothermal green rust-bearing exhalative pile and associated chimneys subject to proton and electron counter gradients. This hypothesis could be put to test in a high-pressure hydrothermal reaction chamber in which a cool carbonate/nitrate/nitrite-bearing early acidulous ocean simulant is juxtaposed

  5. Ozonization effects on trihalo methane formation during the disinfection of drinking water with chlorine; Efectos de la ozonizacion sobre la formacion de trihalometanos durante la desinfeccion final del agua potable con cloro

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Vidal, F. J.; Perez Serrano, A.; Orozco Barrentxea, C.; Sanllorente Santamaria, M. C.; Ibeas Reoyo, M. V.

    2001-07-01

    One of the main aspects in the control of drinking water treatment is the formation of disinfection by-products (DBP), some of the most important are the trihalomethanes (THM). The use of ozone as primary disinfectant in drinking water treatment plants reduces noticeably the amount of THM generated after the chlorination at the end of the treatment. The aim of this work is to study the main factors influencing the ozone effect in this process: the delay between the time of ozonization and chlorination, the applied ozone dose and the presence of bromide ion ind the raw water. These factors have been studied on natural waters (Uzquiza Reservoir-Burgos) and on synthetic waters (fulvic and humic acids extracted from the mentioned reservoir). (Author) 36 refs.

  6. Methane in the Northern West Siberian Basin. Generation, dynamics of the reservoirs and exchange with the atmosphere

    International Nuclear Information System (INIS)

    Cramer, B.

    1997-07-01

    Based on compositional data and isotope geochemistry natural gas in northern West Siberia can be divided into three groups. These are: natural gas in Jurassic rocks, natural gas in Neocomian rocks and natural gas from the Aptian to Cenomanian Pokur Formation. Natural gas in Jurassic rocks was generated thermogenically from rocks of the Jurassic Tyumen Formation. Natural gas in Neocomian rocks is also of thermogenic origin, possibly being generated from the organic matter of Lower Cretaceous sediments. The largest accumulation of natural gas occurs in sandstone reservoirs in the Pokur Formation. This gas can be described as a mixture between thermogenic gas from deeper strata and isotopically light almost pure methane. 98.6% of this gas consists of methane with an unusual isotope signature of -51.2 permille. It is not possible to explain the existence of this methane with established concepts of gas generation. A new model was developed to examine the possibility of a thermogenic origin of the isotopically light methane in early mature rocks of the Pokur Formation. Based on pyrolysis experiments and reaction kinetic calculations the model enables the simulation of stable carbon isotope ratios of hydrocarbon components in natural gas. The temperature dependent kinetic isotope fractionation is defined by a difference in the activation energies of 12 C-and 13 C-methane generation. The application of the new method to two coaly sandstones of the Pokur Formation results in a good correspondence between modelled carbon isotope ratios of δ 13 C values of methane in the reservoirs. The mass of methane thermogenically generated within the Pokur Formation under the gas field structures, however, is not sufficient to explain the mass of accumulated methane. (orig./SR) [de

  7. Photocatalytic conversion of methane to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  8. Microbial Formation of Ethane in Anoxic Estuarine Sediments

    OpenAIRE

    Oremland, Ronald S.

    1981-01-01

    Estuarine sediment slurries produced methane and traces of ethane when incubated under hydrogen. Formation of methane occurred over a broad temperature range with an optimum above 65°C. Ethane formation had a temperature optimum at 40°C. Formation of these two gases was inhibited by air, autoclaving, incubation at 4 and 80°C, and by the methanogenic inhibitor, 2-bromoethanesulfonic acid. Ethane production was stimulated by addition of ethylthioethanesulfonic acid, and production from ethylthi...

  9. Methane accumulation and forming high saturations of methane hydrate in sandy sediments

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T.; Waseda, A. [JAPEX Research Center, Chiba (Japan); Fujii, T. [Japan Oil, Gas and Metals National Corp., Chiba (Japan). Upstream Technology Unit

    2008-07-01

    Methane supplies for marine gas hydrates are commonly attributed to the microbial conversion of organic materials. This study hypothesized that methane supplies were related to pore water flow behaviours and microscopic migration in intergranular pore systems. Sedimentology and geochemistry analyses were performed on sandy core samples taken from the Nankai trough and the Mallik gas hydrate test site in the Mackenzie Delta. The aim of the study was to determine the influence of geologic and sedimentolic controls on the formation and preservation of natural gas hydrates. Grain size distribution curves indicated that gas hydrate saturations of up to 80 per cent in pore volume occurred throughout the hydrate-dominant sand layers in the Nankai trough and Mallik areas. Water permeability measurements showed that the highly gas hydrate-saturated sands have a permeability of a few millidarcies. Pore-space gas hydrates occurred primarily in fine and medium-grained sands. Core temperature depression, core observations, and laboratory analyses of the hydrates confirmed the pore-spaces as intergranular pore fillings. Results of the study suggested that concentrations of gas hydrates may require a pore space large enough to occur within a host sediments, and that the distribution of porous and coarser-grained sandy sediments is an important factor in controlling the occurrence of gas hydrates. 11 refs., 4 figs.

  10. Molecular storage of ozone in a clathrate hydrate: an attempt at preserving ozone at high concentrations.

    Directory of Open Access Journals (Sweden)

    Takahiro Nakajima

    Full Text Available This paper reports an experimental study of the formation of a mixed O(3+ O(2+ CO(2 hydrate and its frozen storage under atmospheric pressure, which aimed to establish a hydrate-based technology for preserving ozone (O(3, a chemically unstable substance, for various industrial, medical and consumer uses. By improving the experimental technique that we recently devised for forming an O(3+ O(2+ CO(2 hydrate, we succeeded in significantly increasing the fraction of ozone contained in the hydrate. For a hydrate formed at a system pressure of 3.0 MPa, the mass fraction of ozone was initially about 0.9%; and even after a 20-day storage at -25°C and atmospheric pressure, it was still about 0.6%. These results support the prospect of establishing an economical, safe, and easy-to-handle ozone-preservation technology of practical use.

  11. Intense methane ebullition from open water area of a shallow peatland lake on the eastern Tibetan Plateau.

    Science.gov (United States)

    Zhu, Dan; Wu, Yan; Chen, Huai; He, Yixin; Wu, Ning

    2016-01-15

    Methane fluxes from a shallow peatland lake (3450 m a.s.l., 1.6 km(2) in area, maximum depth peatlands to the lake. The shallowness of the water column could be another important favorable factor for methane-containing bubble formation in the sediment and their transportation to the atmosphere. The methane ebullition must have been enhanced by the low atmospheric pressure (ca. 672 hPa) in the high-altitude environment. For a better understanding on the mechanism of methane emission from alpine lakes, more lakes on the Tibetan Plateau should be studied in the future for their methane ebullition. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Fluid-bed methane proposed

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The first full scale plant for the production of methane from organic waste could be built in the next few years believes M.J. Nyns of the University of Louvain, Belgium, utilizing either expanded bed or fluidised bed systems, with more than one stage, in a continuous flow arrangement. Up to 8.0 m cubed gas/m cubed digester/day could be produced with residence times reduced to 34 hours.

  13. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Williams, A.; Mitchell, C.

    1993-01-01

    This paper outlines some of the problems associated with the prediction of levels of methane emission from underground and surface coal mines. Current knowledge of coal mining emissions sources is outlined. On the basis of this information the methodology proposed by the IPCC/OECD Programme on National Inventories is critically examined and alternatives considered. Finally, the technical options for emissions control are examined together with their feasibility. 8 refs., 6 figs., 2 tabs

  14. Microwave Hydrogen Production from Methane

    Science.gov (United States)

    2012-04-01

    combustion NOx control of reciprocating engine exhaust and fuel cell application of biogas . Our target is to obtain the methane conversion efficiency...demonstration of MW technology removing and destroying hydrogen sulfide (H2S) and siloxanes from biogas produced by Sacramento Regional Wastewater...running on biogas and is currently conducting the field demonstration of the unit at Tollenaar Dairy in Elk Grove, CA. SMUD, California Air Resources

  15. Evidence for methane in Martian meteorites.

    Science.gov (United States)

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L

    2015-06-16

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  16. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  17. Atmospheric modeling of Mars CH4 subsurface clathrates releases mimicking SAM and 2003 Earth-based detections

    Science.gov (United States)

    Pla-García, J.; Rafkin, S. C.

    2017-12-01

    The aim of this work is to establish the amount of mixing during all martian seasons to test whether CH4 releases inside or outside of Gale crater are consistent with MSL-SAM observations. Several modeling scenarios were configured, including instantaneous and steady releases, both inside and outside the crater. A simulation to mimic the 2003 Earth-based detections (Mumma et al. 2009 or M09) was also performed. In the instantaneous release inside Gale experiments, Ls270 was shown to be the faster mixing season when air within and outside the crater was well mixed: all tracer mass inside the crater is diluted after just 8 hours. The mixing of near surface crater air with the external environment in the rest of the year is potentially rapid but slower than Ls270.In the instantaneous release outside Gale (NW) experiment, in just 12 hours the CH4 that makes it to the MSL landing location is diluted by six orders of magnitude. The timescale of mixing in MRAMS experiments is on the order of 1 sol regardless of season. The duration of the CH4 peak observed by SAM is 100 sols. Therefore there is a steady release inside the crater, or there is a very large magnitude steady release outside the crater. In the steady release Gale experiments, CH4 flux rate from ground is 1.8 kg m-2 s-1 (derived from Gloesener et al. 2017 clathrates fluxes) and it is not predictive. In these experiments, 200 times lower CH4 values detected by SAM are modeled around MSL location. There are CH4 concentration variations of orders of magnitude depending on the hour, so timing of SAM measurements is important. With a larger (but further away) outside crater release area compared to inside, similar CH4 values around MSL are modeled, so distance to source is important. In the steady experiments mimicking M09 detection release area, only 12 times lower CH4 values detected by SAM are modeled around MSL. The highest value in the M09 modeled scenario (0.6 ppbv) is reached in Ls270. This value is the

  18. International Methane Partnership Fighting Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Due to the growth of international attention on the problem of climate change combined with the attractiveness of methane mitigation technologies, the capture and use of methane in agriculture, coal mines, landfills, and the oil and gas sector has increasingly become popular over the past few years. Highlighting this, several countries hosted the international 'Methane to Market' Partnership Conference and Exposition in October 2007 in Beijing, China.

  19. Ebullitive methane emissions from oxygenated wetland streams

    Science.gov (United States)

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  20. Evaluation of methane emissions from Taiwanese paddies

    International Nuclear Information System (INIS)

    Liu, C.-W.; Wu, C.-Y.

    2004-01-01

    The main greenhouse gases are carbon dioxide, methane and nitrous oxide. Methane is the most important because the warming effect of methane is 21 times greater than that of carbon dioxide. Methane emitted from rice paddy fields is a major source of atmospheric methane. In this work, a methane emission model (MEM), which integrates climate change, plant growth and degradation of soil organic matter, was applied to estimate the emission of methane from rice paddy fields in Taiwan. The estimated results indicate that much methane is emitted during the effective tillering and booting stages in the first crop season and during the transplanting stage in the second crop season in a year. Sensitivity analysis reveals that the temperature is the most important parameter that governs the methane emission rate. The order of the strengths of the effects of the other parameters is soil pH, soil water depth (SWD) and soil organic matter content. The masses of methane emitted from rice paddy fields of Taiwan in the first and second crop seasons are 28,507 and 350,231 tons, respectively. The amount of methane emitted during the second crop season is 12.5 times higher than that emitted in the first crop season. With a 12% reduction in planted area during the second crop season, methane emission could be reduced by 21%. In addition, removal of rice straw left from the first crop season and increasing the depth of flooding to 25 cm are also strategies that could help reduce annual emission by up to 18%

  1. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials

    NARCIS (Netherlands)

    Ganendra, G; De Muynck, W; Ho, A.; Hoefman, S.; De Vos, P.; Boeckx, P.; Boon, N.

    2014-01-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (similar to 20 % (v/v)) and low (similar to 100 ppmv) methane

  2. Quantification of the methane concentration using anaerobic oxidation of methane coupled to extracellular electron transfer

    Science.gov (United States)

    A biofilm anode acclimated with acetate, acetate+methane, and methane growth media for over three years produced a steady current density of 1.6-2.3 mA/m^2 in a microbial electrochemical cell (MxC) fed with methane as the sole electron donor. Geobacter was the dominant genus for...

  3. MethaneSat: Detecting Methane Emissions in the Barnett Shale Region

    Science.gov (United States)

    Propp, A. M.; Benmergui, J. S.; Turner, A. J.; Wofsy, S. C.

    2017-12-01

    In this study, we investigate the new information that will be provided by MethaneSat, a proposed satellite that will measure the total column dry-air mole fraction of methane at 1x1 km or 2x2 km spatial resolution with 0.1-0.2% random error. We run an atmospheric model to simulate MethaneSat's ability to characterize methane emissions from the Barnett Shale, a natural gas province in Texas. For comparison, we perform observation system simulation experiments (OSSEs) for MethaneSat, the National Oceanic and Atmospheric administration (NOAA) surface and aircraft network, and Greenhouse Gases Observing Satellite (GOSAT). The results demonstrate the added benefit that MethaneSat would provide in our efforts to monitor and report methane emissions. We find that MethaneSat successfully quantifies total methane emissions in the region, as well as their spatial distribution and steep gradients. Under the same test conditions, both the NOAA network and GOSAT fail to capture this information. Furthermore, we find that the results for MethaneSat depend far less on the prior emission estimate than do those for the other observing systems, demonstrating the benefit of high sampling density. The results suggest that MethaneSat would be an incredibly useful tool for obtaining detailed methane emission information from oil and gas provinces around the world.

  4. Methane reacts with heteropolyacids chemisorbed on silica to produce acetic acid under soft conditions

    KAUST Repository

    Sun, Miao

    2013-01-16

    Selective functionalization of methane at moderate temperature is of crucial economic, environmental, and scientific importance. Here, we report that methane reacts with heteropolyacids (HPAs) chemisorbed on silica to produce acetic acid under soft conditions. Specially, when chemisorbed on silica, H 4SiW12O40, H3PW12O 40, H4SiMo12O40, and H 3PMo12O40 activate the primary C-H bond of methane at room temperature and atmospheric pressure. With these systems, acetic acid is produced directly from methane, in a single step, in the absence of Pd and without adding CO. Extensive surface characterization by solid-state NMR spectroscopy, IR spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy suggests that C-H activation of methane is triggered by the protons in the HPA-silica interface with concerted reduction of the Keggin cage, leading to water formation and hydration of the interface. This is the simplest and mildest way reported to date to functionalize methane. © 2012 American Chemical Society.

  5. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis.

    KAUST Repository

    Siegert, Michael

    2014-02-18

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At -600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm(-3) d(-1)) and the highest biotic methane production rate (250 ± 90 nmol cm(-3) d(-1)). At -550 mV, plain graphite (76 nmol cm(-3) d(-1)) performed similarly to platinum (73 nmol cm(-3) d(-1)). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production.

  6. Methane fluxes during the cold season: distribution and mass transfer in the snow cover of bogs

    Science.gov (United States)

    Smagin, A. V.; Shnyrev, N. A.

    2015-08-01

    Fluxes and profile distribution of methane in the snow cover and different landscape elements of an oligotrophic West-Siberian bog (Mukhrino Research Station, Khanty-Mansiisk autonomous district) have been studied during a cold season. Simple models have been proposed for the description of methane distribution in the inert snow layer, which combine the transport of the gas and a source of constant intensity on the soil surface. The formation rates of stationary methane profiles in the snow cover have been estimated (characteristic time of 24 h). Theoretical equations have been derived for the calculation of small emission fluxes from bogs to the atmosphere on the basis of the stationary profile distribution parameters, the snow porosity, and the effective methane diffusion coefficient in the snow layer. The calculated values of methane emission significantly (by 2-3 to several tens of times) have exceeded the values measured under field conditions by the closed chamber method (0.008-0.25 mg C/(m2 h)), which indicates the possibility of underestimating the contribution of the cold period to the annual emission cycle of bog methane.

  7. Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming

    Science.gov (United States)

    Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.

    2011-12-01

    Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.

  8. On the atomistic mechanisms of alkane (methane-pentane) separation by distillation: a molecular dynamics study.

    Science.gov (United States)

    Zahn, Dirk

    2007-11-01

    Insights into the liquid-vapor transformation of methane-pentane mixtures were obtained from transition path sampling molecular dynamics simulations. This case study of the boiling of non-azeotropic mixtures demonstrates an unprejudiced identification of the atomistic mechanisms of phase separation in the course of vaporization which form the basis of distillation processes. From our simulations we observe spontaneous segregation events in the liquid mixture to trigger vapor nucleation. The formation of vapor domains stabilizes and further promotes the separation process by preferential evaporation of methane molecules. While this discrimination holds for all mixtures of different composition studied, a full account of the boiling process requires a more complex picture. At low methane concentration the nucleation of the vapor domains includes both methane and pentane molecules. The pentane molecules, however, tend to form small aggregates and undergo rapid re-condensation within picoseconds to nanoseconds scales. Accordingly, two aspects of selectivity accounting for methane-pentane separation in the course of liquid-vapor transformations were made accessible to molecular dynamics simulations: spontaneous segregation in the liquid phase leading to selective vapor nucleation and growth favoring methane vaporization and selective re-condensation of pentane molecules.

  9. Tracking the MSL-SAM methane detection source location Through Mars Regional Atmospheric Modeling System (MRAMS)

    Science.gov (United States)

    Pla-García, Jorge

    2016-04-01

    1. Introduction: The putative in situ detection of methane by Sample Analysis at Mars (SAM) instrument suite on Curiosi-ty at Gale crater has garnered significant attention because of the potential implications for the presence of geological methane sources or indigenous Martian organisms [1, 2]. SAM reported detection of back-ground levels of atmospheric methane of mean value 0.69±0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). Additionally, in four sequential measurements spanning a 60-sol period, SAM observed elevated levels of methane of 7.2±2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. There are many major unresolved questions regard-ing this detection: 1) What are the potential sources of the methane release? 2) What causes the rapid decrease in concentration? and 3) Where is the re-lease location? 4) How spatially extensive is the re-lease? 5) For how long is CH4 released? Regarding the first question, the source of methane, is so far not identified. It could be related with geo-logical process like methane release from clathrates [3], serpentinisation [4] and volcanism [5]; or due to biological activity from methanogenesis [6]. To answer the second question, the rapid decrease in concentration, it is important to note that the photo-chemical lifetime of methane is of order 100 years, much longer than the atmospheric mixing time scale, and thus the gas should tend to be well mixed except near a source or shortly after an episodic release. The observed spike of 7 ppb from the background of System (MRAMS). The model was focused on rover locations using nested grids with a spacing of 330 meters on the in-nermost grid that is centered over the landing [8, 9]. MRAMS is ideally suited for this investigation; the model is explicitly designed to simulate Mars' at-mospheric circulations at the mesoscale and smaller with realistic, high-resolution surface properties [10, 11

  10. Plasma catalytic reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center; Alexeev, N. [Russian Academy of Sciences, Moscow (Russian Federation). Baikov Inst. of Metallurgy

    1998-08-01

    Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.

  11. Urban sources and emissions of nitrous oxide and methane in southern California, USA

    Science.gov (United States)

    Townsend-Small, A.; Pataki, D.; Tyler, S. C.; Czimczik, C. I.; Xu, X.; Christensen, L. E.

    2012-12-01

    Anthropogenic activities have resulted in increasing levels of greenhouse gases, including carbon dioxide, methane, and nitrous oxide. While global and regional emissions sources of carbon dioxide are relatively well understood, methane and nitrous oxide are less constrained, particularly at regional scales. Here we present the results of an investigation of sources and emissions of methane and nitrous oxide in Los Angeles, California, USA, one of Earth's largest urban areas. The original goal of the project was to determine whether isotopes are useful tracers of agricultural versus urban nitrous oxide and methane sources. For methane, we found that stable isotopes (carbon-13 and deuterium) and radiocarbon are good tracers of biogenic versus fossil fuel sources. High altitude observations of methane concentration, measured continuously using tunable laser spectroscopy, and isotope ratios, measured on discrete flask samples using mass spectrometry, indicate that the predominant methane source in Los Angeles is from fossil fuels, likely from "fugitive" emissions from geologic formations, natural gas pipelines, oil refining, or power plants. We also measured nitrous oxide emissions and isotope ratios from urban (landscaping and wastewater treatment) and agricultural sources (corn and vegetable fields). There was no difference in nitrous oxide isotope ratios between the different types of sources, although stable isotopes did differ between nitrous oxide produced in oxic and anoxic wastewater treatment tanks. Our nitrous oxide flux data indicate that landscaped turfgrass emits nitrous oxide at rates equivalent to agricultural systems, indicating that ornamental soils should not be disregarded in regional nitrous oxide budgets. However, we also showed that wastewater treatment is a much greater source of nitrous oxide than soils regionally. This work shows that global nitrous oxide and methane budgets are not easily downscaled to regional, urban settings, which has

  12. Impact of methane flow through deformable lake sediments on atmospheric release

    Science.gov (United States)

    Scandella, B.; Juanes, R.

    2010-12-01

    Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles may escape oxidative traps and contribute more to the atmospheric source than dissolved methane, but the details of the methane release depend on the interactions between the multiple fluid phases and the deformable porous medium. We present a model and supporting laboratory experiments of methane release through “breathing” dynamic flow conduits that open in response to drops in the hydrostatic load on lake sediments, which has been validated against a high-resolution record of free gas flux and hydrostatic pressure in Upper Mystic Lake, MA. In contrast to previous linear elastic fracture mechanics analysis of gassy sediments, the evolution of gas transport in a deformable compliant sediment is presented within the framework of multiphase poroplasticity. Experiments address how strongly the mode and rate of gas flow, captured by our model, impacts the size of bubbles released into the water column. A bubble's size in turn determines how efficiently it transports methane to the atmosphere, and integrating this effect will be critical to improving estimates of the atmospheric methane source from lakes. Cross-sectional schematic of lake sediments showing two venting sites: one open at left and one closed at right. The vertical release of gas bubbles (red) at the open venting site creates a local pressure drop, which drives both bubble formation from the methane-rich pore water (higher concentrations shaded darker red) and lateral advection of dissolved methane (purple arrows). Even as bubbles in the open site escape, those at the closed site remain trapped.

  13. C-13 isotopic studies of the surface catalysed reactions of methane

    International Nuclear Information System (INIS)

    Long, M.A.; He, S.J.X.; Adebajo, M.

    1997-01-01

    The ability of methane to methylate aromatic compounds, which are considered to be models for coal, is being studied. Related to this reaction, but at higher temperatures, is the direct formation of benzene from methane in the presence of these catalysts. Controversy exists in the literature on the former reaction, and 13 C isotope studies are being used to resolve the question. The interest in this reaction arises because the utilisation of methane, in the form of natural gas, in place of hydrogen for direct coal liquefaction would have major economic advantage. For this reason Isotope studies in this area have contributed significantly to an understanding of the methylation reactions. The paper describes experiments utilising methane 13 C, which show that methylation of aromatics such as naphthalene by the methane 13 C is catalysed by microporous, Cu-exchanged SAPO-5, at elevated pressures (6.8 MPa) and temperatures around 400 degree C. The mass spectrometric analysis and n.m.r. study of the isotopic composition of the products of the methylation reaction demonstrate unequivocally that methane provides the additional carbon atom for the methylated products. Thermodynamic calculations predict that the reaction is favourable at high methane pressures under these experimental conditions. The mechanism as suggested by the isotope study is discussed. The catalysts which show activity for the activation of methane for direct methylation of organic compounds, such as naphthalene, toluene, phenol and pyrene, are substituted aluminophosphate molecular sieves, EIAPO-5 (where El=Pb, Cu, Ni and Si) and a number of metal substituted zeolites. Our earlier tritium studies had shown that these catalysts will activate alkanes, at least as far as isotope hydrogen exchange reactions are concerned

  14. Methane Group Ions in Saturn’s Outer Magnetosphere?

    Science.gov (United States)

    Sittler, E. C.; Hartle, R. E.; Cooper, J. F.; Johnson, R. E.; Smith, H.; Shappirio, M.; Reisenfeld, D. B.

    2009-12-01

    Yelle et al. [2008] have estimated from Cassini Ion Neutral Mass Spectrometer (INMS) measurements that methane is escaping from Titan’s upper atmosphere at the rate of 2.5-3.0×109 mol/cm2/s and in order to explain this loss rate Strobel [2008] has proposed a hydrodynamic escape model to explain such high loss rates. This translates to loss of 2.8×1027 methane mol/s. The consequence of this work is the formation of a methane torus around Saturn which will dissociate to CH3 and other fragments of methane. The CH3 will then become ionized to form CH3+ with pickup energies ≈ keV after which it can be detected by the Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS). Up till now the ion composition within Saturn’s outer magnetosphere in the vicinity of Titan’s orbit have yielded negative results with water group ions W+ dominating. The water group ions probably result from the emission of fast neutrals from the Enceladus torus via charge exchange reactions but still gravitationally bound to Saturn [see Johnson et al., 2005 and Sittler et al. 2006] and then become ionized in the outer magnetosphere as ~≈keV pickup ions. The CAPS IMS produces two ion composition data products, one called Straight Through (ST) and the other Linear Electric Field (LEF). The first has a higher sensitivity, while the latter has a greater discrimination in time-of-flight (TOF). For ST data O+ and CH4+ have similar TOF with the primary discriminator being the O- fragment which appears at a different TOF than for mass 16 ions. One can also look for other discriminators called ghost peaks. In case of LEF W+ ions produce TOF peak close to that for atomic O+ and the methane will produce TOF close to that for atomic C+ which has a significantly different(shorter) TOF than O+. We will be reporting on our continual search for methane ions within Saturn’s outer magnetosphere. References: 1. Yelle, R. V., J. Cui and I.C.F. Müller-Wodarg, JGR, 2008. 2. Strobel, D. F., Icarus

  15. Methanization takes countryside by storm

    International Nuclear Information System (INIS)

    Du Guerny, St.

    2011-01-01

    A new plant is operating in Brittany: it transforms cattle effluents and slaughterhouse wastes into electric power through natural fermentation. Thus, every year, 75.000 tons of organic wastes will produce methane and 1.5 MW. Other projects exist in the same region. One faced the opposition of the population. Therefore, the idea is now to develop smaller projects. France is very late compared to Germany and the Netherlands. The Grenelle de l'Environnement seems to have boosted these projects, notably due to the increase of the electricity purchase price proposed by EDF. Another issue is discussed: the development of this industrial sector in France

  16. Liquid hydrogen production via hydrogen sulfide methane reformation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [University of Central Florida, Florida Solar Energy Center, 1769 Clearlake Road, Cocoa, FL 32922 (United States)

    2008-01-03

    Hydrogen sulfide (H{sub 2}S) methane (CH{sub 4}) reformation (H{sub 2}SMR) (2H{sub 2}S + CH{sub 4} = CS{sub 2} + 4H{sub 2}) is a potentially viable process for the removal of H{sub 2}S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H{sub 2}SMR produces carbon disulfide (CS{sub 2}), a liquid under ambient temperature and pressure - a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H{sub 2}SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH{sub 4} to H{sub 2}S ratios are needed. In this paper, we analyze H{sub 2}SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H{sub 2}SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively. (author)

  17. Liquid hydrogen production via hydrogen sulfide methane reformation

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  18. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  19. Modeling of methane bubbles released from large sea-floor area: Condition required for methane emission to the atmosphere

    OpenAIRE

    Yamamoto, A.; Yamanaka, Y.; Tajika, E.

    2009-01-01

    Massive methane release from sea-floor sediments due to decomposition of methane hydrate, and thermal decomposition of organic matter by volcanic outgassing, is a potential contributor to global warming. However, the degree of global warming has not been estimated due to uncertainty over the proportion of methane flux from the sea-floor to reach the atmosphere. Massive methane release from a large sea-floor area would result in methane-saturated seawater, thus some methane would reach the atm...

  20. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    Science.gov (United States)

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  1. Template-Assisted Wet-Combustion Synthesis of Fibrous Nickel-Based Catalyst for Carbon Dioxide Methanation and Methane Steam Reforming.

    Science.gov (United States)

    Aghayan, M; Potemkin, D I; Rubio-Marcos, F; Uskov, S I; Snytnikov, P V; Hussainova, I

    2017-12-20

    Efficient capture and recycling of CO 2 enable not only prevention of global warming but also the supply of useful low-carbon fuels. The catalytic conversion of CO 2 into an organic compound is a promising recycling approach which opens new concepts and opportunities for catalytic and industrial development. Here we report about template-assisted wet-combustion synthesis of a one-dimensional nickel-based catalyst for carbon dioxide methanation and methane steam reforming. Because of a high temperature achieved in a short time during reaction and a large amount of evolved gases, the wet-combustion synthesis yields homogeneously precipitated nanoparticles of NiO with average particle size of 4 nm on alumina nanofibers covered with a NiAl 2 O 4 nanolayer. The as-synthesized core-shell structured fibers exhibit outstanding activity in steam reforming of methane and sufficient activity in carbon dioxide methanation with 100% selectivity toward methane formation. The as-synthesized catalyst shows stable operation under the reaction conditions for at least 50 h.

  2. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  3. Mechanistic insights into heterogeneous methane activation

    International Nuclear Information System (INIS)

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; Yoo, Jong Suk; Kulkarni, Ambarish

    2017-01-01

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model to aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.

  4. Methane from the East Siberian Arctic shelf

    DEFF Research Database (Denmark)

    Petrenko...[], Vasilii V.; Etheridge, David M.

    2010-01-01

    In their Report “Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf” (5 March, p. 1246), N. Shakhova et al. write that methane (CH4) release resulting from thawing Arctic permafrost “is a likely positive feedback to climate warming.” They add...

  5. Methane emission from wetland rice fields

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01


    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic

  6. Trading coalbed methane for carbon dioxide

    International Nuclear Information System (INIS)

    Greenberger, L.S.

    1991-01-01

    This article discusses a proposal for reducing methane emissions in coal mining activities and at the same time reducing the burden on utilities to cut carbon dioxide emissions. Emission credits would be issued to mines that recover the methane for use. These credits could then be bought by utilities and exchanged for the right to emit carbon dioxide

  7. Reducing methane emissions from ruminant animals

    Energy Technology Data Exchange (ETDEWEB)

    Mathison, G.W.; Okine, E.K.; McAllister, T.A.; Dong, Y.; Galbraith, J.; Dmytruk, O.I.N. [University of Alberta, Edmonton, AB (Canada). Dept. of Agriculture, Food and Nutrition Science

    1998-09-01

    In 1992 it was estimated that 30 x 10{sup 12}g more methane was emitted into the atmosphere than was removed, with animals being considered the largest single anthropogenic source. Ruminants produce 97% of the methane generated in enteric fermentation by animals. Estimates for methane emissions from animal wastes vary between 6 and 31% of that produced directly by the animal, with the most likely value being between 5 and 10% globally. Methane inhibitors can reduce methane emissions to zero in the short term but due to microbial adaptation the effects of these compounds are quickly neutralized and feed intake is often depressed. Methane emissions per unit of feed consumed from sheep and cattle fed hay diets appear to be quite similar but differences between other ruminants have been measured. The most practical way of influencing methane emissions per unit product is to increase productivity level since the proportion of feed energy required to just maintain the animal will be reduced, methane production falls with increased intake level, and the animal may go to market sooner. The most promising avenues for future research for reducing methanogenesis are the development of new products for reducing protozoal numbers in the rumen and the use of bacterocins or other compounds which specifically target methanogenic bacteria.

  8. Small Molecule Catalysts for Harvesting Methane Gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ceron-Hernandez, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oakdale, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lau, E. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-06

    As the average temperature of the earth increases the impact of these changes are becoming apparent. One of the most dramatic changes to the environment is the melting of arctic permafrost. The disappearance of the permafrost has resulted in release of streams of methane that was trapped in remote areas as gas hydrates in ice. Additionally, the use of fracking has also increased emission of methane. Currently, the methane is either lost to the atmosphere or flared. If these streams of methane could be brought to market, this would be an abundant source of revenue. A cheap conversion of gaseous methane to a more convenient form for transport would be necessary to economical. Conversion of methane is a difficult reaction since the C-H bond is very stable (104 kcal/mole). At the industrial scale, the Fischer-Tropsch reaction can be used to convert gaseous methane to liquid methanol but is this method is impractical for these streams that have low pressures and are located in remote areas. Additionally, the Fischer-Tropsch reaction results in over oxidation of the methane leading to many products that would need to be separated.

  9. Reaction between infusion water and methane

    Energy Technology Data Exchange (ETDEWEB)

    Ettinger, I L

    1977-09-01

    This paper discusses the effect of infused water on the initial gas emission rate and on the pore structure of the coal. Water traps methane in micro-pores, so that lengthy periods are needed for the methane to penetrate large voids and cavities.

  10. Methane storage in porous activated carbons

    NARCIS (Netherlands)

    András Perl; prof. dr. Wim van Gemert

    2014-01-01

    Locally produced methane, - either as biomethane or power-to-gas product, has to be stored to provide a reliable gas source for the fluctuating demand of any local gas distribution network. Additionally, methane is a prominent transportation fuel but its suitability for vehicular application depends

  11. Determination of soil-entrapped methane

    Energy Technology Data Exchange (ETDEWEB)

    Alberto, M.C.R.; Neue, H.U.; Lantin, R.S.; Aduna, J.B. [Soil and Water Sciences Division, Manila (Philippines)

    1996-12-31

    A sampling method was developed and modified to sample soil from paddy fields for entrapped methane determination. A 25-cm long plexiglass tube (4.4-cm i.d.) fitted with gas bag was used to sample soil and entrapped gases to a depth of 15-cm. The sampling tube was shaken vigorously to release entrapped gases. Headspace gas in sampling tube and gas bag was analyzed for methane. The procedure was verified by doing field sampling weekly at an irrigated ricefield in the IRRI Research Farm on a Maahas clay soil. The modified sampling method gave higher methane concentration because it eliminated gas losses during sampling. The method gave 98% {+-} 5 recovery of soil-entrapped methane. Results of field sampling showed that the early growth stage of the rice plant, entrapped methane increased irrespective of treatment. This suggests that entrapped methane increased irrespective of treatment. This suggests that entrapped methane was primarily derived from fermentation of soil organic matter at the early growth stage. At the latter stage, the rice plant seems to be the major carbon source for methane production. 7 refs., 4 figs., 4 tabs.

  12. A transient kinetic study of nickel-catalyzed methanation: Final report

    International Nuclear Information System (INIS)

    Hoost, T.E.; Goodwin, J.G. Jr.

    1988-11-01

    The results of this study are in two major parts. In Part I the use of steady-state isotopic transients of multiple elements (C, H, and O) under actual methanation reaction conditions has permitted an assessment of the reactivity of water on a Ni powder catalyst. It was concluded based on the addition of isotopic water that oxygen, once reacted to form water, is able to readsorb even where the surface coverage of CO remains high. At the low relative partial pressures of water used, however, there was no effect of added water on the formation of methane. The surface residence time of water determined from isotopic transients contains the residence time on the surface during the primary formation reaction as well as the time spent during readsorption(s). Part II addressed how a catalyst modifier (in this case Cl) affects methanation in CO hydrogenation using steady-state isotopic transient kinetic analysis (SSITKA) of methanation. The results obtained using silica-supported Ru suggest the structural rearrangements induced by the presence of chlorine, rather than selective site blocking or electronic interactions, may be the primary mechanism of chlorine modification of the catalytic properties of supported metals for CO hydrogenation. SSITKA indicated that the decrease in methanation activity with increasing initial Cl concentration was a function of a decrease in the number of reactive surface intermediates (or sites) and not of a change in site activity. 36 refs., 10 figs., 5 tabs

  13. Reconstructing Methane Emission Events in the Arctic Ocean: Observations from the Past to Present

    Science.gov (United States)

    Panieri, G.; Mienert, J.; Fornari, D. J.; Torres, M. E.; Lepland, A.

    2015-12-01

    Methane hydrates are ice-like crystals that are present along continental margins, occurring in the pore space of deep sediments or as massive blocks near the seafloor. They form in high pressure and low temperature environments constrained by thermodynamic stability, and supply of methane. In the Arctic, gas hydrates are abundant, and the methane released by their destabilization can affect local to global carbon budgets and cycles, ocean acidification, and benthic community survival. With the aim to locate in space and time the periodicity of methane venting, CAGE is engaged in a vast research program in the Arctic, a component of which comprises the analyses of numerous sediment cores and correlative geophysical and geochemical data from different areas. Here we present results from combined analyses of biogenic carbonate archives along the western Svalbard Margin, which reveal past methane venting events in this region. The reconstruction of paleo-methane discharge is complicated by precipitation of secondary carbonate on foraminifera shells, driven by an increase in alkalinity during anaerobic oxidation of methane (AOM). The biogeochemical processes involved in methane cycling and processes that drive methane migration affect the depth where AOM occurs, with relevance to secondary carbonate formation. Our results show the value and complexity of separating primary vs. secondary signals in bioarchives with relevance to understanding fluid-burial history in methane seep provinces. Results from our core analyses are integrated with observations made during the CAGE15-2 cruise in May 2015, when we deployed a towed vehicle equipped with camera, multicore and water sampling capabilities. The instrument design was based on the Woods Hole Oceanographic Institution (WHOI) MISO TowCam sled equipped with a deep-sea digital camera and CTD real-time system. Sediment sampling was visually-guided using this system. In one of the pockmarks along the Vestnesa Ridge where high

  14. Effects of guest atomic species on the lattice thermal conductivity of type-I silicon clathrate studied via classical molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Tomohisa, E-mail: kumagai@criepi.denken.or.jp; Nakamura, Kaoru; Yamada, Susumu; Ohnuma, Toshiharu [Materials Science Research Laboratory, Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan)

    2016-08-14

    The effects of guest atomic species in Si clathrates on the lattice thermal conductivity were studied using classical molecular dynamics calculations. The interaction between a host atom and a guest atom was described by the Morse potential function while that between host atoms was described by the Tersoff potential. The parameters of the potentials were newly determined for this study such that the potential curves obtained from first-principles calculations for the insertion of a guest atom into a Si cage were successfully reproduced. The lattice thermal conductivities were calculated by using the Green-Kubo method. The experimental lattice thermal conductivity of Ba{sub 8}Ga{sub 16}Si{sub 30} can be successfully reproduced using the method. As a result, the lattice thermal conductivities of type-I Si clathrates, M{sub 8}Si{sub 46} (M = Na, Mg, K, Ca Rb, Sr, Cs, or Ba), were obtained. It is found that the lattice thermal conductivities of M{sub 8}Si{sub 46}, where M is IIA elements (i.e., M = Mg, Ca, Sr, or Ba) tend to be lower than those of M{sub 8}Si{sub 46}, where M is IA elements (i.e., M = Na, K, Rb, or Cs). Those of {sup m}M{sub 8}Si{sub 46}, where m was artificially modified atomic weight were also obtained. The obtained lattice thermal conductivity can be regarded as a function of a characteristic frequency, f{sub c}. That indicates minimum values around f{sub c}=2-4 THz, which corresponds to the center of the frequencies of the transverse acoustic phonon modes associated with Si cages.

  15. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  16. Enteric methane emissions from German dairy cows

    DEFF Research Database (Denmark)

    Dammgen, U; Rosemann, C; Haenel, H D

    2012-01-01

    Up to now, the German agricultural emission inventory used a model for the assessment of methane emissions from enteric fermentation that combined an estimate of the energy and feed requirements as a function of performance parameters and diet composition, with the constant methane conversion rate......, as stated by IPCC. A methane emission model was selected here that is based on German feed data. It was combined with the hitherto applied model describing energy requirements. The emission rates thus calculated deviate from those previously obtained. In the new model, the methane conversion rate is back......-calculated from emission rates and gross energy intake rates. For German conditions of animal performance and diet composition, the national means of methane conversion rates range between 71 kJ MJ(-1) and 61 kJ MJ(-1) for low and high performances (4700 kg animal(-1) a(-1) in 1990 to 7200 kg animal(-1) a(-1...

  17. Greenhouse effect contributions of US landfill methane

    International Nuclear Information System (INIS)

    Augenstein, D.

    1991-01-01

    The greenhouse effect has recently been receiving a great deal of scientific and popular attention. The term refers to a cause-and-effect relationship in which ''heat blanketing'' of the earth, due to trace gas increases in the atmosphere, is expected to result in global warming. The trace gases are increasing as the result of human activities. Carbon dioxide (CO 2 ) is the trace gas contributing most importantly to the ''heat blanketing'' and currently receives the most attention. Less widely recognized has been the high importance of methane (CH 4 ). Methane's contribution to the increased heat blanketing occurring since 1980 is estimated to be over a third as much as that of carbon dioxide. Gas from landfills has in turn been recognized to be a source of methane to the atmospheric buildup. However the magnitude of the landfill methane contribution, and the overall significance of landfill methane to the greenhouse phenomenon has been uncertain and the subject of some debate. (Author)

  18. Decarbonisation of fossil energy via methane pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kreysa, G.; Agar, D.W.; Schultz, I. [Technische Univ. Dortmund (Germany)

    2010-12-30

    Despite the rising consumption of energy over the last few decades, the proven reserves of fossil fuels have steadily increased. Additionally, there are potentially tremendous reserves of methane hydrates available, which remain to be exploited. The use of fossil energy sources is thus increasingly being dictated less by supply than by the environmental concerns raised by climate change. In the context of the decarbonisation of the global energy system that this has stimulated, new means must be explored for using methane as energy source. Noncatalytic thermal pyrolysis of methane is proposed here as a promising concept for utilising methane with low to zero carbon dioxide emissions. Following cracking, only the energy content of the hydrogen is used, while the carbon can be stored safely and retrievably in disused coal mines. The thermodynamics and different process engineering concepts for the technical realisation of such a carbon moratorium technology are discussed. The possible contribution of methane pyrolysis to carbon negative geoengineering is also addressed. (orig.)

  19. Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs.

    Science.gov (United States)

    Kawaguchi, Hideo; Sakuma, Takahiro; Nakata, Yuiko; Kobayashi, Hajime; Endo, Keita; Sato, Kozo

    2010-07-01

    To recover energy from carbon dioxide sequestered in geological reservoirs, the geochemical effects of acidic and substrate- and nutrient-limiting conditions on methane production by the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus were investigated in a simulated deep saline aquifer environment using formation water media retrieved from petroleum reservoirs. 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Controls on the methane released through ebullition affected by permafrost degradation

    Science.gov (United States)

    S.J. Klapstein; M.R. Turetsky; A.D. McGuire; J.W. Harden; C.I. Czimczik; X. Xu; J.P. Chanton; J.M. Waddington

    2014-01-01

    Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine...

  1. Carbon and hydrogen isotope composition and C-14 concentration in methane from sources and from the atmosphere: Implications for a global methane budget

    Science.gov (United States)

    Wahlen, Martin

    1994-01-01

    The topics covered include the following: biogenic methane studies; forest soil methane uptake; rice field methane sources; atmospheric measurements; stratospheric samples; Antarctica; California; and Germany.

  2. Methane measurements manual; Handbok metanmaetningar

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Magnus Andreas (SP Technical research institute of Sweden, Boraas (Sweden))

    2011-02-15

    Emissions to air in different parts of the system may arise in biogas plants, where there is biological treatment of organic matter by anaerobic degradation, and during upgrading of biogas to vehicle fuel. There are mainly four reasons why these emissions must be minimized. These are safety, greenhouse gas emissions, economy and smell. This manual gathers experience of several years of work with measurement of methane emissions from biogas and upgrading facilities. This work has been done mainly in the context of Swedish Waste Management's system of voluntary commitment. The purpose of this manual is to standardize methods and procedures when methane measurements are carried out so that the results are comparable between different providers. The main target group of the manual is measurement consultants performing such measurements. Calculation template in Excel is part of the manual, which further contributes to the measurements evaluated in a standardized way. The manual contains several examples which have been calculated in the accompanying Excel template. The handbook also contains a chapter mainly intended for facility staff, in which implementation of accurate leak detection is described, and where there are hints of a system of so-called intermediate inspections to detect leaks in time

  3. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  4. Methane Provenance Determined by CH2D2 and 13CH3D Abundances

    Science.gov (United States)

    Kohl, I. E.; Giunta, T.; Warr, O.; Ash, J. L.; Ruffine, L.; Sherwood Lollar, B.; Young, E. D.

    2017-12-01

    Determining the provenance of naturally occurring methane gases is of major interest to energy companies and atmospheric climate modelers, among others. Bulk isotopic compositions and other geochemical tracers sometimes fail to provide definitive determinations of sources of methane due to complications from mixing and complicated chemical pathways of origin. Recent measurements of doubly-substituted isotopologues of methane, CH2D2 (UCLA) and 13CH3D (UCLA, CalTech, and MIT) have allowed for major improvements in sourcing natural methane gases. Early work has focused on formation temperatures obtained when the relative abundances of both doubly-substituted mass-18 species are consistent with internal equilibrium. When methane gases do not plot on the thermodynamic equilibrium curve in D12CH2D2 vs D13CH3D space, temperatures determined from D13CH3D values alone are usually spurious, even when appearing reasonable. We find that the equilibrium case is actually rare and almost exclusive to thermogenic gases produced at temperatures exceeding 100°C. All other relevant methane production processes appear to generate gases that are not in isotopologue-temperature equilibrium. When gases show departures from equilibrium as determined by the relationship between CH2D2 and 13CH3D abundances, data fall within empirically defined fields representing formation pathways. These fields are thus far consistent between different geological settings and and between lab experiments and natural samples. We have now defined fields for thermogenic gas production, microbial methanogenesis, low temperature abiotic (Sabatier) synthesis and higher temperature FTT synthesis. The majority of our natural methane data can be explained by mixing between end members originating within these production fields. Mixing can appear complex, resulting in both hyper-clumped and anti-clumped isotopologue abundances. In systems where mixtures dominate and end-members are difficult to sample, mixing models

  5. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  6. Syntrophic Communities in Methane Formation from High Strength Wastewaters

    NARCIS (Netherlands)

    Plugge, C.M.; Lier, van J.B.; Stams, A.J.M.

    2009-01-01

    Among the goals of environmentally sound waste treatment is the recycling of organic wastes. The most practiced options are composting and anaerobic digestion, both processes being carried out by microorganisms. This book provides an overview of the various ways microbes are doing their job and

  7. Non-microbial methane emissions from soils

    Science.gov (United States)

    Wang, Bin; Hou, Longyu; Liu, Wei; Wang, Zhiping

    2013-12-01

    Traditionally, methane (CH4) is anaerobically formed by methanogenic archaea. However, non-microbial CH4 can also be produced from geologic processes, biomass burning, animals, plants, and recently identified soils. Recognition of non-microbial CH4 emissions from soils remains inadequate. To better understand this phenomenon, a series of laboratory incubations were conducted to examine effects of temperature, water, and hydrogen peroxide (H2O2) on CH4 emissions under both aerobic and anaerobic conditions using autoclaved (30 min, 121 °C) soils and aggregates (>2000 μm, A1; 2000-250 μm, A2; 250-53 μm, M1; and A2 > A1 > M2 and C-based emission an order of M2 > M1 > A1 > A2, demonstrating that both organic carbon quantity and property are responsible for CH4 emissions from soils at the scale of aggregate. Whole soil-based order of A2 > A1 > M1 > M2 suggests that non-microbial CH4 release from forest soils is majorly contributed by macro-aggregates (i.e., >250 μm). The underlying mechanism is that organic matter through thermal treatment, photolysis, or reactions with free radicals produce CH4, which, in essence, is identical with mechanisms of other non-microbial sources, indicating that non-microbial CH4 production may be a widespread phenomenon in nature. This work further elucidates the importance of non-microbial CH4 formation which should be distinguished from the well-known microbial CH4 formation in order to define both roles in the atmospheric CH4 global budget.

  8. Dry reforming of methane at elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, L.; Lou, Y.; Jentys, A.; Lercher, J.A. [Technische Universitaet Muenchen (Germany); Herrera Delgado, K.; Kahle, L.; Deutschmann, O. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany)

    2013-11-01

    The dry reforming of methane (CO{sub 2} + CH{sub 4} {yields} 2 H{sub 2} + 2 CO) can be an alternative to steam (CH{sub 4} + H{sub 2}O {yields} 3 H{sub 2} + CO) or autothermal reforming for the production of CO rich syngas. However, its high tendency to coking has prevented the process from been applied in chemical industry. Due to pricing and availability base metals are preferred as active metals in dry reforming, even though they are more prone to coke deposition. To overcome this drawback and create suitable base metal catalysts, a detailed understanding of the carbon deposition mechanism is mandatory. In the work presented we compare the reactions leading to coke buildup on Nickel and Platinum at reaction conditions close to technical application (850 C, 10 bar). We analyzed the deposited coke by reactant isotope labeling ({sup 13}CO{sub 2}), SEM, TEM and TPO and revealed that the main deposits after 2 hours of reaction are carbon-nano-tubes. The coke formation on the Ni catalyst was about ten times higher compared to the Pt catalysts. The isotope composition of the coke indicated that on the Nickel both reactants ({sup 12}CH{sub 4} and {sup 13}CO{sub 2}) contributed to the carbon formation, whereas on Platinum coke was formed predominately from {sup 12}CH{sub 4}. Numerical simulations of the reaction rates of the individual pathways support the experimentally derived kinetic results and give insights in the main reaction routes on the catalytic surfaces. Based on the findings we propose a carbon deposition mechanism that explains the stronger resistance of Pt based catalysts against coking. The authors gratefully acknowledge the financial support from BMWi (0320327856D) and from DFG (LE 1187/12). (orig.) (Published in summary form only)

  9. Predicting hydrocarbon potential of an earth formation underlying a body of water

    International Nuclear Information System (INIS)

    Kaplan, I.R.; Demaison, G.J.

    1983-01-01

    A method for the on-site collection and examination of small concentrations of methane dissolved in water so as to predict hydrocarbon potential of an earth formation underlying a body of water, said formation being a source of said methane, comprises: (i) sampling the water; (ii) continuously vacuum separating said water into liquid and gas phases; (iii) quantitatively separating interfering gas species from methane; (iv) quantitatively oxidising said methane; (v) cryogenically trapping the resulting gaseous carbon dioxide and water vapor at a trapping station, and (vi) isotopically examining said trapped carbon dioxide and water vapour for carbon and deuterium distribution. (author)

  10. Raton basin assessment of coalbed methane resources. [USA - Colorado and New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S H; Kelso, B S; Lombardi, T E; Coates, J -M [Advanced Research International, Arlington, VA (USA)

    1993-02-01

    Coalbed methane resources of the Raton basin were assessed through an analysis of public and proprietary sources encompassing stratigraphic, structural, hydrologic, coal rank, and gas-content data. Mapping of coal seams within the Vermejo Formation and Raton Formation revealed several net-coal thickness maxima of 80 ft along the synclinal axis of the basin. However, this sizable coal resource is distributed among multiple, thin, laterally discontinuous coal seams; approximately 60 percent of the total coal in the Raton Formation and 50 percent in the Vermejo Formation occur in seams thinner than 4 ft. Coal rank of the basal Vermejo Formation ranges from high-volatile C to low-volatile bituminous, indicating adequate thermal maturity for methane-generation. Coal seam gas contents show considerable scatter, ranging from 4 to 810 CF/T (ash free), and vary more closely with depth below the hydrologic potentiometric surface than with depth below ground level. Exclusive of shallow and intruded coal seams, in-place coalbed methane resources are estimated at 8.4 to 12.1 TCF, with a mean average of 10.2 TCF. The apparent highest concentration of coalbed methane (24 BCF/mi[sup 2]) occurs along the La Veta trough in Colorado in an area that is geologically less well studied. A second maximum of 8 BCF/mi[sup 2] occurs southeast of Vermejo Park in New Mexico. Successful coalbed methane development in the Raton basin will require favourable coal seam geometry, depth, and reservoir properties in addition to sufficient in-place resources. Local fracturing and enhanced permeability may occur along folds, such as the Vermejo anticline, that splay off the Sangre de Cristo thrust belt. 16 refs., 9 figs.

  11. Electrochemical and partial oxidation of methane

    Science.gov (United States)

    Singh, Rahul

    2008-10-01

    negligible coke formation on the novel fabricated anode by electroless plating process. Hydrogen is an environmentally cleaner source of energy. The recent increase in the demand of hydrogen as fuel for all types of fuel cells and petroleum refining process has boosted the need of production of hydrogen. Methane, a major component of natural gas is the major feedstock for production of hydrogen. The route of partial oxidation of methane to produce syngas (CO + H2) offers significant advantages over commercialized steam reforming process for higher efficiency and lower energy requirements. Partial oxidation of methane was studied by pulsing O2 into a CH4 flow over Rh/Al2O3 in a sequence of in situ infrared (IR) cell and fixed bed reactor at 773 K. The results obtained from the sequence of an IR cell followed by a fixed bed reactor show that (i) adsorbed CO produced possesses a long residence time, indicating that adsorbed oxygen leading to the formation of CO is significantly different from those leading to CO2 and (ii) CO2 is not an intermediate species for the formation of CO. In situ IR of pulse reaction coupled with alternating reactor sequence is an effective approach to study the primary and secondary reactions as well as the nature of their adsorbed species. As reported earlier, hydrogen remains to be the most effective fuel for fuel cells, the production of high purity hydrogen from naturally available resources such as coal, petroleum, and natural gas requires a number of energy-intensive steps, making fuel cell processes for stationary electric power generation prohibitively uneconomic. Direct use of coal or coal gas as the feed is a promising approach for low cost electricity generation. Coal gas solid oxide fuel cell was studied by pyrolyzing Ohio #5 coal to coal gas and transporting to a Cu anode solid oxide fuel cell to generate power. The study of coal-gas solid oxide fuel cell is divided into two sections, i.e., (i) understanding the composition of coal gas by

  12. Low-Altitude Aerial Methane Concentration Mapping

    Directory of Open Access Journals (Sweden)

    Bara J. Emran

    2017-08-01

    Full Text Available Detection of leaks of fugitive greenhouse gases (GHGs from landfills and natural gas infrastructure is critical for not only their safe operation but also for protecting the environment. Current inspection practices involve moving a methane detector within the target area by a person or vehicle. This procedure is dangerous, time consuming, labor intensive and above all unavailable when access to the desired area is limited. Remote sensing by an unmanned aerial vehicle (UAV equipped with a methane detector is a cost-effective and fast method for methane detection and monitoring, especially for vast and remote areas. This paper describes the integration of an off-the-shelf laser-based methane detector into a multi-rotor UAV and demonstrates its efficacy in generating an aerial methane concentration map of a landfill. The UAV flies a preset flight path measuring methane concentrations in a vertical air column between the UAV and the ground surface. Measurements were taken at 10 Hz giving a typical distance between measurements of 0.2 m when flying at 2 m/s. The UAV was set to fly at 25 to 30 m above the ground. We conclude that besides its utility in landfill monitoring, the proposed method is ready for other environmental applications as well as the inspection of natural gas infrastructure that can release methane with much higher concentrations.

  13. Determining Methane Leak Locations and Rates with a Wireless Network Composed of Low-Cost, Printed Sensors

    Science.gov (United States)

    Smith, C. J.; Kim, B.; Zhang, Y.; Ng, T. N.; Beck, V.; Ganguli, A.; Saha, B.; Daniel, G.; Lee, J.; Whiting, G.; Meyyappan, M.; Schwartz, D. E.

    2015-12-01

    We will present our progress on the development of a wireless sensor network that will determine the source and rate of detected methane leaks. The targeted leak detection threshold is 2 g/min with a rate estimation error of 20% and localization error of 1 m within an outdoor area of 100 m2. The network itself is composed of low-cost, high-performance sensor nodes based on printed nanomaterials with expected sensitivity below 1 ppmv methane. High sensitivity to methane is achieved by modifying high surface-area-to-volume-ratio single-walled carbon nanotubes (SWNTs) with materials that adsorb methane molecules. Because the modified SWNTs are not perfectly selective to methane, the sensor nodes contain arrays of variously-modified SWNTs to build diversity of response towards gases with adsorption affinity. Methane selectivity is achieved through advanced pattern-matching algorithms of the array's ensemble response. The system is low power and designed to operate for a year on a single small battery. The SWNT sensing elements consume only microwatts. The largest power consumer is the wireless communication, which provides robust, real-time measurement data. Methane leak localization and rate estimation will be performed by machine-learning algorithms built with the aid of computational fluid dynamics simulations of gas plume formation. This sensor system can be broadly applied at gas wells, distribution systems, refineries, and other downstream facilities. It also can be utilized for industrial and residential safety applications, and adapted to other gases and gas combinations.

  14. 30 CFR 75.323 - Actions for excessive methane.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...

  15. Termites facilitate methane oxidation and shape the methanotrophic community

    NARCIS (Netherlands)

    Ho, A.; Erens, H.; Mujinya, B.B.; Boeckx, P.; Baert, G.; Schneider, B.; Frenzel, P.; Boon, N.; Van Ranst, E.

    2013-01-01

    Termite-derived methane contributes 3-4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of methane produced can be consumed by methanotrophs that inhabit the mound material. Yet, methanotroph

  16. Methane emissions form terrestrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, P.; Dentener, F.; Grassi, G.; Leip, A.; Somogyi, Z.; Federici, S.; Seufert, G.; Raes, F. [European Commission, DG Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy)

    2006-07-01

    In a recent issue of Nature Keppler et al. (2006) report the discovery that terrestrial plants emit CH4 under aerobic conditions. Until now it was thought that bacterial decomposition of plant material under anaerobic conditions, such as in wetlands and water flooded rice paddies, is the main process leading to emissions from terrestrial ecosystems. In a first attempt to upscale these measurements, the authors estimate that global total emissions may be 149 Tg CH4/yr (62-236 Tg CH4/yr), with the main contribution estimated from tropical forests and grasslands (107 Tg CH4/yr with a range of 46-169 Tg CH4/yr). If confirmed, this new source of emission would constitute a significant fraction of the total global methane sources (estimated 500-600 Tg CH4/yr for present day total natural and anthropogenic sources) and have important implications for the global CH4 budget. To accommodate it within the present budget some sources would need to be re-assessed downwards and/or some sinks re-assessed upwards. Furthermore, also considering that methane is a {approx}23 times more powerful greenhouse gas than CO2, the possible feedbacks of these hitherto unknown CH4 emissions on global warming and their impacts on greenhouse gases (GHG) mitigation strategies need to be carefully evaluated. The merit of the paper is without doubt related to the remarkable discovery of a new process of methane emissions active under aerobic conditions. However, we think that the applied approach of scaling up emissions from the leaf level to global totals by using only few measured data (mainly from herbaceous species) and the Net Primary Productivity of the main biomes is scientifically questionable and tends to overestimate considerably the global estimates, especially for forest biomes. Furthermore, some significant constraints on the upper limit of the global natural CH4 emissions arise from the pre-industrial CH4 budget. Pre-industrial atmospheric CH4 mixing ratios have been measured

  17. Validation of landfill methane measurements from an unmanned aerial system

    DEFF Research Database (Denmark)

    Allen, Grant; Williams, Paul; Ricketts, hugo

    Landfill gas is made up of roughly equal amounts of methane and carbon dioxide. Modern UK landfills capture and use much of the methane gas as a fuel. But some methane escapes and is emitted to the atmosphere. Methane is an important greenhouse gas and controls on methane emissions are a part...... of international and national strategies to limit climate change. Better estimates of methane emissions from landfills and other similar sources would allow the UK to improve the quantification and control of greenhouse gas emissions. This project tested the accuracy of methane measurement using an unmanned aerial...

  18. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  19. Status of the methanization sector in France

    International Nuclear Information System (INIS)

    2011-09-01

    This report aims at describing the status of methanization installations, either operating or under construction, on the French national territory, all sectors included (industry, agriculture, sewage treatment, municipal wastes). In a first part, the authors propose a definition of methanization, a presentation of the various implementation techniques, a presentation of the different sectors using methanization (industry, agriculture and breeding, sewage treatment plants, household wastes), and a presentation of a survey. Then, they comment and discuss more precisely the different sectors, their history, their geographical distribution in France, their technologies, their effluents, their production, their economic data, their perspectives

  20. Methane storage in metal-organic frameworks.

    Science.gov (United States)

    He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2014-08-21

    Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.